
Introduction to
Semi-Supervised Learning

Synthesis Lectures on
Artificial Intelligence and

Machine Learning

Editors
Ronald J. Brachman, Yahoo! Research
Thomas Dietterich, Oregon State University

Introduction to Semi-Supervised Learning
Xiaojin Zhu and Andrew B. Goldberg
2009

Action Programming Languages
Michael Thielscher
2008

Representation Discovery using Harmonic Analysis
Sridhar Mahadevan
2008

Essentials of Game Theory: A Concise Multidisciplinary Introduction
Kevin Leyton-Brown, Yoav Shoham
2008

A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence
Nikos Vlassis
2007

Intelligent Autonomous Robotics: A Robot Soccer Case Study
Peter Stone
2007

Copyright © 2009 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.

Introduction to Semi-Supervised Learning

Xiaojin Zhu and Andrew B. Goldberg

www.morganclaypool.com

ISBN: 9781598295474 paperback
ISBN: 9781598295481 ebook

DOI 10.2200/S00196ED1V01Y200906AIM006

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Lecture #6
Series Editors: Ronald J. Brachman, Yahoo! Research

Thomas Dietterich, Oregon State University

Series ISSN
Synthesis Lectures on Artificial Intelligence and Machine Learning
Print 1939-4608 Electronic 1939-4616

Introduction to
Semi-Supervised Learning

Xiaojin Zhu and Andrew B. Goldberg
University of Wisconsin, Madison

SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE AND
MACHINE LEARNING #6

CM& cLaypoolMorgan publishers&

ABSTRACT
Semi-supervised learning is a learning paradigm concerned with the study of how computers and
natural systems such as humans learn in the presence of both labeled and unlabeled data.Traditionally,
learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection)
where all the data is unlabeled, or in the supervised paradigm (e.g., classification, regression) where
all the data is labeled. The goal of semi-supervised learning is to understand how combining labeled
and unlabeled data may change the learning behavior, and design algorithms that take advantage
of such a combination. Semi-supervised learning is of great interest in machine learning and data
mining because it can use readily available unlabeled data to improve supervised learning tasks when
the labeled data is scarce or expensive. Semi-supervised learning also shows potential as a quantitative
tool to understand human category learning, where most of the input is self-evidently unlabeled.
In this introductory book, we present some popular semi-supervised learning models, including
self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-
supervised support vector machines. For each model, we discuss its basic mathematical formulation.
The success of semi-supervised learning depends critically on some underlying assumptions. We
emphasize the assumptions made by each model and give counterexamples when appropriate to
demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning
for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-
supervised learning, and we conclude the book with a brief discussion of open questions in the
field.

KEYWORDS
semi-supervised learning, transductive learning, self-training, Gaussian mixture model,
expectation maximization (EM), cluster-then-label, co-training, multiview learning,
mincut,harmonic function, label propagation,manifold regularization, semi-supervised
support vector machines (S3VM), transductive support vector machines (TSVM), en-
tropy regularization, human semi-supervised learning

To our parents

Yu and Jingquan
Susan and Steven Goldberg

with much love and gratitude.

ix

Contents
Preface . xiii

1 Introduction to Statistical Machine Learning . 1

1.1 The Data . 2

1.2 Unsupervised Learning .2

1.3 Supervised Learning . 3

2 Overview of Semi-Supervised Learning . 9

2.1 Learning from Both Labeled and Unlabeled Data .9

2.2 How is Semi-Supervised Learning Possible? . 11

2.3 Inductive vs. Transductive Semi-Supervised Learning . 12

2.4 Caveats . 13

2.5 Self-Training Models . 15

3 Mixture Models and EM . 21

3.1 Mixture Models for Supervised Classification . 21

3.2 Mixture Models for Semi-Supervised Classification . 25

3.3 Optimization with the EM Algorithm∗ .26

3.4 The Assumptions of Mixture Models . 28

3.5 Other Issues in Generative Models . 30

3.6 Cluster-then-Label Methods . 31

4 Co-Training .35

4.1 Two Views of an Instance . 35

4.2 Co-Training . 36

4.3 The Assumptions of Co-Training . 37

4.4 Multiview Learning∗ . 38

x CONTENTS

5 Graph-Based Semi-Supervised Learning .43

5.1 Unlabeled Data as Stepping Stones .43

5.2 The Graph .43

5.3 Mincut . 45

5.4 Harmonic Function .47

5.5 Manifold Regularization∗ . 50

5.6 The Assumption of Graph-Based Methods∗ . 51

6 Semi-Supervised Support Vector Machines . 57

6.1 Support Vector Machines . 58

6.2 Semi-Supervised Support Vector Machines∗ . 61

6.3 Entropy Regularization∗ . 63

6.4 The Assumption of S3VMs and Entropy Regularization . 65

7 Human Semi-Supervised Learning . 69

7.1 From Machine Learning to Cognitive Science .69

7.2 Study One: Humans Learn from Unlabeled Test Data .70

7.3 Study Two: Presence of Human Semi-Supervised Learning in a Simple Task 72

7.4 Study Three: Absence of Human Semi-Supervised Learning in a Complex Task
75

7.5 Discussions . 77

8 Theory and Outlook . 79

8.1 A Simple PAC Bound for Supervised Learning∗ .79

8.2 A Simple PAC Bound for Semi-Supervised Learning∗ . 81

8.3 Future Directions of Semi-Supervised Learning . 83

A Basic Mathematical Reference . 85

B Semi-Supervised Learning Software . 89

C Symbols . 93

Biography . 113

CONTENTS xi
Index . 115

Preface
The book is a beginner’s guide to semi-supervised learning. It is aimed at advanced under-

graduates, entry-level graduate students and researchers in areas as diverse as Computer Science,
Electrical Engineering, Statistics, and Psychology.The book assumes that the reader is familiar with
elementary calculus, probability and linear algebra. It is helpful, but not necessary, for the reader to
be familiar with statistical machine learning, as we will explain the essential concepts in order for
this book to be self-contained. Sections containing more advanced materials are marked with a star.
We also provide a basic mathematical reference in Appendix A.

Our focus is on semi-supervised model assumptions and computational techniques.We inten-
tionally avoid competition-style benchmark evaluations.This is because, in general, semi-supervised
learning models are sensitive to various settings, and no benchmark that we know of can characterize
the full potential of a given model on all tasks. Instead, we will often use simple artificial problems to
“break” the models in order to reveal their assumptions. Such analysis is not frequently encountered
in the literature.

Semi-supervised learning has grown into a large research area within machine learning. For
example, a search for the phrase “semi-supervised” in May 2009 yielded more than 8000 papers in
Google Scholar. While we attempt to provide a basic coverage of semi-supervised learning, the se-
lected topics are not able to reflect the most recent advances in the field.We provide a “bibliographical
notes” section at the end of each chapter for the reader to dive deeper into the topics.

We would like to express our sincere thanks to Thorsten Joachims and the other reviewers for
their constructive reviews that greatly improved the book. We thank Robert Nowak for his excellent
learning theory lecture notes, from which we take some materials for Section 8.1. Our thanks also
go to Bryan Gibson, Tushar Khot, Robert Nosofsky, Timothy Rogers, and Zhiting Xu for their
valuable comments.

We hope you enjoy the book.

Xiaojin Zhu and Andrew B. Goldberg
Madison, Wisconsin

1

C H A P T E R 1

Introduction to Statistical
Machine Learning

We start with a gentle introduction to statistical machine learning. Readers familiar with machine
learning may wish to skip directly to Section 2, where we introduce semi-supervised learning.

Example 1.1. You arrive at an extrasolar planet and are welcomed by its resident little green men.
You observe the weight and height of 100 little green men around you, and plot the measurements
in Figure 1.1. What can you learn from this data?

80 90 100 110

40

45

50

55

60

65

70

weight (lbs.)

he
ig

ht
 (i

n.
)

Figure 1.1: The weight and height of 100 little green men from the extrasolar planet. Each green dot is
an instance, represented by two features: weight and height.

This is a typical example of a machine learning scenario (except the little green men part). We
can perform several tasks using this data: group the little green men into subcommunities based on
weight and/or height, identify individuals with extreme (possibly erroneous) weight or height values,
try to predict one measurement based on the other, etc. Before exploring such machine learning tasks,
let us begin with some definitions.

2 CHAPTER 1. INTRODUCTION TO STATISTICAL MACHINE LEARNING

1.1 THE DATA
Definition 1.2. Instance. An instance x represents a specific object. The instance is often repre-
sented by a D-dimensional feature vector x = (x1, . . . , xD) ∈ R

D , where each dimension is called a
feature. The length D of the feature vector is known as the dimensionality of the feature vector.

The feature representation is an abstraction of the objects. It essentially ignores all other infor-
mation not represented by the features. For example, two little green men with the same weight and
height, but with different names, will be regarded as indistinguishable by our feature representation.
Note we use boldface x to denote the whole instance, and xd to denote the d-th feature of x. In our
example, an instance is a specific little green man; the feature vector consists of D = 2 features: x1

is the weight, and x2 is the height. Features can also take discrete values. When there are multiple
instances, we will use xid to denote the i-th instance’s d-th feature.
Definition 1.3. Training Sample. A training sample is a collection of instances {xi}ni=1 =
{x1, . . . , xn}, which acts as the input to the learning process. We assume these instances are sampled
independently from an underlying distribution P(x), which is unknown to us. We denote this by

{xi}ni=1
i.i.d.∼ P(x), where i.i.d. stands for independent and identically distributed.

In our example, the training sample consists of n = 100 instances x1, . . . , x100. A training
sample is the “experience” given to a learning algorithm. What the algorithm can learn from it,
however, varies. In this chapter, we introduce two basic learning paradigms: unsupervised learning
and supervised learning.

1.2 UNSUPERVISED LEARNING
Definition 1.4. Unsupervised learning. Unsupervised learning algorithms work on a training
sample with n instances {xi}ni=1. There is no teacher providing supervision as to how individual
instances should be handled—this is the defining property of unsupervised learning. Common
unsupervised learning tasks include:

• clustering, where the goal is to separate the n instances into groups;

• novelty detection, which identifies the few instances that are very different from the majority;

• dimensionality reduction, which aims to represent each instance with a lower dimensional
feature vector while maintaining key characteristics of the training sample.

Among the unsupervised learning tasks, the one most relevant to this book is clustering, which
we discuss in more detail.
Definition 1.5. Clustering. Clustering splits {xi}ni=1 into k clusters, such that instances in the
same cluster are similar, and instances in different clusters are dissimilar. The number of clusters k

may be specified by the user, or may be inferred from the training sample itself.

1.3. SUPERVISED LEARNING 3

How many clusters do you find in the little green men data in Figure 1.1? Perhaps k = 2,
k = 4, or more. Without further assumptions, either one is acceptable. Unlike in supervised learning
(introduced in the next section), there is no teacher that tells us which instances should be in each
cluster.

There are many clustering algorithms. We introduce a particularly simple one, hierarchical
agglomerative clustering, to make unsupervised learning concrete.

Algorithm 1.6. Hierarchical Agglomerative Clustering.

Input: a training sample {xi}ni=1; a distance function d().
1. Initially, place each instance in its own cluster (called a singleton cluster).
2. while (number of clusters > 1) do:
3. Find the closest cluster pair A, B, i.e., they minimize d(A, B).
4. Merge A, B to form a new cluster.
Output: a binary tree showing how clusters are gradually merged from singletons
to a root cluster, which contains the whole training sample.

This clustering algorithm is simple. The only thing unspecified is the distance function d().
If xi , xj are two singleton clusters, one way to define d(xi , xj) is the Euclidean distance between
them:

d(xi , xj) = ‖xi − xj‖ =
√√√√ D∑

s=1

(xis − xjs)2. (1.1)

We also need to define the distance between two non-singleton clusters A, B. There are multiple
possibilities: one can define it to be the distance between the closest pair of points in A and B,
the distance between the farthest pair, or some average distance. For simplicity, we will use the first
option, also known as single linkage:

d(A, B) = min
x∈A,x′∈B

d(x, x′). (1.2)

It is not necessary to fully grow the tree until only one cluster remains: the clustering algorithm
can be stopped at any point if d() exceeds some threshold, or the number of clusters reaches a
predetermined number k.

Figure 1.2 illustrates the results of hierarchical agglomerative clustering for k = 2, 3, 4, re-
spectively.The clusters certainly look fine. But because there is no information on how each instance
should be clustered, it can be difficult to objectively evaluate the result of clustering algorithms.

1.3 SUPERVISED LEARNING
Suppose you realize that your alien hosts have a gender: female or male (so they should not all be
called little green men after all). You may now be interested in predicting the gender of a particular

4 CHAPTER 1. INTRODUCTION TO STATISTICAL MACHINE LEARNING

80 90 100 110

40

45

50

55

60

65

70

weight (lbs.)

he
ig

ht
 (

in
.)

80 90 100 110

40

45

50

55

60

65

70

weight (lbs.)

he
ig

ht
 (

in
.)

80 90 100 110

40

45

50

55

60

65

70

weight (lbs.)

he
ig

ht
 (

in
.)

Figure 1.2: Hierarchical agglomerative clustering results for k = 2, 3, 4 on the 100 little green men data.

alien from his or her weight and height. Alternatively, you may want to predict whether an alien is a
juvenile or an adult using weight and height. To explain how to approach these tasks, we need more
definitions.

Definition 1.7. Label. A label y is the desired prediction on an instance x.

Labels may come from a finite set of values, e.g., {female, male}. These distinct values are
called classes. The classes are usually encoded by integer numbers, e.g., female = −1, male = 1, and
thus y ∈ {−1, 1}. This particular encoding is often used for binary (two-class) labels, and the two
classes are generically called the negative class and the positive class, respectively. For problems with
more than two classes, a traditional encoding is y ∈ {1, . . . , C}, where C is the number of classes. In
general, such encoding does not imply structure in the classes.That is to say, the two classes encoded
by y = 1 and y = 2 are not necessarily closer than the two classes y = 1 and y = 3. Labels may also
take continuous values in R. For example, one may attempt to predict the blood pressure of little
green aliens based on their height and weight.

In supervised learning, the training sample consists of pairs, each containing an instance x and
a label y: {(xi , yi)}ni=1. One can think of y as the label on x provided by a teacher, hence the name
supervised learning. Such (instance, label) pairs are called labeled data, while instances alone without
labels (as in unsupervised learning) are called unlabeled data. We are now ready to define supervised
learning.

Definition 1.8. Supervised learning. Let the domain of instances be X , and the domain of labels
be Y . Let P(x, y) be an (unknown) joint probability distribution on instances and labels X × Y .

Given a training sample {(xi , yi)}ni=1
i.i.d.∼ P(x, y), supervised learning trains a function f : X �→ Y

in some function family F , with the goal that f (x) predicts the true label y on future data x, where

(x, y)
i.i.d.∼ P(x, y) as well.

1.3. SUPERVISED LEARNING 5

Depending on the domain of label y, supervised learning problems are further divided into
classification and regression:

Definition 1.9. Classification. Classification is the supervised learning problem with discrete
classes Y . The function f is called a classifier .

Definition 1.10. Regression. Regression is the supervised learning problem with continuous Y .
The function f is called a regression function.

What exactly is a good f ? The best f is by definition

f ∗ = argmin
f ∈F

E(x,y)∼P [c(x, y, f (x))] , (1.3)

where argmin means “finding the f that minimizes the following quantity”. E(x,y)∼P [·] is the
expectation over random test data drawn from P . Readers not familiar with this notation may wish
to consult Appendix A.c(·) is a loss function that determines the cost or impact of making a prediction
f (x) that is different from the true label y. Some typical loss functions will be discussed shortly. Note
we limit our attention to some function family F , mostly for computational reasons. If we remove
this limitation and consider all possible functions, the resulting f ∗ is the Bayes optimal predictor , the
best one can hope for on average. For the distribution P , this function will incur the lowest possible
loss when making predictions. The quantity E(x,y)∼P [c(x, y, f ∗(x))] is known as the Bayes error .
However, the Bayes optimal predictor may not be in F in general. Our goal is to find the f ∈ F
that is as close to the Bayes optimal predictor as possible.

It is worth noting that the underlying distribution P(x, y) is unknown to us.Therefore, it is not
possible to directly find f ∗, or even to measure any predictor f ’s performance, for that matter. Here
lies the fundamental difficulty of statistical machine learning: one has to generalize the prediction
from a finite training sample to any unseen test data. This is known as induction.

To proceed, a seemingly reasonable approximation is to gauge f ’s performance using training
sample error. That is, to replace the unknown expectation by the average over the training sample:

Definition 1.11. Training sample error. Given a training sample {(xi , yi)}ni=1, the training sample
error is

1

n

n∑
i=1

c(xi , yi, f (xi)). (1.4)

For classification, one commonly used loss function is the 0-1 loss c(x, y, f (x)) ≡ (f (xi)
=
yi):

1

n

n∑
i=1

(f (xi)
= yi), (1.5)

6 CHAPTER 1. INTRODUCTION TO STATISTICAL MACHINE LEARNING

where f (x)
= y is 1 if f predicts a different class than y on x, and 0 otherwise. For regression, one
commonly used loss function is the squared loss c(x, y, f (x)) ≡ (f (xi) − yi)

2:

1

n

n∑
i=1

(f (xi) − yi)
2. (1.6)

Other loss functions will be discussed as we encounter them later in the book.
It might be tempting to seek the f that minimizes training sample error. However, this

strategy is flawed: such an f will tend to overfit the particular training sample. That is, it will likely
fit itself to the statistical noise in the particular training sample. It will learn more than just the
true relationship between X and Y . Such an overfitted predictor will have small training sample
error, but is likely to perform less well on future test data. A sub-area within machine learning called
computational learning theory studies the issue of overfitting. It establishes rigorous connections
between the training sample error and the true error, using a formal notion of complexity such as
the Vapnik-Chervonenkis dimension or Rademacher complexity. We provide a concise discussion
in Section 8.1. Informed by computational learning theory, one reasonable training strategy is to
seek an f that “almost” minimizes the training sample error, while regularizing f so that it is not too
complex in a certain sense. Interested readers can find the references in the bibliographical notes.

To estimate f ’s future performance, one can use a separate sample of labeled instances, called

the test sample: {(xj , yj)}n+m
j=n+1

i.i.d.∼ P(x, y). A test sample is not used during training, and therefore
provides a faithful (unbiased) estimation of future performance.

Definition 1.12. Test sample error. The corresponding test sample error for classification with
0-1 loss is

1

m

n+m∑
j=n+1

(f (xj)
= yj), (1.7)

and for regression with squared loss is

1

m

n+m∑
j=n+1

(f (xj) − yj)
2. (1.8)

In the remainder of the book,we focus on classification due to its prevalence in semi-supervised
learning research. Most ideas discussed also apply to regression, though.

As a concrete example of a supervised learning method, we now introduce a simple classifi-
cation algorithm: k-nearest-neighbor (kNN).

Algorithm 1.13. k-nearest-neighbor classifier.

Input: Training data (x1, y1), . . . , (xn, yn); distance function d();
number of neighbors k; test instance x∗

1.3. SUPERVISED LEARNING 7

1. Find the k training instances xi1, . . . , xik closest to x∗ under distance d().
2. Output y∗ as the majority class of yi1, . . . , yik . Break ties randomly.

Being a D-dimensional feature vector, the test instance x∗ can be viewed as a point in D-
dimensional feature space. A classifier assigns a label to each point in the feature space. This divides
the feature space into decision regions within which points have the same label. The boundary
separating these regions is called the decision boundary induced by the classifier.

Example 1.14. Consider two classification tasks involving the little green aliens. In the first task
in Figure 1.3(a), the task is gender classification from weight and height. The symbols are training
data. Each training instance has a label: female (red cross) or male (blue circle).The decision regions
from a 1NN classifier are shown as white and gray. In the second task in Figure 1.3(b), the task is age
classification on the same sample of training instances. The training instances now have different
labels: juvenile (red cross) or adult (blue circle). Again, the decision regions of 1NN are shown.
Notice that, for the same training instances but different classification goals, the decision boundary
can be quite different. Naturally, this is a property unique to supervised learning, since unsupervised
learning does not use any particular set of labels at all.

weight (lbs.)

he
ig

ht
 (i

n.
)

female

male

80 90 100 110

40

45

50

55

60

65

70

weight (lbs.)

he
ig

ht
 (i

n.
) juvenile

adult

80 90 100 110

40

45

50

55

60

65

70

(a) classification by gender (b) classification by age

Figure 1.3: Classify by gender or age from a training sample of 100 little green aliens, with
1-nearest-neighbor decision regions shown.

In this chapter, we introduced statistical machine learning as a foundation for the rest of
the book. We presented the unsupervised and supervised learning settings, along with concrete
examples of each. In the next chapter, we provide an overview of semi-supervised learning, which
falls somewhere between these two. Each subsequent chapter will present specific families of semi-
supervised learning algorithms.

8 CHAPTER 1. INTRODUCTION TO STATISTICAL MACHINE LEARNING

BIBLIOGRAPHICAL NOTES
There are many excellent books written on statistical machine learning. For example, readers in-
terested in the methodologies can consult the introductory textbook [131], and the comprehensive
textbooks [19, 81]. For grounding of machine learning in classic statistics, see [184]. For compu-
tational learning theory, see [97, 176] for the Vapnik-Chervonenkis (VC) dimension and Probably
Approximately Correct (PAC) learning framework, and Chapter 4 in [153] for an introduction to
the Rademacher complexity. For a perspective from information theory, see [119]. For a perspective
that views machine learning as an important part of artificial intelligence, see [147].

9

C H A P T E R 2

Overview of Semi-Supervised
Learning

2.1 LEARNING FROM BOTH LABELED AND UNLABELED
DATA

As the name suggests, semi-supervised learning is somewhere between unsupervised and supervised
learning. In fact, most semi-supervised learning strategies are based on extending either unsupervised
or supervised learning to include additional information typical of the other learning paradigm.
Specifically, semi-supervised learning encompasses several different settings, including:

• Semi-supervised classification. Also known as classification with labeled and unlabeled data (or
partially labeled data), this is an extension to the supervised classification problem.The training
data consists of both l labeled instances {(xi , yi)}li=1 and u unlabeled instances {xj }l+u

j=l+1. One
typically assumes that there is much more unlabeled data than labeled data, i.e.,u � l.The goal
of semi-supervised classification is to train a classifier f from both the labeled and unlabeled
data, such that it is better than the supervised classifier trained on the labeled data alone.

• Constrained clustering. This is an extension to unsupervised clustering. The training data con-
sists of unlabeled instances {xi}nj=1, as well as some “supervised information” about the clusters.
For example, such information can be so-called must-link constraints, that two instances xi , xj

must be in the same cluster; and cannot-link constraints, that xi , xj cannot be in the same
cluster. One can also constrain the size of the clusters. The goal of constrained clustering is to
obtain better clustering than the clustering from unlabeled data alone.

There are other semi-supervised learning settings, including regression with labeled and un-
labeled data, dimensionality reduction with labeled instances whose reduced feature representation
is given, and so on. This book will focus on semi-supervised classification.

The study of semi-supervised learning is motivated by two factors: its practical value in building
better computer algorithms, and its theoretical value in understanding learning in machines and
humans.

Semi-supervised learning has tremendous practical value. In many tasks, there is a paucity of
labeled data. The labels y may be difficult to obtain because they require human annotators, special
devices, or expensive and slow experiments. For example,

• In speech recognition, an instance x is a speech utterance, and the label y is the corresponding
transcript.For example,here are some detailed phonetic transcripts of words as they are spoken:

10 CHAPTER 2. OVERVIEW OF SEMI-SUPERVISED LEARNING

film ⇒ f ih_n uh_gl_n m
be all ⇒ bcl b iy iy_tr ao_tr ao l_dl

Accurate transcription by human expert annotators can be extremely time consuming: it took
as long as 400 hours to transcribe 1 hour of speech at the phonetic level for the Switch-
board telephone conversational speech data [71] (recordings of randomly paired participants
discussing various topics such as social, economic, political, and environmental issues).

• In natural language parsing, an instance x is a sentence, and the label y is the corresponding
parse tree. An example parse tree for the Chinese sentence “The National Track and Field
Championship has finished.” is shown below.

The training data, consisting of (sentence, parse tree) pairs, is known as a treebank. Tree-
banks are time consuming to construct, and require the expertise of linguists: For a mere
4000 sentences in the Penn Chinese Treebank, experts took two years to manually create the
corresponding parse trees.

• In spam filtering, an instance x is an email, and the label y is the user’s judgment (spam or
ham). In this situation, the bottleneck is an average user’s patience to label a large number of
emails.

• In video surveillance, an instance x is a video frame, and the label y is the identity of the object
in the video. Manually labeling the objects in a large number of surveillance video frames is
tedious and time consuming.

• In protein 3D structure prediction, an instance x is a DNA sequence, and the label y is
the 3D protein folding structure. It can take months of expensive laboratory work by expert
crystallographers to identify the 3D structure of a single protein.

While labeled data (x, y) is difficult to obtain in these domains, unlabeled data x is available
in large quantity and easy to collect: speech utterances can be recorded from radio broadcasts; text
sentences can be crawled from the World Wide Web;emails are sitting on the mail server; surveillance
cameras run 24 hours a day; and DNA sequences of proteins are readily available from gene databases.
However, traditional supervised learning methods cannot use unlabeled data in training classifiers.

2.2. HOW IS SEMI-SUPERVISED LEARNING POSSIBLE? 11

Semi-supervised learning is attractive because it can potentially utilize both labeled and un-
labeled data to achieve better performance than supervised learning. From a different perspective,
semi-supervised learning may achieve the same level of performance as supervised learning, but with
fewer labeled instances. This reduces the annotation effort, which leads to reduced cost. We will
present several computational models in Chapters 3,4,5, 6.

Semi-supervised learning also provides a computational model of how humans learn from
labeled and unlabeled data. Consider the task of concept learning in children, which is similar to
classification: an instance x is an object (e.g., an animal), and the label y is the corresponding concept
(e.g., dog). Young children receive labeled data from teachers (e.g., Daddy points to a brown animal
and says “dog!”). But more often they observe various animals by themselves without receiving
explicit labels. It seems self-evident that children are able to combine labeled and unlabeled data
to facilitate concept learning. The study of semi-supervised learning is therefore an opportunity to
bridge machine learning and human learning. We will discuss some recent studies in Chapter 7.

2.2 HOW IS SEMI-SUPERVISED LEARNING POSSIBLE?
At first glance, it might seem paradoxical that one can learn anything about a predictor f : X �→ Y
from unlabeled data. After all, f is about the mapping from instance x to label y, yet unlabeled data
does not provide any examples of such a mapping. The answer lies in the assumptions one makes
about the link between the distribution of unlabeled data P(x) and the target label.

Figure 2.1 shows a simple example of semi-supervised learning. Let each instance be repre-
sented by a one-dimensional feature x ∈ R. There are two classes: positive and negative. Consider
the following two scenarios:

1. In supervised learning, we are given only two labeled training instances (x1, y1) = (−1, −)

and (x2, y2) = (1, +), shown as the red and blue symbols in the figure, respectively. The
best estimate of the decision boundary is obviously x = 0: all instances with x < 0 should be
classified as y = −, while those with x ≥ 0 as y = +.

2. In addition, we are also given a large number of unlabeled instances, shown as green dots in
the figure. The correct class labels for these unlabeled examples are unknown. However, we
observe that they form two groups. Under the assumption that instances in each class form a
coherent group (e.g., p(x|y) is a Gaussian distribution, such that the instances from each class
center around a central mean), this unlabeled data gives us more information. Specifically, it
seems that the two labeled instances are not the most prototypical examples for the classes.
Our semi-supervised estimate of the decision boundary should be between the two groups
instead, at x ≈ 0.4.

If our assumption is true, then using both labeled and unlabeled data gives us a more reliable
estimate of the decision boundary. Intuitively, the distribution of unlabeled data helps to identify
regions with the same label, and the few labeled data then provide the actual labels. In this book, we
will introduce a few other commonly used semi-supervised learning assumptions.

12 CHAPTER 2. OVERVIEW OF SEMI-SUPERVISED LEARNING

−1.5 −1 −0.5 0 0.5 1 1.5 2
x

Supervised decision boundary Semi−supervised decision boundary

Positive labeled data
Negative labeled data
Unlabeled data

Figure 2.1: A simple example to demonstrate how semi-supervised learning is possible.

2.3 INDUCTIVE VS. TRANSDUCTIVE SEMI-SUPERVISED
LEARNING

There are actually two slightly different semi-supervised learning settings, namely inductive and
transductive semi-supervised learning. Recall that in supervised classification, the training sample is
fully labeled, so one is always interested in the performance on future test data. In semi-supervised
classification, however, the training sample contains some unlabeled data. Therefore, there are two
distinct goals. One is to predict the labels on future test data.The other goal is to predict the labels on
the unlabeled instances in the training sample. We call the former inductive semi-supervised learning,
and the latter transductive learning.

Definition 2.1. Inductive semi-supervised learning. Given a training sample {(xi , yi)}li=1,
{xj }l+u

j=l+1, inductive semi-supervised learning learns a function f : X �→ Y so that f is expected

to be a good predictor on future data, beyond {xj }l+u
j=l+1.

Like in supervised learning, one can estimate the performance on future data by using a
separate test sample {(xk, yk)}mk=1, which is not available during training.

Definition 2.2. Transductive learning. Given a training sample {(xi , yi)}li=1, {xj }l+u
j=l+1, trans-

ductive learning trains a function f : X l+u �→ Y l+u so that f is expected to be a good predictor
on the unlabeled data {xj }l+u

j=l+1. Note f is defined only on the given training sample, and is not
required to make predictions outside. It is therefore a simpler function.

There is an interesting analogy: inductive semi-supervised learning is like an in-class exam,
where the questions are not known in advance, and a student needs to prepare for all possible
questions; in contrast, transductive learning is like a take-home exam, where the student knows the
exam questions and needs not prepare beyond those.

2.4. CAVEATS 13

2.4 CAVEATS
It seems reasonable that semi-supervised learning can use additional unlabeled data, which by it-
self does not carry information on the mapping X �→ Y , to learn a better predictor f . As men-
tioned earlier, the key lies in the semi-supervised model assumptions about the link between the
marginal distribution P(x) and the conditional distribution P(y|x). There are several different
semi-supervised learning methods, and each makes slightly different assumptions about this link.
These methods include self-training, probabilistic generative models, co-training, graph-based mod-
els, semi-supervised support vector machines, and so on. In the next several chapters, we will go
through these models and discuss their assumptions. In Section 8.2, we will also give some theoretic
justification. Empirically, these semi-supervised learning models do produce better classifiers than
supervised learning on some data sets.

However, it is worth pointing out that blindly selecting a semi-supervised learning method
for a specific task will not necessarily improve performance over supervised learning. In fact, unla-
beled data can lead to worse performance with the wrong link assumptions. The following example
demonstrates this sensitivity to model assumptions by comparing supervised learning performance
with several semi-supervised learning approaches on a simple classification problem. Don’t worry if
these approaches appear mysterious; we will explain how they work in detail in the rest of the book.
For now, the main point is that semi-supervised learning performance depends on the correctness
of the assumptions made by the model in question.

Example 2.3. Consider a classification task where there are two classes, each with a Gaussian
distribution. The two Gaussian distributions heavily overlap (top panel of Figure 2.2). The true
decision boundary lies in the middle of the two distributions, shown as a dotted line. Since we know
the true distributions, we can compute test sample error rates based on the probability mass of each
Gaussian that falls on the incorrect side of the decision boundary. Due to the overlapping class
distributions, the optimal error rate (i.e., the Bayes error) is 21.2%.

For supervised learning, the learned decision boundary is in the middle of the two labeled
instances, and the unlabeled instances are ignored. See, for example, the thick solid line in the second
panel of Figure 2.2. We note that it is away from the true decision boundary, because the two labeled
instances are randomly sampled. If we were to draw two other labeled instances, the learned decision
boundary would change,but most likely would still be off (see other panels of Figure 2.2).On average,
the expected learned decision boundary will coincide with the true boundary, but for any given draw
of labeled data it will be off quite a bit. We say that the learned boundary has high variance. To
evaluate supervised learning, and the semi-supervised learning methods introduced below, we drew
1000 training samples, each with one labeled and 99 unlabeled instances per class. In contrast to the
optimal decision boundary, the decision boundaries found using supervised learning have an average
test sample error rate of 31.6%.The average decision boundary lies at 0.02 (compared to the optimal
boundary of 0), but has standard deviation of 0.72.

Now without presenting the details, we show the learned decision boundaries of three semi-
supervised learning models on the training data. These models will be presented in detail in later

14 CHAPTER 2. OVERVIEW OF SEMI-SUPERVISED LEARNING

Negative distribution
Positive distribution
Unlabeled instance
Negative instance
Positive instance

Optimal
Supervised
Generative model
S3VM
Graph−based

Training set 1

Training set 2

Training set 3

Training set 4

Training set 5

True
distribution

Figure 2.2: Two classes drawn from overlapping Gaussian distributions (top panel). Decision boundaries
learned by several algorithms are shown for five random samples of labeled and unlabeled training samples.

chapters. The first one is a probabilistic generative model with two Gaussian distributions learned
with EM (Chapter 3)—this model makes the correct model assumption. The decision boundaries
are shown in Figure 2.2 as dashed lines. In this case, the boundaries tend to be closer to the true
boundary and similar to one another, i.e., this algorithm has low variance. The 1000-trial average
test sample error rate for this algorithm is 30.2%. The average decision boundary is at -0.003 with
a standard deviation of 0.55, indicating the algorithm is both more accurate and more stable than
the supervised model.

The second model is a semi-supervised support vector machine (Chapter 6), which assumes
that the decision boundary should not pass through dense unlabeled data regions. However, since the
two classes strongly overlap, the true decision boundary actually passes through the densest region.
Therefore, the model assumption does not entirely match the task. The learned decision boundaries
are shown in Figure 2.2 as dash-dotted lines.1 The result is better than supervised classification
and performs about the same as the probabilistic generative model that makes the correct model
1The semi-supervised support vector machine results were obtained using transductive SVM code similar to SVM-light.

2.5. SELF-TRAINING MODELS 15

assumption. The average test sample error rate here is 29.6%, with an average decision boundary of
0.01 (standard deviation 0.48). Despite the wrong model assumption, this approach uses knowledge
that the two classes contain roughly the same number of instances, so the decision boundaries are
drawn toward the center. This might explain the surprisingly good performance compared to the
correct model.

The third approach is a graph-based model (Chapter 5), with a typical way to generate the
graph: any two instances in the labeled and unlabeled data are connected by an edge. The edge
weight is large if the two instances are close to each other, and small if they are far away. The
model assumption is that instances connected with large-weight edges tend to have the same label.
However, in this particular example where the two classes overlap, instances from different classes
can be quite close and connected by large-weight edges. Therefore, the model assumption does not
match the task either. The results using this model are shown in Figure 2.2 as thin solid lines.2 The
graph-based models’ average test sample error rate is 36.4%, with an average decision boundary at
0.03 (standard deviation 1.23). The graph-based model is inappropriate for this task and performs
even worse than supervised learning.

As the above example shows, the model assumption plays an important role in semi-supervised
learning. It makes up for the lack of labeled data, and can determine the quality of the predictor.
However, making the right assumptions (or detecting wrong assumptions) remains an open question
in semi-supervised learning. This means the question “which semi-supervised model should I use?”
does not have an easy answer. Consequently, this book will mainly present methodology. Most
chapters will introduce a distinct family of semi-supervised learning models. We start with a simple
semi-supervised classification model: self-training.

2.5 SELF-TRAINING MODELS
Self-training is characterized by the fact that the learning process uses its own predictions to teach
itself. For this reason, it is also called self-teaching or bootstrapping (not to be confused with the
statistical procedure with the same name). Self-training can be either inductive or transductive,
depending on the nature of the predictor f .

Algorithm 2.4. Self-training.

Input: labeled data {(xi , yi)}li=1, unlabeled data {xj }l+u
j=l+1.

1. Initially, let L = {(xi , yi)}li=1 and U = {xj }l+u
j=l+1.

2. Repeat:
3. Train f from L using supervised learning.
4. Apply f to the unlabeled instances in U .

2The graph-based model used here featured a Gaussian-weighted graph (wij = exp
||xi−xj ||2

2σ2 , with σ = 0.1), and predictions
were made using the closed-form harmonic function solution. While this is a transductive method, we calculate the boundary as
the value on the x-axis where the predicted label changes.

16 CHAPTER 2. OVERVIEW OF SEMI-SUPERVISED LEARNING

5. Remove a subset S from U ; add {(x, f (x))|x ∈ S} to L.

The main idea is to first train f on labeled data. The function f is then used to predict the
labels for the unlabeled data. A subset S of the unlabeled data, together with their predicted labels,
are then selected to augment the labeled data. Typically, S consists of the few unlabeled instances
with the most confident f predictions. The function f is re-trained on the now larger set of labeled
data, and the procedure repeats. It is also possible for S to be the whole unlabeled data set. In this
case, L and U remain the whole training sample, but the assigned labels on unlabeled instances
might vary from iteration to iteration.

Remark 2.5. Self-Training Assumption The assumption of self-training is that its own predic-
tions, at least the high confidence ones, tend to be correct. This is likely to be the case when the
classes form well-separated clusters.

The major advantages of self-training are its simplicity and the fact that it is a wrapper method.
This means that the choice of learner for f in step 3 is left completely open. For example, the learner
can be a simple kNN algorithm, or a very complicated classifier.The self-training procedure “wraps”
around the learner without changing its inner workings. This is important for many real world tasks
like natural language processing, where the learners can be complicated black boxes not amenable
to changes.

On the other hand, it is conceivable that an early mistake made by f (which is not perfect
to start with, due to a small initial L) can reinforce itself by generating incorrectly labeled data.
Re-training with this data will lead to an even worse f in the next iteration. Various heuristics have
been proposed to alleviate this problem.

Example 2.6. As a concrete example of self-training, we now introduce an algorithm we call
propagating 1-nearest-neighbor and illustrate it using the little green aliens data.

Algorithm 2.7. Propagating 1-Nearest-Neighbor.

Input: labeled data {(xi , yi)}li=1, unlabeled data {xj }l+u
j=l+1, distance function d().

1. Initially, let L = {(xi , yi)}li=1 and U = {xj }l+u
j=l+1.

2. Repeat until U is empty:
3. Select x = argminx∈U minx′∈L d(x, x′).
4. Set f (x) to the label of x’s nearest instance in L. Break ties randomly.
5. Remove x from U ; add (x, f (x)) to L.

This algorithm wraps around a 1-nearest-neighbor classifier. In each iteration, it selects the
unlabeled instance that is closest to any “labeled” instance (i.e., any instance currently in L, some of
which were labeled by previous iterations). The algorithm approximates confidence by the distance

2.5. SELF-TRAINING MODELS 17

to the currently labeled data. The selected instance is then assigned the label of its nearest neighbor
and inserted into L as if it were truly labeled data. The process repeats until all instances have been
added to L.

We now return to the data featuring the 100 little green aliens. Suppose you only met one
male and one female alien face-to-face (i.e., labeled data), but you have unlabeled data for the
weight and height of 98 others. You would like to classify all the aliens by gender, so you apply
propagating 1-nearest-neighbor. Figure 2.3 illustrates the results after three particular iterations, as
well as the final labeling of all instances. Note that the original labeled instances appear as large
symbols, unlabeled instances as green dots, and instances labeled by the algorithm as small symbols.
The figure illustrates the way the labels propagate to neighbors, expanding the sets of positive and
negative instances until all instances are labeled. This approach works remarkably well and recovers
the true labels exactly as they appear in Figure 1.3(a). This is because the model assumption—that
the classes form well-separated clusters—is true for this data set.

80 90 100 110

40

45

50

55

60

65

70

weight (lbs.)

he
ig

ht
 (i

n.
)

80 90 100 110

40

45

50

55

60

65

70

weight (lbs.)

he
ig

ht
 (i

n.
)

(a) Iteration 1 (b) Iteration 25

80 90 100 110

40

45

50

55

60

65

70

weight (lbs.)

he
ig

ht
 (i

n.
)

80 90 100 110

40

45

50

55

60

65

70

weight (lbs.)

he
ig

ht
 (i

n.
)

(c) Iteration 74 (d) Final labeling of all instances

Figure 2.3: Propagating 1-nearest-neighbor applied to the 100-little-green-alien data.

We now modify this data by introducing a single outlier that falls directly between the two
classes. An outlier is an instance that appears unreasonably far from the rest of the data. In this case,
the instance is far from the center of any of the clusters. As shown in Figure 2.4, this outlier breaks

18 CHAPTER 2. OVERVIEW OF SEMI-SUPERVISED LEARNING

the well-separated cluster assumption and leads the algorithm astray. Clearly, self-training methods
such as propagating 1-nearest-neighbor are highly sensitive to outliers that may lead to propagating
incorrect information. In the case of the current example, one way to avoid this issue is to consider
more than the single nearest neighbor in both selecting the next point to label as well as assigning
it a label.

80 90 100 110

40

45

50

55

60

65

70

weight (lbs.)

he
ig

ht
 (i

n.
) outlier

80 90 100 110

40

45

50

55

60

65

70

weight (lbs.)
he

ig
ht

 (i
n.

)

(a) (b)

80 90 100 110

40

45

50

55

60

65

70

weight (lbs.)

he
ig

ht
 (i

n.
)

80 90 100 110

40

45

50

55

60

65

70

weight (lbs.)

he
ig

ht
 (i

n.
)

(c) (d)

Figure 2.4: Propagating 1-nearest-neighbor illustration featuring an outlier: (a) after first few iterations,
(b,c) steps highlighting the effect of the outlier, (d) final labeling of all instances, with the entire rightmost
cluster mislabeled.

This concludes our basic introduction to the motivation behind semi-supervised learning,
and the various issues that a practitioner must keep in mind. We also showed a simple example of
semi-supervised learning to highlight the potential successes and failures. In the next chapter, we
discuss in depth a more sophisticated type of semi-supervised learning algorithm that uses generative
probabilistic models.

2.5. SELF-TRAINING MODELS 19

BIBLIOGRAPHICAL NOTES
Semi-supervised learning is a maturing field with extensive literature. It is impossible to cover all
aspects of semi-supervised learning in this introductory book. We try to select a small sample of
widely used semi-supervised learning approaches to present in the next few chapters, but have to
omit many others due to space. We provide a glimpse to these other approaches in Chapter 8.

Semi-supervised learning is one way to address the scarcity of labeled data. We encourage
readers to explore alternative ways to obtain labels. For example, there are ways to motivate human
annotators to produce more labels via computer games [177], the sense of contribution to citizen
science [165], or monetary rewards [3].

Multiple researchers have informally noted that semi-supervised learning does not always help.
Little is written about it, except a few papers like [48, 64]. This is presumably due to “publication
bias,” that negative results tend not to be published.A deeper understanding of when semi-supervised
learning works merits further study.

Yarowsky’s word sense disambiguation algorithm [191] is a well-known early example of self
training. There are theoretical analyses of self-training for specific learning algorithms [50, 80].
However, in general self-training might be difficult to analyze. Example applications of self-training
can be found in [121, 144, 145].

21

C H A P T E R 3

Mixture Models and EM
Unlabeled data tells us how the instances from all the classes, mixed together, are distributed. If
we know how the instances from each class are distributed, we may decompose the mixture into
individual classes. This is the idea behind mixture models. In this chapter, we formalize the idea
of mixture models for semi-supervised learning. First we review some concepts in probabilistic
modeling. Readers familiar with machine learning can skip to Section 3.2.

3.1 MIXTURE MODELS FOR SUPERVISED CLASSIFICATION

Example 3.1. Gaussian Mixture Model with Two Components Suppose training data comes
from two one-dimensional Gaussian distributions. Figure 3.1 illustrates the underlying p(x|y) dis-
tributions and a small training sample with only two labeled instances and several unlabeled instances.

negative distribution
positive distribution
optimal decision boundary
unlabeled instance
negative instance
positive instance

Figure 3.1: Two classes forming a mixture model with 1-dimensional Gaussian distribution components.
The dashed curves are p(x|y = −1) and p(x|y = 1), respectively. The labeled and unlabeled instances
are plotted on the x-axis.

Suppose we know that the data comes from two Gaussian distributions, but we do not know
their parameters (the mean, variance, and prior probabilities, which we will define soon). We can
use the data (labeled and unlabeled) to estimate these parameters for both distributions. Note that,
in this example, the labeled data is actually misleading: the labeled instances are both to the right of
the means of the true distributions. The unlabeled data, however, helps us to identify the means of
the two Gaussian distribution. Computationally, we select parameters to maximize the probability
of generating such training data from the proposed model. In particular, the training samples are
more likely if the means of the Gaussians are centered over the unlabeled data, rather than shifted
to the right over the labeled data.

22 CHAPTER 3. MIXTURE MODELS AND EM

Formally, let x ∈ X be an instance. We are interested in predicting its class label y. We will
employ a probabilistic approach that seeks the label that maximizes the conditional probability
p(y|x). This conditional probability specifies how likely each class label is, given the instance. By
definition, p(y|x) ∈ [0, 1] for all y, and

∑
y p(y|x) = 1. If we want to minimize classification error,

the best strategy is to always classify x into the most likely class ŷ:1

ŷ = argmax
y

p(y|x). (3.1)

Note that if different types of misclassification (e.g., wrongly classifying a benign tumor as malignant
vs. the other way around) incur different amounts of loss, the above strategy may not be optimal in
terms of minimizing the expected loss.We defer the discussion of loss minimization to later chapters,
but note that it is straightforward to handle loss in probabilistic models.

How do we compute p(y|x)? One approach is to use a generative model , which employs the
Bayes rule:

p(y|x) = p(x|y)p(y)∑
y′ p(x|y′)p(y′)

, (3.2)

where the summation in the denominator is over all class labels y′.p(x|y) is called the class conditional
probability, and p(y) the prior probability. It is useful to illustrate these probability notations using
the alien gender example:

• For a specific alien, x is the (weight, height) feature vector, and p(y|x) is a probability distri-
bution over two outcomes: male or female. That is, p(y = male|x) + p(y = female|x) = 1.
There are infinitely many p(y|x) distributions, one for each feature vector x.

• There are only two class conditional distributions: p(x|y = male) and p(x|y = female). Each
is a continuous (e.g., Gaussian) distribution over feature vectors. In other words, some weight
and height combinations are more likely than others for each gender, and p(x|y) specifies
these differences.

• The prior probabilities p(y = male) and p(y = female) specify the proportions of males and
females in the alien population.

Furthermore, one can hypothetically “generate” i.i.d. instance-label pairs (x, y) from these
probability distributions by repeating the following two steps, hence the name generative model:2

1. Sample y ∼ p(y). In the alien example, one can think of p(y) as the probability of heads of
a biased coin. Flipping the coin then selects a gender.

2. Sample x ∼ p(x|y). In the alien example, this samples a two-dimensional feature vector to
describe an alien of the gender chosen in step 1.

1Note that a “hat” on a variable (e.g., ŷ, θ̂) indicates we are referring to an estimated or predicted value.
2An alternative to generative models are discriminative models, which focus on distinguishing the classes without worrying about
the process underlying the data generation.

3.1. MIXTURE MODELS FOR SUPERVISED CLASSIFICATION 23

We call p(x, y) = p(y)p(x|y) the joint distribution of instances and labels.
As an example of generative models, the multivariate Gaussian distribution is a common

choice for continuous feature vectors x. The class conditional distributions have the probability
density function

p(x|y) = N (x; μy, �y) = 1

(2π)D/2|�y |1/2
exp

(
−1

2
(x − μy)

��−1
y (x − μy)

)
, (3.3)

where μy and �y are the mean vector and covariance matrix, respectively, An example task is image
classification, where x may be the vector of pixel intensities of an image. Images in each class are
modeled by a Gaussian distribution. The overall generative model is called a Gaussian Mixture
Model (GMM).

As another example of generative models, the multinomial distribution

p(x = (x·1, . . . , x·d)|μy) = (
∑D

i=1 x·i)!
x·1! · · · x·D!

D∏
d=1

μ
x·d
yd , (3.4)

where μy is a probability vector, is a common choice for modeling count vectors x. For instance,
in text categorization x is the vector of word counts in a document (the so-called bag-of-words
representation). Documents in each category are modeled by a multinomial distribution.The overall
generative model is called a Multinomial Mixture Model.

As yet another example of generative models,Hidden Markov Models (HMM) are commonly
used to model sequences of instances. Each instance in the sequence is generated from a hidden state,
where the state conditional distribution can be a Gaussian or a multinomial, for example. In addition,
HMMs specify the transition probability between states to form the sequence. Learning HMMs
involves estimating the conditional distributions’ parameters and transition probabilities. Doing so
makes it possible to infer the hidden states responsible for generating the instances in the sequences.

Now we know how to do classification once we have p(x|y) and p(y), but the problem remains
to learn these distributions from training data. The class conditional p(x|y) is often determined by
some model parameters, for example, the mean μ and covariance matrix � of a Gaussian distribution.
For p(y), if there are C classes we need to estimate C − 1 parameters: p(y = 1), . . . , p(y = C − 1).
The probability p(y = C) is constrained to be 1 − ∑C−1

c=1 p(y = c) since p(y) is normalized. We
will use θ to denote the set of all parameters in p(x|y) and p(y). If we want to be explicit, we use
the notation p(x|y, θ) and p(y|θ). Training amounts to finding a good θ . But how do we define
goodness?

One common criterion is the maximum likelihood estimate (MLE). Given training data D, the
MLE is

θ̂ = argmax
θ

p(D|θ) = argmax
θ

log p(D|θ). (3.5)

That is, the MLE is the parameter under which the data likelihood p(D|θ) is the largest. We often
work with log likelihood log p(D|θ) instead of the straight likelihood p(D|θ). They yield the same
maxima since log() is monotonic, and log likelihood will be easier to handle.

24 CHAPTER 3. MIXTURE MODELS AND EM

In supervised learning when D = {(xi , yi)}li=1, the MLE is usually easy to find. We can
rewrite the log likelihood as

log p(D|θ) = log
l∏

i=1

p(xi , yi |θ) =
l∑

i=1

log p(yi |θ)p(xi |yi, θ), (3.6)

where we used the fact that the probability of a set of i.i.d. events is the product of individual
probabilities. Finding an MLE is an optimization problem to maximize the log likelihood. In
supervised learning, the optimization problem is often straightforward and yields intuitive MLE
solutions, as the next example shows.
Example 3.2. MLE for Gaussian Mixture Model, All Labeled Data We now present the
derivation for the maximum likelihood estimate for a 2-class Gaussian mixture model when
D = {(xi , yi)}li=1. We begin by setting up the constrained optimization problem

θ̂ = argmax
θ

log p(D|θ) s.t.
2∑

j=1

p(yj |θ) = 1, (3.7)

where we enforce the constraint that the class priors must sum to 1. We next introduce a Lagrange
multiplier β to form the Lagrangian (see [99] for a tutorial on Lagrange multipliers)

�(θ, β) = log p(D|θ) − β(

2∑
j=1

p(yj |θ) − 1)

= log
l∏

i=1

p(xi , yi |θ) − β(

2∑
j=1

p(yj |θ) − 1)

=
l∑

i=1

log p(yi |θ)p(xi |yi, θ) − β(

2∑
j=1

p(yj |θ) − 1)

=
l∑

i=1

log πi +
l∑

i=1

log N (xi; μyi
, �yi

) − β(

2∑
j=1

πj − 1),

where πj , μj , �j for j ∈ {1, 2} are the class priors and Gaussian means and covariance matrices.We
compute the partial derivatives with respect to all the parameters. We then set each partial derivative
to zero to obtain the intuitive closed-form MLE solution:

∂�

∂β
=

2∑
j=1

πj − 1 = 0 ⇒
2∑

j=1

πj = 1. (3.8)

Clearly, the β Lagrange multiplier’s role is to enforce the normalization constraint on the class priors.

∂�

∂πj

=
∑

i:yi=j

1

πj

− β = lj

πj

− β = 0 ⇒ πj = lj

β
= lj

l
, (3.9)

3.2. MIXTURE MODELS FOR SEMI-SUPERVISED CLASSIFICATION 25

where lj is the number of instances in class j . Note that we find β = l by substituting (3.9) into
(3.8) and rearranging. In the end, we see that the MLE for the class prior is simply the fraction of
instances in each class. We next solve for the class means. For this we need to use the derivatives
with respect to the vector μj . In general, let v be a vector and A a square matrix of the appropriate
size, we have ∂

∂v
v�Av = 2Av. This leads to

∂�

∂μj

= ∂

∂μj

∑
i:yi=j

−1

2
(xi − μj)

��−1
j (xi − μj)

=
∑

i:yi=j

�−1
j (xi − μj) = 0 ⇒ μj = 1

lj

∑
i:yi=j

xi . (3.10)

We see that the MLE for each class mean is simply the class’s sample mean. Finally, the MLE
solution for the covariance matrices is

�j = 1

lj

∑
i:yi=j

(xi − μj)(xi − μj)
�, (3.11)

which is the sample covariance for the instances of that class.

3.2 MIXTURE MODELS FOR SEMI-SUPERVISED CLASSIFI-
CATION

In semi-supervised learning, D consists of both labeled and unlabeled data. The likelihood depends
on both the labeled and unlabeled data—this is how unlabeled data might help semi-supervised
learning in mixture models. It is no longer possible to solve the MLE analytically. However, as we
will see in the next section, one can find a local maximum of the parameter estimate using an iterative
procedure known as the EM algorithm.

Since the training data consists of both labeled and unlabeled data, i.e., D =
{(x1, y1), . . . , (xl , yl), xl+1, . . . , xl+u}, the log likelihood function is now defined as

log p(D|θ) = log

⎛
⎝ l∏

i=1

p(xi , yi |θ)

l+u∏
i=l+1

p(xi |θ)

⎞
⎠ (3.12)

=
l∑

i=1

log p(yi |θ)p(xi |yi, θ) +
l+u∑

i=l+1

log p(xi |θ). (3.13)

The essential difference between this semi-supervised log likelihood (3.13) and the previous super-
vised log likelihood (3.6) is the second term for unlabeled instances. We call p(x|θ) the marginal
probability, which is defined as

p(x|θ) =
C∑

y=1

p(x, y|θ) =
C∑

y=1

p(y|θ)p(x|y, θ). (3.14)

26 CHAPTER 3. MIXTURE MODELS AND EM

It is the probability of generating x from any of the classes. The marginal probabilities therefore
account for the fact that we know which unlabeled instances are present, but not which classes they
belong to. Semi-supervised learning in mixture models amounts to finding the MLE of (3.13).
The only difference between supervised and semi-supervised learning (for mixture models) is the
objective function being maximized. Intuitively, a semi-supervised MLE θ̂ will need to fit both the
labeled and unlabeled instances. Therefore, we can expect it to be different from the supervised
MLE.

The unobserved labels yl+1, . . . , yl+u are called hidden variables. Unfortunately, hidden vari-
ables can make the log likelihood (3.13) non-concave and hard to optimize.3 Fortunately, there are
several well studied optimization methods which attempt to find a locally optimal θ . We will present
a particularly important method, the Expectation Maximization (EM) algorithm, in the next sec-
tion. For Gaussian Mixture Models (GMMs), Multinomial Mixture Models, HMMs, etc., the EM
algorithm has been the de facto standard optimization technique to find an MLE when unlabeled
data is present. The EM algorithm for HMMs even has its own name: the Baum-Welch algorithm.

3.3 OPTIMIZATION WITH THE EM ALGORITHM∗

Recall the observed data is D = {(x1, y1), . . . , (xl , yl), xl+1, . . . , xl+u}, and let the hidden data be
H = {yl+1, . . . , yl+u}. Let the model parameter be θ . The EM algorithm is an iterative procedure
to find a θ that locally maximizes p(D|θ).

Algorithm 3.3. The Expectation Maximization (EM) Algorithm in General.

Input: observed data D, hidden data H, initial parameter θ(0)

1. Initialize t = 0.
2. Repeat the following steps until p(D|θ(t)) converges:
3. E-step: compute q(t)(H) ≡ p(H|D, θ(t))

4. M-step: find θ(t+1) that maximizes
∑

H q(t)(H) log p(D,H|θ(t+1))

5. t = t + 1
Output: θ(t)

We comment on a few important aspects of the EM algorithm:

• q(t)(H) is the hidden label distribution. It can be thought of as assigning “soft labels” to the
unlabeled data according to the current model θ(t).

• It can be proven that EM improves the log likelihood log p(D|θ) at each iteration. However,
EM only converges to a local optimum. That is, the θ it finds is only guaranteed to be the best
within a neighborhood in the parameter space; θ may not be a global optimum (the desired

3The reader is invited to form the Lagrangian and solve the zero partial derivative equations. The parameters will end up on both
sides of the equation, and there will be no analytical solution for the MLE θ̂ .

3.3. OPTIMIZATION WITH THE EM ALGORITHM∗ 27

MLE). The complete proof is beyond the scope of this book and can be found in standard
textbooks on EM. See the references in the bibliographical notes.

• The local optimum to which EM converges depends on the initial parameter θ(0). A common
choice of θ(0) is the MLE on the small labeled training data.

The above general EM algorithm needs to be specialized for specific generative models.

Example 3.4. EM for a 2-class GMM with Hidden Variables We illustrate the EM algorithm
on a simple GMM generative model. In this special case, the observed data is simply a sample of
labeled and unlabeled instances. The hidden variables are the labels of the unlabeled instances. We
learn the parameters of two Gaussians to fit the data using EM as follows:

Algorithm 3.5. EM for GMM.

Input: observed data D = {(x1, y1), . . . , (xl , yl), xl+1, . . . , xl+u}
1. Initialize t = 0 and θ(0) = {π(0)

j , μ
(0)
j , �

(0)
j }j∈{1,2} to the MLE estimated from labeled data.

2. Repeat until the log likelihood log p(D|θ) converges:
3. E-step: For all unlabeled instances i ∈ {l + 1, . . . , l + u}, j ∈ {1, 2}, compute

γij ≡ p(yj |xi , θ
(t)) = π

(t)
j N (xi; μ

(t)
j , �

(t)
j)∑2

k=1 π
(t)
k N (xi; μ

(t)
k , �

(t)
k)

. (3.15)

For labeled instances, define γij = 1 if yi = j , and 0 otherwise.
4. M-step: Find θ(t+1) using the current γij . For j ∈ {1, 2},

lj =
l+u∑
i=1

γij (3.16)

μ
(t+1)
j = 1

lj

l+u∑
i=1

γij xi (3.17)

�
(t+1)
j = 1

lj

l+u∑
i=1

γij (xi − μ
(t+1)
j)(xi − μ

(t+1)
j)� (3.18)

π
(t+1)
j = lj

l + u
(3.19)

5. t = t + 1
Output: {πj , μj , �j }j={1,2}

Note that the algorithm begins by finding the MLE of the labeled data alone.The E-step then
computes the γ values, which can be thought of as soft assignments of class labels to instances.These
are sometimes referred to as “responsibilities” (i.e., class 1 is responsible for xi with probability γi1).

28 CHAPTER 3. MIXTURE MODELS AND EM

The M-step updates the model parameters using the current γ values as weights on the unlabeled
instances. If we think of the E-step as creating fractional labeled instances split between the classes,
then the M-step simply computes new MLE parameters using these fractional instances and the
labeled data. The algorithm stops when the log likelihood (3.13) converges (i.e., stops changing
from one iteration to the next). The data log likelihood in the case of a mixture of two Gaussians is

log p(D|θ) =
l∑

i=1

log πyi
N (xi; μyi

, �yi
) +

l+u∑
i=l+1

log
2∑

j=1

πjN (xi; μj , �j), (3.20)

where we have marginalized over the two classes for the unlabeled data.

It is instructive to note the similarity between EM and self-training. EM can be viewed as a
special form of self-training, where the current classifier θ would label the unlabeled instances with
all possible labels, but each with fractional weights p(H|D, θ). Then all these augmented unlabeled
data, instead of the top few most confident ones, are used to update the classifier.

3.4 THE ASSUMPTIONS OF MIXTURE MODELS
Mixture models provide a framework for semi-supervised learning in which the role of unlabeled
data is clear. In practice, this form of semi-supervised learning can be highly effective if the generative
model is (nearly) correct. It is worth noting the assumption made here:

Remark 3.6. Mixture Model Assumption The data actually comes from the mixture model,where
the number of components, prior p(y), and conditional p(x|y) are all correct.

Unfortunately, it can be difficult to assess the model correctness since we do not have much
labeled data. Many times one would choose a generative model based on domain knowledge and/or
mathematical convenience. However, if the model is wrong, semi-supervised learning could actually
hurt performance. In this case, one might be better off to use only the labeled data and perform
supervised learning instead. The following example shows the effect of an incorrect model.

Example 3.7. An Incorrect Generative Model Suppose a dataset contains four clusters of data,
two of each class. This dataset is shown in Figure 3.2. The correct decision boundary is a horizontal
line along the x-axis. Clearly, the data is not generated from two Gaussians. If we insist that each
class is modeled by a single Gaussian, the results may be poor. Figure 3.3 illustrates this point by
comparing two possible GMMs fitting this data. In panel (a), the learned model fits the unlabeled
quite well (having high log likelihood), but predictions using this model will result in approximately
50% error. In contrast, the model shown in panel (b) will lead to much better accuracy. However, (b)
would not be favored by the EM algorithm since it has a lower log likelihood.

As mentioned above, we may be better off using only labeled data and supervised learning
in this case. If we have labeled data in the bottom left cluster and top right cluster, the supervised

3.4. THE ASSUMPTIONS OF MIXTURE MODELS 29

−5 0 5
−6

−4

−2

0

2

4

6

x1

x 2

y = 1

y = −1

Figure 3.2: Two classes in four clusters (each a 2-dimensional Gaussian distribution).

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6
wrong model, higher log likelihood (−847.9309)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6
correct model, lower log likelihood (−921.143)

(a) (b)

Figure 3.3: (a) Good fit under the wrong model assumption. The decision boundary is vertical, thus
producing mass misclassification. (b) Worse fit under the wrong model assumption. However, the decision
boundary is correct.

decision boundary would be approximately the line y = −x, which would result in only about 25%
error.

There are a number of ways to alleviate the danger of using the wrong model. One obvious
way is to refine the model to fit the task better, which requires domain knowledge. In the above
example, one might model each class itself as a GMM with two components, instead of a single
Gaussian.

Another way is to de-emphasize the unlabeled data, in case the model correctness is uncer-
tain. Specifically, we scale the contribution from unlabeled data in the semi-supervised log likeli-

30 CHAPTER 3. MIXTURE MODELS AND EM

hood (3.13) by a small positive weight λ < 1:

l∑
i=1

log p(yi |θ)p(xi |yi, θ) + λ

l+u∑
i=l+1

log p(xi |θ). (3.21)

As λ → 0, the influence of unlabeled data vanishes and one recovers the supervised learning objective.

3.5 OTHER ISSUES IN GENERATIVE MODELS
When defining a generative model, identifiability is a desirable property. A model is identifiable if
p(x|θ1) = p(x|θ2) ⇐⇒ θ1 = θ2, up to a permutation of mixture component indices. That is, two
models are considered equivalent if they differ only by which component is called component one,
which is called component two, and so on. That is to say, there is a unique (up to permutation)
model θ that explains the observed unlabeled data. Therefore, as the size of unlabeled data grows,
one can hope to accurately recover the mixing components. For instance, GMMs are identifiable,
while some other models are not. The following example shows an unidentifiable model and why it
is not suitable for semi-supervised learning.

Example 3.8. An Unidentifiable Generative Model Assume the component model p(x|y) is
uniform for y ∈ {+1, −1}. Let us try to use semi-supervised learning to learn the mixture of uniform
distributions. We are given a large amount of unlabeled data, such that we know p(x) is uniform
in [0, 1]. We also have 2 labeled data points (0.1, −1), (0.9, +1). Can we determine the label for
x = 0.5?

The answer turns out to be no. With our assumptions, we cannot distinguish the following
two models (and infinitely many others):

p(y = −1) = 0.2, p(x|y = −1) = unif(0, 0.2), p(x|y = 1) = unif(0.2, 1) (3.22)
p(y = −1) = 0.6, p(x|y = −1) = unif(0, 0.6), p(x|y = 1) = unif(0.6, 1) (3.23)

Both models are consistent with the unlabeled data and the labeled data, but the first model predicts
label y = 1 at x = 0.5, while the second model predicts y = −1. This is illustrated by Figure 3.4.

Another issue with generative models is local optima. Even if the model is correct and iden-
tifiable, the log likelihood (3.13) as a function of model parameters θ is, in general, non-concave.
That is, there might be multiple “bumps” on the surface.The highest bump corresponds to the global
optimum, i.e., the desired MLE. The other bumps are local optima. The EM algorithm is prone to
being trapped in a local optimum. Such local optima might lead to inferior performance. A standard
practice against local optima is random restart , in which the EM algorithm is run multiple times.
Each time EM starts from a different random initial parameter θ(0). Finally, the log likelihood that
EM converges to in each run is compared.The θ that correspond to the best log likelihood is selected.
It is worth noting that random restart does not solve the local optima problem—it only alleviates

3.6. CLUSTER-THEN-LABEL METHODS 31

0 1

p(x) = 1

= 0.2 ×

0 0.2 1

p(x|y = –1) = 5

+ 0.8 ×

0 0.2 1

p(x|y = 1) = 1.25

= 0.6 ×

0 0.6 1

p(x|y = –1) = 1.67

+ 0.4 ×

0 0.6 1

p(x|y = 1) = 2.5

Figure 3.4: An example of unidentifiable models. Even if we know p(x) is a mixture of two uniform
distributions, we cannot uniquely identify the two components. For instance, the two mixtures produce
the same p(x), but they classify x = 0.5 differently. Note the height of each distribution represents a
probability density (which can be greater than 1), not probability mass. The area under each distribution
is 1.

it. Selecting a better θ(0) that is more likely to lead to the global optimum (or simply a better local
optimum) is another heuristic method, though this may require domain expertise.

Finally,we note that the goal of optimization for semi-supervised learning with mixture models
is to maximize the log likelihood (3.13). The EM algorithm is only one of several optimization
methods to find a (local) optimum. Direct optimization methods are possible, too, for example
quasi-Newton methods like L-BFGS [115].

3.6 CLUSTER-THEN-LABEL METHODS
We have used the EM algorithm to identify the mixing components from unlabeled data. Recall
that unsupervised clustering algorithms can also identify clusters from unlabeled data. This suggests
a natural cluster-then-label algorithm for semi-supervised classification.

Algorithm 3.9. Cluster-then-Label.

Input: labeled data (x1, y1), . . . , (xl , yl), unlabeled data xl+1, . . . , xl+u,
a clustering algorithm A, and a supervised learning algorithm L

1. Cluster x1, . . . , xl+u using A.
2. For each resulting cluster, let S be the labeled instances in this cluster:
3. If S is non-empty, learn a supervised predictor from S: fS = L(S).

Apply fS to all unlabeled instances in this cluster.
4. If S is empty, use the predictor f trained from all labeled data.
Output: labels on unlabeled data yl+1, . . . , yl+u.

32 CHAPTER 3. MIXTURE MODELS AND EM

80 90 100 110

40

50

60

70

weight (lbs.)

he
ig

ht
 (i

n.
)

Partially labeled data

80 90 100 110

40

50

60

70

weight (lbs.)
he

ig
ht

 (i
n.

)

Single linkage clustering

80 90 100 110

40

50

60

70

weight (lbs.)

he
ig

ht
 (i

n.
)

Predicted labeling

Figure 3.5: Cluster-then-label results using single linkage hierarchical agglomerative clustering (A) and
majority vote (L).

In step 1, the clustering algorithm A is unsupervised. In step 2, we learn one supervised
predictor using the labeled instances that fall into each cluster, and use the predictor to label the
unlabeled instances in that cluster. One can use any clustering algorithm A and supervised learner L.
It is worth noting that cluster-then-label does not necessarily involve a probabilistic mixture model.

The following example shows cluster-then-label with Hierarchical Agglomerative Clustering
for A, and simple majority vote within each cluster for L.

Example 3.10. Cluster-then-Label with Hierarchical Agglomerative Clustering In this exam-
ple, we apply the cluster-then-label approach to the aliens data from Chapter 1. For step 1, we use
hierarchical agglomerative clustering (Algorithm 1.1) with Euclidean distance as the underlying
distance function, and the single linkage method to determine distances between clusters. Because
the labeled data contains only two classes, we heuristically stop the algorithm once only two clusters
remain. Steps 2–4 of cluster-then-label find the majority label within each cluster, and assign this
label to all unlabeled instances in the cluster.

Figure 3.5 shows the original partially labeled data, the two clusters, and the final labels
predicted for all the data. In this case, because the clusters coincide with the true labeling of the data,
we correctly classify all unlabeled instances. The lines between instances in the center panel indicate
the linkages responsible for merging clusters until only two remain.

It turns out that using single linkage is critically important here, where the natural clusters
are long and skinny. A different choice—e.g., complete linkage clustering—tends to form rounder
clusters. When applied to this data, complete linkage produces the results shown in Figure 3.6. The
clusters found by complete linkage do not match up with the true labeling of the data. In fact, both
labeled instances end up in the same cluster. Because there is no majority label in either cluster,
the majority vote algorithm ends up breaking ties randomly, thus assigning random labels to all
unlabeled instances.

The point of this example is not to show that complete linkage is bad and single linkage is
good. In fact, it could have been the other way around for other datasets! Instead, the example is

3.6. CLUSTER-THEN-LABEL METHODS 33

80 90 100 110

40

50

60

70

weight (lbs.)

he
ig

ht
 (i

n.
)

Partially labeled data

80 90 100 110

40

50

60

70

weight (lbs.)
he

ig
ht

 (i
n.

)

Complete linkage clustering

80 90 100 110

40

50

60

70

weight (lbs.)

he
ig

ht
 (i

n.
)

Predicted labeling

Figure 3.6: Cluster-then-label results using complete linkage hierarchical agglomerative clustering.This
clustering result does not match the true labeling of the data.

meant to highlight the sensitivity of semi-supervised learning to its underlying assumptions—in this
case, that the clusters coincide with decision boundaries. If this assumption is incorrect, the results
can be poor.

This chapter introduced mixture models and the expectation maximization (EM) algorithm
for semi-supervised learning. We also reviewed some of the common issues faced when using gener-
ative models. Finally, we presented a non-probabilistic, cluster-then-label approach using the same
intuition behind mixture models: the unlabeled data helps identify clusters in the input space that
correspond to each class. In the next chapter,we turn to a different semi-supervised learning approach
known as co-training, which uses a very different intuition involving multiple feature representations
of instances.

BIBLIOGRAPHICAL NOTES
The theoretical value of labeled and unlabeled data in the context of parametric mixture models has
been analyzed as early as in [30, 142]. Under certain conditions [62, 161], theoretic analysis also
justifies the Cluster-then-Label procedure [59, 52, 74]. It has also been noted that if the mixture
model assumption is wrong, unlabeled data can in fact hurt performance [48].

In a seminal empirical paper [135], Nigam et al. applied mixture of multinomial distributions
for semi-supervised learning to the task of text document categorization. Since then, similar algo-
rithms have been successfully applied to other tasks [13, 66, 67]. Some variations, which use more
than one mixture components per class, or down-weight unlabeled data relative to labeled data, can
be found in [28, 43, 128, 135, 152].

The EM algorithm was originally described in [60]. More recent interpretations can be found
in, e.g., [19]. Some discussions on identifiability in the context of semi-supervised learning can be
found in [43, 125, 142]. Local optima issues can be addressed by smart choice of starting point using
active learning [133].

35

C H A P T E R 4

Co-Training
4.1 TWO VIEWS OF AN INSTANCE
Consider the supervised learning task of named entity classification in natural language processing.
A named entity is a proper name such as “Washington State” or “Mr. Washington.” Each named
entity has a class label depending on what it is referring to. For simplicity, we assume there are
only two classes: Person or Location. The goal of named entity classification is to assign the
correct label to each entity, for example, Location to “Washington State” and Person to “Mr.
Washington.” Named entity classification is obviously a classification problem, to predict the class
y from the features x. Our focus is not on the details of training supervised classifiers that work
on strings. (Basically, it involves some form of partial string matching. The details can be found in
the bibliographical notes.) Instead, we focus on named entity classification as one example task that
involves instances with a special structure that lends itself well to semi-supervised learning.

An instance of a named entity can be represented by two distinct sets of features. The first is
the set of words that make up the named entity itself. The second is the set of words in the context
in which the named entity occurs. In the following examples the named entity is in parentheses, and
the context is underlined:

instance 1: . . . headquartered in (Washington State) . . .

instance 2: . . . (Mr. Washington), the vice president of . . .

Formally, each named entity instance is represented by two views (sets of features): the words in
itself x(1), and the words in its context x(2). We write x = [x(1), x(2)].

As another example of views, consider Web page classification into Student or Faculty
Web pages. In this task, the first view x(1) can be the words on the Web page in question.The second
view x(2) can be the words in all the hyperlinks that point to the Web page.

Going back to the named entity classification task, let us assume we only have these two
labeled instances in our training data:

instance x(1) x(2) y

1. Washington State headquartered in Location
2. Mr. Washington vice president Person

This labeled training sample seems woefully inadequate: we know that there are many other ways
to express a location or person. For example,

. . . (Robert Jordan), a partner at . . .

. . . flew to (China) . . .

36 CHAPTER 4. CO-TRAINING

Because these latter instances are not covered by the two labeled instances in our training
sample, a supervised learner will not be able to classify them correctly. It seems that a very large
labeled training sample is necessary to cover all the variations in location or person expressions. Or
is it?

4.2 CO-TRAINING
It turns out that one does not need a large labeled training sample for this task. It is sufficient to have
a large unlabeled training sample, which is much easier to obtain. Let us say we have the following
unlabeled instances:

instance 3: . . . headquartered in (Kazakhstan) . . .

instance 4: . . . flew to (Kazakhstan) . . .

instance 5: . . . (Mr. Smith), a partner at Steptoe & Johnson . . .

It is illustrative to inspect the features of the labeled and unlabeled instances together:

instance x(1) x(2) y

1. Washington State headquartered in Location
2. Mr. Washington vice president Person
3. Kazakhstan headquartered in ?
4. Kazakhstan flew to ?
5. Mr. Smith partner at ?

One may reason about the data in the following steps:

1. From labeled instance 1, we learn that “headquartered in” is a context that seems to indicate
y =Location.

2. If this is true, we infer that “Kazakhstan” must be a Location since it appears with the same
context “headquartered in” in instance 3.

3. Since instance 4 is also about “Kazakhstan,” it follows that its context “flew to” should indicate
Location.

4. At this point, we are able to classify “China” in “flew to (China)” as a Location, even though
neither “flew to” nor “China” appeared in the labeled data!

5. Similarly, by matching “Mr. *” in instances 2 and 5, we learn that “partner at” is a context for
y =Person. This allows us to classify “(Robert Jordan), a partner at” as Person, too.

This process bears a strong resemblance to the self-training algorithm in Section 2.5, where a
classifier uses its most confident predictions on unlabeled instances to teach itself. There is a critical
difference, though: we implicitly used two classifiers in turn. They operate on different views of an
instance: one is based on the named entity string itself (x(1)), and the other is based on the context

4.3. THE ASSUMPTIONS OF CO-TRAINING 37

string (x(2)). The two classifiers teach each other. One can formalize this process into a Co-Training
algorithm.
Algorithm 4.1. Co-Training.

Input: labeled data {(xi , yi)}li=1, unlabeled data {xj }l+u
j=l+1, a learning speed k.

Each instance has two views xi = [x(1)
i , x(2)

i].
1. Initially let the training sample be L1 = L2 = {(x1, y1), . . . , (xl , yl)}.
2. Repeat until unlabeled data is used up:
3. Train a view-1 classifier f (1) from L1, and a view-2 classifier f (2) from L2.
4. Classify the remaining unlabeled data with f (1) and f (2) separately.
5. Add f (1)’s top k most-confident predictions (x, f (1)(x)) to L2.

Add f (2)’s top k most-confident predictions (x, f (2)(x)) to L1.
Remove these from the unlabeled data.

Note f (1) is a view-1 classifier: although we give it the complete feature x, it only pays attention
to the first view x(1) and ignores the second view x(2). f (2) is the other way around. They each
provide their most confident unlabeled-data predictions as the training data for the other view. In
this process, the unlabeled data is eventually exhausted.

Co-training is a wrapper method.That is to say, it does not matter what the learning algorithms
are for the two classifiers f (1) and f (2). The only requirement is that the classifiers can assign a
confidence score to their predictions.The confidence score is used to select which unlabeled instances
to turn into additional training data for the other view. Being a wrapper method, Co-Training is
widely applicable to many tasks.

4.3 THE ASSUMPTIONS OF CO-TRAINING
Co-Training makes several assumptions.The most obvious one is the existence of two separate views
x = [x(1), x(2)]. For a general task, the features may not naturally split into two views. To apply Co-
Training in this case, one can randomly split the features into two artificial views. Assuming there
are two views, the success of Co-Training depends on the following two assumptions:
Remark 4.2. Co-Training Assumptions

1. Each view alone is sufficient to make good classifications, given enough labeled data.

2. The two views are conditionally independent given the class label.

The first assumption is easy to understand. It not only requires that there are two views, but
two good ones. The second assumption is subtle but strong. It states that

P(x(1)|y, x(2)) = P(x(1)|y)

P (x(2)|y, x(1)) = P(x(2)|y). (4.1)

38 CHAPTER 4. CO-TRAINING

In other words, if we know the true label y, then knowing one view (e.g., x(2)) does not affect
what we will observe for the other view (it will simply be P(x(1)|y)). To illustrate the second
assumption, consider our named entity classification task again. Let us collect all instances with true
label y =Location. View 1 of these instances will be Location named entity strings, i.e., x(1) ∈
{Washington State, Kazakhstan, China, . . .}.The frequency of observing these named entities, given
y =Location, is described by P(x(1)|y). These named entities are associated with various contexts.
Now let us select any particular context, say x(2) =“headquartered in,” and consider the instances
with this context and y =Location. If conditional independence holds, in these instances we will
again find all those named entities {Washington State, Kazakhstan, China, . . .} with the same
frequencies as indicated by P(x(1)|y). In other words, the context “headquartered in” does not favor
any particular location.

Why is the conditional independence assumption important for Co-Training? If the view-2
classifier f (2) decides that the context “headquartered in” indicates Location with high confidence,
Co-Training will add unlabeled instances with that context as view-1 training examples. These new
training examples for f (1) will include all representative Location named entities x(1), thanks to
the conditional independence assumption. If the assumption didn’t hold, the new examples could all
be highly similar and thus be less informative for the view-1 classifier. It can be shown that if the two
assumptions hold, Co-Training can learn successfully from labeled and unlabeled data. However,
it is actually difficult to find tasks in practice that completely satisfy the conditional independence
assumption. After all, the context “Prime Minister of ” practically rules out most locations except
countries.When the conditional independence assumption is violated,Co-Training may not perform
well.

There are several variants of Co-Training. The original Co-Training algorithm picks the
top k most confident unlabeled instances in each view, and augments them with predicted labels.
In contrast, the so-called Co-EM algorithm is less categorical. Co-EM maintains a probabilistic
model P(y|x(v); θ(v)) for views v = 1, 2. For each unlabeled instance x = [x(1), x(2)], view 1 virtually
splits it into two copies with opposite labels and fractional weights: (x, y = 1) with weight P(y =
1|x(1); θ(1)) and (x, y = −1) with weight 1 − P(y = 1|x(1); θ(1)). View 1 then adds all augmented
unlabeled instances to L2. This is equivalent to the E-step in the EM algorithm. The same is true
for view 2. Each view’s parameter θ(v) is then updated, which corresponds to the M-step, except
that the expectations are from the other view. For certain tasks, Co-EM empirically performs better
than Co-Training.

4.4 MULTIVIEW LEARNING∗

The Co-Training algorithm is a means to an end: making the two classifiers f (1) and f (2) agree
(i.e., predict the same label) on the unlabeled data. Such agreement is justified by learning theory,
which is beyond the scope of this book, but the intuition is simple: there are not many candidate
predictors that can agree on unlabeled data in two views, so the so-called hypothesis space is small.
If a candidate predictor in this small hypothesis space also fits the labeled data well, it is less likely

4.4. MULTIVIEW LEARNING∗ 39

to be overfitting, and can be expected to be a good predictor. In this section we discuss some other
algorithms which explicitly enforce hypothesis agreement, without requiring explicit feature splits
or the iterative mutual-teaching procedure. To understand these algorithms, we need to introduce
the regularized risk minimization framework for machine learning.

Recall that, in general, we can define a loss function to specify the cost of mistakes in prediction:

Definition 4.3. Loss Function. Let x ∈ X be an instance, y ∈ Y its true label, and f (x) our
prediction. A loss function c(x, y, f (x)) ∈ [0, ∞) measures the amount of loss, or cost, of this
prediction.

For example, in regression we can define the squared loss c(x, y, f (x)) = (y − f (x))2. In
classification we can define the 0/1 loss as c(x, y, f (x)) = 1 if y
= f (x), and 0 otherwise. The
loss function can be different for different types of misclassification. In medical diagnosis we
might use c(x, y = healthy, f (x) = diseased) = 1 and c(x, y = diseased, f (x) = healthy) = 100.
The loss function can also depend on the instance x: The same amount of medical prediction error
might incur a higher loss on an infant than on an adult.

Definition 4.4. Empirical Risk. The empirical risk of f is the average loss incurred by f on a
labeled training sample: R̂(f) = 1

l

∑l
i=1 c(xi , yi, f (xi)).

Applying the principle of empirical risk minimization (ERM)—finding the f that minimizes
the empirical risk—may seem like a natural thing to do:

f ERM = argmin
f ∈F

R̂(f), (4.2)

where F is the set of all hypotheses we consider. For classification with 0/1 loss, ERM amounts to
minimize the training sample error.

However, f ERM can overfit the particular training sample. As a consequence, f ERM is not
necessarily the classifier in F with the smallest true risk on future data. One remedy is to regularize
the empirical risk by a regularizer �(f). The regularizer �(f) is a non-negative functional, i.e.,
it takes a function f as input and outputs a non-negative real value. The value is such that if f is
“smooth” or “simple” in some sense, �(f) will be close to zero; if f is too zigzagged (i.e., it overfits
and attempts to pass through all labeled training instances), �(f) is large.

Definition 4.5. Regularized Risk. The regularized risk is the weighted sum of the empirical risk
and the regularizer,with weightλ ≥ 0: R̂(f) + λ�(f).The principle of regularized risk minimization
is to find the f that minimizes the regularized risk:

f ∗ = argmin
f ∈F

R̂(f) + λ�(f). (4.3)

40 CHAPTER 4. CO-TRAINING

The success of regularized risk minimization depends on the regularizer �(f). Different
regularizers imply different assumptions of the task. For example, a commonly used regularizer
for f (x) = w�x is �(f) = 1

2‖w‖2. This particular regularizer penalizes the squared norm of the
parameters w. It is helpful to view f as a point whose coordinates are determined by w in the
parameter space. An equivalent form for the optimization problem in (4.3) is

min
f ∈F

R̂(f)

subject to �(f) ≤ s,

where s is determined by λ. It becomes clear that the regularizer constrains the radius of the ball in
the parameter space. Within the ball, the f that best fits the training data is chosen. This controls
the complexity of f , and prevents overfitting.

Importantly, for semi-supervised learning, one can often define the regularizer �(f) using
the unlabeled data. For example,

�(f) = �SL(f) + λ′�SSL(f), (4.4)

where �SL(f) is a supervised regularizer, and �SSL(f) is a semi-supervised regularizer that depends
on the unlabeled data. When �SSL(f) indeed fits the task, such regularization can produce a better
f ∗ than that produced by �SL(f) alone. We will next show how to define �SSL(f) to encourage
agreement among multiple hypotheses, and discuss other forms of �SSL(f) in later chapters.

We are now ready to introduce multiview learning. We assume the algorithm has access to
k separate learners. It is possible, but not necessary, for each learner to use a subset of the features
of an instance x. This is the generalization of Co-Training to k views, hence the name multiview.
Alternatively, the learners might be of different types (e.g., decision tree, neural network, etc.) but
take the same features of x as input. This is similar to the so-called ensemble method. In either
case, the goal is for the k learners to produce hypotheses f ∗

1 , . . . , f ∗
k to minimize the following

regularized risk:

(f ∗
1 , . . . , f ∗

k) = argminf1,...,fk

k∑
v=1

(
l∑

i=1

c(xi , yi, fv(xi)) + λ1�SL(fv)

)

+λ2

k∑
u,v=1

l+u∑
i=l+1

c(xi , fu(xi), fv(xi)). (4.5)

The intuition is for each hypothesis to not only minimize its own empirical risk, but also agree
with all the other hypotheses. The first part of the multiview regularized risk is simply the sum
of individual (supervised) regularized risks. The second part defines a semi-supervised regularizer,
which measures the disagreement of those k hypotheses on unlabeled instances:

�SSL(f1, . . . , fk) =
k∑

u,v=1

l+u∑
i=l+1

c(xi , fu(xi), fv(xi)). (4.6)

4.4. MULTIVIEW LEARNING∗ 41

The pairwise disagreement is defined as the loss on an unlabeled instance xi when pretending fu(xi)

is the label and fv(xi) is the prediction. Such disagreement is to be minimized. The final prediction
for input x is the label least objected to by all the hypotheses:

y(x) = argmin
y∈Y

k∑
v=1

c(x, y, f ∗
v (x)). (4.7)

Different c and �SL lead to different instantiations of multiview learning.We give a concrete example
below.

Example 4.6. Two-View Linear Ridge Regression Let each instance have two views x =
[x(1), x(2)]. Consider two linear regression functions f (1)(x) = w�x(1), f (2)(x) = v�x(2). Let the
loss function be c(x, y, f (x)) = (y − f (x))2. Let the supervised regularizers be �SL(f (1)) = ‖w‖2,
�SL(f (2)) = ‖v‖2. This particular form of regularization, i.e., penalizing the �2 norm of the pa-
rameter, is known as ridge regression. The regularized risk minimization problem is

min
w,v

l∑
i=1

(yi − w�x(1)
i)2 +

l∑
i=1

(yi − v�x(2)
i)2 + λ1‖w‖2 + λ1‖v‖2

+λ2

l+u∑
i=l+1

(w�x(1)
i − v�x(2)

i)2. (4.8)

The solution can be found by setting the gradient to zero and solving a system of linear equations.

What is the assumption behind multiview learning? In a regularized risk framework, the
assumption is encoded in the regularizer �SSL (4.6) to be minimized. That is, multiple hypotheses
f1, . . . , fk should agree with each other. However, agreement alone is not sufficient. Consider the
following counter-example: Replicate the feature k times to create k identical “views.” Also replicate
the hypotheses f1 = . . . = fk . By definition they all agree, but this does not guarantee that they are
any better than single-view learning (in fact the two are the same). The key insight is that the set of
agreeing hypotheses need to additionally be a small subset of the hypothesis space F . In contrast,
the duplicating hypotheses in the counter-example still occupy the whole hypothesis space F .

Remark 4.7. Multiview Learning Assumption Multiview learning is effective, when a set of
hypotheses f1, . . . , fk agree with each other. Furthermore, there are not many such agreeing sets,
and the agreeing set happens to have a small empirical risk.

This concludes our discussion of co-training and multiview learning techniques.These models
use multiple views or classifiers, in conjunction with unlabeled data, in order to reduce the size of
the hypothesis space. We also introduced the regularized risk minimization framework for machine
learning, which will appear again in the next two chapters on graph-based methods and semi-
supervised support vector machines.

42 CHAPTER 4. CO-TRAINING

BIBLIOGRAPHICAL NOTES
Co-Training was proposed by Blum and Mitchell [22, 129]. For simplicity, the algorithm presented
here is slightly different from the original version. Further theoretical analysis of Co-Training can be
found in [12, 10, 53]. Co-training has been applied to many tasks. For examples, see [41] and [93] on
named entity classification in text processing. There are also many variants of co-training, including
the Co-EM algorithm [134], single view [77, 38], single-view multiple-learner Democratic Co-
learning algorithm [201], Tri-Training [206], Canonical Correlation Analysis [204] and relaxation
of the conditional independence assumption [92].

Multiview learning was proposed as early as in [56]. It has been applied to semi-supervised
regression [25, 159], and the more challenging problem of classification with structured outputs [24,
26]. Some theoretical analysis on the value of agreement among multiple learners can be found
in [65, 110, 154, 193].

43

C H A P T E R 5

Graph-Based Semi-Supervised
Learning

5.1 UNLABELED DATA AS STEPPING STONES
Alice was flipping through the magazine “Sky and Earth,” in which each article is either about
astronomy or travel. Speaking no English, she had to guess the topic of each article from its pic-
tures. The first story “Bright Asteroid” had a picture of a cratered asteroid—it was obviously about
astronomy. The second story “Yellowstone Camping” had a picture of grizzly bears—she figured it
must be a travel article.

But no other articles had pictures. “What is the use of a magazine without pictures?” thought
Alice. The third article was titled “Zodiac Light,” while the fourth “Airport Bike Rental.” Not
knowing any words and without pictures, it seemed impossible to guess the topic of these articles.

However, Alice is a resourceful person. She noticed the titles of other articles include “Asteroid
and Comet,” “Comet Light Curve,” “Camping in Denali,” and “Denali Airport.” “I’ll assume that
if two titles share a word, they are about the same topic,” she thought. And she started to doodle:

Alice’s doodle. Articles sharing title words are connected.

Then it became clear. “Aha! ‘Zodiac Light’ is about astronomy, and ‘Airport Bike Rental’ is about
travel!” exclaimed Alice. And she was correct. Alice just performed graph-based semi-supervised
learning without knowing it.

5.2 THE GRAPH
Graph-based semi-supervised learning starts by constructing a graph from the training data. Given
training data {(xi , yi)}li=1, {xj }l+u

j=l+1, the vertices are the labeled and unlabeled instances {(xi)}li=1 ∪
{xj }l+u

j=l+1. Clearly, this is a large graph if u, the unlabeled data size, is big. Note that once the graph
is built, learning will involve assigning y values to the vertices in the graph. This is made possible

44 CHAPTER 5. GRAPH-BASED SEMI-SUPERVISED LEARNING

by edges that connect labeled vertices to unlabeled vertices. The graph edges are usually undirected.
An edge between two vertices xi , xj represents the similarity of the two instances. Let wij be the
edge weight. The idea is that if wij is large, then the two labels yi, yj are expected to be the same.
Therefore, the graph edge weights are of great importance. People often specify the edge weights
with one of the following heuristics:

• Fully connected graph, where every pair of vertices xi , xj is connected by an edge. The edge
weight decreases as the Euclidean distance ‖xi − xj‖ increases. One popular weight function
is

wij = exp

(
−‖xi − xj‖2

2σ 2

)
, (5.1)

where σ is known as the bandwidth parameter and controls how quickly the weight decreases.
This weight has the same form as a Gaussian function. It is also called a Gaussian kernel or
a Radial Basis Function (RBF) kernel. The weight is 1 when xi = xj , and 0 when ‖xi − xj‖
approaches infinity.

• kNN graph. Each vertex defines its k nearest neighbor vertices in Euclidean distance. Note
if xi is among xj ’s kNN, the reverse is not necessarily true: xj may not be among xi ’s kNN.
We connect xi , xj if one of them is among the other’s kNN. This means that a vertex may
have more than k edges. If xi , xj are connected, the edge weight wij is either the constant 1,
in which case the graph is said to be unweighted, or a function of the distance as in (5.1). If
xi , xj are not connected, wij = 0. kNN graph automatically adapts to the density of instances
in feature space: in a dense region, the kNN neighborhood radius will be small; in a sparse
region, the radius will be large. Empirically, kNN graphs with small k tends to perform well.

• εNN graph. We connect xi , xj if ‖xi − xj‖ ≤ ε. The edges can either be unweighted or
weighted. If xi , xj are not connected, wij = 0. εNN graphs are easier to construct than kNN
graphs.

These are very generic methods. Of course, better graphs can be constructed if one has knowledge
of the problem domain, and can define better distance functions, connectivity, and edge weights.

Figure 5.1 shows an example graph, where the edges are sparse. Let x1, x2 be the two labeled
instances (vertices). Recall that the edges represent the “same label” assumption. For an unlabeled
instance x3, its label y3 is assumed to be similar to its neighbors in the graph, which in turn are
similar to the neighbor’s neighbors. Through this sequence of unlabeled data stepping stones, y3 is
assumed to be more similar to y1 than to y2. This is significant because x3 is in fact closer to x2 in
Euclidean distance; without the graph, one would assume y3 is more similar to y2.

Formally, this intuition corresponds to estimating a label function f on the graph so that
it satisfies two things: (1) the prediction f (x) is close to the given label y on labeled vertices; 2)
f should be smooth on the whole graph. This can be expressed in a regularization framework,
where the former is encoded by the loss function, and the latter is encoded by a special graph-based

5.3. MINCUT 45

x2
x3

x1

Figure 5.1: A graph constructed from labeled instances x1, x2 and unlabeled instances. The label of
unlabeled instance x3 will be affected more by the label of x1, which is closer in the graph, than by the
label of x2, which is farther in the graph, even though x2 is closer in Euclidean distance.

regularization. In the following sections, we introduce several different graph-based semi-supervised
learning algorithms. They differ in the choice of the loss function and the regularizer. For simplicity,
we will assume binary labels y ∈ {−1, 1}.

5.3 MINCUT
The first graph-based semi-supervised learning algorithm we introduce is formulated as a graph cut
problem. We treat the positive labeled instances as “source” vertices, as if some fluid is flowing out
of them and through the edges. Similarly, the negative labeled instances are “sink” vertices, where
the fluid would disappear. The objective is to find a minimum set of edges whose removal blocks all
flow from the sources to the sinks. This defines a “cut,” or a partition of the graph into two sets of
vertices. The “cut size” is measured by the sum of the weights on the edges defining the cut. Once
the graph is split, the vertices connecting to the sources are labeled positive, and those to the sinks
are labeled negative.

Mathematically, we want to find a function f (x) ∈ {−1, 1} on the vertices, such that f (xi) =
yi for labeled instances, and the cut size is minimized:∑

i,j :f (xi)
=f (xj)

wij . (5.2)

The above quantity is the cut size because if an edge wij is removed, it must be true that f (xi)
=
f (xj).

We will now cast Mincut as a regularized risk minimization problem, with an appropriate loss
function and regularizer. On any labeled vertex xi , f (xi) is clamped at the given label: f (xi) = yi .
This can be enforced by a loss function of the form

c(x, y, f (x)) = ∞ · (y − f (x))2, (5.3)

46 CHAPTER 5. GRAPH-BASED SEMI-SUPERVISED LEARNING

where we define ∞ · 0 = 0. This loss function is zero if f (xi) = yi , and infinity otherwise. To
minimize the regularized risk, f (xi) will then have to equal yi on labeled vertices. The regularizer
corresponds to the cut size. Recall we require f (x) ∈ {−1, 1} for all unlabeled vertices x. Therefore,
the cut size can be re-written as

�(f) =
l+u∑

i,j=1

wij (f (xi) − f (xj))
2/4, (5.4)

Note the sum is now over all pairs of vertices. If xi and xj are not connected, then wij = 0 by
definition; if the edge exists and is not cut, then f (xi) − f (xj) = 0.Thus, the cut size is well-defined
even when we sum over all vertex pairs. In (5.4) we could have equivalently used |f (xi) − f (xj)|/2,
but the squared term is consistent with other approaches discussed later in this chapter. The Mincut
regularized risk problem is then

min
f :f (x)∈{−1,1} ∞

l∑
i=1

(yi − f (xi))
2 +

l+u∑
i,j=1

wij (f (xi) − f (xj))
2, (5.5)

where we scaled up both terms to remove the 1/4. This is an integer programming problem because
f is constrained to produce discrete values -1 or 1. However, efficient polynomial-time algorithms
exist to solve the Mincut problem. It is clear that Mincut is a transductive learning algorithm, because
the solution f is defined only on the vertices, not on the ambient feature space.

The formulation of Mincut has a curious “flaw” in that there could be multiple equally good
solutions. For example, Figure 5.2 shows a graph with the shape of a chain. There are two labeled
vertices: a positive vertex on one end, and a negative vertex on the other end. The edges have the
same weight. There are six Mincut solutions: removing any single edge separates the two labels,
and the cut size is minimized. What is wrong with six solutions? The label of the middle vertex
is positive in three of the solutions, and negative in the other three. This label variability exists for
other unlabeled vertices to a lesser extent. Intuitively, it seems to reflect the confidence of the labels.
As we will see next, there are better ways to compute such confidence.

+ −
Figure 5.2: On this unweighted chain graph with one labeled vertex on each end, any single-edge cut is
an equally good solution for Mincut.

5.4. HARMONIC FUNCTION 47

5.4 HARMONIC FUNCTION
The second graph-based semi-supervised learning algorithm we introduce is the harmonic function.
In our context, a harmonic function is a function that has the same values as given labels on the
labeled data, and satisfies the weighted average property on the unlabeled data:

f (xi) = yi, i = 1 . . . l

f (xj) =
∑l+u

k=1 wjkf (xk)∑l+u
k=1 wjk

, j = l + 1 . . . l + u. (5.6)

In other words, the value assigned to each unlabeled vertex is the weighted average of its neighbors’
values. The harmonic function is the solution to the same problem in (5.5), except that we relax f

to produce real values:

min
f :f (x)∈R

∞
l∑

i=1

(yi − f (xi))
2 +

l+u∑
i,j=1

wij (f (xi) − f (xj))
2. (5.7)

This is equivalent to the more natural problem

min
f :f (x)∈R

l+u∑
i,j=1

wij (f (xi) − f (xj))
2

subject to f (xi) = yi for i = 1 . . . l. (5.8)

The relaxation has a profound effect. Now there is a closed-form solution for f . The solution is
unique (under mild conditions) and globally optimal. The drawback of the relaxation is that in the
solution, f (x) is now a real value in [−1, 1] that does not directly correspond to a label. This can
however be addressed by thresholding f (x) at zero to produce discrete label predictions (i.e., if
f (x) >= 0, predict y = 1, and if f (x) < 0, predict y = −1).

The harmonic function f has many interesting interpretations. For example, one can view the
graph as an electric network.Each edge is a resistor with resistance 1/wij ,or equivalently conductance
wij . The labeled vertices are connected to a 1-volt battery, so that the positive vertices connect to
the positive side, and the negative vertices connect to the ground. Then the voltage established at
each node is the harmonic function,1 see Figure 5.3(a).

The harmonic function f can also be interpreted by a random walk on the graph. Imagine a
particle at vertex i. In the next time step, the particle will randomly move to another vertex j with
probability proportional to wij :

P(j |i) = wij∑
k wik

. (5.9)

The random walk continues in this fashion until the particle reaches one of the labeled vertices.This
is known as an absorbing random walk, where the labeled vertices are absorbing states. Then the
1This, and the random walk interpretation below, is true when the labels y ∈ {0, 1}. When the labels y ∈ {−1, 1}, the voltages
correspond to a shifted and scaled harmonic function.

48 CHAPTER 5. GRAPH-BASED SEMI-SUPERVISED LEARNING

value of the harmonic function at vertex i, f (xi), is the probability that a particle starting at vertex
i eventually reaches a positive labeled vertex (see Figure 5.3(b)).

+1 volt
wij

R =ij
1

1

0

1

0

i

(a) The electric network interpretation (b) The random walk interpretation

Figure 5.3: The harmonic function can be interpreted as the voltages of an electric network, or the
probability of reaching a positive vertex in an absorbing random walk on the graph.

There is an iterative procedure to compute the harmonic function in (5.7). Initially, set f (xi) =
yi for the labeled vertices i = 1 . . . l, and some arbitrary value for the unlabeled vertices. Iteratively
update each unlabeled vertex’s f value with the weighted average of its neighbors:

f (xi) ←
∑l+u

j=1 wijf (xj)∑l+u
j=1 wij

. (5.10)

It can be shown that this iterative procedure is guaranteed to converge to the harmonic function,
regardless of the initial values on the unlabeled vertices. This procedure is sometimes called label
propagation, as it “propagates” labels from the labeled vertices (which are fixed) gradually through
the edges to all the unlabeled vertices.

Finally, let us discuss the closed-form solution for the harmonic function.The solution is easier
to present if we introduce some matrix notation. Let W be an (l + u) × (l + u) weight matrix, whose
i, j-th element is the edge weight wij . Because the graph is undirected, W is a symmetric matrix.
Its elements are non-negative. Let Dii = ∑l+u

j=1 wij be the weighted degree of vertex i, i.e., the
sum of edge weights connected to i. Let D be the (l + u) × (l + u) diagonal matrix by placing
Dii, i = 1 . . . l + u on the diagonal. The unnormalized graph Laplacian matrix L is defined as

L = D − W. (5.11)

Let f = (f (x1), . . . , f (xl+u))
� be the vector of f values on all vertices. The regularizer in (5.7) can

be written as
1

2

l+u∑
i,j=1

wij (f (xi) − f (xj))
2 = f �Lf . (5.12)

5.4. HARMONIC FUNCTION 49

Recall L is an (l + u) × (l + u) matrix. Assuming the vertices are ordered so that the labeled ones
are listed first, we can partition the Laplacian matrix into four sub-matrices

L =
[

Lll Llu

Lul Luu

]
, (5.13)

partition f into (fl , fu), and let yl = (y1, . . . , yl)
�.Then solving the constrained optimization prob-

lem using Lagrange multipliers with matrix algebra, one can show that the harmonic solution is

fl = yl

fu = −Luu
−1Lulyl . (5.14)

Example 5.1. Harmonic Function on Chain Graph Consider the chain graph in Figure 5.2.
With the natural left-to-right order of vertices, we have

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.15)

To apply (5.14), we need to permute the order of vertices to be (1, 7, 2, 3, 4, 5, 6) so that the labeled
vertices come first. Also note yl = (1, −1)�. This gives

fu =
(

2

3
,

1

3
, 0, −1

3
, −2

3

)�
, (5.16)

for the unlabeled vertices from left to right. It can be thresholded at zero to produce binary labels.
This solution fits our intuition. The magnitude of the solution also coincides with label confidence.

50 CHAPTER 5. GRAPH-BASED SEMI-SUPERVISED LEARNING

5.5 MANIFOLD REGULARIZATION∗
Both Mincut and the harmonic function are transductive learning algorithms. They each learn a
function f that is restricted to the labeled and unlabeled vertices in the graph. There is no direct
way to predict the label on a test instance x∗ not seen before, unless one includes x∗ as a new vertex
into the graph and repeats the computation. This is clearly undesirable if we want predictions on a
large number of test instances. What we need is an inductive semi-supervised learning algorithm.

In addition, both Mincut and harmonic function fix f (x) = y for labeled instances. What if
some of the labels are wrong? It is not uncommon for real datasets to have such label noise. We want
f to be able to occasionally disagree with the given labels.

Manifold regularization addresses these two issues. It is an inductive learning algorithm by
defining f in the whole feature space: f : X �→ R. f is regularized to be smooth with respect
to the graph by the graph Laplacian as in (5.12). However, this regularizer alone only controls
f , the value of f on the l + u training instances. To prevent f from being too wiggly (and thus
having inferior generalization performance) outside the training samples, it is necessary to include a
second regularization term, such as ‖f ‖2 = ∫

x∈X f (x)2dx. Putting them together, the regularizer
for manifold regularization becomes

�(f) = λ1‖f ‖2 + λ2f �Lf , (5.17)

where λ1, λ2 ≥ 0 control the relative strength of the two terms.To allow f to disagree with the given
labels, we can simply use the loss function c(x, y, f (x)) = (y − f (x))2. This loss function does not
greatly penalize small deviations. Other loss functions are possible, too, for example the hinge loss
that we will introduce in Chapter 6. The complete manifold regularization problem is

min
f :X �→R

l∑
i=1

(yi − f (xi))
2 + λ1‖f ‖2 + λ2f �Lf . (5.18)

The so-called representer theorem guarantees that the optimal f admits a finite (l + u, to be exact)
dimensional representation. There exist efficient algorithms to find the optimal f .

Beyond the unnormalized graph Laplacian matrix L, the normalized graph Laplacian matrix
L is often used too:

L = D−1/2LD−1/2 = I − D−1/2WD−1/2. (5.19)

This results in a slightly different regularization term

f �Lf = 1

2

l+u∑
i,j=1

wij

(
f (xi)√

Dii

− f (xj)√
Djj

)2

. (5.20)

Other variations like Lp or Lp, where p > 0, are possible too. They replace the matrix L in (5.18).
These all encode the same overall label-smoothness assumption on the graph, but with varying
subtleties. We discuss several properties of L below. Please see the references at the end of the
chapter to learn more about the other variations.

5.6. THE ASSUMPTION OF GRAPH-BASED METHODS∗ 51

5.6 THE ASSUMPTION OF GRAPH-BASED METHODS∗

Remark 5.2. Graph-Based Semi-Supervised Learning Assumption The labels are “smooth”
with respect to the graph, such that they vary slowly on the graph. That is, if two instances are
connected by a strong edge, their labels tend to be the same.

The notion of smoothness can be made precise by spectral graph theory. A vector φ is an
eigenvector of a square matrix A, if

Aφ = λφ, (5.21)

where λ is the associated eigenvalue. If φ is an eigenvector, cφ is an eigenvector, too, for any c
= 0.
But we will focus on eigenvectors of unit length ‖φ‖ = 1. Spectral graph theory is concerned with
the eigenvectors and eigenvalues of a graph, represented by its Laplacian matrix L or L. We will
analyze the unnormalized Laplacian L, which has the following properties:

• L has l + u eigenvalues (some may be the same) and corresponding eigenvectors {(λi, φi)}l+u
i=1.

These pairs are called the graph spectrum. The eigenvectors are orthogonal: φi
�φj = 0 for

i
= j .

• The Laplacian matrix can be decomposed into a weighted sum of outer products:

L =
l+u∑
i=1

λiφiφi
�. (5.22)

• The eigenvalues are non-negative real numbers, and can be sorted as

0 = λ1 ≤ λ2 ≤ . . . ≤ λl+u. (5.23)

In particular, the graph has k connected components if and only if λ1 = . . . = λk = 0. The
corresponding eigenvectors are constant on individual connected components, and zero else-
where, as the following example shows.

Example 5.3. The Spectrum of a Disconnected Chain Graph Figure 5.4(a) shows a discon-
nected, unweighted chain graph with 20 vertices. Its spectrum is shown in Figure 5.4(b). The stem
plots are the corresponding eigenvectors φi . Note λ1 = λ2 = 0 since there are two connected com-
ponents. The eigenvectors φ1, φ2 are piecewise constant, whose height is determined by length
normalization. As the eigenvalues increase in magnitude, the corresponding eigenvectors become
more and more rugged.

Because the eigenvectors are orthogonal and have unit length, they form a basis in R
l+u. This

means any f on the graph can be decomposed into

f =
l+u∑
i=1

aiφi, (5.24)

52 CHAPTER 5. GRAPH-BASED SEMI-SUPERVISED LEARNING

(a) A disconnected, unweighted chain graph

λ
1
=0.00 λ

2
=0.00 λ

3
=0.04 λ

4
=0.17 λ

5
=0.38

λ
6
=0.38 λ

7
=0.66 λ

8
=1.00 λ

9
=1.38 λ

10
=1.38

λ
11

=1.79 λ
12

=2.21 λ
13

=2.62 λ
14

=2.62 λ
15

=3.00

λ
16

=3.34 λ
17

=3.62 λ
18

=3.62 λ
19

=3.83 λ
20

=3.96

(b) The spectrum of the above graph (unnormalized Laplacian)

Figure 5.4: The spectrum of a disconnected chain graph, showing two connected components, and the
smooth to rough transition of the eigenvectors.

5.6. THE ASSUMPTION OF GRAPH-BASED METHODS∗ 53

where ai, i = 1 . . . l + u are real-valued coefficients. It is possible to show that the graph regular-
izer (5.12) can be written as

f �Lf =
l+u∑
i=1

a2
i λi . (5.25)

If for each i, either ai or λi is close to zero, then f �Lf will be small. Intuitively, this means the
graph regularizer f �Lf prefers an f that only uses smooth basis (those with a small λi). By “uses” we
mean f ’s corresponding coefficients have large magnitude |ai |. In particular, f �Lf is minimized and
equals zero, if f is in the subspace spanned by φ1, . . . , φk for a graph with k connected components:

f =
k∑

i=1

aiφi, ai = 0 for i > k. (5.26)

For a connected graph, only λ1 = 0, and φ1 = (1/
√

l + u, . . . , 1/
√

l + u). Any constant vector f
thus has coefficients a1
= 0, ai = 0 for i > 1, and is a minimizer of f �Lf . Being a constant, it is
certainly the most smooth function on the graph.

Therefore, we see the connection between graph-based semi-supervised learning methods
and the graph spectrum. This exposes a major weakness of this family of methods: the performance
is sensitive to the graph structure and edge weights.

Example 5.4. Harmonic Function with a Bad Graph To demonstrate the previous point, Fig-
ure 5.5 presents a dataset comprised of two semi-circles (one per class) that intersect. This creates
a problem for the types of graphs traditionally used in graph-based semi-supervised learning. Fig-
ure 5.5(a) shows the symmetric 4-NN graph for this data. An εNN graph is similar. Note that, near
the intersection of the two curves, many edges connect instances on one curve to instances on the
other. This means that any algorithm that assumes label smoothness with respect to the graph is
likely to make many mistakes in this region. Labels will propagate between the classes, which is
clearly undesirable.

We applied the harmonic function with only two labeled instances (large X and O) using the
graph shown and weights as in (5.1). Figure 5.5(b) shows the predicted labels (small x’s and o’s) for
the unlabeled instances. We observe that the predictions are very poor, as the O label propagates
through most of the other class’s instances due to the between-class connections in the graph. Even a
simple linear classifier using only the labeled instances would be able to correctly predict the left half
of the X curve (i.e., the decision boundary would be a diagonal line between the labeled instances).
While graph-based semi-supervised learning can be a powerful method to incorporate unlabeled
data, one must be careful to ensure that the graph encodes the correct label smoothness assumption.

To handle this dataset properly and obtain all correct predictions, the graph would need to split
the data into two disconnected components. One approach to building such a graph is to examine
the local neighborhood around each instance and only connect instances whose neighborhoods have
similar shapes: neighborhoods along the same curve would look similar with only a minor rotation,

54 CHAPTER 5. GRAPH-BASED SEMI-SUPERVISED LEARNING

while neighborhoods across curves would be rotated 90 degrees. The resulting graph should avoid
inter-class edges. Results using a similar approach for several datasets like the one seen here can be
found in [75].

(a) 4-NN graph

(b) Harmonic function predictions

Figure 5.5: Graph-based semi-supervised learning using a bad graph can lead to poor performance.

This chapter introduced the notion of using a graph over labeled and unlabeled data to
perform semi-supervised learning. We discussed several algorithms that share the intuition that the
predictions should be smooth with respect to this graph. We introduced some notions from spectral
graph theory to justify this approach, and illustrated what can go wrong if the graph is not constructed
carefully. In the next chapter, we discuss semi-supervised support vector machines, which make a
very different assumption about the space containing the data.

BIBLIOGRAPHICAL NOTES
The idea of the target function being smooth on the graph, or equivalently regularization by the
graph, is very natural. Therefore, there are many related methods that exploit this idea, includ-
ing Mincut [21] and randomized Mincut [20], Boltzmann machines [70, 209], graph random

5.6. THE ASSUMPTION OF GRAPH-BASED METHODS∗ 55

walk [8, 168], harmonic function [210], local and global consistency [198], manifold regulariza-
tion [17, 158, 155], kernels from the graph Laplacian [35, 51, 95, 101, 163, 211], spectral graph
transducer [90], local averaging [179, 187], density-based regularization [23, 36], alternating min-
imization [181], boosting [39, 117], and the tree-based Bayes model [98]. The graph construction
itself is important [11, 83, 82, 29, 167, 196]. Some theoretical analysis of graph-based learning can
be found in [91, 178, 195], and applications in [73, 78, 111, 102, 136, 138, 139].

Many of the graph-based semi-supervised learning algorithms have moderate to high com-
putational complexity, often O(u2) or more. Fast computation to handle large amount of unlabeled
data is an important problem. Efforts toward this end include [6, 57, 69, 84, 123, 160, 172, 192, 212].
Alternatively, one can perform online semi-supervised learning [72] where the labeled and unlabeled
instances arrive sequentially.They are processed and discarded immediately to keep the computation
and storage requirement low.

Manifold regularization [17] formally assumes that the marginal distribution p(x) is supported
on a Riemannian manifold (see Chapter 2 in [107] for a brief introduction).The labeled and unlabeled
vertices, and hence the graph, are a random realization of the underlying manifold. For simplicity,
we did not introduce this assumption during our discussion.

There are several extensions to the simple undirected graph that encodes similarity between
vertices. In certain applications like the Web, the edges naturally are directed [27, 118, 200]. Some
graph edges might encode dissimilarities instead [76, 171]. Edges can also be defined on more than
two vertices to form hypergraphs [199].The dataset can consist of multiple manifolds [74, 180, 197].

57

C H A P T E R 6

Semi-Supervised Support Vector
Machines

The intuition behind Semi-Supervised Support Vector Machines (S3VMs) is very simple. Fig-
ure 6.1(a) shows a completely labeled dataset. If we were to draw a straight line to separate the two
classes, where should the line be? One reasonable place is right in the middle, such that its distance
to the nearest positive or negative instance is maximized. This is the linear decision boundary found
by Support Vector Machines (SVMs), and is shown in Figure 6.1(a). The figure also shows two
dotted lines that go through the nearest positive and negative instances. The distance from the de-
cision boundary to a dotted line is called the geometric margin. As mentioned above, this margin is
maximized by SVMs.

−

+
+

−
+

−

−

+
+

−
+

−

(a) SVM decision boundary (b) S3VM decision boundary

Figure 6.1: (a) With only labeled data, the linear decision boundary that maximizes the distance to any
labeled instance is shown in solid line. Its associated margin is shown in dashed lines. (b) With additional
unlabeled data, under the assumption that the classes are well-separated, the decision boundary seeks a
gap in unlabeled data.

What if we have many additional unlabeled instances, distributed as in Figure 6.1(b)? The
SVM decision boundary will cut through dense unlabeled data regions. This seems undesirable, if
we assume that the two classes are well-separated. Instead, the best decision boundary now seems to
be the one in Figure 6.1(b), which falls in to the gap between the unlabeled data. This new decision
boundary still separates the two classes in the labeled data, though its margin is smaller than the
SVM decision boundary (this can be easily verified by measuring the distance to the nearest labeled
point). The new decision boundary is the one found by S3VMs, and is defined by both labeled and
unlabeled data. We will now make this intuition precise.

58 CHAPTER 6. SEMI-SUPERVISED SUPPORT VECTOR MACHINES

6.1 SUPPORT VECTOR MACHINES
We first discuss SVMs. Our discussion is intended to be just enough for the purpose of introducing
S3VMs in the next section. For a complete exposition see any standard textbook, e.g., [49, 149, 176].
For simplicity, we will assume that there are two classes: y ∈ {−1, 1}. We will also assume that the
decision boundary is linear in R

D . Such a decision boundary is defined by the set

{x|w�x + b = 0}, (6.1)

where w ∈ R
D is the parameter vector that specifies the orientation and scale of the decision bound-

ary, and b ∈ R is an offset parameter. For example, when w = (1, 1)� and b = −1, the decision
boundary is shown as the blue line in Figure 6.2. The decision boundary is always perpendicular to
the vector w. The value b determines the shift along w.

10.5

0.5

1

0

0.707
w’x+b=0

w=(1, 1)

Figure 6.2: The linear decision boundary (the blue line) w�x + b = 0, where w = (1, 1)� (the red
vector), and b = −1. The distance from point (0, 0) to this decision boundary is 1/

√
2 (the green line).

Let f (x) = w�x + b. The decision boundary is thus defined by f (x) = 0. We will predict
the label of x by sign(f (x)). We are interested in the distance between an instance x to the decision
boundary. The absolute value of this distance turns out to be |f (x)|/‖w‖. For example, the origin
x = (0, 0)� has a distance 1/

√
2 ≈ 0.707 to the decision boundary, as shown by the green line in

Figure 6.2.
The decision boundary cuts the feature space into two halves, one half with f > 0 (the positive

side), and the other half with f < 0 (the negative side). We define the signed distance of a labeled
instance (x, y) to the decision boundary as

yf (x)/‖w‖. (6.2)

The signed distance is positive, if a positive instance is on the positive side, or a negative instance
on the negative side. For now, we also assume that the training sample is linearly separable, meaning
that there is at least one linear decision boundary that can separate all labeled instances so they are

6.1. SUPPORT VECTOR MACHINES 59

on the correct side of the decision boundary. The signed geometric margin is the distance from the
decision boundary to the closest labeled instance:

l

min
i=1

yif (xi)/‖w‖. (6.3)

If a decision boundary separates the labeled training sample, the geometric margin is positive. We
want to find the decision boundary that maximizes the geometric margin:

max
w,b

l

min
i=1

yif (xi)/‖w‖. (6.4)

This is difficult to optimize directly, so we will rewrite it into an equivalent form. First, we notice
that one can arbitrarily scale the parameters (w, b) → (cw, cb) in (6.4). To remove this nuisance
degree of freedom, we require that the instances closest to the decision boundary satisfy

l

min
i=1

yif (xi) = 1. (6.5)

This implies that for all labeled instances i = 1 . . . l, we have the constraint

yif (xi) = yi(w�xi + b) ≥ 1. (6.6)

We can then rewrite (6.4) as a constrained optimization problem:

max
w,b

1/‖w‖
subject to yi(w�xi + b) ≥ 1, i = 1 . . . l. (6.7)

In addition, maximizing 1/‖w‖ is equivalent to minimizing ‖w‖2. This leads to the following
quadratic program, which is easier to optimize:

min
w,b

‖w‖2

subject to yi(w�xi + b) ≥ 1, i = 1 . . . l. (6.8)

So far, we have assumed that the training sample is linearly separable. This means the con-
straints in (6.8) can all be satisfied by at least some parameters w, b. We now relax this assumption to
allow any training sample, even linearly non-separable ones. When a training sample is linearly non-
separable, at least one constraint in (6.8) cannot be satisfied by any parameters. This renders (6.8)
infeasible. We have to relax the constraints by allowing yif (xi) < 1 on some instances. But we will
penalize the amount by which we have to make this relaxation. This is done by introducing slack
variables, i.e., the amount of relaxation for each instance, ξi ≥ 0, i = 1 . . . l into (6.8):

min
w,b,ξ

l∑
i=1

ξi + λ‖w‖2

subject to yi(w�xi + b) ≥ 1 − ξi, i = 1 . . . l

ξi ≥ 0. (6.9)

60 CHAPTER 6. SEMI-SUPERVISED SUPPORT VECTOR MACHINES

In the equation above,
∑l

i=1 ξi is the total amount of relaxation, and we would like to minimize a
weighted sum of it and ‖w‖2. The weight λ balances the two objectives. This formulation thus still
attempts to find the maximum margin separation, but allows some training instances to be on the
wrong side of the decision boundary. It is still a quadratic program. The optimization problem (6.9)
is known as the primal form of a linear SVM.

It is illustrative to cast (6.9) into a regularized risk minimization framework, as this is how
we will extend it to S3VMs. Consider the following optimization problem:

min
ξ

ξ

subject to ξ ≥ z

ξ ≥ 0. (6.10)

It is easy to verify that when z ≤ 0, the objective is 0; when z > 0, the objective is z. Therefore,
solving problem (6.10) is equivalent to evaluating the function

max(z, 0). (6.11)

Noting in (6.9) the inequality constraints on ξi can be written as ξi ≥ 1 − yi(w�xi + b), we set
zi = 1 − yi(w�xi + b) to turn (6.9) into the sum of the form (6.10).This in turn converts (6.9) into
the following equivalent, but unconstrained, regularized risk minimization problem

min
w,b

l∑
i=1

max(1 − yi(w�xi + b), 0) + λ‖w‖2, (6.12)

where the first term corresponds to the loss function

c(x, y, f (x)) = max(1 − y(w�x + b), 0), (6.13)

and the second term corresponds to the regularizer

�(f) = ‖w‖2. (6.14)

The particular loss function (6.13) is known as the hinge loss. We plot hinge loss as a function of
yf (x) = y(w�x + b) in Figure 6.3(a). Recall that for well-separated training instances, we have
yf (x) ≥ 1.Therefore, the hinge loss penalizes instances which are on the correct side of the decision
boundary, but within the margin (0 ≤ yf (x) < 1); it penalizes instances even more if they are on
the wrong side of the decision boundary (yf (x) < 0). The shape of the loss function resembles a
hinge, hence the name.

We will not discuss the dual form of SVMs, nor the kernel trick that essentially maps the
feature to a higher dimensional space to handle non-linear problems. These are crucial to the suc-
cess of SVMs, but are not necessary to introduce S3VMs. However, we shall point out that it is
straightforward to apply the kernel trick to S3VMs, too.

6.2. SEMI-SUPERVISED SUPPORT VECTOR MACHINES∗ 61

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

yf (x) f (x)

(a) the hinge loss (b) the hat loss

Figure 6.3: (a) The hinge loss c(x, y, f (x)) = max(1 − y(w�x + b), 0) as a function of yf (x). (b) The
hat loss c(x, ŷ, f (x)) = max(1 − |w�x + b|, 0) as a function of f (x).

6.2 SEMI-SUPERVISED SUPPORT VECTOR MACHINES∗

Semi-Supervised Support Vector Machines (S3VMs) were originally called Transductive Support
Vector Machines (TSVMs), because its theory was developed to give performance bounds (theo-
retical guarantees) on the given unlabeled sample. However, since the learned function f naturally
applies to unseen test instances, it is more appropriate to call them S3VMs.

Recall that in Figure 6.1(b), the intuition of S3VM is to place both labeled and unlabeled
instances outside the margin. We have seen how this can be encouraged for the labeled instances
using the hinge loss in Figure 6.3(a). But what about unlabeled instances? Without a label, we do
not even know whether an unlabeled instance x is on the correct or the wrong side of the decision
boundary.

Here is one way to incorporate the unlabeled instance x into learning. Recall the label predic-
tion on x is ŷ = sign(f (x)). If we treat this prediction as the putative label of x, then we can apply
the hinge loss function on x:

c(x, ŷ, f (x)) = max(1 − ŷ(w�x + b), 0)

= max(1 − sign(w�x + b)(w�x + b), 0)

= max(1 − |w�x + b|, 0), (6.15)

where we used the fact sign(z)z = |z|.This new loss function is distinct from the hinge loss in that it
does not need the real label y, but is instead completely determined by f (x). The new loss function
is plotted in Figure 6.3(b). Note the x-axis is now f (x) instead of yf (x). Due to its distinctive shape,
this new loss function in (6.15) is called the hat loss.

Because of the way we generate the putative label ŷ, an unlabeled instance x is always on
the correct side of the decision boundary. Nonetheless, the hat loss still penalizes certain unlabeled

62 CHAPTER 6. SEMI-SUPERVISED SUPPORT VECTOR MACHINES

instances. Specifically, it prefers f (x) ≥ 1 or f (x) ≤ −1 (the “rim” of the hat). These are unlabeled
instances outside the margin, far away from the decision boundary. On the other hand, it penalizes
unlabeled instances with −1 < f (x) < 1, especially the ones with f (x) ≈ 0. These are unlabeled
instances within the margin. Intuitively, they are the ones that f is uncertain about. We now in-
corporate the hat loss on the unlabeled data {xj }l+u

j=l+1 into the SVM objective (6.12) to form the
S3VM objective:

min
w,b

l∑
i=1

max(1 − yi(w�xi + b), 0) + λ1‖w‖2 + λ2

l+u∑
j=l+1

max(1 − |w�xj + b|, 0). (6.16)

The S3VM objective prefers unlabeled instances to be outside the margin. Equivalently, the decision
boundary would want to be in a low density gap in the dataset, such that few unlabeled instances
are close. Although we used the name “hat loss,” it is more natural to view (6.16) as regularized
risk minimization with hinge loss on labeled instances, and a regularizer involving these hat-shaped
functions:

�(f) = λ1‖w‖2 + λ2

l+u∑
j=l+1

max(1 − |w�xj + b|, 0). (6.17)

There is one practical consideration. Empirically, it is sometimes observed that the solution
to (6.16) is imbalanced. That is, the majority (or even all) of the unlabeled instances are predicted
in only one of the classes. The reason for such behavior is not well-understood. To correct for the
imbalance, one heuristic is to constrain the predicted class proportion on the unlabeled data, so that
it is the same as the class proportion on the labeled data:

1

u

l+u∑
j=l+1

ŷj = 1

l

l∑
i=1

yi. (6.18)

Since ŷj = sign(f (xj)) is a discontinuous function, the constraint is difficult to enforce. Instead, we
relax it into a constraint involving continuous functions:

1

u

l+u∑
j=l+1

f (xj) = 1

l

l∑
i=1

yi. (6.19)

Therefore, the complete S3VM problem with class balance constraint is

min
w,b

l∑
i=1

max(1 − yi(w�xi + b), 0) + λ1‖w‖2 + λ2

l+u∑
j=l+1

max(1 − |w�xj + b|, 0)

subject to
1

u

l+u∑
j=l+1

w�xj + b = 1

l

l∑
i=1

yi. (6.20)

6.3. ENTROPY REGULARIZATION∗ 63

Finally, we point out a computational difficulty of S3VMs. The S3VM objective func-
tion (6.16) is non-convex. A function g is convex, if for ∀z1, z2, ∀0 ≤ λ ≤ 1,

g(λz1 + (1 − λ)z2) ≤ λg(z1) + (1 − λ)g(z2). (6.21)

For example, the SVM objective (6.12) is a convex function of the parameters w, b. This can be
verified by the convexity of the hinge loss, the squared norm, and the fact that the sum of convex
functions is convex. Minimizing a convex function is relatively easy, as such a function has a well-
defined “bottom.” On the other hand, the hat loss function is non-convex, as demonstrated by z1 =
−1, z2 = 1, and λ = 0.5.With the sum of a large number of hat functions, the S3VM objective (6.16)
is non-convex with multiple local minima. A learning algorithm can get trapped in a sub-optimal
local minimum, and not find the global minimum solution. The research in S3VMs has focused on
how to efficiently find a near-optimum solution; some of this work is listed in the bibliographical
notes.

6.3 ENTROPY REGULARIZATION∗

SVMs and S3VMs are non-probabilistic models. That is, they are not designed to compute the
label posterior probability p(y|x) when making classification. In statistical machine learning, there
are many probabilistic models which compute p(y|x) from labeled training data for classification.
Interestingly, there is a direct analogue of S3VM for these probabilistic models too, known as entropy
regularization. To make our discussion concrete, we will first introduce a particular probabilistic
model: logistic regression, and then extend it to semi-supervised learning via entropy regularization.

Logistic regression models the posterior probability p(y|x). Like SVMs, it uses a linear deci-
sion function f (x) = w�x + b. Let the label y ∈ {−1, 1}. Recall that if f (x) � 0, x is deep within
the positive side of the decision boundary, if f (x) � 0, x is deep within the negative side, and
f (x) = 0 means x is right on the decision boundary with maximum label uncertainty. Logistic
regression models the posterior probability by

p(y|x) = 1/ (1 + exp(−yf (x))) , (6.22)

which “squashes” f (x) ∈ (−∞, ∞) down to p(y|x) ∈ [0, 1]. The model parameters are w and b,
like in SVMs. Given a labeled training sample {(xi , yi)}li=1, the conditional log likelihood is defined
as

l∑
i=1

log p(yi |xi , w, b). (6.23)

If we further introduce a Gaussian distribution as the prior on w:

w ∼ N (0, I/(2λ)) (6.24)

64 CHAPTER 6. SEMI-SUPERVISED SUPPORT VECTOR MACHINES

where I is the diagonal matrix of the appropriate dimension, then logistic regression training is to
maximize the posterior of the parameters:

max
w,b

log p(w, b|{(xi , yi)}li=1)

= max
w,b

log p({(xi , yi)}li=1|w, b) + log p(w)

= max
w,b

l∑
i=1

log (1/ (1 + exp(−yif (xi)))) − λ‖w‖2. (6.25)

The second line follows from Bayes rule, and ignoring the denominator that is constant with respect
to the parameters. This is equivalent to the following regularized risk minimization problem:

min
w,b

l∑
i=1

log (1 + exp(−yif (xi))) + λ‖w‖2, (6.26)

with the so-called logistic loss

c(x, y, f (x)) = log (1 + exp(−yf (x))) , (6.27)

and the usual regularizer �(f) = ‖w‖2. Figure 6.4(a) shows the logistic loss. Note its similarity to
the hinge loss in Figure 6.3(a).

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

yf (x) f (x)

(a) the logistic loss (b) the entropy regularizer

Figure 6.4: (a) The logistic loss c(x, y, f (x)) = log (1 + exp(−yf (x))) as a function of yf (x). (b) The
entropy regularizer that encourages high-confidence classification on unlabeled data.

Logistic regression does not use unlabeled data. We can include unlabeled data based on the
following intuition: if the two classes are well-separated, then the classification on any unlabeled
instance should be confident: it either clearly belongs to the positive class, or to the negative class.
Equivalently, the posterior probability p(y|x) should be either close to 1, or close to 0. One way

6.4. THE ASSUMPTION OF S3VMS AND ENTROPY REGULARIZATION 65

to measure the confidence is the entropy. For a Bernoulli random variable with probability p, the
entropy is defined as

H(p) = −p log p − (1 − p) log(1 − p). (6.28)

The entropy H reaches its minimum 0 when p = 0 or p = 1, i.e., when the outcome is most certain;
H reaches its maximum 1 when p = 0.5, i.e., most uncertain. Given a unlabeled training sample
{xj }l+u

j=l+1, the entropy regularizer for logistic regression is defined as

�(f) =
l+u∑

j=l+1

H(p(y = 1|xj , w, b)) =
l+u∑

j=l+1

H(1/
(
1 + exp(−f (xj))

)
). (6.29)

The entropy regularizer is small if the classification on the unlabeled instances is certain.Figure 6.4(b)
shows the entropy regularizer on a single unlabeled instance x as a function of f (x).Note its similarity
to the hat loss in Figure 6.3(b). In direct analogy to S3VMs, we can define semi-supervised logistic
regression by incorporating this entropy regularizer:

min
w,b

l∑
i=1

log (1 + exp(−yif (xi))) + λ1‖w‖2 + λ2

l+u∑
j=l+1

H(1/
(
1 + exp(−f (xj))

)
). (6.30)

6.4 THE ASSUMPTION OF S3VMS AND ENTROPY REGU-
LARIZATION

Remark 6.1. The assumption of both S3VMs and entropy regularization is that the classes are
well-separated, such that the decision boundary falls into a low density region in the feature space,
and does not cut through dense unlabeled data.

If this assumption does not hold, these algorithms may be led astray. We now describe an
example scenario where S3VMs may lead to particularly poor performance.

Example 6.2. S3VMs when the Model Assumption Does Not Hold Consider the data shown in
Figure 6.5.The underlying data distribution p(x) is uniform in a circle of radius 0.5, except for a gap
of width 0.2 along the diagonal y = −x where the density is 0. The true class boundary is along the
anti-diagonal y = x, though. Clearly, the classes are not well-separated, and the low density region
does not correspond to the true decision boundary. This poses two problems. First, consider the case
in which the labeled instances appear on the same side of the low density region (Figure 6.5(a)). An
S3VM’s search for a gap between the two classes may stuck in one of many possible local minima.
The resulting decision boundary may be worse than the decision boundary of an SVM that does
not try to exploit unlabeled data at all. Second and more severely, if the labeled instances appear on
opposite sides of the gap (Figure 6.5(b)), the S3VM will be attracted to this region and produce a
very poor classifier that gets half of its predictions incorrect.

66 CHAPTER 6. SEMI-SUPERVISED SUPPORT VECTOR MACHINES

−0.4 −0.2 0 0.2 0.4 0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x 2

−0.4 −0.2 0 0.2 0.4 0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

Unlabeled data
Positive data
Negative data
True boundary
SVM boundary
S3VM boundary

(a) S3VM in local minimum (b) S3VM in “wrong” low density region

Figure 6.5: (a) With labeled data in adjacent quadrants, S3VM comes close to the true boundary, but it
is sensitive to local minima (small gaps between unlabeled data from sampling noise). (b) With labeled
data located in opposite quadrants, the S3VM decision boundary seeks a gap in the unlabeled data. In
this case, the gap is orthogonal to the classes, so S3VM suffers a large loss.

To obtain a quantitative understanding of the significance of these problems, we sampled
5000 random datasets of this form with l = 2 and u = 10000. In roughly half the cases, both
labeled instances are in the same class, and both a standard SVM and S3VM label everything the
same class and get 50% error. In one quarter of the cases, the first problem above occurs, while in
the other quarter of the cases, we face the second problem. On average among the half of cases with
both classes represented, SVM achieves an unlabeled (transductive) error rate of 0.26 ± 0.13, while
S3VM performs much worse with an error rate of 0.34 ± 0.19. (These are mean numbers, plus or
minus one standard deviation, over the 5000 random datasets.) The 8% difference in error shows
that S3VMs are not well suited to problems of this kind where the classes are not well-separated,
and a low-density region does not correspond with the true decision boundary. In fact, despite the
large variance in the error rates, S3VM is statistically significantly worse than SVM in this scenario
(paired t-test p � 0.05).

This chapter has introduced the state-of-the-art SVM classifier and its semi-supervised coun-
terpart. Unlike the previous semi-supervised learning techniques we discussed, S3VMs look for a
low-density gap in unlabeled data to place the decision boundary. We also introduced entropy regu-
larization, which shares this intuition in a probabilistic framework based on logistic regression. This
is the final chapter introducing a new semi-supervised learning approach. In the next chapter, we
explore the connections between semi-supervised learning in humans and machines, and discuss the
potential impact semi-supervised learning research can have on the cognitive science field.

6.4. THE ASSUMPTION OF S3VMS AND ENTROPY REGULARIZATION 67

BIBLIOGRAPHICAL NOTES
Transductive SVMs, as S3VMs were originally called, were proposed by Vapnik [176]. Due to its
non-convex nature, early implementations were limited by the problem size they could solve [18,
58, 68]. The first widely used implementation was by Joachims [89]. Since then, various non-
convex optimization techniques have been proposed to solve S3VMs [34], including semi-definite
programming [55,54,188,189],gradient search with smooth approximation to the hat function [36],
deterministic annealing [157], continuation method [32], concave-convex procedure (CCCP) [42],
difference convex (DC) programming [182], fast algorithm for linear S3VMs [156], Branch and
Bound [33], and stochastic gradient descent which also combines with the manifold assumption [96].
Some recent work relaxes the assumption on unlabeled data [190].

The idea that unlabeled data should not be very close to the decision boundary is a general
one, not limited to S3VMs. It can be implemented in Gaussian Processes with the null category
noise model [106, 40], as information regularization [169, 44, 45], maximum entropy discrimination
approach [87], or entropy minimization [79, 108, 122].

69

C H A P T E R 7

Human Semi-Supervised
Learning

Suppose a young child is learning the names of animals. Dad occasionally points to an animal and
says “dog!” But most of the time, the child just watches all sorts of animals by herself. Do such passive
experiences help the child learn animals, in addition to the explicit instructions received from Dad?
Intuitively, the answer appears to be “yes.” Perhaps surprisingly, there is little quantitative study on
this question. Clearly, passive experiences are nothing more than unlabeled data, and it seems likely
that humans exploit such information in ways similar to how semi-supervised learning algorithms
in machines do. In this chapter, we demonstrate the potential value of semi-supervised learning on
cognitive science.

7.1 FROM MACHINE LEARNING TO COGNITIVE SCIENCE
Humans are complex learning systems. Cognitive Science, an interdisciplinary science that embraces
psychology, artificial intelligence, neuroscience, philosophy, etc., develops theories about human in-
telligence. Traditionally, cognitive science has benefited from computational models in machine
learning, such as reinforcement learning, connectionist models, and non-parametric Bayesian mod-
eling, to name a few.To help understand experiments described in this chapter, we start by providing
a “translation” of relevant terms from machine learning to cognitive science:

• Instance x: a stimulus, i.e., an input item to a human subject. For example, a visual stimulus
can be a complex shape representing a microscopic pollen particle.

• Class y: a concept category for humans to learn. For example, we may invent two fictitious
flowers Belianthus and Nortulaca that subjects are asked to learn to recognize.

• Classification: a concept learning task for humans.Given a pollen particle as the visual stimulus,
the human decides which flower it comes from.

• Labeled data: supervised experience (e.g., explicit instructions) from a teacher. Given a pollen
particle x, the teacher says “this is from Belianthus.”

• Unlabeled data: passive experiences for humans. The human subject observes a pollen particle
x without receiving its true class.

• Learning algorithm: some mechanism in the mind of the human subject. We cannot directly
observe how learning is done.

70 CHAPTER 7. HUMAN SEMI-SUPERVISED LEARNING

• Prediction function f : the concepts formed in the human mind. The function itself is not
directly observable. However, it is possible to observe any particular prediction f (x), i.e., how
the human classifies stimulus x.

In many real world situations, humans are exposed to a combination of labeled data and far
more unlabeled data when they need to make a classification decision: an airport security officer must
decide whether a piece of luggage poses a threat, where the labeled data comes from job training,
and the unlabeled data comes from all the luggage passing through the checkpoint; a dieter must
decide which foods are healthy and which are not, based on nutrition labels and advertisements; a
child must decide which names apply to which objects from Dad’s instructions and observations of
the world around her. Some questions naturally arise:

• When learning concepts, do people make systematic use of unlabeled data in addition to
labeled data?

• If so, can such usage be understood with reference to semi-supervised learning models in
machine learning?

• Can study of the human use of labeled and unlabeled data improve machine learning in
domains where human performance outstrips machine performance?

Understanding how humans combine information from labeled and unlabeled data to draw in-
ferences about conceptual boundaries can have significant social impact, ranging from improving
education to addressing homeland security issues. Standard psychological theories of concept learn-
ing have focused mainly on supervised learning. However, in the realistic setting where labeled and
unlabeled data is available, semi-supervised learning offers very explicit computational hypotheses
that can be empirically tested in the laboratory. In what follows,we cite three studies that demonstrate
the complexity of human semi-supervised learning behaviors.

7.2 STUDY ONE: HUMANS LEARN FROM UNLABELED TEST
DATA

Zaki and Nosofsky conducted a behavioral experiment that demonstrates the influence of unlabeled
test data on learning [194]. In short, unlabeled test data continues to change the concept originally
learned in the training phase, in a manner consistent with self-training. For machine learning re-
searchers, it may come as a mild surprise that humans may not be able to hold their learned function
fixed during testing.

We present the Zaki and Nosofsky study in machine learning terms. The task is one-class
classification or outlier detection: the human subject is first presented with a training sample
{(xi , yi = 1)}li=1. Note importantly she is told that all the training instances come from one class.
Then, during testing, the subject is shown u unlabeled instances {xi}l+u

i=l+1, and her task is to clas-
sify each instance as yi = 1 or not. This is usually posed as a density level-set problem in machine

7.2. STUDY ONE: HUMANS LEARN FROM UNLABELED TEST DATA 71

learning: From the training sample, the learner estimates the subset of the feature space on which
the conditional density p(x|y = 1) is larger than some threshold ε

X1 = {x ∈ X | p(x|y = 1) ≥ ε}; (7.1)

then during testing, an unlabeled instance x is classified as y = 1 if x ∈ X1, and y
= 1 otherwise.
The approach above assumes that the estimated level-set X1 is fixed after training. If the as-

sumption were true, then no matter what the test data looks like, the classification for any particular
x would be fixed. Zaki and Nosofsky showed that this is in fact not true. Their experiment com-
pares two conditions that differ only in their test sample distribution p(x); the results demonstrate
differences in classification under the two conditions.

In their experiment, each stimulus is a 9-dot pattern as shown in Figure 7.1(a). The location
of the nine dots can vary independently, creating the feature space. The training sample consists
of 40 instances drawn from a distribution centered around mean μ (which is a particular 9-dot
pattern), and with some high variance (large spread). The training density is schematically shown
in Figure 7.1(b), and is shared by the two conditions below.

In condition 1, the test sample consists of the following mixture: 4 from the mean itself
x = μ, 20 from a low-variance (small spread) distribution around μ, 20 from the same high-variance
distribution around μ, and 40 random instances. This is shown in Figure 7.1(c). Overall, there is
a mode (peak of density) at the mean μ. Condition 1 is first used by Knowlton and Squire [100].
Because human experiments are typically noisy, the interesting quantity is the fraction of y = 1
classifications for the various groups of instances. In particular, let p̂(y = 1|μ) be the observed
fraction of trials where the subjects classified y = 1 among all trials where x = μ. Let p̂(y = 1|low),
p̂(y = 1|high), p̂(y = 1|random) be the similar fraction when x is drawn from the low-variance,
high-variance, and random distribution, respectively. Perhaps not surprisingly, when averaging over
a large number of subjects one observes that

p̂(y = 1|μ) > p̂(y = 1|low) > p̂(y = 1|high)

� p̂(y = 1|random). (7.2)

In condition 2, the mode is intentionally shifted to μnew, which is itself sampled from the
high-variance distribution. Specifically, there are 4 instances with x = μnew, and 20 instances from
a low-variance distribution around μnew. Only 1 test instance (as opposed to 4) remains at the
old mean x = μ, and 2 instances (as opposed to 20) from the low-variance distribution around μ.
There are 19 instances (similar to the previous 20) from the high-variance distribution around μ.
The 40 random instances remain the same. This is depicted in Figure 7.1(d). Under this test sample
distribution, human behaviors are drastically different:

p̂(y = 1|μnew) > p̂(y = 1|lownew)

> p̂(y = 1|μ) ≈ p̂(y = 1|low) ≈ p̂(y = 1|high)

� p̂(y = 1|random), (7.3)

72 CHAPTER 7. HUMAN SEMI-SUPERVISED LEARNING

where lownew is the low-variance distribution around μnew.
Therefore, because of the new mode at μnew in test data, human subjects perceive μnew to be

more likely in class 1. This experiment clearly demonstrates that humans do not fix their hypothesis
after training—unlabeled test data influences humans’ learned hypotheses. It is worthy pointing
out that the observed behavior cannot be simply explained by a change in the threshold ε in (7.1).
Instead, it likely involves the change in the conditional density p(x|y = 1).

40

μ
(a) a stimulus (b) training distribution

20

μ

20

40

4

19

μ

40

1

μ

20

4

new

2

(c) condition 1 test distribution (d) condition 2 test distribution

Figure 7.1: The one-class classification problem of Zaki and Nosofsky.

7.3 STUDY TWO: PRESENCE OF HUMAN SEMI-SUPERVISED
LEARNING IN A SIMPLE TASK

Zhu,Rogers,Qian and Kalish (ZRQK) conducted an experiment that demonstrates semi-supervised
learning behavior in humans [214]. Unlike the Zaki and Nosofsky study, it is a binary classification
task. We call it a “simple task” because the feature space is one-dimensional, and there is a single
decision boundary (threshold) that separates the two classes. In the next section, we will discuss a
more complex task in two dimensions.

Their experiment design is shown in Figure 7.2(a), which is similar to Figure 2.1 earlier in
the book. There is a negative labeled instance at x = −1 and a positive labeled instance at x = 1.
From these labeled instances alone, supervised learning would put the decision boundary at x = 0.
Suppose in addition, the learner observes a large number of unlabeled instances, sampled from
the blue bi-modal distribution. Then many semi-supervised learning models will predict that the
decision boundary should be in the trough near x = −0.5.Therefore, supervised and semi-supervised
learning models lead to different decision boundaries.

7.3. STUDYTWO: PRESENCE OF HUMAN SEMI-SUPERVISED LEARNING IN A SIMPLETASK 73

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

left−shifted
Gaussian mixture

range examples

test examples

x

(a) experiment design

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
(b) some stimuli and their x values

Figure 7.2: The 1D binary classification problem of ZRQK.

Following this intuition, the ZRQK study used the procedure below to study human behaviors.
Each stimulus is a complex shape parametrized by a 1-dimensional feature x. Figure 7.2(b) shows a
few shapes and their x values. Each human subject receives input in the following order:

1. The labeled data: 10 positive labeled instances at x = 1 and 10 negative labeled instances at
x = −1.These 20 trials appear in a different random order for each participant.The repetition
of the same two stimuli each ensures quick learning. For these first 20 stimuli, the subjects
received an affirmative sound if they made the correct classification, or a warning sound if they
were wrong. There was no audio feedback for the remaining stimuli.

2. Test-1: 21 evenly spaced unlabeled examples x = −1, −0.9, −0.8, . . . , 1, appearing in a dif-
ferent random order for each participant. They are used to test the learned decision boundary
after seeing the above labeled data.

3. The unlabeled data: 690 randomly sampled unlabeled instances from the blue bimodal dis-
tribution. Importantly, the two modes are shifted away from the labeled instances at x = −1
and x = 1, so that the labeled instances are not prototypical examples of the classes. For “L-
subjects” the two modes are shifted to the left; for “R-subjects” they are shifted to the right.
In addition, three batches of 21 “range instances” evenly spaced in the interval [−2.5, 2.5] are
mixed in. The range instances ensure that the unlabeled data for both left-shifted and right-

74 CHAPTER 7. HUMAN SEMI-SUPERVISED LEARNING

shifted subjects span the same range, so that any measured shift in the decision boundary
cannot be explained by differences in the range of instances viewed.

4. Test-2: same as test-1, to test the learned decision boundary from both the labeled and unla-
beled data.

The ZRQK study found that unlabeled data shifts human classification decision boundaries
as expected by semi-supervised learning. Figure 7.3(a) shows the logistic function fit to the empir-
ical fraction p̂(y = 1|x), i.e., the fraction of human subjects classifying a given x as positive. The
decision boundary can be estimated as the x for which the curve intersects p̂(y = 1|x) = 0.5. For
all participants in test-1 (the dotted curve), the decision boundary is at x = 0.11, close to the ex-
pected boundary at zero from supervised learning. The curve is also relatively steep, showing that
the participants are highly consistent in their classifications immediately after seeing the 20 labeled
instances. For R-subjects in test-2 (the dashed curve), the decision boundary is at x = 0.48. This
represents a shift to the right of 0.37, compared to test-1.This shift represents the effect of unlabeled
data on the R-subjects and fits the expectation of semi-supervised learning. For L-subjects in test-2
(the solid curve), the decision boundary is at x = −0.10. This represents a shift to the left by -0.21,
also consistent with semi-supervised learning.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

pe
rc

en
t c

la
ss

 2
 re

sp
on

se
s

test−1, all
test−2, L−subjects
test−2, R−subjects

−1 −0.5 0 0.5 1
400

450

500

550

600

650

700

750

800

850

900

x

re
ac

tio
n

tim
e

(m
s)

test−1, all
test−2, L−subjects
test−2, R−subjects

(a) empirical p(y = 1|x) (b) response time

Figure 7.3: In the ZRQK study, unlabeled data changes human concept boundaries, as revealed by
classification and response time.

As additional evidence for boundary shift, the ZRQK study observed changes in response
time. A long response time implies that the stimulus is relatively difficult to classify. Stimuli near
the decision boundary should be associated with longer response times. Figure 7.3(b) shows mean
response times on test-1 (dotted line). After seeing just the labeled instances at x = −1 and x = 1,
people react quickly to examples near them (600ms), but are much slower (800ms) for instances “in

7.4. STUDY THREE: ABSENCE OF HUMAN SEMI-SUPERVISED LEARNING 75

the middle,” that is, near the decision boundary. More interesting is the mean response time on test-
2 for L-subjects (solid line) and R-subjects (dashed line). L-subjects have a response time plateau
around x = −0.1, which is left-shifted compared to test-1, whereas R-subjects have a response time
peak around x = 0.6, which is right-shifted. The response times thus also suggest that exposure to
the unlabeled data has shifted the decision boundary.

The ZRQK study explains the human behavior with a Gaussian Mixture Model (see Chap-
ter 3). They fit the model with the EM algorithm. After seeing the labeled data plus test-1 (since
these are what the human subjects see when they make decisions on test-1), the Gaussian Mixture
Model predicts p(y = 1|x) as the dotted line in Figure 7.4(a). Then, after exposure to unlabeled
data, the Gaussian Mixture Models fit on all data (labeled, test-1, unlabeled, and test-2) predicts
decision boundary shift for the left-shift condition (solid line) and right-shift condition (dashed
line) in Figure 7.4(a), which qualitatively explains the observed human behavior.

These Gaussian Mixture Models can also explain the observed response time. Let the response
time model be

aH(x) + bi, (7.4)

for test-i, i = 1, 2. H(x) is the entropy of the prediction

H(x) =
∑

y=−1,1

−p(y|x) log p(y|x), (7.5)

which is zero for confident predictions p(y|x) = 0 or 1, and one for uncertain predictions p(y|x) =
0.5. The parameters a = 168, b1 = 688, b2 = 540, obtained with least squares from the empirical
data, produce the fit in Figure 7.4(b), which explains the empirical peaks before and after seeing
unlabeled data in Figure 7.3(b).

7.4 STUDY THREE: ABSENCE OF HUMAN
SEMI-SUPERVISED LEARNING IN A COMPLEX TASK

The previous two sections discuss positive studies where human semi-supervised learning behavior
is observed. In this section, we present a study by Vandist, De Schryver and Rosseel (VDR), which
is a negative result [175]. The task is again binary classification. However, the feature space is two-
dimensional. Each class is distributed as a long, thin Gaussian tilted at 45◦ angle. The true decision
boundary is therefore along the diagonal, as shown in Figure 7.5(a). Such non-axis-parallel decision
boundaries are called “information-integration tasks” in psychology since the learner has to integrate
information from two features [7]. They are considered to be more complex and difficult to learn,
because there is no verbal analogue to a univariate rule.

In the VDR study, the stimuli are Gabor patches similar to those in Figure 7.5(b), where the
two features are frequency and orientation of the “gratings.” We discuss one of their experiments
that is particularly relevant to human semi-supervised learning. In the experiment, there are two
conditions:

76 CHAPTER 7. HUMAN SEMI-SUPERVISED LEARNING

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

p(
y=

2|
x)

test−1
test−2, L−data
test−2, R−data

−1 −0.5 0 0.5 1
400

450

500

550

600

650

700

750

800

850

900

x

fit
te

d
re

ac
tio

n
tim

e
(m

s)

test−1
test−2, L−data
test−2, R−data

(a) decision boundary fit (b) response time fit

Figure 7.4: Gaussian Mixture Models make predictions that fit human behaviors in the ZRQK study.

• Condition 1: The subject receives 800 stimuli, one at a time, each randomly sampled from
the Gaussian mixture. The subject has to classify each stimulus into one of the two classes. In
half of the cases, after making a guess, the subject receives feedback informing her of the true
class of the stimulus. In the other half, she receives no feedback. Therefore, there is an equal
number of labeled and unlabeled instances.

• Condition 2: Same as condition 1, except that if an instance is unlabeled, its corresponding
Gabor patch is replaced by the characters “X” or “N” during display.This turns all the unlabeled
data trials into unrelated“filler trials,” thus removing the effect of unlabeled data.This condition
is therefore similar to pure supervised learning, but properly adjusted to match condition 1.

class 1

class 2

frequency

or
ie

nt
at

io
n

(a) the two classes (b) two Gabor patches

Figure 7.5: The binary classification task in the VDR study.

7.5. DISCUSSIONS 77

If semi-supervised learning helps in this information-integration task, one would expect that
subjects under condition 1 learn faster and more accurately than condition 2. This was not observed
in the VDR study. The average accuracy in each block of 100 trials is very similar under these two
conditions. Both increase gradually, from around 73% in the first block to around 93% in the 8-th
(last) block.

Therefore, unlabeled data did not affect learning in this experiment. There might be several
factors that contribute to the negative result. For one, the information-integration task in this VDR
study is considerably more difficult than the threshold task in the ZRQK study. Second, the VDR
study provides much more labeled data too. It may be that the effects of unlabeled data are largest
when labels are very sparse.

7.5 DISCUSSIONS
These studies, together with a growing body of recent work, reveal interesting similarities and
differences between human learning behavior and semi-supervised learning models. On simple
tasks, human’s most confident instances depend on test data distribution, and decision boundary
judgments align with the low-density region between modes in the unlabeled distribution—just as
predicted by machine learning models. They clearly show that supervised learning alone does not
account well for human behavior in these tasks, and semi-supervised learning might be a better
explanation.

On the harder information-integration task, however, unlabeled data did not help. In addition,
in the ZRQK study, human judgments were less certain (i.e., shallower slopes in Figure 7.3(a))
than predicted by machine learning in Figure 7.4(a). These discrepancies may provide leverage for
understanding how these models might be adapted to better capture human behavior. For example,
we may consider several alternative models: a mixture of heavy-tailed student-t distributions instead
of Gaussians; the model’s “memory” of previous items could be limited in cognitively-plausible
ways; or the model could update its estimates of the mixture coefficients and component parameters
sequentially as each new item is presented (e.g., online machine learning).

There are other questions raised by these studies. We may want to design experiments to
distinguish the different semi-supervised learning assumptions discussed in this book. Furthermore,
what about a child’s ability to point to an animal and ask Dad: “What is that?” It seems semi-
supervised learning and active learning (i.e., the setting in which the algorithm gets to choose which
instances are labeled) go hand-in-hand in human learning. By studying active learning in humans,
we may enhance the synergy between semi-supervised and active learning in machines. Ultimately,
these studies illustrate the promise of such cross-disciplinary research: congruency between model
predictions and human behavior in well-understood learning problems can shed insight into how
humans make use of labeled and unlabeled data. In addition, discrepancies between human and
machine-predicted behavior points the way toward the development of new machine learning mod-
els.

78 CHAPTER 7. HUMAN SEMI-SUPERVISED LEARNING

BIBLIOGRAPHICAL NOTES
Advances in machine learning may shed light on the cognitive process behind human learning,
which may in turn lead to novel machine learning approaches. Such synergy has long been rec-
ognized [130, 105]. The study of human semi-supervised learning is still in its infancy. In the
cognitive psychology literature, there have been observations on the effect of unlabeled data to su-
pervised learning, although it was not discussed in a formal semi-supervised learning framework.
For examples, see [127, 137, 175, 194]. The earliest quantitative study of human learning with
reference to modern semi-supervised machine learning models is [166]. It used drawings of artificial
fish to show that human categorization behavior can be influenced by the presence of unlabeled
instances. Though certainly suggestive, the experiment had two limitations. First, it used a single
positive labeled example and no negative labeled examples, making it a one-class setting similar
to novelty detection or quantile estimation, instead of classification. Second, since the stimuli are
representations of a familiar concept (i.e., fish), it is difficult to know whether the results reflect prior
knowledge about the category, or new learning obtained over the course of the experiment. The first
clear demonstration of human semi-supervised learning is [214].

The combination of active learning and semi-supervised learning has attracted attention in
machine learning, see, e.g., [85, 126, 132, 183, 203, 202, 213]. In cognitive science, quantitative
research on human active learning has just started [31, 103]. We expect the study of the combination
to be a fruitful direction.

79

C H A P T E R 8

Theory and Outlook
We have discussed many different semi-supervised learning algorithms throughout the book. One
might wonder: is there any theoretic guarantee that these algorithms “work”?

In this chapter,we introduce a simple computational theory to justify semi-supervised learning.
Our discussion is based on the notion of compatibility proposed by Balcan and Blum [10], and
the Probably Approximately Correct (PAC) learning framework of Valiant [174]. The particular
theorems in this chapter may not be empirically useful, because they make several strong assumptions
that are unlikely to be met in practice. Nonetheless, the way the problem is posed and the proof
technique will be useful in understanding other, more advanced versions of the learning theory in
the references. In what follows, we will first introduce a simple PAC learning bound for supervised
learning, then extend it to semi-supervised learning. For simplicity, we shall restrict ourselves to
binary classification tasks.

8.1 A SIMPLE PAC BOUND FOR SUPERVISED LEARNING∗

Recall the supervised learning problem. Let the domain of instances be X , and the domain of
labels be Y = {−1, 1}. Let P(x, y) be an unknown joint probability distribution on instances and

labels X × Y . Given a training sample D consisting of labeled data D = {(xi , yi)}li=1
i.i.d.∼ P(x, y),

and a function family F , supervised learning learns a function fD ∈ F , f : X �→ Y . We hope fD
minimizes the true error e(f), which for any function f is defined as:

e(f) = E(x,y)∼P [f (x)
= y] . (8.1)

But since P is unknown, we cannot directly verify that. Instead, we can observe only the training
sample error ê(f), which is defined in Definition 1.11:

ê(f) = 1

l

l∑
i=1

(f (xi)
= yi). (8.2)

For simplicity,we will let the supervised learning algorithm pick the function fD ∈ F that minimizes
the training sample error. In addition, let us assume that the training sample error is zero: ê(fD) = 0.
Can we say anything about its true error e(fD)? As mentioned before, the precise value of e(fD) is
impossible to compute because we do not know P . However, it turns out that we can bound e(fD)

without the knowledge of P .
First, notice that fD is a random variable that depends on the training sample D.Next consider

the event {e(fD) > ε}, i.e., the particular zero-training-error function fD chosen by the learning

80 CHAPTER 8. THEORY AND OUTLOOK

algorithm actually has true error larger than some ε. For each random draw of D ∼ P , this event
{e(fD) > ε} either happens or does not happen. Therefore, we can talk about the probability of this
event

PrD∼P ({e(fD) > ε}) . (8.3)

Our goal will be to show that this probability is small. The learning algorithm picked fD because
ê(fD) = 0. There could be other functions in F with zero training error on that D. Consider the
union of the events ∪{f ∈F :ê(f)=0}{e(f) > ε}.This union contains the event {e(fD) > ε}.Therefore,

PrD∼P ({e(fD) > ε}) ≤ PrD∼P

(∪{f ∈F :ê(f)=0}{e(f) > ε})
= PrD∼P

(∪{f ∈F}{ê(f) = 0, e(f) > ε})
= PrD∼P

(∪{f ∈F :e(f)>ε}{ê(f) = 0}) , (8.4)

where the second and the third lines are different ways to represent the same union of events. Now
by the union bound Pr(A ∪ B) ≤ Pr(A) + Pr(B),

PrD∼P

(∪{f ∈F :e(f)>ε}{ê(f) = 0}) ≤
∑

{f ∈F :e(f)>ε}
PrD∼P

({ê(f) = 0}) . (8.5)

The true error e(f) for a given f can be thought of as a biased coin with heads probability e(f).
Because D is drawn from P , the training sample error ê(f) is the fraction of heads in l independent
coin flips. If the heads probability e(f) > ε, the probability of producing l tails in a row is bounded
by (1 − ε)l , the product of l independent Bernoulli trials. This is precisely the probability of the
event {ê(f) = 0}. Thus,∑

{f ∈F :e(f)>ε}
PrD∼P

({ê(f) = 0}) ≤
∑

{f ∈F :e(f)>ε}
(1 − ε)l. (8.6)

Finally, assuming that the function family is finite in size,∑
{f ∈F :e(f)>ε}

(1 − ε)l ≤
∑

{f ∈F}
(1 − ε)l = |F |(1 − ε)l ≤ |F |e−εl, (8.7)

where the last inequality follows from 1 − x ≤ e−x . Therefore, by connecting the preceding four
equations, we arrive at the following inequality:

PrD∼P ({e(fD) > ε}) ≤ |F |e−εl . (8.8)

To see its relevance to learning, consider the complement event

PrD∼P ({e(fD) ≤ ε}) ≥ 1 − |F |e−εl . (8.9)

This says that probably (i.e., on at least 1 − |F |e−εl fraction of random draws of the training sample),
the function fD, picked by the supervised learning algorithm because ê(fD) = 0, is approximately

8.2. A SIMPLE PAC BOUND FOR SEMI-SUPERVISED LEARNING∗ 81

correct (i.e., has true error e(fD) ≤ ε). This is known as a Probably Approximately Correct (PAC)
bound.

As an application of the above bound, we can compute the number of training instances
needed to achieve a given performance criterion:
Theorem 8.1. Simple sample complexity for supervised learning. Assume F is finite. Given any
ε > 0, δ > 0, if we see l training instances where

l = 1

ε

(
log |F | + log

1

δ

)
(8.10)

then with probability at least 1 − δ, all f ∈ F with zero training error ê(f) = 0 have e(f) ≤ ε.

Here, ε is a parameter that controls the error of the learned function, and δ is a parameter that
controls the confidence of the bound. The proof follows from setting δ = |F |e−εl .

The theorem has limited applicability because it assumes a finite function family, which is
seldom the case in practice. For example, training a support vector machine can be thought of
as choosing among an infinite number of linear functions. Fortunately, there are ways to extend
PAC bounds to the infinite case using concepts such as VC-dimension [97, 176] or Rademacher
complexity [14, 153]. The theorem is also implicitly limited by the fact that it does not apply if no
f has zero training error. Finally, the theorem does not tell us how to find fD, only what property
fD will have if we find one.

8.2 A SIMPLE PAC BOUND FOR SEMI-SUPERVISED
LEARNING∗

Semi-supervised learning is helpful if, by taking advantage of the unlabeled data, one can use fewer
labeled instances than (8.10) to achieve the same (ε, δ) performance. The only way this can happen
in (8.10) is to make |F | smaller. This is exactly our strategy: first, we will use unlabeled data to
trim F down to a much smaller function family; second, we will apply a PAC bound to this smaller
function family.

To begin, we need to define a notion of incompatibility �(f, x) : F × X �→ [0, 1] between
a function f and an unlabeled instance x. This function should be small when f agrees with the
semi-supervised learning assumption on x, and large otherwise. As an example, consider the “large
unlabeled margin” assumption in S3VMs that all unlabeled instances should be at least γ away from
the decision boundary.That is, we want |f (x)| ≥ γ . Further assume γ is known.Then we can define
the incompatibility function as

�S3VM(f, x) =
{

1, if |f (x)| < γ

0, otherwise.
(8.11)

Using the incompatibility function, we can define a “true unlabeled data error”

eU (f) = Ex∼PX
[�(f, x)] . (8.12)

82 CHAPTER 8. THEORY AND OUTLOOK

Note it only involves the marginal distribution on X . For a function whose decision boundary cuts
through unlabeled data, eU (f) will be large. Similarly, we can define a “sample unlabeled data error”

êU (f) = 1

u

l+u∑
i=l+1

�(f, xi). (8.13)

Now, with an argument very similar to Theorem 8.1, if we see u unlabeled instances where

u = 1

ε

(
log |F | + log

2

δ

)
, (8.14)

then with probability at least 1 − δ/2, all f ∈ F with êU (f) = 0 have eU (f) ≤ ε. That is, this
amount of unlabeled training data allows us to say with confidence that, if we find a function with
êU (f) = 0, then it must have come from the sub-family

F(ε) ≡ {f ∈ F : eU (f) ≤ ε}. (8.15)

Note F(ε) may be much smaller than F .Then, restricting our analysis to functions with êU (f) = 0
and applying Theorem 8.1 again (this time on labeled data), we can guarantee the following. After
seeing l labeled training instances where

l = 1

ε

(
log |F(ε)| + log

2

δ

)
, (8.16)

with probability at least 1 − δ/2, all f ∈ F(ε) with ê(f) = 0 have e(f) ≤ ε. Putting the previous
two results together, we have the following theorem (Theorem 21.5 in [10]):

Theorem 8.2. Simple sample complexity for semi-supervised learning. Assume F is finite. Given
any ε > 0, δ > 0, if we see l labeled and u unlabeled training instances where

l = 1

ε

(
log |F(ε)| + log

2

δ

)
and u = 1

ε

(
log |F | + log

2

δ

)
, (8.17)

then with probability at least 1 − δ, all f ∈ F with zero training error ê(f) = 0 and zero sample
unlabeled data error êU (f) = 0 have e(f) ≤ ε.

Some discussion is in order. This theorem may require less labeled data, compared to Theo-
rem 8.1. Therefore, it justifies semi-supervised learning. However, its conditions are stringent: one
must be able to find an f where both the labeled and unlabeled training error is zero.Semi-supervised
learning algorithms, such as S3VMs, can be viewed as attempting to minimize both the labeled and
unlabeled training error at the same time.

The theorem holds for arbitrary incompatibility functions �. For example, we can define an
“inverse S3VM” function which prefers to cut through dense unlabeled data:

�inv(f, x) = 1 − �S3VM(f, x). (8.18)

8.3. FUTURE DIRECTIONS OF SEMI-SUPERVISED LEARNING 83

This seems like a terrible idea, and goes against all practices in semi-supervised learning. Paradoxi-
cally,�inv could entail a small F(ε), so the required l may be small, suggesting good semi-supervised
learning. What is wrong? Such bad incompatibility functions (which encode inappropriate semi-
supervised learning assumptions) will make it difficult to achieve êU (f) = 0 and ê(f) = 0 at the
same time. They are bad in the sense that they make the above theorem inapplicable.

Finally, we point out that there are several generalizations to Theorem 8.2, as well as theo-
retic frameworks other than the PAC bounds for semi-supervised learning. These more advanced
approaches make weaker assumptions than what is presented here. We give some references in the
next section.

8.3 FUTURE DIRECTIONS OF SEMI-SUPERVISED LEARN-
ING

We conclude the book with a brief discussion of what is not covered, and an educated guess on where
this field might go.

This book is an introduction, not a survey of the field. It does not discuss many recent topics
in semi-supervised learning, including:

• constrained clustering, which is unsupervised learning with some supervision. Interested read-
ers should refer to the book [16] for recent developments in that area. Some techniques there
have in turn been used in semi-supervised learning [113];

• semi-supervised regression [25, 47, 159, 205];

• learning in structured output spaces, where the labels y are more complex than scalar values
(e.g., sequences, graphs, etc.) [2, 5, 26, 104, 170, 173, 215];

• expectation regularization [124], which may have deep connections with the class proportion
constraints in [36, 33, 89, 210];

• learning from positive and unlabeled data,when there is no negative labeled data [61,114,109];

• self-taught learning [140] and the universum [186], where the unlabeled data may not come
from the positive or negative classes;

• model selection with unlabeled data [94, 120, 150], and feature selection [112];

• inferring label sampling mechanisms [146], multi-instance learning [207], multi-task learn-
ing [116], and deep learning [141, 185];

• advances in learning theory for semi-supervised learning [4, 9, 46, 63, 143, 161, 162, 164].

For further readings on these and other semi-supervised learning topics, there is a book collection
from a machine learning perspective [37], a survey article with up-to-date papers [208], a book
written for computational linguists [1], and a technical report [151].

84 CHAPTER 8. THEORY AND OUTLOOK

What is next for semi-supervised learning? We wish the following questions will one day be
solved: How to efficiently incorporate massive, even unlimited, amounts of unlabeled data? How
to ensure that semi-supervised learning always outperforms supervised learning, by automatically
selecting the best semi-supervised model assumption and model parameters? How to design new
semi-supervised learning assumptions, perhaps with inspiration from cognitive science? Answering
these questions requires innovative research effort. We hope you will join the endeavor.

85

A P P E N D I X A

Basic Mathematical Reference
This is a “just enough” quick reference. Please consult standard textbooks for details.

PROBABILITY

The probability of a discrete random variable A taking the value a is P(A = a) ∈ [0, 1]. This is
sometimes written as P(a) when there is no danger of confusion.

Normalization:
∑

a P (A = a) = 1.

Joint probability: P(A = a, B = b) = P(a, b), the two events both happen at the same
time.

Marginalization: P(A = a) = ∑
b P (A = a, B = b).

Conditional probability: P(a|b) = P(a, b)/P (b), the probability of a happening given b happened.

The product rule: P(a, b) = P(a)P (b|a) = P(b)P (a|b).

Bayes rule: P(a|b) = P(b|a)P (a)
P (b)

. In general, we can condition on one or more random vari-

ables C: P(a|b, C) = P(b|a,C)P (a|C)
P (b|C)

. In the special case when θ is the model parameter and D is the

observed data, we have p(θ |D) = p(D|θ)p(θ)
p(D)

, where p(θ) is called the prior, p(D|θ) the likelihood
function of θ (it is not normalized:

∫
p(D|θ) dθ
= 1), p(D) = ∫

p(D|θ)p(θ) dθ the evidence, and
p(θ |D) the posterior.

Independence: The product rule can be simplified as P(a, b) = P(a)P (b), if and only if A

and B are independent. Equivalently, under this condition P(a|b) = P(a), P(b|a) = P(b).

A continuous random variable x has a probability density function (pdf) p(x) ≥ 0. Unlike
discrete random variables, it is possible for p(x) > 1 because it is a probability density, not a
probability mass. The probability mass in interval [x1, x2] is P(x1 < X < x2) = ∫ x2

x1
p(x) dx,

which is between [0, 1].

Normalization:
∫ ∞
−∞ p(x) dx = 1.

86 APPENDIX A. BASIC MATHEMATICAL REFERENCE

Marginalization: p(x) = ∫ ∞
−∞ p(x, y) dy.

The expectation of a function f (x) under the probability distribution P for a discrete random vari-
able x is EP [f] = ∑

a P (a)f (a), and for a continuous random variable is Ep[f] = ∫
x
p(x)f (x) dx.

In particular, if f (x) = x, the expectation is the mean of the random variable x.

The variance of x is Var(x) = E[(x − E[x])2] = E[x2] − E[x]2. The standard deviation of
x is std(x) = √

Var(x).

The covariance between two random variables x, y is Cov(x, y) = Ex,y[(x − E[x])(y − E[y])] =
Ex,y[xy] − E[x]E[y].

When x, y are D-dimensional vectors, E[x] is the mean vector with the i-th entry being
E[xi]. Cov(x, y) is the D × D covariance matrix with the i, j-th entry being Cov(xi, yj).

DISTRIBUTIONS

Uniform distribution with K outcomes (e.g., a fair K-sided die): P(A = ai) = 1/K, i = 1, . . . , K .

Bernoulli distribution on binary variable x ∈ {0, 1} (e.g., a biased coin with head probabil-
ity μ): P(x|μ) = μx(1 − μ)(1−x). The mean is E[x] = μ, and the variance is Var(x) = μ(1 − μ).

Binomial distribution: the probability of observing m heads in N trials of a μ-biased coin.

P(m|N, μ) =
(

N

m

)
μm(1 − μ)N−m, with

(
N

m

)
= N !

(N−m)!m! . E[m] = Nμ, Var(m) = Nμ(1 − μ).

Multinomial distribution: for a K-sided die with probability vector μ = (μ1, . . . , μK), the
probability of observing outcome counts m1, . . . , mK in N trials is P(m1, . . . , mK |μ, N) =(

N

m1 . . . mK

) ∏K
k=1 μ

mk

k .

Gaussian (Normal) distributions
univariate: p(x|μ, σ 2) = 1√

2πσ
exp

(
− (x−μ)2

2σ 2

)
, with mean μ, variance σ 2.

multivariate: p(x|μ, �) = 1

(2π)
D
2 |�| 1

2
exp

(
− 1

2 (x − μ)��−1(x − μ)
)

, where x and μ are D-

dimensional vectors, and � is a D × D covariance matrix.

LINEAR ALGEBRA

A scalar is a 1 × 1 matrix, a vector (default column vector) is an n × 1 matrix.

87

Matrix transpose:
(
A�)

ij
= Aji . (A + B)� = A� + B�.

Matrix multiplication: An (n × m) matrix A times an (m × p) matrix B produces an (n × p) matrix
C, with Cij = ∑m

k=1 AikBkj . (AB)C = A(BC),A(B + C) = AB + AC, (A + B)C = AC + BC,
(AB)� = B�A�. Note in general AB
= BA.

The following properties apply to square matrices.

Diagonal matrix: Aij = 0, ∀i
= j . The identity matrix I is diagonal with Iii = 1. AI = IA = A

for all square A.

Some square matrices have inverses: AA−1 = A−1A = I . (AB)−1 = B−1A−1. (A�)−1 = (A−1)�.

The trace is the sum of diagonal elements (or eigenvalues): Tr(A) = ∑
i Aii .

The determinant |A| is the product of eigenvalues. |AB| = |A||B|, |a| = a, |aA| = an|A|,
|A−1| = 1/|A|. A matrix A is invertible iff |A|
= 0.

If |A| = 0 for an n × n square matrix A, A is said to be singular. This means at least one
column is linearly dependent on (i.e., a linear combination of) other columns (same for rows). Once
all such linearly dependent columns and rows are removed, A is reduced to a smaller r × r matrix,
and r is called the rank of A.

An n × n matrix A has n eigenvalues λi and eigenvectors (up to scaling) ui , such that Aui = λiui .
In general, the λ’s are complex numbers. If A is real and symmetric, λ’s are real numbers, and u’s are
orthogonal. The u’s can be scaled to orthonormal, i.e., length one, so that u�

i uj = Iij . The spectral
decomposition is A = ∑

i λiuiu
�
i . For invertible A, A−1 = ∑

i
1
λi

uiu
�
i .

A real symmetric matrix A is positive semi-definite if its eigenvalues λi ≥ 0. An equivalent
condition is ∀x ∈ R

n, x�Ax ≥ 0. It is strictly positive definite if λi > 0 for all i.

A positive semi-definite matrix has rank r equal to the number of positive eigenvalues. The
remaining n − r eigenvalues are zero.

For a vector x ∈ R
n, we have

0-norm: ‖x‖0 = count of nonzero elements
1-norm: ‖x‖1 = ∑n

i=1 |xi |
2-norm (the Euclidean norm, the length, or just “the norm”): ‖x‖2 = (∑n

i=1 x2
i

)1/2

∞-norm: ‖x‖∞ = maxn
i=1 |xi |

88 APPENDIX A. BASIC MATHEMATICAL REFERENCE

CALCULUS
The derivative (slope of tangent line) of f at x is f ′(x) = df

dx
= limδ→0

f (x+δ)−f (x)
δ

.

The second derivative (curvature) of f at x is f ′′(x) = d2f

dx2 = df ′
dx

. For any constant c,
c′ = 0, (cx)′ = c, (xa)′ = axa−1, (log x)′ = 1/x, (ex)′ = ex , (f (x) + g(x))′ = f ′(x) + g′(x),
(f (x)g(x))′ = f ′(x)g(x) + f (x)g′(x).

The chain rule: df (y)
dx

= df (y)
dy

dy
dx

.

The partial derivative of multivariate function f (x1, . . . , xn) w.r.t. xi is ∂f
∂xi

=
limδ→0

f (x1...xi+δ...xn)−f (x1...xi ...xn)
δ

. The gradient at x = (x1, . . . , xn)
� is ∇f (x) =

(
∂f
∂x1

. . .
∂f
∂xn

)�
.

The gradient is a vector in the same space as x. It points to a “higher ground” in terms of f value.

The second derivatives of a multivariate function form an n × n Hessian matrix
∇2f (x) =

(
∂2f

∂xi∂xj

)
i,j=1...n

.

Sufficient condition for local optimality in unconstrained optimization: Any point x at which
∇f (x) = 0 and ∇2f (x) is positive definite is a local minimum.

A function f is convex if ∀x, y, ∀λ ∈ [0, 1], f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y).
Common convex functions: c, cx, (x − c)n if n is an even integer, |x|, 1/x, ex . If the Hessian matrix
exists, it is positive semi-definite.

If f is convex and differentiable, ∇f (x) = 0 if and only if x is a global minimum.

89

A P P E N D I X B

Semi-Supervised Learning
Software

This appendix contains an annotated list of software implementations of semi-supervised learning
algorithms available on the Web. The codes are organized by the type of semi-supervised models
used. We have tried our best to provide up-to-date author affiliations.

CLUSTER-BASED

Title: Low Density Separation
Authors: Olivier Chapelle (Yahoo! Research), Alexander Zien (Friedrich Miescher Laboratory of
the Max Planck Society)
URL: http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/lds/
Description: Matlab/C implementation of the low density separation algorithm. This algorithm
tries to place the decision boundary in regions of low density, similar to Transductive SVMs.
Related papers: [36]

Title: Semi-Supervised Clustering
Author: Sugato Basu (Google)
URL: http://www.cs.utexas.edu/users/ml/risc
Description: Code that performs metric pairwise constrained k-means clustering. Must-link and
cannot-link constraints specify requirements for how examples should be placed in clusters.
Related papers: [15, 16]

GRAPH-BASED

Title: Manifold Regularization
Author: Vikas Sindhwani (IBM T.J. Watson Research Center)
URLs: http://manifold.cs.uchicago.edu/manifold_regularization/software.html,
http://people.cs.uchicago.edu/˜vikass/manifoldregularization.html
Description: Matlab code that implements manifold regularization and contains several other
functions useful for different types of graph-based learning.

http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/lds/
http://www.cs.utexas.edu/users/ml/risc
http://manifold.cs.uchicago.edu/manifold_regularization/software.html
http://people.cs.uchicago.edu/~vikass/manifoldregularization.html

90 APPENDIX B. SEMI-SUPERVISED LEARNING SOFTWARE

Related papers: [17]

Title: Manifold Regularization Demo
Author: Mike Rainey (University of Chicago)
URL: http://people.cs.uchicago.edu/˜mrainey/jlapvis/JLapVis.html
Description: Graphical demonstration of manifold regularization on toy data sets. Allows users to
manipulate graph and regularization parameters to explore the algorithm in detail.
Related papers: [17]

Title: Similarity Graph Demo
Authors: Matthias Hein (Saarland University), Ulrike von Luxburg (Max Planck Institute for
Biological Cybernetics)
URL: http://www.ml.uni-saarland.de/GraphDemo/GraphDemo.html
Description: Matlab-based graphical user interface for exploring similarity graphs. These graphs
can be used for semi-supervised learning, spectral clustering, and other tasks. Also includes several
commonly used toy data sets.
Related papers: See references in Chapter 5.

Title: Maximum Variance Unfolding
Author: Kilian Q. Weinberger (Yahoo! Research)
URLs: http://www.weinbergerweb.net/Downloads/MVU.html,
http://www.weinbergerweb.net/Downloads/FastMVU.html
Description: Implements variations of the dimensionality reduction technique known as maximum
variance unfolding. This is a graph-based, spectral method that can use unlabeled data in a
preprocessing step for classification or other tasks.
Related papers: [148]

Title: SGTlight (Spectral Graph Transducer)
Author: Thorsten Joachims (Cornell University)
URL: http://sgt.joachims.org/
Description: Implements the spectral graph transducer, which is a transductive learning method
based on a combination of minimum cut problems and spectral graph theory.
Related papers: [90]

Title: SemiL
Authors: Te-Ming Huang (INRIX), Vojislav Kecman (University of Auckland)
URL: http://www.learning-from-data.com/te-ming/semil.htm
Description: Graph-based semi-supervised learning implementations optimized for large-scale
data problems. The code combines and extends the seminal works in graph-based learning.

http://people.cs.uchicago.edu/~mrainey/jlapvis/JLapVis.html
http://www.ml.uni-saarland.de/GraphDemo/GraphDemo.html
http://www.weinbergerweb.net/Downloads/MVU.html
http://www.weinbergerweb.net/Downloads/FastMVU.html
http://sgt.joachims.org/
http://www.learning-from-data.com/te-ming/semil.htm

91

Related papers: [198, 210, 86]

Title: Harmonic Function
Author: Xiaojin Zhu (University of Wisconsin-Madison)
URL: http://pages.cs.wisc.edu/˜jerryzhu/pub/harmonic_function.m
Description: Matlab implementation of the harmonic function formulation of graph-based
semi-supervised learning.
Related papers: [210]

Title: Active Semi-Supervised Learning
Author: Xiaojin Zhu (University of Wisconsin-Madison)
URL: http://www.cs.cmu.edu/˜zhuxj/pub/semisupervisedcode/active_learning/
Description: Implementation of semi-supervised learning combined with active learning. In active
learning, the algorithm chooses which examples to label in the hopes of reducing the overall amount
of data required for learning.
Related papers: [213]

Title: Nonparametric Transforms of Graph Kernels
Author: Xiaojin Zhu (University of Wisconsin-Madison)
URL: http://pages.cs.wisc.edu/˜jerryzhu/pub/nips04.tgz
Description: Implementation of an approach to building a kernel for semi-supervised learning. A
non-parametric kernel is derived from spectral properties of graphs of labeled and unlabeled data.
This formulation simplifies the optimization problem to be solved and can scale to large data sets.
Related papers: [211]

S3VMS

Title: SVMlight

Author: Thorsten Joachims (Cornell University)
URL: http://svmlight.joachims.org/
Description: General purpose support vector machine solver. Performs transductive classification
by iteratively refining predictions on unlabeled instances.
Related papers: [88, 89]

Title: SVMlin
Authors: Vikas Sindhwani (IBM T.J. Watson Research Center), S. Sathiya Keerthi (Yahoo!
Research)
URL: http://people.cs.uchicago.edu/˜vikass/svmlin.html

http://pages.cs.wisc.edu/~jerryzhu/pub/harmonic_function.m
http://www.cs.cmu.edu/~zhuxj/pub/semisupervisedcode/active_learning/
http://pages.cs.wisc.edu/~jerryzhu/pub/nips04.tgz
http://svmlight.joachims.org/
http://people.cs.uchicago.edu/~vikass/svmlin.html

92 APPENDIX B. SEMI-SUPERVISED LEARNING SOFTWARE

Description: Large-scale linear support vector machine package that can incorporate unlabeled
examples using two different techniques for solving the non-convex S3VM problem.
Related papers: [160, 156]

Title: UniverSVM
Author: Fabian Sinz (Max Planck Institute for Biological Cybernetics)
URL: http://www.kyb.tuebingen.mpg.de/bs/people/fabee/universvm.html
Description: Another large-scale support vector machine implementation. Performs transductive
classification using the Universum technique, trained with the concave-convex procedure (CCCP).
Related papers: [186]

OTHER MODELS

Title: Gaussian Process Learning
Author: Neil Lawrence (University of Manchester)
URL: http://www.cs.man.ac.uk/˜neill/ivmcpp/
Description: Implementation of semi-supervised learning with Gaussian processes.
Related papers: [106]

http://www.kyb.tuebingen.mpg.de/bs/people/fabee/universvm.html
http://www.cs.man.ac.uk/~neill/ivmcpp/

93

A P P E N D I X C

Symbols
Symbol Usage
δ confidence parameter in PAC model
ε error parameter in PAC model
λ weight
� complexity of hypothesis
� covariance matrix of a Gaussian distribution
θ model parameter
μ mean of a Gaussian distribution
� incompatibility between a function and an unlabeled instance
ξ SVM slack variable
A an algorithm
b SVM offset parameter
C number of classes
c loss function
D observed training data
D feature dimension; degree matrix
d distance
F hypothesis space
f predictor, hypothesis (classification or regression)
H hidden data
H entropy
k number of clusters, nearest neighbors, hypotheses
L normalized graph Laplacian
L unnormalized graph Laplacian
l number of labeled instances
N Gaussian distribution
n total number of instances, both labeled and unlabeled
p probability distribution
q auxiliary distribution for EM
� matrix transpose
u number of unlabeled instances
W, w graph edge weights
w SVM parameter vector
X instance domain

94 APPENDIX C. SYMBOLS

x instance
Y label domain
y label

95

Bibliography

[1] Steven Abney. Semisupervised Learning for Computational Linguistics. Chapman & Hall/CRC,
2007.

[2] Y. Altun, D. McAllester, and M. Belkin. Maximum margin semi-supervised learning for
structured variables. In Advances in Neural Information Processing Systems (NIPS) 18, 2005.

[3] Amazon Mechanical Turk. https://www.mturk.com/.

[4] Massih Amini, Francois Laviolette, and Nicolas Usunier. A transductive bound for the voted
classifier with an application to semi-supervised learning. In D. Koller, D. Schuurmans,
Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21. 2009.

[5] Rie Ando and Tong Zhang. A framework for learning predictive structures from multiple
tasks and unlabeled data. Journal of Machine Learning Research, 6:1817–1853, 2005.

[6] A. Argyriou. Efficient approximation methods for harmonic semi-supervised learning. Mas-
ter’s thesis, University College London, 2004.

[7] F. G. Ashby, S. Queller, and P. M. Berretty. On the dominance of unidimensional rules in
unsupervised categorization. Perception & Psychophysics, 61:1178–1199, 1999.

[8] A. Azran. The rendezvous algorithm: multiclass semi-supervised learning with Markov
random walks. In Zoubin Ghahramani, editor, Proceedings of the 24th Annual Inter-
national Conference on Machine Learning (ICML 2007), pages 49–56. Omnipress, 2007.
DOI: 10.1145/1273496

[9] Maria-Florina Balcan and Avrim Blum. A PAC-style model for learning from labeled and
unlabeled data. In COLT 2005, 2005. DOI: 10.1145/1273496

[10] Maria-Florina Balcan and Avrim Blum. An augmented pac model for semi-supervised
learning. In O. Chapelle, B. Schölkopf, and A. Zien, editors, Semi-Supervised Learning. MIT
Press, 2006.

[11] Maria-Florina Balcan, Avrim Blum, Patrick Pakyan Choi, John Lafferty, Brian Pantano,
Mugizi Robert Rwebangira, and Xiaojin Zhu. Person identification in webcam images: An
application of semi-supervised learning. In ICML 2005 Workshop on Learning with Partially
Classified Training Data, 2005.

http://dx.doi.org/10.1145/1273496
http://dx.doi.org/10.1007/b137542

96 BIBLIOGRAPHY

[12] Maria-Florina Balcan, Avrim Blum, and Ke Yang. Co-training and expansion: Towards
bridging theory and practice. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors,
Advances in Neural Information Processing Systems 17. MIT Press, Cambridge, MA, 2005.

[13] S. Baluja. Probabilistic modeling for face orientation discrimination: Learning from labeled
and unlabeled data. Neural Information Processing Systems, 1998.

[14] Peter L. Bartlett and Shahar Mendelson. Rademacher and Gaussian complexities: risk
bounds and structural results. Journal of Machine Learning Research, 3:463–482, 2002.
DOI: 10.1162/153244303321897690

[15] Sugato Basu, Mikhail Bilenko, Arindam Banerjee, and Raymond J. Mooney. Probabilistic
semi-supervised clustering with constraints. In O. Chapelle, B. Schölkopf, and A. Zien,
editors, Semi-Supervised Learning, pages 71–98. MIT Press, 2006.

[16] Sugato Basu, Ian Davidson, and Kiri Wagstaff, editors. Constrained Clustering: Advances in
Algorithms, Theory, and Applications. Chapman & Hall/CRC Press, 2008.

[17] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples. Journal of Machine Learning
Research, 7:2399–2434, November 2006.

[18] Kristin Bennett and Ayhan Demiriz. Semi-supervised support vector machines. Advances in
Neural Information Processing Systems, 11:368–374, 1999.

[19] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[20] A. Blum, J. Lafferty, M.R. Rwebangira, and R. Reddy. Semi-supervised learning using ran-
domized mincuts. In ICML-04, 21st International Conference on Machine Learning, 2004.
DOI: 10.1145/1015330.1015429

[21] Avrim Blum and Shuchi Chawla. Learning from labeled and unlabeled data using graph
mincuts. In Proc. 18th International Conf. on Machine Learning, 2001.

[22] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In
COLT: Proceedings of the Workshop on Computational Learning Theory, 1998.

[23] O. Bousquet, O. Chapelle, and M. Hein. Measure based regularization. In Advances in Neural
Information Processing Systems 16., 2004.

[24] Ulf Brefeld, Christoph Büscher, and Tobias Scheffer. Multiview discriminative sequential
learning. In European Conference on Machine Learning (ECML), 2005.

[25] Ulf Brefeld, Thomas Gaertner, Tobias Scheffer, and Stefan Wrobel. Efficient co-regularized
least squares regression. In ICML06, 23rd International Conference on Machine Learning,
Pittsburgh, USA, 2006.

http://dx.doi.org/10.1162/153244303321897690
http://dx.doi.org/10.1145/1015330.1015429

BIBLIOGRAPHY 97

[26] Ulf Brefeld and Tobias Scheffer. Semi-supervised learning for structured output variables. In
ICML06, 23rd International Conference on Machine Learning, Pittsburgh, USA, 2006.

[27] Christopher J.C. Burges and John C. Platt. Semi-supervised learning with conditional har-
monic mixing. In Olivier Chapelle, Bernard Schölkopf, and Alexander Zien, editors, Semi-
Supervised Learning. MIT Press, Cambridge, MA, 2005.

[28] Chris Callison-Burch, David Talbot, and Miles Osborne. Statistical machine transla-
tion with word- and sentence-aligned parallel corpora. In Proceedings of the ACL, 2004.
DOI: 10.3115/1218955.1218978

[29] Miguel A. Carreira-Perpinan and Richard S. Zemel. Proximity graphs for clustering and
manifold learning. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Advances in
Neural Information Processing Systems 17. MIT Press, Cambridge, MA, 2005.

[30] V. Castelli and T. Cover. The exponential value of labeled samples. Pattern Recognition Letters,
16(1):105–111, 1995. DOI: 10.1016/0167-8655(94)00074-D

[31] Rui Castro, Charles Kalish, Robert Nowak, Ruichen Qian, Timothy Rogers, and Xiaojin
Zhu. Human active learning. In Advances in Neural Information Processing Systems (NIPS) 22.
2008.

[32] Olivier Chapelle, Mingmin Chi, and Alexander Zien. A continuation method for semi-
supervised SVMs. In ICML06, 23rd International Conference on Machine Learning,Pittsburgh,
USA, 2006.

[33] Olivier Chapelle, Vikas Sindhwani, and S. Sathiya Keerthi. Branch and bound for semi-
supervised support vector machines. In Advances in Neural Information Processing Systems
(NIPS), 2006.

[34] Olivier Chapelle, Vikas Sindhwani, and Sathiya S. Keerthi. Optimization techniques for
semi-supervised support vector machines. Journal of Machine Learning Research, 9(Feb):203–
233, 2008.

[35] Olivier Chapelle, Jason Weston, and Bernhard Schölkopf. Cluster kernels for semi-supervised
learning. In Advances in Neural Information Processing Systems, 15, volume 15, 2002.

[36] Olivier Chapelle and Alexander Zien. Semi-supervised classification by low density separa-
tion. In Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics
(AISTAT 2005), 2005.

[37] Olivier Chapelle, Alexander Zien, and Bernhard Schölkopf, editors. Semi-supervised learning.
MIT Press, 2006.

http://dx.doi.org/10.3115/1218955.1218978
http://dx.doi.org/10.1016/0167-8655(94)00074-D

98 BIBLIOGRAPHY

[38] Nitesh V. Chawla and Grigoris Karakoulas. Learning from labeled and unlabeled data:
An empirical study across techniques and domains. Journal of Artificial Intelligence Research,
23:331–366, 2005.

[39] Ke Chen and Shihai Wang. Regularized boost for semi-supervised learning. In J.C. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems
20, pages 281–288. MIT Press, Cambridge, MA, 2008.

[40] W. Chu and Z. Ghahramani. Gaussian processes for ordinal regression. Technical report,
University College London, 2004.

[41] Michael Collins and Yoram Singer. Unsupervised models for named entity classification. In
EMNLP/VLC-99, 1999.

[42] Ronan Collobert, Jason Weston, and Leon Bottou. Trading convexity for scalability. In
ICML06, 23rd International Conference on Machine Learning, Pittsburgh, USA, 2006.

[43] A. Corduneanu and T. Jaakkola. Stable mixing of complete and incomplete information.
Technical Report AIM-2001-030, MIT AI Memo, 2001.

[44] A. Corduneanu and T. Jaakkola. On information regularization. In Nineteenth Conference on
Uncertainty in Artificial Intelligence (UAI03), 2003.

[45] Adrian Corduneanu and Tommi S. Jaakkola. Distributed information regularization on
graphs. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural
Information Processing Systems 17. MIT Press, Cambridge, MA, 2005.

[46] C. Cortes, M. Mohri, D. Pechyony, and A. Rastogi. Stability of transductive regression
algorithms. In Andrew McCallum and Sam Roweis, editors, Proceedings of the 25th Annual
International Conference on Machine Learning (ICML 2008), pages 176–183.Omnipress,2008.

[47] Corinna Cortes and Mehryar Mohri. On transductive regression. In Advances in Neural
Information Processing Systems (NIPS) 19, 2006.

[48] Fabio Cozman, Ira Cohen, and Marcelo Cirelo. Semi-supervised learning of mixture models.
In ICML-03, 20th International Conference on Machine Learning, 2003.

[49] Nello Cristianini and John Shawe-Taylor. An introduction to support vector machines and other
kernel-based learning methods. Cambridge University Press, 2000.

[50] Mark Culp and George Michailidis. An iterative algorithm for extending learners to a
semisupervised setting. In The 2007 Joint Statistical Meetings (JSM), 2007.

[51] G. Dai and D. Yeung. Kernel selection for semi-supervised kernel machines. In Zoubin
Ghahramani, editor, Proceedings of the 24th Annual International Conference on Machine Learn-
ing (ICML 2007), pages 185–192. Omnipress, 2007. DOI: 10.1145/1273496

http://dx.doi.org/10.1145/1273496

BIBLIOGRAPHY 99

[52] Rozita Dara, Stefan Kremer, and Deborah Stacey. Clsutering unlabeled data with SOMs
improves classification of labeled real-world data. In Proceedings of the World Congress on
Computational Intelligence (WCCI), 2002.

[53] Sanjoy Dasgupta, Michael L. Littman, and David McAllester. PAC generalization bounds
for co-training. In Advances in Neural Information Processing Systems (NIPS), 2001.

[54] T. De Bie and N. Cristianini. Semi-supervised learning using semi-definite programming.
In O. Chapelle, B. Schoëlkopf, and A. Zien, editors, Semi-supervised learning. MIT Press,
Cambridge-Massachussets, 2006.

[55] Tijl De Bie and Nello Cristianini. Convex methods for transduction. In Sebastian Thrun,
Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural Information Processing
Systems 16. MIT Press, Cambridge, MA, 2004.

[56] Virginia R. de Sa. Learning classification with unlabeled data. In Advances in Neural Infor-
mation Processing Systems (NIPS), 1993.

[57] Olivier Delalleau, Yoshua Bengio, and Nicolas Le Roux. Efficient non-parametric function
induction in semi-supervised learning. In Proceedings of the Tenth International Workshop on
Artificial Intelligence and Statistics (AISTAT 2005), 2005.

[58] Ayhan Demirez and Kristin Bennett. Optimization approaches to semisupervised learning.
In M. Ferris, O. Mangasarian, and J. Pang, editors, Applications and Algorithms of Complemen-
tarity. Kluwer Academic Publishers, Boston, 2000.

[59] Ayhan Demiriz, Kristin Bennett, and Mark Embrechts. Semi-supervised clustering using
genetic algorithms. Proceedings of Artificial Neural Networks in Engineering, November 1999.

[60] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society, Series B, 1977.

[61] Francois Denis, Remi Gilleron, and Marc Tommasi. Text classification from positive and
unlabeled examples. In The 9th International Conference on Information Processing and Man-
agement of Uncertainty in Knowledge-Based Systems(IPMU), 2002.

[62] Ran El-Yaniv and Leonid Gerzon. Effective transductive learning via ob-
jective model selection. Pattern Recognition Letters, 26(13):2104–2115, 2005.
DOI: 10.1016/j.patrec.2005.03.025

[63] Ran El-Yaniv, Dmitry Pechyony, and Vladimir Vapnik. Large margin vs.
large volume in transductive learning. Machine Learning, 72(3):173–188, 2008.
DOI: 10.1007/s10994-008-5071-9

http://dx.doi.org/10.1016/j.patrec.2005.03.025
http://dx.doi.org/10.1007/s10994-008-5071-9

100 BIBLIOGRAPHY

[64] David Elworthy. Does Baum-Welch re-estimation help taggers? In Proceedings of the 4th
Conference on Applied Natural Language Processing, 1994. DOI: 10.3115/974358.974371

[65] Jason D.R. Farquhar, David R. Hardoon, Hongying Meng, John Shawe-Taylor, and Sandor
Szedmak.Two view learning:SVM-2K,theory and practice. In Advances in Neural Information
Processing Systems (NIPS). 2006.

[66] Akinori Fujino, Naonori Ueda, and Kazumi Saito. A hybrid generative/discriminative ap-
proach to semi-supervised classifier design. In AAAI-05, The Twentieth National Conference
on Artificial Intelligence, 2005.

[67] Akinori Fujino, Naonori Ueda, and Kazumi Saito. Semisupervised learning for a
hybrid generative/discriminative classifier based on the maximum entropy principle.
IEEE Transaction on Pattern Analysis and Machine Intelligence, 30(3):424–437, 2008.
DOI: 10.1109/TPAMI.2007.70710

[68] Glenn Fung and Olvi Mangasarian. Semi-supervised support vector machines for unlabeled
data classification. Technical Report 99-05, Data Mining Institute, University of Wisconsin
Madison, October 1999.

[69] Jochen Garcke and Michael Griebel. Semi-supervised learning with sparse grids. In Proc. of
the 22nd ICML Workshop on Learning with Partially Classified Training Data, Bonn, Germany,
August 2005.

[70] Gad Getz,Noam Shental, and Eytan Domany. Semi-supervised learning – a statistical physics
approach. In Proc. of the 22nd ICML Workshop on Learning with Partially Classified Training
Data, Bonn, Germany, August 2005.

[71] J.J. Godfrey, E.C. Holliman, and J. McDaniel. Switchboard: telephone speech corpus for
research and development. Acoustics, Speech, and Signal Processing, 1992. ICASSP-92., 1992
IEEE International Conference on, 1:517–520 vol.1, March 1992.

[72] Andrew B. Goldberg, Ming Li, and Xiaojin Zhu. Online manifold regularization: A
new learning setting and empirical study. In The European Conference on Machine Learn-
ing and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2008.
DOI: 10.1007/978-3-540-87479-9_44

[73] Andrew B. Goldberg and Xiaojin Zhu. Seeing stars when there aren’t many stars: Graph-
based semi-supervised learning for sentiment categorization. In HLT-NAACL 2006 Workshop
on Textgraphs: Graph-based Algorithms for Natural Language Processing, New York, NY, 2006.

[74] Andrew B. Goldberg, Xiaojin Zhu, Aarti Singh, Zhiting Xu, and Robert Nowak. Multi-
manifold semi-supervised learning. In Twelfth International Conference on Artificial Intelligence
and Statistics (AISTATS), 2009.

http://dx.doi.org/10.3115/974358.974371
http://dx.doi.org/10.1109/TPAMI.2007.70710
http://dx.doi.org/10.1007/978-3-540-87479-9_44

BIBLIOGRAPHY 101

[75] Andrew B. Goldberg, Xiaojin Zhu, Aarti Singh, Zhiting Xu, and Robert Nowak. Multi-
manifold semi-supervised learning. In Twelfth International Conference on Artificial Intelligence
and Statistics (AISTATS), 2009.

[76] Andrew B. Goldberg, Xiaojin Zhu, and Stephen Wright. Dissimilarity in graph-based semi-
supervised classification. In Eleventh International Conference on Artificial Intelligence and
Statistics (AISTATS), 2007.

[77] Sally Goldman and Yan Zhou. Enhancing supervised learning with unlabeled data. In
Proc. 17th International Conf. on Machine Learning, pages 327–334. Morgan Kaufmann, San
Francisco, CA, 2000.

[78] Leo Grady and Gareth Funka-Lea. Multi-label image segmentation for medical applications
based on graph-theoretic electrical potentials. In ECCV 2004 workshop, 2004.

[79] Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization.
In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural Information
Processing Systems 17. MIT Press, Cambridge, MA, 2005.

[80] G.R. Haffari and A. Sarkar. Analysis of semi-supervised learning with the Yarowsky algo-
rithm. In 23rd Conference on Uncertainty in Artificial Intelligence (UAI), 2007.

[81] T. Hastie, R.Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, 2001.

[82] Matthias Hein, Jean-Yves Audibert, and Ulrike von Luxburg. Graph Laplacians and
their convergence on random neighborhood graphs. Journal of Machine Learning Research,
8(Jun):1325–1368, 2007.

[83] Matthias Hein and Markus Maier. Manifold denoising. In Advances in Neural Information
Processing Systems (NIPS) 19, 2006.

[84] Mark Herbster, Massimiliano Pontil, and Sergio Rojas Galeano. Fast prediction on a tree. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information
Processing Systems 21. 2009.

[85] Shen-Shyang Ho and Harry Wechsler. Query by transduction. IEEE Trans-
action on Pattern Analysis and Machine Intelligence, 30(9):1557–1571, 2008.
DOI: 10.1109/TPAMI.2007.70811

[86] Te-Ming Huang,Vojislav Kecman,and Ivica Kopriva. Kernel Based Algorithms for Mining Huge
Data Sets: Supervised, Semi-supervised, and Unsupervised Learning (Studies in Computational
Intelligence). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[87] T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy discrimination. Neural Information
Processing Systems, 12, 12, 1999.

http://dx.doi.org/10.1109/TPAMI.2007.70811

102 BIBLIOGRAPHY

[88] Thorsten Joachims. Making large-scale svm learning practical. In B. Schölkopf, C. Burges,
and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning. MIT Press, 1999.

[89] Thorsten Joachims. Transductive inference for text classification using support vector ma-
chines. In Proc. 16th International Conf. on Machine Learning, pages 200–209. Morgan Kauf-
mann, San Francisco, CA, 1999.

[90] Thorsten Joachims. Transductive learning via spectral graph partitioning. In Proceedings of
ICML-03, 20th International Conference on Machine Learning, 2003.

[91] Rie Johnson and Tong Zhang. On the effectiveness of laplacian normalization for graph
semi-supervised learning. Journal of Machine Learning Research, 8(Jul):1489–1517, 2007.

[92] Rie Johnson and Tong Zhang. Two-view feature generation model for semi-supervised
learning. In The 24th International Conference on Machine Learning, 2007.

[93] Rosie Jones. Learning to extract entities from labeled and unlabeled text. Technical Report
CMU-LTI-05-191, Carnegie Mellon University, 2005. Doctoral Dissertation.

[94] Matti Kaariainen. Generalization error bounds using unlabeled data. In COLT 2005, 2005.

[95] Ashish Kapoor, Yuan Qi, Hyungil Ahn, and Rosalind Picard. Hyperparameter and kernel
learning for graph based semi-supervised classification. In Advances in NIPS, 2005.

[96] M. Karlen, J. Weston, A. Erkan, and R. Collobert. Large scale manifold transduction. In
Andrew McCallum and Sam Roweis, editors, Proceedings of the 25th Annual International
Conference on Machine Learning (ICML 2008), pages 448–455. Omnipress, 2008.

[97] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning Theory.
MIT Press, 1994.

[98] C. Kemp, T.L. Griffiths, S. Stromsten, and J.B. Tenenbaum. Semi-supervised learning with
trees. In Advances in Neural Information Processing System 16, 2003.

[99] Dan Klein. Lagrange multipliers without permanent scarring, 2004.
http://www.cs.berkeley.edu/∼klein/papers/lagrange-multipliers.pdf.

[100] B. J. Knowlton and L. R. Squire. The learning of categories: Parallel brain sys-
tems for item memory and category knowledge. Science, 262:1747–1749, 1993.
DOI: 10.1126/science.8259522

[101] R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete input spaces. In
Proc. 19th International Conf. on Machine Learning, 2002.

http://dx.doi.org/10.1126/science.8259522

BIBLIOGRAPHY 103

[102] Balaji Krishnapuram, David Williams, Ya Xue, Alexander Hartemink, Lawrence Carin, and
Mario Figueiredo. On semi-supervised classification. In Lawrence K. Saul, Yair Weiss,
and Léon Bottou, editors, Advances in Neural Information Processing Systems 17. MIT Press,
Cambridge, MA, 2005.

[103] J. K. Kruschke. Bayesian approaches to associative learning: From passive to active learning.
Learning & Behavior, 36(3):210–226, 2008. DOI: 10.3758/LB.36.3.210

[104] John Lafferty, Xiaojin Zhu, and Yan Liu. Kernel conditional random fields: Representation
and clique selection. In The 21st International Conference on Machine Learning (ICML), 2004.
DOI: 10.1145/1015330.1015337

[105] Pat Langley. Intelligent behavior in humans and machines. Technical report, Computational
Learning Laboratory, CSLI, Stanford University, 2006.

[106] Neil D. Lawrence and Michael I. Jordan. Semi-supervised learning via Gaussian processes.
In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural Information
Processing Systems 17. MIT Press, Cambridge, MA, 2005.

[107] Guy Lebanon. Riemannian Geometry and Statistical Machine Learning. PhD thesis, Carnegie
Mellon University, 2005. CMU-LTI-05-189.

[108] Chi-Hoon Lee, Shaojun Wang, Feng Jiao, Dale Schuurmans, and Russell Greiner. Learning
to model spatial dependency: Semi-supervised discriminative random fields. In Advances in
Neural Information Processing Systems (NIPS) 19, 2006.

[109] Wee Sun Lee and Bing Liu. Learning with positive and unlabeled examples using weighted
logistic regression. In Proceedings of theTwentieth International Conference on Machine Learning
(ICML), 2003.

[110] Boaz Leskes. The value of agreement, a new boosting algorithm. In COLT 2005, 2005.
DOI: 10.1007/b137542

[111] A. Levin, D. Lischinski, and Y. Weiss. Colorization using optimization. In ACM Transactions
on Graphics, 2004. DOI: 10.1145/1015706.1015780

[112] Yuanqing Li and Cuntai Guan. Joint feature re-extraction and classification using an iterative
semi-supervised support vector machine algorithm. Machine Learning, 71(1):33–53, 2008.
DOI: 10.1007/s10994-007-5039-1

[113] Zhenguo Li, Jianzhuang Liu, and Xiaoou Tang. Pairwise constraint propagation by semidefi-
nite programming for semi-supervised classification. In Andrew McCallum and Sam Roweis,
editors, Proceedings of the 25th Annual International Conference on Machine Learning (ICML
2008). Omnipress, 2008.

http://dx.doi.org/10.3758/LB.36.3.210
http://dx.doi.org/10.1145/1015330.1015337
http://dx.doi.org/10.1007/b137542
http://dx.doi.org/10.1145/1015706.1015780
http://dx.doi.org/10.1007/s10994-007-5039-1

104 BIBLIOGRAPHY

[114] Bing Liu, Wee Sun Lee, Philip S Yu, and Xiaoli Li. Partially supervised classification of
text documents. In Proceedings of the Nineteenth International Conference on Machine Learning
(ICML), 2002.

[115] Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45:503–528, 1989. DOI: 10.1007/BF01589116

[116] Qiuhua Liu, Xuejun Liao, and Lawrence Carin. Semi-supervised multitask learning. In J.C.
Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing
Systems 20, pages 937–944. MIT Press, Cambridge, MA, 2008.

[117] N. Loeff, D. Forsyth, and D. Ramachandran. Manifoldboost: stagewise function approxima-
tion for fully-, semi- and un-supervised learning. In Andrew McCallum and Sam Roweis,
editors, Proceedings of the 25th Annual International Conference on Machine Learning (ICML
2008), pages 600–607. Omnipress, 2008.

[118] Qing Lu and Lise Getoor. Link-based classification using labeled and unlabeled data. In
ICML 2003 workshop on The Continuum from Labeled to Unlabeled Data in Machine Learning
and Data Mining, 2003.

[119] David J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge
University Press, 2003.

[120] Omid Madani, David M. Pennock, and Gary W. Flake. Co-validation: Using model dis-
agreement to validate classification algorithms. In Lawrence K. Saul, Yair Weiss, and Léon
Bottou, editors, Advances in Neural Information Processing Systems 17. MIT Press, Cambridge,
MA, 2005.

[121] Beatriz Maeireizo, Diane Litman, and Rebecca Hwa. Co-training for predicting emotions
with spoken dialogue data. In The Companion Proceedings of the 42nd Annual Meeting of the
Association for Computational Linguistics (ACL), 2004. DOI: 10.3115/1219044.1219072

[122] Maryam Mahdaviani and Tanzeem Choudhury. Fast and scalable training of semi-supervised
CRFs with application to activity recognition. In J.C.Platt,D.Koller,Y.Singer, and S.Roweis,
editors, Advances in Neural Information Processing Systems 20, pages 977–984. MIT Press,
Cambridge, MA, 2008.

[123] Maryam Mahdaviani, Nando de Freitas, Bob Fraser, and Firas Hamze. Fast computational
methods for visually guided robots. In The 2005 International Conference on Robotics and
Automation (ICRA), 2005.

[124] Gideon S. Mann and Andrew McCallum. Simple, robust, scalable semi-supervised learning
via expectation regularization. In The 24th International Conference on Machine Learning,
2007. DOI: 10.1145/1273496.1273571

http://dx.doi.org/10.1007/BF01589116
http://dx.doi.org/10.3115/1219044.1219072
http://dx.doi.org/10.1145/1273496.1273571

BIBLIOGRAPHY 105

[125] A. McCallum and K. Nigam. A comparison of event models for naive bayes text classification.
AAAI-98 Workshop on Learning for Text Categorization, 1998.

[126] Andrew K. McCallum and Kamal Nigam. Employing EM in pool-based active learning
for text classification. In Jude W. Shavlik, editor, Proceedings of ICML-98, 15th International
Conference on Machine Learning, pages 350–358, Madison, US, 1998. Morgan Kaufmann
Publishers, San Francisco, US.

[127] S. C. McKinley and R. M. Nosofsky. Selective attention and the formation of linear decision
boundaries. Journal of Experimental Psychology: Human Perception & Performance, 22(2):294–
317, 1996. DOI: 10.1037/0096-1523.22.2.294

[128] D. Miller and H. Uyar. A mixture of experts classifier with learning based on both labelled
and unlabelled data. In Advances in NIPS 9, pages 571–577, 1997.

[129] T. Mitchell. The role of unlabeled data in supervised learning. In Proceedings of the Sixth
International Colloquium on Cognitive Science, San Sebastian, Spain, 1999.

[130] Tom Mitchell. The discipline of machine learning. Technical Report CMU-ML-06-108,
Carnegie Mellon University, 2006.

[131] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[132] Ion Muslea, Steve Minton, and Craig Knoblock. Active + semi-supervised learning = robust
multi-view learning. In Proceedings of ICML-02, 19th International Conference on Machine
Learning, pages 435–442, 2002.

[133] Kamal Nigam. Using unlabeled data to improve text classification. Technical Report CMU-
CS-01-126, Carnegie Mellon University, 2001. Doctoral Dissertation.

[134] Kamal Nigam and Rayid Ghani. Analyzing the effectiveness and applicability of co-training.
In Ninth International Conference on Information and Knowledge Management, pages 86–93,
2000. DOI: 10.1145/354756.354805

[135] Kamal Nigam, Andrew Kachites McCallum, Sebastian Thrun, and Tom Mitchell. Text clas-
sification from labeled and unlabeled documents using EM. Machine Learning, 39(2/3):103–
134, 2000. DOI: 10.1023/A:1007692713085

[136] Zheng-Yu Niu, Dong-Hong Ji, and Chew-Lim Tan. Word sense disambiguation us-
ing label propagation based semi-supervised learning. In Proceedings of the ACL, 2005.
DOI: 10.3115/1219840.1219889

[137] R. M. Nosofsky. Attention, similarity, and the identification-categorization re-
lationship. Journal of Experimental Psychology: General, 115(1):39–57, 1986.
DOI: 10.1037/0096-3445.115.1.39

http://dx.doi.org/10.1037/0096-1523.22.2.294
http://dx.doi.org/10.1145/354756.354805
http://dx.doi.org/10.1023/A:1007692713085
http://dx.doi.org/10.3115/1219840.1219889
http://dx.doi.org/10.1037/0096-3445.115.1.39

106 BIBLIOGRAPHY

[138] Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts. In Proceedings of the Association for Computational
Linguistics, pages 271–278, 2004.

[139] Thanh Phong Pham, Hwee Tou Ng, and Wee Sun Lee. Word sense disambiguation with
semi-supervised learning. In AAAI-05, The Twentieth National Conference on Artificial Intel-
ligence, 2005.

[140] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y. Ng. Self-taught
learning: Transfer learning from unlabeled data. In The 24th International Conference on
Machine Learning, 2007.

[141] M. Ranzato and M. Szummer. Semi-supervised learning of compact document representa-
tions with deep networks. In Andrew McCallum and Sam Roweis, editors, Proceedings of
the 25th Annual International Conference on Machine Learning (ICML 2008), pages 792–799.
Omnipress, 2008.

[142] J. Ratsaby and S. Venkatesh. Learning from a mixture of labeled and unlabeled examples with
parametric side information. Proceedings of the Eighth Annual Conference on Computational
Learning Theory, pages 412–417, 1995. DOI: 10.1145/225298.225348

[143] Philippe Rigollet. Generalization error bounds in semi-supervised classification under the
cluster assumption. Journal of Machine Learning Research, 8(Jul):1369–1392, 2007.

[144] E. Riloff, J. Wiebe, and T. Wilson. Learning subjective nouns using extraction pattern boot-
strapping. In Proceedings of the Seventh Conference on Natural Language Learning (CoNLL-
2003), 2003. DOI: 10.3115/1119176.1119180

[145] Charles Rosenberg,Martial Hebert, and Henry Schneiderman. Semi-supervised self-training
of object detection models. In Seventh IEEE Workshop on Applications of Computer Vision,
January 2005. DOI: 10.1109/ACVMOT.2005.107

[146] Saharon Rosset, Ji Zhu, Hui Zou, and Trevor Hastie. A method for inferring label sampling
mechanisms in semi-supervised learning. In Lawrence K. Saul, Yair Weiss, and Léon Bottou,
editors, Advances in Neural Information Processing Systems 17. MIT Press, Cambridge, MA,
2005.

[147] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs, NJ, second edition, 2003.

[148] L. K. Saul, K. Q. Weinberger, J. H. Ham, F. Sha, and D. D. Lee. Spectral methods for
dimensionality reduction. In O. Chapelle B. Schoelkopf and A. Zien, editors, Semisupervised
Learning. MIT Press, 2006.

http://dx.doi.org/10.1145/225298.225348
http://dx.doi.org/10.3115/1119176.1119180
http://dx.doi.org/10.1109/ACVMOT.2005.107

BIBLIOGRAPHY 107

[149] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2002.

[150] Dale Schuurmans and Finnegan Southey. Metric-based methods for adaptive model selection
and regularization. Machine Learning, Special Issue on New Methods for Model Selection and
Model Combination, 48:51–84, 2001. DOI: 10.1023/A:1013947519741

[151] Matthias Seeger. Learning with labeled and unlabeled data. Technical report, University of
Edinburgh, 2001.

[152] B. Shahshahani and D. Landgrebe. The effect of unlabeled samples in reducing the small
sample size problem and mitigating the Hughes phenomenon. IEEE Trans. On Geoscience
and Remote Sensing, 32(5):1087–1095, September 1994. DOI: 10.1109/36.312897

[153] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

[154] V. Sindhwani and D. Rosenberg. An rkhs for multi-view learning and manifold co-
regularization. In Andrew McCallum and Sam Roweis, editors, Proceedings of the 25th Annual
International Conference on Machine Learning (ICML 2008), pages 976–983.Omnipress,2008.

[155] Vikas Sindhwani, Jianying Hu, and Aleksandra Mojsilovic. Regularized co-clustering with
dual supervision. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances
in Neural Information Processing Systems 21. 2009.

[156] Vikas Sindhwani and S. Sathiya Keerthi. Large scale semisupervised linear SVMs. In SIGIR
2006, 2006. DOI: 10.1145/1148170.1148253

[157] Vikas Sindhwani, Sathiya Keerthi, and Olivier Chapelle. Deterministic annealing for semi-
supervised kernel machines. In ICML06, 23rd International Conference on Machine Learning,
Pittsburgh, USA, 2006. DOI: 10.1145/1143844.1143950

[158] Vikas Sindhwani, Partha Niyogi, and Mikhail Belkin. Beyond the point cloud: from trans-
ductive to semi-supervised learning. In ICML05, 22nd International Conference on Machine
Learning, 2005. DOI: 10.1145/1102351.1102455

[159] Vikas Sindhwani, Partha Niyogi, and Mikhail Belkin. A co-regularized approach to semi-
supervised learning with multiple views. In Proc. of the 22nd ICML Workshop on Learning
with Multiple Views, August 2005.

[160] Vikas Sindhwani, Partha Niyogi, Mikhail Belkin, and Sathiya Keerthi. Linear manifold
regularization for large scale semi-supervised learning. In Proc. of the 22nd ICML Workshop
on Learning with Partially Classified Training Data, August 2005.

[161] Aarti Singh, Robert Nowak, and Xiaojin Zhu. Unlabeled data: Now it helps, now it doesn’t.
In Advances in Neural Information Processing Systems (NIPS) 22. 2008.

http://dx.doi.org/10.1023/A:1013947519741
http://dx.doi.org/10.1109/36.312897
http://dx.doi.org/10.1145/1148170.1148253
http://dx.doi.org/10.1145/1143844.1143950
http://dx.doi.org/10.1145/1102351.1102455

108 BIBLIOGRAPHY

[162] Kaushik Sinha and Mikhail Belkin. The value of labeled and unlabeled examples when the
model is imperfect. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in
Neural Information Processing Systems 20, pages 1361–1368. MIT Press, Cambridge, MA,
2008.

[163] A. Smola and R. Kondor. Kernels and regularization on graphs. In Conference on Learning
Theory, COLT/KW, 2003.

[164] N. Sokolovska, O. Cappé, and F. Yvon. The asymptotics of semi-supervised learning in dis-
criminative probabilistic models. In Andrew McCallum and Sam Roweis, editors, Proceedings
of the 25th Annual International Conference on Machine Learning (ICML 2008), pages 984–991.
Omnipress, 2008.

[165] StarDust@Home. http://stardustathome.ssl.berkeley.edu/.

[166] Sean B. Stromsten. Classification learning from both classified and unclassified examples. PhD
thesis, Stanford University, 2002.

[167] Arthur D. Szlam, Mauro Maggioni, and Ronald R. Coifman. Regularization on graphs with
function-adapted diffusion processes. Journal of Machine Learning Research, 9(Aug):1711–
1739, 2008.

[168] Martin Szummer and Tommi Jaakkola. Partially labeled classification with Markov random
walks. In Advances in Neural Information Processing Systems, 14, volume 14, 2001.

[169] Martin Szummer and Tommi Jaakkola. Information regularization with partially labeled
data. In Advances in Neural Information Processing Systems, 15, volume 15, 2002.

[170] BenTaskar,Carlos Guestrin, and Daphne Koller. Max-margin Markov networks. In NIPS’03,
2003.

[171] Wei Tong and Rong Jin. Semi-supervised learning by mixed label propagation. In Proceedings
of the Twenty-Second AAAI Conference on Artificial Intelligence (AAAI), 2007.

[172] I. Tsang and J. Kwok. Large-scale sparsified manifold regularization. In Advances in Neural
Information Processing Systems (NIPS) 19, 2006.

[173] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for struc-
tured and interdependent output variables. Journal of Machine Learning Research, 6:1453–
1484, 2005.

[174] Leslie Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984. DOI: 10.1145/1968.1972

http://dx.doi.org/10.1145/1968.1972

BIBLIOGRAPHY 109

[175] Katleen Vandist, Maarten De Schryver, and Yves Rosseel. Semisupervised category learning:
The impact of feedback in learning the information-integration task. Attention, Perception, &
Psychophysics, 71(2):328–341, 2009. DOI: 10.3758/APP.71.2.328

[176] Vladimir Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

[177] Luis von Ahn and Laura Dabbish. Labeling images with a computer game. In CHI ’04:
Proceedings of the SIGCHI conference on Human factors in computing systems, pages 319–326,
New York, NY, USA, 2004. ACM Press.

[178] U. von Luxburg, M. Belkin, and O. Bousquet. Consistency of spectral cluster-
ing. Technical Report TR-134, Max Planck Institute for Biological Cybernetics, 2004.
DOI: 10.1214/009053607000000640

[179] Fei Wang and Changshui Zhang. Label propagation through linear neighborhoods.
In ICML06, 23rd International Conference on Machine Learning, Pittsburgh, USA, 2006.
DOI: 10.1145/1143844.1143968

[180] H. Wang, S. Yan, T. Huang, J. Liu, and X. Tang. Transductive regression piloted by inter-
manifold relations. In Zoubin Ghahramani, editor, Proceedings of the 24th Annual Inter-
national Conference on Machine Learning (ICML 2007), pages 967–974. Omnipress, 2007.
DOI: 10.1145/1273496

[181] J. Wang, T. Jebara, and S. Chang. Graph transduction via alternating minimization. In
Andrew McCallum and Sam Roweis, editors, Proceedings of the 25th Annual International
Conference on Machine Learning (ICML 2008), pages 1144–1151. Omnipress, 2008.

[182] Junhui Wang and Xiaotong Shen. Large margin semi-supervised learning. Journal of Machine
Learning Reserach, 8:1867–1891, 2007.

[183] W. Wang and Z. Zhou. On multi-view active learning and the combination with semi-
supervised learning. In Andrew McCallum and Sam Roweis, editors, Proceedings of the 25th
Annual International Conference on Machine Learning (ICML 2008), pages 1152–1159. Om-
nipress, 2008.

[184] Larry Wasserman. All of Statistics: A Concise Course in Statistical Inference (Springer Texts in
Statistics). Springer, 2004.

[185] J. Weston, F. Ratle, and R. Collobert. Deep learning via semi-supervised embedding. In
Andrew McCallum and Sam Roweis, editors, Proceedings of the 25th Annual International
Conference on Machine Learning (ICML 2008), pages 1168–1175. Omnipress, 2008.

[186] Jason Weston, Ronan Collobert, Fabian Sinz, Leon Bottou, and Vladimir Vapnik. Infer-
ence with the universum. In ICML06, 23rd International Conference on Machine Learning,
Pittsburgh, USA, 2006. DOI: 10.1145/1143844.1143971

http://dx.doi.org/10.3758/APP.71.2.328
http://dx.doi.org/10.1214/009053607000000640
http://dx.doi.org/10.1145/1143844.1143968
http://dx.doi.org/10.1145/1273496
http://dx.doi.org/10.1145/1143844.1143971

110 BIBLIOGRAPHY

[187] Mingrui Wu and Bernhard Schölkopf. Transductive classification via local learning regular-
ization. In Eleventh International Conference on Artificial Intelligence and Statistics (AISTATS),
2007.

[188] Linli Xu and Dale Schuurmans. Unsupervised and semi-supervised multi-class support vector
machines. In AAAI-05, The Twentieth National Conference on Artificial Intelligence, 2005.

[189] Zenglin Xu, Rong Jin, Jianke Zhu, Irwin King, and Michael Lyu. Efficient convex relaxation
for transductive support vector machine. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis,
editors, Advances in Neural Information Processing Systems 20, pages 1641–1648. MIT Press,
Cambridge, MA, 2008.

[190] Liu Yang, Rong Jin, and Rahul Sukthankar. Semi-supervised learning with weakly-related
unlabeled data : Towards better text categorization. In D. Koller, D. Schuurmans, Y. Bengio,
and L. Bottou, editors, Advances in Neural Information Processing Systems 21. 2009.

[191] David Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In
Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics, pages
189–196, 1995. DOI: 10.3115/981658.981684

[192] Kai Yu, Shipeng Yu, and Volker Tresp. Blockwise supervised inference on large graphs. In
Proc. of the 22nd ICML Workshop on Learning with Partially Classified Training Data, Bonn,
Germany, August 2005.

[193] Shipeng Yu, Balaji Krishnapuram, Romer Rosales, Harald Steck, and R. Bharat Rao. Bayesian
co-training. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural
Information Processing Systems 20, pages 1665–1672. MIT Press, Cambridge, MA, 2008.

[194] S.R. Zaki and R.M. Nosofsky. A high-distortion enhancement effect in the prototype-
learning paradigm: Dramatic effects of category learning during test. Memory & Cognition,
35(8):2088–2096, 2007.

[195] Tong Zhang and Rie Ando. Analysis of spectral kernel design based semi-supervised learning.
In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing
Systems 18. MIT Press, Cambridge, MA, 2006.

[196] Xinhua Zhang and Wee Sun Lee. Hyperparameter learning for graph based semi-supervised
learning algorithms. In Advances in Neural Information Processing Systems (NIPS) 19, 2006.

[197] D. Zhou and C. Burges. Spectral clustering with multiple views. In Zoubin Ghahramani,
editor, Proceedings of the 24th Annual International Conference on Machine Learning (ICML
2007), pages 1159–1166. Omnipress, 2007. DOI: 10.1145/1273496

http://dx.doi.org/10.3115/981658.981684
http://dx.doi.org/10.1145/1273496

BIBLIOGRAPHY 111

[198] Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Schl̈kopf.
Learning with local and global consistency. In Advances in Neural Information Processing
System 16, 2004.

[199] Dengyong Zhou, Jiayuan Huang, and Bernhard Schoelkopf. Learning with hypergraphs:
Clustering, classification, and embedding. In Advances in Neural Information Processing Systems
(NIPS) 19, 2006.

[200] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning from labeled and un-
labeled data on a directed graph. In ICML05, 22nd International Conference on Machine
Learning, Bonn, Germany, 2005.

[201] Yan Zhou and Sally Goldman. Democratic co-learing. In Proceedings of the 16th
IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004), 2004.
DOI: 10.1109/ICTAI.2004.48

[202] Z.-H. Zhou, K.-J. Chen, and H.-B. Dai. Enhancing relevance feedback in image re-
trieval using unlabeled data. ACM Transactions on Information Systems, 24(2):219–244, 2006.
DOI: 10.1145/1148020.1148023

[203] Z.-H. Zhou, K.-J. Chen, and Y. Jiang. Exploiting unlabeled data in content-based image
retrieval. In Proceedings of ECML-04, 15th European Conference on Machine Learning, Italy,
2004. DOI: 10.1007/b100702

[204] Z.-H. Zhou, D.-C. Zhan, and Q. Yang. Semi-supervised learning with very few labeled
training examples. In Twenty-Second AAAI Conference on Artificial Intelligence (AAAI-07),
2007.

[205] Zhi-Hua Zhou and Ming Li. Semi-supervised regression with co-training. In International
Joint Conference on Artificial Intelligence (IJCAI), 2005.

[206] Zhi-Hua Zhou and Ming Li. Tri-training: exploiting unlabeled data using three classi-
fiers. IEEE Transactions on Knowledge and Data Engineering, 17(11):1529–1541, 2005.
DOI: 10.1109/TKDE.2005.186

[207] Zhi-Hua Zhou and Jun-Ming Xu. On the relation between multi-instance learning and
semi-supervised learning. In The 24th International Conference on Machine Learning, 2007.
DOI: 10.1145/1273496.1273643

[208] Xiaojin Zhu. Semi-supervised learning literature survey. Technical Report 1530, Department
of Computer Sciences, University of Wisconsin, Madison, 2005.

[209] Xiaojin Zhu and Zoubin Ghahramani. Towards semi-supervised classification with Markov
random fields. Technical Report CMU-CALD-02-106, Carnegie Mellon University, 2002.

http://dx.doi.org/10.1109/ICTAI.2004.48
http://dx.doi.org/10.1145/1148020.1148023
http://dx.doi.org/10.1007/b100702
http://dx.doi.org/10.1109/TKDE.2005.186
http://dx.doi.org/10.1145/1273496.1273643

112 BIBLIOGRAPHY

[210] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-supervised learning using Gaus-
sian fields and harmonic functions. In The 20th International Conference on Machine Learning
(ICML), 2003.

[211] Xiaojin Zhu,Jaz Kandola,Zoubin Ghahramani,and John Lafferty. Nonparametric transforms
of graph kernels for semi-supervised learning. In Lawrence K. Saul, Yair Weiss, and Léon
Bottou, editors, Advances in Neural Information Processing Systems (NIPS) 17. MIT Press,
Cambridge, MA, 2005.

[212] Xiaojin Zhu and John Lafferty. Harmonic mixtures: combining mixture models and graph-
based methods for inductive and scalable semi-supervised learning. In The 22nd International
Conference on Machine Learning (ICML).ACM Press,2005.DOI: 10.1145/1102351.1102484

[213] Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. Combining active learning and semi-
supervised learning using Gaussian fields and harmonic functions. In ICML 2003 workshop
on The Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining,
2003.

[214] Xiaojin Zhu, Timothy Rogers, Ruichen Qian, and Chuck Kalish. Humans perform semi-
supervised classification too. In Twenty-Second AAAI Conference on Artificial Intelligence
(AAAI-07), 2007.

[215] A. Zien, U. Brefeld, and T. Scheffer. Transductive support vector machines for struc-
tured variables. In Zoubin Ghahramani, editor, Proceedings of the 24th Annual Interna-
tional Conference on Machine Learning (ICML 2007), pages 1183–1190. Omnipress, 2007.
DOI: 10.1145/1273496

http://dx.doi.org/10.1145/1102351.1102484
http://dx.doi.org/10.1145/1273496

113

Biography

XIAOJIN ZHU
Xiaojin Zhu is an assistant professor in the Computer Sciences department at the University of
Wisconsin-Madison. His research interests include statistical machine learning and its applications
in cognitive psychology, natural language processing, and programming languages. Xiaojin received
his Ph.D. from the Language Technologies Institute at Carnegie Mellon University in 2005. He
worked on Mandarin speech recognition as a research staff member at IBM China Research Lab-
oratory in 1996-1998. He received M.S. and B.S. in computer science from Shanghai Jiao Tong
University in 1996 and 1993, respectively. His other interests include astronomy and geology.

ANDREW B. GOLDBERG
Andrew B. Goldberg is a Ph.D. candidate in the Computer Sciences department at the University
of Wisconsin-Madison. His research interests lie in statistical machine learning (in particular, semi-
supervised learning) and natural language processing. He has served on the program committee
for national and international conferences including AAAI, ACL, EMNLP, and NAACL-HLT.
Andrew was the recipient of a UW-Madison First-Year Graduate School Fellowship for 2005-2006
and a Yahoo! Key Technical Challenges Grant for 2008-2009. Before his graduate studies, Andrew
received a B.A. in computer science from Amherst College, where he graduated magna cum laude
with departmental distinction in 2003. He then spent two years writing, editing, and developing
teaching materials for introductory computer science and Web programming textbooks at Deitel
and Associates. During this time, he contributed to several Deitel books and co-authored the 3rd
edition of Internet & World Wide Web How to Program. In 2005, Andrew entered graduate school at
UW-Madison and, in 2006 received his M.S. in computer science. In his free time, Andrew enjoys
live music, cooking, photography, and travel.

115

Index

bag-of-words, 23
bandwidth, 44
Bayes error, 5
Bayes optimal predictor, 5
Bayes rule, 22

cannot-link, 9
class, 4
class conditional probability, 22
classification, 5
classifier, 5
cluster-then-label, 31
clustering, 2
Co-EM, 38
Co-Training, 37
cognitive science, 69
compatibility, 79
conditional independence, 37
constrained clustering, 9
context, 35
convex, 63

decision boundary, 7
dimensionality reduction, 2

eigenvalue, 51
eigenvector, 51
EM, 26
empirical risk, 39
entropy, 65, 75
entropy regularization, 63
entropy regularizer, 65

Euclidean distance, 3
Expectation Maximization, 26

feature, 2
vector, 2

Gaussian distribution, 23
Gaussian Mixture Model, 23
generalization, 5
generative model, 22
global optimum, 26, 30
GMM, 23

harmonic function, 47
hat loss, 61
Hidden Markov Model, 23
hidden variables, 26
hierarchical agglomerative clustering, 3
hinge loss, 60
HMM, 23

i.i.d., 2
identifiability, 30
induction, 5
inductive semi-supervised learning, 12
instance, 2

joint distribution, 23

k-nearest-neighbor,kNN, 6

label, 4
label propagation, 48
labeled data, 4

116 INDEX

Laplacian matrix
normalized, 50
unnormalized, 48

likelihood, 23
linearly separable, 58
local optima, 30
local optimum, 26
log likelihood, 23
logistic loss, 64
logistic regression, 63
loss, 22
loss function, 5, 39

manifold regularization, 50
marginal probability, 25
maximum likelihood estimate, 23
mincut, 45
MLE, 23
multinomial distribution, 23
Multinomial Mixture Model, 23
multiview learning, 40
must-link, 9

named entity, 35
novelty detection, 2

outlier, 17
overfit, 6, 39

PAC, 79, 81
parameter, 23
prior probability, 22

random restart, 30
RBF, 44
regression, 5

function, 5
regularization, 6
regularize, 39
regularized risk, 39

S3VM, 61
self-training, 15
semi-supervised classification, 9
semi-supervised learning, 9
semi-supervised logistic regression, 65
single linkage, 3
slack variables, 59
spectrum, 51
supervised learning, 4
SVM, 58

test sample, 6
error, 6

training sample, 2, 4
error, 5

transductive learning, 12
TSVM, 61

union bound, 80
unlabeled data, 4
unsupervised learning, 2

wrapper, 16

	Preface
	Introduction to Statistical Machine Learning
	The Data
	Unsupervised Learning
	Supervised Learning

	Overview of Semi-Supervised Learning
	Learning from Both Labeled and Unlabeled Data
	How is Semi-Supervised Learning Possible?
	Inductive vs. Transductive Semi-Supervised Learning
	Caveats
	Self-Training Models

	Mixture Models and EM
	Mixture Models for Supervised Classification
	Mixture Models for Semi-Supervised Classification
	Optimization with the EM Algorithm*
	The Assumptions of Mixture Models
	Other Issues in Generative Models
	Cluster-then-Label Methods

	Co-Training
	Two Views of an Instance
	Co-Training
	The Assumptions of Co-Training
	Multiview Learning*

	Graph-Based Semi-Supervised Learning
	Unlabeled Data as Stepping Stones
	The Graph
	Mincut
	Harmonic Function
	Manifold Regularization*
	The Assumption of Graph-Based Methods*

	Semi-Supervised Support Vector Machines
	Support Vector Machines
	Semi-Supervised Support Vector Machines*
	Entropy Regularization*
	The Assumption of S3VMs and Entropy Regularization

	Human Semi-Supervised Learning
	From Machine Learning to Cognitive Science
	Study One: Humans Learn from Unlabeled Test Data
	Study Two: Presence of Human Semi-Supervised Learning in a Simple Task
	Study Three: Absence of Human Semi-Supervised Learning
	 Study Three: Absence of Human Semi-Supervised Learning in a Complex Task
	Discussions

	Theory and Outlook
	A Simple PAC Bound for Supervised Learning*
	A Simple PAC Bound for Semi-Supervised Learning*
	Future Directions of Semi-Supervised Learning

	Basic Mathematical Reference
	Semi-Supervised Learning Software
	Symbols
	Biography
	Index

