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ABSTRACT
This lecture presents research on a general framework for perceptual organization that was
conducted mainly at the Institute for Robotics and Intelligent Systems of the University of
Southern California. It is not written as a historical recount of the work, since the sequence of
the presentation is not in chronological order. It aims at presenting an approach to a wide range
of problems in computer vision and machine learning that is data-driven, local and requires
a minimal number of assumptions. The tensor voting framework combines these properties
and provides a unified perceptual organization methodology applicable in situations that may
seem heterogeneous initially. We show how several problems can be posed as the organization
of the inputs into salient perceptual structures, which are inferred via tensor voting. The work
presented here extends the original tensor voting framework with the addition of boundary
inference capabilities, a novel re-formulation of the framework applicable to high-dimensional
spaces and the development of algorithms for computer vision and machine learning problems.
We show complete analysis for some problems, while we briefly outline our approach for other
applications and provide pointers to relevant sources.

KEYWORDS
Perceptual organization, computer vision, machine learning, tensor voting, stereo vision,
dimensionality estimation, manifold learning, function approximation, figure completion
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1

C H A P T E R 1

Introduction

The research presented here attempts to develop a general, unsupervised, data-driven methodol-
ogy to address problems in computer vision and machine learning from a perceptual organization
perspective. It is founded on the tensor voting framework, which in its preliminary form was
proposed by Guy in [24] and was further developed by Lee [49] and Tang [103]. We include
more recent developments, which can also be found in [64]. Tensor voting is a computational
framework for perceptual organization based on the Gestalt principles. It has mainly been
applied for organizing generic points (tokens) into coherent groups and for computer vision
problems that are formulated as perceptual organization of simple tokens.

The work presented here extends the description of the book by Medioni, Tang, and
Lee [60] in many ways. First, by applying tensor voting directly to images for core computer
vision problems, taking into account the inherent difficulties associated with them. Second, by
proposing a new N D implementation that opens the door for many applications in instance-
based learning. Finally, by augmenting data representation and voting with first-order properties
that allow the inference of boundaries and terminations.

1.1 MOTIVATION
The tensor voting framework attempts to implement the often conflicting Gestalt principles
for perceptual organization. These principles were proposed in the first half of the twentieth
century by psychologists in Central Europe. Some of the most representative research can be
found in the texts of Köhler [43], Wertheimer [118], and Koffka [42]. At the core of Gestalt
psychology is the axiom, “the whole is greater than the sum of the parts” [118]. In other
words, configurations of simple elements give rise to the perception of more complex structures.
Fig. 1.1 shows a few of the numerous factors discussed in [118].

Even though Gestalt psychologists mainly addressed grouping problems in 2D, the gen-
eralization to 3D is straightforward, since salient groupings in 3D can be detected by the human
visual system based on the same principles. This is the basis of our approach to stereo vision,
where the main premise is that correct pixel correspondences reconstructed in 3D form salient

surfaces, while wrong correspondences are not well aligned and do not form any coherent struc-
tures. The term saliency is used in our work to indicate the quality of features to be important,
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2 TENSOR VOTING: A PERCEPTUAL ORGANIZATION APPROACH

(a) Proximity (b) Similarity

(c) Good continuation (d) Closure and simplicity

(e) The whole is greater than the sum of the parts

FIGURE 1.1: Some examples of the Gestalt principles. In (a) the dots are grouped in four groups
according to proximity. In (b) the darker dots are grouped in pairs, as are the lighter ones. In (c) the most
likely grouping is A to B, and not A to C, due to the smooth continuation of curve tangent from A to B.
In (d), the factors of closure and simplicity generate the perception of an ellipse and a diamond. Finally,
(e) illustrates that the whole is greater than the sum of the parts.

stand out conspicuously, be prominent and attract our attention. Our definition of saliency
is that of Shashua and Ullman’s [99] structural saliency, which is a product of proximity and
good continuation. It is different from that of Itti and Baldi [33], where saliency is defined
as the property to attract attention due to reasons that include novelty and disagreement with
surrounding elements. The term alignment is used here to indicate good continuation and not
configuration.

In our research, we are interested in inferring salient groups that adhere to the “mat-
ter is cohesive” principle of Marr [58]. For instance, given an image, taken from the Berke-
ley Segmentation Dataset (http://www.cs.berkeley.edu/projects/vision/grouping/) that contains
texture, one can perform high-pass filtering and keep high responses of the filter as edges
(Fig. 1.2). On the other hand, a human observer selects the most salient edges due to their good
alignment that forms either familiar or coherent shapes, as in Fig. 1.2(c). One cannot ignore
the effect of familiarity in the ability of people to detect meaningful groupings, but a machine-
based perceptual organization system should be able to improve upon the performance of the
high-pass filter and move toward being more similar to human performance. Significant edges
are not only characterized by high responses of the filter, but, more importantly, the elementary
edgels that form them are aligned with other edgels to form typically smooth, closed contours
that encompass regions that are consistent in color or texture. Edgels that are not well aligned,
as those in the interior of unstructured texture, are usually less important for the understanding
of the scene.
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(a) Input image (b) Edge responces (c) Edges marked by
human observer

FIGURE 1.2: An image with texture, outputs of a simple edge detector and human-marked edges.

We are also interested in the simultaneous inference of all types of structures that may
exist in a scene, as well as their boundaries and intersections. Given two images of a table
from different viewpoints such as that in Fig. 1.3(a), we would like to be able to group pixel
correspondences and infer the surfaces. We would also like to infer the intersections of these
surfaces, which are the edges of the table. Furthermore, the intersections of these intersections
are the corners of the table, which, despite their infinitesimal size, carry significant information
about the configuration of the objects in the scene. The inference of integrated descriptions is
a major advantage of tensor voting over competing approaches. The fact that different feature
types are not independent of each other, but rather certain types occur at special configurations
of other types, is an important consideration in this work.

The notion of structural saliency extends to spaces of higher dimensionality, even though
it is hard to be confirmed by the human visual system. Samples in high-dimensional spaces
that are produced by a consistent system, or are somehow meaningfully related, form smooth
structures in the same way as point samples from a smooth surface measured with a range finder

(a) Input image (b) Surface inter sections and corners

FIGURE 1.3: An image (potentially from a stereo pair), surface intersections, and corners.
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4 TENSOR VOTING: A PERCEPTUAL ORGANIZATION APPROACH

(a) Humanoid robot (b) Time course of learning (c) Trajectory after learning
and analytical solution

FIGURE 1.4: Training a humanoid robot to draw figure “8” using an unsupervised machine learning
approach [114].

provide an explicit representation of the surface. The detection of important structures and the
extraction of information about the underlying process from them is the object of instance-
based learning. An example from the field of kinematics taken from [114] can be seen in
Fig. 1.4 where a humanoid robot tries to learn how to draw figure “8”. Each observation in this
example consists of 30 positions, velocities and accelerations of the joints of the arm of the robot.
Therefore, each state can be represented as a point in a 90D space. Even though the analytical
computation of the appropriate commands to perform the task is possible, a machine learning
approach based on the premise that points on the trajectory form a low-dimensional manifold
in the high-dimensional space proves to be very effective, as seen in Fig. 1.4(c) where the two
solutions almost coincide. A significant contribution of [64] is a new efficient implementation
of the tensor voting framework that is applicable for salient structure inference in very high-
dimensional spaces and can be a powerful tool for instance-based learning.

1.2 APPROACH
Heeding the principles discussed in the previous section, we aim at the development of an
approach that is both effective at each problem and also general and flexible. Tensor voting
serves as the core of all the algorithms we developed, since it meets the requirements we
consider necessary. It is

• local,

• data driven,

• unsupervised,

• able to process large amounts of data,

• able to represent all structure types and their interactions simultaneously,
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• robust to noise,

• amenable to a least-commitment strategy, postponing the need for hard decisions.

The strength of tensor voting is due to two factors: data representation with second-order,
symmetric, nonnegative definite tensors and first-order, polarity vectors; and local information
propagation in the form of tensor and vector votes. The core of the representation is the second-
order tensor, which encodes a saliency value for each possible type of structure along with its
normal and tangent orientations. The eigenvalues and eigenvectors of the tensor, which can
be conveniently expressed in matrix form, provide all the information. For instance, the eigen-
values of a 3D second-order tensor encode the saliency of a token as a surface inlier, a curve
inlier or surface intersection, or as a curve intersection or volume inlier. The eigenvectors, on
the other hand, correspond to the normal and tangent orientations, depending on the struc-
ture type. If the token belongs to a curve, the eigenvectors that correspond to the two largest
eigenvalues are normal to the curve, while the eigenvector that corresponds to the minimum
eigenvalue is tangent to it. Perceptual organization occurs by combining the information con-
tained in the arrangement of these tokens by tensor voting. During the voting process, each
token communicates its preferences for structure type and orientation to its neighbors in the
form of votes, which are also tensors that are cast from token to token. Each vote has the orien-
tation the receiver would have if the voter and receiver were part of the same smooth perceptual
structure.

The major difference between tensor voting and other methodologies is the absence of
an explicit objective function. In tensor voting, the solution emerges from the data and, is not
enforced upon them. If the tokens align to form a curve, then the accumulation of votes will
produce high curve saliency and an estimate for the tangent at each point. On the other hand,
if one poses the problem as the inference of the most salient surface from the data under an
optimization approach, then a surface that optimizes the selected criteria will be produced, even
if it is not the most salient structure in the dataset. A simple illustration of the effectiveness of
local, data-driven methods for perceptual organization can be seen in Fig. 1.5, where we are
presented with unoriented point inputs and asked to infer the most likely structure. A global
method such as principal component analysis (PCA) [37] can be misled by the fact that the
points span a 2D subspace and fit the best surface. Tensor voting, on the other hand, examines
the data locally and is able to detect that the structure is intrinsically 1D. The output is a curve
which is consistent with human perception. Other hypotheses, such as whether the inputs form
a surface, do not need to be formed or examined due to the absence of any prior models besides
smoothness. The correct hypothesis emerges from the data. Furthermore, tensor voting allows
the interaction of different types of structures, such as the intersection of a surface and a curve.
To our knowledge, this is not possible with any other method.
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(a) Input data (b) Inferred curve

FIGURE 1.5: Tensor voting is able to infer the correct intrinsic dimensionality of the data, which is
1D, despite the fact that it appears as 2D if observed globally. The correct perceptual structure, a curve,
is inferred without having to examine potential surface hypotheses.

Additional advantages brought about by the representation and voting schemes are noise
robustness and the ability to employ a least-commitment approach. As shown in numerous
experiments and publications [25, 60, 104], tensor voting is robust to very large percentages of
outliers in the data. This is due to the fact that random outliers cast inconsistent votes, which do
not affect the solution significantly. This does not hold when there is a systematic source of errors,
as is the case in many computer vision problems. Examples of such problems are shown in the ap-
propriate chapters. Regarding the avoidance of premature decisions, the capability of the second-
order tensor to encompass saliencies for all structure types allows us not having to decide whether
a token is an inlier or an outlier before all the necessary information has been accumulated.

Finally, we believe that a model-free, data-driven design is more appropriate for a general
approach since it is easier to generalize to new domains and more flexible in terms of the types
of solutions it can infer. The main assumption in the algorithms described here is smoothness,
which is a very weak and general model. Moreover, the absence of global computations increases
the amount of data that can be processed since computational and storage complexity scale
linearly with the number of tokens, if their density does not increase.

1.3 OUTLINE
The book is organized in three parts:

• The original tensor voting framework in 2D and 3D and its application to computer
vision problems.

• Tensor voting in high dimensions with applications to machine learning problems.

• First-order voting for boundary inference and its application to figure completion.
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We begin by illustrating the tensor voting framework in 2D and 3D. We show how tokens,
which are simple primitives that potentially belong to perceptual structures, can be represented
by second-order, symmetric, nonnegative definite tensors. Then, we present the mechanism
for information propagation we have designed. The results of this propagation are structural
saliency values for each potential structure type along with the preferred normal and tangent
orientations at each token. Experimental results demonstrate the effectiveness of our approach,
as well as its robustness to noise.

A large part of our research efforts is devoted to the development of a stereo reconstruction
approach, which is presented in Chapter 3. Stereovision can be cast as a perceptual organization
problem under the premise that solutions must comprise coherent structures. These structures
become salient due to the alignment of potential pixel correspondences reconstructed in a 3D
space. Tensor voting is performed to infer the correct matches that are generated by the true
scene surfaces as inliers of smooth perceptual structures. The retained matches are grouped
into smooth surfaces and inconsistent matches are rejected. Disparity hypotheses for pixels
that remain unmatched are generated based on the color information of nearby surfaces and
validated by ensuring the good continuation of the surfaces via tensor voting. Thus, information
is propagated from more to less reliable pixels considering both geometric and color information.

A recent, major enhancement of the framework is an efficient N D implementation, which
is described in Chapter 4. We present a new implementation of tensor voting that significantly
reduces computational time and storage requirements, especially in high-dimensional spaces,
and thus can be applied to machine learning problems, as well as a variety of new domains.
This work is based on the observation that the Gestalt principles still apply in spaces of higher
dimensionality. The computational and storage requirements of the original implementation
prevented its wide application to problems in high dimensions. This is no longer the case with
the new implementation which opens up an array of potential applications mostly in the field
of instance-based learning.

Chapter 5 presents our approach to machine learning problems. We address unsuper-
vised manifold learning from observations in high-dimensional spaces using the new efficient
implementation of tensor voting. We are able to estimate local dimensionality and structure,
measure geodesic distances, and perform nonlinear interpolation. We first show that we can
obtain reliable dimensionality estimates at each point. Then, we present a quantitative eval-
uation of our results in the estimation of a local manifold structure using synthetic datasets
with known ground truth. We also present results on datasets with varying dimensionality and
intersections under severe noise corruption, which would have been impossible to process with
current state-of-the-art methods. We also address function approximation from samples, which
is an important problem with many applications in machine learning. We propose a noniter-
ative, local, nonparametric approach that can successfully approximate nonlinear functions in
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high-dimensional spaces in the presence of noise. We present quantitative results on data with
varying density, outliers, and perturbation, as well as real data.

In the third part, we describe the recent addition of first-order representation and voting
that complement the strictly second-order previous formulation of [24, 49, 60, 103]. The
augmented framework presented in Chapter 7, makes the inference of the terminations of
perceptual structures possible. Polarity vectors are now associated with each token and encode
the support the token receives for being a termination of a perceptual structure. The new
representation exploits the essential property of boundaries to have all their neighbors, at least
locally, on the same side of a half-space. The work presented in this chapter can serve as the
foundation for more complex perceptual organization problems.

One such problem is addressed in Chapter 7, where we attempt to explain certain phe-
nomena associated with figure completion within the tensor voting framework. Endpoints and
junctions play a critical role in contour completion by the human visual system, and should be
an integral part of a computational process that attempts to emulate human perception. We
present an algorithm which implements both modal and amodal completion and integrates a
fully automatic decision-making mechanism for selecting between them. It proceeds directly
from the outputs of the feature extraction module, infers descriptions in terms of overlapping
layers, and labels junctions as T, L, X, and Y. We illustrate the approach on several challenging
inputs, producing interpretations consistent with those of the human visual system.
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C H A P T E R 2

TENSOR VOTING

The tensor voting framework is an approach for perceptual organization that is able to infer
salient structures based on the support the tokens which comprise them receive from their neigh-
bors. It is based on the Gestalt principles of proximity and good continuation and can tolerate
very large numbers of outliers. Data tokens are represented by tensors and their saliency is com-
puted based on information propagated among neighboring tokens via tensor voting. The tokens
can be any type of local primitive, such as points or surfels, that is localized in space and poten-
tially has orientation preferences associated with it, but no dimensions. The framework has been
developed over the past several years beginning in the work of Guy [24] which was followed by
the work of Lee [49] and Tang [103]. Parts of the work presented here can also be found in [64].

A shortcoming of the original framework was its inability to detect terminations of
the inferred perceptual structures. This has been addressed with the addition of first order
information to the framework [112]. To avoid confusion we make the distinction between first
and second order information throughout, even though the description of the first additions
comes a later in Chapter 6. We begin by briefly going over other perceptual organization
approaches and proceed to describe the original, second order formulation of tensor voting in
2-D and 3-D.

2.1 RELATED WORK
Perceptual organization has been an active research area since the beginning of the previous
century based on the work of the Gestalt psychologists [42, 43, 118]. Important issues include
noise robustness, initialization requirements, handling of discontinuities, flexibility in the types
that can be represented, and computational complexity. This section reviews related work which
can be classified in the following categories. More detailed descriptions can be found in [60, 64]
where work on perceptual organization based on regularization, relaxation labeling, level set
methods, clustering and robust estimation is also presented.

• symbolic methods

• methods based on local interactions

• methods inspired by psychophysiology and neuroscience.
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Symbolic Methods. Following the paradigm set by Marr [58], many researchers developed
methods for hierarchical grouping of symbolic data. Lowe [56] developed a system for 3-D
object recognition based on perceptual organization of image edgels. Groupings are selected
among the numerous possibilities according to the Gestalt principles, viewpoint invariance and
low likelihood of being accidental formations. Later, Mohan and Nevatia [63] and Dolan and
Riseman [17] also proposed perceptual organization approaches based on the Gestalt principles.
Both are symbolic and operate in a hierarchical bottom-up fashion starting from edgels and
increasing the level of abstraction at each iteration. The latter approach aims at inferring curvi-
linear structures, while the former aims at segmentation and extraction of 3-D scene descriptions
from collations of features that have high likelihood of being projections of scene objects. Along
the same lines is Jacobs’ [34] technique for inferring salient convex groups among clutter since
they most likely correspond to world objects. The criteria to determine the non-accidentalness
of the potential structures are convexity, proximity and the contrast of the edgels.

Methods Based on Local Interactions. Shashua and Ullman [99] first addressed the issue of struc-
tural saliency and how prominent curves are formed from tokens that are not salient in isolation.
They define a locally connected network that assigns a saliency value to every image location
according to the length and smoothness of curvature of curves going through that location. In
[79], Parent and Zucker infer trace points and their curvature based on spatial integration of
local information. An important aspect of this method is its robustness to noise. This work was
extended to surface inference in three dimensions by Sander and Zucker [86]. Sarkar and Boyer
[89] employ a voting scheme to detect a hierarchy of tokens. Voting in parameter space has to
be performed separately for each type of structure, thus making the computational complexity
prohibitive for generalization to 3-D. The inability of previous techniques to simultaneously
handle surfaces, curves and junctions was addressed in the precursor of our research, the work
of Guy and Medioni [25, 26]. A unified framework where all types of perceptual structures
can be represented is proposed along with a preliminary version of the voting scheme presented
here. The major advantages of [25, 26] are noise robustness and computational efficiency, since
it is not iterative. How this methodology evolved is presented in the remaining sections of this
chapter.

Methods Inspired by Psychophysiology and Neuroscience. Finally, there is an important class of
perceptual organization methods that are inspired by human perception and research in psy-
chophysiology and neuroscience. Grossberg and Mingolla [22] and Grossberg and Todor-
ovic [23] developed the Boundary Contour System and the Feature Contour System that can
group fragmented and even illusory edges to form closed boundaries and regions by feature
cooperation in a neural network. Heitger and von der Heydt [29], in a classic paper on neural
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contour processing, claim that elementary curves are grouped into contours via convolution
with a set of orientation-selective kernels, whose responses decay with distance and difference
in orientation. Williams and Jacobs [119] introduce the stochastic completion fields for contour
grouping. Their probabilistic theory models the contour from a source to a sink as the motion
of a particle performing a random walk. Particles decay after every step, thus minimizing the
likelihood of completions that are not supported by the data or between distant points. Li [53]
presents a contour integration model based on excitatory and inhibitory cells and a top-down
feedback loop. What is more relevant to our research, that focuses on the pre-attentive, bottom-
up process of perceptual grouping, is that connection strength decreases with distance, and that
zero or low curvature alternatives are preferred to high curvature ones. The model for contour
extraction of Yen and Finkel [123] is based on psychophysical and physiological evidence that
has many similarities to ours. It employs a voting mechanism where votes, whose strength
decays as a Gaussian function of distance, are cast along the tangent of the osculating circle.
An excellent review of perceptual grouping techniques based on cooperation and inhibition
fields can be found in [71]. Even though we do not attempt to present a biologically plausible
system, the similarities between our framework and the ones presented in this paragraph are
nevertheless encouraging.

Comparison With Our Approach. Our methodology offers numerous advantages over previ-
ous work. Most other methods require oriented inputs to proceed. Using our method inputs
can be oriented, unoriented or a combination of both. Our model-free approach allows us to
handle arbitrary perceptual structures that adhere to Marr’s “matter is cohesive” principle [58]
only, and do not require predefined models that restrict the admissible solutions. Our repre-
sentation is symbolic in the sense defined in [91]. This brings about advantages that include
the ability to attach attributes to each token, and a greater flexibility in assigning meaningful
interpretations to tokens. An important feature of our approach is that we are able to infer all
possible types of perceptual structures, such as: volumes, surfaces, curves and junctions in 3-D
simultaneously. This is possible without having to specify the type of structure we are interested
in. Instead, analysis of the results of voting indicates the most likely type of structure at each
position along with its normal and tangent orientations without having to specify in advance
the desired type. To our knowledge, the tensor voting framework is the only methodology
capable of this. Our voting function has many similarities with other voting-based methods,
such as decay with distance and curvature [29, 53, 123], and the use of constant curvature
paths [79, 89, 92, 123] that result in an eight-shaped voting field (in 2-D) [29, 123]. The
major difference is that in our case, the votes cast are tensors and not scalars, therefore they
are a lot richer in information. Each tensor simultaneously encodes all structure types allow-
ing for a least commitment strategy until all information for a decision has been accumulated.
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Furthermore, our results degrade much more gracefully in the presence of noise (see for example
[25] and [60]).

2.2 TENSOR VOTING IN 2-D
This section introduces the tensor voting framework in 2-D. It begins by describing the original
second order representation and voting of Medioni et al. [60]. It has been augmented with first
order properties as part of this research, which is presented in detail in Chapter 6. To avoid
confusion we will refer to the representation and voting of this chapter as second order, even
though their first order counterparts have not been introduced yet. In the following sections
we demonstrate how oriented and unoriented inputs can be encoded, and how they propagate
their information to their neighbors in the form of votes. The orientation and magnitude of a
second order vote cast from a unit oriented voter are chosen as in [25]. Based on the orientation
and magnitude of this vote, the orientation and magnitude of the vote cast by an unoriented
token can be derived. The appropriate information for all possible votes is contained in the the
stick and ball voting fields. Finally, the present the way perceptual structures are inferred after
analysis of the accumulated votes.

2.2.1 Second Order Representation in 2-D

The second order representation is in the form of a second order, symmetric, non-negative
definite tensor which essentially indicates the saliency of each type of perceptual structure
(curve, junction or region in 2-D) the token may belong to and its preferred normal and tangent
orientations. Tokens cast second order votes to their neighbors according to the tensors they are
associated with. A second order, symmetric, non-negative definite tensor is equivalent to a 2 × 2
matrix, or an ellipse. The axes of the ellipse are the eigenvectors of the tensor and their aspect ratio
is the ratio of the eigenvalues. The major axis is the preferred normal orientation of a potential
curve going through the location. The shape of the ellipse indicates the certainty of the preferred
orientation. That is, an elongated ellipse represents a token with high certainty of orientation.
Even further, a degenerate ellipse with only one non-zero eigenvalue represents a perfectly
oriented point (a curvel). On the other hand, an ellipse with two equal eigenvalues represents a
token with no preference for any orientation (Fig. 2.1(a)). The tensor’s size encodes the saliency
of the information encoded. Larger tensors convey more salient information than smaller ones.
An arbitrary second order, symmetric, non-negative definite tensor can be decomposed as in
the following equation:

T = λ1ê1ê T
1 + λ2ê2ê T

2 = (λ1 − λ2)ê1ê T
1 + λ2(ê1ê T

1 + ê2ê T
2 ) (2.1)

where λi are the eigenvalues in decreasing order and ê i are the corresponding eigenvectors (see
also Fig. 2.1(b)). Note that the eigenvalues are non-negative since the tensor is non-negative
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(a) Geometric illustration of saliency (b) 2-D tensor decomposition

FIGURE 2.1: Illustration of 2-D second order symmetric tensors and decomposition of a tensor into
its stick and ball components

definite. The first term in Eq. 2.1 corresponds to a degenerate elongated ellipsoid, termed
hereafter the stick tensor, that indicates an elementary curve token with ê1 as its curve normal.
The second term corresponds to a circular disk, termed the ball tensor, that corresponds to
a perceptual structure which has no preference of orientation or to a location where multiple
orientations coexist. The size of the tensor indicates the certainty of the information represented
by it. For instance, the size of the stick component (λ1 − λ2) indicates curve saliency.

Based on the above, an elementary curve with normal �n is represented by a stick tensor
parallel to the normal, while an unoriented token is represented by a ball tensor. Note that curves
are represented by their normals and not their tangents, for reasons that become apparent in
higher dimensions. See Table 2.1 for how oriented and unoriented inputs are encoded and the
equivalent ellipsoids and quadratic forms.

2.2.2 Second Order Voting in 2-D

After the inputs, oriented or unoriented, have been encoded with tensors, we examine how the
information they contain is propagated to their neighbors. Given a token at O with normal
�N and a token at P that belong to the same smooth perceptual structure, the vote the token

at O (the voter) casts at P (the receiver) has the orientation the receiver would have, if both
the voter and receiver belonged to the same perceptual structure. The magnitude of the vote
is a function of the confidence we have that the voter and receiver indeed belong to the same
perceptual structure.

We first examine the case of a voter associated with a stick tensor and show how all other
cases can be derived from it. We claim that, in the absence of other information, the arc of
the osculating circle (the circle that shares the same normal as a curve at the given point) at O

that goes through P is the most likely smooth path, since it maintains constant curvature. The
center of the circle is denoted by C in Fig. 2.2. In case of straight continuation from O to P ,
the osculating circle degenerates to a straight line. Similar use of primitive circular arcs can also
be found in [79, 89, 92, 123].
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TABLE 2.1: Encoding oriented and unoriented 2-D inputs as 2-D second-order sym-
metric tensors

INPUT SECOND ORDER TENSOR EIGENVALUES QUADRATIC FORM

λ1 = 1, λ2 = 0
n2

1 n1n2

n1n2 n2
2

oriented stick tensor

λ1 = λ2 = 1
1 0
0 1

unoriented ball tensor

As shown in Fig. 2.2, the second order vote is also a stick tensor and has a normal lying
along the radius of the osculating circle at P . What remains to be defined is the magnitude of
the vote. According to the Gestalt principles it should be a function of proximity and smooth
continuation. The influence from one token to another should attenuate with distance, to
minimize interference from unrelated tokens. The influence from one token to another should
also attenuate curvature, to favor straight continuation over curved alternatives when both exist.
Moreover, no vote is cast if the receiver is at an angle larger than 45◦ with respect to the tangent
of the osculating circle at the voter. Similar restrictions on the fields appear also in [29, 53, 123].
The saliency decay function has the following form:

DF(s, κ, σ ) = e
−

(
s 2+c κ2

σ2

)
(2.2)

FIGURE 2.2: Second order vote cast by a stick tensor located at the origin
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where s is the arc length O P , κ is the curvature, c controls the degree of decay with curvature,
and σ is the scale of voting, which determines the effective neighborhood size. The parameter c

is a function of the scale and is optimized to make the extension of two orthogonal line segments
to from a right angle equally likely to the completion of the contour with a rounded corner [25].
Its value is given by:

c = −16log(0.1) × (σ − 1)
π2

. (2.3)

Scale essentially controls the range within which tokens can influence other tokens. It can also
be viewed as a measure of smoothness. A large scale favors long range interactions and enforces
a higher degree of smoothness, aiding noise removal. A small scale makes the voting process
more local, thus preserving details. Note that σ is the only free parameter in the system.

The 2-D second order stick vote for a unit stick voter located at the origin and aligned
with the y-axis can be defined as follows as a function of the distance l between the voter and
receiver and the angle θ , which is the angle between the tangent of the osculating circle at the
voter and the line going through the voter and receiver (see Fig. 2.2).

SSO(l, θ, σ ) = DF(s, κ, σ )

[−sin(2θ )

cos(2θ )

]
[−sin(2θ ) cos(2θ )]

s = θ l

sin(θ )
, κ = 2sin(θ )

l
. (2.4)

The votes are also stick tensors. For stick tensors of arbitrary size the magnitude of the vote is
given by Eq. 2.2 multiplied by the the size of the stick λ1 − λ2.

The ball tensor, which is the second elementary type of tensor in 2-D, has no preference
of orientation, but still can cast meaningful information to other locations. The presence of
two proximate unoriented tokens, the voter and the receiver, indicates a potential curve going
through the two tokens. Votes cast by ball voters allow us to infer preferred orientations from
unoriented tokens, thus minimizing initialization requirements. For simplicity we introduce
the notation Bso(P ) for the tensor which is the vote cast by a unit ball tensor at the origin to
the receiver P . The derivation of the ball voting field Bso(P ) from the stick voting field can be
visualized as follows: the vote at P from a unit ball tensor at the origin O is the integration of the
votes of stick tensors that span the space of all possible orientations. In 2-D, this is equivalent
to a rotating stick tensor that spans the unit circle at O . The 2-D ball vote can be derived as a
function of stick vote generation, according to:

Bs o (P ) =
∫ 2π

0
R−1

θ Sso (Rθ P )R−T
θ dθ (2.5)
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where Rθ is the rotation matrix to align S with ê1, the eigenvector corresponding to the maximum
eigenvalue (the stick component), of the rotating tensor at P . In practice, the integration is
approximated by tensor addition:

V =
K∑

i=1

�vi �vT
i (2.6)

where V is the accumulated vote and �vi are the stick votes, in vector form. This is equivalent
since a stick tensor has only one non-zero eigenvalue and can be expressed as the outer product
of its only significant eigenvector. The stick votes from O to P cast by K stick tensors at angle
intervals of 2π/K span the unit circle. Normalization has to be performed in order to make the
energy emitted by a unit ball equal to that of a unit stick. The sum of the maximum eigenvalues
of each vote is used as the measure of energy. As a result of the integration, the second order ball
field does not contain purely stick or purely ball tensors, but arbitrary second order symmetric
tensors. The field is radially symmetric, as expected, since the voter has no preferred orientation.

The voting process is identical whether the receiver contains a token or not, but we use
the term sparse voting to describe a pass of voting where votes are cast to locations that contain
tokens only, and the term dense voting for a pass of voting from the tokens to all locations
within the neighborhood regardless of the presence of tokens. Receivers accumulate the votes
cast to them by tensor addition.

2.2.3 Voting Fields

An interpretation of tensor voting can be made using the notion of voting fields, which can
be thought of as emitting each token’s preferred orientation to its neighborhood. The saliency
values at a location is space are the combined effects of all voting fields that reach that particular
location. Before the N-D extension of the tensor voting framework of [64], tensor voting was
implemented using tensor fields to hold the votes. Votes from both stick and ball voters cast
at receivers at various distances and angles were precomputed and stored in voting fields. These
serve as look-up tables from which votes were retrieved by bilinear interpolation and could
significantly speed up the voting process. Voting fields are briefly described here since they
provide a useful illustration for the voting process.

The fundamental voting field, for which all fields can be derived, is the 2-D, second order,
stick voting field. It contains at every position a tensor that is the vote cast there by a unit stick
tensor located at the origin and aligned with the y axis. The shape of the field in 2-D can be seen
in the upper part of Fig. 2.3(a). Depicted at every position is the eigenvector corresponding to
the largest eigenvalue of the second order tensor contained there. Its size is proportional to the
magnitude of the vote. To compute a vote cast by an arbitrary stick tensor, we need to align the



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK039-02 MOBK039-Median.cls November 9, 2006 21:34

TENSOR VOTING 17

(a) The 2D stick and ball fields (b) Stick vote cast from O to P

FIGURE 2.3: Voting fields in 2-D and alignment of the stick field with the data for vote generation

field with the orientation of the voter. Then we multiply the saliency of the vote that coincides
with the receiver by the saliency of the arbitrary stick tensor, as in Fig. 2.3(b).

The ball voting field can be seen in the lower part of Fig. 2.3(a). The ball tensor has
no preference of orientation, but still can cast meaningful information to other locations. The
presence of two proximate unoriented tokens, the voter and the receiver, indicates a potential
curve going through the two tokens. The ball voting field allows us to infer preferred orientations
from unoriented tokens, thus minimizing initialization requirements. It is radially symmetric,
as expected, since the voter has no preferred orientation.

Voting takes place in a finite neighborhood within which the magnitude of the votes cast
remains significant. For example, we can find the maximum distance smax from the voter at
which the vote cast will have 1% of the voter’s saliency, as follows:

e−( s 2
max
σ2 ) = 0.01 (2.7)

The size of this neighborhood is obviously a function of the scale σ . As described in section 2.2.1,
any tensor can be decomposed into the basis components (stick and ball in 2-D) according to
its eigensystem. Then, the corresponding fields can be aligned with each component. Votes are
retrieved by simple look-up operations, and their magnitude is multiplied by the corresponding
saliency. The votes cast by the stick component are multiplied by λ1 − λ2 and those of the ball
component by λ2.
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2.2.4 Vote Analysis

Votes are cast from token to token and accumulated by tensor addition. Analysis of the second
order votes can be performed once the eigensystem of the accumulated second order 2 × 2 tensor
has been computed. Then the tensor can be decomposed into the stick and ball components:

T = (λ1 − λ2)ê1ê T
1 + λ2

(
ê1ê T

1 + ê2ê T
2

)
(2.8)

where ê1ê T
1 is a stick tensor, and ê1ê T

1 + ê2ê T
2 is a ball tensor. The following cases have to be

considered:

• If λ1 − λ2 > λ2, the saliency of the stick component is larger than that of the ball
component and this indicates certainty of one normal orientation, therefore the token
most likely belongs on a curve whose estimated normal is ê1.

• If λ1 ≈ λ2 > 0, the dominant component is the ball and there is no preference of
orientation. This can occur either because all orientations are equally likely or because
multiple orientations coexist at the location. This indicates either a token that belongs
to a region, which is surrounded by neighbors from the same regions at all directions,
or a junction where two or more curves intersect and multiple curve orientations are
present simultaneously (see Fig. 2.4). Junctions can be discriminated from region inliers
since their saliency is a distinct peak of λ2. The saliency of region inliers is more evenly
distributed.

• Finally, outliers receive only inconsistent, contradictory votes, so both eigenvalues are
small.

2.2.5 Results in 2-D

An experiment on synthetic data can be seen in Fig. 2.5. The input is a set of points which are
encoded as ball tensors before voting. After analysis of the eigensystem of the resulting tensors,

(a) Junction input (b) Ball saliency map (c) Region input (d) Ball saliency map

FIGURE 2.4: Ball saliency maps at regions and junctions. Darker pixels in the saliency map correspond
to higher saliency than lighter ones. The latter are characterized by a sharp peak of ball saliency.
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(a) Input (b) Curves and junctions

FIGURE 2.5: Curves and junctions from a noisy point set. Junctions have been enlarged and marked
as squares.

we can infer the most salient curve inliers and junctions. At the same time, we can remove the
outliers due to their low saliency.

2.2.6 Quantitative Evaluation of Saliency Estimation

To evaluate the effectiveness of tensor voting in estimating the saliency of each input, we tested
it with the datasets proposed in [120]. Each dataset consists of a foreground object represented
by a sparse set of edgels super-imposed on a background texture, which is also represented
as a sparse set of edgels. There are a total of nine foreground objects (fruit and vegetable
contours), which are uniformly rescaled to fit 32 × 32 bounding boxes. There are also nine
background textures which are rescaled to 64 × 64. The nine fruits and vegetables are: avocado,
banana, lemon, peach, pear, red onion, sweet potato, tamarillo and yellow apple. The textures
are taken from the MIT Media Lab texture database (http://vismod.media.mit.edu/vismod/
imagery/VisionTexture/vistex.html) and are: bark, brick, fabric, leaves, sand, stone, terrain,
water and wood.

The goal is to detect the edgels of the foreground object, which align to form the largest
salient contour. The background edgels come from an image of texture and are, therefore, less
structured and do not produce alignments more salient than the foreground. The desired output
is the Nf most salient edgels, where Nf is the number of edgels of the foreground. If they all
belong to the foreground then performance is considered perfect. The reported error rates are
the percentage of background edgels included in the Nf most salient. The difficulty comes from
increasing the number of background edgels in each experiment. The SNR is defined as the
ratio of foreground to background edgels in each dataset. Five SNRs ranging from 25% to 5%
are used for each of the 81 combinations. All edgels are encoded as stick tensors of unit strength
oriented at the given angles. After sparse voting, the given orientations are corrected and a
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(a) Pear and brick (b) Banana and terrain (c) Sweet potato and terrain
(SNR=0.2) (SNR=0.15) (SNR=0.1)

(d) Output (FPR=5.88%) (e) Output (FPR=16.39%) (f) Output (FPR=24.19%)

FIGURE 2.6: Most salient inputs and false positive rates in typical examples from [120] at various
SNRs.

second round of voting is performed. Since the error metric is based on the input positions, we
only consider input locations in the second pass of voting. Figure 2.6 contains a few input and
output pairs.

The false positive rates obtained by our algorithm (for σ = 40) can be seen in Table 2.2.
It outperforms all the methods in [120], even though we do not consider closure, which plays a
significant role in this experiment. The results we obtain are encouraging in our ongoing attempt
to infer semantic descriptions from real images, even though phenomena such as junctions and
occlusion have to be ignored, since the fruit appear transparent when encoded as sets edgels
from their outlines in the input.

2.3 TENSOR VOTING IN 3-D
We proceed to the generalization of the framework in 3-D. No significant modifications need
to be made, apart from taking into account that more types of perceptual structure exist in
3-D than in 2-D. In fact, the 2-D framework is a subset of the 3-D framework, which in
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TABLE 2.2: False positive
rates (FPR) for different sig-
nal to noise ratios for the data
of [120]

SNR FPR (%)

25 10.04
20 12.36
15 18.39
10 35.81
5 64.28

turn is a subset of the general N-D framework. The second order tensors are now 3-D, but
vote generation can be easily derived from 2-D second order stick vote generation. In 3-D, the
types of perceptual structure that have to be represented are regions (which are now volumes),
surfaces, curves and junctions. The inputs can be either unoriented or oriented, in which case
there are two types: elementary surfaces (surfels) or elementary curves (curvels).

2.3.1 Representation in 3-D

The representation of a token consists of a 3-D, second order, symmetric, non-negative definite
tensor that encodes saliency as before. It is equivalent to a 3 × 3 matrix and a 3-D ellipsoid.
The eigenvectors of the tensor are the axes of the ellipsoid and the corresponding eigenvalues
are their lengths. The tensor can be decomposed as in the following equation:

T = λ1ê1ê T
1 + λ2ê2ê T

2 + λ3ê3ê T
3

= (λ1 − λ2)ê1ê T
1 + (λ2 − λ3)

(
ê1ê T

1 + ê2ê T
2

) + λ3
(
ê1ê T

1 + ê2ê T
2 + ê3ê T

3

)
(2.9)

where λi are the eigenvalues in decreasing order and ê i are the corresponding eigenvectors
(see also Fig. 2.7). The first term in Eq. 2.9 corresponds to a 3-D stick tensor, that indicates
an elementary surface token with ê1 as its surface normal. The second term corresponds to a
degenerate disk-shaped ellipsoid, termed hereafter the plate tensor, that indicates a curve or a
surface intersection with ê3 as its tangent, or, equivalently with ê1 and ê2 spanning the plane
normal to the curve. Finally, the third term corresponds to a 3-D ball tensor, that corresponds to
a structure which has no preference of orientation. Table 2.3 shows how oriented and unoriented
inputs are encoded and the equivalent ellipsoids and quadratic forms.
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(a) A 3-D generic tensor (λi are its (b) Decomposition into the stick,
eigenvalues in descending order) plate and ball components

FIGURE 2.7: A second order generic tensor and its decomposition in 3-D

TABLE2.3: Encoding oriented and unoriented 2-D inputs as 2-D second order symmetric tensors

INPUT TENSOR EIGENVALUES QUADRATIC FORM

λ1 = 1, λ2 = λ3 = 0

⎡
⎣

n2
1 n1n2 n1n3

n1n2 n2
2 n2n3

n1n3 n2n3 n2
3

⎤
⎦

surfel stick tensor

λ1 = λ2 = 1, λ3 = 0 P (see below)
curvel plate tensor

λ1 = λ2 = λ3 = 1

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦

unoriented ball tensor

P =

⎡⎢⎣ n1
2
1 + n2

2
1 n11n12 + n21n22 n11n13 + n21n23

n11n12 + n21n22 n1
2
2 + n2

2
2 n12n13 + n22n23

n11n13 + n21n23 n12n13 + n22n23 n1
2
3 + n2

2
3

⎤⎥⎦
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The representation using normals instead of tangents can be justified more easily in 3-D,
where surfaces are arguably the most frequent type of structure. In 2-D, normal or tangent
representations are equivalent. A surface patch in 3-D is represented by a stick tensor parallel
to the patch’s normal. A curve, which can also be viewed as a surface intersection, is represented
by a plate tensor that is normal to the curve. All orientations orthogonal to the curve belong in
the 2-D subspace defined by the plate tensor. Any two of these orientations that are orthogonal
to each other can be used to initialize the plate tensor (see also Table 2.3). Adopting this
representation allows a structure with N − 1 degrees of freedom in N-D (a curve in 2-D, a
surface in 3-D) to be represented by a single orientation, while a tangent representation would
require the definition of N − 1 vectors that form a basis for an (N-1)-D subspace. Assuming
that this is the most frequent structure in the N-D space, our choice of representation makes
vote generation for the stick tensor, which corresponds to the elementary (N-1)-D variety, the
basis from which all other votes are derived. In addition, this choice makes the handling of
intersections considerably easier. Using a representation based on normals, intersections are
represented as the union of the normal spaces of each of the intersecting structures, which can
be computed with the Gramm-Schmidt algorithm. On the other hand, using a representation
based on tangents, the same operation would require the more cumbersome computation of the
intersection of the tangent spaces.

2.3.2 Voting in 3-D

Identically to the 2-D case, voting begins with a set of oriented and unoriented tokens. We
begin by showing how a voter with a purely stick tensor generates and casts votes, and then,
derive the voting fields for the plate and ball cases. We chose to keep voting a function of only
the position of the receiver relative to the voter and of the voter’s preference of orientation.
Therefore, we again address the problem of finding the smoothest path between the voter and
receiver by fitting arcs of the osculating circle, as described in Section 2.2.1.

Note that the voter, the receiver and the stick tensor at the voter define a plane. The voting
procedure is restricted on this plane, thus making it identical to the 2-D case. The second order
vote, which is the surface normal at the receiver under the assumption that the voter and receiver
belong to the same smooth surface, is also a purely stick tensor on the plane (see also Fig. 2.2).
The magnitude of the vote is defined by the same saliency decay function, duplicated here for
completeness:

DF(s , κ, σ ) = e−( s 2+c κ2

σ2 ) (2.10)

Sparse, token to token voting is performed to estimate the preferred orientation of tokens,
followed by dense voting during which saliency is computed at every grid position.
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From the perspective of voting fields, the 3-D stick voting field can be derived from the
fundamental 2-D stick field by rotation about the voting stick, which is the axis of symmetry
of the 3-D field. The visualization of the 2-D second order stick field in Fig. 2.3(a) is also a cut
of the 3-D field that contains the stick tensor at the origin.

To show the derivation of a second order ball vote Bso(P ) at P from a unit ball tensor at
the origin O , we can visualize it as the integration of the votes of stick tensors that span the
space of all possible orientations. In 2-D, this is equivalent to a rotating stick tensor that spans
the unit circle at O , while in 3-D the stick tensor spans the unit sphere. The 3-D ball vote can
be derived from the 3-D stick vote generation Sso(P ), as follows:

B(P )so =
∫ 2π

0

∫ 2π

0
R−1

θφψ Sso(Rθφψ P )R−T
θφψdφdψ |θ=0 (2.11)

where Rθφψ is the rotation matrix to align S with ê1, the eigenvector corresponding to the
maximum eigenvalue (the stick component), of the rotating tensor at P , and θ, φ, ψ are rotation
angles about the x, y, z axis respectively. The integration is approximated by tensor addition,
T = ∑ �vi �vT

i . Note that normalization has to be performed in order to make the energy emitted
by a unit ball equal to that of a unit stick. The resulting voting field is radially symmetric, as
expected, since the voter has no preferred orientation.

To complete the description of vote generation for the 3-D case, we need to describe the
second order plate vote generation, denoted by Pso(P ). Since the plate tensor encodes uncertainty
of orientation around one axis, it can be derived by integrating the votes of a rotating stick tensor
that spans the unit circle, in other words the plate tensor. The formal derivation is analogous
to that of the ball voting fields and can be written as follows:

Pso(P ) =
∫ 2π

0
R−1

θφψ Sso(Rθφψ P )R−T
θφψdψ |θ=φ=0 (2.12)

where θ, φ, ψ , and Rθφψ have the same meaning as in the previous equation. Normalization
has to be performed in order to make the total energy of the ball and plate voting fields equal
to that of the stick voting fields. The sum of the maximum eigenvalues of each vote is used as
the measure of energy.

Voting by any 3-D tensor takes place by decomposing the tensor into its three components:
the stick, the plate and the ball. Votes are retrieved from the appropriate voting field by look-up
operations and are multiplied by the saliency of each component. Stick votes are weighted by
λ1 − λ2, plate votes by λ2 − λ3 and ball votes by λ3.
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2.3.3 Vote Analysis

Analysis of the second order votes can be performed once the eigensystem of the accumulated
second order 3 × 3 tensor has been computed. Then the tensor can be decomposed into the
stick, plate and ball components:

T = (λ1 − λ2)ê1ê T
1 + (λ2 − λ3)

(
ê1ê T

1 + ê2ê T
2

) + λ3
(
ê1ê T

1 + ê2ê T
2 + ê3ê T

3

)
. (2.13)

where ê1ê T
1 is a stick tensor, ê1ê T

1 + ê2ê T
2 is a plate tensor and ê1ê T

1 + ê2ê T
2 + ê3ê T

3 is a ball tensor.

The following cases have to be considered:

• If λ1 − λ2 > λ2 − λ3 and λ1 − λ2 > λ3, the stick component is dominant. Thus the
token most likely belongs on a surface whose normal is ê1.

• If λ2 − λ3 > λ1 − λ2 and λ2 − λ3 > λ3, the plate component is dominant. In this case
the token belongs on a curve or a surface intersection. The normal plane to the curve
or the surface orientation is spanned by ê1 and ê2. Equivalently, ê3 is the tangent.

(a) Noisy unoriented data set (b) Surface inliers

(c) Curve inliers (d) Dense surfaces

FIGURE 2.8: Inference of surfaces and surface intersections from noisy data
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• If λ3 > λ1 − λ2 and λ3 > λ2 − λ3, the ball component is dominant and the token has
no preference of orientation. It is either a junction or it belongs in a volume. Junctions
can be discriminated from volume inliers since they are distinct peaks of λ3.

• Outliers receive only inconsistent, contradictory votes, so both eigenvalues are small.

2.3.4 Results in 3-D

Due to space considerations and to the fact that more challenging experiments are presented in
Chapters 3 and 6 we present results on just just one synthetic 3-D dataset. The example in Fig.
2.8 illustrates the simultaneous inference of surfaces and curves. The input consists of a “peanut”
and a plane, encoded as unoriented points contaminated by random uniformly distributed noise
(Fig. 2.8(a)). The “peanut” is empty inside, except for the presence of noise, which has an equal
probability of being anywhere in space. Figure 2.8(b) shows the detected surface inliers, after
tokens with low saliency have been removed. Figure 2.8(c) shows the curve inliers, that is the
tokens that lie at the intersection of the two surfaces. Finally, Fig. 2.8(d) shows the extracted
dense surfaces.
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C H A P T E R 3

Stereo Vision from a Perceptual

Organization Perspective

In this chapter, we address the fundamental problem of matching pixels in two static images.
Significant progress has been made in this area, but the correspondence problem has not been
completely solved due mostly to occlusion and lack of texture. We propose an approach that
addresses these difficulties within a perceptual organization framework, taking into account
both binocular and monocular sources of information. Initially, matching candidates for all
pixels are generated by a combination of several matching techniques. The matching candidates
are then reconstructed in disparity space. In this space, perceptual organization takes place in
3D neighborhoods and, thus, does not suffer from problems associated with scanline or image
neighborhoods. The assumption is that correct matches form salient coherent surfaces, while
wrong matching candidates do not align. Surface saliency, therefore, is used as the criterion to
disambiguate matches. The matching candidates that are kept are grouped into smooth layers.
Surface overextensions, which are systematic errors due to occlusion, can be corrected at this
stage by ensuring that each match is consistent in color with its neighbors of the same layer in
both images. Matches that are not consistent in both images are most likely errors due to the
foreground overextending and covering occluded parts of the image. These are removed and the
labeled surfaces are refined. Finally, the projections of the refined surfaces on both images can
be used to obtain disparity hypotheses for pixels that remain unmatched. The final disparities
are selected after a second tensor voting stage, during which information is propagated from
more reliable pixels to less reliable ones. The proposed framework takes into account both
geometric and photometric smoothness.

3.1 INTRODUCTION
The premise of shape from stereo comes from the fact that, in a set of two or more images
of a static scene, world points appear on the images at different disparities depending on their
distance from the cameras. Establishing pixel correspondences on real images, though, is far
from trivial. Projective and photometric distortion, sensor noise, occlusion, lack of texture,
and repetitive patterns make matching the most difficult stage of a stereo algorithm. Here we
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focus on occlusion and insufficient or ambiguous texture, which are inherent difficulties of the
depicted scene, and not of the sensors.

To address these problems, we propose a stereo algorithm that operates as a perceptual
organization process in the 3D disparity space, keeping in mind that false matches will most
likely occur in textureless areas, and close to depth discontinuities. Since binocular processing
has limitations in these areas, we use monocular information to overcome them. We begin by
generating matching hypotheses for every pixel within a flexible framework that allows the
use of matches generated by any matching technique reported in the literature. These matches
are reconstructed in a 3D (x, y, d ) space, where d denotes the disparity. In this space, the
correct matches align to form surfaces, while the wrong ones do not form salient structures.
We can infer a set of reliable matches based on the support they receive from their neighbors as
surface inliers via tensor voting. These reliable matches are grouped into layers. Note that the
term layer is used interchangeably with surface, since by layer we indicate a smooth, but not
necessarily planar, surface in 3D disparity space. The surfaces are refined by rejecting matches
that are consistent in color with their neighbors in both images. The refined, segmented surfaces
serve as the “unambiguous component” as defined in [88] to guide disparity estimation for the
remaining pixels.

Segmentation using geometric properties is arguably the most significant contribution of
this research effort. It provides very rich information on the position, orientation, and appearance
of the surfaces in the scene. Moreover, grouping in 3D circumvents many of the difficulties
associated with image segmentation. It is also a process that treats both images symmetrically,
unlike other approaches where only one of the two images is segmented. Candidate disparities
for unmatched pixels are generated after examining the color similarity of each unmatched pixel
with its nearby layers. If the color of the pixel is compatible with the color distribution of a
nearby layer, disparity hypotheses are generated based on the existing layer disparities and the
disparity gradient limit constraint [81]. Tensor voting is then performed locally and votes are
collected at the hypothesized locations. Only matches from the appropriate layer cast votes to
each candidate match. The hypothesis that is the smoothest continuation of the surface is kept as
the disparity for the pixel under consideration. In addition, assuming that the occluded surfaces
are partially visible and that the occluded parts are smooth continuations of the visible ones,
we are able to extrapolate them and estimate the depth of monocularly visible pixels. Under
this scheme, smoothness with respect to both shape, in the form of surface continuity, and
appearance, in the form of color similarity, is taken into account before disparities are assigned
to unmatched pixels.

This chapter is organized as follows: related work is reviewed in the next section; Section
3.3 is an overview of the algorithm; Section 3.4 describes the initial matching stage; Section
3.5 the detection of correct matches using tensor voting; Section 3.6 the segmentation and
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refinement process; Section 3.7 the disparity computation for unmatched pixels; Section 3.8
contains experimental results; Section 3.9 summarizes our approach to stereo; Section 3.10
briefly presents other computer vision research in 3D using tensor voting.

3.2 RELATED WORK
In this section, we review research on stereo related to ours. We focus on area-based and pixel-
based methods since their goal is a dense disparity map. Feature-based approaches are not
covered, even though the matches they produce can be integrated into our framework. We
also consider only approaches that handle discontinuities and occlusions. The input images are
assumed to be rectified and the epipolar lines to coincide with the scanlines. If this is not the
case, the images can be rectified using methods such as [128].

The problem of stereo is often decomposed as the establishment of pixel correspondences
and surface reconstruction, in Euclidean or disparity space. These two processes, however, are
strongly linked, since the reconstructed pixel correspondences form the scene surfaces, while
at the same time, the positions of the surfaces dictate pixel correspondences in the images. In
the remainder of this chapter, we describe how surface saliency is used as the criterion for the
correctness of matches, as in [50, 51]. Arguably, the first approach where surface reconstruction
does not follow but interacts with feature correspondence is that of Hoff and Ahuja [30]. They
integrate matching and surface interpolation to ensure surface smoothness, except at depth
discontinuities and creases. Edge points are detected as features and matched across the two
images at three resolutions. Planar and quadratic surface patches are successively fitted and
possible depth or orientation discontinuities are detected at each resolution. The patches that
fit the matched features best are selected while the interpolated surfaces determine the disparities
of unmatched pixels.

Research on dense area-based stereo with explicit treatment of occlusion includes nu-
merous approaches (see [12, 96] for comprehensive reviews of stereo algorithms). They can be
categorized as follows: local, global, and approaches with extended local support, such as the one
we propose. Local methods attempt to solve the correspondence problem using local operators
in relatively small neighborhoods. Local methods using adaptive windows were proposed by
Kanade and Okutomi [38] and Veksler [113]. Birchfield and Tomasi [7] introduced a new pixel
dissimilarity measure that alleviates the effects of sampling, which are a major source of errors
when one attempts to establish pixel correspondence. Their experiments, as those of [102] and
ours, demonstrate the usefulness of this measure, which we use in the work presented here.

On the other hand, global methods arrive at disparity assignments by optimizing a global
cost function that usually includes penalties for pixel dissimilarity and violation of the smooth-
ness constraint. The latter introduces a bias for constant disparity at neighboring pixels, thus
favoring frontoparallel planes. Chronologically, the first global optimization approaches to stereo
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were based on dynamic programming. Since dynamic programming addresses the problem as
a set of 1D subproblems on each epipolar line separately, these approaches suffer from incon-
sistencies between adjacent epipolar lines that appear as streaking artifacts. Efforts to address
this weakness were published as early as 1985, when Ohta and Kanade used edges to provide
intrascanline constraints [77]. Recent work also attempts to mitigate streaking by enforcing
interscanline constraints, but the problem is not entirely eliminated. Dynamic programming
methods that explicitly model occlusion include [4, 5, 7, 9, 20, 31].

Consistency among epipolar lines is guaranteed by using graph cuts to optimize the
objective function, since they operate in 2D. Roy and Cox [83] find the disparity surface as
the minimum cut of an undirected graph. In this framework, scanlines are no longer optimized
independently, with interscanline coherence enforced later in a heuristic way, but smoothness
is enforced globally over the entire image. Other stereo approaches based on graph cuts include
[32, 44, 45].

Between these two extremes are approaches that are neither “winner-take-all” at the local
level, nor global. They rely on more reliable matches to estimate the disparities of less reliable
ones. Following Marr and Poggio [59], Zitnick and Kanade [129] employed the support and
inhibition mechanism of cooperative stereo to ensure the propagation of correct disparities and
the uniqueness of matches with respect to both images without having to rely on the ordering
constraint. Reliable matches without competitors are used to reinforce matches that are compat-
ible with them, while at the same time, they eliminate those that contradict them, progressively
disambiguating more pixels. A cooperative approach using deterministic relaxation and explicit
visibility handling was proposed by Luo and Burkhardt [57]. Zhang and Kambhamettu [125]
extend the cooperative framework from single pixels to image regions.

A different method of aggregating support is nonlinear diffusion, proposed by Scharstein
and Szeliski [95], where disparity estimates are propagated to neighboring points in disparity
space until convergence. Sun et al. [100, 101] formulate the problem as an MRF with explicit
handling of occlusions. In the belief propagation framework, information is passed to adjacent
pixels in the form of messages whose weight also takes into account image segmentation. The
process is iterative and has similar properties with nonlinear diffusion.

Sara [88] formally defines and computes the largest unambiguous component of stereo
matching, which can be used as a basis for the estimation of more unreliable disparities. Other
similar approaches include those of Szeliski and Scharstein [102] and Zhang and Shan [126]
who start from the most reliable matches and allow the most certain disparities to guide the
estimation of less certain ones, while occlusions are explicitly labeled.

The final class of methods reviewed here utilizes monocular color cues (image segmen-
tation) to guide disparity estimation. Birchfield and Tomasi [8] cast the problem of correspon-
dence as image segmentation followed by the estimation of affine transformations between the
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(a) Left image (b) Initial matches (c) Disparities after
uniqueness enforcement

(d) Reliable matches (e) Final disparities (f) Error map

FIGURE 3.1: Overview of the processing steps for the “Sawtooth” dataset. The initial matches have
been rotated so that the multiple candidates for each pixel are visible. Black pixels in the error map
indicate errors greater than 1 disparity level, gray pixels correspond to errors between 0.5 and 1 disparity
level, while white pixels are correct (or occluded and thus ignored).

images for each segment that can account for slanted surfaces. Lin and Tomasi [54] propose a
framework where 3D shape is estimated by fitting splines, while 2D support is based on image
segmentation. Processing alternates between these two steps until convergence.

3.3 OVERVIEW OF OUR APPROACH
Our approach [70] to the derivation of dense disparity maps from rectified image pairs falls
into the category of area-based stereo since we attempt to infer matches for every pixel using
matching windows. It has four steps, which are illustrated in Fig. 3.1, for the “Sawtooth” stereo
pair. The steps are as follows:

• Initial matching, where matching hypotheses are generated for every pixel by a combi-
nation of different matching techniques. The dataset now includes multiple candidate
matches for each pixel and can be seen in Fig. 3.1(b).
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• Detection of correct matches, which uses tensor voting to infer the correct matches from
the unorganized point cloud of the previous stage as inliers of salient surfaces. After
tensor voting, uniqueness is enforced with respect to surface saliency and the dataset
contains at most one candidate match per pixel. The disparity map can be seen in Fig.
3.1(c).

• Surface grouping and refinement, during which the matches are grouped into smooth
surfaces, using the estimated surface orientations. These surfaces are refined by removing
points that are inconsistent with the layer’s color distribution to result in the disparity
map of Fig. 3.1(d).

• Disparity estimation for unmatched pixels, where the goal is to assign disparities that
ensure smoothness in terms of both surface orientation and color properties of the
layers. The final disparity map and the error map can be seen in Figs. 3.1(e) and (f ).

These steps are presented along with experimental evaluations in Sections 3.4 through 3.7.

3.4 INITIAL MATCHING
A large number of matching techniques have been proposed in the literature [96]. They have
different strengths and weaknesses and each is more suitable for certain types of pixels. We
propose a scheme for combining a variety of matching techniques, thus taking advantage of
their combined strengths. For the results presented in this chapter, four matching techniques are
used, but any type of matching operator can be integrated into the framework. The techniques
used here are as follows:

• A small (typically 5 × 5) normalized cross correlation window, which is small enough
to capture details and only assumes constant disparity over small windows of the image.
This technique is referred to as the “correlation window” in the remainder of this
chapter. The correlation coefficients for all possible disparities values of each pixel are
computed and we keep all peaks of the correlation function, with magnitudes that are
comparable to the maximum for the pixel, since they are good candidates for correct
pixel correspondences. They are used as inputs for the tensor voting stage, where the
decisions are made based on surface saliency. The correlation coefficients is not used
since it can be affected by factors such as repetitive patterns or the degree of texture of
one surface over the other.

• A shiftable normalized cross correlation window of the same size as the above, which
achieves good performance near discontinuities. It is referred to as the “shiftable win-
dow” in the remainder of this chapter. The limitation of window-based matching is
that, no matter how small the window is, pixels from two or more surfaces are included
in it at discontinuities. By not centering the window on the pixel under consideration,
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FIGURE 3.2: The five shiftable windows applied for each disparity choice at every pixel. The shaded
square corresponds to the pixel under consideration. The same window is applied to the target image.

we can find a shift that includes as many pixels as possible from the same surface as the
pixel under consideration. See Fig. 3.2 for the five windows used here. Given a pixel
in the reference image, we compute cross correlation for each disparity level for five
different window shifts around the pixel under consideration, and keep the one with the
maximum correlation coefficient as the score for that disparity level. As with correlation
windows, we keep all significant peaks of the score function as candidate matches.

• A 25 × 25 normalized cross correlation window, which is applied only at pixels where
the standard deviation of the three color channels is less than 20. The use of such a big
window over the entire image would be catastrophic, but it is effective when applied
only in virtually textureless regions, where smaller windows completely fail to detect
correct matches. This technique is referred to as the “large window”.

• A symmetric interval matching window (typically 7 × 7) with truncated cost function
as in [102]. This is referred to as the “interval window”. The final matching technique
is very different from the above, not only because we use the matching cost of [7], but
mostly because of the truncation of the cost for each pixel at a certain level. That makes
the behavior robust against pixels from different surfaces that have been included in
the window. Both images are linearly interpolated, as in [102], along the x-axis so that
samples exist in half-pixel intervals. The intensity of each pixel, in each of the three
color channels, is now represented as the interval between the minimum and maximum
value of the intensity at the integer pixel position and the half-pixel positions before
and after it on the scanline, as shown in Fig. 3.3.

Numerically, the cost for matching pixel (xL, y) in the left image with pixel (xR, y)
in the right image is the minimum distance between the two intervals, which is given
by the following equation and is zero if they overlap:

C(xL, xR, y) =
∑

c ∈{R,G,B}
min

{
dist(ILc (xi , y), IRc (x j , y)), c trunc : (3.1)

xi ∈
[

xL − 1
2

xL + 1
2

]
, x j ∈

[
xR − 1

2
xR + 1

2

] }
. (3.2)
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(a) Interpolation and interval representation (b) Distance between intervals

FIGURE 3.3: Symmetric interval matching. Both images are interpolated to double the number of
pixels per row. Then, each pixel is represented by the interval defined by its own intensity value and
the values of its two neighbors. For instance, the pixel at position 2 is represented using its own value
and the values of positions 1.5 and 2.5. These three values produce the interval labeled AB above. Pixel
dissimilarity is defined as the distance between the two intervals in the left and the right image, and not
between an interval and a pixel.

The summation is over the three color channels and dist() is the Euclidean distance
between the value of a color channel ILc in the left image and IRc in the right image. If
the distance for any channel exceeds the truncation parameter c trunc, the total cost is set
to 3c trunc. Typical values for c trunc are between 3 and 10. Even though, statistically, the
performance of interval windows is slightly worse than that of the shiftable windows,
they are useful because they produce correct disparity estimates for pixels where the
other windows fail. This is due to the different nature of the dissimilarity measure and
the robust formulation we use.

Note that the typical window sizes are for image resolutions similar to those of the
Middlebury image pairs, which range from 284 × 216 to 450 × 375. Larger window sizes
would most likely be necessary for higher resolution images.

Each matching technique is repeated using the right image as reference and the left as
target. This increases the true positive rate especially near discontinuities, where the presence of
occluded pixels in the reference window affects the results of matching. When the other image
is used as reference, these pixels do not appear in the reference window. A simple parabolic fit
[96] is used for subpixel accuracy, mainly because it makes slanted or curved surfaces appear
continuous and not staircase-like. In addition to the increased number of correct detections, the
combination of these matching techniques offers the advantage that the failures of a particular
technique are not detrimental to the success of the algorithm, as long as the majority of the
operators do not produce the same erroneous disparities. Our experiments have also shown that
the errors produced by small windows, such as 5 × 5 and 7 × 7 used here, are randomly spread
in space and do not usually align to form nonexistent structures. This property is important
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for our methodology that is based on the perceptual organization, due to good alignment, of
candidate matches in space. On the other hand, the large window, which is more susceptible to
systematic errors, is never applied near discontinuities.

3.5 SELECTION OF MATCHES AS SURFACE INLIERS
Even if the local matching operators perform exceptionally well, the problem of stereo in its
entirety, taking into account occlusions and discontinuities, cannot be fully solved at the pixel
level. Support for each potential match has to be aggregated, so that the confidence of correct
matches is increased and outliers are made explicit. Aggregation in 1D neighborhoods is only
motivated by computational simplicity and its shortcomings are well documented. While graph
cut based methods have achieved outstanding results, the choice of an appropriate energy
function is not an easy task. Energy functions whose global minima can be found with current
optimization techniques do not necessarily model the phenomenon of stereovision in its most
general form. In most cases, the disparity assignment that achieves the globally minimal energy
is not the ground truth disparity of the scene. This occurs because the energy function has
to satisfy certain properties to be suitable for minimization using algorithms such as graph
cuts or belief propagation [107]. For instance, the penalization of disparity changes between
neighboring pixels makes these approaches well suited for scenes that consist of frontoparallel
planes and prefers staircase-looking solutions for slanted or curved surfaces. Here, following
the approach of Lee et al. [51] we aggregate support in 3D neighborhoods via tensor voting.
Pixels that are close in one image but are projections of remote world points do not interact.
Fig. 3.4 shows four points that project relatively close to each in the image. Points A and B,
which are close in 3D, and therefore are likely to belong to the same scene surface, interact

FIGURE 3.4: Voting in 3D neighborhoods eliminates interference between adjacent pixels from dif-
ferent layers.
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strongly with each other. On the other hand, points A and C that are close in the image but
not in 3D, and therefore are most likely projections of unrelated surfaces, do not vote to each
other. Finally, point D, which is isolated in 3D and is probably generated by an error in the
initial matching stage, receives no support as an inlier of a salient surface. After accumulating
support by tensor voting, candidate matches that are consistent with their neighbors have high
surface saliency, which validates them as correct matches.

The goal here is to address stereo as a perceptual organization problem, based on the
premise that the correct matches should form coherent surfaces in disparity space. The input is
a cloud of points in a 3D space (x, y, zscale × d ), where z scale is a constant used to make the
input less flat with respect to the d-axis, since disparity space is usually a lot flatter than actual
(x, y, z). Its typical value is 8 and the sensitivity is very low. The quantitative matching scores
are disregarded and all candidate matches are initialized as unoriented ball tensors with saliency
equal to 1. If two or more matches fall within the same (x, y, zscale × d ) voxel their initial
saliencies are added, thus increasing the confidence of candidate matches confirmed by multiple
matching techniques. Since d is estimated with subpixel accuracy each integer disparity level
has zscale possible subpixel levels. Therefore, quantization occurs at a finer resolution and the
dimensions of each voxel are pixelsize × pixelsize × zscale.

The inputs, encoded as ball tensors, cast votes to their neighbors. When voting is com-
pleted, the surface saliency of each candidate match can be computed as the difference be-
tween the two largest eigenvalues of the tensor. Regardless of the criterion used, certain con-
straints have traditionally been applied at this stage to disambiguate pixel correspondences.
Since the ordering constraint is violated by scene configurations that are not unlikely, such
as the presence of thin foreground objects, we do not enforce it. Its popularity in the liter-
ature is mostly as a byproduct of optimization techniques. As optimization techniques have
improved, most researchers have abandoned the ordering constraint. The uniqueness con-
straint, which states that in the absence of transparency there should be at most one match
for each pixel, should also be enforced carefully. As Ogale and Aloimonos [76] point out, if
scene surfaces exhibit horizontal slant (that is, if the epipolar line in the image and the in-
tersection of the epipolar plane and the scene surface are not parallel), then M pixels in one
image necessarily correspond to N pixels in the other image. Therefore, the requirement for a
strict one-to-one correspondence for all pixels results in labeling |M − N| pixels as occluded.
These pixels that are interleaved with matched pixels, however, are perfectly visible in both
images, just not at integer coordinate positions. Keeping this observation in mind, we only
enforce uniqueness as a postprocessing step allowing at most one match for each pixel of the
reference image in order to derive a dense disparity map. More than one pixel of the reference
image is allowed to correspond to the same pixel of the target image (with integer or subpixel
disparities) if the surface appears wider in the reference image. Thus, visible pixels are not
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marked as being occluded due to surface slant. A similar approach has also been presented in
[100].

In our approach uniqueness is enforced with respect to the left image by retaining the
candidate with the highest surface saliency for every pixel. We do not enforce uniqueness with
respect to the right image since it is violated by slanted surfaces which project to a different
number of pixels on each image. Since the objective is disparity estimation for every pixel in
the reference image, uniqueness applies to that image only. Surface saliency is a more reliable
criterion for the selection of correct matches than the score of a local matching operator. This
is because it requires that candidate matches, identified as such by local operators, also form
coherent surfaces in 3D. This scheme is capable of rejecting false positive responses of the local
operators, which is not possible at the local level. The resulting datasets still contain errors,
which are corrected at the next stage. The most frequently used, besides smoothness, are the
ordering and uniqueness constraints.

3.6 SURFACE GROUPING AND REFINEMENT
A rather safe conclusion that can be drawn from the Middlebury Stereo Evaluation (http://
cat.middlebury.edu/stereo/) is that the use of monocular information, such as color, contributes
to the performance of a stereo algorithm. In [68, 70], we proposed a novel way of integrating
monocular information that requires very few assumptions about the scene and does not fail when
image segmentation fails. Instead of trying to identify the scene surfaces by their projections
on the images via their color properties, we try to infer them in disparity space via surface
grouping. Candidate matches that were retained after tensor voting are grouped into smooth
surfaces based on their 3D positions and estimated surface normals. Then these surfaces are
reprojected to both images, and points that are inconsistent with the other points of the surface
in terms of color distribution in either image are rejected. This step removes erroneous matches
for occluded pixels, which are usually assigned with the disparity of the foreground. They are
removed since they do not project to the same surface in both images, and thus the color
distributions are inconsistent. Under this scheme, both images are treated symmetrically, unlike
most segmentation-based methods where only the reference image is segmented. Furthermore,
we do not attempt to segment the image, but instead solve a simpler problem: grouping points,
which were selected as surface inliers, into smooth 3D surfaces.

Grouping candidate matches that have not been rejected in layers is achieved using a
simple growing scheme. By layers here we mean surfaces with smooth variation of surface
normal. They do not have to be planar, and the points that belong to them do not have to
form one connected component. Labeling starts from seed matches that have maximum surface
saliency. Since the input to this stage is rather dense and includes candidate matches for a large
percentage of the matches, we only examine the eight nearest neighbors of the seed. If they
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(a) Left image of “Venus” pair (b) Ground truth

FIGURE 3.5: The left image of the “Venus” pair and the ground truth depth map. The left circle covers
two surfaces, while the right one covers a single surface. Both regions show that pixels with different
colors could belong to the same surface, but that pixels with similar colors are more likely to belong to
the same surface. We use this observation to clean up the noisy initial surfaces from the grouping stage.
A nonparametric representation turns out to be very effective despite its simplicity.

are smooth continuations of the growing surface they are added to it and their neighbors are
also considered for addition. The disparity gradient limit constraint dictates that the maximum
disparity jump between two pixels of the same surface is 1. When no more matching candidates
can be added to the surface, the unlabeled point with maximum surface saliency is selected as
the next seed. Small surfaces comprising less than 0.5% of image pixels are removed, since they
are probably noisy patches, unless they are compatible with a larger nearby surface in terms of
both position and orientation. Support from a larger surface means that the small part is most
likely correct, but due to occlusion or failure of the matching operators is not connected to the
main part of the surface. After this step, the dataset consists of a set of labeled surfaces, which
contain errors mostly due to foreground overextension. A number of candidate matches that
survived uniqueness enforcement while not being parts of large salient surfaces are also removed
here. These include wrong matches in uniform areas, which are not aligned with the correct
matches.

The next step is the refinement of the layers. The goal is to remove the overextensions
of the foreground by ensuring that the color properties of the pixels, which are the projections
of the grouped points, are locally consistent within each layer. Color consistency of a pixel is
checked by computing the ratio of pixels of the same layer with similar color to the current
pixel over the total number of pixels of the layer within the neighborhood. For example, the left
red circle in Fig. 3.5(a) covers two different surfaces. One could try to segment them and be
successful in this case, but we argue that by simply rejecting red pixels that have been assigned
disparities not supported by other red pixels we can clean up the original noisy surfaces under
the minimum number of assumptions. This nonparametric representation allows us to handle
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cases like the newspaper surface in the right red circle where a simple parametric model is not
sufficient to describe a surface with interleaved black and white pixels. In this case, a mixture of
two Gaussian distributions is required and more complex cases can be encountered very often
in practice. Our approach does not need to model the color distribution of the surfaces, but
only relies on the assumption that neighboring pixels with similar colors are more likely to have
similar depths.

This color consistency check is repeated in the target image and if the current assignment
does not correspond to the maximum ratio in both images, then the pixel is removed from the
layer. The color similarity ratio for pixel (x0, y0) in the left image with layer i can be computed
according to the following equation,

Ri (x0, y0) =
∑

(x,y)∈N T(lab(x, y) = i AND dist(IL(x, y), Il (x0, y0) < c thr))∑
(x,y)∈N T(lab(x, y) = i))

, (3.3)

where T() is a test function that is 1 if its argument is true, lab() is the label of a pixel, and
c thr is a color distance threshold in RGB space, typically equal to the c trunc parameter of the
interval windows. The same is applied for the right image for pixel (x0 − d0, y0). The size of
the neighborhood is the second and final parameter of this stage. It can be set equal to the range
of the voting field during tensor voting.

This step corrects surface overextension that occurs near occlusions, since the overexten-
sions are usually not color consistent in both images and are thus detected and removed. Table
3.1 shows the total number of candidate matches and errors before and after refinement for the

TABLE 3.1: Total and Wrong Matches in Each Dataset Before and After Surface Grouping
and Refinement

IMAGE TOTAL ERROR RATE TOTAL ERROR RATE

PAIR BEFORE BEFORE (%) AFTER AFTER (%)

Tsukuba 84810 5.31 69666 1.33

Sawtooth 144808 2.95 136894 1.08

Venus 147320 6.16 132480 1.24

Map 48657 0.44 45985 0.05

Cones 132856 4.27 126599 3.41

Teddy 135862 7.24 121951 4.97
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four Middlebury image pairs. The disparity maps for the “Sawtooth” example before and after
grouping and refinement can be seen in Figs. 3.1(c) and (d).

3.7 DISPARITY ESTIMATION FOR UNMATCHED PIXELS
The goal of this stage is to generate candidate matches for the remaining unmatched pixels.
Given the already estimated disparities and labels for a large set of pixels, there is more informa-
tion available now that can enhance our ability to estimate the missing disparities. We opt for a
progressive approach, under which only the most reliable correspondences are allowed at first.
These are correspondences that satisfy strict geometric and color requirements in both images.
The requirements become less strict as we proceed.

Given an unmatched pixel in the reference image, we examine its neighborhood for layers
to which the pixel can be assigned. Color similarity ratios are computed for the pixel with respect
to all layers as in Eq. (3.3). The layer with the maximum ratio is selected as the potential layer
for the pixel. Then, we need to generate a range of disparities for the pixel. This is done by
examining the disparity values of the selected layer’s pixels in the neighborhood. The range is
extended according to the disparity gradient limit constraint, which holds perfectly in the case
of rectified parallel stereo pairs. Disparity hypotheses are verified one by one on the target image
by computing similarity ratios, unless they are occluded. In the latter case, we allow occluded
surfaces to grow underneath the occluding ones. On the other hand, we do not allow new
matches to occlude existing consistent matches. Votes are collected at valid potential matches in
disparity space, as before, with the only difference being that only matches from the appropriate
layer cast votes (see Fig. 3.6). The most salient among the potential matches is selected and
added to the layer, since it is the one that ensures the smoothest surface continuation.

For the results presented here, we applied the following progressive growing scheme,
which has two parameters: c thr, the color threshold used for computing the similarity ratios,
and σ3, the scale of voting for densification which also defines the size of the neighborhood in
which similarity ratios are computed. For the first iteration, we initialize the parameters with
c thr = 1 and σ 2

3 = 20. These are very strict requirements and have to be satisfied on both images
for a disparity hypothesis to be valid. Votes are accumulated on the valid hypotheses that also
do not occlude any existing matches, and the most salient continuation is selected. Then, we
repeat the process without requiring consistency with the target image and add more matches,
which are usually for occluded pixels that are similar to their unoccluded neighbors. The added
matches are generally correct, but valid hypotheses cannot be generated for all pixels. In the
second iteration we increment both c thr and σ 2

3 by their initial values and repeat the process.
The choice of parameters here is not critical. For instance, maintaining a constant σ3 produces
very similar results. For the experiments shown here, both parameters are increased by constant
increments at each iteration until convergence.
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FIGURE 3.6: Candidate generation for unmatched pixels based on segmented layers. The unmatched
pixel is compatible with the left surface only, thus votes are collected at disparity hypotheses generated by
matches of the left surface (marked with black dots). Also note that only matches from the appropriate
layer vote at each candidate.

Typically, there are a few pixels that cannot be resolved because they exhibit low similarity
to all layers, or because they are specular or in shadows. Candidates for these pixels are generated
based on the disparities of all neighboring pixels and votes are collected at the candidate locations
in disparity space. Again, the most salient ones are selected. We opt to use surface smoothness
at this stage instead of image correlation, or other image-based criteria, since we are dealing
with pixels where the initial matching and color consistency failed to produce a consistent
match.

3.8 EXPERIMENTAL RESULTS
This section contains results on the color versions of the four image pairs of [96] and the
two proposed in [97], which are available online at http://cat.middlebury.edu/stereo/. All six

examples were processed with identical parameters. The initial matching in all cases was done
using the four matching operators presented in Section 3.4 using both the left and right image
as reference. The correlation and shiftable windows were 5 × 5. The interval windows were
7 × 7 with the truncation parameter set at 5. The large window was 25 × 25, applied at pixels
with intensity variance less than 20. For the large windows only, pixels with normalized score
below 20% of the average were rejected. The scale of the voting field for the detection of
correct matches was σ 2 = 50, which corresponds to a voting radius of 14, or a neighborhood
of 29 × 29 × 29. Refinement was performed with a voting radius of 18 and c thr equal to 5. In
the final stage, c thr was initialized as 1 and incremented by 1 for 25 iterations, while σ 2

3 was
initialized as 20 and incremented by 20 at each iteration.
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TABLE 3.2: Error Rates for the Original Middlebury Image Pairs

IMAGE UNOCC- DISCONTI- TEXTURELESS

PAIR LUDED (%) RANK NUITIES (%) RANK (%) RANK

Tsukuba 1.51 11 7.96 12 2.02 24

Sawtooth 0.70 12 4.35 11 0.50 26

Venus 1.09 12 13.95 26 1.39 16

Map 1.31 24 11.47 26 — —

A second surface refinement operation was performed to remove errors around the surface
discontinuities. This time, the voting radius was significantly smaller, set equal to 7, since we
are only interested in correcting the borders of each surface. The value of c thr, on the other
hand, was equal to 40, to allow larger color variation within each surface. The parameters for
the final stage were identical with those of the previous paragraph.

The error metric reported in the tables is that proposed in [96], where matches are
considered erroneous if they correspond to unoccluded image pixels and their disparity error is
greater than one integer disparity level. Table 3.2 contains the error rates we achieved, as well
as the rank our algorithm would achieve among the 38 algorithms in the evaluation. The error
rates reflect the number of errors larger than 1 disparity level for all unoccluded pixels, for pixels
near discontinuities and for textureless pixels. We have rounded the disparities to integer values
for this evaluation. We refer readers to the Middlebury Stereo Evaluation web page for results
obtained by other methods. Based on the results for all unoccluded pixels, our algorithm would
rank fifteenth in the evaluation as of July 5, 2005. As with all methods that take color explicitly
into account, performance on the “Map” is not as good as that achieved by methods that do not
use monocular information due to the random textures in the image.

Tables 3.3 and 3.4 report our results for the new version of the Middlebury Stereo
Evaluation that includes “Tsukuba,” “Venus,” and the two image pairs introduced in [97].
The new image pairs contain curved and slanted surfaces, with different degrees of detail and
texture, and are, thus, more challenging. This is more pronounced for methods that make
the assumption that scene surfaces are planar and parallel to the image plane. This assump-
tion is explicitly made when one penalizes disparity differences between neighboring pixels.
Table 3.3 contains the error rates when the acceptable error is set to 1 disparity level, while
Table 3.4 contains the error rates when the acceptable error is set only to 0.5 disparity level.
This demonstrates the capability of the algorithms to estimate precise subpixel disparities. We
have not rounded the disparities in this case. For the new evaluation, the error rate over all pixels,
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TABLE 3.3: Quantitative Evaluation for the New Middlebury Image Pairs (acceptable error at 1.0
disparity level)

IMAGE UNOCC- ALL DISCONTINUITIES

PAIR LUDED (%) RANK (%) RANK (%) RANK

Tsukuba 3.79 9 4.79 9 8.86 6

Venus 1.23 4 1.88 5 11.5 9

Teddy 9.76 5 17.0 5 24.0 8

Cones 4.38 3 11.4 4 12.2 5

including the occluded ones, has replaced the evaluation over textureless pixels. The ranks are
among the 12 algorithms that are being evaluated, as of July 5, 2005. Considering performance
at unoccluded pixels, our results are tied at the fourth place when the acceptable error is 1, and
rank third when it is 0.5.

Figs. 3.7 and 3.8 show the final disparity map and the error map for the “Venus,”
“Tsukuba,” “Map,” “Cones,” and “Teddy” image pairs. The results for “Sawtooth” appear in
Fig. 3.1. White in the error maps indicates an error less than 0.5 disparity level or occluded
pixel, gray indicates an error between 0.5 and 1 disparity level (acceptable) and black indicates
large errors above 1 disparity level.

3.9 DISCUSSION
We have presented a novel stereo algorithm that addresses the limitations of binocular matching
by incorporating monocular information. We use tensor voting to infer surface saliency and
use it as a criterion for deciding on the correctness of matches as in [50, 51]. However, the

TABLE 3.4: Quantitative Evaluation for the New Middlebury Image Pairs (acceptable error at 0.5
disparity level)

IMAGE UNOCC- ALL DISCONTINUITIES

PAIR LUDED (%) RANK (%) RANK (%) RANK

Tsukuba 25.5 11 26.2 11 21.2 8

Venus 3.32 1 4.12 1 14.6 2

Teddy 14.6 3 21.8 4 33.3 4

Cones 7.05 2 14.5 3 17.4 3
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FIGURE 3.7: Left images: final disparity maps and error maps for the “Venus”, “Tsukuba,” and “Map”
image pairs from the Middlebury Stereo Evaluation.

quality of the experimental results depends heavily on the inputs to the voting process. The
superior performance of the new algorithm is due to the flexible initial matching stage and the
combination of the geometric and photometric consistency we enforce on the surfaces. Textured
pixels away from depth discontinuities can be easily resolved by even naive stereo algorithms. As
stated in the introduction, we aimed at reducing the errors at untextured parts of the image and
near depth discontinuities which cause occlusion. In our approach, the typical phenomenon of
the overextension of foreground surfaces over occluded pixels is mitigated by removing from the
dataset candidate matches that are not consistent with their neighboring pixels in both images.
On the other hand, surface smoothness is the main factor that guides the matching of uniform
pixels.

Arguably, the most significant contribution is the segmentation into layers based on
geometric properties and not appearance. We claim that this is advantageous over other methods
that use color-based segmentation, since it utilizes the already computed disparities which



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK039-03 MOBK039-Median.cls November 9, 2006 21:35

STEREO VISION FROM A PERCEPTUAL ORGANIZATION PERSPECTIVE 45

FIGURE 3.8: Left images: final disparity maps and error maps for the “Cones” and “Teddy” image pairs
from the Middlebury Stereo Evaluation.

are powerful cues for grouping. In fact, grouping candidate matches in 3D based on good
continuation is a considerably easier problem than image segmentation. This scheme allows
us to treat both images symmetrically and provides estimates for the layer color distribution
even if it varies significantly throughout the layer. The choice of a local, nonparametric color
representation allows us to handle surfaces with texture or heterogeneous and varying color
distributions, such as those in the “Venus” images, on which image segmentation may be
hard. This representation is used at the layer refinement stage to eliminate mostly foreground
overextensions.

A second significant contribution is the initial matching stage that allows the integration
of any matching technique without any modification to subsequent modules. The use of a
large number of matching operators, applied to both images, can be viewed as another form of
consensus. While all operators fail for certain pixels, the same failures are usually not repeated,
with the same disparity values, by other operators. Our experiments show that the results of
combining the four techniques we used over all the image pairs are superior to those generated
by using a smaller set of them. Even though a particular matching technique may produce
systematic errors for a particular image pair, its inclusion is beneficial when all six image pairs
are considered.

Adhering to the principles set out in Chapter 1, we employ a least-commitment strategy
and avoid the use of constraints that are violated by usual scene configurations. One such
constraint is the requirement that adjacent pixels have the same disparity to avoid incurring some
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penalty. While this constraint aids the optimization process of many approaches, it becomes
an approximation for scenes that do not consist of frontoparallel surfaces. Processing in 3D
via tensor voting enforces the more general constraint of good continuation and eliminates
interference between adjacent pixels from different world surfaces without having to assess
penalties on them. In our work, the assumption that scene surfaces are frontoparallel is only
made in the initial matching stage, when all pixels in a small window are assumed to have
the same disparity. After this point, the surfaces are never assumed to be anything other than
continuous. We also do not use the ordering constraint, which was introduced to facilitate
dynamic programming. The uniqueness constraint is applied cautiously, since it is viewpoint
dependent and its results do not hold for the target image.

Our algorithm fails when surfaces are entirely missed at the initial matching stage or
when they are entirely removed at the layer refinement stage. We are not able to grow surfaces
that are not included in the data before the final stage. On the other hand, we are able to
smoothly extend partially visible surfaces to infer the disparities of occluded pixels, assuming
that occluded surfaces do not abruptly change orientation.

3.10 OTHER 3D COMPUTER VISION RESEARCH
In this section, we briefly present two other research thrusts that have been developed within
the tensor voting framework.

3.10.1 Multiple-View Stereo

An extension of our binocular work to multiple frames has been published in [65, 66]. Here we
very briefly describe the contributions of the latter paper. As in the binocular case, the premise
is that correct pixel correspondences align to form the scene surfaces which are more salient
than any potential alignments of wrong matches. The main contribution is a computational
framework for the inference of dense descriptions from multiple-view stereo with a far wider
range of permissible camera configurations. Thus far, research on dense multiple-view stereo
has evolved along three axes: computation of scene approximations in the form of visual hulls;
merging of depth maps derived from simple configurations, such as binocular or trinocular;
multiple-view stereo with restricted camera placement. These approaches are either suboptimal,
since they do not maximize the use of available information, or cannot be applied to general
camera configurations.

We present an approach that allows truly general camera placement, employs a world-
centered representation and is able to process large numbers of potential pixel matches, typically
in the order of a few millions, efficiently. No images are privileged and features are not required
to appear in more than two views. The only restriction on camera placement is that cameras
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(a) Some input images (b) Ground truth

FIGURE 3.9: Some of the input images of the “meditation” set captured at the CMU dome (a few
cameras are visible in each image) and a view of the reconstructed points.

must be placed in pairs in such a way that for each camera there exists at least another one with a
similar viewpoint that allows for automatic correlation-based dense pixel matching. One could
place such camera pairs arbitrarily in space with no other considerations for image overlap or
relationships between the locations of camera centers and the scene. Moreover, unlike other
leading multiple-view reconstruction methods [19, 45, 47, 124], we do not segment and discard
the “background” but attempt to reconstruct it together with the foreground. Our approach does
not involve binocular processing other than the detection of tentative pixel correspondences.
The inference of scene surfaces is based on the premise that correct pixel correspondences, recon-
structed in 3D, form salient, coherent surfaces, while wrong correspondences form less coherent
structures. The tensor voting framework is suitable for this task since it can process the very
large datasets we generate with reasonable computational complexity. In [66] we present results
on challenging datasets captured for the Virtualized Reality project of the Robotics Institute
of Carnegie Mellon University and distributed freely at http://www-2.cs.cmu.edu/virtualized-
reality. Fig. 3.9 shows a few of the input images and a view of the reconstructed points from
the “meditation” dataset.

3.10.2 Tracking

A different computer vision application in a 3D space is tracking. An approach that can track
objects in motion when observed by a fixed camera, with severe occlusions, merging and splitting
objects and defects in the detection was presented in [46]. We first detect regions corresponding
to moving objects in each frame, which become the tokens, then try to establish their trajectory.
The method is based on implementing spatiotemporal continuity in a 2D + t space, which
represents the position of the moving regions in the images through time. A key difference
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(a) Processing steps (b) Tracking results

FIGURE 3.10: Illustration of the processing steps from short fragmented trajectories to long reliable
tracks and some results on real videos with multiple moving people.

with regular tensor voting, due to the presence of the time axis, is the fact that voting has to be
oriented toward the time direction. By this we mean that a voting token at time t does not vote
for points in the same frame, but only supports good continuations in previous and subsequent
frames. The steps of the process are highlighted in Fig. 3.10(a) and some results are shown in
Fig. 3.10(b). This work was extended to multiple cameras in [39].
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C H A P T E R 4

Tensor Voting in N D

In this chapter, we describe a major contribution to the tensor voting framework. Even though
this work is very recent, we feel that tensor voting in high-dimensional spaces may turn out
to be among the most potent algorithms for manifold learning and related tasks. Initial results
on a variety of machine learning tasks can be seen in Chapter 5. The motivation for this work
came from the observation that many problems, from a broad range of scientific domains, can be
addressed within the tensor voting framework. In most cases, addressing these problems requires
efficient, local, data-driven algorithms with high noise robustness. The Gestalt principles of
proximity, similarity, and good continuation, which have been identified as the factors that make
configurations in two and three dimensions salient, still apply in spaces of higher dimensionality.
Therefore, the tensor voting framework, which combines many of the desired properties, seems
to be a well-suited approach. The main limitation that prevents its wide application to problems
in high dimensions is the exponential increase in computational and storage demands as the
dimensionality of the space grows.

4.1 INTRODUCTION
The tensor voting framework, in its preliminary version [25], is an attempt at the implementation
of two Gestalt principles, namely proximity and good continuation, for grouping generic tokens
in 2D. The 2D domain has always been the main focus of research in perceptual organization,
beginning with the research of Köhler [43], Wertheimer [118], and Koffka [42] up to the recent
work that was reviewed in Section 2.1. The generalization to 3D is straightforward, since salient
groupings can be detected by the human visual system based on the same principles. Guy and
Medioni extended the framework to 3D in [26]. Other perceptual organization approaches with
3D implementations include [78, 86]. Their number is considerably smaller than that of 2D
methodologies, mostly due to the exponential increase in computational complexity with the
dimensionality of the space. Regardless of the computational feasibility of an implementation,
the same grouping principles apply to spaces with even higher dimensions. For instance, Tang
et al. [106] observed that pixel correspondences can be viewed as points in the 8D space of free
parameters of the fundamental matrix. Correct correspondences align to form a hyperplane in
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that space, while wrong correspondences are randomly distributed. By applying tensor voting
in 8D, the authors were able to infer the dominant hyperplane and the desired parameters of
the fundamental matrix. This work was reformulated as a 4D problem and solved for the case
of multiple independently moving objects by Tong et al. [111].

Even though the applicability of tensor voting as an unsupervised learning technique in
high-dimensional spaces seems to have merit, a general implementation is not practical. This is
mostly due to computational complexity and storage requirements in N dimensions. The storage
requirements for each token are O(N × N ), which is acceptable. It can be reduced with a sparse
storage scheme, but that would increase the necessary computations to retrieve information.
The bottleneck is the generation and storage of the voting fields, the number of which is equal to
the dimensionality of the space. For instance, a second-order voting field in 10D with k samples
per axis requires storage for 10k N × N tensors, which need to be computed via numerical
integration over 10 variables. Moreover, the likelihood of each precomputed vote being used
decreases with the dimensionality. Thus, the use of precomputed voting fields soon becomes
impractical as dimensionality grows. At the same time, the computation of votes “on the fly”
as they become necessary is also computationally expensive. Here, we propose a simplified vote
generation scheme that bypasses the computation of uncertainty and allows the generation of
votes from arbitrary tensors in arbitrary dimensions with a computational cost that is linear
with respect to the dimensionality of the space. Storage requirements are limited to storing the
tensors at each token since voting fields are not used any more.

This chapter is organized as follows: the next section points out the limitations of the
original implementation of tensor voting; Section 4.3 describes the new voting scheme in-
cluding a comparison with the original implementation; Section 4.4 offers a comparison of
the new implementation with the original one of [60]; Section 4.5 shows results on various
high-dimensional computer vision problems; Section 4.6 summarizes the contributions of the
chapter.

4.2 LIMITATIONS OF ORIGINAL IMPLEMENTATION
The major limitations of the original implementation of tensor voting that render its general-
ization to N D impractical are related to the use of precomputed voting fields. The difficulties
are due to the lack of a closed-form solution for the integrals required to compute votes cast
by tensors that are not purely sticks. For example, the computation of a vote cast by a plate
tensor in 3D, as shown in Eq. 2.11, requires the integration of the votes cast by a rotating stick
tensor over two angles that span 360◦. Approximating the computation by a summation with 1◦

steps results in 129,600 stick vote computations. In general, the computation of a vote cast by a
tensor with N normals requires N − 1 nested summations to span the normal space and 360N−1

stick vote computations. An additional problem is caused by the fact that this simple sampling
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scheme of constant angular steps does not produce a uniform sampling in polar coordinates if
more than one summation is necessary. More uniform samplings are possible, especially if one
aligns the poles of the hypersphere with the nonvoting direction from the voter to receiver. A
uniform sampling improves the accuracy, but does not reduce computational complexity.

In terms of storage, one can exploit symmetries, such as that the stick field is essentially
2D, regardless of the dimensionality of the space, and that the ball field is 1D, since it is a
function of distance only. Nevertheless, the storage of the voting fields is impossible even for
relatively modest values of N. A smaller weakness of precomputed voting fields is the fact that
votes at nongrid positions are not exact, since they are produced by linear interpolation between
grid positions.

Another limitation of the previous implementation is the use of a multiple level priority
queue for data storage. The weaknesses of this data structure is that search operations are optimal
if the axes have been assigned optimal priority. Otherwise, search may degenerate to a O(M )
operation, where M is the number of tokens. This becomes more pronounced as dimensionality
increases.

4.3 TENSOR VOTING IN HIGH-DIMENSIONAL SPACES
In this section, we describe in detail the new vote generation scheme. We adopt the data
representation and vote analysis of [60] and the previous chapters, but use the ANN k-d tree
of [1] as the data structure that stores the data and retrieves the neighbors. Data representation
and vote analysis are also presented in this chapter for completeness, as well as to illustrate
the differences between 2D, 3D, and high-dimensional spaces. Note that efficiency with this
formulation is considerably higher than our initial attempt in [69].

4.3.1 Data Representation

The representation of a point is still a second-order, symmetric, nonnegative definite tensor.
It can represent the structure of a manifold going through the point by encoding the normals
to the manifold as eigenvectors of the tensor that correspond to nonzero eigenvalues. The
tangents are represented as eigenvectors that correspond to zero eigenvalues. A point in an
N D hyperplane has one normal and N − 1 tangents, and thus is represented by a tensor with
one nonzero eigenvalue associated with an eigenvector parallel to the hyperplane’s normal. The
remaining N − 1 eigenvalues are zero. A point in a 2D manifold in N D has two tangents and
N − 2 normals, and thus is represented by a tensor with two zero eigenvalues associated with
eigenvectors that span the tangent space of the manifold. The tensor also has N − 2 nonzero
eigenvalues (typically set to 1) whose corresponding eigenvectors span the manifold’s normal
space.
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The tensors can be formed by the summation of the direct products (�n�nT ) of the eigen-
vectors that span the normal space of the manifold. The tensor at a point on a manifold of
dimensionality d , with �ni spanning the normal space, can be computed as follows:

T =
∑
i=1

d �ni �nT
i . (4.1)

As before, a ball tensor is viewed as one having all possible normals and is encoded as an
N × N identity matrix. Any point on a manifold of known dimensionality and orientation can
be encoded in this representation by appropriately constructed tensors, as in Eq. (4.1).

On the other hand, given an N D second-order, symmetric, nonnegative definite tensor,
the type of structure encoded in it can be found by examining its eigensystem. Any tensor that
has these properties can be decomposed as in the following equation,

T =
∑
d=1

N
λd ê d ê T

d (4.2)

= (λ1 − λ2)ê1ê T
1 + (λ2 − λ3)

(
ê1ê T

1 + ê2ê T
2

) + · · · + λN

(
ê1ê T

1 + ê2ê T
2 + ... + ê Nê T

N

)
(4.3)

=
∑
d=1

N−1
[

(λd − λd+1)
∑
k=1

d
ê d ê T

d

]
+ λN

(
ê1ê T

1 + · · · + ê Nê T
N

)
(4.4)

where λd are the eigenvalues in descending order and ê d are the corresponding eigenvectors.
The tensor simultaneously encodes all possible types of structures. The saliency of the type that
has d normals is encoded in the difference λd − λd+1. If a hard decision on the dimensionality
is required, we assign the point to the type with the maximum confidence.

4.3.2 The Voting Process

In this section, we describe a novel vote generation scheme that does not require integration.
As in the original formulation, the eigenstructure of the vote represents the normal and tangent
spaces that the receiver would have, if the voter and receiver belong to the same smooth structure.
What is missing is the uncertainty in each vote that resulted from the accumulation of the votes
cast by the rotating stick tensors during the computation of the voting fields. The new votes
are cast directly from the voter to the receiver and are not retrieved from precomputed voting
fields. They have perfect certainty in the information they convey. The uncertainty now comes
only from the accumulation of votes from different votes at each token.

We begin by examining the case of a voter that is associated with a stick tensor of unit
length, which is identical with the original formulation since it can be directly computed. The
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(a) Stick voting (b) Ball voting

FIGURE 4.1: Vote generation for a stick and a ball voter. The votes are functions of the position of
voter A and receiver B and the tensor of the voter.

vote is generated according to the following equation:

S(s , θ ) = e−
(

s 2+c κ2

σ2

) [
− sin(2θ )
cos(2θ )

]
[− sin(2θ ) cos(2θ )] (4.5)

s = θ‖�v‖
sin(θ )

, κ = 2 sin(θ )
‖�v‖ . (4.6)

As in the 2D and 3D s is the length of the arc between the voter and receiver, and κ is its
curvature (see Fig. 2.2(a)), σ is the scale of voting, and c is a constant. No vote is generated if
angle θ is greater than 45◦. Also, the field is truncated to the extent where the magnitude of
the vote is greater than 3% of the magnitude of the voter. The vote as defined above is on the
plane defined by A, B and the normal at A. Regardless of the dimensionality of the space, stick
vote generation always takes place in a 2D subspace defined by the position of the voter and the
receiver and the orientation of the voter. Thus, this operation is identical in any space between

FIGURE 4.2: Vote generation for generic tensors. The voter here is a tensor with two normals in 3D.
The vector connecting the voter and receiver is decomposed into �vn and �vt that lie in the normal and
tangent space of the voter. A new basis that includes �vn is defined for the normal space and each basis
component casts a stick vote. Only the vote generated by the orientation parallel to �vn is not parallel to
the normal space. Tensor addition of the stick votes produces the combined vote.
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2 and N dimensions. After the vote has been computed, it has to be transformed to the N D
space.

Regarding the generation of ball votes, we propose the following direct computation.
It is based on the observation that the vote generated by a ball voter propagates the voter’s
preference for a straight line that connects it to the receiver (Fig. 2.2(b)). The straight line is
the simplest and smoothest continuation from a point to another point in the absence of other
information. Thus, the vote generated by a ball is a tensor that spans the (N − 1)D normal
space of the line and has one zero eigenvalue associated with the eigenvector that is parallel to
the line. Its magnitude is a function of the distance between the two points, since curvature is
zero. Taking these observations into account, the ball vote can be constructed by subtracting
the direct product of the tangent vector from a full rank tensor with equal eigenvalues (i.e., the
identity matrix). The resulting tensor is attenuated by the same Gaussian weight according to
the distance between the voter and the receiver,

T(s , θ ) = e−
(

s 2

σ2

) (
I − �v�vT

‖�v�vT‖
)

. (4.7)

where �v is a unit vector parallel to the line connecting the voter and the receiver.
To complete the description of vote generation, we need to describe the case of a tensor

that has d equal eigenvalues, where d is not equal to 1 or N. (The description applies to these
cases too, but we use the above direct computations, which are faster.) Let �v again be the vector
connecting the voting and receiving points. It can be decomposed into �vt in the tangent space
of the voter and �vn in the normal space. The new vote generation process is based on the
observation that curvature in Eq. (4.5) is not a factor when θ is zero, or, in other words, if
the voting stick is orthogonal to �vn. We can exploit this by defining a new basis for the normal
space of the voter that includes �vn. The new basis is computed using the Gramm–Schmidt
procedure. The vote is then constructed as the tensor addition of the votes cast by stick tensors
parallel to the new basis vectors. Among those votes, only the one generated by the stick tensor
parallel to �vn is not parallel to the normal space of the voter and curvature has to be considered.
All other votes are a function of the length of �vt only. See Fig. 4.2 for an illustration in 3D.
Analytically, the vote is computed as the summation of d stick votes cast by the new basis of the
normal space. Let NS denote the normal space of the voter and let �bi , i ∈ [1, d], be a basis for
it with �b1 being parallel to �vn. If vote() is the function that, given a unit vector as an argument,
generates the stick vote from a unit stick tensor parallel to the argument to the receiver, then
the vote from a generic tensor with normal space N is given by

T = vote(�b1) +
∑

i∈[2,d]

vote(�bi ). (4.8)
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In the above equation, all the terms are pure stick tensors parallel to the voters, except
the first one which is affected by the curvature of the path connecting the voter and receiver
and is orthogonal to it. Therefore, computation of the last d − 1 terms is equivalent to applying
the Gaussian weight to the voting sticks and adding them at the position of the receiver. Only
one vote requires a full computation of orientation and magnitude. This makes the proposed
scheme computationally inexpensive.

Tensors with unequal eigenvalues are decomposed before voting according to Eq. (4.2).
Then, each component votes separately and the vote is weighted by λd − λd+1, except the ball
component whose vote is weighted by λD.

4.3.3 Vote Analysis

Vote analysis is a direct generalization of the original formulation, with the only difference
being that N + 1 structure types are possible in an N D space. Each point casts a vote to all
neighbors within the distance at which vote magnitude attenuates to 3% of the maximum.
The votes are accumulated at each point by tensor addition. The eigensystem of the resulting
tensor is computed and the tensor is decomposed as in Eq. (4.2). The estimate of local intrinsic
dimensionality is given by the maximum gap in the eigenvalues. For instance, if λ1 − λ2 is the
maximum difference between two successive eigenvalues, the dominant component of the tensor
is that which has one normal. Quantitative results in dimensionality estimation are presented
in the next chapter. In general, if the maximum eigenvalue spread is λd − λd+1, the estimated
local intrinsic dimensionality is N − d , and the manifold has d normals and N − d tangents.
Moreover, the first d eigenvectors that correspond to the largest eigenvalues are the normals to
the manifold, and the remaining eigenvectors are the tangents.

4.4 COMPARISON AGAINST THE OLD TENSOR
VOTING IMPLEMENTATION

In this section, we evaluate the effectiveness of the new implementation by performing the
same experiments in 3D using both old and new vote generation schemes. Fig. 4.3 shows
a cut, containing the voter, of the 3D ball voting field computed using the old and the new
implementation. Shown are the projections of the eigenvectors on the selected plane after voting
by a ball voter placed on the plane.

We do not attempt to directly compare vote magnitudes, since they are defined differently.
In the old implementation, the total energy of the ball field is normalized to be equal to that of
the stick field. In the new implementation, the magnitude of the ball vote is the same as that of
the stick vote. This makes the total energy of the new field higher than that of the stick field,
since there is no attenuation due to curvature at any orientation, and voting takes place at all
orientations, since the 45◦ cut-off only applies to stick voters.
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(a) Old implementation (b) New implementation

FIGURE 4.3: Visualization of the ball voting field using the old and the new implementation. Shown
are the curve normals, as well as the tangents that represent the ball component. The ball component
in the old implementation has been exaggerated for visualization purposes, while it is zero with the new
implementation.

A test that captures the accuracy of the orientation conveyed by the vote is a comparison
between the tangent of the ball vote and ground truth, which should be along the line connecting
the voter and receiver. The old implementation was off by 1.25 × 10−5 degrees, while the new
one was off by 1.38 × 10−5 degrees.

We also compared the two implementations in a simple experiment of local structure
estimation. We sampled unoriented points from a sphere and a plane in 3D, and compared the
estimated surface normals against the ground truth. Note that the coordinates of the points are
quantized to make the evaluation fair for the old implementation, which only operates with
integer coordinates, due to the data structure that stores the tokens. The inputs, which are
encoded as unit balls, can be seen in Fig. 4.4(a). Surface and curve saliency maps for horizontal
and vertical cuts of the data using both implementations are shown in Fig. 4.5. The saliency

(a) Noise free (b) 4:1 outliers:inliers

FIGURE 4.4: Sphere and plane inputs used for comparing the old and the new implementation of
tensor voting.
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(a) Surface saliency z=120 (a) Surface saliency y=0 (a) Curve saliency z=0

FIGURE 4.5: Cuts of surface and curve saliency maps of the sphere and plane data. Darker areas
correspond to higher saliency while white corresponds to zero. The top row was generated with the old
implementation and the bottom row with the new one. The cuts of the curve saliency maps contain the
plane and show that the intersection of the sphere and the plane is the most salient curve in the data.

maps are normalized so that their brightness covers the entire range from black to white.
They are qualitatively almost identical for both cases. Quantitative results are presented in
Table 4.1.

The accuracy in surface orientation estimation is similar in both cases, with a slight edge
in favor of the new implementation. The main source of inaccuracy in the old implementation
is the need for linear interpolation using the entries of the look-up table. It turns out that
its effects on performance are similar to those of computing an approximate vote at the exact
receiver position using the new approach. Since the difference in ball vote magnitudes becomes

TABLE 4.1: Results on the Sphere and Plane Dataset:
Average Error Rate in Degrees for Normal Orientation
Estimation Using the Implementation of [60] and the
One Proposed Here

σ2 OLD TV NEW TV

50 2.24 1.60

100 1.47 1.18

200 1.09 0.98

500 0.87 0.93
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TABLE 4.2: Results on the Sphere and Plane Dataset: Average Error
Rate in Degrees for Normal Orientation Estimation Using the Imple-
mentation of [60] and the One Proposed Here

OUTLIERS:INLIERS σ2 OLD TV NEW TV

1:1 50 3.03 2.18

100 2.19 1.73

200 1.75 1.48

500 1.44 1.38

2:1 50 3.59 2.53

100 2.61 2.02

200 2.10 1.74

500 1.74 1.62

5:1 50 4.92 3.36

100 3.59 2.71

200 2.90 2.33

500 2.39 2.15

8:1 50 5.98 3.98

100 4.33 3.20

200 3.49 2.77

500 2.89 2.62

important only when not all voters are ball tensors, we performed a second pass of tensor voting
using the accumulated tensors from the first pass as voters. For σ 2 = 100, the error was 1.31◦

with the old implementation and 1.20◦ with the new one.
We, then, added noise to the data and repeated the experiment to test whether noise

robustness is affected by the proposed approximation. The results are shown in the following
table and are similar to the noise-free case. A safe conclusion is that noise robustness is not
compromised by the new approximation.

It should also be noted here that the efficiency benefits of the new implementation
become more apparent as the dimensionality increases. The inapplicability of the original im-
plementation to high-dimensional datasets does not allow us to demonstrate the improvement
quantitatively.
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4.5 COMPUTER VISION PROBLEMS IN HIGH DIMENSIONS
In this section, we briefly review research on computer vision that has been addressed via ten-
sor voting in high-dimensional spaces. By “high dimensional” here we refer to spaces with
more than three dimensions. Results on machine learning problems with hundreds of dimen-
sions are presented in the next chapter. The work presented here preceded the new efficient
implementation, which would have achieved the same results faster.

4.5.1 Motion Analysis

Among the problems we addressed in high-dimensional spaces was perceptual organization in
the absence of monocular information using visual motion cues only [73]. The representation
is in the form of 4D tensors, since the goal is to enforce smoothness in the joint space of image
coordinates and horizontal and vertical velocity. Salient solutions are characterized by smooth,
in shape, image regions that move in a coherent way, thus receiving maximum support from all
nearby pixels that have similar velocities.

After demonstrating the validity of our approach on synthetic data, we applied it to real
images [72, 74, 75]. Candidate matches are generated by multiple cross correlation windows
applied to all pixels, as in the case of stereo, but, since the epipolar constraint does not hold, the
search for matches is done in 2D neighborhoods in the other image. The tokens are initialized
as 4D ball tensors and tensor voting is performed to compute the saliency of the tokens. The
token with the largest “surface” saliency (λ2 − λ3) is selected as the correct match for each pixel
after outliers with low saliency are removed from the dataset. Since the input candidate matches
are generated using correlation windows, foreground overextension described in Section 3.6
affects the quality of the results. Nicolescu and Medioni [75] proposed an edge-based method
to correct overextensions. The initial motion boundaries estimated by tensor voting are used to
define areas where the actual boundaries are, under the assumption that the errors are at most
equal to the width of the occluded regions plus half the width of the matching windows. An
edge detector is applied to these areas, taking into account the estimated orientation of the
boundaries, and the most salient edges are detected and used to trim the overextensions in the
velocity maps. Results can be seen in Fig. 4.6.

4.5.2 Epipolar Geometry Estimation

A parameter estimation problem that occurs often in computer vision is epipolar geometry esti-
mation from putative pixel correspondences in two images. The epipolar geometry is described
by the fundamental matrix, which is a 3 × 3 matrix in augmented space and thus has eight
degrees of freedom. Therefore, one needs eight correct correspondences to obtain the funda-
mental matrix using linear estimation. Typically, iterative random sampling algorithms such as
RANSAC are applied followed by nonlinear refinement. See [27] for an excellent treatment.
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(a) Input image (b) Initial matches

(c) Initial boundaries (d) Corrected boundaries

FIGURE 4.6: Results on the “candybox” example. The initial matches are shown rotated in (x, y, vx)
space. The second row shows results before discontinuity localization and after the edge-based correction.

A different, noniterative approach was proposed by Tang, Medioni, and Lee [105, 106]. The
problem of finding a structure with eight degrees of freedom is posed as finding the most domi-
nant hyperplane in an 8D space in which the constraint for the fundamental matrix provided by
each putative pixel correspondence is represented as a point. Correct matches align in this space
to form a hyperplane that becomes salient among the clutter generated by erroneous matches.
Similar parameter estimation problems, such as the estimation of projection matrices, 2D and
3D homographies, and other transformations that are defined by sets of inliers corrupted by
numerous outliers, can be addressed in the same way. Each inlier provides one or more linear
constraints on the parameters of the transformation. The points can be viewed as points in
a high-dimensional space, while the transformations as salient structures comprised of these
points. Tensor voting provides a noniterative, model-free method for finding these structures, as
well as estimating the actual number of degrees of freedom. The latter can help in the detection
of degenerate cases.

The problem of estimating the epipolar geometry given tentative pixel correspondences in
two images was later attacked from a different angle by Tong, Tang, and Medioni in [110, 111].
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This approach exploits the observation that correct correspondences form cones in the 4D joint
image space, where the coordinates are the concatenation of the coordinates of the two images.
Independently moving objects generate different cones and follow separate epipolar geometries
that are defined by the relative motion of the camera and each object. All available epipolar
geometries can be recovered by extracting all salient cones in the joint image space.

4.5.3 Texture Synthesis

A computer vision application in high dimensions was presented by Jia and Tang in [35, 36],
where they address texture synthesis using tensor voting. Processing begins by identifying regions

(a) Input image (b) Removed sign

(c) Input image (d) Removed palm tree

FIGURE 4.7: Results on the “signpost” and “beach” images from [35] where the sign and a palm tree,
respectively, have been removed and replaced by synthesized texture that matches the background.
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in the image where the texture has to be seamlessly replaced with texture from neighboring
regions. The boundaries of these regions are extrapolated in the region where the synthesis will
take place in a way that looks perceptually plausible. Then, the missing texture is synthesized
via tensor voting in an N D space, where N is the size of the window that is used to represent
“textons”. It is automatically chosen to match the properties of the input image. For a value
of N equal to 7, for instance, textons are represented by 7 × 7 windows and new textons are
synthesized by tensor voting in a 50D space, where the first 49 dimensions are the elements
of the square window stacked in a vector and the fiftieth dimension is the maximum intensity.
Representative results on object removal from challenging images are shown in Fig. 4.7.

4.6 DISCUSSION
In this chapter, we have presented a significant contribution to the tensor voting framework. It
allows us to apply our methodology to problems where the properties of tensor voting, such as its
noise robustness and lack of global computations, seemed appropriate and desirable. However,
the faithful adherence to exact vote generation made computational and storage requirements
impractical. Experiments on data with ground truth show that the new approximation is equally
effective in orientation estimation and also maintains the noise robustness of the original im-
plementation. These results suggest that the main useful source of uncertainty in the tensors
comes as a result of the tensor addition of votes at each token, and not from the uncertainty
component of each vote, the computation of which we bypass here.

We have also, very briefly, presented some earlier work on computer vision problems
with dimensionality higher than 3. Even though this research was carried out with previous
high-dimensional implementations of tensor voting, it shows that there are numerous computer
vision applications that can be addressed as perceptual organization in spaces beyond the 2D
image domain or the 3D Euclidean world.

In the following chapter, we demonstrate outstanding results in problems such as dimen-
sionality estimation, manifold learning, nonlinear interpolation, geodesic distance measure-
ment, and function approximation. We anticipate that the work presented here will serve as the
groundwork for research in domains that include instance-based learning, pattern recognition,
classification, data mining, and kinematics.
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C H A P T E R 5

Dimensionality Estimation,

Manifold Learning and

Function Approximation

Machine learning is a research area in artificial intelligence that aims at the improvement of the
behavior of agents through diligent study of observations [84]. It deals with the development
of algorithms that analyze the observed data to identify patterns and relationships, in order to
predict unseen data. Here, we address a subfield of machine learning that operates in continuous
domains and learns from observations that are represented as points in a Euclidean space. This
type of learning is termed instance-based or memory-based learning [62]. Learning in discrete
domains, which attempts to infer the states, transitions and rules that govern a system, or the
decisions and strategies that maximize a utility function, is out of the scope of our research.

The problem of learning a target function based on instances is equivalent to learning
a manifold formed by a set of points, and thus being able to predict the positions of other
points on the manifold. The first task, given a set of observations, is to determine the intrinsic
dimensionality of the data. This can provide insight for the complexity of the system that
generates the data, the type of model needed to describe them, as well as the actual degrees
of freedom of the system, which are not necessarily equal with the dimensionality of the input
space. We also estimate the orientation of a potential manifold that passes through each point
by tensor voting.

Instance-based learning has recently received renewed interest from the machine learning
community, due to its many applications in the fields of pattern recognition, data mining, kine-
matics, function approximation and visualization, among others. This interest was sparked by a
wave of new algorithms that advanced the state of the art and are capable of learning nonlinear
manifolds in spaces of very high dimensionality. These include kernel PCA [98], locally linear
embedding (LLE) [82], Isomap [109] and charting [10], which are reviewed in Section 5.1.
They aim at reducing the dimensionality of the input space in a way that preserves certain geo-
metric or statistical properties of the data. Isomap, for instance, attempts to preserve the geodesic
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distances between all points as the manifold is “unfolded” and mapped to a space of lower di-
mension. A common assumption is that the desired manifold consists of locally linear patches.
We relax this assumption by only requiring that manifolds be smooth almost everywhere.

We take a different path to learning low dimensional manifolds from instances in a high
dimensional space. Whereas traditional methods address the problem as one of dimensionality
reduction, we propose an approach for the unsupervised learning of manifold structure in a
way that is useful for tasks such as geodesic distance estimation and nonlinear interpolation,
that does not embed the data in a lower dimensional space. We compute local dimensionality
estimates, but instead of performing dimensionality reduction, we perform all operations in
the original input space, taking into account the estimated dimensionality of the data. This
allows us to process datasets that are not manifolds globally, or ones with varying intrinsic
dimensionality. The latter pose no additional difficulties, since we do not use a global estimate
for the dimensionality of the data. Results have been presented in [69]. Moreover, outliers,
boundaries, intersections or disconnected components are handled naturally as in 2-D and 3-D.
Non-manifolds, such as hyper-spheres, can also be processed without any modifications of the
algorithm since we do not attempt to estimate a global “unfolding”. Quantitative results for the
robustness against outliers that outnumber the inliers are presented in Sections 5.3 and 5.4.

Manifold learning serves as the basis for the last part of our research, which addresses
function approximation. The approximation of an unknown function based on observations is
critical for predicting the responses of both natural and artificial systems. The main assumption
is that some form of smoothness exists in the data [80] and unobserved outputs can be
predicted from previously observed outputs for similar inputs. The distinction between low and
high-dimensional spaces is necessary, since highly specialized methods for low-dimensional
cases exist in the literature. Here, we address the approximation of multivariate functions,
and thus employ methods that can be generalized to high dimensions. A common practice
is to treat functions with multiple outputs as multiple single-output functions. We adopt this
scheme here, even though nothing prohibits us from directly approximating multiple-input
multiple-output functions.

As suggested by Poggio and Girosi [80], function approximation from samples and hy-
persurface inference are equivalent. Our approach is local, nonparametric and has a weak prior
model of smoothness. The fact that no model other than local constant curvature connections
between the voter and receiver is used allows us to handle a broad range of functions. Also
contributing to this is the absence of global computations and parameters, such as the number
of local models in an ensemble, that need to be selected. The inevitable trade-off between over-
smoothing and over-fitting is regulated by the selection of the scale, which is equivalent to the
radius of the voting neighborhood. Small values reduce the size of the voting neighborhood and
preserve details better, but are more vulnerable to noise and over-fitting. Large values produce
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smoother approximations that are more robust to noise. As shown in Section 5.5, the results are
very stable with respect to the scale. As most of the local methods reviewed in the next section, our
algorithm is memory based. This increases flexibility, since we can process data that do not con-
form to any model, but also increases storage requirements, since all samples are kept in memory.

This chapter is organized as follows: an overview of related work including the algorithms
that are compared with ours is given in the next section; results in dimensionality estimation
are presented in Section 5.2, while results in local structure estimation are presented in Section
5.3; our algorithm for measuring distances on the manifold and a quantitative comparison with
state of the art methods is presented in Section 5.4; an algorithm for generating outputs for
unobserved inputs that is used for function approximation is described in Section 5.5; finally,
Section 5.6 concludes the chapter.

5.1 RELATED WORK
In this section, we present related work in the domains of dimensionality estimation, manifold
learning and multivariate function approximation.

Dimensionality Estimation. Bruske and Sommer [13] present an approach for dimensionality
estimation where an optimally topology preserving map (OTPM) is constructed for a subset of
the data after vector quantization. Principal Component Analysis (PCA) [37] is then performed
for each node of the OTPM under the assumption that the underlying structure of the data
is locally linear. The average of the number of significant singular values at the nodes is the
estimate of the intrinsic dimensionality.

Kégl [41] estimates the capacity dimension of the manifold, which does not depend
on the distribution of the data, and is equal to the topological dimension, using an efficient
approximation based on packing numbers. Costa and Hero [14] estimate the intrinsic dimension
of the manifold and the entropy of the samples using geodesic-minimal-spanning trees. The
method, similarly to Isomap [109], considers global properties of the adjacency graph and
thus produces a single global estimate. Levina and Bickel [52] compute maximum likelihood
estimates of dimensionality by examining the number of neighbors included in spheres the radius
of which is selected in such a way that they contain enough points and that the density of the
data contained in them can be assumed constant. These requirements cause an underestimation
of the dimensionality when it it very high.

Manifold Learning. Here, we briefly present recent approaches for learning low dimensional
embeddings from points in high dimensional spaces. Most of them are extensions of linear
techniques, such as Principal Component Analysis (PCA) [37] and Multi-Dimensional Scaling
(MDS) [15], based on the assumption that nonlinear manifolds can be approximated by locally
linear patches.
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In contrast to other methods, Schölkopf et al. [98] propose kernel PCA that attempts to
find linear patches using PCA in a space of typically higher dimensionality than the input space.
Correct kernel selection can reveal the low dimensional structure of the input data after mapping
the instances to a space of higher dimensionality. For instance a second order polynomial kernel
can detect quadratic surfaces since they appear as planes in the high-dimensional space.

Locally Linear Embedding (LLE) was presented by Roweis and Saul [82, 90]. The
underlying assumption is that if data lie on a locally linear, low-dimensional manifold, then
each point can be reconstructed from its neighbors with appropriate weights. These weights
should be the same in a low-dimensional space, the dimensionality of which is greater or equal
to the intrinsic dimensionality of the manifold, as long as the manifold is locally linear. The
LLE algorithm computes the basis of such a low-dimensional space. The dimensionality of the
embedding, however, has to be given as a parameter, since it cannot always be estimated from
the data [90]. Moreover, the output is an embedding of the given data, but not a mapping from
the ambient to the embedding space. Global coordination of the local embeddings, and thus a
mapping, can be computed according to [108]. LLE is not isometric and often fails by mapping
distant points close to each other.

Tenenbaum et al. [109] propose Isomap, which is an extension of MDS that uses geodesic
instead of Euclidean distances. This allows Isomap to handle nonlinear manifolds, whereas
MDS is limited to linear data. The geodesic distances between points are approximated by
graph distances. Then, MDS is applied on the geodesic distances to compute an embedding
that preserves the property of points to be close or far away from each other. Due to its global
formulation, Isomap’s computational cost is considerably higher than that of LLE. The benefit
is that not only it preserves distances between nearest neighbors, but between all points. In
addition, it can handle points not in the original dataset, and perform interpolation. C-Isomap,
a variation of Isomap that can be applied to data with intrinsic curvature, but known distribution,
and L-Isomap, a faster alternative that only uses a few landmark point for distance computations,
have also been proposed in [16]. Isomap and its variants are limited to convex datasets.

The Laplacian Eigenmaps algorithm was developed by Belkin and Niyogi [6]. It com-
putes the normalized graph Laplacian of the adjacency graph of the input data, which is an
approximation of the Laplace-Beltrami operator on the manifold. It exploits locality preserving
properties that were first observed in the field of clustering. The Laplacian Eigenmaps algorithm
can be viewed as a generalization of LLE, since the two become identical when the weights of
the graph are chosen according to the criteria of the latter. Much like LLE, the dimensionality
of the manifold also has to be provided, the computed embeddings are not isometric and a map-
ping between the two spaces is not produced. The latter is addressed in [28] where a variation
of the algorithm is proposed.

Donoho and Grimes [18] propose Hessian LLE (HLLE), an approach similar to the
above, which computes the Hessian instead of the Laplacian of the graph. The authors claim
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that the Hessian is better suited than the Laplacian for detecting linear patches on the manifold.
The major contribution of this approach is that it proposes a global, isometric method, which,
unlike Isomap, can be applied to non-convex datasets. The need to estimate second derivatives
from possibly noisy, discrete data makes the algorithm more sensitive to noise than the others
reviewed here.

Semidefinite Embedding (SDE) was proposed by Weinberger and Saul [117] who address
the problem of manifold learning by enforcing local isometry. The lengths of the sides of triangles
formed by neighboring points are preserved during the embedding. These constraints can be
expressed in terms of pairwise distances and the optimal embedding can be found by semidefinite
programming. The method is the most computationally demanding reviewed here. However,
it can reliably estimate the underlying dimensionality of the inputs by locating the largest gap
between the eigenvalues of the Gram matrix of the outputs. Similarly to our approach, this
estimate does not require a threshold.

Other research related to ours includes the charting algorithm of Brand [10]. It computes
a pseudo-invertible mapping of the data, as well as the intrinsic dimensionality of the manifold.
The latter is estimated by examining the rate of growth of the number of points contained
in hyper-spheres as a function of the radius. Linear patches, areas of curvature and noise can
be discriminated against using the proposed measure. Affine transformations that align the
coordinate systems of the linear patches are computed at the second stage. This defines a global
coordinate system for the embedding and thus a mapping between the input space and the
embedding space.

Wang et al. [116] propose an adaptive version of the local tangent space alignment (LTSA)
of Zhang and Zha [127], a local dimensionality reduction method that is a variation of LLE.
Wang et al. address a limitation of most of the approaches presented in this section, which is
the use of a fixed number of neighbors for all points in the data. This causes serious problems
if that number is not selected properly, for points near boundaries, or if the density of the data
is not approximately constant.

The difference between our approach and those of [10, 13, 14, 41, 52, 117] is that ours
produces reliable dimensionality estimates at the point level, which do not have to be averaged
over the entire dataset. While this is not important for datasets with constant dimensionality,
the ability to estimate local dimensionality reliably becomes a key factor when dealing with data
generated by different unknown processes. Given reliable local estimates, the dataset can be
segmented in components with constant dimensionality.

Function Approximation. Neural networks are often employed as global methods for function
approximation. Poggio and Girosi [80] addressed function approximation in a regularization
framework implemented as a three-layer neural network. They view the problem as hypersurface
reconstruction, where the only reasonable assumption is that of smoothness. The emphasis is
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on the selection of the appropriate approximating functions and optimization algorithm. Other
global methods include the work of Sanger [87], Barron [3], Breiman [11], Saha et al.[85], Xu
et al. [122] and Mitaim and Kosko [61].

Lawrence et al. [48] compared a global approach using a multi-layer perceptron neu-
ral network with a linear local approximation model. They found that the local model
performed better when the density of the input data deviated a lot from being uniform.
Furthermore, the local model allowed for incremental learning and cross-validation. On
the other hand, it showed poorer generalization, slower performance after training and re-
quired more memory, since all input data had to be stored. The global model performed
better in higher dimensions, where data sparsity becomes a serious problem for the local
alternative.

Schaal and Atkenson [94] proposed a nonparametric, local, incremental learning ap-
proach based on receptive field weighted regression. The approach is truly local since the
parameters for each model and the size and shape of each receptive field are learned inde-
pendently. The provided mechanisms for the addition and pruning of local models enable
incremental learning as new data points become available. Atkenson et al. [2] survey local
weighted learning methods and identify the issues that must be taken into account. These
include the selection of the distance metric, the weighting function, prediction assessment
and robustness to noise. The authors argue that in certain cases no values of the parameters
of a global model can provide a good approximation of the true function. In these cases, a
local approximation using a simpler, even linear model, is a better approach than increasing
the complexity of the global model. Along these lines, Vijaykumar and Schaal [115] pro-
posed locally weighted projection regression, an algorithm based on successive univariate re-
gressions along projections of the data in directions given by the gradient of the underlying
function.

We also opt for a local approach and address the problem as manifold learning. Note,
however, that we are not limited to functions that are strictly manifolds. The recent group
of manifold learning algorithms based on dimensionality reduction, with the exception of the
adaptive local tangent space alignment method [116], is not applicable for function approxi-
mation. This is because they compute neighborhood relationships in the form of a graph, but
do not compute the geometric structure of the observations and thus cannot generate new,
unobserved instances on the manifold. Using tensor voting, we are able to reliably estimate
the normal and tangent space at each sample, as described in the following section. These
estimates allow us to perform nonlinear interpolation and generate outputs for unobserved in-
puts, even under severe noise corruption. Since the votes are weighted, sensitivity to the scale
of voting and outliers is small, as demonstrated by the experiments in the remainder of the
paper.
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FIGURE 5.1: The “Swiss Roll” dataset in 3-D

5.2 DIMENSIONALITY ESTIMATION
In this section, we present experimental results in dimensionality estimation. As described in
Section 4.3.3, the intrinsic dimensionality at each point can be found as the maximum gap in
the eigenvalues of the tensor after votes from its neighboring points have been collected. All
inputs consist of unoriented points and are encoded as ball tensors.

Swiss Roll. The first experiment is on the “Swiss Roll” dataset, which is available online at
http://isomap.stanford.edu/. It contains 20, 000 points on a 2-D manifold in 3-D (Fig. 5.1).
We perform a simple evaluation of the quality of the orientation estimates by projecting the
nearest neighbors of each point on the estimated tangent space and measuring the percentage of
the distance that has been recovered. This is a simple measure of the accuracy of the local linear
approximation of the nonlinear manifold. The percentage of points with correct dimensionality
estimates and the percentage of recovered distances for the 8 nearest neighbors as a function of
σ , can be seen in Table 5.1. The performance is the same at boundaries, which do not pose any
additional difficulties to our algorithm. The number of votes cast by each point ranges from 187

TABLE 5.1: Rate of correct dimensionality estimation and execution times as
functions of σ for the “Swiss Roll” dataset.

CORRECT DIM. PERC. OF DIST. TIME (SEC)

σ ESTIMATION (%) RECOVERED (%)

50 99.25 93.07 7
100 99.91 93.21 13
200 99.95 93.19 30
300 99.92 93.16 47
500 99.68 93.03 79
700 99.23 92.82 112

1000 97.90 92.29 181
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(a) Input (b) 1-D points

(c) 2-D points (d) 3-D points

FIGURE 5.2: Data of varying dimensionality in 4-D. The first three axes of the input and the classified
points are shown. Note that the hyper-sphere is empty in 4-D, but appears as a full sphere when visualized
in 3-D.

for σ = 50 to 5440 for σ = 1000. The reported processing times are for a Pentium 4 processor
at 2.8 GHz. A conclusion that can safely be drawn from the table is that the accuracy is high
and stable for a large range of values of σ .

Structures with Varying Dimensionality. The second dataset is in 4-D and contains points
sampled from three structures: a line, a 2-D cone and a 3-D hyper-sphere. The hyper-sphere is
a structure with three degrees of freedom. It cannot be unfolded unless we remove a small part
from it. Figure 5.2(a) shows the first three dimensions of the data. The dataset contains a total
135, 864 points, which are encoded as ball tensors. Tensor voting is performed with σ = 200.
Figures 5.2(b-d) show the points classified according to their dimensionality. Performing the
same analysis as above for the accuracy of the tangent space estimation, 91.04% of the distances
of the 8 nearest neighbors of each point lie on the tangent space, even though both the cone
and the hyper-sphere have intrinsic curvature and cannot be accurately approximated by linear
models. All the methods presented in Sec. 5.1 fail for this dataset because of the presence of
structures with different dimensionalities and because the hyper-sphere cannot be unfolded.
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TABLE 5.2: Rate of correct dimensionality estimation for high dimensional data

INTRINSIC LINEAR QUADRATIC SPACE DIM.

DIM. MAPPINGS MAPPINGS DIM. EST. (%)

4 10 6 50 93.6
3 8 6 100 97.4
4 10 6 100 93.9
3 8 6 150 97.3

Data in High Dimensions. The datasets for this experiment were generated by sampling a few
thousand points from a low-dimensional space (3- or 4-D) and mapping them to a medium
dimensional space (14- to 16-D) using linear and quadratic functions. The generated points
were then rotated and embedded in a 50- to 150-D space, while outliers drawn from a uniform
distribution were added to the dataset. The percentage of correct point-wise dimensionality
estimates after tensor voting can be seen in Table 5.2.

5.3 MANIFOLD LEARNING
In this section, we present quantitative results on simple datasets in 3-D for which ground truth
can be analytically computed. In Section 5.4, we process the same data with state of the art
manifold learning algorithms and compare their results against ours. The two datasets are a
section of a cylinder and a section of a sphere shown in Fig. 5.3. The cylindrical section spans
150o and consists of 1000 points. The spherical section spans 90◦×90◦ and consists of 900
points. Both are approximately uniformly sampled. The points are represented by ball tensors,
assuming no information about their orientation. In the first part of the experiment, we compute

(a) Cylinder (b) Sphere (c) Noisy sphere

FIGURE 5.3: Datasets used in Sections 5.3 and 5.4
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TABLE 5.3: Results on the cylinder dataset. Shown in the first column is σ , in
the second is the average number of neighbors that cast votes to each point, in the
third the average error in degrees of the estimated normals, and in the fourth the
accuracy of dimensionality estimation.

σ NEIGHBORS ANGULAR ERROR DIM. ESTIM. (%)

10 5 0.06 4
20 9 0.07 90
30 9 0.08 90
40 12 0.09 90
50 20 0.10 100
60 20 0.11 100
70 23 0.12 100
80 25 0.12 100
90 30 0.13 100

100 34 0.14 100

local dimensionality and normal orientation as a function of scale. The results are presented in
Tables 5.3 and 5.4. The results show that if the scale is not too small, dimensionality estimation
is very reliable. For all scales the angular errors are below 0.4o . Similar results are obtained for
a large range of scales.

The same experiments were performed for the spherical section in the presence of outliers.
Quantitative results are shown in the following tables for a number of outliers that ranges
from 900 (equal to the inliers) to 5000. The latter dataset is shown in Fig. 5.3(c). Note that
performance was evaluated only on the points that belong to the sphere and the results are
shown in Table 5.5. Larger values of the scale prove to be more robust to noise, as expected. The
smallest values of the scale result in voting neighborhoods that include less than 10 points, which
are insufficient. Taking this into account, performance is still good even with wrong parameter
selection. Also note that one could reject the outliers by thresholding, since they have smaller
eigenvalues than the inliers, and perform tensor voting again to obtain even better estimates
of structure and dimensionality. Even a single pass of tensor voting, however, turns out to be
very effective, especially considering that no other method can handle such a large number of
outliers. Foregoing the low-dimensional embedding is a main reason that allows our method to
perform well in the presence of noise, since embedding random outliers in a low-dimensional
space would make their influence more detrimental. This is due to the structure imposed to
them by the mapping, which makes the outliers less random. It is also due to the increase in
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TABLE 5.4: Results on the sphere dataset. The columns are the same as in Table
5.3.

σ NEIGHBORS ANGULAR ERROR DIM. ESTIM. (%)

10 5 0.20 44
20 9 0.23 65
30 11 0.24 93
40 20 0.26 94
50 21 0.27 94
60 23 0.29 94
70 26 0.31 94
80 32 0.34 94
90 36 0.36 94

100 39 0.38 97

their density in the low-dimensional space compared to that in the original high-dimensional
space.

5.4 MANIFOLD DISTANCES AND NONLINEAR
INTERPOLATION

Learning the manifold structure from samples is an interesting problem. The ability to evaluate
intrinsic manifold distances between points and to interpolate on the manifold are more useful
for many applications. Here, we show how to compute the distance between any two points on
a manifold essentially by taking small steps on the manifold, collecting votes, estimating the
local tangent space and advancing on it until the destination is reached.

Processing begins by learning the manifold structure, as in the previous section, starting
from unoriented points that are represented by ball tensors. After tensor voting we obtain
dimensionality and orientation estimates. We can travel on the manifold by selecting a starting
point, which has to be on the manifold, and a target point or a desired direction (the vector
from the origin to the target). At each step, we can project the desired direction on the tangent
space of the current point and create a new point a small distance away. The tangent space
of the new point is computed by collecting votes from the neighboring points, as in regular
tensor voting. Note that the tensors used here are no longer balls, but the ones resulting from
the previous pass of voting. The process is illustrated in Fig. 5.4, where we start from point A

and wish to reach B. We project �t, the vector from A to B, on the estimated tangent space of
A and obtain its projection �p. Then, we take a small step along �p to point A1, on which we
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FIGURE 5.4: Nonlinear interpolation on the tangent space of a manifold

collect votes to obtain an estimate of its tangent space. The desired direction is then projected
on the tangent space of the new point and so forth until the destination is reached within ε.
The manifold distance between A and B is approximated by measuring the length of the path.
In the process, we have also generated a number of new points on the manifold, which may be
a desirable by-product for some applications.

TABLE 5.5: Results on the sphere dataset contaminated by noise. AE: error in
normal angle estimation in degrees, DE: correct dimensionality estimation (%).

OUTLIERS 900 3000 5000

σ AE DE AE DE AE DE

10 1.15 44 3.68 41 6.04 39
20 0.93 65 2.95 52 4.73 59
30 0.88 92 2.63 88 4.15 85
40 0.88 93 2.49 90 3.85 88
50 0.90 93 2.41 92 3.63 91
60 0.93 94 2.38 93 3.50 93
70 0.97 94 2.38 93 3.43 93
80 1.00 94 2.38 94 3.38 94
90 1.04 95 2.38 95 3.34 94

100 1.07 97 2.39 95 3.31 95
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TABLE 5.6: Error rates in distance measurements between pairs of points on the
manifolds. The best result of each method is reported along with the number of
neighbors used for the embedding (K ), or the scale σ in the case of tensor voting
(TV).

DATASET SPHERE CYLINDER

K ERR(%) K ERR(%)

LLE 18 5.08 6 26.52
Isomap 6 1.98 30 0.35
Laplacian 16 11.03 10 29.36
HLLE 12 3.89 40 26.81
SDE 2 5.14 6 25.57
TV (σ ) 60 0.34 50 0.62

The first experiment on manifold distance estimation is a quantitative evaluation against
some of the most widely used algorithms of the literature. For the results reported in Table 5.6,
we learn the local structure of the manifolds of the previous section using tensor voting. We
also compute embeddings using LLE [82], Isomap [109], Laplacian eigenmaps [6], HLLE
[18] and SDE [117]. Matlab implementations for these methods can be downloaded from the
following internet locations.

• LLE from http://www.cs.toronto.edu/˜roweis/lle/code.html
• Isomap from http://isomap.stanford.edu/
• Laplacian Eigenmaps from http://people.cs.uchicago.edu/˜misha/

ManifoldLearning/index.html
• HLLE from http://basis.stanford.edu/HLLE and
• SDE from http://www.seas.upenn.edu/˜kilianw/sde/download.htm.

We are grateful to the authors for making the core of their methods available to the community.
We intend to make our software publicly available as well.

The experiment is performed as follows. We randomly select 5000 pairs of points on each
manifold and attempt to measure the geodesic distance between the points of each pair in the
input space using tensor voting and in the embedding space using the other five methods. The
estimated distances are compared to the ground truth: r�θ for the sphere and

√
(r�θ )2 + (�z)2

for the cylinder. Among the above approaches, only Isomap and SDE produce isometric embed-
dings, and only Isomap preserves the absolute distances between the input and the embedding
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space. To make the evaluation fair, we compute a uniform scale that minimizes the error between
the computed distances and the ground truth for all methods, except Isomap for which it is
not necessary. Thus, perfect distance ratios would be awarded a perfect rating in the evaluation,
even if the absolute magnitudes of the distances are meaningless in the embedding space. For all
the algorithms, we tried a wide range for the number of neighbors, K . In some cases, we were
not able to produce good embeddings of the data for any value of K , especially for the cylinder.
Given the fact that we scale the data, errors above 20% indicate very poor performance, which
is also confirmed by visual inspection of the embeddings.

The evaluation of the quality of manifold learning based on the computation of pairwise
distances is a fair measure for the performance of all algorithms, since high quality manifold
learning should minimize distortions. In addition, the proposed evaluation does not require
operations that are not supported by some of the algorithms, such as the processing of points
not included in the training dataset. Quantitative results are presented in Table 5.6 along with
the value of K that is used. In the case of tensor voting, the same scale is used for both learning
the manifold and computing distances.

We also apply our method in the presence of 900, 3000 and 5000 outliers. Keep in mind
that the sphere and the cylinder datasets consist of 900 and 1000 points respectively. The
error rates using tensor voting for the sphere are 0.39%, 0.47% and 0.53% respectively. The
rates for the cylinder are 0.77%, 1.17% and 1.22%. Compared with the noise free case, these
results demonstrate that our approach degrades slowly in the presence of outliers. The best
performance achieved by any other method is 3.54% on the sphere dataset with 900 outliers
by Isomap. Complete results are shown in Table 5.7. In many cases, we were unable to achieve
useful embeddings for datasets with outliers. The results using tensor voting can be found in
Table 5.8.

Datasets with Varying Dimensionality and Intersections. For the final experiment of this section,
we create synthetic data in 3-D that were embedded in higher dimensions. The first dataset
consists of a line and a cone. The points are embedded in 50-D by three orthonormal 50-D
vectors and initialized as ball tensors. Tensor voting is performed in the 50-D space and a path
from point A on the line to point B on the cone is interpolated as in the previous experiment,
making sure that it belongs to the local tangent space, which changes dimensionality from one
to two. The data is re-projected back to 3-D for visualization in Fig. 5.5(a).

In the second part of the experiment, we generate an intersecting S-shaped surface and a
plane (a total of 11,000 points) and 30,000 outliers, and embed them in a 30-D space. Without
explicitly removing the noise, we interpolate between two points on the S (A and B) and a
point on the S and a point on the plane (C and D) and create the paths shown in Fig. 5.5(b)
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TABLE 5.7: Error rates in distance measurements between pairs of points on the
manifolds under outlier corruption. The best result of each method is reported
along with the number of neighbors used for the embedding (K ), or the scale σ in
the case of tensor voting (TV). Note that HLLE fails to compute an embedding
for small values of K , while SDE fails at both examples for all choices of K .

SPHERE CYLINDER

900 OUTLIERS 900 OUTLIERS

DATASET K ERR(%) K ERR(%)

LLE 40 60.74 6 15.40
Isomap 18 3.54 14 11.41
Laplacian 6 13.97 14 27.98
HLLE 30 8.73 30 23.67
SDE N/A N/A
TV (σ ) 70 0.39 100 0.77

(a) Line and cone (b) S and plane

FIGURE 5.5: Nonlinear interpolation in 50-D with varying dimensionality (a) and 30-D with inter-
secting manifolds under noise corruption (b).
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TABLE 5.8: Error rates for our approach in the presence of 3000 and 5000 outliers

DATASET σ ERROR RATE

Sphere (3000 outliers) 80 0.47
Sphere (5000 outliers) 100 0.53
Cylinder (3000 outliers) 100 1.17
Cylinder (5000 outliers) 100 1.22

re-projected in 3-D. The first path is curved, while the second jumps from manifold to manifold
still keeping the optimal path. (The outliers are not shown for clarity.) Processing time for 41,000
points in 30-D is 2 min. and 40 sec. on a Pentium 4 at 2.8 MHz using voting neighborhoods
that included an average of 44 points.

5.5 GENERATION OF UNOBSERVED SAMPLES AND
NONPARAMETRIC FUNCTION APPROXIMATION

In this section, we build upon the results of the previous section to address function approxi-
mation. As before, observations of inputs and outputs are available for training. The difference
with the examples of the previous sections is that the queries are given as input vectors with
unknown output values, and thus are of lower dimension than the voting space. The missing
module is one that can find a point on the manifold that corresponds to an input similar to the
query. Then, in order to predict the output y of the function for an unknown input �x, under
the assumption of local smoothness, we move on the manifold formed by the training samples
until we reach the point corresponding to the given input coordinates. To ensure that we always
remain on the manifold, we need to start from a point on it and proceed as in the previous
section.

One way to find a suitable starting point is to find the nearest neighbor of �x in the input
space, which has fewer dimensions than the joint input-output (voting) space. Then, we can
compute the desired direction in the low dimensional space and project it to the input-output
space. If many outputs are possible for a given input (if the data have not been generated by a
function in the strict sense), we have to either find neighbors at each branch of the function and
produce multiple outputs, or use other information, such as the previous state of the system, to
pursue only one of the alternatives. Figure 5.6 provides a simple illustration. We begin with a
point Ai in the input space. We proceed by finding its nearest neighbor among the projections
of the training data on the input space Bi . (Even if Bi is not the nearest neighbor the scheme
still works but possibly requires more steps.) The sample B in the input-output space that
corresponds to Bi is the starting point on the manifold. The desired direction is the projection
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FIGURE 5.6: Interpolation to obtain output value for unknown input point Ai

of the Ai Bi vector on the tangent space of B. Now, we are in the case described in Section 5.4,
where the starting point and the desired direction are known. Processing stops when the input
coordinates of the point on the path from B are within ε of Ai . The corresponding point A in
the input-output space is the desired interpolated sample.

As in all the experiments presented in this paper, the input points are encoded as ball ten-
sors, since we assume that we have no knowledge of their orientation. The first two experiments
we conducted were on functions proposed in [116]. The key difficulty with these functions is
the non-uniform density of the data. In the first example we attempt to approximate:

xi = [cos(ti ), sin(ti )]T ti ∈ [0, π], ti+1 − ti = 0.1(0.001 + |cos(ti )|) (5.1)

where the distance between consecutive samples is far from uniform. See Fig. 5.7(a) for the
inputs and the second column of Table 5.9 for quantitative results on tangent estimation for
152 points as a function of scale.

(a) Samples from Eq. 5.1 (b) Samples from Eq. 5.2

FIGURE 5.7: Input data for the two experiments proposed by [116]
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TABLE 5.9: Error in degrees for tangent estimation for the functions of Eq. 5.1
and Eq. 5.2

EQ. 5.1 EQ. 5.2 EQ. 5.2

σ 152 POINTS 180 POINTS 360 POINTS

10 0.60 4.52 2.45
20 0.32 3.37 1.89
30 0.36 2.92 1.61
40 0.40 2.68 1.43
50 0.44 2.48 1.22
60 0.48 2.48 1.08
70 0.51 2.18 0.95
80 0.54 2.18 0.83
90 0.58 2.02 0.68

100 0.61 2.03 0.57

In the second example, which is also taken from [116], points are uniformly sampled on
the t-axis from the [−6, 6] interval. The output is produced by the following function:

xi = [ti , 10e−t2
i ] (5.2)

The points, as can be seen in Fig. 5.7(b), are not uniformly spaced. The quantitative results
on tangent estimation accuracy for 180 and 360 samples from the same interval are reported
in the last two columns of Table 5.9. Naturally, as the sampling becomes denser, the quality of
the approximation improves. What should be emphasized here is the stability of the results as
a function of σ . Even with as few as 5 or 6 neighbors included in the voting neighborhood, the
tangent at each point is estimated quite accurately.

For the next experiment we approximate the following function, proposed by Schaal and
Atkenson [94]:

y = max{e−10x2
1 , e−50x2

2 , 1.25e−5(x2
1+x2

2 )} (5.3)

1681 samples of y are generated by uniformly sampling the [−1, 1] × [−1, 1] square. We
perform four experiments with increasing degree of difficulty. In all cases, after voting on the
given inputs, we generate new samples by interpolating between the input points. The four
configurations and noise conditions were:
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(a) Noise free inputs (b) Inputs with outliers

(c) Interpolated points with (d) Interpolated points with
outliers and perturbation outliers and perturbation in 60-D

FIGURE 5.8: Inputs and interpolated points for Eq. 5.3. The top row shows the noise-free inputs and
the noisy input set where only 20% of the points are inliers. The bottom row shows the points generated
in 3-D and 60-D respectively. In both cases the inputs were contaminated with outliers and Gaussian
noise.

• In the first experiment, we performed all operations with noise free data in 3-D.
• For the second experiment, we added 8405 outliers (five times more than the inliers) in a

2 × 2 × 2 cube containing the data.
• For the third experiment, we added Gaussian noise with variance 0.01 to the coordinates of

all points.
• Finally, we embedded the perturbed data (and the outliers) in a 60-D space, before voting

and nonlinear interpolation.

The noise-free and noisy input, as well as the generated points can be seen in Fig. 5.8.
We computed the mean square error between the outputs generated by our method and Eq. 5.3
normalized by the variance of the noise-free data. The NMSE for all cases is reported in Table
5.10. Robustness against outliers is due to the fact that the inliers form a consistent surface
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TABLE 5.10: Normalized MSE for the interpolated points of Eq. 5.3 under
different noise conditions

EXPERIMENT NMSE

Noise-free 0.0041
Outliers 0.0170
Outliers & N(0, 0.01) 0.0349
Outliers & N(0, 0.01) in 60-D 0.0241

and thus receive votes that support the correct local structure from other inliers. Outliers, on
the other hand, are random and do not form any structure. They cast and receive inconsistent
votes and therefore neither develop a preference for a certain manifold nor significantly disrupt
the structure estimates at the inliers. They can be removed by simple thresholding since all
their eigenvalues are small and almost equal. Note that performance in 60-D is actually better
since the interference by outliers is reduced as the dimensionality of the space increases. Tensor
voting is also robust against perturbation of the coordinates as long as its not biased to favor
a certain direction. If the perturbation is zero-mean, its effects on individual votes are almost
cancelled out, because they only contribute to the ball component of the accumulated tensor at
each point, causing small errors in orientation estimation.

Results on Real Data. The final experiment is on real data taken from the Univer-
sity of California at Irvine Machine Learning Repository, which is available online at:
http://www.ics.uci.edu/˜mlearn/MLRepository.html. We used the “Auto-Mpg Database” that
contains 392 samples of mileage per gallon (MPG) for automobiles as a function of seven
discrete and continuous variables: number of cylinders, displacement, horsepower, weight, ac-
celeration, model year and origin. Due to the large differences in the range of values for each
variable, we re-scaled the data so that the ratio of maximum to minimum standard deviation
of the variables was 10 : 1, instead of the original 1000 : 1. We randomly selected 314 samples,
approximately 80% of the data, for training and 78 for testing. Since the variables are correlated,
the samples do not form a manifold with seven degrees of freedom and do not cover the entire
input domain. In fact, the estimated intrinsic dimensionality at each point by tensor voting
ranges between one and three. After performing tensor voting on the 314 training samples, we
estimate the MPG for the testing samples. We begin by finding the nearest neighbor in the 7-D
input space for each testing sample and following a path on the estimated manifold in 8-D until
the desired 7-D input coordinates are reached. The value of the output variable (MPG) when
the input variables are equal to the query is the estimate returned by our method. The average
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error of our estimates with respect to the ground truth is 10.45%. Stable performance between
10.45% and 10.48% is achieved even as the average voting neighborhood ranges between 35
and 294 points. Considering that 314 points are hardly sufficient for inferring a description of
a complex 8-D space, the performance of our algorithm is promising. In fact the average error
we achieve is 2.67 miles per gallon, which we consider acceptable given the sparsity of the data.

5.6 DISCUSSION
We have presented an approach to manifold learning that offers certain advantages over the
state of the art. In terms of dimensionality estimation, we are able to obtain accurate estimates
at the point level. Moreover, since the dimensionality is found as the maximum gap in the
eigenvalues of the tensor at each point, no thresholds are needed. In most other approaches, the
dimensionality has to be provided, or, at best, an average intrinsic dimensionality is estimated
for the entire dataset, as in [10, 13, 14, 41, 117].

Even though tensor voting on the surface looks similar to other local, instance-based
learning algorithms that propagate information from point to point, the fact that the votes are
tensors and not scalars allows them to convey considerably more information. The properties of
the tensor representation, which can handle the simultaneous presence of multiple orientations,
allow the reliable inference of the normal and tangent space at each point. In addition, tensor
voting is very robust against outliers. This property holds in higher dimensions, where random
noise is even more scattered.

It should also be noted that the votes attenuate with distance and curvature. This is a
more intuitive formulation than using the K nearest neighbors with equal weights, since some
of them may be too far, or belong to a different part of the structure. The only free parameter
in our approach is σ , the scale of voting. Small values tend to preserve details better, while
large values are more robust against noise. The scale can be selected automatically by randomly
sampling a few points before voting and making sure that enough points are included in their
voting neighborhoods. The number of points that can be considered sufficient is a function
of the dimensionality of the space as well as the intrinsic dimensionality of the data. A full
investigation of data sufficiency is among the objectives of our future research. Our results show
that sensitivity with respect to scale is small, as shown in Tables 5.1, 5.3-5.5 and 5.9. The same
can be observed in the results for the Auto-Mpg Dataset, where the error fluctuates by 0.03%
as the average voting neighborhood ranges between 35 and 294 points.

Another important advantage of our approach is the absence of global computations,
which enables us to process datasets with very large number of points. Memory requirements
are in the order or O(MN2), where M is the number of points and N is the dimensionality of
the input space. Time requirements are reasonably low, at O(NM logM). The basic operations
are the sorting of the inputs which is O(NM logM), the retrieval of each point’s neighbors from
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a k-d tree, which is O(N logM) for each of the M points and vote generation, which is linear
in N for each voter and receiver pair. The eigen-decomposition of each tensor is O(N3 M),
but this is not the bottleneck in practice since, for our method to be effective, the number of
observations has to be considerably higher than the dimensionality of the space. Our algorithm
fails when the available observations do not suffice to represent the manifold. This occurs, for
instance, in the face with varying pose and illumination dataset of [109], where 698 instances
represent a manifold in 4096-D. Graph-based methods are more successful in such situations.
We do not view this fact as a serious limitation, since typical problems in machine learning are
the over-abundance of data and the need for efficient processing of large datasets.

The novelty of our approach to manifold learning is that it is not based on dimensionality
reduction, in the form of an embedding or mapping between a high and a low dimensional space.
Instead, we perform tasks such as geodesic distance measurement and nonlinear interpolation
in the input space. Experimental results show that we can perform these tasks in the presence
of outlier noise at high accuracy, even without explicitly removing the outliers from the data.
This is due to the fact that the accumulated tensors at the outliers do not develop any preference
for a particular structure and do not outweigh the contributions of the inliers. In addition,
outlier distribution remains random, since dimensionality reduction and an embedding to a
lower-dimensional space are not attempted. This choice also broadens the range of datasets
we can process. While isometric embeddings can be achieved for a certain class of manifolds,
we are able to process non-flat manifolds and even non-manifolds. The last experiment of
Section 5.4 demonstrates our ability to work with datasets of varying dimensionality or with
intersecting manifolds. To the best of our knowledge, this is impossible with any other method.
If dimensionality reduction is desired due to its considerable reduction in storage requirements,
a dimensionality reduction method, such as [6, 10, 18, 82, 109, 117], can be used after tensor
voting. The benefits of this process are in the form of noise robustness and smooth component
identification, with respect to both dimensionality and orientation, via tensor voting followed
by memory savings via dimensionality reduction.

We have also presented, in Section 5.5, a local nonparametric approach to function
approximation that combines the advantages of local methods with the efficient representation
and information propagation of tensor voting. Local function approximation methods are more
flexible in the type of functions they can approximate, since the properties of the function are
allowed to vary locally. Our approach, in particular, has no parameters, such as the number
and type of local models to be used, that have to be selected, besides the scale of the voting
field. Its drawback, in line with other local methods, is higher memory requirements, since the
data have to be kept in memory. We have shown that we can process challenging examples
from the literature under very adverse noise conditions. As shown in the example of Eq. 5.3,
even when 80% of the samples are outliers and the inliers are corrupted by noise in the form
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of perturbation, we are still able to correctly predict unobserved outputs. Perturbation of the
coordinates of the inliers by noise, especially when it is not zero-mean, can lead to errors in the
estimates, especially at small scales. However, robustness against this type of noise is still rather
high.

Our future research will focus on addressing the limitations of our current algorithm and
extending its capabilities. In the area of function approximation, the issue of approximating
functions with multiple branches for the same input value, which often appear in practical
applications, has to be handled more rigorously. In addition, an interpolation mechanism that
takes into account holes and boundaries should be implemented. We also intend to develop
an online, incremental version of our approach, which will be able to process data as they are
collected, instead of requiring the entire dataset to proceed. Potential applications of our work
include challenging real problems, such as the study of direct and inverse kinematics. One can
also view the proposed approach as learning data from a single class, which can serve as the
groundwork for an approach for supervised and unsupervised classification.
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C H A P T E R 6

Boundary Inference

Many computer vision and machine learning applications require the reliable detection of
boundaries, which is a particularly challenging problem in the presence of outliers and missing
data. Here, we propose to address it by complementing the original tensor voting framework,
which is limited to second-order properties, with first-order information. In this chapter, we de-
fine a first-order representation scheme that encodes the local distribution of neighbors around
a token. We also define a mechanism to vote for the terminations of perceptual structures,
such as the endpoints of curves. We take great care to ensure that the integration of first-order
properties is in accordance with the philosophy of the framework. Namely, we maintain the
capability to represent all structure types simultaneously and adhere to the principle of least
commitment. What should be noted is that the first-order representation, even though it is
complementary to the second-order one, can represent all boundary types. Some of the work
presented in this chapter has been published in [112].

6.1 MOTIVATION
The second-order formulation of the original tensor voting framework, as shown in [60] and
the previous chapters, is very effective for many perceptual organization problems. However,
it is unable to detect terminations of open structures such as the endpoints of curves. It can
be viewed as an excitatory process that facilitates grouping of the input data, and is able to
extrapolate and infer dense salient structures. The integration of boundary inference, via first-
order voting, provides a mechanism to inhibit the growth of the extracted structures. Polarity

vectors are now associated with each token and encode the support the token receives for being a
termination of a perceptual structure. The term polarity refers to the magnitude of the polarity
vector. Polarity is large when the majority of the token’s neighbors lie on the same side. The
direction of the polarity vector indicates the direction of the inliers of the perceptual structure
whose potential boundary is the token under consideration. The new representation exploits
the essential property of boundaries to have all their neighbors, at least locally, on the same side
of a half-space. As described in the remainder of the chapter, the voting scheme is identical to
that of the second-order case.
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(a) Input points (b) Second order tensors (c) Extracted curve using
after voting second order information

(d) Polarity vectors after (e) Inferred endpoints (f) Extracted curve using
First order voting secondand First order

information

FIGURE 6.1: Illustration of curve extraction with and without first-order voting. In the former case,
even though the curve normals have been estimated correctly, there is no way other than heuristic
thresholding to detect the endpoints and the curve extends beyond them, as seen in (c). On the other
hand, when first-order information is available as in (d), the endpoints can be inferred as in (e) and the
curve is terminated correctly as shown in (f ).

A simple illustration of first-order voting can be seen in Fig. 6.1. The inputs are a
few unoriented points that form a curve and some outliers (Fig. 6.1(a)), which are encoded
as ball tensors. After second-order voting takes place, the inliers of the curves develop high
stick saliency and the major axes of their tensors align with the normal orientation at each
position (Fig. 6.1(b)). If we try to extract a continuous curve based on the strictly second-
order formulation of [60], we begin marching from the most salient token and stop when
stick saliency drops below a threshold. The resulting curve is shown in Fig. 6.1(c), where
clearly it has grown beyond the endpoints, and is not consistent with the human interpretation
of the input. If, instead, we perform first-order voting before curve extraction, we obtain a
polarity vector at each token position (Fig. 6.1(d)). Nonmaximum suppression of polarity values
can, then, be performed along the direction of the polarity vectors to detect the endpoints
(Fig. 6.1(e)). Given the endpoints, the correct open curve can be extracted and is shown in
Fig. 6.1(f ).
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(a) Input points (b) Second order tensors (c) Polarity vectors after
after voting First order voting

(d) Second pass tensors (e) Inferred bounding curve (f) Region

FIGURE 6.2: Illustration of region extraction. The inputs, in (a), are unoriented points encoded as ball
tensors. The region inliers accumulate salient ball tensors after second-order voting, while the saliency of
the outliers is smaller, as shown in (b). The boundaries accumulate consistent first-order votes and thus
develop large polarity vectors shown in (c). These can be used as inputs for another pass of voting where
points on salient boundary curves receive support from their neighbors, (d). Then a continuous curve can
be extracted as in (e) and the desired region is the area enclosed by the bounding curve (f ).

The same principle can be applied to region inference. We propose to infer regions via
their boundaries, which in 2D are curves consisting of tokens with high polarity. Fig. 6.2
illustrates the process.

This chapter is organized as follows: Section 6.2 presents the first-order representation,
voting, and voting fields, and shows how they are naturally derived from their second-order
counterparts; Section 6.3 shows how the accumulated first- and second-order votes are ana-
lyzed to infer salient perceptual structures; Section 6.4 contains results on 2D and 3D synthetic,
but challenging, datasets; and Section 6.5 concludes the chapter with a discussion on the con-
tributions presented here and possible extensions.

6.2 FIRST-ORDER REPRESENTATION AND VOTING
The first-order information is conveyed by the polarity vector that encodes the likelihood of the
token being on the boundary of a perceptual structure. Such boundaries in 2D are the endpoints
of curves and the bounding curves of regions. In 3D, the possible types of boundaries are the
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FIGURE 6.3: Second- and first-order votes cast by a stick tensor located at the origin FIX.

bounding surfaces of volumes, the bounding curves of surfaces, and the endpoints of curves. The
direction of the polarity vector, in all cases, indicates the direction of the inliers of the perceptual
structure whose potential boundary is the token under consideration. As before, the second-
order tensor indicates the saliency of each type of perceptual structure the token belongs to and
its preferred normal and tangent orientations. The two parts of the representation combined
provide a much richer description of the tokens.

Now, we turn our attention to the generation of first-order votes. As shown in Fig. 6.3,
the first-order vote cast by a unit stick tensor at the origin is tangent to the osculating circle, the
smoothest path between the voter and receiver. Its magnitude, since nothing suggests otherwise,
is equal to that of the second-order vote according to Eq. (2.2). The first-order voting field for
a unit stick voter aligned with the z-axis is

SFO(l, θ, σ ) = DF(s , κ, σ )

[
− cos(2θ )
− sin(2θ )

]
. (6.1)

What should be noted is that tokens cast first- and second-order votes based on their
second-order information only. This occurs because polarity vectors have to be initialized to
zero since no assumption about structure terminations is available. Therefore, first-order votes
are computed based on the second-order representation which can be initialized (in the form of
ball tensors) even with no information other than the presence of a token. However, if first-order
information was available, as a result of an endpoint detector for instance, it can be used for
vote generation.

A simple illustration of how saliency and polarity values can be combined to infer curves
and their endpoints in 2D appears in Fig. 6.4. The input consists of a set of collinear unoriented
tokens which are encoded as ball tensors. The tokens cast votes to their neighbors and collect the
votes cast to them. The accumulated curve saliency can be seen in Fig. 6.4(b), where the dashed
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(a) Input set of unoriented tokens

(b) Curve saliency

(c) Polarity

FIGURE 6.4: Accumulated curve saliency and polarity for a simple input.

lines mark the limits of the input. The interior points of the curve receive more support and are
more salient than those close to the endpoints. Since second-order voting is an excitatory process,
locations beyond the endpoints are also compatible with the inferred line and receive consistent
votes from the input tokens. Detection of the endpoints based on the second-order votes is
virtually impossible since there is no systematic way of selecting a threshold that guarantees that
the curve will not extend beyond the leftmost and rightmost input tokens. The accumulated
polarity can be seen in Fig. 6.4(c). The endpoints appear clearly as maxima of polarity. The
combination of saliency and polarity allows us to infer the curve and terminate it at the correct
points.

Since in low-dimensional spaces it still makes sense to use precomputed voting fields,
we briefly describe their computation here. The 2D first-order stick voting field SFO is a vector
field, which at every position holds a vector that is equal in magnitude to the stick vote that
exists at the same position in the fundamental second-order stick voting field, but is tangent
to the smooth path between the voter and receiver instead of normal to it. The first-order ball

voting field BFO can be derived, as the second-order one, by integrating the contributions of a
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rotating stick tensor that casts first-order votes. The integration this time is approximated by
vector instead of tensor addition. In 2D this is accomplished as follows,

BFO(P ) =
∫ 2π

0
R−1

θ SFO(Rθ P )R−T
θ dθ (6.2)

where R θ is the rotation matrix to align SFO with ê1, the eigenvector corresponding to the
maximum eigenvalue (the stick component), of the rotating tensor at P . The 3D case is similar,
but now the rotating stick tensor spans the unit sphere,

BFO(P ) =
∫ π

0

∫ π

0
R−1

θφψ SFO(Rθφψ P )R−T
θφψdφdψ

∣∣∣
θ=0

(6.3)

where Rθφψ is the rotation matrix to align SFO with ê1, the eigenvector corresponding to
the maximum eigenvalue (the stick component), of the rotating tensor at P , and θ, φ, ψ are
rotation angles about the x-, y-, z-axis respectively. The first-order plate voting field PFO is
defined similarly. As in the second-order case, the voting fields are normalized so that the total
energy is equal to that of the stick voting field. The norm of the vector votes is used as the
measure of energy. Arbitrary tensors are decomposed into elementary tensors as in Eqs. (2.1)
and (2.8), which cast votes using the appropriate fields. The vote of each component is weighted
by the appropriate saliency value.

6.2.1 First-Order Voting in High Dimensions

In Chapter 4, we showed an approximation of vote generation that makes second-order vote
generation from arbitrary tensors in arbitrary dimensions feasible. Here, we show how to derive
the first-order votes in the same way as we derived the second-order ones. We consider three
cases:

• Stick voters cast first-order votes that lie in the 2D plane defined by the position and
orientation of the voter and the position of the receiver, are orthogonal to the second-
order ones, and point toward the voter. The computation is identical to that of Eq.
(6.1). Their magnitude is equal to that of the second-order vote.

• Ball voters cast first-order votes along �v, which is the vector parallel to the line connect-
ing the voter and the receiver. The first-order votes point toward the voter and their
magnitude is equal to the N − 1 equal nonzero eigenvalues of the second-order vote.

• Arbitrary voters with d equal eigenvalues, unlike the second-order case, require merely
one direct computation. Since the first-order vote has to be orthogonal to the normal
space of the second-order vote, and also be tangent to the circular arc connecting the
voter and receiver, it can be directly computed as the first-order vote cast by the stick
voter �b1 of Eq. (4.3.2). This vote satisfies all the requirements in terms of orientation
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and its magnitude decays with both the length and curvature of the arc, unless the
receiver belongs to the tangent space of the voter and θ is zero.

6.3 VOTE ANALYSIS
Vote collection for the first-order case is performed by vector addition. The accumulated result
is a vector whose direction points to a weighted center of mass from which votes are cast, and
whose magnitude encodes polarity. Since the first-order votes are also weighted by the saliency
of the voters and attenuate with distance and curvature, their vector sum points to the direction
from which the most salient contributions were received. The accumulated first-order votes
provide information that complements the accumulated second-order saliency information.

In 2D, a relatively low polarity value indicates that a token is in the interior of a curve or
region; therefore surrounded by neighbors whose votes cancel each other out. On the other hand,
high polarity indicates a token that is on or close to a boundary, thus receiving votes from only
one side with respect to the boundary, at least locally. The correct boundaries can be extracted
as local maxima of polarity along the direction of the polarity vector. Table 6.1 illustrates how
tokens can be characterized using the collected first- and second-order information. In more
detail, the cases that have to be considered are as follows:

• Interior points of curves can be found as local maxima of λ1 − λ2 along ê1. In other
words, they form the path of maximal curve saliency as one is marching along the
curve’s tangent starting from any token on the curve. Interior points receive first-order
votes from both sides, which virtually cancel each other out. Their polarity is not a local
maximum along the direction of the polarity vector.

• Curve endpoints have the same second-order properties, but they can be detected as
local maxima of polarity along the direction of the polarity vector.

• Interior points of regions have high λ2 values, as a result of the higher density of sur-
rounding points.

• Region boundaries are region tokens that also have locally maximum polarity along the
direction of the polarity vector. The latter is also orthogonal to the region boundaries.

• Junctions are isolated peaks of λ2 as shown in Fig. 2.4. Their polarity depends on the
type of junction. It is very small for X- and W-junctions, while it is high for L- and
T-junctions.

• Outliers receive very little consistent support and have low saliency values compared to
those of the inliers. Since they are in regions of low data density, their polarity values
are also small due to the fact that votes attenuate with distance.
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In 3D, tokens can be classified according to the accumulated first- and second-order
information according to Table 6.2. The accumulated second-order tensor is decomposed as in
Section 2.3.3 and stick, plate, and ball saliencies are computed based on the eigenvalues. The
tokens can be classified as follows:

• Interior points of surfaces have locally maximal λ1 − λ2 along the direction of the surface
normal, ê1. The surface in dense form can be extracted by the marching cubes algorithm
[55] as the zero level of the first derivative of surface saliency. Unlike levels sets and
marching cubes, in our case, the surface does not have to be closed. Interior points have
nonmaximal polarity values.

• Surface boundaries have the same second-order properties as above, but also have locally
maximal polarity along the direction of the polarity vector. The latter is orthogonal to
the surface end-curve at the token’s location.

• Interior points of curves have the same properties as in the 2D case, but now the appro-
priate saliency is given by λ2 − λ3. For a token to be on a curve its curve saliency has
to be locally maximal on a plane normal to the curve spanned by ê1 and ê2, which are
the two normals to the curve.

• Curve endpoints have the same properties as in the 2D case. The polarity vector in both
cases is parallel to the tangent of the curve, the endpoints of which can be detected by
their locally maximal polarity.

• Interior points of regions are characterized by the same properties as in the 2D case. The
differences are that, in 3D, ball saliency is given by λ3 and that regions are volumes.

• Region boundaries are volume boundaries in 3D and the analysis is the same as
in the 2D case. The polarity vector is orthogonal to the bounding surface of the
volume.

• Junctions are local peaks of λ3. Their polarity depends on the type of junction as in the
2D case. Convex vertices of polyhedra have polarity vectors that point to the interior
of the polyhedron, while the polarity vector points to the outside at concave vertices.

• Outliers, as before, receive very little consistent support and have low saliency and
polarity values.

In N D, vote analysis is a direct generalization of the low-dimensional cases, with the only
difference being that N + 1 structure types are possible in an N D space. First-order information
is utilized to infer the boundaries of structures, the type of which is given after analysis of the
second-order tensors.



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK039-06 MOBK039-Median.cls November 9, 2006 21:39

96

T
A

B
L

E
6

.2
:

Su
m

m
ar

y
of

th
e

F
ir

st
-

an
d

Se
co

nd
-O

rd
er

T
en

so
rS

tr
uc

tu
re

fo
rE

ac
h

Fe
at

ur
e

T
yp

e
in

3D

S
E

C
O

N
D

-O
R

D
E

R

3
D

T
E

N
S

O
R

P
O

L
A

R
IT

Y

F
E

A
T

U
R

E
SA

L
IE

N
C

Y
O

R
IE

N
T

A
T

IO
N

P
O

L
A

R
IT

Y
V

E
C

T
O

R

Su
rf

ac
e

in
te

ri
or

L
oc

al
ly

m
ax

λ
1
−

λ
2

al
on

g
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,ê
2

pl
an

e
T

an
ge

nt
:ê
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(a) Noisy unoriented data set (b) Extracted curves, endpoints and junctions

FIGURE 6.5: Curve, endpoint, and junction extraction on a noisy dataset with sinusoidal curves.

6.4 RESULTS USING FIRST-ORDER INFORMATION
In this section, we present results on synthetic datasets corrupted by noise. In all cases, processing
begins with unoriented tokens, which are encoded as ball tensors. The capability to proceed
with oriented or unoriented tokens, or a mixture of both, is a feature of tensor voting not shared
by many other approaches.

Results in 2D. Fig. 6.5(a) shows a dataset that contains a number of fragmented sinusoidal
curves represented by unoriented points contaminated by a large number of outliers. All points
are encoded as ball tensors. Fig. 6.5(b) shows the output after tensor voting. Curve inliers
are colored gray, endpoints black, while junctions appear as gray squares. The noise has been
removed, and the curve segments have been correctly detected and their endpoints and junctions
labeled.

More results are illustrated in Fig. 6.6, which demonstrates the simultaneous detection of
a region and a curve, as well as their terminations. The curve is inferred even as it goes through
the region, since curve saliency is still locally maximal due to the higher density of curve inliers
compared to the region inliers. The curve by itself is shown in Fig. 6.6(c) for clarity.

Results in 3D. Given a noisy set of points that belong to a 3D region, as in Fig. 6.7(a), we
infer volume boundaries as local maxima of polarity along the direction of the polarity vector. In
terms of second-order tensors, volume inliers are characterized by a dominant ball component,
since they collect second-order votes from all directions in 3D. The same holds for tokens close
to the boundaries, since second-order votes are a function of orientation but not direction. The
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(a) Input (c) Regions, boundaries, Curves and enpoints
curves and endpoints

FIGURE 6.6: Regions and curves from a noisy point set. Region boundaries and curve endpoints are
marked in black. The curve is shown by itself on the right to aid visualization.

bounding surface of a 3D region can be extracted by the modified surface marching algorithm
[103, 104] as the maximal isosurface of polarity along the normal direction, indicated by the
polarity vectors. Fig. 6.7(a) depicts two solid generalized cylinders with different parabolic
sweep functions. The cylinders are generated by a uniform random distribution of unoriented
points in their interior, while the noise is also uniformly distributed but with a lower density.
After tensor voting, volume inliers are detected due to their high ball saliency and low polarity,
while volume boundaries are detected due to their high ball saliency and polarity. The polarity
vectors are normal to the bounding surface of the cylinders. Using the detected boundaries as

(a) Noisy unoriented data set (b) Dense bounding surface

FIGURE 6.7: Region inlier and boundary detection in 3D.



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK039-06 MOBK039-Median.cls November 9, 2006 21:39

BOUNDARY INFERENCE 99

(a) Input (b) Output

FIGURE 6.8: Results on simultaneous inference of multiple types of structures. (a) Unoriented dataset
that consists of two intersecting planes, two intersecting curves, and random outliers. (b) Output after
voting. Outliers have been rejected due to very low saliency. Surface inliers are marked in gray, curves
and boundaries in black. Curve endpoints and junctions have been enlarged.

input we perform dense voting and extract the bounding surface in continuous form in Fig.
6.7(b).

We close this section with an example of simultaneous inference of surfaces, curves, surface
intersections, junctions, surface boundaries, and curve endpoints, which is presented in Fig. 6.8.
The simultaneous inference of all types of structures and the interaction among them is a feature
that can only be found in the tensor voting framework. Methods based on optimization would
have to be run once for each structure type while their output at the intersection of different
types, such as a curve–surface intersection, would most likely be unclear.

6.5 DISCUSSION
In this chapter, we have presented a critical augmentation to the tensor voting framework. It deals
with the fundamental smoothness versus discontinuities dilemma that occurs in most nontrivial
perceptual organization scenarios. Many perceptual organization approaches operate either as
grouping or as segmentation processes. We believe that both grouping and segmentation must
be performed in order to tackle challenging problems. In both cases, boundaries play a critical
part.

It is worth noting that the integration of first-order information does not violate the
principles on which the original framework is founded. The approach is model free and makes
no assumptions about the input other than that salient perceptual structures are generated by
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the good alignment of tokens. All processing is local within the neighborhood of each token,
and local changes of the input result in local changes of the output. Grouping and segmentation
are still performed in a soft way, in the sense that the first- and second-order votes from a token
to another express the degree of affinity between the tokens, but there is no hard labeling. Hard
labeling can be the final stage of processing, if it is required by a specific application. In addition,
first- and second-order voting can be performed simultaneously, resulting in a small increase in
computational complexity.

In addition to the capability to detect terminations in itself, the work presented in this
chapter serves as the foundation for more complex perceptual organization problems. In Chapter
7 , we propose a novel approach for figure completion in which endpoints and labeled junctions
play a critical role. The inference of these keypoints and the classification of junctions as T, L,
X, etc. is the first step in that direction. This is possible only through the use of the first-order
augmentation presented in this chapter. Then, the possible modal and amodal completions
supported by each type of keypoint can be examined to produce hypotheses for completion.

Finally, the inferred terminations can serve as interfaces between structures in a multiscale
processing scheme. This is especially useful for datasets where data density varies considerably.
Even though it can be viewed as a case of amodal figure completion in 2D, multiscale processing,
using the inferred terminations as inputs to the next scale, can be easily extended to higher
dimensions. Encouraging results on medical imaging using this approach can be found in
[112].
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C H A P T E R 7

Figure Completion

In this chapter, we address the issues associated with figure completion, a fundamental percep-
tual grouping task. Endpoints and junctions, which can be detected based on their first-order
properties, play a critical role in contour completion by the human visual system and should
be an integral part of a computational process that attempts to emulate human perception. A
significant body of evidence in the psychology literature points to two types of completion:
modal (or orthogonal) and amodal (or parallel). We present a methodology within the tensor
voting framework which implements both types of completion and integrates a fully automatic
decision-making mechanism for selecting between them. Our approach was initially published
in [67] and proceeds directly from tokens or binary image input, infers descriptions in terms
of overlapping layers, and labels junctions as T, L, and endpoints. It is based on first- and
second-order tensor voting, which facilitates the propagation of local support among tokens.
The addition of first-order information to the original framework is crucial, since it makes the
inference of endpoints and the labeling of junctions possible. We illustrate the approach on sev-
eral classical inputs, producing interpretations consistent with those of the human visual system.

7.1 INTRODUCTION
Figure completion is an important component of image understanding that has received a lot of
attention from both the computational vision and the neuroscience community over the past few
decades. While we do not claim that our approach is biologically plausible, the human visual
system serves as the paradigm, since even a small fraction of its performance still evades all
attempts to emulate it. In this chapter, we show that the interpretations we infer are consistent
with human perception even in difficult cases. Consider the fragmented contour of Fig. 7.1(a)
which supports amodal completion of the half circle, as in Fig. 7.1(b). Note that completion
stops at the two endpoints, marked A and B. Now consider Fig. 7.1(c), which is known as
the Ehrenstein stimulus. This supports modal completion and produces a strong and unique
perception of an illusory circle (Fig. 7.1(c)). Note that the outer circle is not perceived, most
probably because it would require a concave occluder, which is unlikely and thus not preferred by
the human visual system. What makes this input interesting to us is that both types of completion
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(a) Fragmented contour (b) Amodal completion

(c) The Ehrenstein stimulus (d) Modal completion

(e) Layered interpretation of the Ehrenstein stimulus

FIGURE 7.1: Amodal and modal completions.

are supported by the data: modal completion of the occluding disk and amodal completion of
the occluded lines. We aim at inferring a description which is consistent with human perception
that produces a layered interpretation of the image, with a white disk occluding a set of black
lines on a white background (Fig. 7.1(e)).

An aspect of computer vision that has not been solved is the selection between modal and
amodal completion. Most researchers assume that the type of completion to be performed is
known in advance. For instance, modal completion in most cases starts only when the endpoints
and the orientation of completion are provided as inputs. We aim at inferring the endpoints
and junctions from unoriented data, and then, automatically making decisions whether further
completion is supported by the data, and which type of completion should occur. The tensor
voting framework is well suited for this task since it allows the integrated inference of curves,
junctions, regions, and terminations. The latter is possible after the incorporation of first-order
information into the framework.

Classical approaches to the inference of salient contours include the work of Grossberg,
Mingolla, and Todorovic [22, 23]. They developed the boundary contour system (BCS) and the
feature contour system (FCS) that can group fragmented and even illusory edges to form closed
boundaries and regions by feature cooperation and competition in a neural network. Gove et al.
[21] present a paper within the BCS/FCS framework that specifically addresses the perception
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of illusory contours. In the work of Heitger and von der Heydt [29] elementary curves are
grouped into contours via convolution with a set of orientation-selective kernels, whose responses
decay with distance and difference in orientation. Mechanisms for both parallel and orthogonal
grouping based on keypoints such as junctions and line ends are also proposed. Williams and
Thornber [121] extend the stochastic completion fields framework of Williams and Jacobs [119] to
address modal and amodal completion. They describe the inference of closed illusory contours
from position and orientation constraints that can be derived from line terminations.

Our work differs from other approaches in that we can proceed from unoriented, unlabeled
data and simultaneously infer curves, junctions, regions, and boundaries. Moreover, we propose
an automatic mechanism for making decisions between modal and amodal completion without
having to know the type of completion in advance.

7.2 OVERVIEW OF THE APPROACH
The input to our algorithm is a set of tokens in a two-dimensional space. The tokens indicate the
presence of a primitive that potentially belongs to a larger configuration and can be generated by a
process such as an edge detector in the form of a bank of filters. The output is a layered description
of the image in terms of salient curves, junctions, and regions. Our first goal is to detect salient
groupings based on the support tokens receive from their neighbors. The amount of support
from one token to another is in the form of a first- and a second-order vote whose properties
depend on proximity, collinearity, and cocurvilinearity. Since the representation of each token
can simultaneously encode its behavior as a curvel, a junction, or a region inlier, tokens do not
have to be classified prematurely, and decisions are made when enough information is available.
Here, we take advantage of first-order properties to infer endpoints and region boundaries, as
well as label junctions.

The novelty of our work is the mechanism for modal and amodal completion using the
endpoints and junctions inferred at the previous stage. Endpoints, T-junctions, and L-junctions
offer two possibilities for completion. Either completion along the endpoint’s tangent or the
T-junction’s stem if a corresponding keypoint with compatible orientation exists within a certain
vicinity (amodal completion), or completion along the orthogonal orientation of an endpoint,
the bar of a T-junction or an edge of an L-junction (modal completion). To facilitate modal and
amodal completion, two new vote generation mechanisms are defined based on standard vote
generation. The decision whether completion is supported by the data is made by examining
the support for both options at every keypoint. If at least one more keypoint supports modal
or amodal completion, the current keypoint is labeled as one that supports completion, and the
appropriate voting field is used. If both modal and amodal completion are supported, both are
further pursued and a layered description is inferred. The process and the fields are described
in more detail in Section 7.4.
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7.3 TENSOR VOTING ON LOW LEVEL INPUTS
Since natural images, besides presenting insurmountable difficulties in the extraction of mean-
ingful descriptions in terms of object outlines, do not typically exhibit modal completion, we
use synthetic data to demonstrate our approach. Edge detection and junction detection are con-
siderably easier for these synthetic images, but the focus here is on the higher level processing
stage, where completion occurs. In the examples presented here, black pixels are encoded as
unit ball tensors. Since we want to collect saliency information everywhere, the remaining grid
positions are initialized with null tensors. Dense saliency maps allow us to perform nonmaximal
suppression for the inference of salient structures.

In addition to curves and keypoints, regions are also inferred based on their high λ2 and
enclosure by region boundaries. The latter can be inferred after nonmaximum suppression with
respect to polarity along the direction of the polarity vector. If regions are inferred in the data,
an additional step is required. The boundaries of the inferred regions, which are detected based
on their high polarity and ball saliency, participate in a round of tensor voting along with the
curvels and junctions to infer region–curve intersections. The set of endpoints and junctions
that is passed on to the next module is determined after analyzing the saliency maps after this
additional stage.

7.4 COMPLETION
Now that endpoints and junctions have been inferred and labeled, we need to consider how they
interact to produce figure completion. There are two types of completion: modal and amodal. In
amodal completion, endpoints extend along their tangent and T-junctions along their stem. This
case corresponds to the completion of an occluded surface behind the occluder. In modal comple-
tion connections occur along the bar of T-junctions; orthogonally to the tangent of endpoints,
which are interpreted as low-contrast T-junctions; or along one of the edges of L-junctions,
which are also interpreted as low-contrast T-junctions. Modal completion is the completion of
the occluding surface on top of the occluded ones. Amodal completion and modal completion
are termed, respectively, parallel and orthogonal grouping by Heitger and von der Heydt [29].

Our framework makes automatic decisions on which type of completion occurs. Either
type has to be supported by at least one other keypoint within a certain range, which is larger than
that of the first stage. For instance, amodal completion from an endpoint has to be supported
by another endpoint with similar orientation and opposite polarity. Then, tensor voting is
performed to infer a contour connecting the two endpoints, as with the endpoints of the curve
segments of Fig. 7.1(a). Amodal completion between pairs of endpoints produces the contour
of Fig. 7.1(b).

New voting fields, based on the original second-order stick voting field, have to be defined
to facilitate the propagation of information from the voting endpoints and junctions. The
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(a) Parallel field (b) Orthogonal field

FIGURE 7.2: Voting fields used for amodal and modal completion. P is the polarity vector at the voting
endpoint or junction. Voting is allowed only toward the opposite half-plane.

orientation and saliency of the votes are the same as in Eqs. (2.2) and (2.3), but the fields are
one sided. This is because amodal completion can only occur along one direction: away from
the curve that was inferred at the first stage or in the direction that would make the T-junction
an X-junction. Modal completion is possible only toward the direction that results in a convex
illusory contour. This is due to a strong preference in the human visual system for convex modal
completions [25]. Even though the two fields are orthogonal, the polarity vector, in both cases,
indicates the direction opposite to completion. Fig. 7.2 shows the fields used for these cases.
Before voting, the following cases have to be considered for each keypoint:

• There is no possible modal or amodal continuation due to the absence of other keypoints
that support either option. In this case endpoints are just terminations, like A and B in
Fig. 7.1(b).

• Amodal completion is supported by another keypoint of the same type with similar
orientation and opposite polarity, while modal is not (Fig. 7.1(a)). Endpoints and
stems of T-junctions cast votes with the parallel field along their tangent.

• Modal completion is possible, but amodal is not (Fig. 7.3). Support in this case has to
come from keypoints with similar curve orientation and polarity. Completion occurs
orthogonally to the tangent of endpoints or along the bars of T-junctions and edges of
L-junctions, using the orthogonal field.

• Both types of completion are possible (Fig. 7.1(c)). In this case, the modal completion
is perceived as occluding the amodal completion. In the case of the Ehrenstein stimulus,
a disk is perceived to occlude the crossing lines (Fig. 7.1(e)).

Once the above cases have been examined, the keypoints can be labeled with respect to
whether they support completion or not. The appropriate field is used according to the type of
completion. Analysis of the votes is performed and curves, junctions, and endpoints are inferred
as in the previous section. Now, junctions can be fully labeled according to their cardinality and
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(a) Input (b) Curves and endpoints

(c) Curve saliency (d) Illusory contours

FIGURE 7.3: Modal completion. Starting from unoriented inputs, endpoints are detected and used as
inputs for modal completion.

polarity. Polarity helps to discriminate between X- and W-junctions for instance, since the
former have very low polarity while the latter have high polarity.

7.5 EXPERIMENTAL RESULTS
We now present experimental results in a variety of examples. A small scale is used for the
original data and a large scale (typically 20 to 30 times larger) is used to infer completions at
the second stage, where the distance between tokens is considerably larger.

Illusory Contour Without Depth Ordering. This is an example of the formation of an open
illusory contour that does not induce the perception of a depth ordering. In that sense it
is similar to Fig. 8 of [93]. The input consists of a set of unoriented tokens that form line
segments and can be seen in Fig. 7.3(a). The curves and endpoints detected after a first pass of
tensor voting can be seen in Fig. 7.3(b). The endpoints are marked in black and their inferred
normals are orthogonal to the segments. Three illusory contours can be inferred after voting
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(a) Narrow cross (b) Wide cross

(c) Curve and junction (d) Curve and junction
saliency saliency

(e) Illusory contour (f) Illusory contour
and junctions

FIGURE 7.4: Koffka crosses. Inputs, saliency maps, and inferred contours and junctions (marked as
squares).

using the orthogonal field of Fig. 7.2(b). Curve saliency and the illusory contours can be seen
in Figs. 7.3(c) and (d). Higher intensity corresponds to higher saliency, as in all saliency maps
shown in this document. The contour is still inferred, even though its convexity changes, since
locally endpoints from either the left or the right side form a convex contour and propagate
votes that support the entire sinusoidal contour.

Koffka Crosses. An interesting perceptual phenomenon is the Koffka crosses [121]. The per-
ceived illusory contour changes from a circle to a square as the arms of the cross become wider.
Two examples of Koffka crosses can be seen in Figs. 7.4(a) and (b). The black pixels of these
images are encoded as unoriented ball tensors and the endpoints of the segments are extracted
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(a) Curve saliency (b) Junction saliency

(c) Illusory contours and junctions (d) All completions

FIGURE 7.5: Amodal contour completion and illustration of all possible completions, including the
occluded ones.

as before. Modal completion is possible, since the endpoints can be hypothesized as T-junctions
with zero contrast bars, and voting is performed using the orthogonal field. Curve and junction
saliencies are shown in Figs. 7.4(c) and (d). Note that the saliencies in each map are normalized
independently so that white corresponds to the maximum and black to the minimum. The
maximum junction saliency is 90.4% of the maximum curve saliency for the wide cross and only
9.8% of the maximum curve saliency for the narrow cross, where no junctions are inferred. Figs.
7.4(e) and (f ) show the inferred modal completion. Intermediate widths of the arms produce
intermediate shapes of the illusory contour, such as rounded squares, which are consistent with
human perception.

The case of amodal completion from the detected endpoints to compatible endpoints
must also be considered. The parallel voting field of Fig. 7.2(a) should be used in this case.
Figs. 7.5(a) and (b) show the curve and junction saliencies for the wide Koffka cross of Fig.
7.4(b). Four contours that connect corresponding endpoints and four X-junctions are inferred
(Fig. 7.5(c)). This interpretation is also consistent with human perception, which is a layered
interpretation of the scene that consists of a white square, occluding a cross, on top of a white
background.
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(a) Input (b) Curve saliency

(c) Junction saliency (d) Polarity

(e) Illusory contours (f) Visible completions

FIGURE 7.6: Modal completion for the three-armed cross.

We also performed an experiment with one arm of the wide cross missing. The input can
be seen in Fig. 7.6(a). Voting with the orthogonal field produces the saliency and polarity maps
seen in Figs. 7.6(b) and (d). The polarity map has four local maxima: at the two L-junctions and
at two of the six voting endpoints. The inferred description consists of three straight contours,
two L-junctions and two endpoints at the wrongly hypothesized T-junctions, A and B, which
based on polarity can now be correctly labeled as L-junctions. Additional modal completion is
now possible starting from the L-junctions that results in contour AB in Fig. 7.6(f ).
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(a) Input (b) Curve saliency (c) Completion

(d) Line input (e) Curve saliency (f) Completion

FIGURE 7.7: Possible explanation of the illusion that straight lines appear bent when passing through
a region.

Poggendorff Illusion. In the final example of this chapter, we attempt to explain an illusion that
occurs when a straight line does not appear perfectly straight when it passes through a region.
The input can be seen in Fig. 7.7(a) and consists of unoriented points that form a line and a
region. The region boundaries are inferred based on their high λ2 and high polarity and are
used as inputs to a second pass of tensor voting along with the curvels. After the second pass,
four L-junctions and two T-junctions are inferred. There is no support for completion based
on the L-junctions so they do not contribute any further. The T-junctions should be treated
carefully in this case. The orientation of the stems is locally unreliable, since as one approaches
the junction, curve saliency decreases almost to zero while junction saliency increases. Even if
orientation θ of the line farther away from the stem is used, some uncertainty remains. On the
other hand, the bar and the stem of a T-junction are expected to be orthogonal [25]. Combining
these two sources of evidence, we can set the orientation of the stem equal to α90◦ + (1 − α)θ .
Voting from the two T-junctions using the parallel field, for a range of values of α, produces a
curve saliency map like that of Fig. 7.7(b) where completion is not straight and an inflection
point always exists in the contour (Fig. 7.7(c)). This is one possible explanation for the illusion.
Also, note that the illusion does not occur if the line is orthogonal to the region boundaries. The
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(a) The Kanizsa triangle (b) Completion of the triangle (c) Completion of the disks

FIGURE 7.8: The Kanizsa triangle and two possible interpretations.

saliency map in the absence of the region is that shown in Fig. 7.7(e) where straight continuation
occurs, as expected.

7.6 DISCUSSION
In this chapter, we have presented an approach within the tensor voting framework that allows
us to infer richer descriptions from single images. We begin by inferring the endpoints of curves
and the boundaries of regions, and assigning preliminary labels to junctions. Moreover, we have
addressed figure completion of both modal and amodal type in an automatic and integrated
way. Our framework does not require a priori knowledge of the type of completion that has to
be performed, but can infer it from the data. We demonstrated how it can be applied to the
interpretation of line drawings that exhibit complex perceptual phenomena.

Consistently with the body of work on tensor voting, we have avoided premature decisions
based on local operators. For instance, we do not classify a location as an L-junction just because
a corner detector produces a strong response. Instead, we only assign a preliminary label based
on the results of first- and second-order voting, which for an L-junction have to produce high
ball saliency and high polarity. The final labeling occurs only after the completion possibilities
have been examined.

The results are encouraging. However, there are still numerous issues that need to be
addressed, even in simple line drawings. Consider, for instance, Fig. 7.8(a) that depicts the
Kanizsa triangle [40]. It contains six L-junctions and each junction supports two possibilities
for completion. Either completion along the straight edge, which produces the triangle of
Fig. 7.8(b), or completion along the circular edge, which produces the three disks seen in
7.8(c). This example is an excellent demonstration of a scenario that cannot be handled by the
current state of our research. Moreover, note that making the decision on one vertex of the
triangle affects the other two vertices. As demonstrated by numerous visual illusions, drawings
of impossible objects and in [93], for instance, locally consistent perceptions that are globally
impossible are accepted by the human visual system. Therefore, the decision on one vertex
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does not automatically resolve the other two. What is clear, however, is that the computer
vision, psychology, and neuroscience literature provide abundant examples for which a more
sophisticated decision-making mechanism than the one presented here is needed.

In this chapter, we have also scratched the surface of inferring hierarchical descriptions.
Typically, processing occurs in two stages: in the first stage, tensor voting is performed on the
original low level tokens, while in the second stage, completion based on the previously inferred
structures is performed. There are three processing stages in case regions are present in the
dataset. Then, region boundaries are inferred in the first stage and interact with other tokens
at the second stage. Completion now occurs at the third stage. More complicated scenarios
may include more stages. It is reasonable to assume that scale increases from stage to stage, as
the distances between the “active” points increase. A more systematic investigation of the role
of scale in this context is also required. It is possible that the interpretation of certain inputs
changes as the scale of voting varies.
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Conclusions

In the previous chapters, we described both a general perceptual organization approach as
well as its application to a number of computer vision and machine learning problems. The
cornerstone of our work is the tensor voting framework, which provides a powerful and flexible
way to infer the saliency of structures formed by elementary primitives. The primitives may
differ from problem to problem, but the philosophy behind the manner in which we address
them is the same. In all cases, we arrive at solutions which receive maximal support from the
primitives as the most coherent and smooth structures. Throughout this work, we strove to
maintain the desired properties that we described in the introduction. The approach should
be local, data driven, unsupervised, robust to noise, and able to represent all structure types
simultaneously. These principles make our approach general and flexible, while allowing us to
incorporate problem-specific constraints as, for instance, uniqueness for stereo.

While we have shown promising results, which in many cases compare favorably to the
state of the art in a variety of fields, we feel that there is still a lot of work to be done within the
framework. This work ranges from the 2D case, where the inference of integrated description
in terms of edges, junctions, and regions has received a lot of attention from the research
community, but is far from being considered solved, to the N D machine learning case. The
research presented in Chapters 4 and 5 has only scratched the surface of the capabilities of
our approach and will serve as the groundwork for research in domains that include pattern
recognition, classification, data mining, and kinematics. Unlike competing approaches, tensor
voting scales well as the number of samples increases since it involves only local computations.
This property is crucial in a world where information is generated and transmitted a lot faster
than it can be processed. Our experiments have demonstrated that we can attain excellent
performance levels given sufficient samples, and the latter abound in many cases.
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