
P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-FM MOBK033-Smann.cls September 26, 2006 15:39

A Blossoming Development
of Splines

i

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-FM MOBK033-Smann.cls September 26, 2006 15:39

Copyright © 2006 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations

in printed reviews, without the prior permission of the publisher.

A Blossoming Development of Splines

Stephen Mann

www.morganclaypool.com

1598291165

9781598291162 paperback

1598291173

9781598291179 ebook

DOI 10.2200/S00041ED1V01200607CGR001

A Publication in the Morgan & Claypool Publishers Series

SYNTHESIS LECTURES ON COMPUTER GRAPHICS AND ANIMATION #1

Lecture #1

Series Editor: Brian A. Barsky, University of California, Berkeley

First Edition

10 9 8 7 6 5 4 3 2 1

ii

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-FM MOBK033-Smann.cls September 26, 2006 15:39

A Blossoming Development
of Splines

Stephen Mann
University of Waterloo
Canada

SYNTHESIS LECTURES IN COMPUTER GRAPHICS AND ANIMATION #1

M
&C

Morgan &Claypool Publishers

iii

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-FM MOBK033-Smann.cls September 26, 2006 15:39

iv

ABSTRACT
In this lecture, we study Bézier and B-spline curves and surfaces, mathematical representations

for free-form curves and surfaces that are common in CAD systems and are used to design

aircraft and automobiles, as well as in modeling packages used by the computer animation

industry. Bézier/B-splines represent polynomials and piecewise polynomials in a geometric

manner using sets of control points that define the shape of the surface.

The primary analysis tool used in this lecture is blossoming, which gives an elegant labeling

of the control points that allows us to analyze their properties geometrically. Blossoming is used

to explore both Bézier and B-spline curves, and in particular to investigate continuity properties,

change of basis algorithms, forward differencing, B-spline knot multiplicity, and knot insertion

algorithms. We also look at triangle diagrams (which are closely related to blossoming), direct

manipulation of B-spline curves, NURBS curves, and triangular and tensor product surfaces.

KEYWORDS
Bézier and B-splines curves and surface, Blossoming, Computer-aided geometric design,

Splines, Triangular and tensor product spline surfaces

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-FM MOBK033-Smann.cls September 26, 2006 15:39

v

Contents

Preface . ix

1. Introduction and Background . 1

1.1 Mathematical Background . 1

1.1.1 Why Affine Geometry? .3

1.1.2 Exercises . 4

2. Polynomial Curves . 5

2.1 Implementations . 7

2.2 Bernstein Polynomials and Bézier Curves . 7

2.2.1 Exercises . 12

2.3 Blossoming . 12

2.3.1 de Casteljau Revisited . 15

2.3.2 Degree Raising . 16

2.3.3 Functional Bézier Curves . 17

2.3.4 Exercises . 18

2.3.5 Implementations . 19

2.4 Multilinear Blossom . 19

2.4.1 Exercises . 23

2.5 Derivatives of Bézier Curves . 24

2.5.1 Exercises . 26

2.6 Continuity .26

2.6.1 Cubic Hermite Interpolation .27

2.6.2 C1 Continuity and the Blossom . 27

2.6.3 C2 Continuity . 29

2.6.4 Ck Continuity . 29

2.6.5 Exercises . 30

2.7 Change of Basis . 31

2.8 Exercises . 32

2.9 Fast Evaluation . 32

2.9.1 Exercise .35

2.9.2 Implementations . 35

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-FM MOBK033-Smann.cls September 26, 2006 15:39

vi CONTENTS

3. B-Splines . 37

3.1 Implementations . 42

3.2 Knot Multiplicity . 42

3.2.1 Exercises . 46

3.2.2 Implementations . 47

3.3 Triangle Diagrams . 47

3.3.1 Exercises . 49

3.4 Knot Insertion . 49

3.4.1 Implementations . 51

3.5 B-spline Basis Functions . 51

3.5.1 Exercise .55

3.5.2 Implementations . 55

3.6 Closed B-splines . 56

3.7 Modeling with Polynomial and Spline Curves: Direct Manipulation 57

3.7.1 Implementations . 59

3.8 NURBS . 59

4. Surfaces . 61

4.1 Triangular Surface Patches . 61

4.1.1 Blossoming . 65

4.1.2 Exercise .68

4.1.3 Derivatives . 68

4.1.4 Parametric Continuity . 71

4.1.5 Surfaces Above the Plane . 73

4.1.6 Exercise .73

4.1.7 Storing the Control Points . 74

4.1.8 Efficient Evaluation at a Single Point . 75

4.2 Fast Evaluation on a Grid of Points . 76

4.2.1 A Grid of Evaluation Points . 76

4.2.2 Implementations . 77

4.2.3 3-to-1 Subdivision . 77

4.2.4 2-to-1 Subdivision . 78

4.2.5 4-to-1 Subdivision . 79

4.2.6 Curve Evaluation . 81

4.2.7 Cracking Problems. .82

4.2.8 Discussion . 83

4.2.9 Exercise .83

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-FM MOBK033-Smann.cls September 26, 2006 15:39

CONTENTS vii

4.3 Tensor-Product Surface Patches . 83

4.3.1 The Blossom of a Tensor-Product Surface . 84

4.3.2 Derivatives . 85

4.3.3 Continuity . 86

4.3.4 Tensor-Product B-Splines . 87

4.3.5 Surfaces Above the Plane . 87

4.3.6 Generalizing the Dimension . 88

4.3.7 Storage . 88

4.4 Alternative Evaluation Methods for Tensor Product Surfaces 88

4.4.1 Repeated Bilinear Interpolation . 88

4.4.2 Repeated Curve Evaluation: Revisited . 90

4.4.3 Recursive Subdivision . 90

4.4.4 Curve Evaluation . 91

4.4.5 Discussion . 91

4.4.6 Exercise .92

Bibliograpy. .93

Index . 95

Biography . 97

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-FM MOBK033-Smann.cls September 26, 2006 15:39

viii

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-FM MOBK033-Smann.cls September 26, 2006 15:39

ix

Preface

These are a subset of course notes that I started developing in 1993 for the University of

Waterloo course on splines. I wanted a blossom development of the spline material, and found

no reference adequate for that purpose. Although some possible choices have appeared since

then [10, 9], I preferred the material that I had developed. The notes you see here are mostly

restricted to the blossoming material that appears in my course notes, although there are a few

side trips to emphasize some important points.

A word about the style and intended audience: this lecture is not aimed at mathematicians.

Instead, it is aimed at senior undergraduates or first-year graduate students in computer science,

whose mathematics is a bit weak or perhaps a bit rusty. Exposure to calculus and linear algebra

is expected, but I try to include a brief reminder of the mathematical ideas needed in the text.

The proofs are informal and could be tightened up a lot, but I have tried to write them in a

style that is more useful to someone that needs a bit more guidance. Further, there is a varying

amount of rigor: sometimes, proofs are omitted or glossed over, at other times, the proofs are

done in more detail. And the exposition tends to be a bit chatty. Again, the intent is to provide

a level of detail that will allow the intended audience to absorb and appreciate the material.

Two sources were the main inspiration for these notes: Lyle Ramshaw’s tech report, and

the papers and talks that were the basis for Ron Goldman’s book, Pyramid Algorithms. Both

are excellent supplements to these notes. Because of the way these notes were developed, the

references are a bit skimpy; my apologies to anyone whose work I should have cited—I would be

interested in hearing from you to add an appropriate citation to future versions of these notes.

I am indebted to Lyle Ramshaw and an anonymous reviewer, whose comments on a draft

of these notes allowed me to expand several portions from short notes to myself (to elaborate

on in class) into a readable text.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-FM MOBK033-Smann.cls September 26, 2006 15:39

x

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-01 MOBK033-Smann.cls September 25, 2006 16:36

1

C H A P T E R 1

Introduction and Background

Polynomial curves and surfaces have a long mathematical history. In CAD and modeling pack-

ages, Bézier and B-spline curves and surfaces have been the standard modeling techniques

for several decades. Although there are now other competing methods (subdivision surfaces,

triangle meshes), the Bézier/B-spline form is still in common use.

In this set of notes, I give a geometrical introduction to Bézier and B-spline curves and

surfaces using blossming, a technique that allows us to label the Bézier and B-spline control

points (and intermediate points of computation) so that we can visualize the mathematics.

I begin with some background mathematics on affine geometry. Then the next chapter

presents polynomials curves, using blossoming as the main analysis tool. The following chapter

extends these ideas to piecewise polynomial curves and B-splines. Finally, the last chapter looks

at triangular and tensor product surfaces.

1.1 MATHEMATICAL BACKGROUND
I give a brief sketch of some of the mathematical ideas that we will use in this lecture; see linear

algebra and geometry text books for additional details.

One of the core ideas used in splines is that of a vector space, the properties of which are

as follows.

Definition 1.1. Vector space: A non-empty set V and two operators:

• V × V → V : (�u, �v) �→ �u + �v
• R × V → V : (α, �v) �→ α�v

such that for �u, �v, �w ∈ V and a, b ∈ R (where R are the real numbers) the following hold:

1. commutativity of +
2. associativity of +
3. unique additive identity �0 exists

4. additive inverse of �v exists

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-01 MOBK033-Smann.cls September 25, 2006 16:36

2 A BLOSSOMING DEVELOPMENT OF SPLINES

5. 1 is a multiplicative identity

6. left and right distributivity of multiplication

7. a(b �v) = (ab)�v

We will also use the ideas of spans and bases, where a span is a set of vectors S in a vector

space V where any element of V can be written as a linear combination of the elements of S,

and a basis is a smallest set of such vectors. Note that a basis for an n-dimensional vector space

has exactly n elements, and that a set of n vectors in an n-dimensional vectors space form a basis

for the space if and only if �0 has a unique representation relative to the set of basis vectors (see

Exercise 1 of Section 1.1.2).

Although vector spaces are important in splines (primarily because we need the ideas of

polynomial vector spaces and polynomial bases), they are insufficient for describing the geometry

we wish to work with. Instead, we will work in affine spaces.

Definition 1.2. An affine space A = {P, V } is a set of points P and vectors V where V forms a

vector space and where the following operations for points exist:

• V × P → P : (�v, p) �→ �v + p

• P × P → V : (p, q) �→ p − q where q + (p − q) = p

By abuse of notation, we get affine combinations:
∑n

i=1 ai pi = p ∈ P is said to be an

affine combination if
∑

ai = 1. We will also allow
∑

ai = 0 (to be interpreted as a vector). If∑
ai �∈ {0, 1} then the expression is invalid (i.e., it has no geometric meaning).

A linear transformation preserves linear combinations while an affine transformation pre-

serves affine combinations, i.e.,

L
(∑

ai �vi

)
=

∑
ai L(�vi)

is a linear transformation for all ai ∈ R, and

A
(∑

ai pi

)
=

∑
ai A(pi),

∑
ai = 1

is an affine transformation.

Note that every linear transformation on V is an affine transformation on P . Intuitively,

affine transformations are the ones we know about: scale, rotate, translate, shear, etc. Trans-

lation (and its composition with the other linear transformations) is the only additional affine

transformation on P above and beyond those that are linear transformations on V .

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-01 MOBK033-Smann.cls September 25, 2006 16:36

INTRODUCTION AND BACKGROUND 3

As an example of an affine combination, we note that a line can be described as l(t) =
(1 − t)p + tq , where p, q ∈ P and we let t vary from −∞ to ∞. This leads to the following

two observations:

1. Affine transformations map lines to lines.

2. Affine transformations preserve ratios of distances along a line (more generally, along

parallel lines).

Claim 1.1. If a point transformation preserves ratios of parallel distances, then it is affine.

Proof. Exercise 4 of Section 1.1.2

Note that we have defined our line l(t) as a parametric line. The points p and q typically

have x, y , and possibly z coordinates (in fact, p and q can be of any dimension), and the domain

parameter t is in a different space. The parametric representation looks a bit different from

the more familiar form of a line y = mx + b. However, in geometric modeling, the parametric

representation is more useful, since we can represent all lines (including vertical lines) with a

single representation, and the non-coordinate parametric line definition frees us from being tied

to a particular coordinate system.

1.1.1 Why Affine Geometry?

While vector spaces are useful for many things, for geometric modeling, they are inadequate.

In geometric modeling, we want to describe our objects “simply.” In particular, we want to

describe our objects as a function of a small number of “representatives” (usually points, but

some times a mix of points and vectors), and then transform the representatives to transform

the entire object. For example, in a modeling package, you might draw a curve on the screen,

and then move it to a different location on the screen and then rotate it. By having a “nice”

representation of the curve, we can achieve this translation/rotation by just translating/rotating

the curve representatives.

To see why a vector space representation is inadequate, suppose we are working in a vector

space, and we describe our object with vectors �u and �v. Further suppose that the vector �u + �v
is on our object (Fig. 1.1, left). Now we decide to translate our object by a vector �t. In a vector

space, it is not obvious how to translate something, since vectors are “free”; however, something

that seems similar to translation by �t is to add �t to the representatives, thus mapping �v to �v + �t.
Our transformed representation for our object is �U = �u + �t and �V = �v + �t. But now (letting T

represent the translation by �t), we find that we cannot transform our object by just transforming

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-01 MOBK033-Smann.cls September 25, 2006 16:36

4 A BLOSSOMING DEVELOPMENT OF SPLINES

�u
�u + �v

�v QR

P
R + (P −R) + (Q−R)

FIGURE 1.1: Vector space construction versus affine construction

the describing elements �u, �v, since

T(�u + �v) = �u + �v + �t
�= T(�u) + T(�v)

= �u + �v + 2�t
In the affine setting, if our representative objects are points P and Q, we translate them by

adding the vector �t to them, mapping P to P + �t and Q to Q + �t. However, in an affine

setting, the entity of P + Q does not have geometric meaning. If we had a third point, R, and

we wanted the point R + (P − R) + (Q − R) as a point on our object (Fig. 1.1, right), we now

see that

T(R + (P − R) + (Q − R)) = R + (P − R) + (Q − R) + �t
= T(R) + T(P − R) + T(Q − R)

since vectors are unchanged under translation. Thus, in the affine setting, translation has a

well-defined meaning that is preserved by affine combinations, something that is lacking in the

linear setting.

Clearly, there was more structure in the affine setting than in the linear setting in the

example in the previous paragraph. While constraints could be layered on top of a vector space

to restrict vector combinations to ones that behave well under translation, those constraints

basically make the vector space into an affine space, so conceptually we chose instead to work

directly in an affine space, rather than in a linear space with some extra rules attached.

1.1.2 Exercises

1. Prove that n vectors in an n-dimensional vectors space form a basis for that space if and

only if �0 has a unique representation relative to this set of vectors.

2. Show that parallel lines map to parallel lines under an affine transformation.

3. Show that perpendicularity is not preserved by affine transformations.

4. Prove that if a point transformation preserves ratios of parallel distances, then it is

affine.

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

5

C H A P T E R 2

Polynomial Curves

You should be familiar with the monomial form of a scalar-valued, degree n polynomial,

F(u) =
n∑

i=0

ai u
i

where ai ∈ R.

If we consider the set Pn of degree n polynomials, then Pn forms a vector space of

dimension n + 1. You can prove this by showing that all the properties of addition and scalar

multiplication required by a vector space hold (Exercise 1 of Section 2.2.1).

Proposition 2.1. {ui | i = 0, . . . , n} forms a basis for Pn. (That is, if F is a polynomial, then we

can write F as
∑n

i=0 ai u
i for ai ∈ R. This is the monomial representation of F.)

Proof. We have the result if we can show that �0 = ∑n
i=0 ai u

i if and only if ai = 0 for all i . Clearly,

a0 = 0 (otherwise our polynomial is nonzero at u = 0). We can prove that ai = 0 by differentiation.

Note that the coefficients of a polynomial do not have to be scalar valued. We could

instead use an array of scalars (i.e., ai ∈ Rd). The polynomial function would then give back

an array of scalars. In geometric modeling, we would like the coefficients of our polynomials to

have geometric meaning. One way to achieve this with monomials is to make a0 (the coefficient

of 1) be a point P and the remaining ai be vectors, �vi :

F(u) = P +
n∑

i=1

�vi u
i

Further, the vector coefficients are related to the derivatives of F at u = 0; take the derivatives

of F to see the exact relationship (see also the proof of Theorem 2.2 and Section 2.7).

There are other bases for the space of degree n polynomials. While the monomials have the

nice properties that they are simple in form and fast to evaluate, we will study other polynomial

bases that have properties that are more desirable for modeling purposes. The following is an

example of another polynomial basis.

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

6 A BLOSSOMING DEVELOPMENT OF SPLINES

Proposition 2.2. For t0, . . . , tn ∈ R pairwise distinct,

Ln
i (u) =

n∏
j=0
j �=i

u − t j

ti − t j

, i = 0, . . . , n

is a basis for Pn.

Proof. Assume F(u) ≡ 0 where F(u) = ∑n
i=0 c i Ln

i (u). For ti , Ln
i (t j) = δi j , where δi j is 1 if i = j

and 0 otherwise. Thus,

n∑
i=0

c i Ln
i (t j) = c j ⇒ ci = 0

These Ln
i are the Lagrange polynomials.

It turns out that the degree n Lagrange polynomials sum to 1:
∑

Ln
i (u) = 1 (Exercise 2

of Section 2.2.1). This means that if we use the degree n Lagrange polynomials as weights to

n + 1 points, then we have an affine combination of points, so the expression

n∑
i=0

Pi Ln
i (t j)

has geometric meaning in an affine space. In their simplest form, if we weight two points with

the degree 1 Lagrange polynomials, then we have a parametric line:

l(u) = P0

u − t1

t0 − t1
+ P1

u − t0

t1 − t0

For higher degrees, if we use points as the coefficients to the Lagrange polynomials, then we

get a parametric curve that interpolates those points. By parametric, we mean that the curve has

a domain that is independent of the range. This allows us to create curves that are not graphs

of polynomial functions; instead, the curve can wrap around itself, etc.

Thus, Lagrange polynomials give us a method for creating curves that interpolate a

set of points. While this may seem ideal for geometric modeling, it turns out that there are

problems with interpolating curves. At high degrees, interpolatory polynomial curves exhibit

poor behavior, and are generally not used; see Fig. 2.1 for some examples. In these examples, the

ti values (also called knots) are 0, 1, 2, For interpolatory problems of this nature, we usually

use piecewise polynomial interpolatory curves instead of a single polynomial to interpolate this

data. (Although we will study piecewise polynomial curves in later sections, we will not study

interpolatory piecewise polynomial curves; see [7] for a discussion of piecewise polynomials

interpolation techniques.)

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

POLYNOMIAL CURVES 7

FIGURE 2.1: Interpolatory curves using uniform knots

2.1 IMPLEMENTATIONS
1. Implement an interactive 2D Lagrange curve editor with the following functionality:

• The left mouse button adds a new interpolation point.

• The middle mouse button is used to move points.

• There are two display modes (accessible through a menu):

– Just the curve.

– The curve and the interpolation points.

• There should be a reset key/menu option that clears all the control points.

If n + 1 interpolation points have been entered, then draw a degree n Lagrange interpolatory

curve using a uniform knot vector with the curve passing through the points in the order in

which they were created.

2.2 BERNSTEIN POLYNOMIALS AND BÉZIER CURVES
A third polynomial basis that we will consider is the Bernstein basis, which is used to form

Bézier curves.

Definition 2.1. (Bernstein polynomials): Bn
i (u) = (

n
i

)
ui (1 − u)n−i .

Proposition 2.3. The degree n Bernstein polynomials form a basis for Pn.

Proof. Exercise 3 of Section 2.2.1

In the Bernstein basis, we usually work with the polynomials over the interval [0, 1].

Sometimes, however, we will want to work with the Bernstein basis over another interval. This

leads to the generalized Bernstein basis.

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

8 A BLOSSOMING DEVELOPMENT OF SPLINES

Definition 2.2. (Generalized Bernstein polynomials over [s , t]):

Bn
i (u) = 1

(t − s)n

(
n

i

)
(u − s)i (t − u)n−i

=
(

n

i

)(
u − s

t − s

)i(t − u

t − s

)n−i

Proposition 2.4. Over the interval [0, 1],

1.
∑n

i=0 Bn
i (u) = (u + (1 − u))n,

2.
∑n

i=0 Bn
i (u) = 1,

3. Bn
i (u) ≥ 0, 0 ≤ u ≤ 1,

4. Bn
i (u) = u Bn−1

i−1 (u) + (1 − u)Bn−1
i (u) (recurrence relation),

5. Bn
i (1 − u) = Bn

n−i (u) (symmetry),

6. Bn
i (u) has local maximum at i/n.

Proof.

1. (a + b)n = ∑n
i=0

(
n
i

)
ai bn−i (binomial theorem);

2. Follows from above.

3. u ≥ 0 over [0, 1] and 1 − u ≥ 0 over [0, 1] and binomial coefficient is always positive, so

Bn
i (u) ≥ 0.

4.

Bn
i (u) = n!

i !(n − i)!

(
n − i

n
+ i

n

)
ui (1 − u)n−i

= (n − 1)!

i !(n − i − 1)!
ui (1 − u)n−i + (n − 1)!

(i − 1)!(n − i)!
ui (1 − u)n−i

=
(

n − 1

i

)
ui (1 − u)n−i−1(1 − u) +

(
n − 1

i − 1

)
ui−1(1 − u)n−i u

= (1 − u)Bn−1
i (u) + u Bn−1

i−1 (u)

5.

Bn
i (1 − u) =

(
n

i

)
(1 − u)i (1 − (1 − u))n−i

=
(

n

n − i

)
(1 − u)n−(n−i)un−i

= Bn
n−i (u)

6. Differentiate (Exercise 4 of Section 2.2.1).

Similar propositions hold for the generalized Bernstein polynomials over the interval [s , t].

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

POLYNOMIAL CURVES 9

Having defined the Bernstein basis, we can now look at Bézier curves. Over the interval

[0, 1], a degree n Bézier curve is given by

B(t) =
n∑

i=0

Pi Bn
i (t)

where Pi are control points. As we vary t from 0 to 1, we trace out a curve:

P

P P

P0

1 2

3

The piecewise linear curve connecting the control points in sequence is known as the control

polygon.

Immediately from the defining equation of Bézier curves, we see that they have an ex-

tremely useful property that is lacking in the monomials: the basis functions (the Bernstein

polynomials) sum to 1, meaning that the curve is an affine combination of its coefficients.

This allows us to treat the coefficients as points in a strong affine sense, and the curve has the

desired affine geometric properties. In addition, Bézier curves have many other nice properties

that make them useful for modeling. The remainder of this chapter investigates these other

properties of Bézier curves.

It is easy to see from the definition of the Bernstein polynomials that

1. B(0) = P0

2. B(1) = Pn

A Bézier curve does not, in general, interpolate any of its other control points. However, these

other control points can be used to compute the derivatives of a Bézier curve as we will see later.

Although we can evaluate a Bézier curve by evaluating the Bernstein polynomials and

then using them to weight the control points, the de Casteljau algorithm is another method for

evaluating these curves.

de Casteljau’s algorithm uses repeated linear interpolation to evaluate a Bézier curve. The

idea is to compute P 1
j = (1 − t)Pj + t Pj+1 for j = 0, . . . , n − 1. We then repeat this process

to compute P 2
j from P 1

j . Continuing, we compute a sequence of sets of points P 1, P 2, etc., each

set having one fewer points than the previous set, until we reach P n, which has a single point.

This point turns out to be a point on the curve. This process is illustrated for a cubic curve in

Fig. 2.2, with t = 0.5.

We can also consider the dataflow of the de Castlejau algorithm. The dataflow for the

cubic algorithm is illustrated in Fig. 2.3 (left); such a diagram is also known as a triangle diagram.

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

10 A BLOSSOMING DEVELOPMENT OF SPLINES

P

P P

P0

1 2

3

P

P

P1

1

1
0

1

2 P P2 2
0 1 P3

0

FIGURE 2.2: The de Casteljau algorithm

We start with the control points at the bottom of the figure. Each node in the diagram indicates

one of the values computed by de Casteljau’s algorithm. The arcs into an intermediate node

show which points are combined to create the intermediate node, and the labels of the arcs give

the weights used to combine these points.

A note about the triangle diagram. Suppose we leave the labels on the edges unchanged,

put a 1 at the top, and run the triangle diagram backwards (Fig. 2.3, right). When we sum all

paths from the top to a leaf node, we get a Bernstein polynomial at the leaf node, and we find that

the n + 1 leaf nodes will have a complete set of the degree n Bernstein polynomials. In general,

running the triangle diagram backwards gives us the weight functions for the control points.

We will revisit triangle diagrams after we have blossoming, and see that they are a powerful

analysis technique.

The code for de Casteljau’s algorithm is quite simple. First, we observe from the triangle

diagram that after we combine P0 and P1 to form P 1
0 , we no longer need the point P0. Thus, we

can store the result of (1 − t)P0 + t P1 back in P0. In a similar manner, we can reuse the storage

of all the control points. This leads to the following pseudo-code for de Castlejau’s algorithm:

for i = n to 1

for j = 0 to i-1

P_j = (1-t)P_j + t P_{j+1}

end

end

return P_0

P0 P1 P2 P3

P1
0 P1

1 P1
2

P2
0 P2

1

P3
0

(1− t)

(1− t)

(1− t) (1− t)

(1− t)

(1− t) t t t

t t

t

B3
0(u) B3

1(u) B3
2(u) B3

3(u)

O O O

O O

1

(1− t)

(1− t) (1− t)

(1− t)(1− t) (1− t)t t t

t t

t

FIGURE 2.3: Triangle diagrams of de Casteljau’s algorithm

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

POLYNOMIAL CURVES 11

FIGURE 2.4: Examples of cubic Bézier curves; in the last example, the bottom control point is both

the first and the last control point

Thus, while the algorithm has O(n2) running time, it only requires O(n) storage. Also note that

to compute a sequence of points on the curve, we will need to copy the control points before

running this version of de Casteljau’s algorithm.

Some examples of cubic Bézier curves and their control polygons are shown in Fig. 2.4.

In these examples, we see that parametric cubic curves can have inflection points, cusps, and

self-intersections.

It is straightforward to show that Bézier curves have a variety of useful properties; most

of these results come directly from the properties of the Bernstein polynomials.

• Affine invariance: T(
∑

i Pi Bn
i (u)) = ∑

i T(Pi)Bn
i (u).

True because the basis functions sum to 1.

• Invariance under affine parameter transformations: Clear from de Casteljau’s algorithm.

• Convex hull property: Curve lies within the convex hull of its control points as it is a

convex combination of its control points.

(The convex hull of a set of points is the smallest polygon that contains all of the points;

a convex combination of a set of points is an affine combination where all the weights

are nonnegative.)

• Endpoint interpolation: Clear.

• Symmetry: A result of the symmetry in the Bernstein polynomials.

• Linear precision: The following is an identity:

n∑
i=0

i

n
Bn

i (t) = t

This identity tells us that if we place our control points uniformly along a line, then

the curve will be a line (with linear parameterization). We will revisit this later once we

look at degree raising; see Section 2.3.2.

• Variation diminishing property (We will not prove this one; see [10]): Intersect a planar

Bézier curve with a line. Count the number of intersections between the line and the

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

12 A BLOSSOMING DEVELOPMENT OF SPLINES

A
B

C
D

FIGURE 2.5: Lines intersecting Bézier curves and their control polygons

curve and between the line and the control polygon. The variation diminishing property

says that the number of intersections with the curve is no more than the number of

intersections with the control polygon.

A bit more obscure than the other properties, the variation diminishing property

allows us to bound the variation in the curve by looking at the variation in the control

polygon. For example, if the control polygon “wiggles” w times, then the curve will

“wiggle” no more than w times.

Figure 2.5 shows some examples illustrating this property. We see that lines A,

C, and D all intersect the Bézier curve and the control polygon in equal numbers of

points. Note that it is possible for a line to intersect the control polygon in more points

that it intersects the curve (line B is an example in this figure); the variation diminishing

property only says that the opposite will not occur.

Before studying further properties of Bézier curves, we will look at the idea of blossoming.

2.2.1 Exercises

1. Prove that P d
n is a vector space.

2. Show that the degree n Lagrange polynomials sum to 1.

3. Show that the degree n Bernstein polynomials form a basis for the space of degree n

polynomials.

4. Show that the Bernstein polynomial Bn
i (t) reaches its maximum at t = i/n. Find the

maximum value.

5. Express the polynomial f (x) = x3 + x2 + x + 1 in the Bernstein basis.

6. The change of basis from the monomial basis to the Bernstein basis is a linear trans-

formation. Derive this matrix for cubic polynomials.

2.3 BLOSSOMING
In this section, I state and prove the blossoming theorem, which will be the basis of much of the

analyses in the remainder of this lecture. The theorem and its application are more important

than is the proof of the theorem, so you may want to skip the proof on a first reading.

We start by defining a few terms used in the blossoming theorem.

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

POLYNOMIAL CURVES 13

Definition 2.3. Let f : (Rc)n 	→ Rd

1. f is multiaffine if f (a1, . . . , ai−1, v, ai+1, . . . , an) is affine in v.

2. f is symmetric if f (u1, . . . , un) = f (uσ (1), . . . uσ (n)) for all permutations σ .

Intuitively, the multiaffine property is equivalent to each variable appearing to no more than the

power 1, while the symmetry property allows us to change the order of the arguments without

changing the value of the function.

Example 2.1. If f (u, v, w) is multiaffine, then f (u, 0, 0) is affine in u.

Example 2.2. If f (u, v, w) is symmetric, then f (a, b, c) = f (a, c , b) = f (b, a, c) =
f (b, c , a) = f (c , a, b) = f (c , b, a).

Theorem 2.1. The blossoming principle

Let F : P 	→ Q be a degree n polynomial, where P and Q are affine spaces.

Then there exists a unique map f : Pn 	→ Q such that

1. f is symmetric,

2. f is multiaffine,

3. f (u, . . . , u) = F(u).

f is said to be the polar form or multiaffine blossom of F.

Proof. For simplicity, let P = R (you will generalize this proof for P of arbitrary dimension in

Exercise 1 of Section 4.1.2). Then, each term TF of F(u) is of the form c i u
i , where i ≤ n, and where

c i ∈ R.

Suppose we wish to construct f (u1, . . . , un) from F(u) = ∑n
i=0 c i u

i . It is easy to convert

F into an n-variate function f 1(u1, . . . , un): for each term c i u
i of F, place a corresponding term

c i u1 · · · · · ui in f 1. Clearly, f 1(u, . . . , u) = F(u).

But f 1 is not symmetric. Thus, we symmeterize each term of f 1 into a term of f , converting

the term c i u1 · · · · · ui into

c i(
n
i

) ∑
σ

uσ (1) · · · · · uσ (i)

where σ is a permutation of the integers 1, . . . , n with σ (1) < · · · < σ (i) and with σ (i + 1) < · · ·
< σ (n), leading to the

(
n
i

)
coefficient. This symmeterization retains the diagonal property, and the

resulting f is multiaffine as each variable is of no more than degree 1 in each term of f .

Uniqueness is harder. While it is clear that each f corresponds to a unique F (due to agreeing

on the diagonal), it might be possible for some F to map to two different blossoms. We first prove that

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

14 A BLOSSOMING DEVELOPMENT OF SPLINES

f is completely defined by

f (0, . . . , 0︸ ︷︷ ︸
n−i

, 1, . . . , 1︸ ︷︷ ︸
i

) ∀i = 0, . . . , n

Here, by “complete,” I mean that given the above blossom values, we can find f (u1, . . . , un) for any
u1, . . . , un. We sketch a proof by induction. If all of the blossom arguments are 0 and 1, then there is
nothing to prove. The inductive hypothesis is that if n − j out of n of the blossom arguments are 0
and 1, then we can express this function in terms of blossom evaluations where all the arguments are 0
and 1. Now suppose only n − j − 1 of the arguments are 0 and 1. Then

f (u1, . . . , u j+1, 0, . . . , 0︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
n− j−k−1

) = f (u1, . . . , u j , (1 − u j+1) · 0 + u j+1 · 1, 0, . . . , 0︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
n− j−k−1

)

= (1 − u j+1) f (u1, . . . , u j , 0, . . . , 0︸ ︷︷ ︸
k+1

, 1, . . . , 1︸ ︷︷ ︸
n− j−k−1

)

+u j+1 f (u1, . . . , u j , 0, . . . , 0︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
n− j−k

),

and by our inductive hypothesis, we can express each of these blossom evaluations with arguments sets

having only 0s and 1s.

To prove uniqueness, suppose F(u) = f (u, . . . , u) = g (u, . . . , u). Consider f (u, . . . , u):

f (u, . . . , u) = f ((1 − u) · 0 + u · 1, u, . . . , u)

= (1 − u) f (0, u, . . . , u) + u f (1, u, . . . , u)
...

=
n∑

i=0

(
n

i

)
(1 − u)n−i ui︸ ︷︷ ︸

Bernstein

f (0, . . . , 0︸ ︷︷ ︸
n−i

, 1, . . . , 1︸ ︷︷ ︸
i

)

g (u, . . . , u) =
n∑

i=0

(
n

i

)
(1 − u)n−i ui g (0, . . . , 0︸ ︷︷ ︸

n−i

, 1, . . . , 1︸ ︷︷ ︸
i

)

⇒ f (0, . . . , 0, 1, . . . , 1) = g (0, . . . , 0, 1, . . . , 1) as Bernsteins form a basis

⇒ f = g

Note that this also tells us that the Bézier control points have the blossom values

f (0, . . . , 0, 1, . . . , 1).

Example 2.3. Let F(u) = 3u3 + 2u2 + 6u + 1. We can blossom each term and then sum these

blossoms to construct f (u1, u2, u3):

• 1 	→ 1

• 6u 	→ 6(u1 + u2 + u3)/3

• 2u2 	→ 2(u1u2 + u2u3 + u3u1)/3

• 3u3 	→ 3u1u2u3

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

POLYNOMIAL CURVES 15

Thus,

f (u1, u2, u3) = 3u1u2u3 + 2(u1u2 + u2u3 + u3u1)/3 + 2(u1 + u2 + u3) + 1.

By inspection, we see that f (u, u, u) = F(u).

How do f and F relate to the Bézier control points? First pick an interval of interest (say

[0, 1] for simplicity). Next, evaluate f at f (0, 0, 0) = 1, f (0, 0, 1) = 3, f (0, 1, 1) = 5 2
3

and

f (1, 1, 1) = 12. These are the Bézier control points of F . Thus,

F(u) = 1 · (1 − u)3 + 3 · 3u(1 − u)2 + 5
2

3
· 3u2(1 − u) + 12u3

If we wanted a curve in two space, then we would need two parametric functions, Fx(u) and

Fy (u), we would blossom both, giving fx and fy , evaluate these blossoms at the appropriate

0–1 argument mixes to get the control points, and then weight these paired values with the

Bernstein polynomials to get a Bézier curve.

It may seem strange that we have taken a function of one variable and replaced it with a

function of many variables, which would seem to be more complicated. But what we have really

done is taken a high-degree function of one variable and exchange it for a function of many

variables that is linear in each variable. It is the linearity in each variable that makes the blossom

valuable to us, as illustrated by revisiting de Casteljau’s algorithm.

2.3.1 de Casteljau Revisited

Suppose we have a cubic curve F defined over [0, 1]. Consider the blossom f of F , and the

points f (0, 0, 0), f (0, 0, 1), f (0, 1, 1), f (1, 1, 1).

Consider (1 − t) f (0, 0, 0) + t f (0, 0, 1). Since f is multiaffine, this is equal to f (0, 0, t),

as t = 0 · (1 − t) + 1 · t:

(1 − t) f (0, 0, 0) + t f (0, 0, 1) = f (0, 0, t)

Repeating this process and labeling the control points and the intermediate points with their

blossom values, we obtain Fig. 2.6. Thus, we see again that the Bézier control points are given

by special values of the blossom of the Bézier curve.

f (0,0,0)

f (0,0,1)

f (0,1,1)

f (1,1,1)f (0,0,1/2)

f (0,1,1/2)

f (1,1,1/2)
f (0,1/2,1/2)

f (1,1/2,1/2)

f (1/2,1/2,1/2)

FIGURE 2.6: de Castlejau’s algorithm with blossom labels

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

16 A BLOSSOMING DEVELOPMENT OF SPLINES

f (t,t,t)

f (0,t,t)

f (0,0,t)

f (0,0,0) f (0,0,1) f (0,1,1) f (1,1,1)

f (1,1,t)

f (1,t,t)

f (0,1,t)

(1−t)

(1−t)

(1−t) (1−t) (1−t)

(1−t)

t t t

t t

t

FIGURE 2.7: Triangle diagram of de Casteljau algorithm with blossom labels

In Fig. 2.6, consider the points f (0, 0, 0), f (0, 0, t), f (0, t, t), and f (t, t, t). If we treat

these as Bézier control points, we see that we obtain the same curve as F , only defined over

the interval [0, t] rather than on [0, 1]. Likewise, the points f (t, t, t), f (t, t, 1), f (t, 1, 1),

and f (1, 1, 1) are the control points of the portion of F over the interval [t, 1]. Thus, the

de Casteljau algorithm not only evaluates a Bézier curve, it also subdivides the curve into two

pieces. If we look at the triangle diagram for Bézier curves (Fig. 2.7) we see that these subdivision

points appear along the “outside edges” of the triangle diagram.

Subdivision is a useful operation for a variety of tasks, beyond the obvious one of when

you want a subportion of the curve. As we will see when we look at derivatives, subdivision

gives us the derivatives of the curve at the point of evaluation. Subdivision also has the useful

property that the control polygons of the subdivided curve segments lie closer to the curve than

do the unsubdivided segments. In the limit, as we subdivide an infinite number of times, the

subdivided control polygons converge to the curve itself. This convergence property can be used

to make an adaptive drawing algorithm for Bézier curves, where you stop subdividing when the

control points are nearly colinear or when all of them lie within a pixel. Typically, though, such a

subdivision drawing algorithm is a bit of an overkill—sampling the curve a fixed number of times

(for a simple curve segment, 20 samples should suffice) and drawing the polyline connecting

those points is faster than is the adaptive algorithm and sufficient for rendering purposes.

2.3.2 Degree Raising

Suppose we have a degree 2 Bézier curve F(u), and we wish to know its degree 3 representation.

For monomials, this question is trivial. But for the Bézier representation, we need to find a new

set of control points.

We know F(u) and its blossom f (u, v). What we want is g (u, v, w), the trivariate blossom

of F . The trivariate blossom g (u, v, w) is a symmetric trivariate function that agrees with F on

the diagonal. The following clearly works:

g (u, v, w) = f (u, v) + f (v, w) + f (w, u)

3

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

POLYNOMIAL CURVES 17

The control points of G are given by g (0, 0, 0), g (0, 0, 1), g (0, 1, 1), g (1, 1, 1):

• g (0, 0, 0) = (f (0, 0) + f (0, 0) + f (0, 0))/3 = f (0, 0)

• g (0, 0, 1) = (f (0, 0) + f (0, 1) + f (1, 0))/3 = f (0, 0)/3 + 2 f (0, 1)/3

• g (0, 1, 1) = (f (0, 1) + f (1, 1) + f (1, 0))/3 = 2 f (0, 1)/3 + f (1, 1)/3

• g (1, 1, 1) = (f (1, 1) + f (1, 1) + f (1, 1))/3 = f (1, 1)

Looking at the control polygon, we see the following relationship between the degree 2

and degree 3 control points:

This formula can be generalized to arbitrary degree:

P n+1
i = i

n + 1
pn

i−1 + n + 1 − i

n + 1
P n

i , i = 0, . . . , n + 1

Geometrically, we break each segment of the control polygon into n + 1 pieces, and starting at

one end, every nth point is a degree-raised control point.

You should now be able to prove that Bézier curves have linear precision (Exercise 4 of

Section 2.3.4).

2.3.3 Functional Bézier Curves

While we are mostly interested in parametric curves in this lecture, the Bernstein–Bézier repre-

sentation can also be used to represent polynomial functions of the form y = f (x). Suppose we

use Bézier control points of the following form: (i/n, yi), for i = 0, . . . , n. When we weight

the control points with the Bernstein polynomials, we get

B(t) =
n∑

i=0

(i/n, yi)Bn
i (t)

=
(

n∑
i=0

(i/n)Bn
i (t),

n∑
i=0

yi Bn
i (t)

)

=
(

t,
n∑

i=0

yi Bn
i (t)

)
.

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

18 A BLOSSOMING DEVELOPMENT OF SPLINES

Thus, by setting the x-coordinate of the control points equal distances apart, we can represent

functions in Bézier form.

2.3.4 Exercises

1. Find the blossom of F(u) = x3 + x2 + x + 1. Demonstrate that the symmetry property

holds by evaluating the blossom at (1, 1, 2), (1, 2, 1), and (2, 1, 1).

2. Find the Bézier control points of F(x) = x2 + x2 + x + 1.

3. Find the Bézier control points of the quartic representation of F(x) = x2 + x2 + x + 1

(i.e., degree raise the cubic Bézier curve you constructed in the previous question).

4. Prove that Bézier curves have linear precision.

5. We can evaluate the blossom off the diagonal. Given control points for a cubic polyno-

mial F parameterized over [0, 1],

P0 = (0, 0)

P1 = (0, 1)

P2 = (1, 1)

P3 = (1, 0)

draw a figure for the de Casteljau type of evaluation of f , the blossom of F , at

f (0.25, 0.5, 0.75). The symmetry property of the blossom says any order of evalua-

tion yields the same result. Draw this three ways, using the orders (0.25, 0.5, 0.75),

(0.5, 0.25, 0.75), and (0.25, 0.75, 0.5).

Label all the intermediate points with their blossom values, and give the coor-

dinates for all points of evaluation. As an alternative to giving the coordinates of each

point of evaluation, you may draw the figures on graph paper (or a grid) with each

square being of width 1/8.

6. Suppose we have a parametric cubic curve F in Bézier form and its triaffine blossom

f . Let G(u) = f (1 − u, 1 − u, u). G is a polynomial curve. Determine its degree and

use blossoming to derive formulae for its Bézier control points over the interval [0, 1].

7. We have seen that a planar parametric cubic Bézier curve may intersect itself (Fig. 2.4).

Prove or give a counter example to the following statement: A parametric cubic curve

that intersects itself is planar.

8. Suppose we have a planar cubic Bézier curve with control points

f (0, 0, 0), f (0, 0, 1), f (0, 1, 1), f (1, 1, 1)

that intersects itself with both points of intersection being in the interval [0, 1]. Prove

or give a counter example to the following statement: The control polygon of this Bézier

curve intersects itself.

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

POLYNOMIAL CURVES 19

9. Suppose we have quadratic polynomials F and G specified in Bézier form over

the interval [0, 1]: F(u) = ∑2
i=0 Fi B2

i (u) and G(u) = ∑2
i=0 Gi B2

i (u). Let H(u) =
(1 − 3u)F(u) + 3uG(u). Use blossoming to find the Bézier control points of H over

the interval [0, 1]. Do not expand the polynomial H.

2.3.5 Implementations

1. Implement an interactive 2D Bézier curve editor with the following functionality:

• The left mouse button adds a new control point.

• The middle mouse button is used to move control points.

• There are two display modes (accessible through a menu):

– Just the curve.

– The curve and the control polygon with labeled control points.

• There should be a reset key/menu option that clears all the control points.

If n control point have been entered, then draw a degree n − 1 Bézier curve. This curve should

be updated in real time when a control point is moved with the middle mouse button.

2.4 MULTILINEAR BLOSSOM
To discuss the derivatives of a polynomial, it is convenient to work with a second form of the

blossom known as the multilinear blossom. The multilinear blossom theorem is really just a vari-

ation of the affine blossom theorem; since the multilinear blossom theorem gives us derivatives,

it would be possible just to state it without proof (or better yet, to state and prove the multilinear

blossoming theorem first, after which the multiaffine blossoming theorem follows immediately).

However, I have chosen to present the multiaffine blossoming theorem to illustrate the ideas

of affine geometry better, and I have chosen to prove both versions of the blossoming theorem

because ideas from both proofs are helpful in proving the generalized blossoming theorem (see

the exercise of Section 4.1.6).

We begin with a few definitions.

Definition 2.4. Given F(u) = ∑n
i=0 c i u

i , the corresponding homogeneous polynomial is F∗(ū) =∑n
i=0 c i u

i wn−i where ū = (u, w) for w ∈ R.

Note that by setting w = 1 we get back F :

F∗((u, 1)) =
n∑

i=0

c i u
i = F(u)

The points (u, 0) correspond to vectors. Also note that each term of F∗ is now exactly degree n.

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

20 A BLOSSOMING DEVELOPMENT OF SPLINES

Definition 2.5. f is multilinear if f is homogeneous and if f (a1, . . . , ai−1, v, ai+1, . . . , an) is

linear in v.

If f is multilinear and homogeneous, and if f ’s variables are univariate, then f only has

one term:

f (a1, . . . , an) = c i · a1 · · · · · an.

In the proof below, we will see what happens if the ai are multivariate.

We will also need the following form of Taylor expansions.

Definition 2.6. The Taylor expansion of an analytic function F is given by

F(u) =
∞∑

i=0

F (i)(0)

i !
ui

If F is a degree n polynomial, this becomes a finite sum with only n + 1 terms.

We are now ready to state and prove the multilinear blossoming theorem.

Theorem 2.2. Theorem:

Let F : P 	→ Q be a degree n polynomial, where P and Q are Euclidean spaces.

1. There exists a unique map f∗ : (P × R)n 	→ Q such that

(a) f∗ is symmetric,

(b) f∗ is multilinear,

(c) f∗(ū, . . . , ū) = F(u) where ū = (u, 1) ∈ P × R,

f∗ is the multilinear polar form or multilinear blossom of F.

2. f∗(ū1, . . . , ūn) = f (u1, . . . , un) where ui ∈ P and ūi = (ui , 1) ∈ P × R
3.

F (j)(u) = n!

(n − j)!
f∗(ū, . . . , ū︸ ︷︷ ︸

n− j

, δ, . . . , δ︸ ︷︷ ︸
j

)

where ū = (u, 1) and δ = (�1, 0).

Here, �1 is a unit vector in P , and represents a direction for a directional derivative. A nonunit

vector may also be used, but then the resulting evaluation of the blossom will need to be rescaled by the

length of this vector raised to the j th power. The theorem can be generalized to allow for different δs

for each of the j arguments, leading to mixed directional derivatives.

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

POLYNOMIAL CURVES 21

Proof.

Proof of (1): This is a generalization of the blossoming principle proof. For simplicity, let

P = R. Homogenize F(u) to F∗(ū). Each term of F∗ is of the form c i u
i wn−i , where i ≤ n.

Suppose we wish to construct f∗(ū1, . . . , ūn) from F∗(ū) = ∑n
i=0 c i u

i wn−i . It is easy to convert

F∗ into a 2n variate function f 1
∗ (ū1, . . . , ūn) = f 1

∗ ((u1, w1), . . . , (un, wn)) : for each term c i u
i wn−i

of F∗, place a corresponding term c i u1 · · · · · ui · wi+1 · · · · · wn in f 1
∗ . Clearly, f 1

∗ (ū, . . . , ū) =
F∗(ū) if ū = (u, w).

But f 1
∗ is not symmetric. Thus, we symmeterize each term of f 1

∗ , converting c i u1 · · · · · ui ·
wi+1 · · · · · wn into

c i(
n
i

) ∑
σ

uσ (1) · · · · · uσ (i) · wσ (i+1) · · · · · wσ (n)

where σ is a permutation of the integers 1, . . . , n with the property that σ (j) < σ (j + 1) for

1 ≤ j < i and for i < j < n (these restrictions prevent permutations that are equivalent up to

permutations of the indices of the us or permutations of the ws). The sum of these terms gives us f∗. It

is readily seen that f∗ has most of the desired properties, except uniqueness, which is less clear and we

prove below. The proof that there are
(

n
i

)
permutations for this σ is left as an exercise (Exercise 3 of

Section 2.4.1).

Note that (1,c) follows from

F(u) = F∗(ū) = f∗(ū, . . . , ū)
where ū = (u, 1).

Observe that f∗ is completely defined by

f∗(0̄, . . . , 0̄︸ ︷︷ ︸
n−i

, δ, . . . , δ︸ ︷︷ ︸
i

) ∀i = 0, . . . , n

(the proof is similar to that for uniqueness of f in the multiaffine blossoming theorem). Now we can

show uniqueness as follows:

F(u) = f∗(ū, ū, . . . , ū)

= f∗(0̄ + uδ, ū, . . . , ū)

= f∗(0̄, ū, . . . , ū) + u f∗(δ, ū, . . . , ū)
...

=
n∑

i=0

(
n

i

)
ui f∗(0̄, . . . , 0̄︸ ︷︷ ︸

n−i

, δ, . . . , δ︸ ︷︷ ︸
i

)

=
n∑

i=0

(
n

i

)
ui g∗(0̄, . . . , 0̄︸ ︷︷ ︸

n−i

, δ, . . . , δ︸ ︷︷ ︸
i

)

⇒ f∗(0̄, . . . , 0̄, δ, . . . , δ) = g∗(0̄, . . . , 0̄, δ, . . . , δ) as monomials form a basis

⇒ f∗ = g∗

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

22 A BLOSSOMING DEVELOPMENT OF SPLINES

Proof of (2) follows from the construction of f and f∗. Consider the construction of a blossom

of one term of a monomial:

F(u) = c i u
i F∗(u, w) = c i u

i wn−i

f 1 = c i u1 · · · · · ui f 1
∗ = c i u1 · · · · · ui · wi+1 · · · · · wn

f = c i

(n
i)

∑
σ uσ (1) · · · · · uσ (i) f∗ = c i

(n
i)

∑
σ uσ (1) · · · · · uσ (i)wσ (i+1) · · · · · wσ (n)

Both σ s give permutations that are equivalent for the u j s, and thus when we set w j = 1 for all j , we

have our result.

Proof of (3): Consider F(u) = f∗(ū, . . . , ū) (ū = (u, 1) = 0̄ + uδ). From above, we know

that

F(u) =
n∑

i=0

(
n

i

)
ui f∗(0̄, . . . , 0̄︸ ︷︷ ︸

n−i

, δ, . . . , δ︸ ︷︷ ︸
i

)

But F(u) = ∑n
i=0 F (i)(0)ui/ i ! by Taylor expansion, and since the monomials form a basis, we have

F (i)(0) = n!

(n − i)!
f∗(0̄, . . . , 0̄︸ ︷︷ ︸

n−i

, δ, . . . , δ︸ ︷︷ ︸
i

)

Now, we have the following:

n!

(n − j)!
f∗(ū, . . . , ū︸ ︷︷ ︸

n− j

, δ, . . . , δ︸ ︷︷ ︸
j

) = n!

(n − j)!

n− j∑
k=0

(
n − j

k

)
f∗(δ, . . . , δ︸ ︷︷ ︸

k

, 0̄, . . . , 0̄︸ ︷︷ ︸
n− j−k

, δ, . . . , δ︸ ︷︷ ︸
j

)uk

= n!

(n − j)!

n− j∑
k=0

(
n − j

k

)
f∗(0̄, . . . , 0̄︸ ︷︷ ︸

n− j−k

, δ, . . . , δ︸ ︷︷ ︸
j+k

)uk

= n!

(n − j)!

n− j∑
k=0

(n − j)!

k!(n − j − k)!
F (j+k)(0)

(n − j − k)!

n!
uk

=
n− j∑
k=0

F (j+k)(0)

k!
uk

= F (j)(u) (Taylor expansion)

Example 2.4. If F(u) = 3u3 + 2u2 + 6u + 1 then F∗(ū) = 3u3 + 2u2w + 6uw2 + w3 and we

construct f (ū1, ū2) by blossoming each term:

• 3u3 	→ 3u1u2u3

• 2u2w 	→ 2(u1u2w3 + u2u3w1 + u3u1w2)/3

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

POLYNOMIAL CURVES 23

• 6uw2 	→ 6(u1w2w3 + u2w3w1 + u3w1w2)/3

• w3 	→ w1w2w3

and

f∗(ū1, ū2, ū3) = 3u1u2u3 + 2(u1u2w3 + u2u3w1 + u3u1w2)/3

+2(u1w2w3 + u2w3w1 + u3w1w2) + w1w2w3

Note that this is multilinear: each term has either ui or wi as a linear term. Thus, α f∗(ū, . . .) =
f∗(αū, . . .).

Now let us evaluate our multilinear blossom at f∗(ū1, ū2, δ). Then

F(u) = 3u3 + 2u2 + 6u + 1

f∗(ū1, ū2, ū3) = 3u1u2u3 + 2(u1u2w3 + u2u3w1 + u3u1w2)/3

+2(u1w2w3 + u2w3w1 + u3w1w2) + w1w2w3

f∗(ū1, ū2, δ) = 3u1u2 + 2(0 + u2w1 + u1w2)/3 + 2(0 + 0 + w1w2) + 0

= 3u1u2 + 2(u2w1 + u1w2)/3 + 2w1w2

f∗(ū, ū, δ) = 3u2 + 4u/3 + 2

= F (1)(u)/3

By computing the derivative of F in the usual fashion, we see that the last step is true. While the

above is an awkward way to compute the derivative of a polynomial (especially if it is in monomial

form), it is only intended as an example to show that the math really does work. In practice, since we

usually work in a Bézier representation, we compute the derivative as a scaled differences of control

points.

We can go either way to get the multilinear blossom: homogenize F to get F∗, and then

blossom F∗ to get f∗, or blossom F to get f , and then homogenize f to get f∗. Likewise, we

can go back in either direction.

2.4.1 Exercises

1. Homogenize F(x) = x3 + x2 + x + 1.

2. Find the multilinear linear blossom f∗ of F(x) = x3 + x2 + x + 1. Evaluate F ′(1) by

taking the derivative of F directly then evaluating at 1, and by evaluating the blossom

at f∗(1, 1, δ).

3. Prove that the σ used in the proof the the multilinear blossom theorem has
(

n
i

)
permu-

tations.

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

24 A BLOSSOMING DEVELOPMENT OF SPLINES

2.5 DERIVATIVES OF BÉZIER CURVES
Now that we have the multilinear blossom, we can describe the derivatives of Bézier curves. We

know the derivatives of F in terms of the multilinear blossom are

F (j)(u) = n!

(n − j)!
f∗(ū, . . . , ū︸ ︷︷ ︸

n− j

, δ, . . . , δ︸ ︷︷ ︸
j

)

where ū = (u, 1) and δ = (1, 0). What does this mean in terms of the control points of F?

We first introduce the notation 1̄〈k〉, which is similar to the notation Farin uses [7]. It

means replicate the argument “1̄” k times. In this notation, the previous equation is written as

F (j)(u) = n!

(n − j)!
f∗(ū〈n− j〉, δ〈 j〉)

Consider now the first derivative of F parameterized over the interval [0, 1]:

F ′(u) = n f∗(ū〈n−1〉, δ)

We can write δ = (1, 0) as δ = (1, 1) − (0, 1), allowing us to rewrite the first derivative of F :

F ′(u) = n f∗(ū〈n−1〉, δ)

= n f∗(ū〈n−1〉, (1, 1) − (0, 1))

= n(f∗(ū〈n−1〉, (1, 1)) − f∗(ū〈n−1〉, (0, 1)))

= n(f (u〈n−1〉, 1) − f (u〈n−1〉, 0))

In particular, the first derivative of F at 0 is

F ′(0) = n(f (0〈n−1〉, 1) − f (0〈n−1〉, 0)),

which is just an integer multiple of the difference between the first two control points of F :

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

POLYNOMIAL CURVES 25

If F is parameterized over an arbitrary interval [a, b], then we have to be a little trickier:

F ′(u) = n f∗
(
ū〈n−1〉, δ

)
= n f∗

(
ū〈n−1〉,

b − a

b − a
δ

)
= n

b − a
f∗

(
ū〈n−1〉, (b, 1) − (a, 1)

)
= n

b − a

(
f∗

(
ū〈n−1〉, (b, 1)

) − f∗
(
ū〈n−1〉, (a, 1)

))
= n

b − a

(
f
(
u〈n−1〉, b

) − f
(
u〈n−1〉, a

))
F ′(a) = n

b − a

(
f
(
a 〈n−1〉, b

) − f
(
a 〈n−1〉, a

))
For higher order derivatives, we get one factor of 1/(b − a) for each derivative.

Referring back to Fig. 2.6, we see that to take a derivative at an arbitrary location t on

the curve, we can evaluate with de Casteljau’s algorithm, and apply this formula to either the

interval [0, t] or [t, 1]. Thus, we see that the de Casteljau algorithm gives us both the position

and first derivative of a curve at a parameter value t (in fact, it gives us all the derivatives at t).

What about the derivative of F(u) at arbitrary u?

F ′(u)

n
= f∗

(
ū〈n−1〉, δ

)
= u f∗

(
1̄, ū〈n−2〉, δ

) + (1 − u) f∗
(
0̄, ū〈n−2〉, δ

)
...

=
n−1∑
i=0

(
n − 1

i

)
ui (1 − u)n−i−1 f∗

(
0̄〈n−i−1〉, 1̄〈i〉, δ

)
=

n−1∑
i=0

(
n − 1

i

)
ui (1 − u)n−i−1

[
f∗

(
0̄〈n−i−1〉, 1̄〈i〉, 1̄

) − f∗
(
0̄〈n−i−1〉, 1̄〈i〉, 0̄

)]
=

n−1∑
i=0

[
f∗

(
0̄〈n−i−1〉, 1̄〈i〉, 1̄

) − f∗
(
0̄〈n−i−1〉, 1̄〈i〉, 0̄

)]
Bn−1

i (u)

Thus, the first derivative of F is itself a Bézier “curve” of one lower degree. Here, the

control “points” are vectors rather than points. Thus, the second derivative can either be obtained

from the original derivative formula, or it can be calculated by taking the derivative of the first

derivative formula.

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

26 A BLOSSOMING DEVELOPMENT OF SPLINES

2.5.1 Exercises

1. Use the multiaffine blossom of F(x) = x3 + x2 + x + 1 to find F ′(0).

2. If we repeat the first control point of a Bézier curve B (parameterized over [0, 1]) then

B′(0) = 0. However, the tangent line to the curve at this point exists. Find the tangent

line to B(0) for the portion of the curve parameterized over [0, 1]. Prove your result.

3. Given a two-space quadratic polynomial in Bézier form over the interval [0, 1] (this

specifies the control points; the domain of the curve is the entire real line) and its

biaffine blossom f , is there a blossom value of f for every point in the range? If so,

give a formula/algorithm for determining a range point’s blossom arguments. If not,

state which regions of the plane have blossom values and which do not, and give a

formula/algorithm for the pre-image of every point in the valid region; i.e., given a

point (x, y) in the plane, find u, v such that f (u, v) = (x, y).

2.6 CONTINUITY
Now that we know how to compute derivatives, we can consider joining two curves together

“smoothly.” We begin with a brief review of continuity. Two curves F(t) and G(t) are said to

meet with Ck continuity at t0 if F (i)(t0) = G (i)(t0) for 0 ≤ i ≤ k. If there is a discontinuity in

the position of a curve at parameter value t0, then in geometric modeling, we commonly say that

the curve is “C−1” at t0. A curve is said to be C∞ if all its derivatives are continuous everywhere.

In mathematics, a “smooth” curve usually refers to a C∞ curve However, in geometric

modeling, a “smooth” curve usually refers to a piecewise C∞ curve, where the pieces meet with

at least equal position and first derivatives. We will begin by looking at what is required for two

Bézier curves to meet with continuous position and first derivatives (or C1 continuity).

Suppose we wish to join two Bézier curves together with continuous position and first

derivatives. How do we do this? C0 continuity is trivial: you set the first control point of the

second curve equal to the last control point of the first curve. Then, assuming both curves have

the same length parameterizations (e.g., [0, 1] and [1, 2]), the results on the first derivative

shows us how to get C1 continuity between the two curves:

0 1 2

1

1

In this figure, the line segments labeled with “1” indicate that the length of the last segment of

the control polygon of the first curve is equal to the first segment of the control polygon of the

second segment.

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

POLYNOMIAL CURVES 27

What if we want to join two curve segments with different parameterizations (e.g., [0, 1]

and [1, 3])? The condition is similar, but rather than first have first/last segments of the control

polygons be of equal length, they instead have to have lengths in the same ratios as the lengths

of their domain segments:

0 1 3

1

2

2.6.1 Cubic Hermite Interpolation

Given points P0, . . . , PL, vectors �v0, . . . , �vL, and a uniform knot vector 0, . . . , L, find a piece-

wise cubic function H consisting of L cubic curves segments Hi , such that for i = 0, . . . , L − 1

the following hold:

• Hi (i) = Pi

• Hi (i + 1) = Pi+1

• H′
i (i) = �vi

• H′
i (i + 1) = �vi+1

You can find blending functions for the Ps and �vs. Alternatively, you can write this

in Bézier form. If we let P i
0 , P i

1 , P i
2 , and P i

3 be the Bézier control points for Hi , then for

i = 0, . . . , L − 1, we set these points to the following:

• P i
0 = Pi

• P i
3 = Pi+1

• P i
1 = Pi + �vi/3

• P i
2 = Pi+1 − �vi+1/3

2.6.2 C1 Continuity and the Blossom

What does C1 continuity say about the blossoms of f and g? First, we have f (1, 1, 1) =
g (1, 1, 1) for C0 continuity. Next, we know that f (1, 1, 1) − f (1, 1, 0) = g (1, 1, 2) −

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

28 A BLOSSOMING DEVELOPMENT OF SPLINES

g (1, 1, 1), or alternatively, f∗(1̄, 1̄, δ) = g∗(1̄, 1̄, δ). This gives us the following:

f∗(1̄, 1̄, δ) = g∗(1̄, 1̄, δ)

f∗(1̄, 1̄, (u − 1)δ) = g∗(1̄, 1̄, (u − 1)δ)

f∗(1̄, 1̄, ū) − f∗(1̄, 1̄, 1̄) = g∗(1̄, 1̄, ū) − g∗(1̄, 1̄, 1̄)

f∗(1̄, 1̄, ū) = g∗(1̄, 1̄, ū)

f (1, 1, u) = g (1, 1, u)

Thus, if f and g meet with C1 continuity at u = 1, then the above equation holds. And the

converse is clearly true: if the above equation holds for all u, then f and g meet with C1

continuity.

We can also prove the above without resorting to the multilinear blossom:

f (1, 1, 1) − f (1, 1, 0) = g (1, 1, 2) − g (1, 1, 1)

f (1, 1, 0) = g (1, 1, 1) − g (1, 1, 2) + f (1, 1, 1)

= g (1, 1, 1) − g (1, 1, 2) + g (1, 1, 1)

= g (1, 1, 0)

f (1, 1, u) = (1 − u) f (1, 1, 0) + u f (1, 1, 1)

= (1 − u)g (1, 1, 0) + ug (1, 1, 1)

= g (1, 1, u)

Further, we can use this as a test for continuity: if we want to know if two Bézier segments

meet with C1 continuity (assuming they meet C0), we extend the first/last segments and see if

they have the same blossom values (we can also do a ratios test based on the relative lengths of

the domains).

In general, we know that for f and g to meet with Ck continuity at u, then for i = 0 . . . k,

the following must hold:

f∗(ū〈n−i〉, δ〈i〉) = g∗(ū〈n−i〉, δ〈i〉)

Because f∗ and g∗ are multilinear, we can show the following theorem using a proof by induction.

Theorem 2.3. For F and G to meet with Ck continuity at u, we must have

f∗(ū〈n−i〉, ū1, . . . , ūi) = g∗(ū〈n−i〉, ū1, . . . , ūi),

for i = 0 . . . k. Note that it is sufficient to show that

f∗(ū〈n−k〉, ū1, . . . , ūk) = g∗(ū〈n−k〉, ū1, . . . , ūk),

Proof. Base case: For � = 0 we already know that

f∗(ū〈n−k〉, δ〈k〉) = g∗(ū〈n−k〉, δ〈k〉).

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

POLYNOMIAL CURVES 29

Assume that we know

f∗(ū〈n−k〉, ū1, . . . , ū�, δ
〈k−�〉) = g∗(ū〈n−k〉, ū1, . . . , ū�, δ

〈k−�〉)

Then

f∗(ū〈n−k〉, ū1, . . . , ū�, δ
〈k−�〉) = g∗(ū〈n−k〉, ū1, . . . , ū�, δ

〈k−�〉)
(u�+1 − u) f∗(ū〈n−k〉, ū1, . . . , ū�, δ

〈k−�〉) = (u�+1 − u)g∗(ū〈n−k〉, ū1, . . . , ū�, δ
〈k−�〉)

f∗(ū〈n−k〉, ū1, . . . , ū�, (u�+1 − u)δ, δ〈k−�−1〉) = g∗(ū〈n−k〉, ū1, . . . , ū�, (u�+1 − u)δ, δ〈k−�−1〉)
f∗(ū〈n−k〉, ū1, . . . , ū�, ū�+1 − ū, δ〈k−�−1〉) = g∗(ū〈n−k〉, ū1, . . . , ū�, ū�+1 − ū, δ〈k−�−1〉)

f∗(ū〈n−k〉, ū1, . . . , ū�, ū�+1, δ
〈k−�−1〉) −

f∗(ū〈n−k〉, ū1, . . . , ū�, ū, δ〈k−�−1〉) = g∗(ū〈n−k〉, ū1, . . . , ū�, ū�+1, δ
〈k−�−1〉)

−g∗(ū〈n−k〉, ū1, . . . , ū�, ū, δ〈k−�−1〉)
f∗(ū〈n−k〉, ū1, . . . , ū�+1, δ

〈k−�−1〉) = g∗(ū〈n−k〉, ū1, . . . , ū�+1, δ
〈k−�−1〉)

concluding the inductive proof.

And now from the multilinear blossom theorem, we get

f (u〈n−i〉, u1, . . . , ui) = g (u〈n−i〉, u1, . . . , ui)

2.6.3 C2 Continuity

If we have two cubic curves F and G meeting with C2 continuity at u, what are the geometric

constraints on the control points of F and G?

Suppose F is parametrized over [r, s] and G is parametrized over [s , t]. We know

f (s , s , s) = g (s , s , s), and we know the conditions on f (r, s , s) and g (s , s , t). Consider the

two lines defined by f (r, r, s) and f (r, s , s) and by g (s , t, t) and g (s , s , t). We can write these

two lines as f (r, s , u) and g (s , t, v), where u and v are free parameters. In general, these two

lines will intersect in a single point. But, since f and g meet C2, they agree whenever at least

one of their parameters is s . Thus, the point of intersection must be f (r, s , t) = g (r, s , t) (see

Fig. 2.8).

Further, we see from the figure that certain ratios must exist along various lines. This

arrangement of control points is known as an A-frame construction, since you can see an “A ”

(drawn in bold but a bit skew in this figure, from f (r, r, s) to f (r, s , t) to f (s , t, t), with the

crossbar of “A ” running from f (r, s , s) to f (s , s , t)).

2.6.4 Ck Continuity

In general, we have Ck continuity between degree n polynomials F and G at t if we know f

and g are equal on k + 1 sets of blossom arguments having n − k arguments set to t. Some

restrictions apply to these sets. However, the idea is that we must choose these k + 1 sets of

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

30 A BLOSSOMING DEVELOPMENT OF SPLINES

f (r,r,r) f (r,r,s)

f (r,s,s)

f (r,s,t)

f (s,s,s)
f (s,s,t)

f (s,t,t)

f (t,t,t)r s t

d1 d2

d1

d1

d1

d2

d2

d2

FIGURE 2.8: C2 continuity between Bézier segments

arguments so that we can construct f (t〈n−k〉, t1, . . . , tk) for all ti . In particular, the k + 1 Bézier

points of F (or G) that are closest to t will suffice. Thus, if we consider the portion of F over

[s , t] and we wish it to meet G with Ck continuity at t, then f and g must agree at f (t〈n〉),
f (s , t〈n−1〉), . . . , f (s 〈k〉, t〈n−k〉).

2.6.5 Exercises

1. In Section 2.6.1, we considered the cubic Hermite interpolation problem when the

knots were consecutive integers. Here we will generalize the problem to arbitrary knot

vectors. Given points P0, . . . , PL, vectors �v0, . . . , �vL, and a knot vector t0 < · · · < tL,

find the cubic Bézier control points for the cubic Hermite curve that interpolates this

data, i.e., H is this cubic Hermite curve if

• H(ti) = Pi ,

• H′(ti) = �vi .

2. Draw the diagram for two 4th-degree Bézier curves meeting with C3 continuity. Assume

that the first curve is parametrized over [0, 1] and the second over [1, 2].

3. Give the conditions for two curves to meet with C3 continuity. Draw a picture. Hint:

Start with a degree 4 curve, subdivide it, and think about what the condition will be.

4. Suppose we have two quadratic Bézier curves, F parametrized over [0, 1] and G

parametrized over [1, 2]. Further, suppose that F and G meet C1 at 1. If F(t) = G(t)

for some t �= 1, then F and G are merely different representations of the same curve.

Instead consider the blossoms of F and G . Since F and G meet C1 at 1, we know

that f (1, 1) = g (1, 1) and f (1, u) = g (1, u) for all u. If we knew that f (t, t) = g (t, t)

for some t �= 1, then again we would know that f = g as this is the situation described

in the previous paragraph. Prove further that if we know f (a, b) = g (a, b) for some

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

POLYNOMIAL CURVES 31

arbitrary a and b with a �= b, a �= 1, and b �= 1, then f and g are identical functions

(and thus, F = G):

f (0,0)

f (1,1)=g (1,1)
f (1,2)=g (1,2)

g (2,2)

f (a,b)=g(a,b)

f (0,1)=g (0,1)

5. Below are eight curves and their “control points.” Two sets of control points are the

Bézier control points for the corresponding curve. The other six are not. Determine

which two are the Bézier points for the curve, and for the other six, give a reason that

they are not Bézier control points. Assume that no control point is duplicated:

(a) (b) (c) (d)

(e) (f) (g) (h)

2.7 CHANGE OF BASIS
In Sections 2.2 and 2.3.1, we saw triangle diagrams as a means of illustrating and analyzing

de Casteljau’s algorithm. Another of the many uses for triangle diagrams is changing polynomial

bases, for example, changing from the monomial representation to the Bernstein representation.

We have already seen a change of basis between Bézier representations via de Casteljau’s algo-

rithm: given a Bézier curve parameterized over the interval [s , t], if we perform a de Casteljau

evaluation at u, then the edges of the triangle diagram give us the Bézier control points for the

same polynomial over the intervals [s , u] and [u, t] (see Section 2.3.1).

We now look at performing a change of basis from the monomial basis to the Bernstein

basis. In the proof of Theorem 2.2, part (1), we saw that the monomial representation of a

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

32 A BLOSSOMING DEVELOPMENT OF SPLINES

f*(0,0,0) f*(0,0,d) f*(0,d,d) f*(d,d,d)

f*(0,0,1) f*(0,1,d) f*(1,1,d)

f*(0,1,1) f*(1,1,d)

f*(1,1,1)

1 1 1

1 1

1

1 1 1

1 1

1

FIGURE 2.9: Change of basis from monomial to Bernstein basis

polynomial F , F(u) = ∑n
0 ci u

i , has its coefficients ci related to the blossom of F as follows:

c i =
(

n

i

)
f∗(0̄〈n−i〉, δ〈i〉)

For example, for a cubic curve parameterized over the interval [0, 1], the scaled monomial

control points are

f∗(0̄, 0̄, 0̄), f∗(0̄, 0̄, δ), f∗(0̄, δ, δ), f∗(δ, δ, δ)

(Since the argument δ represents a vector rather than a point in the domain, we must use the

homogeneous form of the blossom.) Evaluating the polynomial in this form using a triangle

diagram is a bit different than when it is in the Bernstein/Bézier form; in particular, the co-

efficients along two edges leading into a node no longer have to sum to 1. See Exercise 3 of

Section 2.8.

We can convert from monomial to Bernstein basis as illustrated in Fig. 2.9. The Bézier

control points appear along the left edge of the triangle diagram.

2.8 EXERCISES
1. Draw the triangle diagram explicitly converting the coefficients of the monomial x3 +

x2 + x + 1 to Bernstein/Bézier form.

2. Draw a triangle diagram for converting from cubic Bézier form to the (scaled) monomial

basis.

3. Draw a triangle diagram for evaluating a cubic scaled monomial F(u) with blossom

coefficients f∗(0̄, 0̄, 0̄), f∗(0̄, 0̄, δ), f∗(0̄, δ, δ), f∗(δ, δ, δ) at t.

2.9 FAST EVALUATION
How do we evaluate a curve quickly? For univariate polynomials, if we evaluate a degree n

polynomial in monomial form by evaluating xi for each i and multiplying by ci , it takes n

additions and n(n + 1)/2 multiplications for each dimension of our range.

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

POLYNOMIAL CURVES 33

When speed is a concern, Horner’s rule is the common technique for fast evaluation:

p(x) = a + bx + c x2 + d x3

= a + x(b + x(c + d x))

Thus, each evaluation requires only n additions and n multiplications for each dimension of the

range.

However, suppose we want to evaluate our polynomial at a sequence of points uniformly

sampled over our domain. In this situation, forward differencing is a technique that is even faster

than the Horner’s rule.

Suppose we have a polynomial F(u) in Bernstein–Bézier form defined over the interval

[0, 1]. (Since we are in Bernstein–Bézier form, unless we care about the parameter value of each

sample point, we can consider the curve to be parameterized over [0, 1] regardless of its actual

parameterization.) We first convert to the monomial representation of the multilinear blossom

of F with control points f∗(0̄〈n〉), f∗(0̄〈n−1〉, δ), . . . , f∗(δ〈n〉) (see Section 2.7). Our goal is to

compute F(0 + ih) for i running from 0 to S, where S + 1 is the number of samples of F that

we want and h = 1/S.

Starting with a linear function F(u), consider computing F(u + h) when we already know

F(u):

F(u + h) = f (u + h) = f∗(ū + hδ)

= f∗(ū) + h f∗(δ)

= f (u) + h f∗(δ)

= F(u) + �1,

where �1 = h f∗(δ). If we precompute �1 = h f∗(δ), then we can compute f (u + h) from f (u)

with a single addition (albeit an addition of an n-dimensional point with an n-dimensional

vector) and in turn we can compute f (u + 2h) from f (u + h) with a second addition reusing

the same precomputed �1. Since we want to start at u = 0, the following code will compute

the values we want

u = 0

F[0] = f (0)

�1 = h f∗(δ)

for i = 1 to S

u = u + h

F[i] = F[i − 1] + �1

end

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

34 A BLOSSOMING DEVELOPMENT OF SPLINES

At the end of this code sequence, we will have samples of F(u) stored in an array F[i]; the

line of code u = u + h is not needed unless we also want the domain values associated with the

points of evaluation.

Now suppose F(u) is quadratic. Then

F(u + h) = f (u + h, u + h) = f∗(ū + hδ, ū + hδ)

= f∗(ū, ū + hδ) + h f∗(δ, ū + hδ)

= f∗(ū, ū) + 2h f∗(ū, δ) + h2 f∗(δ, δ)

= F(ū) + �1(u)

where �1(u) = 2h f∗(ū, δ) + h2 f∗(δ, δ). However, unlike in the linear case, �1(u) is a function

of u. Thus, precomputing it once will not allow us to repeatedly add it to F(u + ih) to obtain

F(u + (i + 1)h) unless we update �1 at each step. Since �1(u) is a linear function, we can find

a forward differencing step to update it:

�1(u + h) = 2h f∗(ū + hδ, δ) + h2 f∗(δ, δ)

= 2h[f∗(ū, δ) + h f∗(δ, δ)] + h2 f∗(δ, δ)

= �1(u) + 2h2 f∗(δ, δ)

= �1(u) + �2

where �2 = 2h2 f∗(δ, δ).

This leads to the following code:

u = 0

F[0] = f (0, 0)

�1 = 2h f∗(0̄, δ) + h2 f∗(δ, δ)

�2 = 2h2 f∗(δ, δ)

for i = 1 to S

u = u + h

F[i] = F[i − 1] + �1

�1 = �1 + �2

end

and we see that we compute each evaluation of F with two additions (again, the line of code

u = u + h is not needed unless we want the domain values).

In general, by using forward differencing, each evaluation of the curve will take n additions

(albeit multidimensional additions) and no multiplications (other than the multiplications in

the initialization steps).

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

POLYNOMIAL CURVES 35

de Casteljau’s algorithm, on the other hand, takes n(n + 1)/2 affine combinations, each

of which requires two multiplications and one addition. Why would we consider using such

a slow algorithm? The main reason is that the code for de Casteljau’s algorithm is simpler to

write than is the code for forward differencing, especially if you want arbitrary degrees. While

there are other factors that might seem to favor de Casteljau’s algorithm, they are of lessor

importance. For example, in addition to evaluating for position, we also get the derivatives of

the polynomial when we use de Castlejau’s algorithm. This is not a major consideration, since

both Horner’s rule and forward differencing can also give you the derivatives at a lower cost than

de Castlejau’s algorithm. Another observation is that de Castlejau’s algorithm is numerically

more stable stable than is forward differencing. However, for rendering purposes, evaluating

a cubic curve with forward differencing is easily stable enough to draw a polynomial curve,

especially if double precision floating point numbers are used.

And finally, while speed is the primary advantage of forward differencing, realize that

de Casteljau’s algorithm is easily fast enough to draw curves at interactive rates. Thus, the

complicated fast forward differencing algorithm is unlikely to be chosen over de Casteljau’s

algorithm for drawing curves. However, we will briefly return to forward differencing when we

look at surfaces, where the additional number of evaluation points may again make forward

differencing an algorithm worth considering.

2.9.1 Exercise

1. Derive a forward difference algorithm for cubic polynomials and give pseudo-code that

implements it.

2.9.2 Implementations

1. Implement code for a forward differencing algorithm for cubic Bézier curves. Draw

your curve using both forward differencing and de Casteljau’s algorithm to verify the

correctness of the algorithm and to convince yourself that forward differencing has

reasonable numerical stability properties.

Do your computations with floats (instead of doubles) and see what value of S is

required for the forward differencing computed curve to diverge from the de Casteljau

algorithm computed curve.

P1: IML/FFX P2: IML

MOBK033-02 MOBK033-Smann.cls September 25, 2006 16:36

36

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

37

C H A P T E R 3

B-Splines

Suppose we want to draw a complicated curve. We could use a high-degree Bézier curve, but

there are several problems with this approach:

• We cannot represent cusps (well, not easily, anyway).

• It is expensive to evaluate high-degree Bézier curves.

• A large number of control points may be required to get the shape we want.

• The effect of modifying middle control points is diffuse, and they become less useful

as shape parameters.

For these reasons, piecewise polynomial curves are used instead.

What we would like is a piecewise polynomial curve technique where the segments

automatically join with a high level of continuity. By “automatic,” we mean that we do not want

to have to constrain the location where users can place any of the control points to get the

desired level of continuity. And ideally, if we have a degree n curve, then we could automatically

have Cn−1 continuity. To find such a curve, we will look at smoothly joined Bézier curves and

try to reduce the number of points needed to represent them.

Consider a C1 piecewise cubic curve represented in Bézier form. If the curve has L

segments, then naively we would store 4L control points. But since the first control point

of segment i is equal to the last control point of segment i − 1, we really only need storage

for 3L + 1 control points (plus, possibly, storage for a knot vector {t0, . . . }). Now consider

the junction between two of the segments, say fi (s , s , s) = fi+1(s , s , s). That control point

is redundant, since we can compute it from the control points on either side. That is, if fi is

parameterized over [r, s] and fi+1 is parameterized over [s , t], then

(t − s)

t − r
fi (r, s , s) + (s − r)

t − r
fi+1(s , s , t) = f

((r t − r s) + (ts − tr)

t − r
, s , s

)
= fi (s , s , s)

Thus, we would only need to store 2L + 2 control points (Fig. 3.1). Likewise, if we have a

C2 piecewise cubic, then we would only need to store L + 3 control points (Fig. 3.2), since as

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

38 A BLOSSOMING DEVELOPMENT OF SPLINES

P

P P

P = Q

Q Q

Q0

1 2

3 0

1 2

3
P

P P

Q Q

Q0

1 2

1 2

3

FIGURE 3.1: Reducing data used to represent C1 joined cubic Bézier segments

shown for two cubic with uniform knots in the figure, the missing Bézier control points between

two gray points are located at 1/3 and 2/3 away along the segment between the gray points

(the ends of the curve are special cases, where the missing Bézier point lies half-way between

the black and the gray points). Further, if we look at the blossom values of the gray points (see

Fig. 2.8), we find that the blossom values associated with the gray points have arguments that

are successive knot values.

Alternatively, we can go the other way: start with a knot sequence ti and a set of points

Pi , and set these points to be the blossom values f (ti , ti+1, ti+2). If we now solve for the

corresponding Bézier points (i.e., moving from right to left in Fig. 3.2), then we know the

piecewise cubic curve is C2 by construction.

Note that I have left off some details: how many knots? How many control points? What

about end conditions? But the idea should be clear: we can construct a C2 piecewise, cubic curve

by specifying roughly one point per cubic segment, with no constraints on the control points.

The result is a cubic B-spline curve, with the gray points in the right subfigure of Fig. 3.2

being the cubic B-spline control points.

More formally, we can define a B-spline curve as follows:

Definition 3.1. Given a knot vector t0 ≤ t1 ≤ · · · ≤ tL+2n−2, data points p0, . . . , pL+n−1. Then,

for 0 ≤ i ≤ L − 1 the ith interval of a degree n B-spline curve F is defined over [ti+n−1, ti+n] by the

n + 1 values of its blossom

f (tk, . . . , tk+n−1) = pk

for k = i, . . . , i + n.

FIGURE 3.2: Reducing data used to represent C2 joined cubic Bézier segments

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

B-SPLINES 39

If a knot is not unique (i.e., ti = ti+1) then we count the number of times the knot occurs

and call that the multiplicity of the knot. If the multiplicity equals the degree, we say the knot

has full multiplicity for reasons we will see shortly. For now, assume all knots have multiplicity

one.

Note that we have n more control points than intervals, and 2n − 1 more knot values

than intervals. (Some definitions use two more knot values for reasons we will see on page 53.)

If you do not want to memorize the above formulas, you can reconstruct them from a

blossom diagram. The following is a diagram for a single B-spline segment with the knot vector

{t0, t1, t2, t3, t4, t5}:

f(t1, t2, t3)

f(t0, t1, t2) f(t3, t4, t5)

f(t2, t3, t4)

From this diagram, we can obtain the relationship between the number of control points and

the number of knots, and which knots are used as the blossom arguments for each control

point. Further, although a single segment of a B-spline curve can be evaluated at any value

in the domain, when considering a piecewise polynomial curve, we restrict the domain to a

subinterval. That subinterval starts at the value of the last knot argument of the first control

and runs to the first knot argument of the last control point (e.g., [t2, t3] in the figure above).

Given that we have a B-spline curve, we can ask “how do we evaluate the curve?” We

could convert it to Bézier form and evaluate the appropriate Bézier segment. However, there

are also several other methods. We will look at the one based on repeated knot insertion.

Suppose we have a B-spline curve as defined above, and we wish to insert a new knot to

get a new knot vector and a new set of control points for the same curve. The new knot vector

we know (it is just the old one with the new knot inserted). Blossoming shows us how to find

the new control points for the B-spline with the knot vector {t0, t1, t2, t, t3, t4, t5}:

f(t, t3, t4)
f(t2, t3, t4)

f(t, t2, t3)

f(t3, t4, t5)f(t0, t1, t2)

f(t1, t2, t3)

f(t1, t2, t)

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

40 A BLOSSOMING DEVELOPMENT OF SPLINES

Thus, starting with the original set of control points, we remove f (t1, t2, t3) and f (t2, t3, t4)

and add f (t1, t2, t), f (t2, t, t3), f (t, t3, t4). Note that this B-spline has two segments, although

they meet C∞.

Now suppose we insert the same knot again. Again, we know the knot vector, and

again we use blossoming to find the new control points for the B-spline with the knot vector

{t0, t1, t2, t, t, t3, t4, t5}:

f(t, t3, t4)
f(t2, t3, t4)

f(t, t2, t3)

f(t3, t4, t5)f(t0, t1, t2)

f(t1, t2, t) f(t1, t2, t)

f(t1, t2, t3)

f(t1, t2, t)

We can continue adding this knot until it has multiplicity n. At this point, note that we

have the f evaluated at our new knot value:

f(t, t3, t4)
f(t2, t3, t4)

f(t, t2, t3)

f(t3, t4, t5)f(t0, t1, t2)

f(t, t, t)f(t1, t2, t) f(t1, t2, t)

f(t1, t2, t3)

f(t1, t2, t)

Thus, we have evaluated the curve by using repeated knot insertion. This is known as

the de Boor algorithm, and is similar to the de Casteljau algorithm for evaluating Bézier curves.

The de Boor algorithm gives us a method for evaluating B-splines without having to convert

to Bézier form. Further, one evaluation with the de Boor algorithm costs about the same as one

evaluation of a Bézier curve with de Casteljau’s algorithm.

Using knot insertion, we can convert the B-spline curve into its Bézier segments by

increasing the knots to full multiplicity. Thus, a Bézier curve is actually a special case of a single

segment B-spline curve (one where the knots have full multiplicity).

What if we go the other way? Suppose we have a single cubic Bézier curve segment

parametrized over [0, 1] and we wish to convert it to B-spline form. Well, we run into a

problem: we really want to convert to a knot vector a < b < 0 < 1 < c < d for some values

a, b, c , d . However, we can choose any such a, b, c , d . Thus, to completely specify the problem,

we need to give the additional knots to complete the problem statement. If we have abutting

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

B-SPLINES 41

f (a,b,0) f (1,c,d)

f (b,0,1) f (0,1,c)

f (b,0,0) f (1,1,c)

f (b,0,0) f (1,1,c)

f (0,0,0) f (1,1,1)

f (0,0,1) f (0,1,1)f (0,0,1) f (0,1,1)
f (b,0,1) f (0,1,c)

f (0,0,0)

f (0,0,1) f (0,1,1)

f (1,1,1)

FIGURE 3.3: Converting a Bézier segment to a B-spline segment

segments we wish to compute, then some of these additional knots are already specified (we will

have to specify extra ones at the ends and check our continuity level to make sure the conversion

process makes sense).

However, if we are given a, b, c , d , then we need to find the B-spline control points

f (a, b, 0), f (b, 0, 1), f (0, 1, c), and f (1, c , d) from the Bézier control points f (0, 0, 0),

f (0, 0, 1), f (0, 1, 1), and f (1, 1, 1).

The points f (b, 0, 1) and f (0, 1, c) are easy: we just extend the segment

f (0, 0, 1) f (0, 1, 1) to either side (Fig. 3.3). And once we have f (b, 0, 1), the point f (a, b, 0)

is found by extending the segments f (0, 0, 1) f (0, 0, 0) to find f (b, 0, 0), and then extending

f (b, 0, 1) f (b, 0, 0) to find f (a, b, 0). Similarly we can find f (1, c , d).

Figure 3.4 shows two examples of B-spline curves and their control polygons. Both B-

splines have uniform knot vectors. Comparing these curves to the Bézier curves appearing in

Fig. 2.4, it appears that B-spline curves lie nearer to their control polygon than Bézier curves

do (see also Fig. 3.5, left and center). This appearance of closeness is a somewhat illusionary

effect of scale: the control polygon for a uniform B-spline is much larger than that of the control

polygon for the corresponding Bézier representation; Figure 3.5 (right) shows both the Bézier

FIGURE 3.4: Some examples of B-spline curves

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

42 A BLOSSOMING DEVELOPMENT OF SPLINES

FIGURE 3.5: B-splines (white) and Bézier (black) control points

and B-spline control polygons for the same curve, and here we see that the curve appears closer

to the Bézier control polygon.

3.1 IMPLEMENTATIONS
1. Write an interactive 2D cubic B-spline editor with the following functionality:

• The left mouse button adds a new control point.

• The middle mouse button is used to move control points.

• New segments have unit length parameterization (e.g., when adding a new control

point, assume the value of any new knot to be one more than the last knot in the knot

sequence).

• There are two display modes:

– Just the curve.

– The curve and the control polygon.

• There should be a reset key/menu option that clears all the control points.

3.2 KNOT MULTIPLICITY
If a knot has multiplicity greater than 1, then some of the B-spline segments are of zero length.

This is seen in the definition of the B-spline, since some of our intervals will be of zero length. In

general, when we discuss continuity, we will concern ourselves with the nonzero length intervals

meeting at a knot value.

What happens if we start with a knot vector having knots of multiplicity more than 1?

Alternatively, what happens if we refine a knot to multiplicity greater than 1 and then move the

control points?

As an example for a cubic spline, suppose our knot vector is (0, 1, 2, 3, 3, 4, 5, 6). Our

control points are f (0, 1, 2), f (1, 2, 3), f (2, 3, 3), f (3, 3, 4), f (3, 4, 5), and f (4, 5, 6). Sup-

pose we extend the segments f (1, 2, 3) f (2, 3, 3) and f (3, 3, 4) f (3, 4, 5) until they intersect

(Fig. 3.6). What blossom value should be assigned to this intersection point?

It might turn out that both calculations yield a blossom value of f (2, 3, 4). If this is the

case, we could add this to our control points, delete the extra knot at 3, and remove the control

points f (2, 3, 3) and f (3, 3, 4).

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

B-SPLINES 43

f (0,1,2) f(1,2,3)

f(2,3,3)
f(3,3,4)

f(3,4,5)

f(4,5,6)

f(?,?,?)

FIGURE 3.6: Cubic B-spline with knot value 3 having multiplicity 2

But suppose we get two different blossom values for this point? First, how is this possible?

And second what does it mean?

This is possible because we are really extending two different blossoms (consider the point

f (3, 3, 3) to see where the break is). And if you think back to the definition of continuity, this

difference means that the B-spline is not C2 at t = 3.

More generally, we can show that if a knot ti has multiplicity μ, then a degree n B-spline

is Cn−μ at ti . The proof idea is illustrated in the following diagram:

f (0,1,2,3)

f(1,2,3,4)

f(2,3,4,4)

f(3,4,4,5)

f(4,4,5,6)

f(4,5,6,7)

f(5,6,7,8)

f(0,1,2,3)

f (1,2,3,4)

f(2,3,4,4)

f(3,4,4,5)

f(4,4,5,6)

f(4,5,6,7)

f(5,6,7,8)

f (2,3,4,5)

f(0,1,2,3)

f(1,2,3,4)

f(2,3,4,4)

f (3,4,4,5)

f(4,4,5,6)

f(4,5,6,7)

f(5,6,7,8)

f (3,4,5,6)

f(2,3,4,5)

f(0,1,2,3)

f(1,2,3,4)

f(2,3,4,4)

f(3,4,4,5)

f (4,4,5,6)

f(4,5,6,7)

f(5,6,7,8)

f (4,5,6,7)

f(3,4,5,6)

f(2,3,4,5)

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

44 A BLOSSOMING DEVELOPMENT OF SPLINES

Initially, we have a quartic B-spline with knot vector (0, 1, 2, 3, 4, 4, 5, 6, 7, 8). This

B-spline has two segments of nonzero length. One is defined by the control points

f (0, 1, 2, 3), . . . , f (4, 4, 5, 6)

the other by

f (2, 3, 4, 4), . . . , f (5, 6, 7, 8)

These two segments meet with some level of continuity at t = 4. Starting with the former curve

segment, let us use its defining control points to determine the location of f (4, 5, 6, 7).

First, we extend the segment f (1, 2, 3, 4) f (2, 3, 4, 4) to find the location of f (2, 3, 4, 5).

Next, we extend the segment f (2, 3, 4, 5) f (3, 4, 4, 5) to find the location of f (3, 4, 5, 6).

Finally, we extend the segment f (3, 4, 5, 6) f (4, 4, 5, 6) to find f (4, 5, 6, 7).

Thus, the location of f (4, 5, 6, 7) can be calculated from the control points of the first

segment. Once these control points are fixed, the location of f (4, 5, 6, 7) from these control

points is determined.

But in a B-spline, we are free to place the gray point f (4, 5, 6, 7) in the diagram anywhere

we please. And, as seen in the diagram, we can place it at a location different from the one we

would calculate the control points of the first segment.

If we were to calculate the Bézier control points of the two segments, we would see that

they meet with C2 continuity at t = 4. But since the two segments yield a different location for

f (4, 5, 6, 7), the two segments do not meet C3 at t = 4.

Note that we need two segments to talk about continuity. This need for two segments

motivates the conditions on which knots have multiplicity greater than one in the following

theorem.

Theorem 3.1. Given a degree n B-spline F with knot vector t0 ≤ · · · ≤ ti−1 < ti = · · · =
ti+k−1 < ti+k ≤ · · · ≤ tL+2n−2, where 0 < k ≤ n, i ≥ n, and i + k < L + n − 3, and where no

knot occurs with multiplicity greater than n. Then F is Cn−k at ti , but in general is not Cn−k+1 at ti .

Proof. First, we will prove F is Cn−k . Then, we will show that it is not Cn−k+1.

We can show F to be Cn−k at ti by showing that the two segments abutting at ti agree when k

of their arguments are ti , i.e., for all ui , the following must hold:

f
(
t
〈k〉
i , u1, . . . , un−k

) = g
(
t
〈k〉
i , u1, . . . , un−k

)
This is seen by noting that the segment defined over [ti−1, ti] is defined by the control points

f (ti−n, . . . , ti−1), . . . , f (ti , . . . , ti+n−1) = f
(
t
〈k〉
i , ti+k, ti+k+1, . . . , ti+n−1

)

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

B-SPLINES 45

while the segment defined over [ti = ti+k−1, ti+k] is defined by the control points

f
(
ti−n+k, . . . , ti−1, t

〈k〉
i

)
, . . . , f (ti+k, . . . , ti+k+n−1)

(we consider the interval [ti , ti+k] because it is the next nonzero length interval after [ti−1, ti]).

Both segments have the following n − k + 1 control points in common:

f
(
ti−n+k, . . . , ti−1, t

〈k〉
i

)
, . . . , f

(
t
〈k〉
i , ti+k, . . . , ti+n−1

)
Since the knot values

ti−n+k, . . . , ti−1, ti+k, . . . , ti+n−1

have multiplicity no greater than n − k, these control points completely define f and g when k of their

arguments are ti , and thus, F and G meet Cn−k at ti .

Now we will show that the B-spline is not Cn−k+1. We will work with the segment de-

fined over [ti−1, ti] whose control points are given above. From f (ti−n+k+1, . . . , ti−1, t
〈k−1〉
i) and

f (ti−n+k, . . . , ti−1, t
〈k〉
i) we can compute f (ti−n+k, . . . , ti−1, t

〈k−1〉
i , ti+k). Likewise, a proof by in-

duction shows that we can compute the points

f
(
ti−n+k+1+ j , . . . , ti−1, t

〈k−1〉
i , ti+k, . . . , ti+k+ j

)
for j = 1, . . . , n − k − 1.

Thus, we can compute the control point f (t
〈k−1〉
i , ti+k, . . . , ti+n). However, as this point is not

in the defining control points of the segment defined over [ti−1, ti], in general the B-spline point will

differ from the point computed from this segment, and thus, the B-spline is not Cn−k+1 at ti .

There is one place at which a multiple knot causes something strange to happen. For a

cubic, consider the knot vector (0, 1, 2, 2, 3, 4, 5). Since there are seven knots, it would seem

like we have a two-segment spline. However, we really only have one segment—the knot 0 can

be omitted, along with the control point f (0, 1, 2). Thus it is pointless to have tn−2 < tn−1 = tn,

since it results in a zero-length segment at the start of the curve, and some number of knots and

control points could be omitted without changing the curve. (Although generally not useful,

there are times when we might want to give knot tn−1 multiplicity greater than 2, such as if we

wish to join two B-splines together.) A similar problem occurs at the other end of a B-spline.

Caution: Look at the definition of the B-spline curve. It states which control points are used

to define the curve over the interval [ti+n−1, ti+n]. More strongly, if we use this set of control

points, then all arguments to the blossom must be in this interval (by “all arguments,” I mean all knots

inserted via de Boor’s algorithm). Remember, this is a piecewise polynomial curve. Likewise,

there is a notion of a “piecewise” blossom. What we have done to define a B-spline is play a

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

46 A BLOSSOMING DEVELOPMENT OF SPLINES

notational game. We really should subscript our B-spline F (and likewise, its blossom f) with

the interval of interest. Instead, we have hidden this index in the definition of a B-spline.

While we can evaluate the blossom from one of these sets of control points on argument

bags that are not all contained within the defining interval, the value may be ill-defined: if we

evaluate a different set of control points on the same argument bag, we may get a different value.

In fact, except for the cases given by the continuity conditions, we will expect to get different

results.

As a final note, uniform B-splines are often sufficient for most modeling tasks, and as we

will see in Section 3.4, having a uniform knot vector allows us to use a very simple rendering

method. However, if you display the control points and manipulate the curve by moving the

control points, it can be somewhat unsettling for the curve to not start at the first control point

and end at the last control point. If instead, we use a “nearly uniform” knot vector, with equally

spaced knots everywhere except the first and last knots, which we raise to full multiplicity, then

the resulting curve interpolates its first and last control points, and we retain most of the sim-

plicity of a uniform knot vector. If desired, we could retain the best of both worlds by displaying

the B-spline having the near uniform knot vector, but internally storing it with a uniform knot

vector, converting back and forth between the two representations as needed (Fig. 3.3).

3.2.1 Exercises

1. Suppose we have a quadratic B-spline with knot vector (0, 1, 2, 3, 3, 4, 5, 6). Draw

a picture similar to Fig. 3.6 for this quadratic B-spline; be sure not to place three

consecutive control points on a line. What can you conclude about the continuity of

the B-spline at t = 3? Sketch the curve on the figure.

2. Suppose we have a linear B-spline with knot vector (0, 1, 2, 3, 3, 4, 5, 6). Draw a picture

similar to Fig. 3.6 for this linear B-spline; be sure not to place three consecutive control

points on a line. What can you conclude about the continuity of the B-spline at t = 3?

3. Using points constructed by the de Boor evaluation algorithm, find formulas for the first

and second derivatives of a cubic B-spline curve with knot vector {t0, t1, t2, t3, t4, t5} at a

point of evaluation t ∈ [t2, t3]. Be careful to ensure that the magnitude of the derivative

is correct.

4. Give the B-spline control points and corresponding knot vector for the cubic Hermite

curve described in Exercise 1 of Section 2.6.5. Note: It is inadequate to give the Bézier

control points and the corresponding B-spline knot vector; you should remove any

knots that can be removed without changing the curve.

5. The continuity theorems about B-splines tell us that if a knot u has single multiplicity,

then a B-spline of degree n is Cn−1 at this point. However, this is clearly an analytic

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

B-SPLINES 47

condition, not a geometric one, since if we make n + 1 consecutive control points

coincident, then we have introduced a segment of zero length (i.e., all derivatives are 0

and the curve is of zero length over a nonzero length interval in the domain) and we

can introduce a cusp in the curve.

(a) Suppose that we have the knot sequence (0, 1, 2, 3, 4, 5, 6, 7) for a cubic B-spline

f , and further suppose that f (2, 3, 4) = f (3, 4, 5). The theorem on continuity tells

us that this curve should be C2 at F(3). Is the curve geometrically C2 at F(3)? If

so, support your statement. If not, give a counterexample.

(b) Now suppose that f (1, 2, 3) = f (2, 3, 4) = f (3, 4, 5). Is the curve geometrically

C2 at F(3)? If so, support your statement. If not, give a counterexample.

3.2.2 Implementations

1. Extend your interactive B-spline editor of the previous assignment in the following

ways:

• The right mouse button displays the blossom value of the displayed control point

closest to the current mouse position.

• There are three display modes:

– Just the curve.

– The curve and the control polygon.

– The curve, the control polygon, and the control polygons for the corresponding

Bézier curves.

• Somewhere, you should display the knot vector on a line. You should be able to use

the middle mouse button to move existing knots of the knot vector, the left mouse

button to add a new knot, and the right mouse button to display the value of the

closest knot.

• There should be a toggle for displaying the blossom arguments of all displayed control

points (including the Bézier control points, if they are currently being displayed). Note

that if all blossom arguments are being displayed, then the right mouse button does

nothing.

• There should be a “reset” key/menu option that clears all knots and control points.

3.3 TRIANGLE DIAGRAMS
As an alternative means of investigating continuity between B-spline segments, we can use

triangle diagrams. Suppose we look at the triangle diagrams for two adjacent B-spline segments.

What we find is that the segments overlap (Fig. 3.7). Note that in this diagram I have left out

the “normalizing” factor. For example, the two arcs feeding into f (u1, u2, u) should be divided

by u3 − u0.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

48 A BLOSSOMING DEVELOPMENT OF SPLINES

F (u) F (u)3 4

f(u0,u1,u2) f(u1,u2,u3) f(u2,u3,u4) f(u3,u4,u5) f(u4,u5,u6)

f(u1,u2,u) f(u2,u3,u) f(u3,u4,u) f(u4,u5,u)

f(u2,u,u) f(u3,u,u) f(u4,u,u)

f(u,u,u) f(u,u,u)

u3−u u4−u u5−u u6−u

u3−u u4−u u5−u

u3−u u4−u

u−u0 u−u1 u−u2 u−u3

u−u1 u−u2 u−u3

u-u2 u−u3

FIGURE 3.7: Overlapping triangle diagrams for adjacent B-spline segments

While we normally think of our B-spline as a single curve, for discussion here it is helpful

to give the adjacent segments different names. We will refer to the two segments discussed

here as F3 and F4, and in Fig. 3.7, we have labeled the apex of their triangle diagrams as such.

Although there is a large overlap in their triangles, technically we should not be overlapping

their construction, since for a B-spline, F3 is only defined over [u2, u3] while F4 is only defined

over [u3, u4].

However, it is valid to overlap the constructions if we evaluate at u3. Then looking at the

arcs into the nodes labeled f (u, u, u), we see that both F3 and F4 are completely determined

by the overlapping region of the triangles since the top level arcs labeled u3 − u and u − u3 will

have a value of 0 when evaluated at u = u3. If we consider the blossoms of F3 and F4, we see

that this implies that f3(u3, t1, t2) = f4(u3, t1, t2) for all t1, t2 and thus, F3 and F4 meet with

C2 continuity.

Suppose we have a knot of multiplicity two. Then our triangle diagram looks like Fig. 3.8.

Note that there are two nodes labeled f (u3, u, u). These two nodes cannot be combined to

form a node at the next level since they share all three blossom values (to combine them, exactly

one argument must differ). However, we see that if we set two arguments of both blossoms to u3

F (u) F (u)3 4

f(u0,u1,u2) f(u1,u2,u3) f(u2,u3,u3) f(u3,u3,u4) f(u3,u4,u5) f(u4,u5,u6)

f(u1,u2,u) f(u2,u3,u) f(u3,u3,u) f(u3,u4,u) f(u4,u5,u)

f(u2,u,u) f(u3,u,u) f(u3,u,u) f(u4,u,u)

f(u,u,u) f(u,u,u)

u3−u u3−u u4−u u5−u u6−u

u3−u u3−u u4−u u5−u

u3−u u4−u

u−u0 u−u1 u−u2 u−u3 u−u3

u−u1 u−u2 u−u3 u−u3

u−u2 u−u3

FIGURE 3.8: Overlapping triangle diagrams for adjacent B-spline segments with knot multiplicity 2

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

B-SPLINES 49

then both f3 and f4 will match for all values of the final blossom argument (both are completely

determined by the region enclosed by dotted lines). Thus, f3(u3, u3, u) = f4(u3, u3, u) for all u,

and therefore F3 and F4 meet C1 at u3. Note however, that they do not meet C2: the construction

of f3(u3, u, u) depends on the control point f (u1, u2, u3) while the construction of f4(u3, u, u)

depends on the control point f (u3, u4, u5). Since we are free to set these two control points to

arbitrary values, we know in general that f3(u3, u, u) �= f4(u3, u, u), and thus, F3 and F4 do

not meet C2.

3.3.1 Exercise

1. Draw the overlapping triangle diagram for a cubic B-spline with knot vector

{a, b, c , d , d , d , e , f, g}. What can you conclude about the continuity of the B-spline

at t = d?

3.4 KNOT INSERTION
We have used knot insertion with B-splines to evaluate a B-spline curve and to find the Bézier

control points for a B-spline. Often we find that many operations we look at in another manner

can also be described with knot insertion. In general, knot insertion techniques are attractive

since they commonly give fast methods for performing various tasks. Knot insertion is a tech-

nique that is readily described by triangle diagrams, and typically drawing the triangle diagram

is all you need to see the desired result. This section presents a few knot insertion algorithms

that are readily explained with triangle diagrams; see [1, 2, 3, 10] for additional details and

algorithms.

The first knot insertion technique we will consider is the first step of the de Boor algorithm,

where we have a cubic segment with knot vector u0, u1, u2, u3, u4, u5 and we insert the knot t

between knots u2 and u3:

f (t1,t2,t3) f (t2,t3,t4)

f (t0,t1,t2)

f (t1,t2,t)

f (t2,t3,t)

f (t3,t4,t)

f (t3,t4,t5)

This form of knot insertion is known as Boehm’s algorithm. It has a triangle diagram of

f (u0,u1,u2) f (u1,u2,u3) f (u2,u3,u4) f (u3,u4,u5)

f (u1,u2,u) f (u2,u3,u) f (u3,u4,u)

u3−u u4−u u5−u
u−u0 u−u1 u−u2

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

50 A BLOSSOMING DEVELOPMENT OF SPLINES

and from the diagram, we immediately see the control points for the knot vector

{u0, u1, u2, t, u3, u4, u5}.
A second knot insertion algorithm is the Oslo algorithm, where we insert different knots at

each level of the triangle. Starting with the knot vector {u0, u1, u2, u3, −u4, u5} and inserting

knots t0, t1, t2 with u2 < t0 < t1 < t2 < u3 we get

f(u0,u1,u2) f(u1,u2,u3) f(u2,u3,u4) f(u3,u4,u5)

f(u1,u2,t0) f(u2,u3,t0) f(u3,u4,t0)

f(u2,t0,t1) f(u3,t0,t1)

f(t0,t1,t2)

u3−t0 u4−t0 u5−t0

u3−t1 u4−t1

u3−t2

t0−u0 t0−u1 t0−u2

t1−u1 t1−u2

t2−u2

The idea of the Oslo algorithm is to refine a B-spline to be over a denser knot vector; the

goal is to do the refinement efficiently. In this triangle diagram, the left and right edges give

the control points for the B-spline with knot vector {u0, u1, u2, t0, t1, t2, u3, u4, u5}. Goldman

explores more efficient variations of the Oslo algorithm with triangle diagrams [3].

A third knot insertion algorithm that we will (mostly) show using the triangle diagram is

the Lane–Riesenfeld algorithm [12, 23]. The Lane–Riesenfeld algorithm starts with a uniform

B-spline and inserts knots midway between existing knots. The algorithm is to replicate each

control point, and average n times (where n is the degree of the B-spline). For quadratics, the

triangle diagram is

f(0,1) f(0,1) f(1,2) f(1,2) f(2,3) f(2,3)

f(0,1) f(1,1) f(1,2) f(2,2) f(2,3)

f(1/2,1) f(1,1.5) f(1.5,2) f(2,2.5)

1/2 1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2

At the bottom of the diagram, we see the quadratic control points (with knot vector {0, 1, 2, 3})
replicated twice, and on the top we see that we have the control points for the same function

f but with knot vector {0.5, 1, 1.5, 2, 2.5} (we lose the knots 0 and 3 when we insert knots

outside the interval over which the curve is defined).

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

B-SPLINES 51

FIGURE 3.9: Three subdivisions using the Lane–Riesenfeld algorithm

Unfortunately, the triangle diagram does not work as well when trying the describe the

degree 3 or higher variation of the Lane–Riesenfeld algorithm, although the algorithm itself

readily extends to higher degrees, with one averaging step per degree.

As a side note, realize that the Lane–Riesenfeld algorithm is a particularly simple way

to draw uniform B-splines: at each step, you simply average points together. As you repeatedly

apply the Lane–Riesenfeld algorithm, the refined polygon converges to the curve. While exact

convergence only occurs after infinite number of refinements, we can achieve a good approx-

imation after four or five levels of refinement, as illustrated in Fig. 3.9 for a cubic B-spline

refined three times.

3.4.1 Implementations

1. Implement the Lane–Riesenfeld algorithm for rendering uniform B-splines.

3.5 B-SPLINE BASIS FUNCTIONS
We know the B-spline control points are being blended with some polynomial blending func-

tions. If all knots are of full multiplicity, then we have a piecewise Bézier curve and the blending

functions are the Bernstein polynomials. But what if the knots are not of full multiplicity?

For simplicity, assume all knots have multiplicity one. For the de Casteljau algorithm, we

constructed a dataflow diagram. Suppose we do the same for the de Boor algorithm for a single

segment cubic B-spline with knot vector u0, u1, u2, u3, u4, u5:

g(u0,u1,u2) g(u1,u2,u3) g(u2,u3,u4) g(u3,u4,u5)

g(u1,u2,u) g(u2,u3,u) g(u3,u4,u)

g(u2,u,u) g(u3,u,u)

g (u,u,u)

u3−u u4−u u5−u

u3−u u4−u

u3−u

u−u0 u−u1 u−u2

u−u1 u−u2

u−u2

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

52 A BLOSSOMING DEVELOPMENT OF SPLINES

If we trace all paths from the root to a control point, we get the contribution of that

control point to the final value. Thus, if we retain the edge labels, feed 1 into the root, and run

the flow backwards, we get the B-spline basis functions:

~
N 3

0(u)
~
N3

1(u)
~
N 3

2(u)
~
N 3

3(u)

~
N 2

0(u)
~
N 2

1(u)
~
N 2

2(u)

~
N1

0(u)
~N1

1(u)

1

u3−u u4−u u5−u

u3−u u4−u

u3−u

u−u0 u−u1 u−u2

u−u1 u−u2

u−u2

(Technically, we have only found blending functions as we have not shown that these functions

form a basis. While true, I will not prove that here.) The dataflow diagram leads to the following

recurrence:

Ñm
i (u) = u − un−m+i−1

un+i−1 − un−m+i−1

Ñm−1
i−1 (u) + un+i − u

un+i − un−m+i

Ñm−1
i (u) (3.1)

The “1” at the top of the dataflow diagram could also be written as Ñ0
0 (u), with Ñ0

i (u) = 1 if

ui < u < ui+1 and 0 otherwise. This is a form of what is known as the Cox–de Boor–Mansfield

B-spline recurrence relation, which is more commonly written as

Nm
i (u) = u − ui−1

ui+m−1 − ui−1

Nm−1
i (u) + ui+m − u

ui+m − ui

Nm−1
i+1 (u) (3.2)

with N0
i (u) defined to be 1 if ui−1 ≤ u ≤ ui and 0 otherwise. This latter form is preferred, as

we have removed the dependency on n.

N and Ñ in the above two recurrence formulas would refer to the same functions, except

for different indexes and the dependency of Ñ on n. We can also construct a triangle for the

second recurrence:

N3
0(u) N3

1(u) N3
2(u) N3

3(u)

N2
1(u) N2

2(u) N2
3(u)

N1
2(u) N1

3(u)

N0
3(u)

u3−u u4−u u5−u

u3−u u4−u

u3−u

u−u0 u−u1 u−u2

u−u1 u−u2

u−u2

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

B-SPLINES 53

In the previous version, the subscript was constant when moving up and to the right. Now the

subscript is constant when moving up and to the left. While the former dataflow diagram has

somewhat nicer subscripts in the diagram, the former recurrence’s [Eq. (3.1)] dependency on n

makes the latter form [Eq. (3.2)] preferable.

With these basis functions, we can now write the following expression for our B-spline

curve:

F(t) =
L+n−1∑

i=0

pi Nn
i (t) (3.3)

where Nn
i are the B-spline basis functions of Eq. (3.2) with the knot vector and control points

pi of Definition 3.1.

There are several things a bit unusual about these dataflow diagrams and the recurrences.

For example, looking more closely at N3
0 (u) as expanded by Eq. 3.2, we see that it is given by

N3
0 (u) = u − u−1

u3−1 − u−1

N2
0 (u) + u3 − u

u3 − u0

N2
1 (u)

From this expression, we see two odd things: first, N3
0 depends on knot u−1 and second, N3

0

depends on N2
0 . However, the node for N2

0 (and the arc to it that would be labeled u − u−1)

are missing from the dataflow diagram. Similarly, at all the other nodes along the edge of

the dataflow diagram, the recurrence indicates that there is a node missing from the dataflow

diagram (and at N3
3 , an additional unspecified knot u6).

The reason for these omissions from the dataflow diagram is that we are only interested

in this dataflow diagram for u2 < u < u3. With u in this range, the missing nodes all have

value 0 and do not contribute to the values of the nodes in the diagram. Since the nodes have

0 value, we omit them from the diagram.

The additional knots that seem to appear on either side (u−1 and u6 in our cubic example)

may also be omitted. However, if you write code to compute the blending functions, it simplifies

the code to have those knots available (basically by moving two conditionals out of the code to

implement Eq. 3.2 and into the beginning of a function for Nn
i (t)). Thus, in many implemen-

tations of B-splines (such as OpenGL), you have to specify an additional two knots in the knot

vector. These phantom knots are given zero weight by the zero basis functions, and you are pretty

much free to set them as you like, although commonly you would set them to the value of the

first and last knots or have them extend a sequence of the other knots. For example, for a single

cubic B-spline segment with uniform knots, where we have been using 0, 1, 2, 3, 4, 5 as our

knot vector, with phantom knots you would use 0, 0, 1, 2, 3, 4, 5, 5 or −1, 0, 1, 2, 3, 4, 5, 6.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

54 A BLOSSOMING DEVELOPMENT OF SPLINES

Another bothersome fact about both recurrences is that Nm is not an affine combination

of two of the Nm−1s. This is unimportant, however: we already know that
∑

Nm
i (u) = 1 by the

de Boor evaluation algorithm.

So far we have looked at the basis functions for the points used by the de Boor construction

over one interval. Since the other control points are not used in this construction, we set their

basis functions to zero over this interval.

We can turn this question around, however: what does the basis function for a particular

control point look like over the entire real line? We already know that we can restrict our

question to a subset of the real line, since the basis function will be zero outside of this set.

In particular, for cubics, the basis function for the control point f (ti , ti+1, ti+2) is used in the

de Boor construction for t ∈ [ti−1, ti+3]. Thus, the basis function is nonzero over four intervals.

Further, on any particular interval, only four basis functions have nonzero weight.

For simplicity, we will consider the case when the knots are equally spaced (this is known as

a uniform B-spline). Look at the de Boor construction for t and t + 1. In terms of the blending

functions, the same four functions are being constructed. They are, however, being used to

weight different control points. As we move from ti−1 to ti , one blending function is used to

weight f (ti , ti+1, ti+2). As we move from ti to ti+1, a second blending function is used. And

from ti+1 to ti+2, a third is used. Finally, from ti+2 to ti+3, the fourth blending function weights

f (ti , ti+1, ti+2).

Since the blending functions are used to weight f (ti , ti+1, ti+2), a natural question to ask

is “What continuity do the blending functions have?” We know a few facts about them and can

guess a few more (but I will not prove them):

• They are nonnegative (this is seen from the recursive definition of the blending func-

tions).

• They sum to 1 (this is a result of the de Boor construction).

• Neighboring blending functions meet C2 since the curve is C2.

• The first blending function starts at zero and furthermore, meets the zero line C2 (since

the basis function for our point is zero outside of the interval [ti−1, ti+3]).

The above facts can all be proven, and hold for an arbitrary knot vector where all knots

have multiplicity one.

The first two of the above facts show that a B-spline curve possesses the convex hull

property. In fact, it possesses something stronger: each curve segment lies in the convex hull of

the control points defining it. This is useful: if we create a long string of control points, then

the curve will have roughly the shape of the control polygon.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

B-SPLINES 55

(a) (b) (c)

(d)

FIGURE 3.10: Some B-spline basis functions

Figure 3.10 shows some examples of the B-spline basis functions. In Fig. 3.10(a), we

see the four basis functions used to weight the control points of a cubic B-spline curve with

a uniform knot vector {0, 1, 2, 3, 4, 5}; in Fig. 3.10(d), we see the a single blending function

used to weight a single control point for a cubic B-spline with uniform knots. The vertical lines

indicate where the knots are located; note that each subcurve in (d) is a translation of one of

the basis functions seen in (a). As suggested above, the curve appearing in Fig. 3.10(d) is a

piecewise cubic curve with the pieces meeting with C2 continuity at the knots.

In Fig. 3.10(b), we see the cubic B-spline basis functions for the knot vector

{0, 1, 1, 2, 2, 3}. Notice while in Fig. 3.10(a), only one basis function is zero at the ends of

the interval, when a knot has multiplicity 2, then two of the basis functions are zero at du-

plicated knot. In Fig. 3.10(c), we see the cubic B-spline basis functions for the knot vector

{0, 0, 0, 1, 1, 1}, which turn out to be the cubic Bernstein polynomials. And in this case, we see

that three of the basis functions are zero at the knots, in accord with their having multiplicity 3.

3.5.1 Exercises

1. Prove that Eqs. (3.1) and (3.2) are equivalent.

2. Under what conditions will a B-spline basis function obtain the value of 1?

3.5.2 Implementations

1. Write a program to plot the B-spline basis functions for the following degree curves

and knot vectors:

(a) Degree 3, knot vector (0, 1, 2, 4, 8, 16).

(b) Degree 3, knot vector (0, 1, 2, 3, 4, 4, 5, 5, 5, 6, 7, 8).

(c) Degree 4, knot vector (0, 2, 3, 3, 3, 4, 5, 7, 10).

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

56 A BLOSSOMING DEVELOPMENT OF SPLINES

3.6 CLOSED B-SPLINES
Suppose we want to construct a closed curve with a B-spline. If we only want C0 continuity at

the “end,” we merely need to raise the first and the last knot to full multiplicity and set the last

control point to the first control point. By “first knot,” I mean the knot corresponding to the

start of the first interval of the B-spline. Similarly for the “last knot.”

However, suppose we want our B-spline to meet with full continuity at the start/end of

the curve. Suppose, for example, we have the cubic B-spline shown below, over the knot vector

(u0, u1, u2, u3, u4, u5, u6, u7, u8) and we wish to close the curve by adding additional knots and

control points. Where do we place these new knots and control points so that the curve is C2

everywhere?

f (u1,u2,u3)

f (u2,u3,u4)

f (u3,u4,u5)

f (u4,u5,u6)
f (u5,u6,u7)

f (u6,u7,u8)

f (u0,u1,u2)

One way to think of the problem is that we wish to add a segment to the beginning of

the curve. Then in this case, we add a new knot, u−1, and a new control point, f (u−1, u0, u1),

and then the new curve segment defined by f (u−1, u0, u1), f (u0, u1, u2), f (u1, u2, u3), and

f (u2, u3, u4) over the interval [u1, u2] will meet our B-spline with C2 continuity. For simplicity,

call this segment F1.

Thus, if we wish to close our curve so as to meet C2, we should place the final control

points at these locations and “use the same knots.” Of course, we cannot actually use the same

knots since our knot sequence must be nondecreasing, but for the new segment to trace the

same curve as F1, we must have the same knot spacing.

Thus, our new knot vector will be (u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11) with the

following constraints:

u10 − u11 = u3 − u4

u9 − u10 = u2 − u3

u8 − u9 = u1 − u2

u7 − u8 = u0 − u1

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

B-SPLINES 57

and the last three control points must be identical to the first three control points as illustrated

below:

f (u1,u2,u3)=f(u8,u9,u10)

f (u0,u1,u2)=f(u7,u8,u9)

f (u2,u3,u4)=f(u9,u10,u11)

f (u3,u4,u5)

f (u4,u5,u6)
f (u5,u6,u7)

f (u6,u7,u8)

However, our solution is not quite fair in two ways: first, we can rewrite our constraints

on the knots as

u8 = u7 − u0 + u1

u9 = u8 − u1 + u2

u10 = u9 − u2 + u3

u11 = u10 − u3 + u4

Thus, u8 is determined once we set u7. But in the problem description above, we are given u8.

We can address this problem by adding an extra knot and control point.

The second way in which our solution is unfair is that we are adding multiple segments

to get the ends to meet with C2 continuity (rather than just adding a single segment). In the

construction above, we actually add three segments. If we want no constraints on u8, we would

have to add four segments. Thus, in general we will have to add several segments to close the

curve, or we will have to construct the last control points and segments with strong constraints

to achieve the continuity we desire.

It should be clear how to generalize the above construction/set of constraints to higher

order B-splines. Further, if you wish to have lower order continuity, then you merely need to

duplicate the “first” knot (u2 in the above example) and let the construction proceed in the same

fashion as above.

3.7 MODELING WITH POLYNOMIAL AND SPLINE CURVES:
DIRECT MANIPULATION

From a mathematical viewpoint, splines and their control points are great. From a programming

viewpoint, you will want to view and manipulate control points to ensure that your software

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

58 A BLOSSOMING DEVELOPMENT OF SPLINES

is working. From a user interface viewpoint, control points are terrible. A designer commonly

does not have a strong mathematics background, and does not want to learn about splines or

their control points. Further, a designer does not like manipulating control points as an indirect

handle on a curve.

However, there is no need to show control points in a final software package (although

they have been around long enough that you might want to have the option of “turning them

on” for those who are used to them). Instead, one can use methods to construct a spline that

interpolates or approximates a set of points [7]. This still leaves the issue of how to modify a

curve once it has been created.

A simple way to edit a Bézier or B-spline curve is to move the control points of the curve.

If we do not display the control points, we would want to select a point P on the curve, move

P to P̃ , and to adjust the control points of the curve so that the new curve passes through P̃ . If

F(t) is our original curve, F̃(t) is the modified curve, and if P = F(t̄), then our goal is to find

F̃ such that P̃ = F̃(t̄).

P P̃

The problem as stated is under constrained, and a trivial (but not very useful) so-

lution exists: if 	v = P̃ − P , then (for F(t) = ∑
Pi Ni (t)) set P̃i = Pi + 	v, and the curve

F̄(t) = ∑
P̃i Ni (t) will have the property that F̄(t̄) = P̃ . This results in a translation of the

entire curve by 	v, which is not what we were looking for.

Abstractly, we want to move the point P = F(t̄) to P̃ while minimizing the change in

F(t). What the minimization criteria should be is less clear. However, if we set

P̃i = Pi + 	v Ni (t̄)∑
j Nj (t̄)2

then F̃(t) will have the desired interpolation property:

F̃(t̄) =
∑

i

P̃i Ni (t̄)

=
∑

i

(
Pi + 	v Ni (t̄)∑

j Nj (t̄)2

)
Ni(t̄)

=
∑

i

Pi Ni (t̄) +
∑

i

	v Ni (t̄)∑
j Nj (t̄)2

Ni (t̄)

= F(t̄) + 	v

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

B-SPLINES 59

Further, this approach minimizes the change of the control points of F [4]. Additionally, you

can find methods for modifying the tangent to the curves [8].

3.7.1 Implementations

1. Modify your B-spline editor to allow for direct manipulation of the B-spline curve.

3.8 NURBS
In this lecture, we are studying polynomial curves and surfaces. As such, the spline curves

we have investigated are NUBS—nonuniform B-splines, with the “nonuniform” referring to

the knot vector. Most modeling applications allow you to use NURBS—nonuniform, rational

B-splines—a generalization of NUBS. The “rational” in NURBS refers to our curve being made

up of pieces that are ratios of polynomials instead of being a single polynomial.

Mathematically, a NURBS curve has the form

F(t) =
∑L+n−1

i=0 wi pi Nn
i (t)∑L+n−1

i=0 wi Nn
i (t)

(3.4)

where wi ’s are weights, with wi ∈ R. If all the weights are equal, then this expression for a

NURBS curve simplifies to that of the NUBS curve described in Eq. (3.3) (i.e., the curve is a

polynomial curve). Intuitively, the weights are additional shape parameters: increasing weight

wi pulls the curve closer to control point pi and decreasing wi pushes the curve further from

control point pi . Beyond that, it is unclear how to set the weights without careful mathematical

study. And while there are some clever tricks you can play by setting some of the weights as

negative, one has to be careful to avoid a set of weights that causes the numerator of Eq. (3.4)

to become 0 over the interval [tn−1, tL−1].

The motivation for using rational splines came from drafting, where conic sections were

commonly used. Parametric polynomial curves can only represent parabolas, while rationals can

represent all conic sections. However, conic sections can be approximated to high tolerance with

a NUBS curve, and you have plenty of degrees of freedom in a NUBS curve, making the extra

degrees of freedom in the weights of a NURBS curve superfluous. Unless you have a specific

need for the weights of a NURBS curve, you are probably best off setting all the weights to 1

and modeling with a NUBS curve. Indeed, even the knot vector of a NUBS is likely more than

you need for most modeling applications. Except for setting the end knots to full multiplicity to

have an end point interpolating B-spline, you may be best off using a uniform B-spline curve.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-03 MOBK033-Smann.cls September 25, 2006 16:37

60

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

61

C H A P T E R 4

Surfaces

In addition to modeling curves, we would like to model surfaces. While we can model spline

surfaces, the results are not as satisfying as they were for curves. Part of the problem is that we

have more issues to deal with when modeling surfaces: what shape surfaces patches do we need

and can we easily model? How do we join two patches together smoothly? How do we create a

network of smoothly joined patches?

These plus other issues make surface modeling a complex topic. In this chapter, we will

only investigate some of the basics that are readily analyzed for splines. In particular, we will

look at triangular and tensor-product spline surfaces, and look at conditions for joining patches

with parametric continuity.

Missing from the discussion here is geometric continuity, creation of a network of patches

that meet smoothly, and issues of surface quality. The material presented in this chapter should

give you enough background to study other sources that address those issues.

4.1 TRIANGULAR SURFACE PATCHES
We begin by looking at barycentric coordinates, which are a form of coordinate system relative

to a simplex. A simplex is set of d + 1 points that are linearly independent. For example, two

points that form a line segment, three points that form a triangle, or four points that form a

tetrahedron. In each of these cases, for the points to form a simplex, their positions must not

be degenerate (e.g., the two points of the line segment must be unique, the three points of the

triangle must not be colinear, the four points of tetrahedron must not be coplanar). Our focus

will be on triangular simplices.

We can express any point P that lies on the space (or subspace) spanned by the simplex

with coordinates relative to that simplex. When we weight the elements of the simplex with

these coordinates, we recover the point P . Further, the sum of the weights of these coordinates

is 1. These are barycentric coordinates.

For example, consider a triangle �ABC and an arbitrary point P in the plane of the

triangle. We can find scalar values a, b, c such that P = a A + b B + c C , where a + b + c = 1.

The formulas for a, b, c turn out to be simple: to compute a , we take the ratio of the area of

�P BC to the area of triangle �ABC (see Fig. 4.1).

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

62 A BLOSSOMING DEVELOPMENT OF SPLINES

P

a = |�PBC|
|�ABC|

b = |�APC|
|�ABC|

c = |�ABP |
|�ABC|

A

B

C

FIGURE 4.1: Barycentric coordinates of P relative to �ABC

If we use the signed area of the triangles, giving positive sign to the area if the vertices are

in counter-clockwise orientation and negative sign if they have clockwise orientation, then the

formulas for barycentric coordinates work for any point in the plane of the triangle (although

we should insist that our initial triangle have counter-clockwise orientation). If P lies on the

inside of �ABC , then all of its barycentric coordinates will be positive; if P lies on the outside

of �ABC , then some of its barycentric coordinates will be positive and some will be negative.

We will use barycentric coordinates to generalize the Bernstein polynomials. We originally

defined the univariate Bernstein polynomials as

Bn
i (t) =

(
n

i

)
(1 − t)n−i ti

Here t is an element of the real numbers. Note that this definition is symmetric with respect to

t and 1 − t. With this definition of the Bernstein polynomials, the corresponding Bézier curves

were most naturally defined over the interval [0, 1]. When we wanted to extend the definition

to the interval [a, b], we had to modify the Bernstein polynomials.

Barycentric coordinates give us an alternative approach. Rather than let t vary over abso-

lute positions over the real line, we instead look at the interval of interest and write each point

along the real line as an affine combination of the endpoints of that interval. It turns out that the

affine weights are the desired barycentric coordinates. Thus, if our interval is [a, b], we write a

point t as t = u0 · a + u1 · b, where u0 + u1 = 1. If our interval is [0, 1], note that u0 = 1 − t

and u1 = t.

With respect to barycentric coordinates, our Bernstein polynomials become

Bn
i (u0, u1) =

(
n

i

)
un−i

0 ui
1

Next note that
(

n
i

) = n!/(i !(n − i)!) = (
n

n−i

)
. This definition is symmetric in i and n − i .

We can make the definition fully symmetric as follows:(
n

�ı
)

= n!

i0!i1!

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

SURFACES 63

where �ı = (i0, i1) and i0 + i1 = n. With this new definition of “choose,” the Bernstein polyno-

mials become

Bn
�ı (u0, u1) =

(
n

�ı
)

ui0

0 ui1

1

This definition is fully symmetric (note that we made the arbitrary choice that i0 = n − i and

i1 = i between our two definitions). To simplify the notation a bit more, we will usually write

Bn
�ı (u) and assume the expansion of u into barycentric coordinates.

At this point, nothing has actually changed (except for simplifying the Bernstein poly-

nomials over arbitrary intervals). The curves are still the same, etc. (although see below for

some issues with the derivative). However, we can write a point p in d-space in barycentric

coordinates with respect to some d-simplex in that space. For example, in two space, the two

simplex is a triangle �p0 p1 p2. Any point p in this two space can be written in barycentric

coordinates with respect to this triangle:

p = u0 p0 + u1 p1 + u2 p2

where u0 + u1 + u2 = 1.

What we want is a generalized definition of the Bernstein polynomials to d-dimensional

spaces. The following definition works:

Bn
�ı (u) =

(
n

�ı
)

ui0

0 · · · · · uid

d

where u = (u0, . . . , ud) are the barycentric coordinates of a point in our space with respect to

the given simplex, and where �ı = (i0, . . . , id) with
∑d

j=0 i j = n and
(

n
�ı
) = n!/(i0! · · · · · id !).

These generalized Bernstein polynomials have the properties we want:

• They sum to 1.

• They are nonnegative if our point is in the simplex.

• They have a recursive definition

Bn
�ı (u) =

d∑
j=0

u j Bn−1
�ı−�e j

(u)

where �e j is the multiindex with zero in every component except the j th component

which is 1.

• They form a basis for the d-variate polynomials.

The second property is easy to see; we will not prove the other three, though.

Note also that if u = (1, 0, . . . , 0) then Bn
(n,0,...,0)(u) = 1 and the remaining Bn

�ı (u) = 0.

We get a similar result if u j = 1 for j = 1, . . . , d .

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

64 A BLOSSOMING DEVELOPMENT OF SPLINES

Now we define our function as

B(u) =
∑

�ı, |�ı |=n

P�ı Bn
�ı (u)

This will be a mapping from a d-simplex to a piece of a simplicial d-fold patch.

When d = 1 (the curve case), our control points are now doubly indexed: Pn,0,

Pn−1,1, . . . , P0,n. Otherwise our curves are the same, with one cautionary note: we need to

be careful about derivatives. The barycentric form hides the size of the domain. But the domain

size plays a part in the derivatives. Thus, while we can think of these “barycentric curves” as

being “affine curves,” we really need them to be “Euclidean curves” to treat the derivative as we

have been.

Let us look at some examples when d = 2 and our domain is a triangle. If n = 1, then

our control points will be P100, P010, P001, and our blending functions will be u0, u1, and u2.

Thus, our image will be a triangle. When u0 = 1, we know that u1 = u2 = 0 and B(u) = P100.

Similarly for when u1 = 1 and u2 = 1.

If n = 2, then our control points will be P002, P011, P020, P101, P110, and P200. We can

visualize it as shown in the following diagram:

P

PP

P

P
002

200
P

020

011

110

101

In this diagram, I have labeled the control points with the �ı subscript; although the diagram is

2D, control points are in 3-space. We know that the surface will interpolate the corner control

points (i.e., P200, P020, and P002). And as we allow u to vary over the domain triangle, the image

will trace out a triangular surface patch.

Suppose that we evaluate along one edge of the domain triangle. For example, let u2 = 0.

Then our basis functions will be zero if they have a term of u2 raised to any power greater than 0.

Thus, only the basis functions weighting P200, P110, and P020 will be nonzero. Since u2 is raised

to the zero power, we can think of these as being functions of only u0 and u1. All of this means

that as we vary μ along the edge of our domain triangle, we will trace out a Bézier curve in space.

Note further that if we know the directional derivative in two nonparallel directions at

a point on the surface, then we have completely characterized the first derivative at that point

on the surface. In particular, at any corner control point, we know the directional derivative in

two directions (one for each boundary curve that abuts this control point). Thus, we have a

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

SURFACES 65

complete characterization of the first derivative at the corner points, and further, we see that

the tangent plane at a corner is given by the panel abutting the corner. For example, the tangent

plane at P002 is given by the plane spanned by P002, P011, and P101.

To further analyze triangular Bézier patches, we will extend the blossoming theorem to

higher dimensions.

4.1.1 Blossoming

Theorem 4.1. The blossoming principle

Let F : P �→ Q be a degree n polynomial, where P and Q are affine spaces.

Then there exists a unique map f : Pn �→ Q such that

1. f is symmetric,

2. f is multiaffine,

3. f (u, . . . , u) = F(u).

f is said to the the polar form or multiaffine blossom of F.

Proof. Exercise 1 of Section 4.1.2. (The proof is straightforward albeit notationally involved if we

express F in the barycentric Bernstein basis.)

The difference between this and the earlier blossoming principle is that before we assumed that

the dimension of P was 1. Now we will let it be arbitrary. Thus, the arguments to F (and of f)

have dimension greater than 1.

But again, given a domain simplex (e.g., a triangle �ABC) we completely specify the

blossom if we know its values for all argument combinations taken from the vertices of the

simplex (e.g., {A, B, C}). Thus, in the case of degree 2 polynomials, we know f if we know

the values f (A, A), f (A, B), f (A, C), f (B, B), f (B, C), f (C, C).

For example, for a 2-simplex domain of �ABC , suppose we want to evaluate F(u) =
f (u, u, . . . , u) where F is a degree n polynomial, and u has barycentric coordinates (ua , ub, uc)

relative to our domain simplex. Then

f
(
u〈n〉) = f

(
ua A + ub B + uc C, u〈n−1〉)

= ua f
(

A, u〈n−1〉) + ub f
(

B, u〈n−1〉) + uc f
(
C, u〈n−1〉)

...

=
n∑

�ı, |�ı |=n

(
n

�ı
)

ui0
a ui1

b ui2
c f

(
A〈i0〉, B〈i1〉, C 〈i2〉)

=
n∑

�ı, |�ı |=n

f
(

A〈i0〉, B〈i1〉, C 〈i2〉)Bn
�ı (u).

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

66 A BLOSSOMING DEVELOPMENT OF SPLINES

Since the generalized Bernstein polynomials form a basis, this further tells us that

Pi jk = f (A〈i〉, B〈 j〉, C 〈k〉)

Using the blossom labels for the control points, we get the following diagram for a quadratic

surface in triangular Bézier patch form:

f (A,A) f(A,B)

f(C,C)

f(A,C) f(B,C)

f(B,B)

This also indicates how we can evaluate our surface patch. Looking at the diagram, we

see that any “upward” pointing triangle has vertices whose blossom values differ in only one

argument. The argument that differs takes the values A, B, C over the three vertices. If we

weight the control point having Di as the differing argument with weight ui , then we can bring

the sum to the inside of the blossom, and this sum equals u:

ua f (A, A) + ub f (A, B) + uc f (A, C) = f (A, ua A + ub B + uc C)

= f (A, u)

If we repeat this with the other two upward pointing panels, we compute the points f (B, u)

and f (C, u). We can now repeat the process with these three points as they differ only in one

argument and this argument has the values A, B, C , giving us the point f (u, u) = F(u).

Pictorially, we have

f (C,C)

f(C,u)

f(B,C)f(A,C)

f(u,u)

f(B,u)

f(B,B)f(A,B)f(A,A)

f(A,u)

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

SURFACES 67

We can see from the labeling of the points that this de Casteljau algorithm gives us

subdivision:

f (C,C)

f(C,u)

f(u,u)

f(A,u) f(B,u)

f(B,C)

f(B,B)f(A,B)f(A,A)

f(A,C)

Thus, if we evaluate at the center of our domain, we divide our triangular domain into three

subtriangles, each drawn with a different shade in the figure above. Then in our range, the

points connected to the triangles with the same shade are the control points for the Bézier patch

associated with the corresponding shaded domain.

However, while this subdivision algorithm is a nice generalization of the subdivision algo-

rithm for curves, it has serious problems. Because we subdivide in the interior, our subdomains

(and corresponding Bézier patches) have poor aspect ratios. Further issues with this subdivision

method will be discussed in Section 4.2.3.

We can also look at a dataflow diagram of the evaluation. Now, instead of a triangle

dataflow diagram, we will have a tetrahedral dataflow diagram:

f (u,u)

f(C,u)

f(C,C)

f(B,C)

f(B,B)

f(A,B)

f(A,A)

f(A,u)

f(A,C)

f(B,u)

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

68 A BLOSSOMING DEVELOPMENT OF SPLINES

The initial control points are at the bottom of the diagram, with the evaluation proceeding

upward.

For curves, we noted that the subdivision points lay on the outer edges of the dataflow

triangle. Now for surfaces, we note that the subdivision points lie on the outer faces of the

dataflow tetrahedron.

4.1.2 Exercise

1. State and prove the multiaffine blossoming principle for a degree n polynomial with

domain of arbitrary dimension d .

4.1.3 Derivatives

For curves, we looked at the multilinear blossom to find derivatives. But look more closely at the

multiaffine blossom we have created for surfaces: If we build the blossom from the barycentric

form of the Bernstein polynomials, then it’s already a multilinear blossom. All that remains to

get the multilinear blossom is to remove the restriction that the ui sum to one (where the ui are

the barycentric coordinates of our domain point u).

However, we still do not have the statement about the derivatives of F . We will make

one now. First note that we have to work with directional derivatives since our domain is more

complicated than in the curve case. Thus, our statement will look like

F (j)
v1,...,vj

(u) = n!

(n − j)!
f
(
u〈n− j〉, v1, . . . , vj

)
. (4.1)

Notationally, we have several problems: first, we need to subscript blossom arguments

to distinguish between them, and second, we need to subscript the barycentric coordinates of

a point. Also, we need a notation for vectors in space and a “vector” as a tuple (e.g., as in

�ı = (i0, . . . , id) where i j s are integer). And we want to overload |v| notation: does it mean the

length of a vector or does it mean the sum of the barycentric coordinates. All of these notational

issues are readily overcome, but they do complicate things.

We will not prove Eq. (4.1) here; Ramshaw discusses it in his research report [18].

So what does the above formula mean geometrically? Consider the first derivative in a

direction v = p1 − p0 where p1 and p0 are points in the domain a unit distance apart:

F ′
v(u) = n f

(
u〈n−1〉, v

)
= n f

(
u〈n−1〉, p1 − p0

)
= n

[
f
(
u〈n−1〉, p1) − f (u〈n−1〉, p0

)]

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

SURFACES 69

One way to picture this is we evaluate at u for all our parameters but one, then we map our

domain direction to the remaining triangle:

f (C,C)

f(C,u)

f(A,C) f(B,C)

f(B,u)f(A,u)

f(A,A) f(A,B) f(B,B)

u

p1

p0

In the range, I have drawn the image of the domain vector p1 − p0 twice. The left occurrence

was computed as the difference of F(p1) − F(p0). I have then translated this vector to start at

F(u), since it is a directional derivative for that point.

Alternatively, we can evaluate at v first. This gives us a Bézier “surface” that we can

evaluate anywhere to find the derivative at a point:

f (C,C)

f(B,C)

f(B,B)f(A,B)f(A,A)

f(A,C)
u

p
1

p
0

For surface patches we are often interested in the tangent plane behavior along a boundary.

The tangent plane behavior is completely defined if we know the first derivative in two non-

parallel directions at every point along the boundary curve. One direction is easy: we just take

the derivative of the boundary curve. Note that this is the directional derivative of the surface

along one of the edges of the domain triangle. For the other direction, we commonly choose a

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

70 A BLOSSOMING DEVELOPMENT OF SPLINES

second direction in the domain triangle:

f (D2,D2)

f(D0,D2) f(D1,D2)

f(D1,D1)f(D0,D1)f(D0,D0)

In this figure, the solid vector in the domain on the left is our boundary direction, and the

dashed line is the crossboundary direction. In the range on the right, the two solid vectors are

linear interpolated to compute the boundary derivative, while the dashed vectors are linearly

blended to compute the crossboundary derivative.

What about higher order derivatives? We could evaluate the blossom to find these deriva-

tives. However, just like for curves, we treat the first derivative function as a Bézier function,

and apply what we know about first derivatives to it.

Note in particular what this says about the mixed partial derivative at a patch corner in

two directions parallel to the edges:

F (2)
v1,v2

(A) = n(n − 1) f
(
u〈n−2〉, v1, v2

)
= n(n − 1)

[
f
(
u〈n−2〉, v1, C

) − f
(
u〈n−2〉, v1, A

)]
= n(n − 1)

([
f
(
u〈n−2〉, B, C

) − f
(
u〈n−2〉, A, C

)]
−[

f
(
u〈n−2〉, B, A

) − f
(
u〈n−2〉, A, A

)])
Thus, to compute the mixed partial at a corner point in two edge directions, first compute the

two vectors used for the first derivative in one direction; the difference between these vectors

gives the mixed partial derivative.

The mixed partial is often called the “twist vector.” There are four vertices involved in

computing the twist vector. Suppose that these four vertices lie on the corners of a parallelo-

gram. Then the twist vectors will be zero. Thus, the twist vector measures how far out from a

parallelogram these four vertices are. It is called “twist” because it is measured the way in which

the crossboundary derivative twists out of the tangent plane as you move away from the corners.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

SURFACES 71

4.1.4 Parametric Continuity

Now that we know about derivatives, what about continuity? There are two types of continuities

commonly discussed for surfaces: parametric continuity and geometric continuity. The latter is

more interesting for geometric modeling, but it is beyond the scope of this lecture. Here, we

will just consider parametric continuity.

Once we start talking about two patches meeting with parametric continuity, however,

we have to be a bit careful: the barycentric coordinates hides much of the detail needed for

derivatives. In particular, we have to associate the two domains of our patches. Typically, we

will just make them two triangles that intersect in an edge. It is along this common edge that

the two surfaces will meet.

It is easy to get C0 continuity: since the boundary of each surface is a Bézier curve, we

merely insist that the two patches share boundary control points:

For higher order continuity, we state without proof the following proposition quoted from

Ramshaw’s tech report [18].

Proposition Let A and B be two adjacent regions in the parameter plane P that meet along the

segment [s , t] of the line L in P , where s 	= t. The two n-ic polynomial surfaces FA : A → Q

and FB : B → Q join with Ck continuity along the segment [s , t] if and only if their multiaffine

blossoms f A and fB agree on all argument bags that include at least (n − k) points anywhere

along L.

We are interested in the geometry of these conditions. The C0 conditions are simple: the

boundary control points of the two patches must be equal. For illustration, assume we are working

with two quadratic patches F and G with blossoms f and g , parameterized over domain triangles

�ABC and �C B D, respectively, with D = da A + db B + dc C and A = ad D + ab B + ac C .

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

72 A BLOSSOMING DEVELOPMENT OF SPLINES

Then the C0 continuity conditions are

f (B, B) = g (B, B)

f (B, C) = g (B, C)

f (C, C) = g (C, C)

That is, if all the arguments to the blossom come from {B, C}, then the blossoms f and g must

be equal.

For C1 continuity, we need to have C0 continuity, and further, Ramshaw’s theorem states

that if all but one of the arguments to the blossom come from {B, C}, then the blossoms f and

g must be equal. Clearly, for these patches to meet with C1 continuity, the following equations

must be true:

f (A, B) = g (A, B)

f (A, C) = g (A, C)

Further, if these five equalities hold (three for C0 continuity and two for C1 continuity), then
f and g will be equal when one or more of the blossom arguments is B or C . This is seen since

f (t, B) = ta f (A, B) + tb f (B, B) + tc f (C, B)

= ta g (A, B) + tb g (B, B) + tc g (C, B)

= g (t, B)

where ta , tb, tc are the barycentric coordinates of t relative to �ABC . A similar argument

shows that f (t, C) = g (t, C). Thus, these five conditions are sufficient to ensure C1 continuity

between F and G along their common boundary.

Figure 4.2 (left) illustrates the C1 continuity conditions for these patches to meet with C1

continuity. Note that as a result of these conditions, pairs of adjacent panels must be coplanar,

although this is only a necessary condition for C1 (i.e., the stronger condition that these panels

are affine images of the panels formed by the two domain triangles must hold for C1 continuity).

For C2 continuity, the C1 conditions must hold. Further, for our quadratic example, the

blossoms must be equal when none of the arguments are from {B, C}. The conditions on our

control points in this example are the following: we construct

f (A, D) = da f (A, A) + db f (A, B) + dc f (A, C)

f(C,C)

f(A,C)
g(C,D)

g(B,D) g(D,D)

f(A,D)

f(A,C)

f(A,A)
f(B,B)f(A,B) f(A,B)

f(A,A)
f(B,B)

g(B,D)

g(C,D)

g(D,D)

FIGURE 4.2: Two quadratic Bézier patches meeting with C1 and C2 continuity

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

SURFACES 73

and

g (A, D) = ad f (D, D) + ab f (D, B) + ac f (D, C)

For patches F and G to meet with C2 continuity, we must have f (A, D) = g (A, D). A similar

argument to the one above shows that this is a strong enough condition to ensure that f (t, u) =
g (t, u) for all t, u. Figure 4.2 (right) illustrates the C2 continuity conditions.

Note that the situation of two quadratics meeting with C2 continuity is an unusual

special case, since if two quadratic patches meet with C2 continuity, then they are different

parameterizations of the same degree 2 polynomial and thus they must agree for any set of

arguments; however, normally we would not expect the blossoms of two neighboring patches

to agree unless at least one of their arguments came from {B, C}.
If we increase the degree of the patches, we get similar conditions, but on more panels

between the adjacent patches. Further, if we consider conditions for higher continuity between

the patches, we see conditions similar to the C1 and C2 conditions: for C2k+1 continuity, there is

a condition of coplanar panels, and for C2k continuity, there is a condition of coincident points.

For a further discussion of these continuity conditions, see [11, 15].

4.1.5 Surfaces Above the Plane

Suppose that we want a bivariate polynomial function, z = F(x, y), in Bézier form. For curves,

we spaced the x value of the control points equally in the domain. For surfaces we will do

a similar thing: if our domain triangle is �ABC and our desired function is to be of degree

n, then we place the control point P�ı = Pi0i1i2
at ((i0/n) A + (i1/n) B + (i2/n) C, z�ı), where

(i0/n) A + (i1/n) B + (i2/n) C represents both the x and y coordinates of the point. The z�ı
may be placed anywhere.

Note that our C1 constraints simplify for a function over the plane. Due to the uniform

x–y spacing of the control points, it is easy to see that planarity of a boundary panel implies it

is an affine image of the domain.

4.1.6 Exercise

1. For a polynomial z = F(x, y) with a domain triangle �ABC , to find the Bézier

representation we set the xy-coordinates of the Bézier control point Pi0,i1,i2
to

(i0/n) A + (i1/n) B + (i2/n) C . Prove that this setting of the xy-coordinates yields

the identity mapping for the xy-coordinates, i.e., show that for t in the xy-plane,

t =
∑

�ı, |�ı |=n

Bn
�ı (t)((i0/n) A + (i1/n) B + (i2/n) C)

where �ı = (i0, i1, i2).

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

74 A BLOSSOMING DEVELOPMENT OF SPLINES

4.1.7 Storing the Control Points

How do we store and access the control points for a triangular Bézier patch? A naive approach

would be to store them in an n × n × n array indexed by i0, i1, and i2. But since the three

integers in the index are not independent, we can store them in an n × n array, indexing on i0

and i1. However, we will still be wasting half of our storage space. If this wasted space is not a

concern, then this method is probably the best method. If it is a concern, we can use a better

method: we can store them in a linear array.

To see how to store the triangular array in a linear array, we make the following observation:

if Dim(n, d) is the number of control points in a degree-n, dimension-d control net, then

Dim(n, d) = Dim(n − 1, d) + Dim(n, d − 1).

As base cases, if either the dimension or degree are zero, then the value of Dim is 1. (If either

d or n are negative, then the value of Dim is 0.) Note that Dim(n, d) = (
n+d

d

)
is the dimension

of the space of polynomials in d variables of degree less than or equal to n.

Why would we compute Dim using the recursive calls rather than directly use the com-

binatorial formula? Because 13! exceeds the precision of 32-bit integers. Thus, for high degree

and/or high dimension objects, we have to use an alternative method of computation.

In practice, we would use table lookup to get the values of Dim (a 20 × 20 table is not

very big, although Dim(18, 18) will overflow a 32-bit integer; Dim(17, 17) is a 32-bit value,

but even this is probably bigger than you need, since a control point array that size would not

fit in memory).

For surfaces, we are working with the case of d = 2, giving the following pictorial repre-

sentation for this formula:

P300

P030

Dim(n− 1, d)

P003Dim(n, d− 1)

We will store the Dim(n − 1, d) part in the initial part of a linear array, and the Dim

(n, d − 1) part immediately after it. So our first control point should be Pn00. And our last

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

SURFACES 75

control point should be P00n. In fact, the entire set of control points whose first index is 0 are

the Dim(n, d − 1) part in the above picture. Our algorithm to compute the location of a point P�ı
will proceed by looking at the first index and computing the size of the Dim(n − i0, d) part. This

gives us the location of the “control net” of one lower dimension that contains our point. Thus,

we repeat this process for each of the lower dimensions, as illustrated by the following code:

sum = n

offset = 0

for j = 0 to d − 1 do

sum = sum – i j

offset + = Dim(sum −1, d − j)

endfor

return offset

4.1.8 Efficient Evaluation at a Single Point

We would like to evaluate our triangular Bézier patches efficiently. If we store the control points

in a 2D array using the first two indices of their multiindex, then the following is a reasonable

evaluation method for one step of de Casteljau’s algorithm:

for i = 1 to n do

for j = 0 to n − i do

P[i][j] = w0 P[i][j] + w1 P[i + 1][j] + w2 P[i][j + 1]

end

end

Suppose, however, that we wish to store our control points in a linear array. One way to

evaluate one level of de Casteljau’s algorithm (combining control points from an array CP and

storing the results in a separate array ECP) is the following:

for i = n − 1 downto 1 do

for j = n − i − 1 downto 0 do

k = n − i − j − 1

ECP[MtoI(i, j, k)] = w0CP[MtoI(i + 1, j, k)] +

w1CP[MtoI(i, j + 1, k)] + w2CP[MtoI(i, j, k + 1)]

end

end

In the code, MtoI() is a procedure for converting a multiindex into a linear index.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

76 A BLOSSOMING DEVELOPMENT OF SPLINES

But this is inefficient: for each evaluation we have to run the MtoI() code four times.

Generally, it is most efficient to store the control points in reverse lexicographical order (i.e, for

a cubic, (3,0,0), (2,1,0), (2,0,1), (1,2,0), (1,1,1), (1,0,2), (0,3,0), (0,2,1), (0,1,2), (0,0,3)). If we

store them in this fashion, then

MtoI(i, j, k) = MtoI(i + 1, j, k)

and

MtoI(i, j, k + 1) = MtoI(i, j + 1, k) + 1

Using one more trick, we can use the following code to evaluate one level of de Casteljau’s

algorithm in place:

i = 0

j = 1

for l = 0 to n − 1 do

for m = 0 to l do

CP[i] = w0CP[i] + w1CP[j] + w2CP[j + 1]

i + +
j + +

end

j + +
end

4.2 FAST EVALUATION ON A GRID OF POINTS
To render a surface, we commonly construct a piecewise linear approximation to the surface and

render it using standard Z-buffer graphics hardware. Earlier, we looked at how to efficiently

evaluate a patch for a single point and normal on the surface. In this section, we will look at

various methods for evaluating at a set of point appropriate for triangulation.

Much of the material in this section is based on [6] and [17]. See also [14] for further

discussion on surface evaluation.

4.2.1 A Grid of Evaluation Points

To draw a Bézier patch, we will evaluate it on a “grid” of domain points, triangulate the evaluation

points, and draw the triangles.

At each domain point, we need to compute the barycentric coordinates. Since we want a

grid of samples, by exploiting the grid property, we can compute the barycentric coordinates of

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

SURFACES 77

each domain point without much effort:

for i = 0 to S do

for j = 0 to S − i do

k = S − i − j

u0 = i/S

u1 = j/S

u2 = k/S

P = EvalPatch(T,u0,u1,u2)

end

end

When we evaluate, we will want to evaluate for both position and normal. We also need

to put these evaluation points in an array, and then generate triangles from these points to give

to OpenGL for rendering.

The question of what value to use for S remains. Typically, just using S = 10 should be

sufficient.

4.2.2 Implementations

1. Write an evaluator for triangular Bézier patches. Extend this evaluator to a tesselator

(e.g., chop it up into a set of triangles). Your tesselations should have both position and

normals for each sample point.

4.2.3 3-to-1 Subdivision

To make an adaptive scheme that avoids the “what is S” question, we might try extending the

de Casteljau subdivision of curves method to triangular patches. The idea is that we would

repeatedly perform 3-to-1 subdivision until the control points are nearly coplanar.

There are two problems with 3-to-1 subdivision. The first is that the aspect ratio of the

polygons is terrible. For a variety of reasons, we prefer that the triangles are close to equilateral.

However, 3-to-1 subdivision gives triangles that get longer and skinnier each time we subdivide:

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

78 A BLOSSOMING DEVELOPMENT OF SPLINES

The second (and fatal) flaw of 3-to-1 subdivision (for rendering purposes) is that it does

not divide the edges of the patches, and we would never end up with a set of coplanar control

points.

4.2.4 2-to-1 Subdivision

A 2-to-1 subdivision is an efficient way to subdivide a triangular Bézier patch. Consider what

happens when we evaluate on the boundary of the domain triangle:

f(C,C,C)

f(B,C,C)

f(B,B,C)

f(B,B,B)

f(u,C,C)

f(u,B,C)

f(u,B,B)

f(u, u, C)

f(u, u,B)

f(u, u, u)

f(A,A,A)

f(C,C,C)

f(B,C,C)

f(B,B,C)

f(B,B,B)

f(u,C,C)

f(u,B,C)

f(u,B,B)

f(u, u, C)

f(u, u,B)

f(u, u, u)

f(A,A,A)

The barycentric coordinates of the domain point of evaluation are (0, ub, uc). Thus, in each

affine combination of the algorithm, we have

f (u, X, Y) = 0 f (A, X, Y) + ub f (B, X, Y) + uc f (C, X, Y) = ub f (B, X, Y) + uc f (C, X, Y)

where X, Y have the values u, A, B, or C depending on which triangle we are combining.

Essentially, we are evaluating (in the cubic case) four curves: a constant curve, a linear curve, a

quadratic curves, and a cubic curve:

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

SURFACES 79

Further, if we look at the 3-to-1 subdivision produced by de Casteljau’s algorithm, one

of the domain subtriangles is degenerate: it is a line. Thus, we are really performing 2-to-1

subdivision, and we can compute it using only repeated curve evaluation. The decrease is cost is

significant: 10 pairwise affine combinations versus 10 affine combinations of three points. This

is two-thirds the number of multiplications and half the number of additions.

At first glance, the aspect ratio appears to get worse when we do 2-to-1 subdivision:

But if we repeatedly perform 2-to-1 subdivision by connecting from the previous sub-

division point to the two edges that had not been subdivided at the previous step, after three

steps, we see that all triangles have the same aspect ratio as the triangles occurring after the first

step:

So we see that although there is a worsening of the aspect ratio in the first 2-to-1 subdivision

step (and possibly in the second step), the aspect ratio gets no worse than this.

4.2.5 4-to-1 Subdivision

We saw earlier that if we evaluate a triangular Bézier patch with de Casteljau’s algorithm, then

we perform a 3-to-1 subdivision of the patch. Note, however, that we will never subdivide the

edges of the patch (or of the subpatches) if we repeat the subdivision step.

A nicer subdivision technique would be to perform a 4-to-1 subdivision by splitting all

three edges of the domain and connecting in the obvious fashion:

a

b c

d

e

f

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

80 A BLOSSOMING DEVELOPMENT OF SPLINES

Thus, our original domain is �abc and we want to subdivide it into four subtriangles,

� adf, � bed, � cfe, and � def. The question is, how do we perform such a subdivision on the

triangular Bézier patch?

One answer is to perform repeated subdivision on the patch. Most of the subdivisions are

2-to-1 subdivisions, where we perform 3-to-1 subdivision on an edge and ignore the degenerate

patch (or more efficiently, using curve subdivision).

A

B

C

D
E

F

Here, we start with our original patch and subdivide it at f . We then subdivide patch A

at d giving us patch C . We subdivide B at e to get D. Next, we “subdivide” either C at e or D

at d to get E. Finally, we “subdivide” E at b to get patch F .

Note that in evaluating patch C at e (i.e., at a point outside of the domain triangle for C),

we really do get the control points of patch E from the de Casteljau evaluation. In the figure

below, the control points of E are along the bottom edge of each of the four diagrams (i.e., the

evaluations of g () where all arguments are a mix of d , e , or f).

g(a, a, e)

g(a, d, e) g(a, e, f)

g(e, f, f)

g(d, e, f)

g(a, e, e)

g(d, d, e)

g(d, e, e) g(e, e, f)

g(a, a, a)

g(a, a, d) g(a, a, f)

g(a, d, d)
g(a, d, f)

g(a, f, f)

g(d, d, d) g(d, d, f) g(d, f, f) g(f, f, f)

g(e, e, e)

There is also a way you can subdivide using only four evaluations (Exercise 1 of Sec-

tion 4.2.8) [5].

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

SURFACES 81

4.2.6 Curve Evaluation

Finally, we note that typically we want to tessellate the surface for rendering. This is commonly

done by evaluating the surface for position and normal at a uniform grid of points, and creating

a mesh of triangles from these points. This requires evaluating at a uniform sampling on each

boundary of the patch. Since the boundary of a triangular Bézier patch is a Bézier curve, rather

than perform a surface evaluation for each of these boundary samples, we can instead evaluate

the boundary control points as a Bézier curve to obtain the boundary samples (we will also

need to evaluate the second layer of control points as a Bézier curve to obtain a crossboundary

derivative to compute the surface normal).

This suggests another algorithm for tessellating a triangular Bézier patch over a regular

grid: step along in one barycentric direction. At each step, perform a 2-to-1 subdivision of the

triangular Bézier patch. Take either of the resulting subpatches and sample the split boundary

repeatedly in the other two barycentric directions to obtain samples along that boundary.

Pseudo-code for the algorithm appears in Fig. 4.3. The code computes S + 1 samples

along each edge, and stores the results in a 2D array P , with half the space in the array unused.

Figure 4.4 illustrates the key ideas of the algorithm, showing the two 2–1 subdivisions of the

patch F , and showing which control points are extracted to be evaluated as curves, with the

white control points used to determine the position and one tangent direction on the surface,

and the gray control points used to compute a second tangent direction on the surface, allowing

us to compute the surface normal. Note that the inner for loop evaluates the curves at uniform

step sizes; thus, the curve evaluations in this for loop could be implemented using forward

differencing for additional speed improvements.

for i=0 to S-1

u = i/S

(P1,P2) = TwoToOneSubdivision(F,u,0,1-u)

(Q1,Q2) = TwoToOneSubdivision(P1,u,1-u,0)

(W,G)=ExtractTwoLayersCurve(Q1)

for j=0 to S-i

v = j/(S-i)

P[i][j] = EvalDoubleCurve(W,G,v)

end

end

P[S][0] = F[n][0][0]

FIGURE 4.3: Pseudo-code for regular sampling of S per side using two 2–1 subdivisions and curve

evaluation. “W” and “G” refer to the white and gray control points of Fig. 4.4

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

82 A BLOSSOMING DEVELOPMENT OF SPLINES

F (u, 0, 1 − u)

F (1, 0, 0)

F (0, 1, 0) F (0, 0, 1)

F (u, 1 − u, 0)

F P1

Q1
Q1

P2

Q2

FIGURE 4.4: Two 2–1 subdivisions, followed by curve evaluation

4.2.7 Cracking Problems

For 4-to-1 subdivision and 2-to-1 subdivision, we can imagine an adaptive algorithm that

checks if a patch’s control points are coplanar or close to coplanar. If they are, then the patch is

drawn as a triangle formed by the corner control points. If the patch control points are not close

to coplanar, then we subdivide the patch and repeat the process (doing two 2-to-1 subdivision

steps if we are using 2-to-1 subdivision).

Such an algorithm has the advantage that the piecewise linear approximation will converge

to the surface with close to a minimum number of triangles for the required tolerance. However,

this algorithm suffers from a serious problem. If we have adjacent patches that are subdivided to

different levels (Fig. 4.5, left), then a crack may form along their common boundary. Although

the gap may be small (less than a pixel in width), because of numerical issues, when these

triangles are rendered we may get pixel drop out along the common edge (Fig. 4.5, middle and

right; in these figures, the “triangle” on the lower right has an additional vertex on the common

FIGURE 4.5: A crack may form between adjacent patches subdivided to different levels

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

SURFACES 83

edge). This problem usually precludes using this type of adaptive algorithm, or necessitates

additional processing to “insert the missing vertices” to avoid pixel drop out.

4.2.8 Discussion

Each of the evaluation algorithms for triangular patches discussed in this section has its uses.

For renderering purposes, unless speed is a critical issue, it is likely that the simplest algorithm

of using de Casteljau’s algorithm to evaluate on a grid of points (Section 4.2.1) is the best choice

as it is simple to implement.

If speed is the primary concern, then the 2-to-1 subdivision algorithm together with

forward differencing for curve evaluation (Sections 4.2.4 and 4.2.6) will probably give the

fastest results, although if different levels of subdivision are used for different patches, then crack

resolving issues may dominate run-time costs. The 3-to-1 and 4-to-1 subdivision algorithms are

less useful for rendering, but both algorithms at times come in useful for specialized applications

such as change of basis.

4.2.9 Exercise

1. Above, we saw how to perform 4–1 subdivision of a triangular Bézier patch using

five de Casteljau evaluations. Show how to obtain 4–1 subdivision using only four

de Casteljau evaluations.

4.3 TENSOR-PRODUCT SURFACE PATCHES
A second and more commonly used type of surface patch is a rectilinear surface patch called a

tensor-product patch. One advantage of this type of surface patch is that it can be used in either

Bézier form or B-spline form, the latter surface being piecewise polynomial with moderately

high continuity. One disadvantage of the tensor-product form is that we are limited in the

topological type of surfaces we can easily model.

Mathematically, a tensor-product Bézier surface is given as

T(u, v) =
n∑

i=0

m∑
j=0

Pi, j Bn
i (u)Bm

j (v)

where u, v is a rectilinear domain space and the Bs are the Bernstein polynomials. Note that this

describes a polynomial function of degree n + m. Also note that we can bracket this expression

as follows:

T(u, v) =
n∑

i=0

{
m∑

j=0

Pi, j Bm
j (v)

}
Bn

i (u)

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

84 A BLOSSOMING DEVELOPMENT OF SPLINES

For a fixed i , the expression inside the curly braces is a curve. Evaluating each such curve at v

gives us a new expression,

T(u, v) =
n∑

i=0

Qi Bn
i (u) (4.2)

where Qi = ∑m
j=0 Pi, j Bm

j (v). We again recognize this as a curve, and evaluating this last curve

gives us our point on the surface.

Thus, we can evaluate a tensor-product surface by performing repeated curve evaluation.

P0,3

P3,3

P3,0

P0,0

Note also that we could have rearranged the terms to evaluate the Bn
i (u)s first:

T(u, v) =
m∑

j=0

{
n∑

i=0

Pi, j Bn
i (u)

}
Bm

j (v)

There appears to be a need for such a second evaluation: if we want to compute the normal to the

surface as well as the point T(u, v) then we need to find two partial derivatives on the surface.

A de Casteljau evaluation of (4.2) will give us one of the partial derivatives (use the points

generated in the next to last step of the algorithm); to get the other partial, we can evaluate the

rearranged tensor-product surface, and the last de Casteljau evaluation will give us the other

partial derivative. While this method gives us both the position and normal to the surface, more

efficient methods of evaluating tensor-product surfaces are discussed in Section 4.4.

4.3.1 The Blossom of a Tensor-Product Surface

When we blossom a tensor-product surface, we blossom independently in each of its parameter

directions. Thus, the blossom of T(u, v) is

t(u1, . . . , un; v1, . . . , vm)

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

SURFACES 85

t(0, 0, 0; 1, 1, 1) t(0, 0, 1; 1, 1, 1)

t(0, 1, 1; 1, 1, 1)

t(1, 1, 1; 1, 1, 1)t(0, 0, 0; 0, 1, 1) t(0, 0, 1; 0, 1, 1)

t(0, 1, 1; 0, 1, 1)

t(1, 1, 1; 0, 1, 1)

t(1, 1, 1; 0, 0, 1)

t(0, 1, 1; 0, 0, 1)

t(0, 0, 1; 0, 0, 1)t(0, 0, 0; 0, 0, 1)

t(1, 1, 1; 0, 0, 0)

t(0, 1, 1; 0, 0, 0)

t(0, 0, 1; 0, 0, 0)

t(0, 0, 0; 0, 0, 0)

FIGURE 4.6: A bicubic surface with blossom labels on its control points

This function is multiaffine in both the u and v parameters, and it is symmetric in the u

parameters, and symmetric in the v parameters, but we cannot interchange u and v parameters.

Suppose we try to evaluate t at u, v. Then we get the following:

t
(
u〈n〉; v〈m〉) = (1 − u)t

(
0, un−1; v〈m〉) + ut

(
1, un−1; v〈m〉)

...

=
n∑

i=0

Bn
i (u)t

(
0〈n−i〉, 1〈i〉; v〈m〉)

=
m∑

j=0

n∑
i=0

Bn
i (u)Bm

j (v)t
(
0〈n−i〉, 1〈i〉; 0〈m− j〉, 1〈 j〉)

and again we see that the control points are defined by “nice” blossom values (Fig. 4.6).

4.3.2 Derivatives

The partial derivatives with respect to the parameter variables of a tensor-product surface can

be obtained by taking the derivatives with respect to the appropriate curves. Thus, if we want

the partial with respect to u at u0, v0, then we evaluate the blossom at t(u
〈n−1〉
0 , δ; v

〈m〉
0). More

precisely,

∂T(u0, v0)

∂u
= nt

(
u

〈n−1〉
0 , δ; v

〈m〉
0

)
We compute partials with respect to v and higher order derivatives in a similar fashion.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

86 A BLOSSOMING DEVELOPMENT OF SPLINES

Again note that this means the corner point and the two points adjacent to it span the

tangent plane as shown by the shaded panels in the following figure:

P0,3

P3,3

P3,0

P0,0

Also, the partial derivative with respect to u along the v = 0 (or v = 1) boundary is given by

the difference of the first two (last two) layers of control points:

P0,3

P3,3

P3,0

P0,0

This follows from wanting to compute

∂T(0, v)

∂u
= nt

(
0〈n−1〉, δ; v〈m〉)

When we evaluate the first argument set n − 1 times at 0, we are left with just two rows of

control points. Evaluating at δ leaves us with a blossom whose coefficients are the vectors formed

by the pairwise difference in these control points.

4.3.3 Continuity

Parametric continuity for tensor-product patches is much simpler than for triangular patches:

We just use curve continuity. Thus, if we want two patches to meet with C1 continuity along a

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

SURFACES 87

boundary, we just construct the curves in that parametric direction to meet with C1 continuity:

P0,3

P3,3

P3,0

P0,0

. . .

/
/

//

///
////

///

////

//

4.3.4 Tensor-Product B-Splines

Since continuity is defined by the curves, we could use B-spline curves instead of Bézier curves,

giving us tensor-product B-splines:

T(u, v) =
n,m∑
i, j

Pi, j Nn
i (u)Nm

j (v)

Note, however, that each of the B-spline curves in a parametric direction must have the

same knot vector. Thus, there are a total of two knot vectors for a tensor-product B-spline: one

in the u direction and one in the v direction.

Further realize that while the tensor product B-spline surface has polynomial degree n +
m, the continuity across the boundaries is Cn−1 and Cm−1 depending on in which parameteric

direction you are moving. In particular, note that a bicubic surface is only C2.

However, while the continuity across patches is not as high as we might hope (given

the degree of the surface), the main advantage of tensor-product B-spline surfaces is that no

modeling work had to be done to achieve this continuity. The user just positions the control

points, and the patches automatically meet with a reasonable level of smoothness. It is this

“automatic smoothness” that makes tensor product B-splines useful in geometric modeling.

Their main weaknesses are difficulties in using them to model nonrectangular patches and in

using them to contruct surfaces that do not have a nice rectilinear topology.

4.3.5 Surfaces Above the Plane

Tensor-product Bézier surfaces above the plane are simple to construct: just place your curves

along constant, uniformly separated u lines, with control points spaced uniform v distance apart

along each curve.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

88 A BLOSSOMING DEVELOPMENT OF SPLINES

Tensor-product B-spline surfaces with uniform knot vectors can also be constructed over

the plane by uniform placement of the control points, although their positioning is a bit trickier.

Things are complicated further for nonuniform knot sequences.

4.3.6 Generalizing the Dimension

If we wish to generalize to higher dimensional domains, we merely add another parametric pa-

rameter (e.g., T(u, v, w) = ∑
Pi, j,k Ni (u)Nj (v)Nk(w)). Free form deformations are an example

of a method that use trivariate tensor-product volumes [21].

4.3.7 Storage

Unlike triangular patches, we do not have to do anything special to efficiently store our control

points: we merely store them in an n × m array.

4.4 ALTERNATIVE EVALUATION METHODS FOR TENSOR
PRODUCT SURFACES

At the start of this chapter, we saw how to evaluate a tensor-product surface using repeated

curve evaluation, evaluating first the rows of the control net, and then evaluating one column of

control points. This evaluation gave us a point on the surface and a partial derivative. To obtain

the other partial derivative, we needed to evaluate the surface a second time, first evaluating the

columns, and then evaluating a single row. This double evaluation of the surface is inefficient.

In this section, I discuss a variety of other methods for evaluating tensor-product surfaces.

4.4.1 Repeated Bilinear Interpolation

The idea in repeated bilinear interpolation is that a degree 1 × 1 tensor-product surface is a

bilinear surface equal to its own blossom: T(u, v) = t(u; v). We can linearly weight the control

points on the rows with u to obtain two points that we linearly weight with v, or vice versa

(Fig. 4.7). Further, the normal to the surface is

N(u, v) = (t(u; 1) − t(u; 0)) × (t(1; v) − t(0; v))

For a higher degree n × n tensor-product surface, we note that in each “panel” of control

points, the blossom values that vary have the same pattern as the bilinear blossom labels. For

example, referring to Fig. 4.8, for the four control points on the shaded panel, the first two

t(0; 1)
t(1; 1)

t(1; 0)

t(u; 1)

t(0; 0)

t(u; v)

t(u; 0)

t(0; 1)
t(1; 1)

t(1; 0)

t(1; v)t(0; 0)

t(0; v) t(u; v)

FIGURE 4.7: Evaluating a bilinear blossom

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

SURFACES 89

t(0, 0, 1; 0, 1, 1)

t(0, 1, 1; 0, 1, 1)

t(0, 1, 1; 0, 0, 1)

t(0, 1, 1; 0, 0, 0)

t(1, 1, 1; 0, 0, 0)

t(1, 1, 1; 0, 0, 1)

t(1, 1, 1; 0, 1, 1)

t(1, 1, 1; 1, 1, 1)

t(0, 1, 1; 1, 1, 1)

t(0, 0, 1; 1, 1, 1)t(0, 0, 0; 1, 1, 1)

t(0, 0, 1; 0, 0, 1)

t(0, 0, 0; 0, 1, 1)

t(0, 0, 0; 0, 0, 1)

t(0, 0, 0; 0, 0, 0)
t(0, 0, 1; 0, 0, 0)

FIGURE 4.8: The nonfixed blossom arguments of each panel of control points form the argument bag

of a bilinear function

arguments in the u set of arguments are 0,0, and the first two arguments in the v set of

arguments are 0,0. The remaining argument in each parameter can be evaluated like a bilinear

patch.

Such an arrangement holds for each panel of the surface. If we evaluate each of the

(n − 1) × (n − 1) panels of a n × n surface, we get a new set of (n − 2) × (n − 2) panels. The

blossom arguments to these panels have the same property: we may evaluate them as bilinear

patches. We can repeat this process until we obtain a single panel, which we can evaluate for both

the position and normal to the surface. This process is illustrated for bicubic patches in Fig. 4.9.

The bilinear interpolation algorithm requires fewer computations than does the repeated

curve evaluation algorithm. It is often made a bit more efficient by noticing that

(1 − u)[(1 − v)P0,0 + vP0,1] + u[(1 − v)P1,0 + vP1,1]

= (1 − u)(1 − v)P0,0 + (1 − u)vP0,1 + u(1 − v)P1,0 + uvP1,1

FIGURE 4.9: Repeated bilinear interpolation of a bicubic surface

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

90 A BLOSSOMING DEVELOPMENT OF SPLINES

where the four weights (1 − u)(1 − v), (1 − u)v, u(1 − v), uv can be computed once at the

start of the algorithm. This algorithm suffers from the problem that it only works on bi-n-ic

surfaces; e.g., it would fail on a 3 × 4 tensor-product surface.

4.4.2 Repeated Curve Evaluation: Revisited

The repeated curve evaluation algorithm can be modified to be more efficient at computing both

the position and normal to the surface. The main idea here is that, starting with the blossom

t(u1, . . . , un; v1, . . . , vm), we want to obtain t(u〈n−1〉, u1; v〈m−1〉, v1) as efficiently as possible,

leaving us with control points

t
(
u〈n−1〉, 0; v〈m−1〉, 0

)
, t

(
u〈n−1〉, 1; v〈m−1〉, 0

)
t
(
u〈n−1〉, 0; v〈m−1〉, 1

)
, t

(
u〈n−1〉, 1; v〈m−1〉, 1

)
This bilinear panel can then be evaluated for both position and normal.

The idea of Mann–DeRose [16] was to evaluate curves in the parametric direction of

lower degree (i.e., if n < m, then evaluate in u first), but stop each curve evaluation one short

of completion. This leaves you with two degree m curves having control points

t
(
u〈n−1〉, 0; 0〈m〉), t

(
u〈n−1〉, 0; 0〈m−1〉, 1

)
, . . . , t

(
u〈n−1〉, 0; 1〈m〉)

and

t
(
u〈n−1〉, 1; 0〈m〉), t

(
u〈n−1〉, 1; 0〈m−1〉, 1

)
, . . . , t

(
u〈n−1〉, 1; 1〈m〉).

We then evaluate these two curves one short of completion, leaving the desired bilinear panel.

The algorithm is illustrated in Fig. 4.10. On the upper left, we start with a grid of control

points. On the upper right, we have run de Casteljau’s algorithm on each row, stopping one

short of completion. This leaves two columns to evaluate, which we have done in the lower left.

Finally, in the lower right, we have connected the remaining four points, and labeled them with

the blossom values.

4.4.3 Recursive Subdivision

Another algorithm we might consider for evaluating a tensor-product surface is recursive subdi-

vision. If we evaluate a tensor-product patch on its interior, by retaining some of the intermediate

de Casteljau points (essentially, the ones that are retained for curve subdivision), we can subdi-

vide our patch into four subpatches. This is easily verified by checking the blossom values on

those control points.

We can now envision an algorithm that recursively subdivides the tensor-product patch

until the control points of each piece are coplanar to within some tolerance, at which point

we can approximate the patch with two triangles or even a quadrilateral. However, as with

the 4-to-1 recursive subdivision algorithm for triangular Bézier patches, this algorithm suffers

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

SURFACES 91

. . .

. . .

t(u〈n−1〉
0 , 1; 1〈m〉)

t(u〈n−1〉
0 , 0; 1〈m〉)

t(u〈n−1〉
0 , 0; 0〈m〉)

t(u〈n−1〉
0 , 1; 0〈m〉)

t(u〈n−1〉
0 , 0; v〈m − 1〉

0 , 1)
t(u〈n−1〉

0 , 1; v〈m−1〉
0 , 1)t(u〈n−1〉

0 , 0; v〈m−1〉
0 , 0)

t(u〈n−1〉
0 , 1; v〈m−1〉

0 , 0)

FIGURE 4.10: Illustration of Mann–DeRose algorithm

from a “cracking” problem, where different levels of subdivision within a patch results in cracks

appearing on the tessellation.

4.4.4 Curve Evaluation

As with triangular Bézier patches, to draw our surface we typically wish to evaluate over a grid

of points at uniform samples. In this case, we can evaluate in one parametric direction at u0,

giving us a curve. We then evaluate this curve at a sequence of v values, giving us all of our

sample points T(u0; v0), T(u0; v1), . . . , T(u0; vS). We then repeat this process with successive

u samples until we have sampled our surface on a uniform domain grid. Again, when we sample

in the u direction, we retain two layers of control points and perform two curve evaluations in

the v direction to obtain surface normals. Forward differencing methods may be used to further

accelerate the process [13].

4.4.5 Discussion

If speed is not an issue, for rendering a tensor-product surface the simple execution of repeated

curve evaluation twice (introduction of Section 4.3) would likely suffice. However, the repeated

bilinear interpolation algorithm (if the degrees in the two parameteric directions are equal) or

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-04 MOBK033-Smann.cls September 25, 2006 16:37

92 A BLOSSOMING DEVELOPMENT OF SPLINES

the repeated curve evaluation algorithm (Section 4.4) are no harder to implement and both are

significantly faster, so either one would make a better choice then twice performing repeated

curve evalution.

For speed, the curve evaluation method at the end of Section 4.4 using forward differ-

encing will likely be the fastest option. As always, if patches are tessellated at different level of

granularity, then stitching the pieces together to avoid cracks will dominate the execution time.

4.4.6 Exercise

1. Draw a repeated bilinear interpolation figure similar to Fig. 4.9 but for a degree 3 × 4

patch to see why repeated bilinear interpolation fails if n 	= m.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-BIB MOBK033-Smann.cls September 25, 2006 16:35

93

Bibliography

[1] Phillip Barry and Ron Goldman. Algorithms for progressive curves. In Goldman and

Lyche, editors, Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces.

SIAM, Philadelphia, PA, 1993, pp. 11–63.

[2] Phillip Barry and Ron Goldman. Factored knot insertion. In Goldman and Lyche, ed-

itors, Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces. SIAM,

Philadelphia, PA, 1993, pp. 65–88.

[3] Phillip Barry and Ron Goldman. Knot insertion algorithms. In Goldman and Lyche,

editors, Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces. SIAM,

Philadelphia, PA, 1993, pp. 89–133.

[4] Richard Bartels and John Beatty. A technique for the direct manipulation of splines. In

Graphics Interface. Morgan-Kaufmann, Palo Alto, CA, 1989, pp. 33–39.

[5] Wolfgang Böhm. Subdividing multivariate splines. Computer-Aided Design 15(6):345–

352, November 1983.

[6] Jeromy Carriere. Evaluating tensor product and triangular Bézier surfaces. Technical

Report CS-95-22, University of Waterloo, Ontario, Canada, May 1995.

[7] Gerald Farin. Curves and Surfaces for CAGD, 5th edn. Morgan-Kaufmann, San Francisco,

2002.

[8] Barry Fowler and Richard Bartels. Constraint-based curve manipulation. IEEE Computer

Graphics and Applications 13(5):43–49, September 1993.

[9] Jean Gallier. Curves and Surfaces in Geometric Modeling: Theory and Algorithms. The

Morgan Kaufmann Series in Computer Graphics. Morgan-Kauffman, San Francisco,

1999.

[10] Ron Goldman. Pyramind Algorithms: A Dynamic Programming Approach to Curves and

Surfaces for Geometric Modeling. Morgan-Kaufmann, San Francisco, 2003.

[11] Ming-Jun Lai. Geometric interpretation of smoothness conditions of triangular polyno-

mial patches. Computer Aided Geometric Design 14(2):191–199, 1997.doi:10.1016/S0167-

8396(96)00028-3

[12] J. Lane and R. Riesenfeld. A theoretical development for the computer generation

and display of piecewise polynomial surfaces. EEE Transactions on Pattern Analysis and

Machine Intelligence 2:35–46, 1980.

http://dx.doi.org/10.1016/S0167-8396(96)00028-3

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-BIB MOBK033-Smann.cls September 25, 2006 16:35

94 A BLOSSOMING DEVELOPMENT OF SPLINES

[13] Sheue-Ling Lien, Michael Shantz, and Vaughan Pratt. Adaptive forward differencing

for rendering curves and surfaces. In Proceedings of SIGGRAPH 1987, Vol. 21, 1987,

pp. 111–118.doi:org/full text

[14] Suresh Lodha and Ron Goldman. A unified apporach to evaluation algorithms

for multivariate polynomials. Mathematics of Computation 66(220):1521–1553, 1997.

doi:10.1090/S0025-5718-97-00862-4

[15] Stephen Mann. Adjusting control points to achieve continuity. Computer Aided Geometric

Design 19:589–602, 2002.doi:10.1016/S0167-8396(02)00147-4

[16] Stephen Mann and Tony DeRose. Computing values and derivatives of Bézier and

B-spline tensor products. Computer Aided Geometric Design 12(1):107–110, February

1995.doi:10.1016/0167-8396(94)00030-V

[17] Jorg Peters. Evaluation and approximate evaluation of multivariate Bernstein form on

a regularly partitioned simplex. ACM Transactions on Mathematical Software 20(4):460–

480, December 1994.doi:10.1145/198429.198434

[18] Lyle Ramshaw. Blossoming: A connect the dots approach to splines. Technical Report 19,

DEC SRC, June 1987.

[19] Lyle Ramshaw. Blossoms are polar forms. Computer Aided Geometric Design 6(4):323–

358, November 1989.

[20] Lyle Ramshaw. On multiplying points: The paired algebras of forms and sites. Technical

Report 169, DEC SRC, May 2001.

[21] Thomas Sederberg and Scott Parry. Free-form deformation of solid geometric models.

In Proceedings of SIGGRAPH. ACM, New York, 1986, pp. 51–160.

[22] Hans-Peter Seidel. An introduction to polar forms. IEEE Computer Graphics and Appli-

cations 13(1):38–46, January/February 1993.doi:10.1109/38.180116

[23] Etienne Vouga and Ron Goldman. Two blossoming proofs of the Lane–Riesenfeld

algorithm. In Proceedings of Dagstuhl Seminar 05221. Dagstuhl, Germany, in press.

http://dx.doi.org/full_text
http://dx.doi.org/10.1090/S0025-5718-97-00862-4
http://dx.doi.org/10.1016/S0167-8396(02)00147-4
http://dx.doi.org/10.1016/0167-8396(94)00030-V
http://dx.doi.org/10.1145/198429.198434
http://dx.doi.org/10.1109/38.180116

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-IND MOBK033-Smann.cls September 25, 2006 16:38

95

Index

A-frame, 29

affine combinations, 2

affine space, 2

affine transformation, 2

B-spline, 38

basis functions, 51

closed, 56

evaluation, 39

recurrence, 52

B-spline surface, tensor-product,

87

barycentric coordinates, 61

basis, 2

Bernstein polynomial, 7, 62

generalized, 63

Bézier curves, 9, 11

continuity, 26

degree raising, 16

derivatives, 24

subdivision, 16

Bézier surface

rectilinear, 83

tensor-product, 83

blossom, 84

derivatives, 85

parametric continuity, 86

triangular, 61

2-to-1 subdivision, 78

3-to-1 subdivision, 77

4-to-1 subdivision, 79

parametric continuity, 71

bilinear interpolation, 88

blossom, 13, 20, 65

derivatives, 20, 68

multiaffine, 13

multilinear, 20

blossoming principle, 13, 20, 65

Boehm’s algorithm, 49

convex combination, 11

convex hull, 11

cubic Hermite interpolation, 27

de Boor algorithm, 40

de Casteljau’s algorithm, 9, 15, 67

direct manipulation, 58

forward differencing, 33

homogeneous polynomials, 19

Horner’s rule, 33

knot multiplicity, 39, 42, 48

knot vector, 27, 38

multiple knot, 39, 42, 48

Lagrange polynomials, 6

Lane–Riesenfeld algorithm, 50

linear transformation, 2

monomials, 5

multiaffine, 13

multilinear, 19

NUBS, 59

NURBS, 59

Oslo algorithm, 50

phantom knots, 53

simplex, 61

span, 2

subdivision, 16, 67, 77-80

tensor-product patch, 83

triangle diagram, 9, 47

vector space, 1

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-IND MOBK033-Smann.cls September 25, 2006 16:38

96

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-BIO MOBK033-Smann.cls September 25, 2006 16:38

97

Biography

Stephen Mann is an Associate Professor in the David R. Cheriton School of Computer Science

and cross-appointed to the Mechanical Engineering Department at the University of Waterloo,

Waterloo, Ontario, Canada. He received a B.A. in computer science and pure mathematics at

the University of California, Berkeley, and has a Masters in Computer Science and Ph.D.

in Computer Science and Engineering from the University of Washington in Seattle. His

research interests include CAGD, geometric modeling, computer graphics, and the mathema-

tical foundations of computer graphics.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK033-BIO MOBK033-Smann.cls September 25, 2006 16:38

98

