
P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-FM MOBK015-Lynch.cls April 1, 2006 17:5

The Theory of
Timed I/O Automata

i

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-FM MOBK015-Lynch.cls April 1, 2006 17:5

Copyright © 2006 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations

in printed reviews, without the prior permission of the publisher.

The Theory of Timed I/O Automata

Dilsun K. Kaynar and Nancy Lynch, Roberto Segala and Frits Vaandrager

www.morganclaypool.com

159829010X paper Kaynar/Lynch/Segala/Vaandrager

1598290118 ebook Kaynar/Lynch/Segala/Vaandrager

DOI 10.2200/S00006ED1V01Y200508CSL001

A Publication in the Morgan & Claypool Publishers’ series

SYNTHESIS LECTURES ON COMPUTER SCIENCE

Lecture #1

First Edition

10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

ii

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-FM MOBK015-Lynch.cls April 1, 2006 17:5

The Theory of
Timed I/O Automata

Dilsun K. Kaynar and Nancy Lynch
MIT Computer Science and Artificial Intelligence Laboratory

Roberto Segala
Dipartimento di Informatica

Università di Verona

Frits Vaandrager
Institute for Computing and Information Sciences

Radboud University Nijmegen

SYNTHESIS LECTURES ON COMPUTER SCIENCE #1

M
&C

Morgan &Claypool Publishers

iii

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-FM MOBK015-Lynch.cls April 1, 2006 17:5

iv

ABSTRACT
This monograph presents the timed input/output automaton (TIOA) modeling framework, a basic

mathematical framework to support description and analysis of timed (computing) systems.

Timed systems are systems in which desirable correctness or performance properties of the

system depend on the timing of events, not just on the order of their occurrence. Timed systems

are employed in a wide range of domains including communications, embedded systems, real-

time operating systems, and automated control. Many applications involving timed systems

have strong safety, reliability, and predictability requirements, which makes it important to have

methods for systematic design of systems and rigorous analysis of timing-dependent behavior.

An important feature of the TIOA framework is its support for decomposing timed system

descriptions. In particular, the framework includes a notion of external behavior for a TIOA,

which captures its discrete interactions with its environment. The framework also defines what

it means for one TIOA to implement another, based on an inclusion relationship between their

external behavior sets, and defines notions of simulations, which provide sufficient conditions for

demonstrating implementation relationships. The framework includes a composition operation

for TIOAs, which respects external behavior, and a notion of receptiveness, which implies that

a TIOA does not block the passage of time.

KEYWORDS
Formal modeling and verification, I/O automata, Timed computing systems.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-FM MOBK015-Lynch.cls April 1, 2006 17:5

v

Contents

1. Introduction . 1

1.1 Overview . 1

1.2 Evolution of the TIOA Framework . 3

1.3 Related Work . 4

1.4 Organization of the Book . 6

2. Mathematical Preliminaries . 7

2.1 Functions and Relations . 7

2.2 Sequences . 8

2.3 Partial Orders . 8

2.4 A Basic Graph Lemma . 9

3. Describing Timed System Behavior . 11

3.1 Time. .11

3.2 Static and Dynamic Types . 11

3.3 Trajectories . 13

3.3.1 Basic Definitions . 13

3.3.2 Prefix Ordering . 14

3.3.3 Concatenation . 14

3.4 Hybrid Sequences . 15

3.4.1 Basic Definitions . 15

3.4.2 Prefix Ordering . 16

3.4.3 Concatenation . 17

3.4.4 Restriction . 17

4. Timed Automata . 19

4.1 Definition of Timed Automata . 19

4.2 Executions and Traces . 29

4.3 Special Kinds of Timed Automata . 34

4.3.1 Timed Automata with Finite Internal Nondeterminism 34

4.3.2 Feasible Timed Automata . 36

4.3.3 Timing-Independent Timed Automata . 36

4.4 Implementation Relationships . 36

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-FM MOBK015-Lynch.cls April 1, 2006 17:5

vi CONTENTS

4.5 Simulation Relations . 37

4.5.1 Forward Simulations . 37

4.5.2 Refinements . 42

4.5.3 Backward Simulations . 43

4.5.4 History Relations . 46

4.5.5 Prophecy Relations . 50

5. Operations on Timed Automata . 53

5.1 Composition .53

5.1.1 Definitions and Basic Results . 53

5.1.2 Substitutivity Results . 58

5.2 Hiding . 62

5.3 Extending Timed Automata with Bounds . 63

6. Timed I/O Automata . 73

6.1 Definition of Timed I/O Automata . 73

6.2 Executions and Traces . 74

6.3 Special Kinds of Timed I/O Automata . 74

6.3.1 Feasible and I/O Feasible TIOAs . 74

6.3.2 Progressive TIOAs . 75

6.3.3 Receptive Timed I/O Automata . 76

6.4 Implementation Relationships . 77

6.5 Simulation Relations . 77

7. Operations on Timed I/O Automata . 79

7.1 Composition .79

7.1.1 Definitions and Basic Results . 79

7.1.2 Substitutivity Results . 80

7.1.3 Composition of Special Kinds of TIOAs . 89

7.2 Hiding . 90

8. Conclusions and Future Work. .91

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-FM MOBK015-Lynch.cls April 1, 2006 17:5

vii

The Authors

DILSUN KAYNAR
Dilsun Kaynar is a Postdoctoral Research Associate in the Theory of Distributed Systems

Group at MIT’s Computer Science and Artificial Intelligence Laboratory. She received the

PhD degree from the University of Edinburgh at the Laboratory for Foundations of Computer

Science and the BSc degree in computer engineering from METU in Turkey. The broad area

of her research is the specification, programming, and verification of distributed computing

systems. Her PhD work focused on the design of functional programming languages that

support mobile computation. She investigated the application of type-based analysis in this

context, in particular to improve safety and security of systems. In her postdoctoral research

she has been working on the development of I/O automata-based formal modeling frameworks

for distributed systems, with collaborators including Nancy Lynch, Roberto Segala, and Frits

Vaandrager.

NANCY LYNCH
Nancy Lynch is a Professor in the Department of Electrical Engineering and Computer Science

at MIT and heads the Theory of Distributed Systems research group in MIT’s Computer

Science and Artificial Intelligence Laboratory. Prior to joining MIT in 1981, she served on

the faculty at Tufts University, the University of Southern California, Florida International

University, and Georgia Tech. She received the BS degree in mathematics from Brooklyn

College, and the PhD degree in mathematics from MIT. She has written numerous research

articles about distributed algorithms and impossibility results, and about formal modeling and

verification of distributed systems. Her notable research contributions include the well-known

“FLP” impossibility result for distributed consensus in the presence of process failures (with

Fischer and Paterson), the “DLS” algorithms for stabilizing fault-tolerant consensus

(with Dwork and Stockmeyer), and the I/O automata mathematical modeling frameworks

(with Tuttle, Vaandrager, Segala, and Kaynar). Prior to this monograph, she has written two

books: Atomic Transactions (with Merritt, Weihl, and Fekete) and Distributed Algorithms. She

is a member of the National Academy of Engineering and an ACM Fellow.

ROBERTO SEGALA
Roberto Segala is a Professor at the University of Verona, Italy, and heads the Formal Models

and Verification group at the Department of Computer Science. Prior to joining the University

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-FM MOBK015-Lynch.cls April 1, 2006 17:5

viii THE AUTHORS

of Verona in 2001, he was a Research Associate at the University of Bologna. He received

his Laurea in computer science from the University of Pisa as a student of the Scuola Normale

Superiore, and the Master’s and PhD degrees in computer science from MIT. As part of his PhD

work, he made contributions to the theory of liveness and receptiveness for real-time systems

and he designed the model of Probabilistic Automata for the formal analysis of randomized

distributed algorithms. After that, he worked with Lynch, Kaynar, Vaandrager, and others on

the hybrid extension of the I/O automata framework. He also worked on model checking of

probabilistic real-time systems, contributing to the design of some of the algorithms used in

the PRISM model checker. One of his long-term goals is to design a general mathematical

model that can be used for the description and analysis of systems that exhibit stochastic hybrid

behavior.

FRITS VAANDRAGER
Frits Vaandrager is a Professor at the Radboud University Nijmegen, the Netherlands, where

he heads the Informatics for Technical Applications Group at the Institute of Computing and

Information Sciences. Prior to joining the Radboud University in 1995, he was a group leader at

the CWI in Amsterdam and held postdoctoral positions at MIT in the group of Nancy Lynch

and in the group of Gérard Berry at the École Nationale Supérieure des Mines in Sophia-

Antipolis. He received the M.S. degree in mathematics from the University of Leiden, and the

PhD degree in computer science from the University of Amsterdam. As part of his PhD work,

he made major contributions to the general theory of structural operational semantics. After

that he worked with Lynch, Segala, Kaynar, and others on the theory and applications of the

I/O automata framework. He also has a strong interest in model checking techniques for timed

systems and coordinates a European project (AMETIST) in this area. One of his long-term

research objectives is to help to give the new discipline of (computer-based) system engineering a

sound mathematical basis.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-FM MOBK015-Lynch.cls April 1, 2006 17:5

ix

Acknowledgments

Dilsun Kaynar and Nancy Lynch were supported by DARPA/AFOSR MURI contract F49620-

02-1-0325, DARPA SEC contract F33615-01-C-1850, NSF ITR contract CCR-0121277,

and Air Force Aerospace Research-OSR contract F49620-00-1-0097. Frits Vaandrager was

supported by EU IST project IST-2001-35304 (Advanced Methods for Timed Systems,

AMETIST) and PROGRESS project TES4999 (Verification of Hard and Softly Timed

Systems, HaaST).

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-FM MOBK015-Lynch.cls April 1, 2006 17:5

x

Notations

a, b action

f, g , h function

i, j index

l locally controlled action

t time point

v, x variable

A set of actions

C task

E set of external actions

F set of functions

H set of internal (hidden) actions

I set of input actions

J interval

K set of time points

L set of locally controlled actions

O set of output actions

P set of elements in cpo

Q set of automaton states

R (simulation) relation

S set

T set of trajectories

V set of variables

X set of internal variables

x state

v valuation

A,B, C timed (I/O) automaton

D set of discrete transitions

T set of trajectories

N natural numbers

R real numbers

T time axis

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-FM MOBK015-Lynch.cls April 1, 2006 17:5

NOTATIONS xi

Z integers

V universe of variables

α, β, δ (A, V)-sequence

γ sequence

λ the empty sequence

π projection function

σ, ρ sequence

τ, υ trajectory

� set of start states

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-FM MOBK015-Lynch.cls April 1, 2006 17:5

xii

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-01 MOBK015-Lynch.cls April 1, 2006 16:58

1

C H A P T E R 1

Introduction

1.1 OVERVIEW
Timed computing systems are systems in which desirable correctness or performance proper-

ties of the system depend on the timing of events, not just on the order of their occurrence.

A typical timed system consists of computer components, which operate in discrete steps, and

timing-related components such as physical or logical clocks, whose behavior involve continu-

ous transformation over time. Timed systems are employed in a wide range of domains includ-

ing communications, embedded systems, real-time operating systems, and automated control.

Many applications involving timed systems have strong safety, reliability, and predictability re-

quirements, which makes it important to have methods for systematic design of systems and

rigorous analysis of timing-dependent behavior.

Modeling plays a key role in all stages in the design and analysis of systems. Models

represent system designs at a level of abstraction that is suitable for isolating and focusing

on their most crucial aspects. They can be modified and experimented with more easily than

real implementations. Moreover, if the modeling is performed using the concepts provided by

a formal framework, the modeling can be done more precisely, and analysis and verification

methods supported by that framework can be applied. Timed systems, which combine discrete

steps with continuous evolution of state over time, exhibit complex behaviors that are typically

hard to describe and analyze in the absence of a carefully developed modeling framework [1–3].

A modeling framework must support designing systems in structured ways, viewing them

at multiple levels of abstraction, and as compositions of interacting components. If a framework

is to provide flexibility and generality, it must also support nondeterminism. A system designer

might wish to allow several potential behaviors at certain points in the computation of a system,

for example, to avoid making assumptions about how the environment will behave, or to allow

several correct implementations for the same design. Such liberty in specification would not

be possible to accommodate without nondeterminism. In addition to supporting all of these

features, modeling frameworks for timed systems must provide mechanisms for representing

continuously evolving components such as clocks and timers.

An interesting complication that arises in modeling timed systems is that time can progress

in ways that conflict with our intuition about physical time. For example, we may force time

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-01 MOBK015-Lynch.cls April 1, 2006 16:58

2 THEORY OF TIMED I/O AUTOMATA

to stop entirely to “urge” some discrete action to happen, or schedule infinitely many discrete

actions to happen in a finite amount of time. A framework needs to provide concepts that

identify the conditions under which a timed system behaves according to our intuitions, that is,

the conditions under which time diverges as the system continues to run.

In this monograph, we introduce a basic mathematical framework—the timed input/output

automaton modeling framework—to support description and analysis of timed systems. In

this framework, a system is represented as a timed I/O automaton (TIOA), which is a kind of

nondeterministic, possibly infinite-state, state machine. The state of a TIOA is described by a

valuation of state variables that are internal to the automaton. The state of a TIOA can change

in two ways: instantaneously by the occurrence of a discrete transition, which is labeled by a

discrete action, or according a trajectory, which is a function that describes the evolution of the

state variables over intervals of time. Trajectories may be continuous or discontinuous functions.

The TIOA framework supports decomposition of system description and analysis. A

key to this decomposition is the rigorously defined notion of external behavior for timed I/O

automata. The external behavior of each TIOA is defined by a simple mathematical object called

a trace—essentially, a sequence of actions interspersed with time-passage steps. Abstraction and

parallel composition are other important notions for decomposition of system description and

analysis.

For abstraction, the framework includes notions of implementation and simulation, which

can be used to view timed systems at multiple levels of abstraction, starting from a high-level

version that describes required properties and ending with a low-level version that describes a

detailed design or implementation. In particular, the TIOA framework defines what it means

for one TIOA, A, to implement another TIOA, B, namely, any trace that can be exhibited by

A is also allowed by B. In this case, A might be more deterministic than B, in terms of either

discrete transitions or trajectories. For instance, B might be allowed to perform an output action

at an arbitrary time before noon, whereas A produces the same output sometime between 10

and 11 a.m. The notion of a simulation relation from A to B provides a sufficient condition for

demonstrating thatA implementsB. A simulation relation is defined to satisfy three conditions:

one relating start states, one relating discrete transitions, and one relating trajectories of A
and B.

For parallel composition, the framework provides a composition operation, by which TIOAs

modeling individual timed system components can be combined to produce a model for a

larger timed system. The model for the composed system can describe interactions among the

components, which involves joint participation in discrete transitions. Composition requires

certain “compatibility” conditions, namely, that each output action be controlled by at most

one automaton, and that internal actions of one automaton cannot be shared by any other

automaton. The composition operation respects traces, for example, if A1 implements A2,

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-01 MOBK015-Lynch.cls April 1, 2006 16:58

INTRODUCTION 3

then the composition of A1 and B implements the composition of A2 and B. Composition

also satisfies projection and pasting results, which are fundamental for compositional design

and verification of systems: a trace of a composition of TIOAs “projects” to give traces of the

individual TIOAs and traces of components are “pastable” to give behaviors of the composition.

If a TIOA approaches a finite point in time without quite reaching it, or by scheduling

infinitely many discrete actions to happen in a finite amount of time, it is said to exhibit

Zeno behavior, in reference to Zeno’s paradox [4]. The TIOA framework includes a notion of

receptiveness, which is used to classify automata that do not contribute to producing behavior

and which is preserved by composition. Receptiveness of a TIOA, A, in the TIOA framework

is defined in terms of the existence of a strategy, which is defined as a subautomaton of A that

chooses some of the evolutions from each state of A.

The TIOA framework presented in this work is purely mathematical. However, it con-

stitutes a natural basis for computer support tools, which are currently under development [5].

1.2 EVOLUTION OF THE TIOA FRAMEWORK
The TIOA modeling framework presented in this work has evolved from the hybrid input/output

automaton (HIOA) modeling framework for hybrid systems by Lynch et al. [6]. Our approach is

based on the assumption that a timed system can be viewed as a special kind of a hybrid system

where the continuous transformation is limited to internal system components that determine

the timing of events. Therefore, we define a TIOA as a restricted HIOA where the only essential

difference between an HIOA and a TIOA is that an HIOA may have external variables to model

the continuous information flowing into and out of the system, in addition to state variables. A

major consequence of this definition is that the communication between TIOAs is restricted to

shared-action communication only. The TIOA model does not impose any further restrictions

on the expressive power of the HIOA model.

We have undertaken the project of developing this new modeling framework even though

there are several timed automaton models that extend the basic I/O automaton model [7–10],

because we have observed that the new HIOA modeling framework offered a way of improving

and simplifying previous work on TIOA models [8–10]. For example, the use of trajectories as

first-class objects to represent the external behavior of a timed automaton, the definition of a

strategy as an automaton rather than a two-player game, and the variable structure on states are

all new features that were motivated by what we learned in developing the HIOA framework

and that gave rise to more elegant definitions and simpler proofs for timed automata.

We intend the TIOA model to serve as a general semantic framework in which previous

results for TIOA [7–10] and other related models [11–14] can be recast in a style that is

upwardly compatible with the new HIOA model. Limiting the communication to discrete

interactions is an apt choice since the previous TIOA automation models also adopt this type of

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-01 MOBK015-Lynch.cls April 1, 2006 16:58

4 THEORY OF TIMED I/O AUTOMATA

communication. On the other hand, by avoiding any further restrictions on the general hybrid

model, we obtain an expressive model suitable for specifying complex timing behavior. For

example, our model does not require variables to be either discrete or to evolve at the same

rate as real-time as in some other models [11, 13]. Consequently, algorithms such as clock

synchronization algorithms that use local clocks evolving at different and varying rates can be

formalized naturally in our framework.

The fact that HIOAs subsume TIOAs as a special class does not eliminate the need for

having a separate modeling, framework for timed systems. First, having no external variables in

the TIOA model gives rise to considerable simplifications in the theory. For example, proving

that the composition of two timed automata is a well-defined automaton becomes simpler in

the absence of external variables; no extra compatibility conditions as in the general HIOA

framework are needed to obtain the desirable composition theorems for TIOAs.

Second, we believe that focusing on the TIOA model presented in this monograph is

compatible with our long-term goal of developing a unified I/O automaton model that can

address timing-dependent, probabilistic, and general hybrid behavior in a common framework.

We are planning to start out with a probabilistic model with discrete interactions only, and

then extend the model to handle timing-dependent behavior, and only at later stages consider

continuous interactions. It would be harder to integrate probabilistic mechanisms into the full

hybrid model than it would be to integrate them into the TIOA model presented here.

1.3 RELATED WORK
There are several formalisms and tools for timed systems that are based on automata and state

transition models. In this section, we briefly introduce those lines of work that we think are

most closely related to ours. Note that we do not focus on the toolsets and their capabilities,

but rather on the underlying formal models and languages.

One of the widely used formal frameworks for timed systems is that of Alur–Dill timed

automata [11, 15]. An Alur–Dill automaton is a finite directed multigraph augmented with a

finite set of clock variables. The semantics of such a timed automaton are defined as a state

transition system in which each state consists of a location and a clock valuation. Clocks are

assumed to change with the same rate as real-time, that is, with rate 1. Timed automata accept

timed languages consisting of sequences of events tagged with their occurrence times. Deci-

sion problems such as universality and language inclusion are undecidable for timed automata.

Recently, a version of timed automata called perturbed automata has been presented [16]. The

clocks in perturbed timed automata can change at a rate within the interval [1 − ε, 1 + ε],

where ε is a given perturbation error. It has been shown that the language inclusion problem

is decidable for systems modeled as products of perturbed automata each of which has a single

clock.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-01 MOBK015-Lynch.cls April 1, 2006 16:58

INTRODUCTION 5

The aim of facilitating automated verification seems to have motivated the restrictions

on the expressive power of the model. The timed automaton model presented in this work is

more expressive than the model of Alur–Dill automata. In our model, there are no finiteness

assumptions and no restrictions imposed on the dynamic types of variables. Alur–Dill timed

automata have been extensively studied with a formal language theoretic-view [17]. Our focus,

on the other hand, has been to develop a general formal framework with a well-defined notion of

external behavior, parallel composition, and abstraction that supports reasoning with simulation

relations.

Uppaal [13,18] is a widely used modeling and verification tool for timed systems. It sup-

ports the description of systems as a network of Alur–Dill timed automata and enhances that

model with CCS-style communication [19] along with other notions such as committed and

urgent locations. Uppaal also supports (synchronous) broadcast communication and communi-

cation via shared variables. Uppaal has a sophisticated model-checker that explores the whole

state space of the modeled system to verify timing properties. Therefore, finiteness assumptions

are built into the model to make such verification possible and the operations on clocks are

restricted. Uppaal can be used as a model-checker for restricted TIOAs. We have done some

preliminary work in this direction [20].

It would be interesting to work on formal semantics for Uppaal based on some variation

of our restricted HIOA model. There are several small mismatches due to the style of com-

munication and notions such as committed locations. It remains to be seen to what extent we

can use the communication mechanisms of our automata to model these formally. We could,

for example, allow a nonempty set of external variables with restricted dynamic types and seek

restrictions on the use of shared variables in Uppaal, which would allow us to view these variables

as external variables in the HIOA sense.

Kronos [21, 22] is another verification tool for timed systems that uses Alur–Dill au-

tomata. This tool requires systems to be represented as timed automata and the correctness

conditions to be expressed in the real-time temporal logic TCTL [23]. Kronos, as Uppaal,

can perform model-checking using a symbolic representation of the infinite state space by sets

of linear constraints. Kronos can model check full TCTL and implements the symbolic algo-

rithm developed by [24]. It would be possible to use Kronos as a model-checker for restricted

TIOAs.

The IF notation, which is the intermediate representation used in the IF toolset [25], is

based on Alur–Dill automata extended with discrete data variables, communication primitives,

dynamic process creation, and destruction. This notation has been designed such that it can serve

as a target for the translation of higher level modeling languages, such as real-time extensions

of SDL and UML. The support for dynamic process creation and destruction appears to be a

distinguishing feature of the IF notation.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-01 MOBK015-Lynch.cls April 1, 2006 16:58

6 THEORY OF TIMED I/O AUTOMATA

A slight generalization of Alur–Dill timed automata are the linear hybrid automata of [26].

In this model, apart from clocks that progress with rate 1, one can also use continuous variables

whose derivatives are contained in some arbitrary interval. A well-known model checking tool

for linear hybrid automata is HyTech [27], which uses symbolic manipulation techniques as in

Uppaal and Kronos. The input language of HyTech can be translated into our TIOA model,

to apply TIOA verification methods. Likewise, TIOAs whose continuous variables conform

to the linearity conditions of HyTech could be verified using model-checking capabilities of

HyTech.

The TIOA modeling framework presented in this monograph can be used to express

models that use lower and upper time bounds on tasks or actions [7, 12]. Our framework

includes an operation for adding time bounds on a subset of the actions of a timed automaton.

As a result of this operation, lower bounds are transformed to appropriate preconditions for

transitions and upper bounds are transformed to stopping conditions for trajectories.

An interesting timed automaton model called “Clock GTA” has been introduced in [14].

The model was used for describing algorithms that behave in accordance with their timing

constraints in certain intervals but may exhibit timing failures for some other intervals. The

possibility of expressing such an ability turns out to be crucial for performance and fault-

tolerance analysis for practical algorithms [14, 28]. We are interested in finding a systematic

way of describing such behavior with our new TIOA model.

1.4 ORGANIZATION OF THE BOOK
The rest of this book is organized as follows. Chapter 2 contains mathematical preliminaries.

Chapter 3 defines notions that are useful for describing the behavior of timed systems, most

importantly, trajectories and timed sequences. Chapter 4 defines timed automata (TAs), which

contain all of the structure of TIOAs except for the classification of external actions as inputs

or outputs. It also defines external behavior for TAs and implementation and simulation rela-

tionships between TAs. Chapter 5 presents composition and hiding operations for TAs, along

with operations for adding bounds that relate TAs to other timed automaton models. Chapter 6

defines TIOAs by adding an input/output classification to TAs and extends the theory of TAs

to TIOAs. It also defines special kinds of TIOAs such as progressive and receptive TIOAs.

Chapter 7 presents compositionality results for TIOAs in general, and for the special classes of

progressive and receptive TIOAs. Finally, Chapter 8 presents some conclusions and discusses

future work. Examples are included throughout.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-02 MOBK015-Lynch.cls April 1, 2006 16:59

7

C H A P T E R 2

Mathematical Preliminaries

In this chapter, we present the basic mathematical definitions and notation that will be used

as a foundation for our definitions of timed automata and TIOA. These definitions involve

functions, sequences, partial orders, and untimed automata.

2.1 FUNCTIONS AND RELATIONS
If f is a function, then we denote the domain and range of f by dom(f) and range(f),

respectively. If S is a set, then we write f � S for the restriction of f to S, that is, the function

g with dom(g) = dom(f) ∩ S such that g (c) = f (c) for each c ∈ dom(g).

We say that two functions f and g are compatible if f � dom(g) = g � dom(f). If f and

g are compatible functions, then we write f ∪ g for the unique function h with dom(h) =
dom(f) ∪ dom(g) satisfying the condition: for each c ∈ dom(h), if c ∈ dom(f) then h(c) =
f (c) and if c ∈ dom(g) then h(c) = g (c). More generally, if F is a set of pairwise compatible

functions, then we write
⋃

F for the unique function h with dom(h) = ⋃{dom(f) | f ∈ F}
satisfying the condition: for each f ∈ F and c ∈ dom(f), h(c) = f (c).

If f is a function whose range is a set of functions and S is a set, then we write f ↓ S

for the function g with dom(g) = dom(f) such that g (c) = f (c) � S for each c ∈ dom(g).

The restriction operation ↓ is extended to sets of functions by pointwise extension. Also, if

f is a function whose range is a set of functions, all of which have a particular element d

in their domain, then we write f ↓ d for the function g with dom(g) = dom(f) such that

g (c) = f (c)(d) for each c ∈ dom(g).

We say that two functions f and g whose ranges are sets of functions are pointwise

compatible if for each c ∈ dom(f) ∩ dom(g), f (c) and g (c) are compatible. If f and g have

the same domain and are pointwise compatible, then we denote by f ∪̇ g the function h with

dom(h) = dom(f) such that h(c) = f (c) ∪ g (c) for each c .

A relation over sets X and Y is defined to be any subset of X × Y . If R is a relation, then

we denote the domain and range of R by dom(R) and range(R), respectively. A relation over

X and Y is total over X if dom(R) = X. If R is a relation over X and Y , and x ∈ X, we define

R(x) = {y ∈ Y | (x, y) ∈ R}. We say that a relation R over X and Y is image-finite if for each

x ∈ X, R(x) is finite.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-02 MOBK015-Lynch.cls April 1, 2006 16:59

8 THEORY OF TIMED I/O AUTOMATA

2.2 SEQUENCES
Let S be any set. A sequence σ over S is a function from a downward-closed subset of Z>0

to S. Thus, the domain of a sequence is either the set of all positive integers, or is of the

form {1, . . . , k} for some k. In the first case we say that the sequence is infinite, and in the

second case it is finite. We use |σ | to denote the cardinality of dom(σ). The sets of finite

and infinite sequences over S are denoted by S∗ and Sω, respectively. Concatenation of a fi-

nite sequence ρ with a finite or infinite sequence σ is denoted by ρ � σ . The empty sequence,

that is, the sequence with the empty domain is denoted by λ. The sequence containing one

element c ∈ S is abbreviated as c . We say that a sequence σ is a prefix of a sequence ρ, de-

noted by σ ≤ ρ, if σ = ρ � dom(σ). Thus, σ ≤ ρ if either σ = ρ or σ is finite and ρ = σ � σ ′

for some sequence σ ′. If σ is a nonempty sequence, then head (σ) denotes the first element

of σ and tail (σ) denotes σ with its first element removed. Moreover, if σ is finite, then

last(σ) denotes the last element of σ and init(σ) denotes σ with its last element removed.

Let σ and σ ′ be sequences over S. Then σ ′ is a subsequence of σ provided that there ex-

ists a monotone increasing function f : dom(σ ′) → dom(σ) such that σ ′(i) = σ (f (i)) and

f (i + 1) = f (i) + 1 for all i ∈ dom(σ ′). If 1 ≤ j1 ≤ j2 ≤ |σ |, then we define σ (j1, . . . , j2) to

be the subsequence of σ obtained by extracting the elements in positions j1, . . . , j2; that is, σ ′ is

the subsequence obtained from function f of length j2 − j1 + 1, where f (i) = i + j1 − 1 for all

i ∈ dom(σ ′).

2.3 PARTIAL ORDERS
We recall some basic definitions and results regarding partial orders and, in particular, complete

partial orders (cpos) from [29, 30]. A partial order is a set S together with a binary relation �
that is reflexive, antisymmetric, and transitive. In the sequel, we usually denote posets by the

set S without explicit mention to the binary relation �.

A subset P ⊆ S is bounded (above) if there is a c ∈ S such that d � c for each d ∈ P ; in

this case, c is an upper bound for P . A least upper bound (lub) for a subset P ⊆ S is an upper

bound c for P such that c ≤ d for every upper bound d for P . If P has a lub, then it is necessarily

unique, and we denote it by
⊔

P . A subset P ⊆ S is directed if every finite subset Q of P has

an upper bound in P . A poset S is complete, and hence is a complete partial order (cpo) if every

directed subset P of S has a lub in S.

We say that P ′ ⊆ S dominates P ⊆ S, denoted by P � P ′, if for every c ∈ P there is

some c ′ ∈ P ′ such that c � c ′. We use the following two simple lemmas, adapted from [30],

Lemmas 3.1.1 and 3.1.2].

Lemma 2.1 If P, P ′ are directed subsets of a cpo S and P � P ′, then
⊔

P � ⊔
P ′.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-02 MOBK015-Lynch.cls April 1, 2006 16:59

MATHEMATICAL PRELIMINARIES 9

Lemma 2.2 Let P = {c i j | i ∈ I, j ∈ J } be a doubly indexed subset of a cpo S. Let Pi denote the

set {c i j | j ∈ J } for each i ∈ I . Suppose

1. P is directed,

2. each Pi is directed with lub c i , and

3. the set {c i | i ∈ I} is directed.

Then
P =
{c i | i ∈ I}.
A finite or infinite sequence of elements, c 0 c 1 c 2 · · · , of a partially ordered set (S, �) is

called a chain if c i � c i+1 for each nonfinal index i . We define the limit of the chain, limi→∞ c i ,

to be the lub of the set {c 0, c 1, c 2, . . .} if S contains such a bound; otherwise, the limit is

undefined. Since a chain is a special case of a directed set, each chain of a cpo has a limit.

A function f : S → S′ between posets S and S′ is monotone if f (c) � f (d) whenever

c � d . If f is monotone and P is a directed set, then the set f (P) = { f (c) | c ∈ P} is directed

as well. If f is monotone and f (
⊔

P) = ⊔
f (P) for every directed P , then f is said to be

continuous.

An element c of a cpo S is compact if, for every directed set P such that c � ⊔
P , there

is some d ∈ P such that c � d . We define K (S) to be the set of compact elements of S. A cpo

S is algebraic if every c ∈ S is the lub of the set {d ∈ K (S) | d � c }. A simple example of an

algebraic cpo is the set of finite or infinite sequences over some given domain, equipped with

the prefix ordering. Here the compact elements are the finite sequences.

2.4 A BASIC GRAPH LEMMA
We require the following lemma, a slight generalization of König’s Lemma [31]. If G is a

directed graph, then a root of G is defined to be a node with no incoming edges.

Lemma 2.3 Let G be an infinite directed graph that satisfies the following properties:

1. G has finitely many roots.

2. Each node of G has finite outdegree.

3. Each node of G is reachable from some root of G.

Then, there is an infinite path in G starting from some root.

Proof: An extension of the usual proof of König’s Lemma [31]. �

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-02 MOBK015-Lynch.cls April 1, 2006 16:59

10

P1: JYS

MOBK015-03 MOBK015-Lynch.cls April 1, 2006 17:0

11

C H A P T E R 3

Describing Timed System Behavior

In this chapter, we present the basic definitions that are useful for describing discrete and

continuous changes to the system’s state. The key notions are static and dynamic types for

variables, trajectories, and hybrid sequences. Most of the material in this chapter comes from the

paper on the HIOA modeling framework [6]. The reader may refer [6] for the proofs that are

not included here.

3.1 TIME
Throughout this chapter, we fix a time axis T, which is a subgroup of (R, +), the real numbers

with addition. We assume that every infinite, monotone, bounded sequence of elements of T

has a limit in T. The reader may find it convenient to think of T as the set R of real numbers,

but the set Z of integers and the singleton set {0} are also examples of allowed time axes. We

define T≥0 �= {t ∈ T | t ≥ 0}.
An interval J is a nonempty, convex subset of T. We denote intervals as usual: [t1, t2] =

{t ∈ T | t1 ≤ t ≤ t2}, [t1, t2) = {t ∈ T | t1 ≤ t < t2}, etc. An interval J is left-closed (right-closed)

if it has a minimum (resp., maximum) element and is left-open (right-open) otherwise. It is closed

if it is both left-closed and right-closed. We write min(J) and max(J) for the minimum and

maximum elements, respectively, of an interval J (if they exist), and inf(J) and sup(J) for the

infimum and supremum, respectively, of J in R ∪ {−∞, ∞}. For K ⊆ T and t ∈ T, we define

K + t
�= {t ′ + t | t ′ ∈ K }. Similarly, for a function f with domain K , we define f + t to be

the function with domain K + t satisfying, for each t′ ∈ K + t, (f + t) (t ′) = f (t ′ − t).

In some definitions and theorems in this chapter when we use R as the time domain we

assume that the relation ≤ on R extends to a relation on R ∪ {∞} such that ∞ ≤ ∞ and for

all t ∈ R, t < ∞.

3.2 STATIC AND DYNAMIC TYPES
We assume a universal set V of variables. A variable represents a location within the state of a

system. For each variable v, we assume both a (static) type, which gives the set of values it may

P1: JYS

MOBK015-03 MOBK015-Lynch.cls April 1, 2006 17:0

12 THEORY OF TIMED I/O AUTOMATA

take on, and a dynamic type, which gives the set of trajectories it may follow. Formally, for each

variable v we assume the following:

1. type(v), the (static) type of v. This is a nonempty set of values.

2. dtype(v), the dynamic type of v. This is a set of functions from left-closed intervals of

T to type(v) that satisfies the following properties.

a) Closure under time shift : For each f ∈ dtype(v) and t ∈ T, f + t ∈ dtype(v).

b) Closure under subinterval : For each f ∈ dtype(v) and each left-closed interval J ⊆
dom(f), f 	 J ∈ dtype(v).

c) Closure under pasting : Let f0 f1 f2 · · · be a sequence of functions in dtype(v)

such that, for each nonfinal index i , dom(fi) is right-closed and max(dom(fi)) =
min(dom(fi+1)). Then the function f defined by f (t)

�= fi (t), where i is the small-

est index such that t ∈ dom(fi), is in dtype(v).

Example 3.1 (Discrete variables). Let v be any variable and let Constant be the set of constant

functions from a left-closed interval of T to type(v). Then Constant is closed under time shift

and subinterval. If the dynamic type of v is obtained by closing Constant under the pasting

operation, then v is called a discrete variable. This is essentially the same as the definition of a

discrete variable in [12].

Example 3.2 (Analog variables). Assume that T = R. Let v be any variable whose static type

is an interval of R and Continuous be the set of continuous functions from a left-closed interval

of T to type(v). Then Continuous is closed under time shift and subinterval. If the dynamic

type of v is obtained by closing Continuous under the pasting operation, then v is called an

analog variable. Fig. 3.1 shows an example of a function f in the dynamic type of an analog

0 4

FIGURE 3.1: Example of a function in the dynamic type of an analog variable.

P1: JYS

MOBK015-03 MOBK015-Lynch.cls April 1, 2006 17:0

DESCRIBING TIMED SYSTEM BEHAVIOR 13

variable. Function f is defined on the interval [0, 4) and is obtained by pasting together four

pieces. At the boundary points between these pieces, f takes the value specified by the leftmost

piece, which makes f continuous from the left. Note that f is undefined at time 4.

Example 3.3 (Standard real-valued function classes). If we take T = R and type(v) = R,

then other examples of dynamic types can be obtained by taking the pasting closure of standard

function classes from real analysis, the set of differentiable functions, the set of functions that are

differentiable k times (for any k), the set of smooth functions, the set of integrable functions, the

set of Lp functions (for any p), the set of measurable locally essentially bounded functions [32],

or the set of all functions.

Standard function classes are closed under time shift and subinterval, but not under

pasting. A natural way of defining a dynamic type is as the pasting closure of a class of functions

that is closed under time shift and subinterval. In such a case, it follows that the new class is

closed under all three operations.

3.3 TRAJECTORIES
In this section, we define the notion of a trajectory, define operations on trajectories, and prove

simple properties of trajectories and their operations. A trajectory is used to model the evolution

of a collection of variables over an interval of time.

3.3.1 Basic Definitions

Let V be a set of variables, that is, a subset of V. A valuation v for V is a function that associates

with each variable v ∈ V a value in type(v). We write val (V) for the set of valuations for V .

Let J be a left-closed interval of T with left endpoint equal to 0. Then a J -trajectory for V is

a function τ : J → val (V), such that for each v ∈ V , τ ↓ v ∈ dtype(v). A trajectory for V is

a J -trajectory for V , for any J . We write trajs(V) for the set of all trajectories for V . If Q is

a set of valuations for some set V of variables, we write trajs(Q) for the set of all trajectories

whose range is a subset of Q.

A trajectory for V where V = ∅ is simply a function from a time interval to the special

function with the empty domain. Thus, the only interesting information represented by such a

trajectory is the length of the time interval that constitutes the domain of the trajectory. We use

trajectories over the empty set of variables when we wish to capture the amount of time-passage,

but abstract away the evolution of variables.

A trajectory for V with domain [0, 0] is called a point trajectory for V . If v is a valuation

for V then ℘(v) denotes the point trajectory for V that maps 0 to v. We say that a J -trajectory

is finite if J is a finite interval, closed if J is a (finite) closed interval, open if J is a right-open

interval, and full if J = T≥0. If T is a set of trajectories, then finite(T), closed (T), open(T),

P1: JYS

MOBK015-03 MOBK015-Lynch.cls April 1, 2006 17:0

14 THEORY OF TIMED I/O AUTOMATA

and full (T) denote the subsets of T consisting of all the finite, closed, open, and full trajectories

in T, respectively.

If τ is a trajectory then τ.ltime, the limit time of τ , is the supremum of dom(τ). We

define τ.fval , the first valuation of τ , to be τ (0), and if τ is closed, we define τ.lval , the last

valuation of τ , to be τ (τ.ltime). For τ a trajectory and t ∈ T≥0, we define

τ � t
�= τ 	[0, t],

τ � t
�= τ 	[0, t),

τ � t
�= (τ 	[t, ∞)) − t.

Note that, since dynamic types are closed under time shift and subintervals, the result of applying

the above operations is always a trajectory, except when the result is a function with an empty

domain. By convention, we also write τ � ∞ �= τ and τ � ∞ �= τ .

3.3.2 Prefix Ordering

Trajectory τ is a prefix of trajectory υ, denoted by τ ≤ υ, if τ can be obtained by restricting υ to a

subset of its domain. Formally, if τ and υ are trajectories for V , then τ ≤ υ iff τ = υ 	 dom(τ).

Alternatively, τ ≤ υ iff there exists a t ∈ T≥0 ∪ {∞} such that τ = υ � t or τ = υ � t. If

τ ≤ υ, then clearly dom(τ) ⊆ dom(υ). If T is a set of trajectories for V , then pref (T) denotes

the prefix closure of T, defined by

pref (T)
�= {τ ∈ trajs(V) | ∃υ ∈ T : τ ≤ υ}.

We say that T is prefix closed if T = pref (T).

The following lemma gives a simple domain-theoretic characterization of the set of

trajectories over a given set V of variables:

Lemma 3.4 Let V be a set of variables. The set trajs(V) of trajectories for V , together with the

prefix ordering ≤, is an algebraic cpo. Its compact elements are the closed trajectories.

3.3.3 Concatenation

The concatenation of two trajectories is obtained by taking the union of the first trajectory

and the function obtained by shifting the domain of the second trajectory until the start time

agrees with the limit time of the first trajectory; the last valuation of the first trajectory, which

may not be the same as the first valuation of the second trajectory, is the one that appears in

the concatenation. Formally, suppose τ and τ ′ are trajectories for V , with τ closed. Then the

concatenation τ � τ ′ is the function given by

τ � τ ′ �= τ ∪ (τ ′ 	(0, ∞) + τ.ltime).

P1: JYS

MOBK015-03 MOBK015-Lynch.cls April 1, 2006 17:0

DESCRIBING TIMED SYSTEM BEHAVIOR 15

Because dynamic types are closed under time shift and pasting, it follows that τ � τ ′ is a

trajectory for V . Observe that τ � τ ′ is finite (resp., closed, full) iff τ ′ is finite (resp., closed,

full). Observe also that concatenation is associative.

The following lemma, which is easy to prove, shows the close connection between con-

catenation and the prefix ordering.

Lemma 3.5 Let τ and υ be trajectories for V with τ closed. Then

τ ≤ υ ⇔ ∃τ ′ : υ = τ � τ ′.

Note that if τ ≤ υ, then the trajectory τ ′ such that υ = τ � τ ′ has an arbitrary value

for τ ′.fval and the remainder of the trajectory is unique. Note also that the ⇐ implication in

Lemma 3.5 would not hold if the first valuation of the second argument, rather than the last

valuation of the first argument, were used in the concatenation.

We extend the definition of concatenation to any (finite or countably infinite) number of

arguments. Let τ0 τ1 τ2 · · · be a (finite or infinite) sequence of trajectories such that τi is closed

for each nonfinal index i . Define trajectories τ ′
0, τ

′
1, τ

′
2, . . . inductively by

τ ′
0

�= τ0,

τ ′
i+1

�= τ ′
i

� τi+1 for nonfinal i.

Lemma 3.5 implies that for each nonfinal i , τ ′
i ≤ τ ′

i+1. We define the concatenation τ0
� τ1

�

τ2 · · · to be the limit of the chain τ ′
0 τ ′

1 τ ′
2 · · · ; existence of this limit follows from Lemma 3.4.

3.4 HYBRID SEQUENCES
In this section, we introduce the notion of a hybrid sequence, which is used to model a com-

bination of changes that occur instantaneously and changes that occur over intervals of time.

Our definition is parameterized by a set A of actions, which are used to model instantaneous

changes and instantaneous synchronizations with the environment, and a set V of variables,

which are used to model changes over intervals of time. We also define some special kinds of

hybrid sequences and some operations on hybrid sequences, and give basic properties.

3.4.1 Basic Definitions

Fix a set A of actions and a set V of variables. An (A, V)-sequence is a finite or infinite alternating

sequence α = τ0 a1 τ1 a2 τ2 · · · , where

1. each τi is a trajectory in trajs(V),

2. each ai is an action in A,

P1: JYS

MOBK015-03 MOBK015-Lynch.cls April 1, 2006 17:0

16 THEORY OF TIMED I/O AUTOMATA

3. if α is a finite sequence, then it ends with a trajectory, and

4. if τi is not the last trajectory in α, then τi is closed.

A hybrid sequence is an (A, V)-sequence for some A and V .

Since the trajectories in a hybrid sequence can be point trajectories our notion of hybrid

sequence allows a sequence of discrete actions to occur at the same real time, with corresponding

changes of variable values. An alternative approach is described in [33], where state changes at

a single real time are modeled using a notion of “superdense time.” Specifically, hybrid behavior

is modeled in [33] using functions from an extended time domain, which includes countably

many elements for each real time, to states.

If α is a hybrid sequence, with notation as above, then we define the limit time of α,

α.ltime, to be
∑

i τi .ltime. A hybrid sequence α is defined to be

• time bounded if α.ltime is finite.

• admissible if α.ltime = ∞.

• closed if α is a finite sequence and its final trajectory is closed.

• Zeno if α is neither closed nor admissible, that is, if α is time bounded and is either

an infinite sequence, or else a finite sequence ending with a trajectory whose domain is

right-open.

• non-Zeno if α is not Zeno.

For any hybrid sequence α, we define the first valuation of α, α.fval , to be head (α).fval . Also, if

α is closed, we define the last valuation of α, α.lval , to be last(α).lval , that is, the last valuation

in the final trajectory of α.

If α is a closed (A, V)-sequence, where V = ∅ and β ∈ trajs(∅), we call α � β a time-

extension of α.

3.4.2 Prefix Ordering

We say that (A, V)-sequence α = τ0 a1 τ1 · · · is a prefix of (A, V)-sequence β = υ0 b1 υ1 · · · ,

denoted by α ≤ β, provided that (at least) one of the following holds:

1. α = β.

2. α is a finite sequence ending in some τk ; τi = υi and ai+1 = bi+1 for every i , 0 ≤ i < k;

and τk ≤ υk .

Similar to the set of trajectories over V , the set of (A, V)-sequences is also an algebraic

cpo.

P1: JYS

MOBK015-03 MOBK015-Lynch.cls April 1, 2006 17:0

DESCRIBING TIMED SYSTEM BEHAVIOR 17

Lemma 3.6 Let V be a set of variables and A a set of actions. The set of (A, V)-sequences, together

with the prefix ordering ≤, is an algebraic cpo. Its compact elements are the closed (A, V)-sequences.

3.4.3 Concatenation

Suppose α and α′ are (A, V)-sequences with α closed. Then the concatenation α � α′ is the

(A, V)-sequence given by

α � α′ �= init(α) (last(α) � head (α′)) tail (α′).

(Here, init, last, head, and tail are ordinary sequence operations.)

Lemma 3.7 Let α and β be (A, V)-sequences with α closed. Then

α ≤ β ⇔ ∃α′ : β = α � α′.

Note that if α ≤ β, then the (A, V)-sequence α′, such that β = α � α′, is unique except that

it has an arbitrary value in val (V) for α′.fval .
As we did for trajectories, we extend the concatenation definition for (A, V)-sequences

to any finite or infinite number of arguments. Let α0 α1 . . . be a finite or infinite sequence of

(A, V)-sequences such that αi is closed for each nonfinal index i . Define (A, V)-sequences

α′
0, α

′
1, . . . inductively by

α′
0

�= α0,

α′
i+1

�= α′
i

� αi+1 for nonfinal i.

Lemma 3.7 implies that for each nonfinal i , α′
i ≤ α′

i+1. We define the concatenation α0
� α1 · · ·

to be the limit of the chain α′
0 α′

1 · · · ; existence of this limit is ensured by Lemma 3.6.

3.4.4 Restriction

Let A and A′ be sets of actions and let V and V ′ be sets of variables. The (A′, V ′)-restriction of

an (A, V)-sequence α, denoted by α 	(A′, V ′), is obtained by first projecting all trajectories of

α on the variables in V ′, then removing the actions not in A′, and finally concatenating all ad-

jacent trajectories. Formally, we define the (A′, V ′)-restriction first for closed (A, V)-sequences

and then extend the definition to arbitrary (A, V)-sequences using a limit construction. The

definition for closed (A, V)-sequences is by induction on the length of those sequences:

τ 	(A′, V ′) = τ ↓ V ′ if τ is a single trajectory,

α a τ 	(A′, V ′) =
{

(α 	(A′, V ′)) a (τ ↓ V ′) if a ∈ A′,
(α 	(A′, V ′)) � (τ ↓ V ′) otherwise.

P1: JYS

MOBK015-03 MOBK015-Lynch.cls April 1, 2006 17:0

18 THEORY OF TIMED I/O AUTOMATA

It is easy to see that the restriction operator is monotone on the set of closed (A, V)-

sequences. Hence, if we apply this operation to a directed set, the result is again a directed set.

Together with Lemma 3.6, this allows us to extend the definition of restriction to arbitrary

(A, V)-sequences by

α 	(A′, V ′) = �{β 	(A′, V ′) | β is a closed prefix of α}.
The next four lemmas state some basic properties of the restriction operation.

Lemma 3.8 (A′, V ′)-restriction is a continuous operation.

Lemma 3.9 (α0
� α1

� · · ·) 	(A, V) = α0 	(A, V) � α1 	(A, V) � · · · .

Lemma 3.10 (α 	(A, V)) 	(A′, V ′) = α 	(A ∩ A′, V ∩ V ′).

Lemma 3.11 Let α be a hybrid sequence, A a set of actions and V a set of variables.

1. α is time bounded iff α 	(A, V) is time bounded.

2. α is admissible iff α 	(A, V) is admissible.

3. If α is closed, then α 	(A, V) is closed.

4. If α is non-Zeno, then α 	(A, V) is non-Zeno.

Example 3.12 (A Zeno execution with a closed (A, V)-restriction). In order to understand

why in Lemma 3.11 we have an implication in only one direction in points 3 and 4, consider

the Zeno sequence α of the form ℘(v) a ℘(v) a ℘(v) · · · . Let A be a set such that a /∈ A and

let V consist of the variables in dom(v). Obviously, α 	(A, V), which is ℘(v), is closed, and

hence also non-Zeno. This shows that the fact that α 	(A, V) is closed (resp., non-Zeno) does

not imply that α is closed (resp., non-Zeno).

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

19

C H A P T E R 4

Timed Automata

In this chapter, as a preliminary step toward defining TIOA, we define a slightly more general

timed automaton model. In timed automata, actions are classified as external or internal, but

external actions are not further classified as input or output (the input/output distinction is

discussed in Chapter 6). We define how timed automata execute and define implementation

and simulation relations between timed automata.

4.1 DEFINITION OF TIMED AUTOMATA
A timed automaton is a state machine whose states are divided into variables and that has a

set of discrete actions, some of which may be internal and some external. The state of a timed

automaton may change in two ways: by discrete transitions, which change the state atomically,

and by trajectories, which describe the evolution of the state over intervals of time. The discrete

transitions are labeled with actions; this will allow us to synchronize the transitions of different

timed automata when we compose them in parallel. The evolution described by a trajectory

may be described by continuous or discontinuous functions.

Formally, a timed automaton (TA) A = (X, Q, �, E, H,D, T) consists of the following:

• A set X of internal variables.

• A set Q ⊆ val (X) of states.

• A nonempty set � ⊆ Q of start states.

• A set E of external actions and a set H of internal actions, disjoint from each other. We

write A
�= E ∪ H.

• A setD ⊆ Q × A × Q of discrete transitions. We use x
a→A x′ as short for (x, a, x′) ∈ D.

We sometimes drop the subscript and write x
a→ x′, when we think A should be clear

from the context. We say that a is enabled in x if x
a→ x′ for some x′. We say that a set

C of actions is enabled in a state x if some action in C is enabled in x.

• A set T ⊆ trajs(Q) of trajectories. Given a trajectory τ ∈ T we denote τ.fval by

τ.fstate and, if τ is closed, we denote τ.lval by τ.lstate. When τ.fstate = x and

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

20 THEORY OF TIMED I/O AUTOMATA

τ.lstate = x′, we write x
τ→A x′. We require that the following axioms hold:

T0 (Existence of point trajectories). If x ∈ Q, then ℘(x) ∈ T .

T1 (Prefix closure). For every τ ∈ T and every τ ′ ≤ τ , τ ′ ∈ T .

T2 (Suffix closure). For every τ ∈ T and every t ∈ dom(τ), τ � t ∈ T .

T3 (Concatenation closure). Let τ0 τ1 τ2 · · · be a sequence of trajectories in T such

that, for each nonfinal index i , τi is closed and τi .lstate = τi+1.fstate. Then

τ0
� τ1

� τ2 · · · ∈ T .

A timed automaton is essentially a hybrid automaton in the sense of [6] in which W , the set

of external variables, is empty. Apart from that, the only difference is the addition of Axiom

T0, a small restriction that does not affect any of the results of [6] but that we need to prove

Theorem 7.7. Axioms T1–T3 express some natural further conditions on the set of trajectories

that we need to construct our theory. A key part of this theory is a parallel composition operation

for timed automata. In a composed system, any trajectory of any component automaton may be

interrupted at any time by a discrete transition of another (possibly independent) component

automaton. Axiom T1 ensures that the part of the trajectory up to the discrete transition is

a trajectory, and Axiom T2 ensures that the remainder is a trajectory. Axiom T3 is required

because the environment of a timed automaton, as a result of its own internal discrete transitions,

may change its dynamics repeatedly, and the automaton must be able to follow this behavior.

Our definition of a timed automaton differs from previous definitions of timed au-

tomata [8, 10] in two major respects. First, the states are structured using variables, which

have dynamic types with specific closure properties. The variable structure is convenient for

writing specifications and the dynamic types are useful in analyzing continuous evolution of

the state. Second, the set of trajectories is defined as an explicit component of an automaton.

In the previous definitions, time-passage was represented by special time-passage actions and

trajectories were defined implicitly, as auxiliary functions describing the effects of time-passage

actions on states.

Notation: We often denote the components of a TA A by XA, QA, �A, EA, etc., and the

components of a TA Ai by Xi , Qi , �i , Ei , etc. We sometimes omit these subscripts, where no

confusion seems likely. In examples we typically specify sets of trajectories using differential and

algebraic equations and inclusions. Below we explain a few notational conventions that help us

in doing this. Suppose the time domain T is R, τ is a (fixed) trajectory over some set of variables

V , and v ∈ V . With some abuse of notation, we use the variable name v to denote the function

τ ↓ v in dom(τ) → type(v), which gives the value of v at all times during trajectory τ . That

is, for all t ∈ dom(τ), we have v(t) = (τ ↓ v)(t) = τ (t)(v). Similarly, we view any expression

e containing variables from V as a function with domain dom(τ). Suppose that v is a variable

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

TIMED AUTOMATA 21

and e is a real-valued expression containing variables from V . Using these conventions we can

say, for example, that τ satisfies the algebraic equation

v = e

which means that, for every t ∈ dom(τ), v (t) = e (t), that is, the constraint on the variables

expressed by the equation v = e holds for each state on trajectory τ . Now suppose that e , when

viewed as a function, is integrable. Then we say that τ satisfies

d (v) = e

if, for every t ∈ dom(τ), v (t) = v (0) + ∫ t

0
e (t ′) dt ′. Equivalently, for every t1, t2 ∈ dom(τ)

such that t1 ≤ t2, v (t2) = v (t1) + ∫ t2

t1
e (t ′) dt ′. Note that this interpretation of the differential

equation makes sense even at points where v is not differentiable. A similar interpretation of

differential equations is used by Polderman and Willems [34], who call functions defined in

this way as “weak solutions.”

We generalize this notation to handle inequalities as well as equalities. Suppose that v is

a variable and e is a real-valued expression containing variables from V . The inequality

e ≤ v

means that, for every t ∈ dom(τ), e (t) ≤ v (t). That is, the constraint expressed by the inequality

e ≤ v holds for each state of trajectory τ . Similarly, the inequality

v ≤ e

means that, for every t ∈ dom(τ), v (t) ≤ e (t). Now suppose that e is integrable when viewed

as a function. Then we say that τ satisfies

e ≤ d (v)

if, for every t1, t2 ∈ dom(τ) such that t1 ≤ t2, v (t1) + ∫ t2

t1
e (t ′) dt ′ ≤ v (t2), and τ satisfies

d (v) ≤ e

if, for every t1, t2 ∈ dom(τ) such that t1 ≤ t2, v (t2) ≤ v (t1) + ∫ t2

t1
e (t ′) dt ′.

Conventions for automata specifications: In all the examples given in this monograph we

assume the time axis T to be R and specify timed automata by using a variant of the TIOA

language presented in [35–38].

An automaton specification consists of four main parts: a signature, which lists the actions

along with their kinds (external or internal) and parameter types, a state variables list, which

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

22 THEORY OF TIMED I/O AUTOMATA

declares the names and types of state variables, a collection of transition definitions, and a

trajectories definition.

Unless specified otherwise, the set of states of an automaton equals the set of all valuations

of its state variables. Static types of variables are always declared explicitly in the state variables

list. For example, we write v:t for a variable v of static type t. Moreover, a variable can be

initialized to a specific value allowed by its type. For example, in order to initialize the variable v

above to the value val, we write v:t := val. If no initial value is specified, it is assumed to be

arbitrary. The state variables list in an automaton specification can be followed by an initially

clause, which consists of a predicate that constrains the automaton parameters and initial values

of state variables. All of the static types used in the examples have standard interpretations,

except possibly for the type AugmentedReal, which denotes R ∪ {∞}.

The dynamic types of variables are specified implicitly. By default, variables of type Real

are assumed to be analog and variables of types other than Real are assumed to be discrete.

The definition of what it means for a variable to be discrete or analog is given in Examples 1

and 2. The keyword discrete is used to qualify a discrete variable of type Real. Although timed

automata may contain variables that are neither discrete nor analog, none of our examples use

such variables.

The transitions are specified in precondition-effect style. A pre clause specifies the en-

abling condition for an action. An eff clause contains a list of statements that specify the effect

of performing that action on the state. All the statements in an effect clause are assumed to be

executed sequentially in a single indivisible step. The absence of a specified precondition for an

action means that the action is always enabled and the absence of a specified effect means that

performing the action does not change the state.

The trajectories are specified using a combination of algebraic and differential equations

and inequalities, and stopping conditions. A trajectory belongs to the set of legal trajectories

of an automaton if it satisfies the stopping condition expressed by the stop when clause and

the equations or inequalities in the evolve clause. The stopping condition is satisfied by a

trajectory if the only state in which the condition holds is the last state of that trajectory. That

is, time cannot advance beyond the point where the stopping condition is true. The evolve

clause specifies the algebraic and differential equations that must be satisfied by the trajectories.

We write d(v) = e for d (v) = e , d(v) ≤ e for d (v) ≤ e , and e ≤ d(v) for e ≤ d (v). We assume

that the evolution of each variable follows a continuous function throughout a trajectory. This

implies that the value of a discrete variable is constant throughout a trajectory: time-passage

does not change the value of discrete variables.

Example 4.1 (Time-bounded channel). The automaton TimedChannel(b, M) in Fig. 4.1

is the specification of a reliable FIFO channel that delivers its messages within a certain time

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

TIMED AUTOMATA 23

a u t o m a t o n TimedChannel(b: Real, M: Type) w h e r e b ≥ 0

t y p e Packet = t u p l e o f message : M, deadline : Real

s i g n a t u r e

e x t e r n a l send(m: M), receive(m: M)

s t a t e s

queue : Queue[Packet] := {},

now: Real := 0

t r a n s i t i o n s

e x t e r n a l send(m)

e f f

queue := append ([m,now+b], queue)

e x t e r n a l receive(m)

p r e

head(queue). message = m

e f f

queue := tail(queue)

t r a j e c t o r i e s

s t o p when

∃p: Packet p ∈ queue ∧ (now = p.deadline)

e v o l v e

d(now) = 1

FIGURE 4.1: Time-bounded channel

bound, represented by the automaton parameter b of type Real, which is nonnegative. The

other automaton parameter M is an arbitrary type parameter that represents the type of messages

communicated by the channel.

The variable queue is used to hold a sequence of pairs consisting of a message that has

been sent and its delivery deadline. The variable now is used to describe real time. Every send(m)

transition adds to the queue a new pair whose first component is m and second component is

the deadline now + b. A receive(m) transition can occur only when m is the first message in

the queue and it results in the removal of the first message from the queue.

The trajectory specification shows that the variable now increases with rate 1, that is, at

the same rate as real time. The stopping condition implies that, within a trajectory, time cannot

pass beyond the point where now becomes equal to the delivery deadline of some message in

the queue.

Example 4.2 (Periodic sending process). The automaton PeriodicSend(u, M) in Fig. 4.2

is the specification of a process that sends messages periodically, every u time units, where u is

an automaton parameter of type Real, which is nonnegative. The type parameter M represents

the type of the messages sent by the process.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

24 THEORY OF TIMED I/O AUTOMATA

a u t o m a t o n PeriodicSend(u: Real, M: Type) w h e r e u ≥ 0

s i g n a t u r e

e x t e r n a l send(m: M)

s t a t e s

clock : Real := 0

t r a n s i t i o n s

e x t e r n a l send(m)

p r e

clock = u

e f f

clock := 0

t r a j e c t o r i e s

s t o p when

clock = u

e v o l v e

d(clock) = 1

FIGURE 4.2: Periodic sending process

The analog variable clock is a timer whose value records the amount of time that has

elapsed since it was last reset to 0. A send(m) transition can occur only when clock = u, and

it causes clock to be reset. The trajectory specification says that clock increases at the same

rate as real time and time cannot pass beyond the point where clock = u.

Example 4.3 (Periodic sending process with failures). The specification of the PeriodicSend

process from Example 4.2 does not model failures. We now consider a variant of PeriodicSend

where the process may fail and stop doing any discrete actions. The specification of this new

automaton is given in Fig. 4.3.

The discrete variable failed in automaton PeriodicSend2 is a boolean flag that records

whether the process fails. It is initialized to false and is set to true when a fail action occurs.

The trajectory specification of PeriodicSend2 shows that time can advance without any bound

when the process fails.

Example 4.4 (Timeout process). The automaton Timeout in Fig. 4.4 is the specification of a

process that awaits the receipt of a message from another process. If u time units elapse without

such a message arriving, Timeout performs a timeout action, thereby “suspecting” the other

process. When a message arrives it “unsuspects” the other process. Timeout may suspect and

unsuspect repeatedly.

The discrete variable suspected is a flag that shows whether Timeout suspects that the

other process fails. The variable clock is a timer that records the amount of time that has elapsed

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

a u t o m a t o n PeriodicSend2(u: Real,M: Type) w h e r e u ≥ 0

s i g n a t u r e

e x t e r n a l send(m: M), fail

s t a t e s

failed : Bool := false,

clock : Real := 0

t r a n s i t i o n s

e x t e r n a l send(m)

p r e

¬failed ∧ clock = u

e f f

clock := 0

e x t e r n a l fail

e f f

failed:= true

t r a j e c t o r i e s

s t o p when

¬failed ∧ clock = u

e v o l v e

d(clock) = 1

FIGURE 4.3: Periodic sending process with failures

a u t o m a t o n Timeout(u:Real, M: Type) w h e r e u > 0

s i g n a t u r e

e x t e r n a l receive(m: M), timeout

s t a t e s

suspected : Bool := false,

clock Real := 0

t r a n s i t i o n s

e x t e r n a l receive(m)

e f f

clock:=0;

suspected:= false

e x t e r n a l timeout

p r e

¬suspected ∧ clock = u

e f f

suspected := true

t r a j e c t o r i e s

s t o p when

clock = u and ¬suspected

e v o l v e

d(clock) = 1

FIGURE 4.4: Timeout

25

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

26 THEORY OF TIMED I/O AUTOMATA

t y p e Index = e n u m e r a t i o n o f p1, p2, p3, p4

t y p e PcValue = e n u m e r a t i o n o f rem, test, set, check,

leavetry , crit, reset, leaveexit

a u t o m a t o n FischerME(u_set , l_check : Real)

w h e r e u_set ≥ 0 ∧ l_check ≥ 0 ∧ u_set < l_check

s i g n a t u r e

e x t e r n a l try(i:Index), crit(i:Index), exit(i:Index), rem(i:Index)

i n t e r n a l test(i:Index), set(i:Index),

check(i:Index), reset(i:Index)

s t a t e s

x: Null[Index] := nil,

pc: Array[Index,PcValue] := c o n s t a n t (rem),

lastset : Array[Index, d i s c r e t e AugmentedReal] := c o n s t a n t (infty),

firstcheck : Array[Index, d i s c r e t e AugmentedReal] := c o n s t a n t (0),

now: Real:=0

FIGURE 4.5: Fischer’s mutual exclusion algorithm: Signature and states

since the receipt of the last message. A receive(m) transition can occur at any time; this causes

the variable clock to be reset and the flag suspected to be set to false. If clock reaches

u before the arrival of a message, then the timeout action becomes enabled. The process sets

suspected to true as a result of a timeout.

The trajectory specification shows that clock increases at the same rate as real time and

if suspected = false, then time cannot go beyond the point where clock = u. Note that if

suspected = true, there is no restriction on the amount of time that can elapse.

Example 4.5 (Fischer’s algorithm). The timed automaton FischerME presented in Figs. 4.5

and 4.6 is the specification of a shared memory mutual exclusion algorithm that uses a single

shared variable that can be read and written by all the participants. We fix here the number of

participants to be four, by defining Index to be an enumeration consisting of four elements.

Note, however, that this specification can be generalized to any finite number of participants.

The automaton parameters u set and l check represent upper and lower time bounds

for the set(i) and check(i) actions, respectively. We assume that u set < l check.

The shared variable x can be assigned any value of type Index plus one additional special

value nil. If a process is in the critical region, then the variable x contains the index of that

process. If all users are in the remainder region, then the variable x contains the value nil. The

array variable pc records the program counters of all processes. The array variable lastset

keeps track of the deadlines by which the processes’ set actions must occur. Similarly, the array

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

TIMED AUTOMATA 27

t r a n s i t i o n s

e x t e r n a l try(i) e x t e r n a l crit(i)

p r e p r e

pc[i] = rem pc[i] = leavetry

e f f e f f

pc[i]:= test pc[i] := crit

i n t e r n a l test(i) e x t e r n a l exit(i)

p r e p r e

pc[i] = test pc[i] = crit

e f f e f f

i f x = nil t h e n pc[i] := reset

pc[i] := set;

lastset[i]:=now+u_set

i n t e r n a l set(i) i n t e r n a l reset(i)

p r e p r e

pc[i] = set pc[i] = reset

e f f e f f

x := embed(i); x := nil;

pc[i] := check ; pc[i] := leaveexit

lastset[i] := infty;

firstcheck[i]:= now + l_check

i n t e r n a l check(i) e x t e r n a l rem(i)

p r e p r e

pc[i] = check ∧ pc[i] = leaveexit

now ≥ firstcheck[i] e f f

e f f pc[i] := rem

i f x = embed(i) t h e n pc[i] := leavetry

e l s e pc[i] := test

t r a j e c t o r i e s

s t o p when

∃ i: Index now= lastset[i]

e v o l v e

d(now) = 1

FIGURE 4.6: Fischer’s mutual exclusion algorithm: Transitions and trajectory definitions

variable firstcheck keeps track of the earliest time the processes’ check actions may occur.

The analog variable now models real time.

The transition definitions for external actions try(i), crit(i), exit(i), and rem(i)

are straightforward. When a process performs one of these actions, its program counter is

updated to record the region entered by the process. The most interesting transition definitions

are test(i), set(i), and check(i) since they are the ones that involve timing constraints

of the algorithm. When a process i performs a test action and observes x to be nil, it sets

lastset[i] to now+ u set. This sets the deadline for the performance of the set(i) action.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

28 THEORY OF TIMED I/O AUTOMATA

Note that this deadline is enforced through the stopping condition in the trajectory specification.

The transition set(i) sets firstcheck[i] to now+ l check. The value of firstcheck[i]

determines the earliest time check(i) may occur. The check(i) action is enabled only when

the current time has at least this value.

The stopping condition implies that if the value of now reaches the value of lastset[i]

for some process i at some point in time, then that point must be the limit time of the trajectory.

Example 4.6 (Clock synchronization). The automaton ClockSync in Fig. 4.7 is the speci-

fication of a single process in a clock synchronization algorithm. Each process has a physical

clock and generates a logical clock. The goal of the algorithm is to achieve “agreement” and

“validity” among the logical clock values. Agreement means that the logical clocks are close to

one another. Validity means that the logical clocks are within the range of the physical clocks.

a u t o m a t o n ClockSync(u,r: Real, i: Index) w h e r e u > 0 ∧ (0 ≤ r < 1)

s i g n a t u r e

e x t e r n a l send(m: Real, c o n s t i: Index),

receive(m: Real, j: Index, c o n s t i: Index) w h e r e j
= i

s t a t e s

nextsend : d i s c r e t e Real := 0,

maxother : d i s c r e t e Real := 0,

physclock : Real := 0

d e r i v e d v a r i a b l e s

logclock = max(maxother , physclock)

t r a n s i t i o n s

e x t e r n a l send(m,i)

p r e

m = physclock ∧ physclock = nextsend

e f f

nextsend := nextsend + u

e x t e r n a l receive(m,j,i)

e f f

maxother := max(maxother,m)

t r a j e c t o r i e s

s t o p when

physclock = nextsend

e v o l v e

(1 - r) ≤ d(physclock) ≤ (1 + r)

FIGURE 4.7: Clock synchronization

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

TIMED AUTOMATA 29

The algorithm is based on the exchange of physical clock values between different pro-

cesses in the system. The parameter u determines the frequency of sending messages. Processes

in the system are indexed by the elements of the type Index, which we assume to be predefined.

ClockSync has a physical clock physclock, which may drift from the real time with a drift

rate bounded by r. It uses the variable maxother to keep track of the largest physical clock

value of the other processes in the system. The variable nextsend records when it is supposed

to send its physical clock to the other processes. The logical clock logclock is defined to be

the maximum of maxother and physclock. Formally, logclock is a derived variable, which

is a function whose value is defined in terms of the state variables.

A send(m,i) transition is enabled when m = physclock and nextsend =

physclock. It causes the value of nextsend to be updated so that the next send can occur when

physclock has advanced by u time units. The transition definition for receive(m,j,i) speci-

fies the effect of receiving a message from another processj in the system. On receiving a message

m from j, i sets maxother to the maximum of m and the current value of maxother, thereby

updating its knowledge of the largest physical clock value of other processes in the system.

The trajectory specification is slightly different from that in the previous examples. In

this example, the analog variable physclock does not change at the same rate as real time

but it drifts with a rate that is bounded by r. The periodic sending of physical clocks to other

processes is enforced through the stopping condition in the trajectory specification. Time is not

allowed to pass beyond the point where physclock = nextsend.

4.2 EXECUTIONS AND TRACES
We now define execution fragments, executions, trace fragments, and traces, which are used

to describe automaton behavior. An execution fragment of a timed automaton A is an (A, V)-

sequence α = τ0 a1 τ1 a2 τ2 · · · , where (1) each τi is a trajectory in T and (2) if τi is not the

last trajectory in α, then τi .lstate
ai+1→ τi+1.fstate. An execution fragment records what happens

during a particular run of a system, including all the instantaneous, discrete state changes and

all the changes to the state that occur while time advances. We write fragsA for the set of all

execution fragments of A.

If α is an execution fragment, with notation as above, then we define the first state of α,

α.fstate, to be α.fval . An execution fragment of a timed automaton A from a state x of A is

an execution fragment of A whose first state is x. We write fragsA(x) for the set of execution

fragments of A from x. An execution fragment α is defined to be an execution if α.fstate is a

start state, that is, α.fstate ∈ �. We write execsA for the set of all executions of A. If α is a

closed (A, V)-sequence, then we define the last state of α, α.lstate, to be α.lval .

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

30 THEORY OF TIMED I/O AUTOMATA

A state of A is reachable if it is the last state of some closed execution of A. A property

that is true for all reachable states of an automaton is called an invariant assertion or invariant

for short.

Similar to trajectories execution fragments are also closed under countable concatenation.

Lemma 4.7 Let α0 α1 · · · be a finite or infinite sequence of execution fragments of A such that, for

each nonfinal index i, αi is closed and αi .lstate = αi+1.fstate. Then α0
� α1

� · · · is an execution

fragment of A.

Proof: Follows easily from the definitions, using Axiom T3. �

The characterization of the prefix ordering on (A, V)-sequences from Lemma 3.7 carries

over to execution fragments.

Lemma 4.8 Let α and β be execution fragments of A with α closed. Then

α ≤ β ⇔ ∃α′ ∈ fragsA : β = α � α′.

Proof: Implication ⇐ follows from the corresponding implication in Lemma 3.7. Implication

⇒ follows from the definitions and Axiom T2. �

The external behavior of a timed automaton is captured by the set of “traces” of its execu-

tion fragments, which record external actions and the trajectories that describe the intervening

passage of time. A trace consists of alternating external actions and trajectories over the empty

set of variables, ∅; the only interesting information contained in these trajectories is the amount

of time that elapses.

Formally, if α is an execution fragment, then the trace of α, denoted by trace(α), is the

(E, ∅)-restriction of α, α �(E, ∅). A trace fragment of a timed automaton A from a state x of A
is the trace of an execution fragment of A whose first state is x. We write tracefragsA(x) for

the set of trace fragments of A from x. Also, we define a trace of A to be a trace fragment from

a start state, that is, the trace of an execution of A, and write tracesA for the set of traces of A.

In the earlier timed automaton models [8,10], execution fragments were defined in a style

similar to the one presented here, that is, as an alternating sequence of trajectories and actions.

However, the traces were not derived from execution fragments by a simple restriction to external

actions and the empty set of variables. Rather, a trace was defined as a sequence consisting of

actions paired with their time of occurrence together with a limit time. The new definition

increases uniformity; the definitions, results, and proof techniques for hybrid sequences apply

to both execution fragments and traces.

We now revisit some of the automata presented earlier in this chapter and give sample

executions and traces for these automata.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

TIMED AUTOMATA 31

Example 4.9 (Periodic sending process). Consider the automatonPeriodicSend(u,M) from

Example 4.2, where u is instantiated to the real number 3 and the message type parameter M is

instantiated to the set {m1, m2, . . .}. The following sequence is an execution of the automaton:

α = τ send(m1) τ send(m2) τ send(m3) τ · · ·

where τ : [0, 3] → val ({clock}) is defined such that τ (t)(clock) = t for all t ∈ [0, 3]. The

function τ is defined for closed intervals of length 3, starting at time 0. It describes the evolution

of the variable clock, which is 0 at the start of τ and increases with rate 1 for 3 time units. The

discrete send events occur periodically, every 3 time units and reset the clock variable to 0.

The trace of the above execution fragment, trace(α), is the sequence

α′ = τ ′ send(m1) τ ′ send(m2) τ ′ send(m3) τ ′ · · ·

where τ ′ : [0, 3] → val (∅). Since the range of function τ ′ contains only the function with the

empty domain, trace(α) does not contain any information about what happens to the value of

clock as time progresses. Since the domains of τ and τ ′ are identical, α and α′ express the

same information about the amount of time that elapses between discrete steps.

Example 4.10 (Timeout process). We now present an execution of the automaton

Timeout(u,M) from Example 4.4 where the the maximum waiting time u for a message is

5 and the message alphabet M is the set {m1, m2}. The following finite sequence is an execution

of Timeout:

α = τ0 receive(m1) τ1 timeout τ2 receive(m2) τ3 timeout τ4

where Val = val ({suspected,clock}) and the functions τ0, τ1, τ2, τ3, and τ4 are defined as

follows:

τ0: [0, 2] → Val , where τ0(t)(suspected) = false and τ0(t)(clock) = t for all t ∈ [0, 2].

τ1: [0, 5] → Val , where τ1(t)(suspected) = false and τ1(t)(clock) = t for all t ∈ [0, 5].

τ2: [0, 1] → Val , where τ2(t)(suspected) = true and τ2(t)(clock) = 5 + t for all t ∈ [0, 1].

τ3: [0, 5] → V al , where τ3(t)(suspected) = false and τ3(t)(clock) = t for all t ∈ [0, 5].

τ4: [0, ∞) →Val , where τ4(t)(suspected) = true and τ4(t)(clock) = 5 + t for all t ∈ [0, ∞).

In this sample execution, the first awaited message arrives at time 2. Since no other

message arrives within the next 5 time units, the process performs a timeout. A new message

arrives 1 time unit after the timeout and the variable clock is reset to 0. Since no new message

arrives in the next 5 time units the process performs another timeout. The time elapses forever

after this timeout since no further message arrives.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

32 THEORY OF TIMED I/O AUTOMATA

This example illustrates that the automaton Timeout can perform multiple timeout

transitions. Another point to note is that the sample execution consists of a finite (A, V)-

sequence ending with a trajectory, as opposed to an infinite sequence as in Example 4.9. The

final trajectory here is a trajectory whose domain is right open and the execution is admissible

and non-Zeno. Replacing τ4 with a function on a closed interval would yield a non-Zeno

execution that is not admissible.

The trace of the execution α can be obtained by letting the range of τi be the set consisting

of the function with the empty domain, as we did in the previous example. That is, by hiding

the values of the internal variables clock and suspected during trajectories.

Example 4.11 (Time-bounded channel). Consider the time-bounded channel automaton

from Example 4.1. It is easy to observe that time cannot pass beyond any delivery deadline

recorded in the message queue and that each deadline in the queue is less than or equal to the

sum of the current time and the bound b. This property can be stated as an invariant assertion

as follows.

Invariant: In any reachable state x of automaton TimedChannel, for all p ∈ x(queue),

x(now) ≤ p.deadline ≤ x(now) + b.

Such an invariant can be proved by induction. Recall that reachable states are the final

states of closed executions. Axioms T1 and T2 allow us to view any closed execution as a

concatenation of closed execution fragments, α0
� α1

� · · · αk , where every αi is either a closed

trajectory or a discrete action surrounded by point trajectories and where αi .lstate = αi+1.fstate
for 0 ≤ i ≤ k − 1. The invariant can then be proved using induction on the length k of the

sequence of execution fragments αi .

Example 4.12 (Fischer’s mutual exclusion). The main safety property that needs to be satis-

fied by the automaton FischerME from Example 4.5 is mutual exclusion. This safety property

can be expressed as an invariant assertion.

Invariant 1: In any reachable state x of FischerME, there do not exist i:Index and j:Index

such that i
= j, x(pc)[i] = crit and x(pc)[j] = crit.

Even though the invariant does not refer to time, its proof depends on the timing con-

straints of the automaton. For example, the following auxiliary invariant can be used in proving

Invariant 1:

Invariant 2: In any reachable state x of FischerME, if x(pc)[i] = check, x(x) = embed(i),

and x(pc)[j] = set, then x(firstcheck)[i]) > x(lastset)[j].

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

TIMED AUTOMATA 33

This invariant states that if the program counter of process i has the value check, the

program counter of process j has the value set, and the variable x has the value embed(i),

then i will allow enough time for j to set x to embed(j), before performing the check. If this

timing constraint were not satisfied, it would be possible for i to check that x = embed(i)

before j sets x to embed(j). Both of the processes would then observe x to contain their own

index and enter the critical region.

The following lemma states that some properties of executions carry of to their traces and

vice versa.

Lemma 4.13 If α is an execution of A then

1. α is time bounded iff trace(α) is time bounded.

2. α is admissible iff trace(α) is admissible.

3. and if α is closed, then trace(α) is closed.

4. and if α is non-Zeno, then trace(α) is non-Zeno.

Proof: The proof follows directly from the corresponding properties for the restriction of

(A, V)-sequences (Lemma 3.11). �

Lemma 4.14 If β is a trace of A and

1. if β is closed, then there exists an execution α of A such that trace(α) = β and α is closed.

2. if β is non-Zeno, then there exists an execution α of A such that trace(α) = β and α is

non-Zeno.

Proof: For the first part of the lemma, let β = trace(α) be a closed trace of A. By definition

of a trace, we know that β.ltime = α.ltime. We also know that α is either closed or has a suffix

that is an infinite sequence of alternating point trajectories and internal actions. Now, let α′ be

the least closed prefix of α such that α′.ltime = β.ltime. Clearly, α′ is a closed execution of A
and β = trace(α′).

For the second part of the lemma, observe that a non-Zeno trace is either closed or

admissible. Let β = trace(α). For the case where β is closed, we have already shown how

we can find a closed execution. For the case where β = trace(α) is admissible, we know that

α.ltime = ∞. Hence, α is admissible, as needed. �

Example 4.15 (Constructing a closed execution from a closed trace). Consider the Zeno

hybrid sequence α = ℘(v) a ℘(v) a ℘(v) . . . given in Example 3.12. Suppose that α is an ex-

ecution of A and that a is an internal action of A. Then, trace(α) = ℘(v′), where ℘(v′) is a

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

34 THEORY OF TIMED I/O AUTOMATA

trajectory over the empty set of variables. However, the fact that trace(α) is closed does not im-

ply that α is closed. Thus, we see why we have a one-way implication in item 3 of Lemma 4.13.

On the other hand, we can construct a closed execution of A with trace ℘(v′) as explained

in the proof of Lemma 4.14. The execution consisting of the point trajectory ℘(v) is a closed

execution of A with trace ℘(v′).

4.3 SPECIAL KINDS OF TIMED AUTOMATA
This section describes several restricted forms of timed automata and gives definitions that are

needed for theorems that are presented later in this monograph.

4.3.1 Timed Automata with Finite Internal Nondeterminism

We are sometimes interested in bounding the amount of internal nondeterminism in a timed

automaton. Thus, we say that a timed automaton A has finite internal nondeterminism (FIN)

provided that

1. the set � of start states is finite and

2. for every state x of A and every trace fragment β of A from x, the set {α.lstate | α ∈
fragsA(x) ∧ trace(α) = β} is finite.

Example 4.16 (Automata with FIN). It is not hard to see that the automata TimedChannel,

PeriodicSend, PeriodicSend2, and Timeout given in Section 4.1 all have FIN. The first

property of the definition of FIN is satisfied since each of these automata has a unique start

state. The second property follows from the fact that in each automaton, for every state x and

every trace fragment β from x, there is a unique execution fragment α such that trace(α) = β.

Example 4.17 (Automata without FIN). We show that automata FischerME and ClockSync

from Section 4.1 do not have FIN. For each automaton, we specify a trace, describe the set of

all executions that have the specified trace, and argue that the second property in the definition

of FIN fails for the chosen trace.

Let x be the start state of FischerME and let β = τ0 try(i) τ1 be a trace of the same

automaton, where the domains of the functions τ0 and τ1 are, respectively, the single point

interval [0, 0] and the interval [0, u], and the range of both functions is the set consisting of the

function with the empty domain. For any execution α, trace(α) = β, iff α.ltime = u, try(i)

occurs at time 0, and all the actions in α that occur after try(i) are internal actions. There are

infinitely many different times that the internal actions may occur, and infinitely many values

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

TIMED AUTOMATA 35

lastcheck and firstcheck could have, by the time u. Therefore, the set {α.lstate | α ∈
fragsA(x) ∧ trace(α) = τ0 try(i) τ1} is not finite and FischerME does not have FIN.

Now, let x be the start state of ClockSync where x(physclock) = x(nextsend) =
x(maxother) = 0 and let β = τ0 send(0) τ1 be a trace of ClockSync, where the domains

of functions τ0 and τ1 are, respectively, the interval [0, 0] and the interval [0, u], and the range

of both functions is the set consisting of the function with the empty domain. For any α in

which send(0) occurs at time 0 and is followed by a trajectory τ such that τ.ltime = u,

we have trace(α) = β. For any such α, α.lstate(physclock) can be any value in the in-

terval [u (1 - r), u (1 + r)]. Therefore, the set {α.lstate | α ∈ fragsA(x) ∧ trace(α) =
τ0 send(0) τ1} is not finite and ClockSync does not have FIN.

The following lemma states that if a timed automaton has FIN, then its set of traces is

limit closed.

Lemma 4.18 Suppose that timed automaton A has FIN and x ∈ Q. Suppose that β1 β2 · · · is a

chain of trace fragments of A from x. Then the hybrid sequence limi βi is a trace fragment of A from x.

Proof: This is analogous to the proof of Lemma 4.3 of [10]. Suppose that A is a timed

automaton that has FIN, x is a state of A, and β1 β2 · · · is a chain of trace fragments of A from

x. We define a relation after between trace fragments from x and states of A: after = {(β, y) |
∃α ∈ fragsA(x). trace(α) = β ∧ α.lstate = y}.

We construct a directed graph G whose nodes are pairs (βi , y) ∈ after , where βi is an

element of the given chain. In G , there is an edge from (βi , y) to (βi+1, y′) exactly if βi+1 =
βi

� γ such that γ = trace(α) for some α ∈ fragsA(y), and α.lstate = y′. By the definition of

property FIN, there are finitely many roots of G of the form (β1, y). By the definition of FIN

and the construction of G , each node of G has finite outdegree.

We claim that each node (βi , y) of G is reachable from some root (β1, z) for some z. By

definition of the node set, there exists α ∈ fragsA(x) such that trace(α) = βi and α.lstate = y.

Choose α′ ∈ fragsA(x) to be a prefix of α such that trace(α′) = β1 and let z = α′.lstate. By

definition of the edge set of G , (βi , y) is reachable from (β1, z).

Hence, G satisfies the hypotheses of Lemma 2.3, which implies that there is an infinite

execution fragment starting from x whose trace is limi βi . �

There are two references to automata with FIN later in the chapter. The first one is

in Theorem 4.19, which lists some sufficient conditions for establishing an implementation

relationship between two automata. The second reference appears in the discussion about the

kinds of automata that satisfy the assumptions of Theorem 7.7.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

36 THEORY OF TIMED I/O AUTOMATA

4.3.2 Feasible Timed Automata

A timed automaton A is feasible provided that for every state x of A there exists an admissible

execution fragment of A from x.

Feasibility is a basic requirement that any “reasonable” timed automaton should satisfy.

Theorem 4.19 and Lemma 6.2 establish some results about feasible automata.

4.3.3 Timing-Independent Timed Automata

A timed automaton A is said to be timing-independent provided that all its state variables are

discrete variables and its set of trajectories is exactly the set of constant-valued functions over

left-closed time intervals with left endpoint 0.

We refer to timing-independent automata later in Examples 5.12 and 7.9 and in our

discussion about Theorem 7.7.

4.4 IMPLEMENTATION RELATIONSHIPS
Timed automata A1 and A2 are comparable if they have the same external interface, that is,

if E1 = E2. If A1 and A2 are comparable, then we say that A1 implements A2, denoted by

A1 ≤ A2, if the traces of A1 are included among those of A2, that is, if tracesA1
⊆ tracesA2

.1

Other preorders between timed automata could also be used as implementation relation-

ships, for example, if A1 and A2 are comparable timed automata, we could consider

• every closed trace of A1 is a trace of A2.

• every admissible trace of A1 is a trace of A2.

• every non-Zeno trace of A1 is a trace of A2.

Theorem 4.19 Let A1 and A2 be comparable TAs.

1. If every closed trace of A1 is a trace of A2 and A2 has FIN, then A1 ≤ A2.

2. If every admissible trace of A1 is a trace of A2 and A1 is feasible, then every closed trace of

A1 is a trace of A2.

3. If every admissible trace ofA1 is a trace ofA2,A1 is feasible, andA2 has FIN, thenA1 ≤ A2.

1In [10, 39–41], definitions of the set of traces of an automaton and of one automaton implementing another are

based on closed and admissible executions only. The results we obtain in this work by using the newer, more inclusive

definition imply corresponding results for the earlier definition. For example, we have the following property: If

A1 ≤ A2, then the set of traces that arise from closed or admissible executions of A1 is a subset of the set of traces

that arise from closed or admissible executions of A2. This follows from Lemmas 4.13 and 4.14.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

TIMED AUTOMATA 37

Proof: Proof of part 1 follows from Lemma 4.18.

Proof of part 2, consider a closed trace β of A1. By feasibility of A1, we may extend β to

an admissible trace β ′ of A1. Then by assumption, β ′ is also a trace of A2. By prefix closure of

the set of traces, β is a trace of A2.

Proof of part 3 follows from parts 1 and 2. �

4.5 SIMULATION RELATIONS
In this section, we define simulation relations between timed automata. Simulation relations

may be used to show that one TA implements another, in the sense of inclusion of sets of traces.

We define two main types of simulation relations (forward and backward simulations) and three

derived notions (refinements, history relations, and prophecy relations).

Forward simulations are more commonly used than are backward simulations because

they are easier to think about and are general enough to cover most interesting situations that

arise in practice. Backward simulations are sometimes necessary, in particular, when nondeter-

ministic choices are resolved earlier in the specification than in the implementation. In proving

implementation relations, we prefer to use forward simulation relations whenever they exist,

since backward simulations are harder to think about.

4.5.1 Forward Simulations

Let A and B be comparable TAs. A forward simulation from A to B is a relation R⊆ QA × QB
satisfying the following conditions, for all states xA and xB of A and B, respectively:

1. If xA ∈ �A, then there exists a state xB ∈ �B such that xA R xB.

2. If xA R xB and α is an execution fragment of A consisting of one action surrounded by

two point trajectories, with α.fstate = xA, then B has a closed execution fragment β

with β.fstate = xB, trace(β) = trace(α), and α.lstate R β.lstate.

3. If xA R xB and α is an execution fragment of A consisting of a single closed trajectory,

with α.fstate = xA, then B has a closed execution fragment β with β.fstate = xB,

trace(β) = trace(α), and α.lstate R β.lstate.

The first condition states that for each start state of A there exists a related start state of B. The

second and third condition, which are referred to as transfer properties, assert that each discrete

transition respective trajectory of A can be simulated by a corresponding execution fragment of

B with the same trace.

Forward simulation relations induce a preorder between timed automata.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

38 THEORY OF TIMED I/O AUTOMATA

Theorem 4.20 Let A,B, and C be comparable TAs. If R1 is a forward simulation from A to B and

R2 is a forward simulation from B to C, then R2 ◦ R1 is a forward simulation from A to C.

Even though the definition of a forward simulation refers only to closed trajectories, it

also yields a correspondence for open trajectories.

Lemma 4.21 Let A and B be comparable TAs and let R be a forward simulation from A to B.

Let xA and xB be states of A and B, respectively, such that xA R xB. Let α be an execution fragment

of A from state xA consisting of a single open trajectory. Then B has an execution fragment β with

β.fstate = xB and trace(β) = trace(α).

Proof: Let τ be the single open trajectory in α. Using Axioms T1 and T2, we construct

an infinite sequence τ0 τ1 · · · of closed trajectories of A such that τ = τ0
� τ1

� · · · . Then,

working recursively, we construct a sequence β0 β1 · · · of closed execution fragments of B
such that β0.fstate = xB and, for each i , τi .lstate R βi .lstate, βi .lstate = βi+1.fstate, and

trace(τi) = trace(βi). This construction uses induction on i , using property 3 of the definition

of a forward simulation in the induction step. Now let β = β0
� β1

� · · · . By Lemma 4.7, β

is an execution fragment of B. Clearly, β.fstate = xB. By Lemma 3.9 applied to both α and β,

trace(β) = trace(α). Thus β has the required properties. �

Theorem 4.22 Let A and B be comparable TAs and let R be a forward simulation from A to

B. Let xA and xB be states of A and B, respectively, such that xA R xB. Then tracefragsA(xA) ⊆
tracefragsB(xB).

Proof: Suppose that δ is the trace of an execution fragment of A that starts from xA; we prove

that δ is also a trace of an execution fragment of B that starts from xB. Let α = τ0 a1 τ1 a2 τ2 · · ·
be an execution fragment of A such that α.fstate = xA and δ = trace(α). We consider the

following cases:

1. α is an infinite sequence. Using Axioms T1 and T2, we can write α as an infinite

concatenation α0
� α1

� α2 · · · , in which the execution fragments αi with i even consist

of a trajectory only, and the execution fragments αi with i odd consist of a single discrete

step surrounded by two point trajectories.

We define inductively a sequence β0 β1 · · · of closed execution fragments of B,

such that β0.fstate = xB, and, for all i , βi .lstate = βi+1.fstate, αi .lstate R βi .lstate,

and trace(βi) = trace(αi). We use property 3 of the definition of a simulation for the

construction of the βi ’s with i even, and property 2 for the construction of the βi ’s with

i odd. Let β = β0
� β1

� β2 · · · . By Lemma 4.7, β is an execution fragment of B.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

TIMED AUTOMATA 39

Clearly, β.fstate = xB. By Lemma 3.9, trace(β) = trace(α). Thus β has the required

properties.

2. α is a finite sequence ending with a closed trajectory. Similar to the first case.

3. α is a finite sequence ending with an open trajectory. Similar to the first case, using

Lemma 4.21. �

The next corollary states that forward simulations constitute a sound technique for proving

trace inclusion between timed automata.

Corollary 4.23 Let A and B be comparable TAs and let R be a forward simulation from A to B.

Then A ≤ B.

Proof: Suppose β ∈ tracesA. Then β ∈ tracefragsA(xA) for some start state xA ofA. Property

1 of the definition of simulation implies the existence of a start state xB of B such that xA R xB.

Then Theorem 4.22 implies that β ∈ tracefragsB(xB). Since xB is a start state of B, this implies

that β ∈ tracesB, as needed. �

Example 4.24 (Time-bounded channels). Consider two instances of the specification in

Fig. 4.1, TimedChannel(b1, M) and TimedChannel(b2, M), where b1 ≤ b2. We define

a forward simulation R from TimedChannel(b1, M) to TimedChannel(b2, M) below. If x

is a state of TimedChannel(b1, M) and y is a state of TimedChannel(b2, M), then x R y

provided that the following conditions are satisfied:

1. x(now) = y(now).

2. |x(queue)| = |y(queue)|. We use |q | to denote the length of an object q of type queue.

3. ∀i. 1 ≤ i ≤ |x(queue)|, if x(queue)(i) = [m,u1] then y(queue)(i) = [m,u2], for

some u2 with u1 ≤ u2.

We can prove that R is a forward simulation from the automaton TimedChannel(b1, M) to

the automaton TimedChannel(b2, M) by showing that R satisfies each of the three properties

in the definition of a forward simulation relation. In each automaton there is a unique initial

state that maps the variable now to 0 and queue to the empty sequence. It is obvious that the

initial states, which are identical, are related by R and so the first property is satisfied.

For the rest of the proof, we let x and y be, respectively, states of TimedChannel(b1,

M) and TimedChannel(b2, M) such that x R y. In order to show that the second property is

satisfied, we need to consider two cases, one for each discrete action that may be performed by

TimedChannel(b1, M).

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

40 THEORY OF TIMED I/O AUTOMATA

If TimedChannel(b1, M) performs a send(m) action and the state changes from x to

x′, then we need to find an execution fragment β of TimedChannel(b2,M) from y ending

in y′, such that x′ R y′ and trace(β) is the same as the trace of ℘(x) send(m) ℘(x′). The

execution fragment β = ℘(y) send(m) ℘(y′) satisfies the required conditions. This follows

from the hypothesis that x R y and the definition of R, using the fact that the effect of a

send(m) action of TimedChannel(b1, M), TimedChannel(b2, M) are, respectively, adding

the entry [m,now + b1] to x(queue), and [m,now + b2] to y(queue) where b1 ≤ b2.

If TimedChannel(b1, M) performs a receive(m) action and the state changes from x

to x′, then we need to show that receive(m) is also enabled in y and that there is an execution

fragment with the required properties that ends in a state y′ such that x′ R y′. In order to

show that receive(m) is enabled in y, we use the hypothesis that x R y, which implies that

the first element of y(queue) is of the form [m,u] for some u. The execution fragment ℘(y)

receive(m) ℘(y′) of TimedChannel(b1, M) can be shown to satisfy the required conditions.

For the third property, we consider a closed trajectory τ of TimedChannel(b1, M)

with τ.fstate = x and show that there exists a closed execution fragment β of the automaton

TimedChannel(b2, M) with β.fstate = y, trace(β) = trace(τ), and τ.lstate = β.lstate. It is

easy to check that the trajectory τ ′ ofTimedChannel(b2, M)with τ ′.fstate = y and τ ′.ltime =
τ.ltime satisfies the required conditions.

Example 4.25 (Time-bounded channel that keeps all messages). In this example we define

a variant of TimedChannel from Example 4.1 called TimedChannel2. The main difference

between TimedChannel and TimedChannel2 is that the message queue in TimedChannel2 is

implemented using a finite sequence of (message, delivery deadline) pairs queue and a pointer

ptr that points to the next element that is to be delivered. Hence, the internal variables of

TimedChannel2 consist of queue, now, and ptr. The variable ptr initially has value 1, which

indicates that it is pointing to the first element in the sequence. A send(m) action causes

messages and deadlines to be added to the sequence as in TimedChannel. A receive(m)

causes ptr to be incremented to make it point to the next element in the sequence instead of

removing the first element. This stops when predicate tests if there is a packet in the queue with

index greater than or equal to ptr and deadline equal to now. The automaton TimedChannel

can be viewed as an optimized implementation of TimedChannel2.

We define below a forward simulation R from TimedChannel to TimedChannel2. If x

is a state of TimedChannel and y is a state of TimedChannel2, then x R y provided that the

following conditions are satisfied:

1. x(now) = y(now).

2. x(queue) = y(queue)(y(ptr) · · · |y(queue)|).

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

TIMED AUTOMATA 41

a u t o m a t o n SendVal(u,r: Real, i: Index) w h e r e u > 0 ∧ (0 ≤ r < 1)

s i g n a t u r e

e x t e r n a l send(m: Real),

receive(m:Real, j: Index, c o n s t i: Index) w h e r e j
= i

s t a t e s

counter : d i s c r e t e Real := 0,

now: Real := 0,

t r a n s i t i o n s

e x t e r n a l send(m,i)

p r e

m = counter * u ∧ counter * u / (1 + r) ≤ now

e f f

counter := counter + 1

e x t e r n a l receive(m,j,i)

t r a j e c t o r i e s

s t o p when

now = counter * u / (1 - r)

e v o l v e

d(now) = 1

FIGURE 4.8: Clock synchronization

Here, we assume the sequence representation of queues and use the subsequence notation from

Chapter 2 to denote the part of the queue that starts with the index ptr and ends with the

index y(queue).

Example 4.26 (Clock synchronization). In this example, we define a forward simulation from

ClockSync(u, r, i) of Fig. 4.7 to an automaton that sends multiples of u. The specification of

this automaton, which is called SendVal(u, r, i) is given in Fig. 4.8. We assume that the Index

types in both automata are identical. The variable counter keeps track of which multiple of u

is to be sent next, and variable now contains the current time. The automaton parameter r is

used in the precondition of the send and the stopping condition of the trajectory definition to

enforce bounds on the times of occurrence of send.

The following predicate defines a forward simulation R from automaton ClockSync

(u, r, i) to automaton SendVal(u, r, i):

now ∗ (1 − r) ≤ physclock ≤ now ∗ (1 + r) ∧ counter ∗ u = nextsend ≥ physclock.

While automaton ClockSync is more intuitive as a specification, automaton SendVal is easier

for analysis purposes, since its continuous dynamics is simpler.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

42 THEORY OF TIMED I/O AUTOMATA

4.5.2 Refinements

A refinement is a simple, special case of a forward simulation, often used in practice (see for

instance [42, 43]), in which the relation between states of A and B is a partial function.

Let A and B be comparable TAs. A refinement from A to B is a partial function F from

QA to QB, satisfying the following conditions, for all states xA and xB of A and B, respectively:

1. If xA ∈ �A, then xA ∈ dom(F) and F(xA) ∈ �B.

2. If α is an execution fragment of A consisting of one action surrounded by two point

trajectories and α.fstate ∈ dom(F), then α.lstate ∈ dom(F) and B has a closed exe-

cution fragment β with β.fstate = F(α.fstate), trace(β) = trace(α), and β.lstate =
F(α.lstate).

3. If α is an execution fragment of A consisting of a single closed trajectory and

α.fstate ∈ dom(F), then α.lstate ∈ dom(F) and B has a closed execution fragment β

with β.fstate = F(α.fstate), trace(β) = trace(α), and β.lstate = F(α.lstate).

Note that, by a trivial inductive argument, the set of states for which F is defined contains all

the reachable states of A (and is thus an invariant of this automaton).

Theorem 4.27 Let A and B be two TAs and suppose R ⊆ QA × QB. Then R is a refinement from

A to B iff R is a forward simulation from A to B and R is a partial function.

The following theorem states a basic sanity property of refinements, namely closure under

composition.

Theorem 4.28 Let A,B, and C be comparable TAs. If R1 is a refinement from A to B and R2 is a

refinement from B to C, then R2 ◦ R1 is a refinement from A to C.

A weak isomorphism from A to B is a refinement F from A to B such that F−1 is a

refinement from B to A. We say that two automata A and B are weakly isomorphic, if there

exists an isomorphism from A to B (or, equivalently from B to A).

Example 4.29 (Refinements). In Example 4.24 we established a forward simulation between

two instances of the TA in Fig. 4.1, TimedChannel(b1, M) and TimedChannel(b2, M)with

b1 ≤ b2. It is not hard see that there also exists a refinement from TimedChannel(b1, M) to

TimedChannel(b2, M): just add b2 − b1 to the deadline of each packet in the queue.

In Example 4.26 we defined a forward simulation from automaton ClockSync to au-

tomaton SendVal. In this case, however, there does not exist a refinement from ClockSync

to SendVal if r > 0. The proof is by contradiction. Suppose that F is a refinement from

ClockSync to SendVal. Then F maps the initial state of ClockSync to the initial state of

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

TIMED AUTOMATA 43

SendVal. Since send actions can be simulated, the state s0 of ClockSync with nextsend = u

and physclock = 0 is mapped by F to the state of SendVal with counter = 1 and now = 0.

Consider an outgoing trajectory of s0with positive limit time to a state s1 in which the physical

clock runs maximally fast, and a trajectory with the same limit time to a state s2 in which the

physical clock runs maximally slow. Since r > 0, s1 and s2 are distinct. By the transfer prop-

erty for trajectories, both s1 and s2 are mapped onto the same state of SendVal. Now observe

that there exists a trajectory with positive limite time from s2 to s1. This trajectory cannot be

simulated in SendVal, since in this automaton there are no nontrivial trajectories from a state

to itself. Contradiction.

4.5.3 Backward Simulations

Let A and B be comparable TAs. A backward simulation from A to B is a total relation R⊆
QA × QB satisfying the following conditions, for all states xA and xB ofA andB, respectively:

1. If xA ∈ �A and xA R xB, then xB ∈ �B.

2. If xA R xB and α is an execution fragment of A with α.lstate = xA, consisting of one

discrete action surrounded by two point trajectories, then B has a closed execution

fragment β with β.lstate = xB, trace(β) = trace(α), and α.fstate R β.fstate.

3. If xA R xB and α is an execution fragment of A with α.lstate = xA, consisting of one

trajectory, then B has a closed execution fragment β with β.lstate = xB, trace(β) =
trace(α), and α.fstate R β.fstate.

Backward simulations are closed under relational composition, and hence induce a pre-

order between timed automata.

Theorem 4.30 Let A,B, and C be comparable TAs. If R1 is a backward simulation from A to B
and R2 is a backward simulation B to C, then R2 ◦ R1 is a backward simulation from A to C.

Theorem 4.31 Let A and B be comparable TAs and let R be a backward simulation from A to B.

Let xA and xB be states of A and B, respectively, such that xA R xB. Let β be the trace of a closed

execution fragment of A from yA with last state xA. Then there exists yB such that β is also the trace

of a closed execution fragment of B from yB with last state xB and yA R yB.

Proof: Fix some R, xA, xB , and β satisfying the conditions in the statement of the theorem. Let

α ∈ fragsA(yA) for some state yA of A with trace(α) = β and α.lstate = xA. By using Axioms

T1 and T2, we can write α as the concatenation of a sequence of closed execution fragments,

α = α0
� α1

� · · · αn, where each αi is either a closed trajectory or an action surrounded by two

point trajectories, αi .lstate = αi+1.fstate, for 0 ≤ i ≤ n − 1, and αn.lstate = xA.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

44 THEORY OF TIMED I/O AUTOMATA

By using the definition of a backward simulation, working backwards from αn, we can

construct an execution fragment α′ = α′
0

� α′
1

� · · · α′
n from a state yB of B such that (a)

α′.lstate = xB, (b) for all i , 0 ≤ i ≤ n, αi .fstate R α′
i .fstate and trace(α′

i) = trace(αi), and

(c) for all i , 0 ≤ i ≤ n − 1, α′
i .lstate = α′

i+1.fstate. Using Lemma 4.7, we can see that α′ is an

execution fragment of B. By Lemma 3.9, trace(α) = trace(α′) as needed. �

The next corollary states that backward simulations constitute a sound technique for

proving inclusion of closed traces between timed automata.

Corollary 4.32 Let A and B be comparable TAs and let R be a backward simulation from A to B.

Then every closed trace of A is a trace of B.

Proof: Suppose R is a backward simulation from A to B and β is a closed trace of A. Then

β = trace(α) for some closed execution α of A. Let xA and yA be the first and last states of α,

respectively. By the totality of relation R, there exists some state yB of B such that yA R yB. By

Theorem 4.31, there exists xB of B such that β is the trace of a closed execution fragment of B
from xB with last state yB and xA R xB. Property 1 of the definition of a backward simulation

relation implies that xB is a start state of B. It follows that β ∈ tracesB, as needed. �

Image-finite backward simulations constitute a sound technique for proving inclusion of

(all) traces between timed automata.

Theorem 4.33 Let A and B be comparable TAs and let R be an image-finite backward simulation

from A to B. Then tracesA ⊆ tracesB.

Proof: Let β ∈ tracesA. If β is closed, then Corollary 4.32 implies that β is a trace of B. From

now on we assume β is not closed.

Let α ∈ execsA with trace(α) = β. Note that any such α is either an infinite sequence

τ0 a1 τ1 · · · or a finite sequence τ0 a1 τ1 · · · τn, where the final trajectory τn is right open. In

either case, using Axioms T1 and T2, we can construct an infinite sequence α0 α1 · · · of closed

execution fragments such that α = α0
� α1

� · · · , where α0 is a point trajectory, each αi is either

a closed trajectory or an action surrounded by two point trajectories, and αi .lstate = αi+1.fstate
for each i , 0 ≤ i .

We construct a directed graph G whose nodes are pairs (x, i) consisting of a state of B
and an index such that (αi .lstate, x) ∈R. In G , there is an edge from (x, i) to (x′, j) exactly if

j = i + 1 and there is an α′ ∈ fragsB(x) with trace(α′) = trace(αi+1) such that α′.lstate = x′.
By image-finiteness of R and the definition of the edge set, each node has finite outdegree. By

using the definition of a backward simulation and the edge set of G , we can show that each node

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

TIMED AUTOMATA 45

(x, i) is reachable from some root node (z, 0) for some start state z of B. Since R is image-finite

there are finitely many roots of G .

The directed graph G satisfies the hypotheses of Lemma 2.3, which implies that there

is an infinite path in G starting from a root. An edge from a node (x, i) to (x′, i + 1) along

this infinite path corresponds to a closed execution fragment γi+1 of B for i , 0 ≤ i , such

that γi+1.fstate = x, γi+1.lstate = x′ and trace(γi+1) = trace(αi+1). By Lemma 4.7, γ = γ1
�

γ2
� · · · is an execution of B and by Lemma 3.9, trace(γ) = trace(γ1) � trace(γ2) · · · . Since

trace(γi+1) = trace(αi+1) for all i , 0 ≤ i , and α0 is a point trajectory, by Lemma 3.9, we get

trace(γ) = trace(α) = β. �

Example 4.34 (A backward simulation relation). This example illustrates the difference be-

tween forward and backward simulations. We consider two automata A and B and show that

a forward simulation from A to B does not exist while we exhibit a backward simulation from

A to B.

Let A and B be two comparable automata specified below. The trajectories consist of a set

of point trajectories. This implies that the automaton does not allow time to pass—everything

happens at time 0.

• XA = {stateA} and XB = {stateB}, where stateA is a discrete variable with

type(stateA) = {xA, yA, qA, sA} and stateB is a discrete variable with type(stateB) =
{xB, yB, y ′

B, qB, sB}.
• QA = val (XA) and QB = val (XB). We write xA for the valuation that maps stateA

to xA, yA for the valuation that maps stateA to yA, etc. Similarly, we write xB for the

valuation that maps stateB to xB, yB for the valuation that maps stateB to yB, etc.

• �A = {xA} and �B = {xB}.
• EA = EB = {a, b, c } and HA = HB = ∅.

• DA = {(xA, a, yA), (yA, b, qA), (yA, c , sA)} and DB = {(xB, a, yB), (xB, a, y′
B),

(yB, b, qB), (y′
B, c , sB)}.

• TA = {℘(v) | v ∈ QA} and TB = {℘(v) | v ∈ QB}.

Fig. 4.9 displays automata A and B as directed multigraphs. The nodes in the graph represent

states and the edges represent discrete transitions where a label on an edge stands for the action

involved in the transition.

An obvious candidate for a forward simulation from A to B is the relation

R = {(xA, xB), (yA, yB), (yA, y′
B), (qA, qB), (sA, sB)}.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

46 THEORY OF TIMED I/O AUTOMATA

FIGURE 4.9: Difference between forward and backward simulations

However, observe that even though yA and yB are related by R, the execution fragment

℘(yA) c ℘(sA) of A cannot be matched by any execution fragment of B starting with state

yB. Similarly, even though yA and y′
B are related by R, the execution fragment ℘(yA) b ℘(qA)

of A cannot be matched by any execution fragment of B starting with y′
B. Therefore, R is not

a forward simulation. In fact, there is no forward simulation relation from A to B: there are

finitely many possibilities for forward simulations from A to B and we see that none of them is

a forward simulation by examining all the possibilities. The main reason for this is that while

A makes the nondeterministic choice between performing b or c after performing a , B makes

its choice earlier at the same time it performs a .

There is, however, a backward simulation from A to B: the relation R defined above is a

backward simulation.

4.5.4 History Relations

A relation R ⊆ QA × QB is a history relation from A to B if R is a forward simulation from A
to B and R−1 is a refinement from B to A. History relations induce a preorder between timed

automata.

An automaton B is obtained from an automaton A by adding history variables if there

exists a set of variables X such that

1. XB = XA ∪ X and XA ∩ X = ∅,

2. QB � XA ⊆ QA, and

3. relation {(x, y) | y ∈ QB and y � XA = x} is a history relation from A to B.

The method of adding history variables is typically used to make it possible to establish an

implementation relationship using a refinement. If a refinement does not exist from a low-level

automaton to a high-level one, it can often be made to exist by adding history variables to the

low-level automaton.

Example 4.35 (Adding history variables to obtain a refinement). We cannot show that

TimedChannel is an implementation of TimedChannel2 from Example 4.25 by using a

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

TIMED AUTOMATA 47

refinement. This is because we have no way of specifying what the subsequence before the

pointer should be in TimedChannel2 when relating the states of the two automata. This ex-

ample shows how we can add history variables to TimedChannel (actually, we add just one

variable) to obtain a new automaton that is related to TimedChannel2 by a refinement.

Let log be a discrete variable whose static type is the same as the static type of queue

in TimedChannel and let the initial value of log be the empty sequence. We define a new

automaton TimedChannelH whose set of variables consists of the variables of TimedChannel

and the variablelog. The rest of the definition ofTimedChannelH is the same asTimedChannel

except for the transition definition for receive(m). A receive(m) event in TimedChannelH

not only removes the first message from the message queue but also appends this message to

the sequence contained in log.

Let X1, X2 be the set of variables and Q1, Q2 be the set of states of TimedChannel

and TimedChannelH, respectively. It is easy to verify that the relation {(x, y) | y ∈
Q2 and y � X1 = x} is a history relation from TimedChannel to TimedChannelH. This means

that TimedChannelH is obtained from TimedChannel by adding a history variable.

We now define a refinement F from TimedChannelH to TimedChannel2 as follows: In

our definition we assume the following conventions. Concatenation on the left corresponds to

putting an element on the front of a queue. Recall also that we use juxtaposition for concatenation

of sequences. If x is a state of TimedChannelH and y is a state of TimedChannel2, then F(x) = y

where

1. y(now) = x(now).

2. y(queue) = x(log) � x(queue).

3. y(ptr) = |x(log)| + 1.

Whenever an automaton B is obtained from A by adding history variables, then there

exists a history relation from A to B by definition. Theorem 4.36 states that the converse also

holds, if weakly isomorphic automata are considered.

Theorem 4.36 Let A and B be two comparable TAs. Suppose that there is a history relation from

A to B. Then, there exists a TA C that is weakly isomorphic to B and is obtained from A by adding

history variables.

Proof: Assume, without loss of generality, that XA and XB are disjoint. Let R be a history

relation from A to B. Define automaton C as follows:

• XC = XA ∪ XB.

• QC = {x ∈ val (XC) | (x � XA, x � XB) ∈ R}.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

48 THEORY OF TIMED I/O AUTOMATA

• �C = {x ∈ QC | x � XB ∈ �B}.
• EC = EB and HC = HB.

• x
a→C y iff x � XB

a→B y � XB.

• TC = {τ ∈ trajs(QC) | τ � XB ∈ TB}.

Let F : QC → QB be the projection function such that F(x) = x � XB for all x ∈ QC .

It is easy to check that F is a weak isomorphism from C to B. We verify that C is obtained

from A by adding history variables. Let XB be the variable set X required in the definition of

a history variable and let R′= {(x, y) | y ∈ QC ∧ y � XA = x}. We need to show that R′ is a

history relation from A to C.

1. R′ is a forward simulation from A to C. By definitions of the relations F , R′, and the

automaton C, R′ = F−1 ◦ R. Since F−1 is a refinement from B to C, by Theorem 4.27,

we know that it is a forward simulation from B to C. Since R is a forward simulation

from A to B, by Theorem 4.20 we have R′ is a forward simulation from A to C, as

needed.

2. R′−1 is a refinement from C to A. We use that R′−1 = R−1 ◦ F . Since F is a refinement

from C to B and R−1 is a refinement from B to A, by Theorem 4.28, we have R′−1 is

a refinement from C to A, as needed. �

In the untimed case, forward simulations are essentially the same as history relations

(or variables) combined with refinements [44, Th. 5.8]. Clearly, since history relations and

refinements are both special cases of forward simulations, and forward simulations compose,

forward simulations are at least as powerful as arbitrary combinations of history relations and

refinements. Conversely, if there is a forward simulation from A to B, then there exists an

automaton C with a history relation from A to C and a refinement from C to B. In [9] a

corresponding result is claimed for timed automata (Theorem 7.8), but the proof turns out to

be flawed. Example 7.13 of [9] constitutes a counterexample to Theorem 7.8 of [9]. Below, we

have translated the example to conform to this chapter.

Example 4.37 (Forward simulations more powerful than combination history relations and

refinements). Consider the automata A and B specified in Fig. 4.10. The two automaton

definitions are very similar. While in A an a-action is enabled when init = true and the value

of now is a rational number, in B an a-action is enabled when init = true and the value of

now is an integer. While automaton A has a perfect clock with rate 1, automaton B measures

time with a clock that may run either too slow or too fast, in an arbitrary fashion.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

TIMED AUTOMATA 49

a u t o m a t o n A a u t o m a t o n B

s i g n a t u r e s i g n a t u r e

e x t e r n a l a e x t e r n a l a

s t a t e s s t a t e s

init: Bool := true, init: Bool := true,

now: Real := 0 now: Real := 0

t r a n s i t i o n s t r a n s i t i o n s

e x t e r n a l a e x t e r n a l a

p r e p r e

init ∧ rational(now) init ∧ integer(now)

e f f e f f

init := false init := false

t r a j e c t o r i e s t r a j e c t o r i e s

e v o l v e e v o l v e

d(now) = 1 d(now) > 0

FIGURE 4.10: The power of forward simulations

It is easy to check that the predicate

natural(B.now) ∧ A.init = B.init

determines a forward simulation from A to B. However, there does not exists a timed automaton

C with a history relation from A to C and a refinement from C to B. The proof is by contradiction:

suppose C is such a timed automaton. Let x0 be a start state of C, let F be a history relation from

A to C, and let R be a refinement from C to B. Then, by the start condition of a history relation,

the start state (0, true) of A is related to x0 by F . By the start condition of a refinement, R maps

x0 to the start state (0, true) of B. Since in A there is a trajectory with limit time 1 from (0, true)

to (1, true), the transfer property for F gives that in C there is a trajectory τ with limit time 1

from x0 to some state x1 that is related by F to (1, true). Next, the transfer property for R gives

that in B there is a trajectory with limit time 1 from (0, true) to state R(x1) = (t, true), for

some t > 0. Since state (1, true) in A enables an a-action, x1 enables an execution fragment in

which an a-action takes place within 0 time. Since x1 is mapped by R to (t, true), it follows by

the transfer property for R that t in fact equals some natural number n > 0. By Axioms T1 and

T2, we can write τ as the concatenation τ0 τ1 · · · τn of n + 1 trajectories that all have limit time

1/(n + 1). Using the fact that F is a history relation and the limit times of the trajectories τi

are rational, we may infer that the last state of each trajectory τi enables an execution fragment

in which an a-action takes place within 0 time. Using the fact that R is a refinement, we may

infer that there is a trajectory in B from (0, true) to (n, true) on which there are at least n + 2

states (including the first and last state) in which an a-action is enabled. This contradicts the

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

50 THEORY OF TIMED I/O AUTOMATA

fact that in B actions a are only enabled at integer times, which implies that there are only n + 1

such states on any trajectory from (0, true) to (n, true).

4.5.5 Prophecy Relations

A relation R ⊆ QA × QB is a prophecy relation from A to B if R is a backward simulation from

A to B and R−1 is a refinement from B to A. Prophecy relations induce a preorder between

timed automata.

An automaton B is obtained from an automaton A by adding prophecy variables if there

exists a set of variables X such that

1. XB = XA ∪ X and XA ∩ X = ∅,

2. QB � XA ⊆ QA, and

3. relation {(x, y) | y ∈ QB and y � XA = x} is a prophecy relation from A to B.

Example 4.38 (Adding prophecy variables to obtain a refinement). We consider adding a

prophecy variable to the automaton A from Example 4.34. Let C be the automaton defined as

follows:

• XC = XA ∪ {v}, where v is a discrete variable with type(v) = {b, c }.
• QC = {xC, x′

C, yC, y′
C, qC, sC} such that

xC � XA = xA and xC(v) = b

x′
C � XA = xA and x′

C(v) = c

yC � XA = yA and yC(v) = b

y′
C � XA = yA and y′

C(v) = c

qC � XA = qA and qC(v) = b

sC � XA = sA and sC(v) = c

• �C = {xC, x′
C}.

• EC = {a, b, c } and HC = ∅.

• DC = {(xC, a, yC), (x′
C, a, y′

C), (yC, b, qC), (y′
C, c , sC)}.

• TC = {℘(v) | v ∈ QC}.
Fig. 4.11 displays automata A and C as directed multipgraphs.

Relation R = {(xA, xC), (xA, x′
C), (yA, yC), (yA, y′

C), (qA, qC), (sA, sC)} is a backward sim-

ulation from A to C and R−1 is a refinement. Therefore, C is obtained by adding a prophecy

variable to A. Note that there is no refinement from A to B defined in Example 4.34. However,

relation F = {(xC, xB), (x′
C, xB), (yC, yB), (y′

C, y′
B), (qC, qB), (sC, sB)} is a refinement from C toB.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

TIMED AUTOMATA 51

FIGURE 4.11: Prophecy variable

Theorem 4.39 Let A and B be two comparable TAs such that VA and VB are disjoint. Suppose that

there is a prophecy relation from A to B. Then, there exists an automaton C that is isomorphic to B
and is obtained from A by adding prophecy variables.

Proof: The proof is analogous to the proof of Theorem 4.36. We assume a backward simu-

lation relation R instead of a forward simulation relation. We construct the automaton C as in

Theorem 4.36 and verify that it is obtained from A by adding a prophecy variable. �

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-04 MOBK015-Lynch.cls April 1, 2006 17:45

52

P1: IML

MOBK015-05 MOBK015-Lynch.cls April 1, 2006 17:2

53

C H A P T E R 5

Operations on Timed Automata

In this chapter we introduce three kinds of operations on timed automata: parallel composition,

hiding, and adding lower and upper bounds for tasks.

5.1 COMPOSITION
The composition operation for timed automata allows an automaton representing a complex

system to be constructed by composing automata representing individual system components.

Our composition operation identifies external actions with the same name in different compo-

nent automata. When any component automaton performs a discrete step involving an action

a , so do all component automata that have a as an external action. The composition operator

for timed automata is simpler than it is for general hybrid automata since all the variables in a

timed automaton are internal.2 All the proofs of this section are as in [6], with simplifications

due to the absence of external variables.

5.1.1 Definitions and Basic Results

Formally, we say that timed automata A1 and A2 are compatible if H1 ∩ A2 = H2 ∩ A1 = ∅
and X1 ∩ X2 = ∅. If A1 and A2 are compatible, then their composition A1‖A2 is defined to be

the structure A = (X, Q, �, E, H,D, T) where

• X = X1 ∪ X2.

• Q = {x ∈ val (X) | x � Xi ∈ Qi , i ∈ {1, 2}}.
• � = {x ∈ Q | x � Xi ∈ �i , i ∈ {1, 2}}.
• E = E1 ∪ E2 and H = H1 ∪ H2.

• For each x, x′ ∈ Q and each a ∈ A, x
a→A x′ iff for i ∈ {1, 2}, either a ∈ Ai and

x � Xi
a→i x′ � Xi or a
∈ Ai and x � Xi = x′ � Xi .

• T ⊆ trajs(Q) is given by τ ∈ T ⇔ τ ↓ Xi ∈ Ti , i ∈ {1, 2}.
2The composition operation for general hybrid automata requires external variables to be identified as well as external

actions. When any component automaton follows a particular trajectory for an external variable v, then so do all

component automata of which v is an external variable.

P1: IML

MOBK015-05 MOBK015-Lynch.cls April 1, 2006 17:2

54 THEORY OF TIMED I/O AUTOMATA

Theorem 5.1 If A1 and A2 are timed automata, then A1‖A2 is a timed automaton.

The following “projection lemma” says that execution fragments of a composition of timed

automata project to give executions fragments of the component automata. Moreover, certain

properties of the fragments of the composition imply, or are implied by, similar properties for

the component fragments.

Lemma 5.2 Let A = A1‖A2 and let α be an execution fragment of A. Then α �(A1, X1) and

α �(A2, X2) are execution fragments of A1 and A2, respectively. Furthermore,

1. α is time bounded iff both α �(A1, X1) and α �(A2, X2) are time bounded.

2. α is admissible iff both α �(A1, X1) and α �(A2, X2) are admissible.

3. α is closed iff both α �(A1, X1) and α �(A2, X2) are closed.

4. α is non-Zeno iff both α �(A1, X1) and α �(A2, X2) are non-Zeno.

5. α is an execution iff both α �(A1, X1) and α �(A2, X2) are executions.

The following lemma says that we obtain the same result for an execution fragment α of

a composition if we first extract the trace and then restrict to one of the components, or if we

first restrict to the component and then take the trace.

Lemma 5.3 Let A = A1‖A2 and let α be an execution fragment of A. Then, for i = 1, 2,

trace(α) �(Ei , ∅) = trace(α �(Ai , Xi)).

The following theorem is a fundamental result that relates the set of traces of a composed

automaton to the sets of traces of its components. Set inclusion in one direction expresses the

idea that a trace of a composition “projects” to yield traces of the components. Set inclusion in

the other direction expresses the idea that traces of components can be “pasted” to yield a trace

of the composition.

Theorem5.4 LetA = A1‖A2. Then tracesA is exactly the set of (E, ∅)-sequences whose restrictions

to A1 and A2 are traces of A1 and A2, respectively.

That is, tracesA = {β | β is an (E, ∅)-sequence and β �(Ei , ∅) ∈ tracesAi
, i ∈ {1, 2}}.

Notation: The compatibility conditions for composition require the set of internal variables

of each automaton to be disjoint from the set of internal variables of all the other automata in

the composition. We use a general scheme to disambiguate the internal variables of components

in order to avoid possible name clashes that can violate the compatibility conditions. If A is the

name of an automaton and v is an internal variable of A, then we refer to this variable as A.v

in the composite automaton. But if no confusion is possible, we write v rather than A.v.

P1: IML

MOBK015-05 MOBK015-Lynch.cls April 1, 2006 17:2

OPERATIONS ON TIMED AUTOMATA 55

Example 5.5 (Periodic sending process with timeouts). Let C be the composition of three

automata from Examples 4.1, 4.2, and 4.4:

C = PeriodicSend(u1, M) ‖ TimedChannel(b, M) ‖ Timeout(u2, M)

where M = {m1, . . . , mn} and b + u1 < u2. In a setting where b < u1, the following sequence

is a trace of C:

α = u1 send(m1) b receive(m1) u1 − b send(m2) b receive(m2) u1 − b · · ·
where t denotes the trace with as domain [0, t] and as range the set consisting of the function

with the empty domain. The following invariant states that C never performs a timeout action.

Invariant 1: In any reachable state x of C, x(suspected) = false.

In order to prove this invariant we can use auxiliary invariants for the component au-

tomata, such as the one established in Example 4.11, and an auxiliary global invariant such as

the one below, which establishes the fact that every message is delivered before the variable

Timeout.clock reaches the point at which a timeout action occurs.

Invariant 2: In any reachable state x of C,

1. if x(queue) is not empty then there is a packet p such that

p ∈ x(queue) and p.deadline − x(now) < u2 − x(Timeout.clock).

2. if x(queue) is empty then

u1 − x(PeriodicSend.clock) + b < u2 − x(Timeout.clock).

Example 5.6 (Periodic sending process with failures and timeouts). In this example, we

consider a composite automaton defined exactly like the one in Example 5.5 except that

the automaton PeriodicSend(ul,M) is replaced with PeriodicSend(ul,M), the periodic

sending process with failures. Let C = PeriodicSend2(ul,M) ‖ TimedChannel(b,M) ‖
Timeout(u2,M). The following sequence is a trace of C:

u1 send(m1) b receive(m1) b fail u2 − b timeout ∞.

According to this sample trace, the first message sent by the periodic sending process is received

exactly b time units after it is sent. The periodic sending process fails 2 × b time units after

sending its first message. The timeout process performs a timeout since no second message

arrives within the next u2 time units after the receipt of the first message.

The following invariant states that a timeout performed by C can be used to conclude

that the sender process has failed. We again assume that b + u1 < u2.

P1: IML

MOBK015-05 MOBK015-Lynch.cls April 1, 2006 17:2

56 THEORY OF TIMED I/O AUTOMATA

Invariant 1: In any reachable state x of C ,

x(Timeout.suspected) ⇒ x(PeriodicSend2.failed).

The automaton C is guaranteed to perform a timeout to signal the failure of a process,

within a specified amount of time after the occurrence of a fail event. The following is a formal

statement of this property.

Let α be an admissible execution of C in which a fail event occurs. Let t be the point

in time at which the first fail event occurs in α. Then a timeout event occurs in α in the

interval [t + u2 - u1, t + b + u2].

Example 5.7 (Clock synchronization). In this example we consider the composition of three

clock synchronization automata with six time-bounded channel automata. A graphical repre-

sentation of the composite automaton is given in Fig. 5.1. The abbreviation CS i represents the

automaton ClockSync from Example 4.6. The abbreviation TC i, j represents the automaton

TimedChannel from Example 4.1, the time-bounded channel with maximum delay b, but

with the send(m) and receive(m) actions renamed to send(m,i) and receive(m,i,j),

CS2

TC1,3

TC3,1

TC2,3

CS3

TC3,2

CS1 TC1,2

TC2,1

receive(m)2,1 send(m)2

send(m)1 receive(m)1,2

send(m)1
send(m)2

receive(m)3,1 receive(m)3,2

receive(m)2,3

receive(m)1,3

send(m)3send(m)3

FIGURE 5.1: Clock synchronization network.

P1: IML

MOBK015-05 MOBK015-Lynch.cls April 1, 2006 17:2

OPERATIONS ON TIMED AUTOMATA 57

respectively, to enable communication of real-valued messages from ClockSync to ClockSync.

Let

C = CS 1 ‖CS 2 ‖CS 3 ‖TC 1,2 ‖TC 2,1 ‖TC 1,3 ‖TC 3,1 ‖TC 2,3 ‖TC 3,2.

A physical clock diverges from real time at the largest rate when it evolves with rate (1 + r) or

(1 - r). For example, if a physical clock evolves with rate 1 + r, then at time t, its value is t

× (1 + r). Hence, the largest possible difference between a physical clock and the real time

is (t × r). This property is stated by the following invariant.

Invariant 1: In any reachable state x of C, at any time t ∈ T, for any i ∈ {1, 2, 3},
|x(CS i .physclock) − t| ≤ t × r.

Two physical clocks in C diverge at the largest rate when one evolves with rate (1 + r)

and the other with (1 - r). It follows from Invariant 1 that at any time t the largest possible

difference between the physical clock values for two processes is 2 × t × r. This property is

formalized by the following invariant.

Invariant 2: In any reachable state x of C , at any time t ∈ T, for any i, j ∈ {1, 2, 3},
|x(CS i .physclock) − x(CS j .physclock)| ≤ 2 × t × r.

The following invariant states that in any reachable state there exists a process j such that

the logical clock of each process in the system is smaller than or equal to the physical clock of j .

This follows from the definition of a logical clock and the fact that physical clocks always increase.

Invariant3: In any reachable state x ofC, there exists j ∈ {1, 2, 3} such that for all i ∈ {1, 2, 3},
x(CS i .logclock) ≤ x(CS j .physclock).

The following invariant states that in any reachable state there exists a process j such that

the logical clock of each process in the system is larger than or equal to the physical clock of j .

This follows from the definition of a logical clock.

Invariant4: In any reachable state x ofC, there exists j ∈ {1, 2, 3} such that for all i ∈ {1, 2, 3},
x(CS i .logclock) ≥ x(CS j .physclock).

Invariants 3 and 4 together are called validity properties. They express the condition

that all the logical clocks remain in an envelope bounded by the maximum and minimum

physical clock values in the system. The following invariant formalizes the property that all the

logical clocks at a given time lie within the envelope formed by the largest and the smallest

physical clock values in the system. It follows from Invariants 1, 3, and 4 that any point in this

envelope can diverge from real time t by at most t × r time units.

P1: IML

MOBK015-05 MOBK015-Lynch.cls April 1, 2006 17:2

58 THEORY OF TIMED I/O AUTOMATA

Invariant 5: In any reachable state x of C, at any time t ∈ T, for any i ∈ {1, 2, 3},
|x(CS i .logclock) − t| ≤ t × r.

Finally, we state a property about the agreement of logical clocks in C. It says that the

difference between two logical clocks is always bounded by a constant (which depends on the

message-sending interval and the bounds on clock drift and message delay).

Invariant 6: In any reachable state x of C, for all i, j ∈ {1, 2, 3},
|x(CS i .logclock) − x(CS j .logclock)| ≤ u + (b × (1 + r)).

To see why Invariant 6 holds, fix j to be a process with the largest physical clock in x,

and fix i to be any other process. Let vj , vi be the logical clock values of j and i respectively

in state x. Note that vj is also the physical clock value of j in x. By Invariant 3, we know that

vi ≤ vj . To show Invariant 6, it suffices to show that vj − vi ≤ u + (b × (1 + r)).

Let α be a finite execution that leads to state x. There are two cases to consider.

1. Some message sent by j arrives at i in α. Consider the last such message and let v1 be the

value that it contains. Let v2 be the newly adjusted logical clock value of i immediately

after the message arrives. We know that vi ≥ v2 ≥ v1.

If j sends a later message to i in α, then it sends the next later message when

its physical clock has value v1 + u. By assumption, this message does not arrive at i .

Therefore, the real time that elapses after sending it must be at most b. It follows that

the physical clock increase of j since sending this message is at most b × (1 + r) and

so vj ≤ v1 + u + b × (1 + r). On the other hand, if j does not send a later message

to i in α, then vj ≤ v1 + u. In either case, we have vj ≤ v1 + u + b × (1 + r). Since

vi ≥ v1, we have vj − vi ≤ u + b × (1 + r), as needed for Invariant 6.

2. No message sent by j arrives at i in α. Since the first send occurs at time 0 and b

is the largest possible communication delay, the fact that i has not received the first

message sent by j at time 0 implies that t ≤ b. Since both clocks start at 0, we have

vj ≤ b × (1 + r) and vi ≥ 0. Therefore, vj − vi ≤ u + b × (1 + r), which suffices for

Invariant 6.

5.1.2 Substitutivity Results

Theorem 5.4, which relates the set of traces of a composed automaton to the set of traces of

component automata, is fundamental for compositional reasoning. We now introduce another

important class of results, substitutivity results, that are useful for decomposing verification of

composite automata. These results are best understood by viewing one of the components of a

composition as the system and the other as the environment with which the system interacts.

P1: IML

MOBK015-05 MOBK015-Lynch.cls April 1, 2006 17:2

OPERATIONS ON TIMED AUTOMATA 59

The following result states that if a TA A1 can be shown to implement another one A2,

with no assumptions about their environments, then A1 can be shown to implement A2 in a

given environment B.

Theorem 5.8 Suppose A1, A2, and B are TAs, A1 and A2 have the same external actions, and each

of A1 and A2 is compatible with B. If A1 ≤ A2, then A1‖B ≤ A2‖B.

Commutativity of the composition operation together with repeated application of The-

orem 5.8 gives the following corollary.

Corollary 5.9 Suppose A1, A2, B1, and B2 are TAs, A1 and A2 have the same external actions, B1

and B2 have the same external actions, and each of A1 and A2 is compatible with each of B1 and B2.

If A1 ≤ A2 and B1 ≤ B2, then A1‖B1 ≤ A2‖B2.

We can strengthen Corollary 5.9 slightly by the following corollary: if A1 implements

A2 in an environment B2, then A1 composed with an environment that is more restrictive than

B2 (whose set of external behaviors is smaller than that of B2) implements A2 composed with

B2.

Corollary 5.10 Suppose A1, A2, B1, and B2 are TAs, A1 and A2 have the same external actions,

B1 and B2 have the same external actions, and each of A1 and A2 is compatible with each of B1 and

B2. If A1‖B2 ≤ A2‖B2 and B1 ≤ B2, then A1‖B1 ≤ A2‖B2.

Proof: Let β ∈ tracesA1‖B1
. By Theorem 5.4, β �(EA1

, ∅) ∈ tracesA1
and β �(EB1

, ∅) ∈
tracesB1

. Since B1 ≤ B2, β �(EB1
, ∅) ∈ tracesB2

. Since B1 and B2 have the same exter-

nal actions, it follows that β �(EB2
, ∅) ∈ tracesB2

. We have β �(EA1
, ∅) ∈ tracesA1

and

β �(EB2
, ∅) ∈ tracesB2

. By Theorem 5.4, β ∈ tracesA1‖B2
. Since A1‖B2 ≤ A2‖B2 by assump-

tion, β ∈ tracesA2‖B2
, as needed. �

For other preorders, we also get substitutivity results, for example:

Theorem 5.11 Suppose A1, A2, and B are TAs, A1 and A2 have the same external actions, and

each of A1 and A2 is compatible with B.

1. If every closed trace of A1 is a trace of A2, then every closed trace of A1‖B is a trace of A2‖B.

2. If every admissible trace of A1 is a trace of A2, then every admissible trace of A1‖B is a trace

of A2‖B.

3. If every non-Zeno trace of A1 is a trace of A2, then every non-Zeno trace of A1‖B is a trace

of A2‖B.

P1: IML

MOBK015-05 MOBK015-Lynch.cls April 1, 2006 17:2

60 THEORY OF TIMED I/O AUTOMATA

Example 5.12 (A counterexample for a desirable substitutivity theorem). Suppose A1 and A2

have the same external actions, B1 and B2 have the same external actions, and that each of A1

and A2 is compatible with each of B1 and B2. If we view A2 and B2 as specifications and want to

prove that A1‖B1 ≤ A2‖B2, it would be useful to have a theorem that says if A1‖B2 ≤ A2‖B2

and A2‖B1 ≤ A2‖B2 then A1‖B1 ≤ A2‖B2. That is, if A1 implements A2 in the context of B2

and B1 implements B2 in the context of A2, we would like to conclude that A1‖B1 implements

A2‖B2. We show by means of a counterexample that it is impossible to prove such a theorem.

The problem arises with the infinite behaviors of A1‖B2.

As examples for A1,B1,A2, and B2, consider, respectively, the automata CatchUpA,

CatchUpB, BoundedAlternateA, and BoundedAlternateB in Figs. 5.2 and 5.3. All automata

have the same set of actions, consisting of the external actions a and b. CatchUpA can perform

an arbitrary number of b actions and can perform an a provided that counta ≤ countb and

one time unit has elapsed since the occurrence of the last action. CatchUpA allows counta to

increase to one more than countb. CatchUpB can perform an arbitrary number of a actions,

and can perform a b provided that counta is at least one more than countb. CatchUpB allows

countb to reach counta.

BoundedAlternateA has an infinite number of start states, each giving a different finite

bound on the number of a actions it can perform. Similarly, BoundedAlternateB has an

infinite number of start states, each giving a different finite bound on the number of b actions

it can perform. Note that the absence of trajectory definitions in the specifications of these

automata imply that they are timing-independent. That is, there is no constraint on the timing

of actions.

The automata CatchUpA and CatchUpB strictly alternate a’s and b’s until a maxi-

mum count is reached, when put in the context of, respectively, BoundedAlternateA and

BoundedAlternateB. Hence, on the one hand

(CatchUpA‖BoundedAlternateB) ≤ (BoundedAlternateA‖BoundedAlternateB)

and

(BoundedAlternateA‖CatchUpB) ≤ (BoundedAlternateA‖BoundedAlternateB).

On the other hand, (CatchUpA‖CatchUpB) can perform an infinite sequence of alternating a

and b actions, which is not allowed by (BoundedAlternateA‖BoundedAlternateB). Hence,

(CatchUpA‖CatchUpB) does not implement (BoundedAlternateA‖BoundedAlternateB).

In Chapter 7, we revisit the substitutivity issue and prove Theorem 7.8, a variant of

the desirable theorem considered in the above example, by assuming certain conditions on the

environments A2 and B2.

P1: IML

MOBK015-05 MOBK015-Lynch.cls April 1, 2006 17:2

OPERATIONS ON TIMED AUTOMATA 61

a u t o m a t o n CatchUpA

s i g n a t u r e

e x t e r n a l a, b

s t a t e s

counta : Nat := 0, countb : Nat := 0,

now: Real := 0, next: d i s c r e t e Real := 0

t r a n s i t i o n s

e x t e r n a l a e x t e r n a l b

p r e e f f

(counta ≤ countb) countb := countb + 1;

∧ (now = next) next := now + 1

e f f

counta := counta + 1;

next := now + 1

t r a j e c t o r i e s

s t o p when

now = next

e v o l v e

d(now) = 1

a u t o m a t o n CatchUpB

s i g n a t u r e

e x t e r n a l a, b

s t a t e s

counta : Nat := 0, countb : Nat := 0,

now: Real := 0, next: d i s c r e t e Real := 0

t r a n s i t i o n s

e x t e r n a l a e x t e r n a l b

e f f p r e

counta := counta + 1 (countb + 1) ≤ counta

next := now + 1 ∧ now = next

e f f

countb := countb + 1;

next := now + 1

t r a j e c t o r i e s

s t o p when

now = next

e v o l v e

d(now) = 1

FIGURE 5.2: CatchUpA and CatchUpB.

P1: IML

MOBK015-05 MOBK015-Lynch.cls April 1, 2006 17:2

62 THEORY OF TIMED I/O AUTOMATA

a u t o m a t o n BoundedAlternateA

s i g n a t u r e

e x t e r n a l a, b

s t a t e s

myturn : Bool := true,

maxout : Nat

t r a n s i t i o n s

e x t e r n a l a e x t e r n a l b

p r e e f f

myturn ∧ (maxout > 0) myturn := true

e f f

myturn := false;

maxout := maxout - 1

a u t o m a t o n BoundedAlternateB

s i g n a t u r e

e x t e r n a l a, b

s t a t e s

myturn : Bool := false,

maxout : Nat

t r a n s i t i o n s

e x t e r n a l a e x t e r n a l b

e f f p r e

myturn := true myturn ∧ (maxout > 0)

e f f

myturn := false;

maxout := maxout - 1

FIGURE 5.3: BoundedAlternateA and BoundedAlternateB.

5.2 HIDING
We now define an operation that “hides” external actions of a timed automaton by reclassifying

them as internal actions. This prevents them from being used for further communication and

means that they are no longer included in traces. The operation is parametrized by a set of ex-

ternal actions: If A is a timed automaton E ⊆ EA, then ActHide(E,A) is the timed automaton

B that is equal to A except that EB = EA − E and HB = HA ∪ E.

Lemma 5.13 If E ⊆ EA, then ActHide(E,A) is a TA.

The following lemma characterizes the traces of the automaton that results from applying

a hiding operation.

P1: IML

MOBK015-05 MOBK015-Lynch.cls April 1, 2006 17:2

OPERATIONS ON TIMED AUTOMATA 63

Lemma 5.14 If A is a TA and E ⊆ EA, then tracesActHide(E,A) = {β �(EA − E, ∅) | β ∈
tracesA}.

Using Lemma 5.14, it is straightforward to establish that the hiding operation respects

the implementation relation.

Theorem 5.15 Suppose A and B are TAs with A ≤ B, and suppose E ⊆ EA. Then

ActHide(E,A) ≤ ActHide(E,B).

Example 5.16 (Clock and manager). Consider a simple system consisting of a “clock” and

a “manager”. The clock ticks once every [c1, c2] time units and the manager issues a “grant”

within b time units after counting k > 0 ticks. We assume 0 ≤ b < c1 ≤ c2. The problem is

to prove upper and lower bounds on the time between successive grant actions.

Fig. 5.4 gives a formal specification of the clock in terms of the TA Clock(c1, c2) and

the manager in terms of the TA Manager(k, b). The full system with the tick actions hidden

can be defined by

System = ActHide({tick}, Clock‖Manager).

Consider the automaton Specification displayed in Fig. 5.5. This automaton is equal to

Clock, except for some renamings. We claim that the manager issues a grant once every [c1 ∗
k − b, c2 ∗ k + b] time units. An equivalent formulation of this claim is

System ≤ Specification(c1 ∗ k − b, c2 ∗ k + b).

In order to prove the claim, one may first establish that the predicate

Inv
�= 0 ≤ x ≤ c2 ∧ (count = 0 ⇒ x = y ≤ b) ∧ 0 ≤ count ≤ k

defines an invariant of System, and use this to verify that the conjunction of Inv and

c1 ∗ (k − count) − b ≤ z − x ≤ c2 ∗ (k − count)

defines a forward simulation from System to Specification(c1 ∗ k − b, c2 ∗ k + b).

5.3 EXTENDING TIMED AUTOMATA WITH BOUNDS
In this section, we define a new class of automata, “TA with bounds” where the basic definition

of a timed automaton is extended with the notion of a task and a pair of bounds (a lower and

an upper bound) for each task. We then define an operation that transforms a given TA with

bounds to another TA. This operation supports specifying a system by thinking in terms of

tasks and bounds as in the timed automata of Merritt et al. [7] and the phase transition systems

of Maler et al. [12].

P1: IML

MOBK015-05 MOBK015-Lynch.cls April 1, 2006 17:2

64 THEORY OF TIMED I/O AUTOMATA

a u t o m a t o n Clock(c1,c2: Real) w h e r e 0 < c1 ∧ c1 ≤ c2

s i g n a t u r e

e x t e r n a l tick

s t a t e s

x: Real := 0

t r a n s i t i o n s

e x t e r n a l tick

p r e

x ≥ c1

e f f

x := 0

t r a j e c t o r i e s

s t o p when

x = c2

e v o l v e

d(x) = 1

a u t o m a t o n Manager(k: Int, b: Real) w h e r e b > 0 ∧ k > 0

s i g n a t u r e

e x t e r n a l tick, grant

s t a t e s

y: Real := 0,

count : Int := k

t r a n s i t i o n s

e x t e r n a l tick

e f f

count := count - 1;

i f count = 0 t h e n y := 0

e x t e r n a l grant

p r e

count = 0

e f f

count := k

t r a j e c t o r i e s

s t o p when

count = 0 ∧ y = b

e v o l v e

d(y) = 1

FIGURE 5.4: Automata Clock and Manager.

P1: IML

MOBK015-05 MOBK015-Lynch.cls April 1, 2006 17:2

OPERATIONS ON TIMED AUTOMATA 65

a u t o m a t o n Specification(lb,ub: Real) w h e r e 0 < lb ∧ lb ≤ ub

s i g n a t u r e

e x t e r n a l grant

s t a t e s

z: Real := 0

t r a n s i t i o n s

e x t e r n a l grant

p r e

z ≥ lb

e f f

z := 0

t r a j e c t o r i e s

s t o p when

z = ub

e v o l v e

d(z) = 1

FIGURE 5.5: Automaton Specification.

In defining the operation for extending timed automata with bounds, we restrict attention

to a class of automata where the enabling and disabling of actions during trajectories follow

certain rules. Specifically, our operation is defined on automata in which each action is enabled

or disabled throughout an entire trajectory, or becomes enabled once during a trajectory and

remains so until the end of that trajectory. The given restrictions ensure that the result of

applying the operation to a TA is another TA and that the resulting TA satisfies the restrictions.

Let A be a TA, C a set of actions of A, and T the set of trajectories of A. We say that T is

well formed with respect to C if for each τ ∈ T and for each t ∈ dom(τ) both of the following

conditions hold:

1. (Stability) If C is enabled in τ (t), then for all t′ ∈ dom(τ) with t < t′, C is enabled in

τ (t′).

2. (Left-closedness) If C is not enabled in τ (t), then there exists a t′ ∈ dom(τ) with t < t′

such that C is not enabled in τ (t′).

A TA with bounds, A = (B, C, l, u) consists of

• a timed automaton B = (X, Q, �, E, H,D, T).

• a set C ⊆ E ∪ H of actions called a task; we assume that T is well formed with respect

to C .

• a lower time bound l ∈ R≥0 and an upper time bound u ∈ R≥0 ∪ {∞} with l ≤ u.

P1: IML

MOBK015-05 MOBK015-Lynch.cls April 1, 2006 17:2

66 THEORY OF TIMED I/O AUTOMATA

Lower and upper bounds are used to specify how much time is allowed to pass between

the enabling and the performance of an action. If l is the lower bound for a task C , then an

action in C must remain enabled at least for l time units before being performed. If u is the

upper bound for a task C , then an action in C can remain enabled at most u time units without

being performed: it must either be performed or become disabled within u time units.

We now define an operation Extend, which transforms a TA A with bounds

to another TA A′ that incorporates the new bounds, in addition to the timing con-

straints already present in A. Let A = (B, C, l, u) be a TA with bounds, where

B = (X, Q, �, E, H,D, T). Then Extend(A) is the TA A′ = (X′, Q′, �′, E′, H′,D′, T ′)
where

• X′ = X ∪ {now ,first, last}, where

1. now ,first , and last are new variables that do not appear in X.

2. now is an analog variable such that type(now) = R.

3. first and last are discrete variables where type(first) = R and type(last) = R ∪
{∞}.

• Q′ = {x ∈ val (X′) | x � X ∈ Q}.
• �′ consists of all the states x ∈ Q′ that satisfy the following conditions:

1. x � X ∈ �.

2. x(now) = 0.

3. x(first) =
{

l if C is enabled in x � X,

0 otherwise.

x(last) =
{

u if C is enabled in x � X,

∞ otherwise.

• E′ = E and H′ = H. We write A′ �= E′ ∪ H′.

• if a ∈ A′, then (x, a, x′) ∈ D′ exactly if all of the following conditions hold:

1. (x � X)
a→A (x′ � X).

2. x′(now) = x(now).

3. (a) If a ∈ C , then x(first) ≤ x(now).

(b) If C is enabled both in x � X and x′ � X and a /∈ C , then x(first) = x′(first) and

x(last) = x′(last).

(c) If C is enabled in x′ � X and either C is not enabled in x � X or a ∈ C , then

x′(first) = x(now) + l and x′(last) = x(now) + u.

(d) If C is not enabled in x′ � X, then x′(first) = 0 and x′(last) = ∞.

P1: IML

MOBK015-05 MOBK015-Lynch.cls April 1, 2006 17:2

OPERATIONS ON TIMED AUTOMATA 67

• T ′ is a set that consists of all τ ∈ trajs(Q ′) that satisfy the following conditions:

1. (τ ↓ X) ∈ T .

2. d (now) = 1.

3. (a) If for all t ∈ dom(τ), C is enabled in τ ↓ X(t) then first and last are constant

throughout τ .

(b) If for all t ∈ dom(τ), C is disabled in τ ↓ X(t) then first and last are constant

throughout τ .

(c) If for all t′ ∈ [0, t), C is disabled in τ (t′) and for all t′ ∈ dom(τ) − [0, t), C is

enabled in τ (t′) then

i. first and last are constant in [0, t).

ii. τ (t)(first) = τ (t)(now) + l and τ (t)(last) = τ (t)(now) + u.

iii. first and last are constant in dom(τ) − [0, t).

(d) now ≤ last .

The transformation is based on the idea of augmenting the state of the original automaton

with a variable to represent current time (now) and the earliest time (first) and the latest time

(last) a task can be performed. All these variables represent time in absolute terms. Item 3(a)

in the definition of D′ expresses the new lower bound constraint and Item 3(d) in the definition

of T ′ the new upper bound constraint.

Let A be a TA with bounds (B, C, l, u). In a start state x of Extend(A), the variables

first and last are initialized to l and u, respectively, if C is enabled in x. If C is not enabled in

x, then first is set to 0 and last is set to ∞. Step 3(c) in the definition of D′ and Step 3(c) in

the definition of T ′ show how the variables first and last are updated. When C becomes newly

enabled by a discrete transition or when a C action leads to a state in which C is enabled, first
is set to now + l and last is set to now + u. The variables first and last are updated similarly

when C becomes newly enabled in the course of a trajectory.

Theorem 5.17 Suppose that A = (B, C, l, u) is a TA with bounds. Then Extend(A) is a TA with

a set of trajectories that is well formed with respect to C.

Proof: The proof follows from the definitions of TA and the operation Extend. Step 3(a)

in the definition of D′ adds a new lower bound constraint, which makes enabling start at

some particular time. Step 3(b) in the definition of T ′, adds a new upper bound constraint,

which stops trajectories at a particular time and does not add any enabling or disabling to

trajectories. �

P1: IML

MOBK015-05 MOBK015-Lynch.cls April 1, 2006 17:2

68 THEORY OF TIMED I/O AUTOMATA

In the rest of this section, we sometimes speak of variables, states, and traces of a TA

with bounds. If A = (B, C, l, u) is a TA with bounds, variables, states, and traces of A refer to,

respectively, the states and the traces of the underlying automaton B.

Theorem 5.18 Suppose A is a TA with bounds. Then tracesExtend(A) ⊆ tracesA.

Proof: Let F : Q′ → Q be defined as follows: F(x) = x � X, where X is the set of internal

variables ofA. It is easy to check that F is a refinement from Extend(A) toA. By Theorem 4.27

and Corollary 4.23, we conclude that tracesExtend(A) ⊆ tracesA. �

Lemma 5.19 Suppose that A = (B, C, l, u) is a TA with bounds. For any reachable state x of

Extend(A), if C is enabled in x � X in A, then x(last) ≤ x(now) + u.

Proof: Consider a closed execution α of Extend(A). Using Axioms T1 and T2 for trajectories,

we can write α as a concatenation of closed execution fragments α0
� α1

� · · · � αk , where α0

is a point trajectory and each αi for i ≥ 1 is either a trajectory or a discrete action surrounded

by two point trajectories such that for all 0 ≤ i ≤ k − 1, αi .lstate = αi+1.fstate. We prove the

invariant by induction on the length k of the sequence of execution fragments.

For the base case, suppose that C is enabled in α0.fstate � X. Since α is an execution, we

know that α0.fstate is a start state of Extend(A). By definition of Extend(A), α0.fstate(last) =
u. Since α0.fstate(now) = 0, α0.fstate(last) ≤ α0.fstate(now) + u, as required.

For the inductive step, we assume that the property is true for the sequence α0
�

α1
� · · · � αk , and show that it is true in the sequence αk+1 in α0

� α1
� · · · � αk

� αk+1.

There are two cases to consider depending on whether αk+1 is a discrete action surrounded by

two point trajectories or a trajectory.

1. αk+1 is an action a surrounded by two point trajectories ℘(y) and ℘(y′). Suppose that

C is enabled in y′ � X in A. There are two subcases to consider:

a) C is enabled in y � X and a /∈ C . Then, y′(last) = y(last) and y′(now) = y(now).

By inductive hypothesis, y(last) ≤ y(now) + u. Therefore, y′(last) ≤ y′(now) + u,

as needed.

b) C is disabled in y � X or a ∈ C . Then, by definition of Extend(A), y′(last) =
y′(now) + u, which suffices.

2. αk+1 is a trajectory. Suppose that C is enabled in αk+1.lstate � X in A. There are two

subcases to consider:

a) C is enabled in αk+1.fstate � X in A. By inductive hypothesis αk+1.fstate(last) ≤
αk+1.fstate(now) + u. By the well-formedness assumption, we know that C must be

P1: IML

MOBK015-05 MOBK015-Lynch.cls April 1, 2006 17:2

OPERATIONS ON TIMED AUTOMATA 69

enabled throughout αk+1 and by definition of Extend(A) last is constant throughout

αk+1. Since the value of now increases, it is easy to see that αk+1.lstate(last) ≤
αk+1.lstate(now) + u.

b) C is disabled in αk+1.fstate � X in A. Then, since it is enabled in αk+1.lstate � X by

the well-formedness assumption, it becomes enabled at some point t in the domain of

αk+1 and remains enabled thereafter. Therefore, αk+1(t)(last) = αk+1(t)(now) + u,

by definition of Extend(A). Since last remains constant after it is set and the value

of now increases, αk+1.lstate(last) ≤ αk+1.lstate(now) + u holds. �

The following theorem shows that the executions of an automaton obtained by applying

the transformation Extend to a TA with bounds respect the time bounds specified by the lower

bound l and the upper bound u.

Theorem 5.20 Let A = (B, C, l, u) be a TA with bounds. Then,

1. there does not exist a closed execution fragment α of Extend(A) from a reachable state, where

α.ltime > u, C is enabled in A in all the states of α �(A, X) and no action in C occurs in α.

2. there does not exist a closed execution fragment α of Extend(A) from a reachable state, where

α.ltime < l , such that C is not enabled in A in the first state of α �(A, X) and an action in

C occurs in α.

Proof:

1. Suppose, for the sake of contradiction, that there exists a closed execution fragment

α = τ0 a1τ1 a2 . . . τn of Extend(A) from a reachable state, where α.ltime > u, C is

enabled in A in all the states of α �(A, X), and none of the ai in α is in C . By definition

of trajectories for Extend(A) it must be the case that α.lstate(now) ≤ α.lstate(last).

Since C is enabled in A in all states in α, by Lemma 5.19 we have

α.fstate(last) ≤ α.fstate(now) + u. By definition of Extend(A), last remains

constant throughout α; therefore, α.lstate(last) = α.fstate(last). Since α.fstate
(last) ≤ α.fstate(now) + u, it follows that α.lstate(last) ≤ α.fstate(now) + u. By

definition of α, we have α.lstate(now) = α.fstate(now) + α.ltime. It follows that

α.fstate(now) + α.ltime ≤ α.fstate(now) + u. This implies α.ltime ≤ u. But this

gives us the needed contradiction since α.ltime > u.

2. We assume that α is a closed execution fragment of Extend(A) from a reachable state

where α.ltime < l , such that C is not enabled in A in the first state of α and an action

in C occurs in α. Let (x, a, x′) be the first discrete transition of Extend(A) in α such

that a ∈ C . We show that the condition x(first) ≤ x(now), which has to hold for the

discrete transition to occur, cannot be true, hence arrive at a contradiction.

P1: IML

MOBK015-05 MOBK015-Lynch.cls April 1, 2006 17:2

70 THEORY OF TIMED I/O AUTOMATA

By Theorem 5.17, the set of trajectories of Extend(A) is well formed with respect to

C . Therefore, C can become enabled by either a discrete transition or during a trajectory,

and remains enabled until the occurrence of (x, a, x′).

a) C becomes enabled by a discrete transition and remains enabled in A until the

occurrence of (x, a, x′). Let (y, b, y′) be the discrete transition of A that enables C .

From step 3(c) in the definition of D′ we know that first is set to y(now) + l when C

becomes enabled. From step 3(b) in the definition ofD′ and step 3(a) in the definition

of T ′, we know that it remains constant so that x(first) = y(now) + l . Since (x, a, x′)
is a discrete transition of Extend(A), it must be the case that x(first) ≤ x(now). Since

x(now) ≤ y(now) + α.ltime and x(first) = y(now) + l it follows that y(now) + l ≤
y(now) + α.ltime. But we know by assumption that α.ltime < l , which gives the

needed contradiction.

b) C becomes enabled at some point in the course of a trajectory τ and remains enabled

in A until the occurrence of (x, a, x′). Let y be a state in the range of τ where

C becomes enabled. From step 3(c) in the definition of T ′ we know that first is

set to y(now) + l when C becomes enabled and it remains constant in τ so that

x(first) = y(now) + l . From step 3(b) in the definition of D′ and step 3(a) in the

definition ofT ′, we know that first remains constant until the occurrence of (x, a, x′).
Since (x, a, x′) is a discrete transition of Extend(A), it must be the case that x(first) ≤
x(now). Since x(now) ≤ y(now) + α.ltime and x(first) = y(now) + l it follows that

y(now) + l ≤ y(now) + α.ltime. But we know by assumption that α.ltime < l ,

which gives the needed contradiction.

Example 5.21 (Fischer’s algorithm specified using tasks and bounds). In Example 4.5 we

presented the specification of Fischer’s mutual exclusion algorithm as a TA. This example

illustrates an alternative way of specifying the same algorithm by using a TA with bounds.

Recall that, formally, we define a TA with bounds as a TA augmented with a single

task along with lower and upper bounds for that task. The automaton in Fig. 5.6 is, however,

augmented with a set of tasks and bounds (we omit from the figure those transition definitions

that are the same as in Example 4.5). This is for notational convenience and the automaton

in Fig. 5.6 should be viewed as the automaton representing the cumulative result of adding

in successive steps two tasks for each index. We assume that Extend is applied once for each

task. That is, we start with the timing-independent version of FischerME, apply Extend to the

automaton augmented with the task {set(i)} to add the lower bound 0 and the upper bound

u set, then apply Extend to the resulting automaton augmented with {check(i)} to add the

lower bound l check and the upper bound ∞. Such two successive applications are allowed

P1: IML

MOBK015-05 MOBK015-Lynch.cls April 1, 2006 17:2

OPERATIONS ON TIMED AUTOMATA 71

t y p e Index = e n u m e r a t i o n o f p1, p2, p3, p4

t y p e PcValue = e n u m e r a t i o n o f rem, test, set, check,

leavetry , crit, reset, leaveexit

a u t o m a t o n FischerME(u_set , l_check : Real)

w h e r e u_set ≥ 0 ∧ l_check ≥0 ∧ u_set < l_check

s i g n a t u r e

e x t e r n a l try(i:Index), crit(i:Index), exit(i:Index), rem(i:Index)

i n t e r n a l test(i:Index), set(i:Index),

check(i:Index), reset(i:Index)

s t a t e s

x: Null[Index] := nil,

pc: Array[Index,PcValue] := c o n s t a n t (rem)

t r a n s i t i o n s

i n t e r n a l test(i)

p r e

pc[i] = test

e f f

i f x = nil t h e n

pc[i] := set

i n t e r n a l set(i)

p r e

pc[i] = set

e f f

x := embed(i);

pc[i] := check

i n t e r n a l check(i)

p r e

pc[i] = check

e f f

i f x = embed(i) t h e n pc[i] := leavetry

e l s e pc[i] := test

t a s k s

set = {set(i)} f o r i: Index; check = { check(i)} f o r i: Index

bounds

set = [0, u_set]; check = [l_check , infty]

FIGURE 5.6: Fischer’s mutual exclusion algorithm with bounds.

since the result of the first application of Extend satisfies the the well-formedness conditions

for the set of trajectories.

The result of these successive applications yields an automaton similar to the one in

Example 4.5. The only difference is that the mechanical application of the transformation

P1: IML

MOBK015-05 MOBK015-Lynch.cls April 1, 2006 17:2

72 THEORY OF TIMED I/O AUTOMATA

would reset the value of firstcheck[i] to 0 as an affect of check(i) while we do not reset

firstcheck[i] explicitly in Example 4.5, when it becomes disabled. This is because we make

use of the facts that the value of firstcheck[i] is used only in determining whether check(i)

is enabled and that check(i) becomes enabled only in the poststate of set(i), which also sets

the value of firstcheck[i]. Note that this discrepancy does not give rise to any difference in

the behaviors of the two automata. �

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-06 MOBK015-Lynch.cls April 1, 2006 17:3

73

C H A P T E R 6

Timed I/O Automata

In this chapter we refine the timed automaton model of Chapter 4 by distinguishing between

input and output actions. Typically, an interaction between a system and its environment is

modeled by using output and input actions to represent, respectively, the external events under

the control of the system and the environment. We extend the results on simulation relations

and composition from Chapters 4 and 5 to this new setting. We also introduce special kinds of

timed I/O automata: I/O feasible, progressive, and receptive TIOAs.

6.1 DEFINITION OF TIMED I/O AUTOMATA
A timed I/O automation (TIOA) A is a tuple (B, I, O) where

• B = (X, Q, �, E, H,D, T) is a timed automaton.

• I and O partition E into input and output actions, respectively. Actions in L
�= H ∪ O

are called locally controlled ; we again write A
�= E ∪ H.

• the following additional axioms are satisfied:

E1 (Input action enabling). For every x ∈ Q and every a ∈ I , there exists x′ ∈ Q such

that x
a→ x′.

E2 (Time-passage enabling). For every x ∈ Q, there exists τ ∈ T such that τ.fstate =
x and either

1. τ.ltime = ∞ or

2. τ is closed and some l ∈ L is enabled in τ.lstate.

Input action enabling is the input enabling condition of ordinary I/O automata [45]; it says that

a TIOA is able to perform an input action at any time. The time-passage enabling condition

says that a TIOA either allows time to advance forever, or it allows time to advance for a while,

up to a point where it is prepared to react with some locally controlled action. The condition

ensures what is called time reactivity in [46] and timelock freedom in [47], that is, whenever

time progress stops there exists at least one enabled transition. Because TIOAs have no external

variables, E1 and E2 are slightly simpler than the corresponding axioms for HIOAs.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-06 MOBK015-Lynch.cls April 1, 2006 17:3

74 THEORY OF TIMED I/O AUTOMATA

Notation: As we did for TAs, we often denote the components of a TIOA A by BA, IA,

OA, XA, QA, �A, etc., and those of a TIOA Ai by Hi , Ii , Oi , Xi , Qi , �i , etc. We sometimes

omit these subscripts, where no confusion is likely. We abuse notation slightly by referring to a

TIOA A as a TA when we intend to refer to BA.

Example 6.1 (TAs viewed as TIOAs). The automaton TimedChannel described in Exam-

ple 4.1 can be turned into a TIOA by classifying the send actions as inputs and the receive

actions as outputs. Since there is no precondition for send actions, they are enabled in each

state, so clearly the input enabling condition E1 holds. It is also easy to see that Axiom E2

holds: in each state either queue is nonempty, in which case a receive output action is enabled

after a point trajectory, or queue is empty, in which case time can advance forever.

The automaton ClockSync of Example 4.6 can be turned into a TIOA by classifying

the send actions as outputs and the receive actions as inputs. Axiom E1 then holds trivially.

Axiom E2 holds since from each state either time can advance forever or we have an outgoing

trajectory (possibly of length 0) to a state in which physclock = nextsend and from there a

send output action is enabled.

6.2 EXECUTIONS AND TRACES
An execution fragment, execution, trace fragment, or trace of a TIOAA is defined to be an execution

fragment, execution, trace fragment, or trace of the underlying TA BA, respectively.

We say that an execution fragment of a TIOA is locally-Zeno if it is Zeno and contains

infinitely many locally controlled actions, or equivalently, if it has finite limit time and contains

infinitely many locally controlled actions.

6.3 SPECIAL KINDS OF TIMED I/O AUTOMATA
6.3.1 Feasible and I/O Feasible TIOAs

A TIOA A = (B, I, O) is defined to be feasible provided that its underlying TA B is feasible

according to the definition given in Section 4.3. As noted in Section 4.3, feasibility is a basic

requirement that any TA (or TIOA) should satisfy. I/O feasibility is a strengthened version of

feasibility that takes inputs into account. It says that the automaton is capable of providing some

response from any state, for any sequence of input actions and any amount of intervening time-

passage. In particular, it should allow time to pass to infinity if the environment does not submit

any input actions. Formally, we define a TIOA to be I/O feasible provided that, for each state x

and each (I, ∅)-sequence β, there is some execution fragment α from x such that α �(I, ∅) = β.

That is, an I/O feasible TIOA accommodates arbitrary input actions occurring at arbitrary

times. The given (I, ∅)-sequence β describes the inputs and the amounts of intervening times.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-06 MOBK015-Lynch.cls April 1, 2006 17:3

TIMED I/O AUTOMATA 75

6.3.2 Progressive TIOAs

A progressive TIOA never generates infinitely many locally controlled actions in finite time.

Formally, a TIOA A is progressive if it has no locally-Zeno execution fragments.

The following lemma says that any progressive TIOA is capable of advancing time forever.

Lemma 6.2 Every progressive TIOA is feasible.

Proof: Let A be a progressive TIOA and let x be a state of A. Since A is a TIOA it satisfies

Axiom E2. We construct an admissible execution fragment α = α0
� α1

� α2 · · · from x as

follows:

1. α0 = ℘(x).

2. For each i > 0,

(a) if there exists a trajectory τ from αi−1.lstate such that τ.ltime = ∞, then αi is the

final execution fragment in the sequence and αi = τ .

(b) otherwise, let τi be a closed execution fragment from αi−1.lstate such that l ∈ L is

enabled in τi .lstate. Define αi = τi l τi+1 where τi+1 = ℘(y) and τi .lstate
l→ y.

The above construction either ends after finitely many stages such that the last trajectory

of α is admissible or goes through infinitely many stages such that α contains infinitely many

local actions. In the former case, we know that α is admissible since it ends with an admissible

tracjectory. In the latter case, since A is progressive, the fact that α has infinitely many local

actions implies that α is admissible, as needed. �

The following lemma says that a progressive TIOA is capable of allowing any amount of

time to pass from any state.

Lemma 6.3 Let A be a progressive TIOA, let x be a state of A, and let τ ∈ trajs(∅). Then there

exists an execution fragment α of A such that α.fstate = x and α �(I, ∅) = τ .

Proof: The result follows from the construction used in the proof of Lemma 6.2. Let α be

an admissible execution fragment from x constructed as in the proof of Lemma 6.2. Let α′ be

a prefix of α such that α′ �(∅, ∅) = τ . Since our construction uses no actions from I , we have

α′ �(I, ∅) = α′ �(∅, ∅) = τ , as needed. �

The following theorem says that a progressive TIOA is capable not just of allowing

arbitrary amounts of time to pass, but also of allowing arbitrary input actions at arbitrary times.

Theorem 6.4 Every progressive TIOA is I/O feasible.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-06 MOBK015-Lynch.cls April 1, 2006 17:3

76 THEORY OF TIMED I/O AUTOMATA

Proof: Let A be a progressive TIOA, let x be a state of A, and let β = τ0 a1 τ1 a2 τ2 · · · be

an (I, ∅)-sequence. We construct a finite or infinite sequence α0 α1 · · · of execution fragments

such that

1. α0.fstate = x.

2. for each nonfinal index i , αi .lstate = αi+1.fstate.

3. for each i , (α0
� α1

� · · · � αi) �(I, ∅) = τ0 a1 τ1 · · · τi .

The construction is carried out recursively. To define α0, we start with x and use Lemma 6.3

to span τ0. For i > 0, we define αi by starting with αi−1.lstate, using Axiom E1 to perform the

input action ai and move to a new state and then using Lemma 6.3 to span τi .

Let α = α0
� α1

� · · · . By Lemma 3.8, α is an execution fragment of A from x such that

α �(I, ∅) = β, as needed. �

6.3.3 Receptive Timed I/O Automata

In this section, we define the notion of receptiveness for TIOAs. A TIOA will be defined to be

receptive provided that it admits a strategy for resolving its nondeterministic choices that never

generate infinitely many locally controlled actions in finite time. This notion has an important

consequence: A receptive TIOA provides some response from any state, for any sequence of

discrete input actions at any times. This implies that the automaton has a nontrivial set of

execution fragments, in fact, it has execution fragments that accommodate any inputs from

the environment. The automaton cannot simply stop at some point and refuse to allow time

to elapse; it must allow time to pass to infinity if the environment does so. Previous studies

of receptiveness properties include [8, 41, 48, 49]. The notion of receptiveness for TIOAs as

discussed here is a special case of the same notion for HIOAs [6].

We build our definition of receptiveness on our earlier definition of progressive TIOAs.

Namely, we define a strategy for resolving nondeterministic choices and define receptiveness in

terms of the existence of a progressive strategy.

We define a strategy for a TIOA A to be a TIOA A′ that differs from A only in that

D′ ⊆ D and T ′ ⊆ T . That is, we require

• D′ ⊆ D,

• T ′ ⊆ T ,

• X = X ′, Q = Q ′, � = �′, H = H ′, I = I ′, and O = O ′.

Our strategies are nondeterministic and memoryless. They provide a way of choosing some of

the evolutions that are possible from each state x of A. The fact that the state set Q′ of A′ is

the same as the state set Q of A implies that A′ chooses evolutions from every state of A.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-06 MOBK015-Lynch.cls April 1, 2006 17:3

TIMED I/O AUTOMATA 77

Notions of strategy have been used also in previous studies of receptiveness [8, 41, 48,

49]. However, in these earlier works, strategies have been formalized using two-player games

rather than automata. Defining strategies using automata allows us to avoid introducing extra

mathematical machinery.

Lemma 6.5 If A′ is a strategy for A, then every execution fragment of A′ is also an execution

fragment of A.

We define a TIOA to be receptive if it has a progressive strategy. The following theorem

says that any receptive TIOA can respond to any inputs from the environment.

Theorem 6.6 Every receptive TIOA is I/O feasible.

Proof: The proof follows from the definitions, Theorem 6.4, and Lemma 6.5. �

Example 6.7 (Progressive and receptive TIOAs). The time-bounded channel automaton de-

scribed in Example 4.1 is not progressive since it allows for an infinite execution in which send

and receive actions alternate without any passage of time in between. The time-bounded

channel automaton is receptive, however, as we may construct a progressive strategy for it by

adding a condition head(queue).deadline = now to the precondition of the receive ac-

tion. In this way we enforce that the channel operates maximally slow and messages are delivered

only at their delivery deadline. The clock synchronization automaton of Example 4.6 is pro-

gressive (and therefore receptive) since it can generate only a locally controlled action each time

its physical clock advances by u time units and the real time that elapses between two locally

produced actions is at least u × (1−r) time units.

6.4 IMPLEMENTATION RELATIONSHIPS
Two TIOAs A1 and A2 are comparable if their inputs and outputs coincide, that is, if I1 = I2

and O1 = O2. If A1 and A2 are comparable, then A1 ≤ A2 is defined to mean that the traces

of A1 are included among those of A2: A1 ≤ A2
�= tracesA1

⊆ tracesA2
.

Lemma 6.8 Let A1, A2 be two comparable TIOAs and let B1, B2 be, respectively, the underlying

TAs for A1 and A2. Then B1 and B2 are comparable and A1 ≤ A2 iff B1 ≤ B2.

Proof: The proof follows from the definitions. �

6.5 SIMULATION RELATIONS
The definition of forward simulation for TIOAs is the same as for TAs. Formally, if A1 =
(B1, I1, O1) and A2 = (B2, I2, O2) are two comparable TIOAs, then a forward simulation

from A1 to A2 is a forward simulation from B1 to B2.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-06 MOBK015-Lynch.cls April 1, 2006 17:3

78 THEORY OF TIMED I/O AUTOMATA

Theorem 6.9 If A1 and A2 are comparable TIOAs and there is a forward simulation from A1 to

A2, then A1 ≤ A2.

The definitions and results about backward simulations, history, and prophecy relations

for timed automata from Chapter 4 carry over to timed automata with input and output dis-

tinction in a similar fashion.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-07 MOBK015-Lynch.cls April 1, 2006 17:4

79

C H A P T E R 7

Operations on Timed I/O Automata

7.1 COMPOSITION
In this chapter we define the operations of composition and hiding and present projection,

pasting, and substitutivity results for TIOAs. We revisit the special kinds of TIOAs introduced

in Chapter 6 and show that the classes of progressive and receptive TIOA are closed under

composition, while this is not true for the class of I/O feasible automata.

7.1.1 Definitions and Basic Results

The definition of composition for TIOAs is based not only on the corresponding definition

for TAs, but also takes the input/output structure into account. We require that precisely one

component should control any given internal or output action. We say that TIOAs A1 and A2

are compatible if, for i �= j , Xi ∩ X j = Hi ∩ A j = Oi ∩ O j = ∅.

Lemma 7.1 If A1 = (B1, I1, O1) and A2 = (B2, I2, O2) are compatible TIOAs, then B1 and B2

are compatible TAs.

If A1 and A2 are compatible TIOAs, then their composition A1‖A2 is defined to be the

tuple A = (B, I, O) where

• B = B1‖B2,

• I = (I1 ∪ I2) − (O1 ∪ O2), and

• O = O1 ∪ O2.

Thus, an external action of the composition is classified as an output if it is an output of one

of the component automata or otherwise it is classified as an input. The composition of two

TIOAs is guaranteed to be a TIOA:

Theorem 7.2 If A1 and A2 are TIOAs, then A1‖A2 is a TIOA.

Proof: The proof is straightforward except for showing that Axiom E2 is satisfied by the

composition. Let x be a state of A1‖A2. We need to show the existence of a trajectory from x

that satisfies E2.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-07 MOBK015-Lynch.cls April 1, 2006 17:4

80 THEORY OF TIMED I/O AUTOMATA

By definition of A1‖A2, x � X1 is a state of A1 and x � X2 is a state of A2. We know that

both A1 and A2 satisfy E2. Let τ1 be a trajectory of A1 with τ1.fstate = x � X1 that satisfies E2,

let τ2 be a trajectory of A2 with τ2.fstate = x � X2 that satisfies E2, and consider the following

cases:

1. τ1.ltime = ∞ and τ2.ltime = ∞. Then, define τ such that τ ↓ X1 = τ1 and τ ↓ X2 =
τ2.

2. τ1.ltime = ∞ and τ2 is closed where some l ∈ L2 is enabled in τ2.lstate. Then, define

τ such that τ ↓ X1 = τ1 � dom(τ2) and τ ↓ X2 = τ2.

3. τ1 is closed where some l ∈ L1 is enabled in τ1.lstate and τ2.ltime = ∞. Then, define

τ such that τ ↓ X1 = τ1 and τ ↓ X2 = τ2 � dom(τ1).

4. τ1 is closed where some l ∈ L1 is enabled in τ1.lstate and τ2 is closed where some l ∈ L2

is enabled in τ2.lstate. If dom(τ1) ⊆ dom(τ2), then define τ such that τ ↓ X1 = τ1

and τ ↓ X2 = τ2 � dom(τ1). Otherwise, define τ such that τ ↓ X1 = τ1 � dom(τ2) and

τ ↓ X2 = τ2.

In all the cases, by definition of trajectories for a TIOA, τ is a trajectory of A1‖A2 from x,

which satisfies E2 by construction. �

Note that this theorem is stronger than the corresponding theorem [6, Th. 6.12] for

general HIOAs. Two HIOAs A1 and A2 are required to be strongly compatible for their com-

position to be a HIOA. This extra condition is needed to rule out dependencies among external

variables that may prevent the component automata from evolving together. The absence of

external variables in TIOA eliminates this kind of problematic behavior. Thus, for the timed

case, we do not require the notion of strong compatibility that was needed for the hybrid

case.

Composition of TIOAs satisfies the following projection and pasting result, which follows

from Theorem 5.4.

Theorem 7.3 Let A1 and A2 be comparable TIOAs, and let A = A1‖A2. Then tracesA is exactly

the set of (E, ∅)-sequences whose restrictions to A1 and A2 are traces of A1 and A2, respectively. That

is, tracesA = {β | β is an (E, ∅)-sequence and β �(Ei , ∅) ∈ tracesAi
, i = {1, 2}}.

7.1.2 Substitutivity Results

The following theorem is analogous to Theorem 5.8 for TAs without input/output distinction.

It shows that the introduction of this distinction does not cause any changes to the substitutivity

results we obtained for general TAs.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-07 MOBK015-Lynch.cls April 1, 2006 17:4

OPERATIONS ON TIMED I/O AUTOMATA 81

Theorem 7.4 SupposeA1 andA2 are comparable TIOAs withA1 ≤ A2. Suppose thatB is a TIOA

that is compatible with each of A1 and A2. Then A1‖B ≤ A2‖B.

The following corollaries are analogous to Corollaries 5.9 and 5.10.

Corollary 7.5 Suppose A1, A2, B1, and B2 are TIOAs, A1 and A2 are comparable, B1 and B2 are

comparable, and each of A1 and A2 is compatible with each of B1 and B2. If A1 ≤ A2 and B1 ≤ B2,

then A1‖B1 ≤ A2‖B2.

Corollary 7.6 Suppose A1, A2, B1, and B2 are TIOAs, A1 and A2 are comparable, B1 and B2 are

comparable, and each of A1 and A2 is compatible with each of B1 and B2. If A1‖B2 ≤ A2‖B2 and

B1 ≤ B2, then A1‖B1 ≤ A2‖B2.

The basic substitutivity theorem, Theorem 7.4, is desirable for any formalism for inter-

acting processes. For design purposes, it enables one to refine individual components without

violating the correctness of the system as a whole. For verification purposes, it enables one to

prove that a composite system satisfies its specification by proving that each component satis-

fies its specification, thereby breaking down the verification task into more manageable pieces.

However, it might not always be possible or easy to show that each component A1 (resp. B1)

satisfies its specification A2 (resp. B2) without using any assumptions about the environment

of the component. Assume–guarantee style results such as those presented in [49–56] are spe-

cial kinds of substitutivity results that state what guarantees are expected from each component

in an environment constrained by certain assumptions. Since the environment of each com-

ponent consists of the other components in the system, assume–guarantee style results need

to break the circular dependencies between the assumptions and guarantees for components.

We present below two assume–guarantee style theorems Theorem 7.7 and Corollary 7.8, taken

from [57], which can be used for proving that a system specified as a composite automaton

A1‖B1 implements a specification represented by a composite automaton A2‖B2.

The main idea behind Theorem 7.7 is to assume that A1 implements A2 in a context

represented by B2, and symmetrically that B1 implements B2 in a context represented by A2,

where A2 and B2 are automata whose trace sets are closed under limits. The requirement about

limit-closure implies that A2 and B2 specify trace safety properties. Moreover, we assume that

the trace sets ofA2 andB2 are closed under time-extension. That is, the automata allow arbitrary

time-passage. This is the most general assumption one could make to ensure that A2‖B2 does

not impose stronger constraints on time-passage than A1‖B1. Recall that the definition of time

extension of a hybrid sequence can be found in Section 3.4.1.

Theorem 7.7 Suppose A1, A2, B1, and B2 are TIOAs such that A1 and A2 are comparable, B1

and B2 are comparable, and each of A1 and A2 is compatible with each of B1 and B2. Suppose further

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-07 MOBK015-Lynch.cls April 1, 2006 17:4

82 THEORY OF TIMED I/O AUTOMATA

that

1. the sets tracesA2
and tracesB2

are closed under limits.

2. the sets tracesA2
and tracesB2

are closed under time-extension.

3. A1‖B2 ≤ A2‖B2 and A2‖B1 ≤ A2‖B2.

Then A1‖B1 ≤ A2‖B2.

Proof: We first prove by induction on the length of traces of A1‖B1 that every closed trace of

A1‖B1 is a trace of A2‖B2.

For the base case, let β be a trace of A1‖B1 such that β ∈ trajs(∅) (a single trajectory over

the empty set of variables). By Axiom T0 in the definition of a TA, we know thatA2 andB2 have

traces α1 and α2 such that α1.ltime=α2.ltime=0. By Assumption 2 we have α1
� β ∈ tracesA2

and α2
� β ∈ tracesB2

. Since, α1
� β = β and α2

� β = β, it follows that β ∈ tracesA2
and

β ∈ tracesB2
. By pasting using Theorem 7.3, β ∈ tracesA2‖B2

, as needed.

For the inductive step we consider the following cases:

1. β = β ′ a τ , where a is an output action of A1 and τ is a point trajectory. Then

β �(EA1
, ∅) ∈ tracesA1

by projection using Theorem 7.3. By inductive hypothesis,

β ′ ∈ tracesA2‖B2
. So β ′ �(EB2

, ∅) ∈ tracesB2
, by projection using Theorem 7.3. Let

α be an execution of B2 such that trace(α) = β ′ �(EB2
, ∅). Since A1 and B1 are com-

patible TIOAs, B1 and B2 are comparable, and a is an output action of A1, we know

that either a is an input action of B2 or the action set of B2 does not contain a . In

the former case, by the input-enabling axiom (E1) we know that there exists x′ such

that (α.lstate, a, x′) is a discrete transition of B2. It follows that β �(EB2
, ∅) ∈ tracesB2

.

In the latter case, since β �(EB2
, ∅) = β ′ �(EB2

, ∅) and β ′ �(EB2
, ∅) ∈ tracesB2

, we get

β �(EB2
, ∅) ∈ tracesB2

. By pasting using Theorem 7.3, β ∈ tracesA1‖B2
. Then by As-

sumption 3, β ∈ tracesA2‖B2
.

2. β = β ′ b τ , where b is an output action of B1 and τ is a point trajectory. This case is

symmetric with the previous one.

3. β = β ′ c τ , where c is an input action of both A1 and B1 and τ is a point trajectory.

By inductive hypothesis, β ′ ∈ tracesA2‖B2
. By projection using Theorem 7.3 we get

β ′ �(EA2
, ∅) ∈ tracesA2

and β ′ �(EB2
, ∅) ∈ tracesB2

. Let α be an execution of A2 such

that trace(α)=β ′ �(EA2
, ∅). Since A1 and A2 are comparable and a is an input action

of A1 we know that a is an input action of A2. By the input-enabling axiom (E1) we

know that there exists x′ such that (α′.lstate, a, x′) is a discrete transition of A2. It

follows that β �(EA2
, ∅) ∈ tracesA2

. Similarly, let α′ be an execution of B2 such that

trace(α′) = β ′ �(EB2
, ∅). Since B1 and B2 are comparable and a is an input action of

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-07 MOBK015-Lynch.cls April 1, 2006 17:4

OPERATIONS ON TIMED I/O AUTOMATA 83

B1 we know that a is an input action of B2. By the input-enabling axiom (E1) we know

that there exists y′ such that (α′.lstate, a, y′) is a discrete transition of B2. It follows

that β �(EB2
, ∅) ∈ tracesB2

. By pasting using Theorem 7.3, we get β ∈ tracesA2‖B2
.

4. β = β ′ d τ , where d is an input action of A1 but not an action of B1 and τ is a point

trajectory. By inductive hypothesis, β ′ ∈ tracesA2‖B2
. By projection using Theorem 7.3,

we have β ′ �(EA2
, ∅) ∈ tracesA2

and β ′ �(EB2
, ∅) ∈ tracesB2

. Let α be an execution of

A2 such that trace(α) = β ′ �(EA2
, ∅). Since A1 and A2 are comparable TIOAs and a

is an input action of A1, a must be an input action of A2. By the input-enabling axiom

(E1) we know that there exists x′ such that (α.lstate, a, x′) is a discrete transition of

A2. It follows that β �(EA2
, ∅) ∈ tracesA2

. Since B1 and B2 are comparable and a is

not an action of B1, a cannot be an external action of B2. Therefore, β �(EB2
, ∅) =

β ′ �(EB2
, ∅). Since β ′ �(EB2

, ∅) ∈ tracesB2
we get β �(EB2

, ∅) ∈ tracesB2
. By pasting

using Theorem 7.3, we get β ∈ tracesA2‖B2
.

5. β = β ′eτ , where e is an input action of B1 but not an action of A1 and τ is a point

trajectory. This case is symmetric with the previous one.

6. β = β ′ � β ′′, where β ′′ is a hybrid sequence consisting of a single trajectory

τ . By inductive hypothesis, β ′ ∈ tracesA2‖B2
. By projection using Theorem 7.3,

we get β ′ �(EA2
, ∅) ∈ tracesA2

and β ′ �(EB2
, ∅) ∈ tracesB2

. By Assumption 2,

we have β ′ �(EA2
, ∅) � β ′′ �(EA2

, ∅) ∈ tracesA2
and β ′ �(EB2

, ∅) � β ′′ �(EB2
, ∅) ∈

tracesB2
. Then by pasting using Theorem 7.3, β ∈ traces A2‖B2

, as needed.

We have thus shown that every closed trace of A1‖B1 is a trace of A2‖B2. Now consider any

non closed trace β of A1‖B1. This β can be written as the limit of a sequence β1 β2 · · · of

closed traces of A1‖B1. By the first part of the proof we know that each βi ∈ tracesA2‖B2
, and

by projection using Theorem 7.3 each βi �(EA2
, ∅) is a closed trace of A2, and βi �(EB2

, ∅)

is a closed trace of B2. Since restriction is a continuous operation (Lemma 3.8), we know

that β �(EA2
, ∅) is the limit of the βi �(EA2

, ∅) and similarly β �(EB2
, ∅) is the limit of the

βi �(EB2
, ∅). Since the sets tracesA2

and tracesB2
are limit-closed by Assumption 1, we get

β �(EA2
, ∅) ∈ tracesA2

and β �(EB2
, ∅) ∈ tracesB2

. Finally, by pasting using Theorem 7.3, we

get β ∈ tracesA2‖B2
. �

Note that automata with FIN and timing independence (see Section 4.3 for definitions)

constitute examples for context automata A2 and B2 that satisfy Assumptions 1 and 2. The

property FIN implies Assumption 1 (Lemma 4.18) and timing independence implies Assump-

tion 2.

Theorem 7.7 has a corollary, Corollary 7.8, which can be used in the decomposition of

proofs even when A2 and B2 neither admit arbitrary time-passage nor have limit-closed trace

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-07 MOBK015-Lynch.cls April 1, 2006 17:4

84 THEORY OF TIMED I/O AUTOMATA

sets. The main idea behind this corollary is to assume that A1 implements A2 in a context B3

that is a variant of B2, and symmetrically that B1 implements B2 in a context A3 that is a variant

of A2. That is, the correctness of implementation relationship between A1 and A2 does not

depend on all the environment constraints, but just on those expressed by B3 (symmetrically

for B1, B2, and A3). In order to use this corollary to prove A1‖B1 ≤ A2‖B2 one needs to be

able to find appropriate variants of A2 and B2 that meet the required closure properties. This

corollary prompts one to pin down what is essential about the behavior of the environment in

proving the intended implementation relationship and also allows one to avoid the unnecessary

details of the environment in proofs.

Corollary 7.8 Suppose A1, A2, A3, B1, B2, and B3 are TIOAs such that A1, A2, and A3 are

comparable, B1, B2, and B3 are comparable, and Ai is compatible with B j for i, j ∈ {1, 2, 3}.
Suppose further that

1. the sets tracesA3
and tracesB3

are closed under limits.

2. the sets tracesA3
and tracesB3

are closed under time-extension.

3. A2‖B3 ≤ A3‖B3 and A3‖B2 ≤ A3‖B3.

4. A1‖B3 ≤ A2‖B3 and A3‖B1 ≤ A3‖B2.

Then A1‖B1 ≤ A2‖B2.

Proof: SinceA1‖B3 ≤ A2‖B3 by Assumption 4 andA2‖B3 ≤ A3‖B3 by Assumption 3, we get

A1‖B3 ≤ A3‖B3. Similarly, we have A3‖B1 ≤ A3‖B2 ≤ A3‖B3. Since A1‖B3 ≤ A3‖B3 and

A3‖B1 ≤ A3‖B3, by using Assumptions 1 and 2 and Theorem 7.7 we have A1‖B1 ≤ A3‖B3.

Let β be a trace of A1‖B1. By projection using Theorem 7.3, β �(EA1
, ∅) ∈ tracesA1

and β �(EB1
, ∅) ∈ tracesB1

. Since A1‖B1 ≤ A3‖B3, we know that β ∈ tracesA3‖B3
. By pro-

jection using Theorem 7.3, β �(EA3
, ∅) ∈ tracesA3

and β �(EB3
, ∅) ∈ tracesB3

. By pasting us-

ing Theorem 7.3, we have β ∈ tracesA1‖B3
and β ∈ tracesA3‖B1

. By Assumption 4, we get

β ∈ tracesA2‖B3
and β ∈ tracesA3‖B2

. Then, by projection using Theorem 7.3, β �(EA2
, ∅) ∈

tracesA2
and β �(EB2

, ∅) ∈ tracesB2
. Finally, by pasting using Theorem 7.3, we have β ∈

tracesA2‖B2
, as needed. �

Example 7.9 (Using environment assumptions to prove safety). This example illustrates

that, in cases where specifications A2 and B2 satisfy certain closure properties, it is possible to

decompose the proof of A1‖B1 ≤ A2‖B2 by using Theorem 7.7, even if it is not the case that

A1 ≤ A2 or B1 ≤ B2.

The automata AlternateA and AlternateB in Fig. 7.1 are timing-independent

automata in which no consecutive outputs occur without inputs happening in between.

AlternateA and AlternateB perform a handshake, outputting an alternating sequence of

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-07 MOBK015-Lynch.cls April 1, 2006 17:4

OPERATIONS ON TIMED I/O AUTOMATA 85

a u t o m a t o n AlternateA

s i g n a t u r e

o u t p u t a, i n p u t b

s t a t e s

myturn : Bool := true

t r a n s i t i o n s

o u t p u t a i n p u t b

p r e e f f

myturn myturn := true

e f f

myturn := false

a u t o m a t o n AlternateB

s i g n a t u r e

i n p u t a, o u t p u t b

s t a t e s

myturn : Bool := false

t r a n s i t i o n s

i n p u t a o u t p u t b

e f f p r e

myturn := true myturn

e f f

myturn := false

FIGURE 7.1: AlternateA and AlternateB.

a and b actions when they are composed. The automata CatchUpA and CatchUpB in Fig.

5.2 are timing-dependent automata that do not necessarily alternate inputs and outputs as

AlternateA and AlternateB. CatchUpA can perform an arbitrary number of b actions and

can perform an a provided that counta ≤ countb. It allows counta to increase to one more

than countb. CatchUpB can perform an arbitrary number of a actions and can perform a b

provided that counta ≥ countb + 1. It allows countb to reach counta. Timing constraints

require each output to occur exactly one time unit after the last action. CatchUpA and CatchUpB

perform an alternating sequence of a actions and b actions when they are composed.

Suppose that we want to prove that CatchUpA ‖ CatchUpB ≤ AlternateA ‖
AlternateB. We cannot apply the basic substituvity theorem Theorem 7.7, in particular

Corollary 7.5, since the assertions CatchUpA ≤ AlternateA and CatchUpB ≤ AlternateB

are not true. Consider the trace 1 b 1 a 1 a 1 of CatchUpA. After having performed one b and

one a, CatchUpA can perform another a. But, this is impossible for AlternateA, which needs

an input to enable the second a. AlternateA and CatchUpA behave similarly only when put

in a context that imposes alternation.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-07 MOBK015-Lynch.cls April 1, 2006 17:4

86 THEORY OF TIMED I/O AUTOMATA

It is easy to check that AlternateA and AlternateB satisfy the closure properties

required by Assumptions 1 and 2 of Theorem 7.7 and, hence can be substituted for A2 and

B2 respectively. Similarly, we can easily check that Assumption 3 is satisfied if we substitute

CatchUpA for A1 and CatchUpB for B1.

Example 7.10 (Extracting essential environment assumptions with auxiliary automata). This

example illustrates that it may be possible to decompose verification, using Corollary 7.8, in

cases where Theorem 7.7 is not applicable. If the aim is to show A1‖B1 ≤ A2‖B2 where A2 and

B2 do not satisfy the assumptions of Theorem 7.7, then we find appropriate context automata

A3 and B3 that abstract from those details of A2 and B2 that are not essential in proving

A1‖B1 ≤ A2‖B2.

Consider the automata UseOldInputA and UseOldInputB in Fig. 7.2. UseOldInputA

keeps track of the next time it is supposed to perform an output, which may be never (infty).

The number of outputs that UseOldInputA can perform is bounded by a natural number.

In the case of repeated b inputs, it is the oldest input that determines when the next output

will occur. The automaton UseOldInputB is the same as UseOldInputA (inputs and outputs

reversed) except that the next variable of UseOldInputB is set to infty initially. Note that

UseOldInputA and UseOldInputB are not timing-independent and their trace sets are not

limit-closed. For each automaton, there are infinitely many start states, one for each natural

number. We can build an infinite chain of traces, where each element in the chain corresponds

to an execution starting from a distinct start state. The limit of such a chain, which contains

infinitely many outputs, cannot be a trace ofUseOldInputA orUseOldInputB since the number

of outputs they can perform is bounded by a natural number. The automaton UseNewInputA in

Fig. 7.3 behaves in a manner similarly to UseOldInputA except for the handling of inputs. In

the case of repeated b inputs, it is the most recent input that determines when the next output

will occur. The automaton UseNewInputB in Fig. 7.3 is the same as UseNewInputA (inputs

and outputs reversed) except that the next variable of UseNewInputB is set to infty initially.

Suppose that we want to prove that

UseNewInputA‖UseNewInputB ≤ UseOldInputA‖UseOldInputB.

Theorem 7.7 is not applicable here because the high-level automata UseOldInputA and

UseOldInputB do not satisfy the required closure properties. However, we can use Corollary 7.8

to decompose verification. It requires us to find auxiliary automata that are less restrictive than

UseOldInputA and UseOldInputB but that are restrictive enough to express the constraints

that should be satisfied by the environment, for UseNewInputA to implement UseOldInputA

and for UseNewInputB to implement UseOldInputB.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-07 MOBK015-Lynch.cls April 1, 2006 17:4

OPERATIONS ON TIMED I/O AUTOMATA 87

s i g n a t u r e

o u t p u t a, i n p u t b

s t a t e s

maxout : Nat, now: Real := 0, next: AugmentedReal := 0

t r a n s i t i o n s

o u t p u t a i n p u t b

p r e e f f

(maxout > 0) ∧ (now = next) i f next = infty

e f f t h e n next := now + 1

maxout := maxout - 1;

next := infty

t r a j e c t o r i e s

s t o p when

now = next

e v o l v e

d(now) = 1

s i g n a t u r e

i n p u t a, o u t p u t b

s t a t e s

maxout : Nat, now: Real := 0, next: AugmentedReal := infty

t r a n s i t i o n s

i n p u t a o u t p u t b

e f f p r e

i f next = infty (maxout > 0) ∧ (now = next)

t h e n next := now + 1 e f f

maxout := maxout - 1;

next := infty

t r a j e c t o r i e s

s t o p when

now = next

e v o l v e

d(now) = 1

FIGURE 7.2: UseOldInputA and UseOldInputB.

The automata AlternateA and AlternateB in Fig. 7.1 can be used as auxiliary automata

in this example. They satisfy the closure properties required by Corollary 7.8 and impose

alternation, which is the only additional condition to ensure the needed trace inclusion.

We can define a forward simulation relation from UseNewInputA ‖ UseNewInputB to

UseOldInputA ‖ UseOldInputB, which is based on the equality of the next= infty predicate

of the implementation and the specification automata. The fact that this simulation relation

uses only the predicate next = infty reinforces the idea that the auxiliary contexts, which

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-07 MOBK015-Lynch.cls April 1, 2006 17:4

88 THEORY OF TIMED I/O AUTOMATA

s i g n a t u r e

o u t p u t a, i n p u t b

s t a t e s

maxout : Nat, now: Real := 0, next: AugmentedReal := 0

t r a n s i t i o n s

o u t p u t a i n p u t b

p r e e f f

(maxout > 0) ∧ (now = next) next := now + 1

e f f

maxout := maxout - 1;

next := infty

t r a j e c t o r i e s

s t o p when

now = next

e v o l v e

d(now) = 1

s i g n a t u r e

i n p u t a, o u t p u t b

s t a t e s

maxout : Nat, now: Real := 0, next: AugmentedReal := infty

t r a n s i t i o n s

i n p u t a o u t p u t b

e f f p r e

next := now + 1 (maxout > 0) ∧ (now = next)

e f f

maxout := maxout - 1;

next := infty

t r a j e c t o r i e s

s t o p when

now = next

e v o l v e

d(now) = 1

FIGURE 7.3: UseNewInputA and UseNewInputB.

only keep track of their turn, capture exactly what is needed for the proof of UseNewInputA

‖ UseNewInputB ≤ UseOldInputA ‖ UseOldInputB. We can observe that a direct proof of

this assertion would require one to deal with state variables such as maxout and next of both

UseOldInputA and UseOldInputB, which do not play any essential role in the proof. On the

other hand, by decomposing the proof along the lines of Corollary 7.8 some of the unnecessary

details can be avoided. Even though, this is a toy example with an easy proof, it should not be

hard to observe how this simplification would scale to large proofs.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-07 MOBK015-Lynch.cls April 1, 2006 17:4

OPERATIONS ON TIMED I/O AUTOMATA 89

7.1.3 Composition of Special Kinds of TIOAs

The following example illustrates that the set of I/O feasible TIOAs is not closed under com-

position.

Example 7.11 (Two I/O feasible TIOAs whose composition is not I/O feasible). Consider

two I/O feasible TIOAs A and B, where OA = IB = {a} and OB = IA = {b}. Suppose that

A performs its output a at time 0 and then waits, allowing time to pass, until it receives input

b. If and when it receives b, it responds with output a without allowing any time to pass (and

ignoring any inputs that occur before it has a chance to perform its output). On the other hand,

B starts out waiting, allowing time to pass, until it receives input a . If and when it receives a ,

it responds with output b without allowing time to pass.

It is not difficult to see that A and B are individually I/O feasible. We claim that the com-

position A‖B is not I/O feasible. To see this, consider the start state of A‖B and the unique

input sequence β with β.ltime = ∞; β simply allows time to pass to infinity. The compo-

sition A‖B has no way of accommodating this input, since it will never allow time to pass

beyond 0.

On the other hand, the following theorems say that the classes of progressive and receptive

TIOAs are closed under composition.

Theorem 7.12 If A1 and A2 are compatible progressive TIOAs, then their composition is also

progressive.

Proof: The proof is similar to the proof of Theorem 7.4 in [6]. The main idea behind the

proof is that a Zeno execution of A1‖A2 with infinitely many locally controlled actions contains

infinitely many locally controlled actions of either A1 or A2. Suppose without loss of generality

that the automaton that contributes infinitely many locally controlled actions is A1. Then the

projection onto A1 violates progressiveness for A1. �

Theorem 7.13 Let A1 and A2 be two compatible TIOAs with strategies A′
1 and A′

2, respectively.

Then A′
1‖A′

2 is a strategy for A1‖A2.

Proof: The proof is a straightforward one, similar to the proof of Theorem 7.7 in [6]. �

Now we can state the main result of this section, which follows easily from the previous

two theorems. It shows that the class of receptive TIOAs is closed under composition.

Theorem 7.14 Let A1 and A2 be two compatible receptive TIOAs with progressive strategies A′
1

and A′
2, respectively. Then A1‖A2 is a receptive TIOA with progressive strategy A′

1‖A′
2.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-07 MOBK015-Lynch.cls April 1, 2006 17:4

90 THEORY OF TIMED I/O AUTOMATA

Example 7.15 (Composition of receptive TIOAs). Theorem 7.14 implies that the composition

of clock synchronization automata with channel automata described in Example 5.7 (viewed as

TIOAs as explained in Example 6.1) is receptive. By Theorem 6.6 we also have that it is I/O

feasible.

Actually, the fact that the set of I/O feasible TIOAs is not closed under composition

motivated the definition of the more restrictive class of receptive TIOAs. That is, receptiveness

is a reasonable sufficient condition that implies I/O feasibility, and that also is preserved by

composition.

The special case of the HIOA model, represented by the TIOA model, has simpler and

stronger composition theorems than the general HIOA model. In particular, the main compo-

sitionality result for receptive HIOAs (Theorem 7.12 in [6]) has a more intricate proof than

ours. It makes an assumption about the existence of strongly compatible strategies (discussed

briefly at the end of Section 7.1.1) and needs an additional lemma that shows that if two HIOAs

A1 and A2 have strongly compatible strategies A′
1 and A′

2, then A1 and A2 are also strongly

compatible.

7.2 HIDING
We extend the definition of action hiding to any TIOA A. For TIOAs, we consider hiding

outputs only (but not inputs), by converting them to internal actions. Namely, if O ⊆ OA, then

ActHide(O,A) is the TIOAB that is equal toA except that OB = OA − O and HB = HA ∪ O .

Lemma 7.16 If A is a TIOA and O ⊆ OA, then ActHide(O,A) is a TIOA.

Lemma 7.17 If A is a TIOA and O ⊆ OA, then tracesActHide(O,A) = {β �(OA − O, VA) | β ∈
tracesA}.
Theorem 7.18 Suppose A and B are TIOAs with A ≤ B, and suppose O ⊆ OA. Then

ActHide(O,A) ≤ ActHide(O,B).

P1: IML

MOBK015-08 MOBK015-Lynch.cls April 1, 2006 17:4

91

C H A P T E R 8

Conclusions and Future Work

In this monograph, we have presented a new framework for describing and analyzing the

behavior of timed systems. This framework is a mathematical framework that uses TIOA for

the representation of systems. The TIOA framework is a special case of the HIOA modeling

framework [6]. We used what we have learned in developing the HIOA framework to revise

the earlier work on TIOA models. Our main motivation was to have a TIOA model that

is compatible with the new HIOA model. We sought to benefit from the new style used in

describing hybrid behavior in simplifying the prior definitions and results on TIOA.

Designers of real-time systems or timing-based algorithms can use the TIOA framework

to describe complex systems and to decompose them into manageable pieces. In particular,

they can use the TIOA framework to describe their systems at multiple levels of abstraction,

to establish implementation relationships between these levels, and to decompose their systems

into more primitive, interacting components. Although the framework as presented in this

monograph provides only conceptual tools for modeling and manual proof methods, it also is a

natural basis for building computerized modeling and analysis.

We are currently working on the development of a toolset based on this mathematical

framework that will consist of (a) a formal modeling language called TIOA, (b) a front-end

processor for TIOA, incorporating syntax and static semantic checking, and providing interfaces

to computer-aided design tools, (c) a simulation tool allowing simulation of specifications and

paired simulations of a specification and an abstract implementation, and (d) a theorem-proving

link through an interface to the theorem-prover PVS [58]. We refer to [5, 36–38] for more

information on the TIOA toolset. The described project builds upon our prior work on the

IOA language [59].

On the theoretical side, we have done preliminary research toward extending the TIOA

framework with support for reasoning about safety and liveness properties of timed systems.

We have defined notions of fairness and proved results that state under which conditions the

“fair” traces of a TIOA can be shown to be included in the fair traces of another. We have

started investigating the consequences of composition on automata with liveness properties and

the use of receptiveness and strategies in this context [60]. In [61], we study urgency predicates

as an alternative to the stop when clauses that are used in this monograph for the specification

P1: IML

MOBK015-08 MOBK015-Lynch.cls April 1, 2006 17:4

92 THEORY OF TIMED I/O AUTOMATA

of progress properties. The results of these lines of preliminary work are not included in this

version of the monograph because the adequacy of our definitions and methods are yet to be

assessed on a larger class of nontrivial examples.

We will also continue our work on establishing formal relationships with other models

that are comparable to ours, showing that the TIOA framework is general enough to express

previous results from other frameworks, such as [7–12].

P1: IML

MOBK015-REF MOBK015-Lynch.cls April 20, 2006 17:16

93

References

[1] S. Garland and N. A. Lynch, Using I/O automata for developing distributed systems.

In G. T. Leavens and M. Sitaraman, editors, Foundations of Component-Based Systems.

Cambridge University Press, New York, Ch. 13, pp. 285–312, 2000.

[2] J. Sifakis, Modeling real-time systems – challenges and work directions. In Proc. Embedded

Software, 1st Int. Workshop (EMSOFT ’01), Tahoe City, CA. Lecture Notes in Computer

Science, Vol. 2211. pp. 373–389, 2001.

[3] J. Sifakis, Modeling real-time systems. In Proc. 25th IEEE Real-Time Systems Symposium

(RTSS ’04). IEEE Comput. Soc. Press, Los Alamitos, CA, pp. 5–6, 2004. Invited Talk.

[4] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann, San Fransisco, CA, 1996.

[5] D. Kaynar, N. A. Lynch, and S. Mitra, Specifying and proving timing properties with

TIOA tools. In Proc. 5th IEEE Int. Real-Time Systems Symposium, Work in Progress Session

(RTSS WIP), Lisbon, Portugal, December 2004, pp. 96–99.

[6] N. A. Lynch, R. Segala, and F. W. Vaandrager, Hybrid I/O automata. Information and

Computation, 185(1):105–157, 2003. doi:10.1016/S0890-5401(03)00067-1

[7] M. Merritt, F. Modugno, and M. Tuttle, Time constrained automata. In J. C. M. Baeten

and J. F. Groote, editors, Proc. CONCUR 91, Amsterdam. Lecture Notes in Computer

Science, Vol. 527. Springer-Verlag, Berlin, pp. 408–423, 1991.

[8] R. Segala, R. Gawlick, J. F. Søgaard-Andersen, and N. A. Lynch, Liveness in

timed and untimed systems. Information and Computation, 141(2):119–171, 1998.

doi:10.1006/inco.1997.2671

[9] N. A. Lynch and F. W. Vaandrager, Forward and backward simulations –

Part II: Timing-based systems. Information and Computation, 128(1):1–25, 1996.

doi:10.1006/inco.1996.0060

[10] N. A. Lynch and F. W. Vaandrager, Action transducers and timed automata. Formal

Aspects of Computing, 8(5):499–538, 1996. doi:10.1007/BF01211907

[11] R. Alur and D. L. Dill, A theory of timed automata. Theoretical Computer Science, 126:183–

235, 1994. doi:10.1016/0304-3975(94)90010-8

[12] O. Maler, Z. Manna, and A. Pnueli, From timed to hybrid systems. In J. W. de Bakker,

C. Huizing, W. P. de Roever, and G. Rozenberg, editors, Proc. REX Workshop on Real-

Time: Theory in Practice, Mook, The Netherlands, June 1991. Lecture Notes in Computer

Science, Vol. 600. Springer-Verlag, Berlin, pp. 447–484, 1992.

http://dx.doi.org/10.1016/S0890-5401(03)00067-1
http://dx.doi.org/10.1006/inco.1997.2671
http://dx.doi.org/10.1006/inco.1996.0060
http://dx.doi.org/10.1007/BF01211907
http://dx.doi.org/10.1016/0304-3975(94)90010-8

P1: IML

MOBK015-REF MOBK015-Lynch.cls April 20, 2006 17:16

94 THEORY OF TIMED I/O AUTOMATA

[13] P. Petterson, Modelling and Verification of Real-Time Systems Using Timed Automata: Theory

and Practice, PhD thesis. Department of Computer Systems, Uppsala University, 1999.

Technical Report DoCs 99/101.

[14] R. DePrisco, B. Lampson, and N. A. Lynch, Revisiting the Paxos algorithm. In

M. Mavronicolas and P. Tsigas, editors, Distributed Algorithms, Proc. 11th Int. Work-

shop, WDAG’97, Saarbrücken, Germany, September 1997. Lecture Notes in Computer

Science, Vol. 1320. Springer-Verlag, Berlin, pp. 111–125, 1997.

[15] R. Alur, Timed automata. In Proc. 11th Int. Conf. Computer-Aided Verification (CAV).

Lecture Notes in Computer Science, Vol. 1633. Springer-Verlag, Berlin, pp. 8–22, 1999.

An earlier and longer version appears in NATO-ASI Summer School on Verification of

Digital and Hybrid Systems, 1998.

[16] R. Alur, S. La Torre, and P. Madhusudan, Perturbed timed automata. In Proc. 8th Int.

Workshop Hybrid Systems: Computation and Control (HSCC), Zurich, Zwitserland, Lecture

Notes in Computer Science, Vol. 3414. Springer-Verlag, Berlin, pp. 70–85, 2005.

[17] R. Alur and P. Madhusudan, Decision problems for timed automata: A survey. In Int.

School Formal Methods for the Design of Computer, Communication, and Software Systems

(SFM-RT), Bertinoro, Italy. Lecture Notes in Computer Science, Vol. 3185. Springer-

Verlag, Berlin, pp. 1–24, 2004.

[18] K. G. Larsen, P. Pettersson, and W. Yi, Uppaal in a nutshell. Journal of Software Tools for

Technology Transfer, 1/2:134–152, 1997. doi:10.1007/s100090050010

[19] R. Milner, A Calculus of Communicating Systems. Lecture Notes in Computer

Science, Vol. 92. Springer-Verlag, Berlin, 1980.

[20] C. Robson, TIOA and UPPAAL, Master’s thesis. MIT Department of Electrical Engi-

neering and Computer Science, 2004.

[21] S. Yovine, Kronos: A verification tool for real-time systems. International Journal of Soft-

ware Tools for Technology Transfer, 1(1/2):123–133, 1997. doi:10.1007/s100090050009

[22] C. Daws, A. Olivero, S. Tripakis, and S. Yovine, The tool Kronos. In Proc. of Hybrid

Systems III, Verification and Control. Lecture Notes in Computer Science, Vol. 1066.

Springer-Verlag, Berlin, pp. 208–219, 1996.

[23] R. Alur, Techniques for Automatic Verification of Real-Time Systems, PhD thesis. Stanford

University, 1991.

[24] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, Symbolic model-checking

for real-time systems. Information and Computation, 111(2):193–244, 1994.

doi:10.1006/inco.1994.1045

[25] M. Bozga, S. Graf, Il. Ober, Iul. Ober, and J. Sifakis, The IF toolset. In Proc. Formal

Methods for the Design of Real-Time Systems. Lecture Notes in Computer Science, Vol.

3185. Springer-Verlag, Berlin, pp. 237–267, 2004.

http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1007/s100090050009
http://dx.doi.org/10.1006/inco.1994.1045

P1: IML

MOBK015-REF MOBK015-Lynch.cls April 20, 2006 17:16

REFERENCES 95

[26] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicolin, A.

Olivero, J. Sifakis, and S. Yovine, The algorithmic analysis of hybrid systems. Theoretical

Computer Science, 138:3–34, 1995. doi:10.1016/0304-3975(94)00202-T

[27] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, HyTech: A model checker for hy-

brid systems. In O. Grumberg, editor, Proc. 9th Int. Conf. Computer Aided Verification.

Lecture Notes in Computer Science, Vol. 1254. Springer-Verlag, Berlin, pp. 460–463,

1997.

[28] N. A. Lynch and A. Shvartsman, RAMBO: A reconfigurable atomic memory service

for dynamic networks. In D. Malkhi, editor, Distributed Computing, Proc. 16th Int. Symp.

DIStributed Computing (DISC), Toulouse, France, October 2002. Lecture Notes in Com-

puter Science, Vol. 2508. Springer-Verlag, Berlin, pp. 173–190, 2002. Technical Report

MIT-LCS-TR-856.

[29] C. A. Gunter, Semantics of Programming Languages: Structures and Techniques. MIT Press,

Cambridge, MA, 1992.

[30] M. Hennessy, Algebraic Theory of Processes. MIT Press, Cambridge, MA, 1988.

[31] D. E. Knuth, Fundamental Algorithms, 2nd edition. The Art of Computer Programming,

Vol. 1. Addision-Wesley, Reading, MA, 1973.

[32] E. D. Sontag, Mathematical Control Theory – Deterministic Finite Dimensional Systems,

Texts in Applied Mathematics, Vol. 6. Springer-Verlag, Berlin, 1990.

[33] A. Pnueli, Development of hybrid systems. In H. Langmaack, W.-P. de Roever, and

J. Vytopil, editors, Proc. 3rd Int. School Symp. Formal Techniques in Real-Time and Fault-

Tolerant Systems (FTRTFT’94), Lübeck, Germany, September 1994. Lecture Notes in

Computer Science, Vol. 863. Springer-Verlag, Berlin, pp. 77–85, 1994.

[34] J. W. Polderman and J. C. Willems, Introduction to Mathematical Systems Theory: A Be-

havioural Approach. Texts in Applied Mathematics, Vol. 26. Springer-Verlag, Berlin,

1998.

[35] S. Mitra, Y. Wang, N. A. Lynch, and E. Feron, Safety verification of model helicopter

controller using hybrid input/output automata. In O. Maler and A. Pnueli, editors, Proc.

Hybrid Systems: Computation and Control, Prague, the Czech Republic April 3–5, 2003.

Lecture Notes in Computer Science, Vol. 2623. Springer-Verlag, Berlin, pp. 343–358,

2003.

[36] D. Kaynar, N. A. Lynch, S. Mitra, and S. Garland, The TIOA language, May 2005.

Available: http://theory.csail.mit.edu/tds/reflist.html.

[37] S. Garland, TIOA user guide and reference manual, September 2005. Available:

http://theory.csail.mit.edu/tds/reflist.html.

[38] S. Garland, D. Kaynar, N. A. Lynch, J. Tauber, and M. Vaziri, TIOA tutorial, May 2005.

Available: http://theory.csail.mit.edu/tds/reflist.html.

http://dx.doi.org/10.1016/0304-3975(94)00202-T

P1: IML

MOBK015-REF MOBK015-Lynch.cls April 20, 2006 17:16

96 THEORY OF TIMED I/O AUTOMATA

[39] R. Gawlick, R. Segala, J. F. Søgaard-Andersen, and N. A. Lynch, Liveness in timed and

untimed systems. In S. Abiteboul and E. Shamir, editors, Proc. 21st ICALP, Jerusalem.

Lecture Notes in Computer Science, Vol. 820. Springer-Verlag, Berlin, 1994. A full

version appears as MIT Technical Report number MIT/LCS/TR-587.

[40] N. A. Lynch, R. Segala, F. W. Vaandrager, and H. B. Weinberg, Hybrid I/O automata.

In R. Alur, T. A. Henzinger, and E. D. Sontag, editors, Hybrid Systems III. Lecture Notes

in Computer Science, Vol. 1066. Springer-Verlag, Berlin, pp. 496–510, 1996.

[41] N. A. Lynch, R. Segala, F. W. Vaandrager, and H. B. Weinberg, Hybrid I/O automata,

Report CSI-R9907. Computing Science Institute, University of Nijmegen, April 1999.

[42] J. M. T Romijn, A timed verification of the IEEE 1394 leader election protocol.

Formal Methods in System Design, 19(2):165–194, 2001. Special issue on FMICS’99.

doi:10.1023/A:1011284000753

[43] D. P. L. Simons and M. I. A. Stoelinga, Mechanical verification of the IEEE 1394a root

contention protocol using Uppaal2k. International Journal on Software Tools for Technology

Transfer, 3(4):469–485, 2001.

[44] N. A. Lynch and F. W. Vaandrager, Forward and backward simulations, I: Untimed sys-

tems. Information and Computation, 121(2):214–233, 1995. doi:/10.1006/inco.1995.1134

[45] N. A. Lynch and M. R. Tuttle, An introduction to input/output automata. CWI Quarterly,

2(3):219–246, 1989.

[46] S. Bornot and J. Sifakis, An algebraic framework for urgency. Information and Computa-

tion, 163:172–202, 2000. doi:10.1006/inco.2000.2999

[47] Howard Bowman, Modelling timeouts without timelocks. In J.-P. Katoen, editor,

ARTS’99, 5th Int. AMAST Workshop Real-time and Probabilistic Systems. Lecture Notes in

Computer Science, Vol. 1601. Springer, Berlin, pp. 334–353, May 1999.

[48] D. Dill, Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits,

ACM Distinguished Dissertations. MIT Press, Cambridge, MA, 1988.

[49] M. Abadi and L. Lamport, Composing specifications. ACM Transactions on Programming

Languages and Systems, 1(15):73–132, 1993. doi:10.1145/151646.151649

[50] C. B. Jones, Specification and design of parallel programs. In R. E. A. Mason, editor,

Information Processing 83: Proc. of the IFIP 9th World Congress, North-Holland, 1983,

pp. 321–332.

[51] A. Pnueli, In transition from global to modular temporal reasoning about programs. In

K. R. Apt, editor, Logics and Models of Concurrent Systems, NATO ASI. Springer-Verlag,

Berlin, pp. 123–144, 1984.

[52] E. W. Stark, A proof technique for rely/guarantee properties. In S. N. Maheshwari,

editor, Foundations of Software Technology and Theoretical Computer Science. Lecture Notes

in Computer Science, Vol. 206. Springer-Verlag, Berlin, pp. 369–391, 1985.

http://dx.doi.org/10.1023/A:1011284000753
http://dx.doi.org/10.1006/inco.1995.1134
http://dx.doi.org/10.1006/inco.2000.2999
http://dx.doi.org/10.1145/151646.151649

P1: IML

MOBK015-REF MOBK015-Lynch.cls April 20, 2006 17:16

REFERENCES 97

[53] M. Abadi and L. Lamport, Conjoining specifications. ACM Transactions on Programming

Languages and Systems, 17(3):507–534, 1995. doi:10.1145/203095.201069

[54] T. A. Henzinger, S. Qadeer, and S. K. Rajamani, Decomposing refinement proofs using

assume-guarantee reasoning. In Proc. Int. Conf. Computer-Aided Design (ICCAD). IEEE

Comput. Soc. Press, Los Alamitos, CA, pp. 245–252, 2000.

[55] S. Tasiran, R. Alur, R. P. Kurshan, and R. K. Brayton, Verifying abstractions of timed

systems. In Proc. 7th Conf. Concurrency Theory (CONCUR). Lecture Notes in Computer

Science, Vol. 1119. Springer-Verlag, Berlin, 1996.

[56] G. Frehse, Compositional Verification of Hybrid Systems using Simulation Relations, PhD

thesis. Radboud University Nijmegen, October 2005.

[57] D. Kaynar and N. A. Lynch, Decomposing verification of timed I/O automata. In

Y. Lakhnech and S. Yovine, editors, Proc. Joint Int. Conf. Formal Modelling and Analysis of

Timed Systems, FORMATS 2004 and Formal Techniques in Real-Time and Fault-Tolerant

Systems, FTRTFT 2004, Grenoble, France, September 22–24, 2004. Lecture Notes in

Computer Science, Vol. 3253. Springer-Verlag, Berlin, pp. 84–101, 2004.

[58] S. Owre, J. Rushby, N. Shankar, and F. von Henke, Formal verification for fault-tolerant

architectures: Prolegomena to the design of PVS. IEEE Transactions on Software Engi-

neering, 21(2):107–125, 1995. doi:10.1109/32.345827

[59] S. Garland, N. A. Lynch, and M. Vaziri, IOA: A Language for Specifying, Programming,

and Validating Distributed Systems. MIT Laboratory for Computer Science, Cambridge,

MA, 2001. Available: http://theory.lcs.mit.edu/tds/ioa.html.

[60] D. Kaynar, N. A. Lynch, R. Segala, and F. W. Vaandrager, The theory of timed

I/O automata, Technical Report MIT-LCS-TR-917a. MIT Laboratory for Computer

Science, Cambridge, MA, 2004. Available: http://theory.csail.mit.edu/tds/

reflist.html.

[61] B. Gebremichael and F.W. Vaandrager, Specifying urgency in timed I/O automata.

In Proc. 3rd IEEE Int. Conf. Software Engineering and Formal Methods (SEFM 2005),

Koblenz, Germany, September 5–9, 2005. IEEE Computer Soc. Press, Los Alamitos,

CA, pp. 64–73, 2005.

http://dx.doi.org/10.1145/203095.201069
http://dx.doi.org/10.1109/32.345827

P1: IML

MOBK015-REF MOBK015-Lynch.cls April 20, 2006 17:16

98

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-IND MOBK015-Lynch.cls April 1, 2006 17:6

99

Index

(A, V)-restriction, 17

(A, V)-sequence, 15

abstraction, 2

admissible, 16, 18

algebraic cpo, 9

AlternateA, 84

AlternateB, 84

Alur–Dill timed automaton, 4

analog variable, 12, 22

assume-guarantee, 81

backward simulation, see simulation

relation, 43

BoundedAlternateA, 60

BoundedAlternateB, 60

CatchUpA, 60, 86

CatchUpB, 60, 86

chain, 9

Clock, 63

Clock and manager problem, 63

clock synchronization, 28, 41

ClockSync, 28, 56, 74

compact element of a cpo, 9

comparable, 77

TA, 36

compatible, 79

TA, 53

complete partial order (cpo), 8

algebraic cpo, 9

compact element, 9

composition, 2, 53, 79

continuous, 9

cpo, see complete partial order, 8

discrete action, 19

discrete transition, 19

discrete variable, 12, 22

dynamic type, 12

effect, 22

enabled, 19

execution, 29, 74

PeriodicSend, 31

Timeout, 31

execution fragment, 29, 30, 74

feasible, 36, 74

FIN, see finite internal nondeterminism, 34

finite internal nondeterminism (FIN), 34, 83

Fischer’s mutual exclusion, 26, 32, 70

FischerME, 26

FischerME, 70

forward simulation, see simulation relation, 37

clock synchronization, 41

time-bounded channels, 39

hiding, 62

HIOA, 3, 80

history relation, 46, 47, 78

history variable, 46, 47

time-bounded channels, 46

hybrid automaton, 20, 53

Hybrid I/O Automaton modeling

framework, 3, 91

hybrid sequence, 15, 16

admissible, 16

closed, 16

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-IND MOBK015-Lynch.cls April 1, 2006 17:6

100 INDEX

hybrid sequence (cont.)

concatenation, 17

limit time, 16

prefix, 16

time-bounded, 16

Zeno, 16

HyTech, 6

I/O feasibility, 90

I/O feasible, 74, 89

implementation, 2, 36

invariant, 30

clock agreement, 58

clock validity, 57

ClockSync, 57, 58

failure and timeout, 56

FischerME, 32

TimedChannel, 32

timeout, 55

Kronos, 5

limit of a chain, 9

linear hybrid automaton, 6

locally Zeno, 74

Manager, 63

monotone, 9

non-Zeno, 16, 18

parallel composition, see composition, 2

partial order, 8

complete partial order, 8

periodic sending process, 23, 31

periodic sending process with failures, 24

PeriodicSend, 23, 55

PeriodicSend2, 24, 55

point trajectory, see trajectory, 13

precondition, 22

prefix, 8

progressive, 75, 77

prophecy relation, 50, 78

prophecy variable, 50

reachable, 30

receptive, 77, 90

receptiveness, 3, 76, 90

refinement, 42

sequence, 8

simulation relation, 2, 37

backward simulation, 37, 43, 45, 78

forward simulation, 37, 77

refinement, 42

Specification, 63

static type, 11

strategy, 76, 76

substitutivity, 58, 60, 80, 81

System, 63

TA, see timed automaton, 19

TA with bounds, 63, 65

task, 63, 65

lower bound, 66

upper bound, 66

time axis, 11

time interval, 11

closed, 11

left-closed, 11

right-closed, 11

time-bounded channel, 23, 32, 39, 47

timed automaton (TA), 19

timed automaton model, 19

Timed I/O automaton (TIOA), 2, 73

Timed Input/Output Automaton modeling

framework, 2

TimedChannel, 23, 55, 74

Timeout, 55

Timeout, 24, 55

timeout process, 24, 31

timing-independent, 36, 83

TIOA, see Timed I/O automaton, 2

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-IND MOBK015-Lynch.cls April 1, 2006 17:6

INDEX 101

trace, 2, 30, 74

PeriodicSend, 31

Timeout, 32

trace fragment, 30, 74

trajectory, 13, 19

closed, 13

concatenation, 14, 15

full, 13

limit time, 14

open, 13

point trajectory, 13, 16

prefix, 14

Uppaal, 5

UseNewInputA, 86

UseNewInputB, 86

UseOldInputA, 86

UseOldInputB, 86

variables, 11, 13, 19

analog, 12

discrete, 12

dynamic types, 12

static type, 11

weak isomorphism, 42

Zeno, 3, 16, 33

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK015-IND MOBK015-Lynch.cls April 1, 2006 17:6

102

