
P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-FM MOBK053-Metodi.cls October 30, 2006 19:32

Quantum Computing
for Computer Architects

i

Copyright © 2006 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

Quantum Computing for Computer Architects
Tzvetan S. Metodi and Frederic T. Chong
www.morganclaypool.com

ISBN-10: 1598291181 paperback
ISBN-13: 9781598291186 paperback

ISBN-10: 159829119X ebook
ISBN-13: 9781598291193 ebook

DOI 10.2200/S00066ED1V01Y200610CAC001

A lecture in the Morgan & Claypool Synthesis Series
SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #1

Lecture #1
Series Editor: Mark D. Hill, University of Wisconsin, Madison

First Edition
10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-FM MOBK053-Metodi.cls October 30, 2006 19:32

Quantum Computing
for Computer Architects

Tzvetan S. Metodi
University of California at Davis, Computer Science Department

Frederic T. Chong
University of California at Santa Barbara, Computer Science Department

SYNTHESIS LECTURES IN COMPUTER ARCHITECTURE #1

M
&C

Morgan &Claypool Publishers

iii

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-FM MOBK053-Metodi.cls October 30, 2006 19:32

iv

ABSTRACT
Quantum computation may seem to be a topic for science fiction, but small quantum computers

have existed for several years and larger machines are on the drawing table. These efforts

have been fueled by a tantalizing property: while conventional computers employ a binary

representation that allows computational power to scale linearly with resources at best, quantum

computations employ quantum phenomena that can interact to allow computational power that

is exponential in the number of “quantum bits” in the system. Quantum devices rely on the

ability to control and manipulate binary data stored in the phase information of quantum

wave functions that describe the electronic states of individual atoms or the polarization states

of photons. While existing quantum technologies are in their infancy, we shall see that it is

not too early to consider scalability and reliability. In fact, such considerations are a critical

link in the development chain of viable device technologies capable of orchestrating reliable

control of tens of millions quantum bits in a large-scale system. The goal of this lecture is to

provide architectural abstractions common to potential technologies and explore the systems-

level challenges in achieving scalable, fault-tolerant quantum computation.

The central premise of the lecture is directed at quantum computation (QC) architectural

issues. We stress the fact that the basic tenet of large-scale quantum computing is reliability

through system balance: the need to protect and control the quantum information just long

enough for the algorithm to complete execution. To architect QC systems, one must understand

what it takes to design and model a balanced, fault-tolerant quantum architecture just as the

concept of balance drives conventional architectural design. For example, the register file depth

in classical computers is matched to the number of functional units, the memory bandwidth

to the cache miss rate, or the interconnect bandwidth matched to the compute power of each

element of a multiprocessor. We provide an engineering-oriented introduction to quantum

computation and provide an architectural case study based upon experimental data and future

projection for ion-trap technology. We apply the concept of balance to the design of a quantum

computer, creating an architecture model that balances both quantum and classical resources in

terms of exploitable parallelism in quantum applications. From this framework, we also discuss

the many open issues remaining in designing systems to perform quantum computation.

KEYWORDS
quantum computing, computer architecture, fault tolerance,

error correction, trapped ions, teleportation, qubit, quantum logic array.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-FM MOBK053-Metodi.cls October 30, 2006 19:32

v

Contents

1. Preface . 1

2. Basic Elements for Quantum Computation . 7

2.1 Classical Versus Quantum Signal States

(bits versus qubits) . 9

2.2 Logic Operations and Circuits . 10

2.2.1 The Quantum Toffoli Gate . 16

2.2.2 Quantum Fourier Transform (QFT) . 17

2.3 Measurement of Classical and Quantum States .18

2.3.1 Quantum Teleportation . 20

2.3.2 Deutsch’s Quantum Algorithm . 21

2.4 Quantum Entanglement and EPR Pairs . 22

2.4.1 Teleportation (Revisited) . 24

3. High-Level Architecture Criteria and Abstractions . 25

3.1 A High-Level Architecture View . 25

3.2 Requirements for Quantum Architectures . 27

4. Reliable and Realistic Implementation Technology. .29

4.1 Optical Quantum Computation: Photons as Qubits . 31

4.2 Trapped-Ion Quantum Computers .32

4.2.1 Scalable Ion-Trap Model . 33

5. Robust Error Correction (EC) and

Fault-Tolerant Structures . 37

5.1 Noise Model . 38

5.2 Error Correction: Basis and Notation . 41

5.3 Example: The Steane [[7, 1, 3]] Code. .48

5.4 Quantum Fault Tolerance: The Threshold Result . 51

5.5 Construction of a Logical Qubit Tile .54

5.6 The Cost of Error Correction and System Size . 56

5.6.1 System Size . 56

5.6.2 Error-Correction Slowdown . 57

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-FM MOBK053-Metodi.cls October 30, 2006 19:32

vi CONTENTS

6. Quantum Resource Distribution . 61

6.1 Physical Qubit Movement . 62

6.2 Teleportation-Based Interconnect: Quantum Repeaters . 63

7. Simulation of Quantum Computation . 67

7.1 Simulation of Error Propagation . 69

7.2 Stabilizer Method Simulation . 71

8. Architectural Elements . 75

8.1 Quantum Processing Elements (PEs) . 78

8.2 Quantum Memory Hierarchy . 79

8.3 Quantum Search: Quantum Addressing Scheme for Classical Memory 83

9. Case Study: The Quantum Logic Array Architecture . 85

9.1 The Logical Qubit Design . 86

9.2 Logical Qubit Interconnect . 90

9.3 Specialized QLA Architecture: CQLA . 96

9.3.1 The Gain Product: Architecture Performance Comparison 99

9.3.2 Communication Issues: Executing the Toffoli Gate 99

9.3.3 Memory Hierarchy in the QLA Architecture . 100

10. Programming the Quantum Architecture . 107

10.1 Physical Instruction Scheduler .108

10.2 High-Level Compiler Design . 110

10.3 Architecture-Independent Circuit Synthesis . 111

10.4 Mapping Circuits to Architecture . 113

11. Teleportation-Based Quantum Architectures . 117

11.1 The cnot Gate and Single-Qubit Gates Through Teleportation 119

11.2 The Architecture . 121

11.3 Error Correction Through Teleportation . 124

12. Concluding Remarks . 127

Appendix Timeline of Quantum Computers . 129

References . 133

Biographies . 147

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK035-01 MOBK053-Metodi.cls October 30, 2006 19:16

1

Preface

Quantum computation (QC) may seem to be a topic for science fiction, but small quantum

computers have existed for several years [1] and larger machines are on the drawing table [2].

These efforts have been fueled by a tantalizing property: while conventional computers employ

a binary representation that allows computational power to scale linearly with resources at best,

quantum computations employ quantum phenomena that can interact to allow computational

power that is exponential in the number of “quantum bits” in the system. Architecting large scale

systems to exploit this potential is the focus of this book. Our goal is to provide architectural

abstractions common to potential technologies and explore the systems-level challenges in

achieving scalable, fault-tolerant quantum computation. While quantum technologies are in

their infancy, we shall see that it is not too early to consider scalability and reliability. In fact,

such considerations are critical to guide the development of viable device technologies.

The central premise of this book is directed at architectural issues that arise during the

design of QC system. We stress the fact that the basic tenet of large-scale quantum computing

is reliability through system balance: the need to protect and control the quantum information

just long enough for the algorithm to complete execution. To architect QC systems, one must

understand what it takes to design and model a balanced, fault-tolerant quantum architecture

just as the concept of balance drives conventional architectural design. For example, the register

file depth in classical computers is matched to the number of functional units, the memory

bandwidth to the cache miss rate, or the interconnect bandwidth matched to the compute

power of each element of a multiprocessor. Through a detailed case study given in this book,

we show that by applying the same concept of balance to the design of a quantum computer,

it is possible to create an architecture model that balances components and both quantum and

classical resources in terms of exploitable parallelism in the applications being executed.

We provide enough information and architectural analysis to enable the reader to continue

the advancement of scalable quantum architecture research by identifying some of the key

open questions. For example, what is the best way to integrate fault-tolerant scalable data

storage structures, computational structures, scalable communication mechanisms, and classical

schedulers that orchestrate the program execution. The reader should be able to identify the

different tradeoffs between the various requirements for scalable quantum computation, and

most importantly through clever systems design, work toward creating a quantum architecture

that balances reliability, area, and time performance such that it is relevant and within the reach

of future technological advances.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK035-01 MOBK053-Metodi.cls October 30, 2006 19:16

2 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

We shall discover that building large-scale quantum machines is extremely difficult. This

difficulty is consistent with our intuition—quantum effects in nature are only observed at very

small, carefully isolated physical systems such as single photons and atoms. Binary information

can be stored in a single unit of quantum data, known as a qubit, in the distinct energy states of an

atom for example, or the polarization states of a photon. Larger-scale systems naturally couple

with the environment and exhibit the behavior governed by classical physics that is so familiar

to our everyday experiences. A corollary of this observation is that the physics of quantum

computation often defies our classical intuition and is responsible for both the potential power

of QC and the difficulty in realizing reliable quantum computers. In this book, we will attempt

to offer both some simple formalisms and intuitions to describe the fundamentals of quantum

operations.

Despite substantial engineering challenges to implement and manipulate a number of

qubits, experimental realizations have resulted in quantum machines with seven-qubit memory

storage [1], and with 100-qubit machines on the drawing table [2]. To build a quantum machine

of practical computational value, however, we must be capable of storing and orchestrating a

system of tens of millions qubits. While the work in physics and device development has made

significant progress, such a scalable machine must also involve a systems approach to design that

brings together diverse expertise in architectures, compilers, and algorithms. System designers

and architects have the opportunity to study and identify important technological constraints

and design schemes for a truly scalable machine using existing technological models. Identifying

viable system designs at this stage is critical for the success of computationally relevant quantum

information processor as it will create a clear direction for testing, modeling, and building

large-scale computers.

Following Feynman’s famous 1 about the significant gap between classical computational

models and quantum mechanical ones, the first model in the context of a quantum Turing machine

was introduced by Benioff [3]. Subsequently, Deutsch [4, 5] described the quantum circuit model

as a universal simulator for the quantum Turing machine with exponential overhead. Bernstein

and Vazirani [6] followed Deutsch’s work with the description of a universal quantum Turing

machine constructed with only a polynomial overhead. A more comprehensive timeline of

quantum computation is given in Appendix A. Since the construction of the universal quantum

circuit model, the ability to control and manipulate quantum information through a sequence of

gates has led to several quantum algorithms with substantial advantages over known algorithms

with traditional computation. The most significant is Peter Shor’s algorithm for factoring the

1The observation was made in Feynman’s talk during the First Conference on the Physics of Computation held at

MIT in 1981. Feynman noted that it is impossible to simulate the evolution of a quantum system efficiently on a

classical computer.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK035-01 MOBK053-Metodi.cls October 30, 2006 19:16

PREFACE 3

product of two large primes in polynomial time [7]. The security of the widely used RSA

public-key cryptosystem relies on the assumption that factoring large integers is very hard on

conventional computers [8], where the best-known classical algorithms for factorization are

super-polynomial [9].

Additional quantum algorithms include Grover’s fast database search [10]; adiabatic so-

lution of optimization problems [11]; precise clock synchronization [12]; quantum key distri-

bution [13]; and recently, Gauss sums [14] and Pell’s equation [15]. Commercially, quantum

technologies have been shown to enable unconditionally secure communication2 leading to the

creation of companies offering real products [21, 22].

A practical large-scale quantum system that can utilize the full potential of these algo-

rithms must be capable of reaching a system size of S = K Q ≥ 1012 logical operations, where

K denotes the number of computational steps and Q denotes the number of computational

units. The problem with sustaining such a large amount of quantum computation is that the

quantum information carriers (the qubits) continuously interact with external noise sources and

decohere, eventually losing their quantum data. In addition different quantum states are not mu-

tually exclusive as different classical bitstrings are, but may interfere with one another. While

this very interference (known as quantum entanglement) is responsible for the power of quantum

computation, it also causes errors to spread exponentially fast across the entire system if care is

not taken to limit the spread of errors at the microarchitecture level.

A key theoretical breakthrough in scalable QC was the development of a theory of fault-

tolerant quantum error correction adopted from classical error correcting codes. Quantum error

correction allows reliability of large systems to be arbitrarily increased through the application

of exponentially increasing amounts of redundancy [23]. Similar to classical error correction,

quantum error correction uses the state of two or more qubits and recovery operations to encode

a single logical qubit. The redundancy is recursively increased through successive encoding of

each first level qubit much like recursive 2D classical codes. In other words, k or more logical

qubits might be encoded in the collective state of n physical qubits, which are in turn encoded

again, and so on. To sustain reliable computation for an extended period of time through the

application of noisy physical gates, logic gates must be implemented directly over the logical

qubits without decoding in such a way that errors do not spread through the data interference

patterns of the encoded states. Later in this book (Section 5.6), we discuss the implications

of managing these somewhat horrifying overheads versus the potential benefits of quantum

computation.

2Mathematically, quantum key distribution (QKD) has been proven unbreakable [16–19], but recent experimental

observations have shown that the probabilistic nature of the protocols coupled with noisy devices used to send and

receive the quantum states allow the attacker Eve, to break the system with high probability of success [20].

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK035-01 MOBK053-Metodi.cls October 30, 2006 19:16

4 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

The physical implementation of large, redundant structures gives rise to another funda-

mental challenge: communication of quantum data across nontrivial distances. Consequently,

we find that one of the greatest challenges toward the design of a large, practically useful

quantum computer is finding an architecture that incorporates the required amount of fault-

tolerance while minimizing communication and resources overhead.

We explore this challenge with several case studies based on trapped ion technology

[24, 25]. Unlike other technology proposals, ion traps have known, physically realized universal

elements for quantum computation with a clear scalable model. The system models we de-

scribe, however, are based on two key attributes found in many quantum technologies. First,

we show that specializing architectural components into memory and computation elements is

advantageous. Second, we rely upon the concept of quantum teleportation [26] for communi-

cation across long distances in the large-scale architecture. Given these two design choices, we

describe a general abstraction for scalable quantum architectures in which the dominant cost

is communication between compute and memory regions through teleportation. A compiler

infrastructure for the scheduling of quantum computations would maximize usage of data while

it is in the compute region and minimize movement in and out to memory. This problem is

analogous to minimizing register spilling in conventional processors.

The key ideas computer architects can take way that are relevant for the system design of

scalable quantum computers after reading this book are:

• Achieving “good” system performance is synonymous with the realization of a workable

balance between reliability, communication resources, and latency of computation in a

quantum architecture.

• Quantum information cannot be cloned, thus when transferred from source to desti-

nation along a quantum channel, it must be transferred in such a way that no trace is

left at the source.

• Quantum information can be transported by physically moving the qubits, transferring

the information to a shared medium such as a quantum bus or a secondary quantum

system that allows efficient qubit movement, successive swapping between adjacent

qubits, and finally through the concept of teleportation.

• The focus on reliability allows for interesting match-ups between various system com-

ponents. For example, communication and computation can be overlapped at the system

level due to the considerable resources and latency overhead spent for error correction

during logic gate execution on encoded data.

• There are many different ways to implement universal quantum logic at the application

level. Gate can be built into the communication protocols or applied on the quantum

data in a traditional manner analogous to classical circuits.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK035-01 MOBK053-Metodi.cls October 30, 2006 19:16

PREFACE 5

• System balance and fault-tolerance rests on the balance between different encodings of

the quantum data defined by the error correcting codes used across different regions in

the architecture, where the cost and resources of transfer from one region to another

are carefully determined by the executed application.

• Another critical balance issue is the balance between data storage and computing on

encoded data through different levels of encoding. Both structures require the imple-

mentation of specially optimized fault-tolerant error correction structures.

• Memory hierarchy in classical computation is analogous to code hierarchy in quantum

systems. The transfer from storage regions to computational regions may require transfer

from one encoding of the data to another, not a transfer from one technology type to

another.

The book begins with a brief background in Chapter 2 which compares the basic oper-

ations for quantum computation to the conventional computing scheme by focusing on com-

putation rather than physics. We describe in some detail the concept of qubits, quantum logic

gates, and other important components for quantum computing relevant to the circuit model

for quantum computation. In Chapter 3 we introduce three high-level requirements for a

scalable quantum architecture and describe each requirement independently in the following

sections: reliable implementation technology in Chapter 4; efficient error correction schemes in

Chapter 5; and efficient quantum resource distribution in Chapter 6. Modeling and simulating

quantum computational structures and cycle-level quantum simulation methods are described in

Chapter 7, including a brief introduction of the stabilizer formalism for quantum computation

and error correction. A set of architectural elements for a quantum architecture is described in

Chapter 8. The concept of quantum memory hierarchy is described in Section 8.2. In Chapter 9

we give a case study for a quantum architecture, the quantum logic array (QLA), based on our

previous work [27, 28]. Chapter 11 offers a discussion into the alternate methods for achieving

fault-tolerant universal quantum logic, namely performing quantum operation through the con-

cept of teleportation. Finally, we conclude with Chapter 12, where we give a brief summary of

what we have done. In Appendix A we give a timeline of quantum computation beginning with

year 1973 when one of the first works on the subject was introduced by Alexander Holevo [29].

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK035-01 MOBK053-Metodi.cls October 30, 2006 19:16

6

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-02 MOBK053-Metodi.cls October 30, 2006 19:18

7

C H A P T E R 2

Basic Elements for Quantum

Computation

The theory of quantum information processing (QIP) uses quantum mechanical two-level sys-

tems such as the two spin states of spin 1/2 atoms, or the horizontal and vertical polarization

states of a single photon to store and manipulate binary information. Such systems are used to

describe the single unit of quantum data known as a qubit [30] whose two states are distin-

guished as the binary states “0” and “1.” One of the distinguished features of QIP from classical

computational theory is that the permitted states of a single qubit fill a two-dimensional vector

space and can be written as the superposition of the two binary states “0” and “1.” In this manner,

the state of an n-qubit quantum register spans a 2n-dimensional vector space as the superposi-

tion of all of the possible 2n binary bitsring states. An n-bit logic operation is permitted to act

on one or all possible bitstring states of the register in a single clockstep. Thus, an exponential

increase in the processed information at each clockstep is paralleled by a polynomial increase in

the data size manipulated.

The result of measuring a single qubit is one of the two possible states “0” or “1,” while

before measurement the value of the qubit is a probabilistic distribution over both possibilities.

This is consistent, for example, with the discrete electronic states of an atom used in some

technological proposals to physically realize a single qubit. Upon observation (i.e., measurement)

of all the qubits in a quantum register the result is a single classical bitstring with an associated

probability. Quantum gates used for computation that change the qubit states are such that they

intrinsically operate on both possibilities because it is not known which exact state the qubit

is in before it is measured. This is why a sequence of quantum gates used to calculate a given

function over an n-qubit register must operate on all 2n possible states of the register at each

clockstep. The power of quantum computation is derived from the fact that the probability

amplitudes of each possible bitstring state of a quantum register are not mutually exclusive, but

are correlated and can be simultaneously fed as input to a given function. A single gate operating

within one clockstep may transform the possible bitstring outcomes simultaneously such that

the result upon measurement is an answer to some global property of the computed function

over all inputs.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-02 MOBK053-Metodi.cls October 30, 2006 19:18

8 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

Perhaps, one of the closest classical analogies for the mechanics of quantum computa-

tion is classical probability theory. A single qubit can be regarded as a weighted coin that is

spinning in the air. At any point in time it can land either “heads” or “tails” with probability

that depends on the weighted factor of the coin; however, while in the air, we don’t know what

the state of the coin is and we can fairly assume that it is in a probabilistic distribution of both

“head” and “tails”. The action of the coin falling on the ground is synonymous with measuring

a qubit, where we have destroyed the uncertainty of the “spinning” coin by not only knowing

what the state is, but the coin has physically stopped at that state. Now, consider an n-qubit

quantum register represented by n coins that are spinning in the air. While the coins are in the

air, one needs 2n different probability amplitudes to describe all the possible landing outcomes.

The act of measuring each qubit in the register can be equated with the act of any one of the n

coins falling to the ground, in either case the possible number of outcomes reduces by a factor

of 2.

What quantum mechanical computation allows us to do, is to change the weighted prop-

erties of the coins while they are in the air. In a sense, we are changing the probabilities of

the possible outcomes of the coins in a controlled, stepwise manner. The change is performed

through specific transformations of the probability distribution vector that describes the prob-

abilities of each of the possible outcomes of the spinning coins. Of course, the probabilistic

distribution exists only while the coins are spinning, and just as gravity pulls them down and

limits their spinning time, so do quantum systems are subject to decoherence forces that destroy

their probabilistic distribution1.

In this section we give a general overview of the background for quantum computation

that will provide the reader with an understanding of how quantum data is stored and

manipulated. The fact that measurement collapses the probabilistic distribution of all possible

states of a quantum register giving us a single outcome, forces us to suspect that the notion

of quantum parallelism, where a function f (x) can be evaluated simultaneously for a number of

inputs, is a somewhat oversimplified interpretation of the power of quantum computing. Even

if we do evaluate all inputs in a single clock cycle we can only extract one result and irreversibly

lose the rest. So, how is quantum computation more powerful than classical computing,

namely, how is it different than randomized classical algorithms? The answer for this question

can be most easily demonstrated through Deutsch’s quantum algorithm [4, 31] which we

briefly describe in Section 2.3.2. The algorithm uses the fact that the possible alternatives in

a quantum register can interfere with one another, giving us some global information about the

1We assume that our coin experiment is executed on earth. Moreover, we may be able to change the weighted

properties of the spinning coins, by bombarding each side (while spinning) with material that will affect the landing

outcome of the coin. The coin analogy is straight forward and may have been used in the past, however, the authors

are unaware of such an occasion.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-02 MOBK053-Metodi.cls October 30, 2006 19:18

BASIC ELEMENTS FOR QUANTUM COMPUTATION 9

function f (x) over more than one input. In other words, the possible coin alternatives derived

from classical probability theory are mutually exclusive events, while quantum mechanics

allows quantum states to interfere such that changing one of them will affect the probability

amplitudes of all the states that that state interferes with.

2.1 BITS VERSUS QUBITS
Well-characterized quantum signal states are the first requirement for realizing a quantum

computer [32]. Classical computing signal states are represented as a sequence of to form a

single bitstring. In the memory of a computer bit strings are encoded tightly, where each bit

occupies exactly one bit of storage. During computation the “1” bit is denoted as a rise in the

voltage through a silicon gate, while the “0” bit is marked as a lack of such current. Thus a

classical bit exists as one of two perfectly distinguishable states, “1” or “0.”

A quantum information signal (a qubit) also distinguishes between two states denoted as

|0〉 and |1〉 and can be utilized, for example, by the ground and exited states of a single atom or

the horizontal and vertical polarization directions of a photon. The “| · 〉” notation, known as

the Dirac-Ket, is used to denote a particular quantum state. The difference is that according to

the laws of quantum mechanics a single qubit exists in a superposition of the states |0〉 and |1〉,
whose general state |�〉 can be written as

|�〉 = a |0〉 + b|1〉. (2.1)

The amplitudes a and b are complex coefficients which obey the rule that |a |2 + |b|2 = 1.

The quantity |a |2 is the probability that the qubit will be found to exist in the state |0〉 upon

observation and similarly, |b|2 is the probability that the qubit will be found to exist in the state

|1〉. Without direct observation, however, the state of a single qubit spans a two-dimensional

vector space defined by the two-element complex valued vector [a, b]T, where the most general

single qubit state |�〉 can be written in a vector form as

|�〉 = a |0〉 + b|1〉 = a

[
1

0

]
+ b

[
0

1

]
=

[
a

0

]
+

[
0

b

]
=

[
a

b

]
.

The state of a quantum computer with a storage total of two qubits will describe a four-

dimensional vector space where each dimension can be distinguished by the four bit strings:

|00〉, |01〉, |10〉, and |11〉, where an arbitrary state of the system denoted as |�〉, is described by

a four-element, complex-valued vector [c 0, c 1, c 2, c 3]T:

|�〉 = c 0|00〉 + c 1|01〉 + c 2|10〉 + c 3|11〉, (2.2)

where the state is normalized such that the complex coefficients once again obey the restriction,

|c 0|2 + |c 1|2 + |c 2|2 + |c 3|2 = 1. Similarly, three qubits will be in a superposition of eight bit

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-02 MOBK053-Metodi.cls October 30, 2006 19:18

10 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

strings, encoding the numbers zero through seven in each bit string. Thus, computing a function

f (x) where x = 0, 1, ..., 7 can potentially be computed using three qubits with a single clock

step. In general, an n-qubit quantum system may represent 2n bit strings distinguished by 2n

complex-valued coefficients:

|�〉 =
2n−1∑
i=0

c i |xi〉, such that
2n−1∑
i=0

|c i |2 = 1, (2.3)

where each xi represents the ith bitstring from 0 to 2n−1. Because each additional qubit dou-

bles the number of pure states (bitstrings) represented and subsequently manipulated by logic

operations at each clock step, we can see how quantum computation has the potential to offer

exponential scaling of the computing power with only a polynomial increase in the data resources.

2.2 LOGIC OPERATIONS AND CIRCUITS
A circuit in both classical and quantum computation is made up of wires and logic gates. The

classical circuit model of computation is composed of acyclic circuits with a number of input

and output bits which travel as an electric current, typically through copper wires, and whose

states are modified by logic gates (such as the logically universal NAND gate). The actions of

classical gates on bit strings are defined by boolean algebra. No matter what classical gate is

executed, the fundamental operation type is a decision whether the value of one or more bits

will be flipped.

A single gate in a quantum circuit with one or more input qubits in the initial state |�〉
transforms the state to a different state |� ′〉 by changing all probability amplitudes that describe

the state vector [c 0, c 1, . . . , c n−1]T. Mathematically, linear algebraic operations such as matrices

act on quantum mechanical vector states, thus a quantum gate on an n-qubit system is described

by a 2n × 2n matrix U that acts on all 2n elements of the state vector |�〉:

U |�〉 = U

⎡
⎢⎢⎢⎢⎣

c 0

c 1

...

c n−1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

c ′
0

c ′
1
...

c ′
n−1

⎤
⎥⎥⎥⎥⎦ = |� ′〉, (2.4)

where the matrix U must ensure that the elements of the amplitude vector that describes the

new state |� ′〉 satisfy the normalization property:
∑n−1

i=0 |c ′
i |2 = 1. The sum of the squares of

the absolute values of a vector is known as the p-norm of a vector, and the only operators that

map a vector of p-norm equal to 1 to another vector of p-norm equal to 1 are unitary operators.

Thus, a quantum operator U is mathematically implemented as a unitary matrix. Because the

inverse of a unitary operator always exists, applying U−1 to |� ′〉 will restore the state back to

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-02 MOBK053-Metodi.cls October 30, 2006 19:18

BASIC ELEMENTS FOR QUANTUM COMPUTATION 11

|�〉, thus all quantum logic is reversible. To preserve reversibility, an n-qubit input quantum

operation must also have n output qubits.

The most general 2 × 2 operator U that acts on an arbitrary two-element vector that

describes the state of a single qubit is a rotation matrix written as

U =
[

e iα/2 0

0 e −iα/2

]
×

[
cos θ/2 sin θ/2

− sin θ/2 cos θ/2

]
×

[
e iβ/2 0

0 e−iβ/2

]
, (2.5)

where the values α, β, and θ denote the angles of rotation along the different degrees of freedom.

A valid rotation of the state of a single qubit can be arbitrarily small; thus there are an infinite

number of possible operations that can be applied on a single qubit. Classical computation

distinguishes itself with the fact that there is only one valid operation on a single bit, namely

the bit-flip operation.

The overall function of the sequence of operations in an entire n-qubit quantum circuit

divided into K time steps can be collectively described by a 2n × 2n unitary operator U , where

U = Uk × Uk−1 × · · · × U1. Each Ui is the 2n × 2n unitary operator that describes the ith

time step in the circuit and the collective action of the sequence is the product of all individual

operators for each time step. A schematic of a quantum and a classical circuit is shown in

Fig. 2.1. Fig. 2.1(a) shows a classical circuit with 3 input bits and 1 output bit. The output bit

is the result of a boolean function that describes the classical circuit defined in this case by

f (c 1, c 2, c 3) = (c 1 ⊕ c 2) ∨ (c 1 ∧ c 3). (2.6)

Given the value of the output bit and the gates performed in a classical circuit, it still may not

be possible to know the values of the input bits. A quantum circuit, on the other hand, as shown

in Fig. 2.1(b), has exactly as many input qubits as output qubits. In the shown schematic, time

moves from left to right, where each line represents the evolution of a single qubit through the

sequence of gate cycles in a circuit. The input quantum state |�〉 = |q1, q 2, q3〉 is transformed

q1,q2,q3U

U1 U3

U2 U4

U

q2

q1

q3

(a) (b)

c1

c2

c3

XOR

AND

OR
f(c1,c2,c3)

FIGURE 2.1: (a) An example classical circuit, where the output bit is a function of the input bits

{c 1, c 2, c 3}. (b) A three-time-step quantum circuit, where three input qubits {q1, q2, q3} implies the

same qubits as output. The notation U (i) denotes an i-qubit operator.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-02 MOBK053-Metodi.cls October 30, 2006 19:18

12 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

by multiplying |�〉’s state vector by the 8 × 8 operator U which describes the evolution of the

qubits’ state through the smaller suboperators {U1, U2, U3, U4} that make up the circuit.

The operator that describes the first time step in the circuit is the tensor product of the

two matrices U1 and U2, while the operator that describes the last (third) time step is the tensor

product of two identity matrices that leave qubits q1 and q2 unchanged and the one-qubit U4

matrix. The tensor product is an operation denoted by the symbol “⊗” between two matrices

where each element of the first matrix is replaced by the second matrix, scaled by that element.

For matrices U1 and U2 this is

U1 ⊗ U2 =

⎡
⎢⎣

u
(11)
1 U2 u

(12)
1 U2 · · ·

u
(21)
1 U2 u

(22)
1 U2 · · ·

...
. . . · · ·

⎤
⎥⎦ , (2.7)

which is an 8 × 8 matrix that describes the first time step. Thus, the final state of |�〉 after the

circuit completes is given by

|�〉 → U |�〉 = [(I ⊗ I ⊗ U4) × (U3 ⊗ I) × (U1 ⊗ U2)] |�〉, (2.8)

where the state |�〉 is first multiplied by (U1 ⊗ U2), then by (U3 ⊗ I), and finally by (I ⊗ I ⊗
U4). The one-qubit matrix denoted by the letter I is the 2 × 2 identity matrix that does nothing

on a single qubit

I

[
a

b

]
=

[
1 0

0 1

] [
a

b

]
=

[
a

b

]
. (2.9)

Given the final state of a quantum circuit, applying the inverse of the operations in reverse will

bring the state back to its input form.

There are three general ways to describe quantum operations in a quantum circuit as

shown in Fig. 2.2. The leftmost schematic is of an arbitrary one-qubit operator U shown as a

box with the letter “U” written inside. Similarly, an arbitrary two-qubit operator is shown as a

box that spans two lines of qubit inputs with two lines of qubit outputs. The third (rightmost)

schematic is of an arbitrary controlled operation, where the operator U is applied on the second

out
U U

in

in

out

out
U

target

control

in

FIGURE 2.2: The three general ways to schematically represent quantum gates in the circuit notation: an

arbitrary one-qubit operator U , and arbitrary two-qubit operator U , and a controlled-two-qubit operator

where U is applied on the target qubit if the control qubit is set.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-02 MOBK053-Metodi.cls October 30, 2006 19:18

BASIC ELEMENTS FOR QUANTUM COMPUTATION 13

qubit whenever the state of first qubit is “1.” The logically universal set of quantum operations

into which every n-qubit operator can be decomposed is shown in Eq. (2.10):

H = 1√
2

[
1 1

1 −1

]
, �φ =

[
1 0

0 e iφ

]
, cnot =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤
⎥⎥⎥⎦ . (2.10)

The first gate in Eq. (2.10) is the one-qubit Hadamard gate denoted with the letter H.

The Hadamard gate takes the state |0〉 to the new state marked as | + 〉 and the state |1〉 to the

new state marked as | − 〉. Each of the two states | + 〉 and | − 〉 is simply an equal superposition

of the states |0〉 and |1〉 and is defined as:

| + 〉 = H|0〉 = 1√
2
|0〉 + 1√

2
|1〉 = 1√

2
(|0〉 + |1〉) (2.11)

| − 〉 = H|1〉 = 1√
2
|0〉 − 1√

2
|1〉 = 1√

2
(|0〉 − |1〉). (2.12)

The phase gate �φ leaves the |0〉 element unchanged but applies a rotation of φ radians to the

|1〉 state by multiplying it by the quantity e iφ . The Hadamard gate and the �φ gate form a

universal set of single-qubit gates, where any valid 2 × 2 unitary matrix can be approximated

by these two gates. One can verify that multiplying any arbitrary two-qubit vector [a, b]T that

describes the state of a single qubit by the matrix for the �φ operator will result in a two-element

vector with the a coefficient unchanged while the b coefficient will be multiplied by a factor of

e iφ .

Finally, one of the most important gates in quantum computation is the two-qubit

controlled-NOT gate or the cnot gate, which allows the interaction between any two qubits.

The cnot gate flips the state of the target qubit if the control qubit is set. Its action on an

arbitrary two-qubit state |�〉 = (c 0|00〉 + c 1|01〉 + c 2|10〉 + c 3|11〉) described by the vector

[c 0, c 1, c 2, c 3]T is:

Ucnot|�〉 =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

c 0

c 1

c 2

c 3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

c 0

c 1

c 3

c 2

⎤
⎥⎥⎥⎦ , (2.13)

where the last two elements of the state vector have been flipped. The effect of the cnot gate,

where the first qubit is control and second is target, on the state |ab〉 is the new state |a(a ⊕ b)〉:
|00〉 → |00〉; |01〉 → |01〉; |10〉 → |11〉; |11〉 → |10〉.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-02 MOBK053-Metodi.cls October 30, 2006 19:18

14 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

Together, the gates in Eq. (2.10) form a logically universal set of quantum operations [33],

much like the NAND gate is a logically universal gate for classical computation. Any n-qubit

unitary transformation can be decomposed into a combination of only cnot, Hadamard, and

the phase �φ gates, where the phase angle need only be φ = π/2 or φ = π/4 radians. The

phase gates with angles of π/2 and π/4 radians are known as the S and T gates, respectively:

S =
[

1 0

0 e i π
2

]
=

[
1 0

0 i

]
, T =

[
1 0

0 e i π
4

]
. (2.14)

A very important set of single-qubit gates known as the Pauli matrices is the four gates

shown below denoted with the letters {I, X, Y, Z}:

I =
[

1 0

0 1

]
, X =

[
0 1

1 0

]
, Z =

[
1 0

0 −1

]
, Y = −i ZX =

[
0 −i

i 0

]
. (2.15)

In fact, the phase-flip Z gate is the phase gate with the angle φ = π radians, while the X

gate can be constructed by conjugating the Z matrix with the Hadamard matrix: X = H ZH;

and the Y gate can be obtained by multiplying the X and Z gates together with a global phase

factor of −i : Y = −i ZX. The X gate is the bit-flip gate which takes the state |0〉 to |1〉 and |1〉
to |0〉, and the Z gate is a 180◦ rotation of the phase known as the phase-flip gate which leaves

|0〉 unchanged and takes |1〉 to −|1〉. The cnot gate defined in Eq. (2.10) is nothing more than

a controlled-X gate.

Consider the three-qubit circuit example shown in Fig. 2.3. The example has only two

cnot gates and two Hadamard gates, but it is an integral part of one of the most important

concepts of quantum computation: teleportation [26], which we will describe in better detail

when we introduce the measurement process of quantum states. The controlled-NOT gate’s

circuit representation is uniquely drawn to mark the fact that the gate’s function is to perform

the xor operation between the control qubit and the target qubit. The collective state of the

three qubits after any time step in Fig. 2.3 is described by an eight-element vector. The first

time step involves the Hadamard gate on qubit q2 whose completion is necessary before we can

execute the cnot gate between q2 and q3 which marks the second time step.

q2

q1

q3

H

H

FIGURE 2.3: Example circuit consisting of two Hadamard gates and two cnot gates.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-02 MOBK053-Metodi.cls October 30, 2006 19:18

BASIC ELEMENTS FOR QUANTUM COMPUTATION 15

Suppose now that the input state of the first qubit in Fig. 2.3 is an arbitrary qubit state

a |0〉 + b|1〉 and the other two qubits q 2 and q3 are both initialized to |0〉. Thus before the first

time step, the state of the entire system is

(a |0〉 + b|1〉)|00〉 = a |000〉 + b|100〉, (2.16)

where the ith entry in each bitstring state |xnxn−1 · · · xi · · · x0〉 denotes the state of the ith qubit.

The eight-element probability amplitude vector that describes the state of the system has all

zero entries except the zeroth entry (equal to a) and the fourth entry, equal to b.

The combined state of the three qubits after the first Hadamard gate on the second qubit

in Fig. 2.3 is now

1√
2

(a |000〉 + a |010〉 + b|100〉 + b|110〉). (2.17)

The first CNOT gate flips the state of qubit q3 at each bitstring state where q2 is set; thus the

state of the three qubits becomes 1√
2
(a |000〉 + a |011〉 + b|100〉 + b|111〉) after the first CNOT

gate. After the second CNOT gate the state becomes 1√
2
(a |000〉 + a |011〉 + b|110〉 + b|101〉).

The application of the Hadamard gate on qubit q1 places the final state of the three qubits into

the superposition:

1

2
(a(|000〉 + |011〉 + |100〉 + |111〉) + b(|010〉 + |001〉 − |110〉 − |101〉)), (2.18)

where we have factored out of common terms the probability coefficients a and b. The global

phase factor of 1
2

introduced by the successive application of the two H gates can be left out since

it does not functionally change the probability values for the coefficients for each state relative

to the other states. The coefficients are phase factors that can be moved to any location of their

corresponding state. For example a |00〉 can be written as |0〉a |0〉. We can rewrite the final state

of our example circuit by factoring out some common terms and moving the coefficients around

to get

|00〉(a |0〉 + b|1〉) + |01〉(a |1〉 + b|0〉) + |10〉(a |0〉 − b|1〉) + |11〉(a |1〉 − b|0〉). (2.19)

Note that the state of qubit q3 is any of four different arbitrary qubit states that look very

much like the initial state of qubit q1. Thus, the state of qubit q1 has been recreated in qubit

q3 with some error without directly interacting the qubits. The error depends on the values of

qubits q1 and q2. In the next section we will see how extracting the values of qubits q 1 and q2

can be performed through measurement and its effects on the overall state of the system.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-02 MOBK053-Metodi.cls October 30, 2006 19:18

16 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

a

b

c

a

b

c ab

=

01000000

10000000

00100000

00010000

00001000

00000100

00000010

00000001

toffoliU

FIGURE 2.4: Circuit representation and the three-qubit 8 × 8 matrix for the Toffoli gate.

2.2.1 The Quantum Toffoli Gate

The Toffoli gate in classical computation is defined as the controlled-controlled-NOT gate, which

flips the state of the target bit if the states of both control bits are set: (a, b, c) → (a, b, c ⊕ ab).

In classical computation, the Toffoli gate is particularly important because it is the smallest uni-

versal, reversible classical operation [34]. It is universal because it can simulate the NAND gate

if the third bit is fixed to 1 at input. It is reversible, because applying the Toffoli gate again

will bring the state of the three bits back to (a, b, c), a property which cannot be implemented

with any two-input one-output classical gate. Quantum mechanically, the Toffoli gate has the

following action on a quantum bitstring state: |abc 〉 → |ab(c ⊕ ab)〉

|000〉 → |000〉; |001〉 → |001〉; |010〉 → |010〉; |011〉 → |011〉
|100〉 → |100〉; |101〉 → |101〉; |110〉 → |111〉; |111〉 → |110〉.

The circuit representation for the Toffoli gate is shown in Fig. 2.4 along with the gate’s

8 × 8 unitary matrix.

The Toffoli gate is an integral component in the implementation of almost all important

quantum algorithms and it offers an important contrast between classical and quantum com-

putations. A classical simulation of the Toffoli gate using one- and two-qubit gate can never be

reversible, while quantum mechanically, we can completely describe its action and preserve its

reversibility using only the universal gate set discussed in Section 2.2.

A circuit that implements the Toffoli gate made of just one- and two-qubit quantum

gates from the universal gate set (Hadamard, Phase, and cnot) is shown in Fig. 2.5. The ability

to breakdown the Toffoli gate into one- and two-qubit operations is important, for there is no

quantum technology implementation which allows the natural construction of a physical gate

mechanism that implements a three-qubit operation. In the circuit, the gate labeled as T † is

simply the complex conjugate of the matrix that implements the T gate shown in Eq. (2.14).

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-02 MOBK053-Metodi.cls October 30, 2006 19:18

BASIC ELEMENTS FOR QUANTUM COMPUTATION 17

H T† T T† T

T†

H

T† S

T

FIGURE 2.5: Circuit implementation of the Toffoli gate using only one- and two-qubit gates.

As an additional example for the usage of the Toffoli gate, the construction of a reversible

2-bit adder using Toffoli and cnot gates is shown in Fig. 2.6. The circuit adds the two bitstrings

“(x1, x2)” and “(s1, s2),” where the least significant bit is the leftmost bit. The result is stored in

the bitstring “(s1, s2, C),” where C is the carry-out bit. For example, the addition of the input

strings “(1, 1)” and “(1, 1)” should yield the result “(s1 = 0, s2 = 1, C = 1).” An additional

ancillary bit is used. If the information were stored in qubits, the circuit in Fig. 2.6 becomes a

quantum 2-bit adder based on the classical ripple-carry adder. If the input is a superposition

of all possible combinations for the input strings, then the output would be a superposition,

where each state holds the result of the addition. Adders are used to construct the circuit for

quantum modular exponentiation, which is the most computationally intensive component of

Shor’s factoring algorithm.

2.2.2 Quantum Fourier Transform (QFT)

Another key circuit structure is the implementation of the quantum fourier transform (QFT),

which lies at the heart of Shor’s factoring algorithm [7]. The factoring algorithm works by

using a reduction of the factoring problem to finding the period r of the periodic function

f (x) = a x mod M, where a is a randomly chosen number co-prime to M, x is an integer in

Z2M2 , and M is the number being factored. By far, the dominant part of the algorithm is the

modular exponentiation routine, which computes f (x) in superposition, over all values of x.

The quantum Fourier transform enables us to compute the period r of f (x) which we can use

to classically deduce the factors of M.

x1

x2

s1

s2
C

Anc
s1

s2
C

FIGURE 2.6: Two-Bit Adder composed of quantum controlled-NOT (cnot) and Toffoli gates. The

circuit adds the two bitstrings “(x1, x2)” and “(s1, s2),” where the least significant bit is the leftmost bit.

The result is stored in the bitstring “(s1, s2, C),” where C is the carry-out bit.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-02 MOBK053-Metodi.cls October 30, 2006 19:18

18 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

q2

q1

q0

q3 H

H

H

H

R

R R

R R R

1

1

1

2

23

FIGURE 2.7: Circuit for the four-qubit quantum Fourier transform. Each controlled two-qubit gate

Ri is a phase rotation with angles {π
2
, π

4
, π

8
} for i = 1, 2, 3, respectively.

For some set of integers ZN less than or equal to N, let the quantum state |�〉 be in a

superposition of all basis states |xi〉 such that xi ∈ ZN. The state |�〉 is known to be in the

standard basis, and the QFT is a unitary operator which maps |�〉 to the Fourier basis which is

a superposition of the basis states |χa 〉 defined by

|χa 〉 = 1√
N

N−1∑
j=0

e 2π i a j
N | j〉. (2.20)

Fig. 2.7 shows the circuit for a four-qubit QFT operator which can be synthesized into

Hadamard and controlled phase gates. Each controlled two-qubit gate Ri is a phase rotation

with angles {π
2
, π

4
, π

8
} for i = 1, 2, and 3, respectively. In general, if N is chosen such that it is a

power of 2, then the QFT can be implemented on a quantum computer using O((log N)2) gates

[35]. The caveat is that the implementation of the controlled-phase gates shown in the circuit

is not trivial. Song and Klappenecker [36] have shown that an arbitrary two-qubit controlled

operator can be implemented with at most two cnot gates and three single-qubit gates.

2.3 MEASUREMENT OF CLASSICAL AND QUANTUM STATES
Reading values from a classical register are a trivial operation. Values can be read reliably and

copied to other registers. Unfortunately, this is not the case for quantum registers. Reading

out the state of any qubit of a quantum register involves a measurement that destroys the

superposition of that qubit, effectively terminating any quantum computation which requires

that qubit.

It is important to state that, just as there are many unitary operators U that can be applied

to a single qubit, there are many ways to perform a measurement on a qubit. A measurement

can be performed along the eigenbasis of any one-qubit operator U , where the eigenbasis of a

matrix consists of the eigenvectors of that matrix. An eigenvector �v of operator U satisfies the

equation

U �v = λ�v, (2.21)

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-02 MOBK053-Metodi.cls October 30, 2006 19:18

BASIC ELEMENTS FOR QUANTUM COMPUTATION 19

which means that the operator multiplied by its eigenvector equals the eigenvector scaled by

some constant λ. The constant λ is known as the eigenvalue of U that corresponds to the

particular eigenvector �v. When measuring a qubit, the only possible results of a measurement

are the eigenvalues of the unitary operator describing this measurement.

For example, the eigenvalues of the phase-flip Pauli operator Z are “0” and “1” with

corresponding eigenvectors |0〉 = [1, 0]T and |1〉 = [0, 1]T. The eigenbasis of Z is known as

the computational basis because its two eigenvalues are the two binary states “0” and “1,” and so

far, we have described qubits in the computational basis where the most general one-qubit state

is |�〉 = a |0〉 + b|1〉. When a single qubit is exposed to a Z measurement, the resulting classical

bits will be “0” with probability |a |2 and “1” with probability |b|2. The value of the qubit’s state

after measurement is destroyed and forced to be equal to the result of the measurement (i.e.,

|0〉 or |1〉)—thus, losing all quantum superposition.

In some cases, however, the underlying technology may allow measurements along the

basis of the X operator, which has eigenvalues “+1” and “−1.” The eigenvectors of X are the

states | + 〉 and | − 〉, where

| + 〉 = 1√
2

(|0〉 + |1〉) = 1√
2

([
1

0

]
+

[
0

1

])
= 1√

2

[
1

1

]

| − 〉 = 1√
2

(|0〉 − |1〉) = 1√
2

([
1

0

]
−

[
0

1

])
= 1√

2

[
1

−1

]
, (2.22)

where the arbitrary state a |0〉 + b|1〉 can be written as

|�〉 = a |0〉 + b|1〉 = a + b√
2

| + 〉 + a − b√
2

| − 〉. (2.23)

Thus, when measuring the qubit in the X eigenbasis, the resulting state would be collapsed

into the state | + 〉 or the state | − 〉 with probabilities equal to
∣∣ a+b√

2

∣∣2
and

∣∣ a−b√
2

∣∣2
, respectively.

For simplicity, we will consider measurement in the computational basis only throughout this

publication and similarly, represent n-qubit states in the computational basis. Measurement

along the X eigenbasis can be performed by applying the Hadamard gate followed by measuring

along the computational basis.

Measuring an n-qubit quantum register in the computational basis gives a single bit string

with probability calculated from the coefficient of the associated bit string, while completely

discarding the rest. For example, measuring the two-qubit quantity 1
2
(|00〉 + |01〉 + |10〉 + |11〉)

might yield the single bit string |10〉.2 Thus one needs to be very careful during the computation

2With probability 1
4
, calculated by taking the square of the probability amplitude 1

2
.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-02 MOBK053-Metodi.cls October 30, 2006 19:18

20 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

of a quantum algorithm not to inadvertently expose the system to a measurement operation.

Quantum algorithms are designed to apply a known sequence of gates on an initial quantum

state such that the probability of measuring the correct answer at the end of the computation is

greatest.

A very important by-product of the destructive nature of measurement of a quantum

state is the inability to copy a quantum state, known as the No-Cloning Theorem [37]. Because

states can be copied at will in classical computation, sending information to one or multiple

destinations is easy. The state is just amplified through a FANOUT gate, placed on a wire,

and sent to as many destinations as one needs provided a sufficient power source is available. In

quantum computing however, we cannot copy a state, therefore the FANOUT gate is impossible.

The inability to copy quantum states has great implications on our ability to communicate

quantum information. We cannot simply transmit quantum information on a wire to a different

destination, but can only transfer qubits without leaving a trace of the original one at the source

location.

2.3.1 Quantum Teleportation

Quantum teleportation [26] allows us to transfer information from one qubit in location A to

another qubit in location B without the need to locally interact the two qubits. If we look back

to the example of Fig. 2.3 we see that upon measurement of qubits q1 and q2, we will obtain

one of the four strings “00,” “01,” “10,” or “11.” If the result is “00” only the first state in the

final superposition shown in Eq. (2.19) remains after measurement: |00〉(a |0〉 + b|1〉). Note

that the state of just qubit q3 resembles the original state of qubit q1, where q 1’s value has been

collapsed to the pure |0〉 state due to the measurement operation. Thus upon observation of

the string “00,” and assuming perfect quantum gates and state preparation, the initial value of

qubit q1 has been teleported to qubit q3 without having to interact qubits q1 and q 3 directly.

Even if the result is any of the other strings “01,” “10,” or “11,” one can see from Eq. (2.19)

that the initial state of qubit q1 is recreated at q3 with some error. The error is fixed with a

combination of a bit-flip X gate and a phase-flip Z gate. The full teleportation circuit complete

with the two measurement operations on qubits q1 and q2 and the recovery X and Z operations

on qubit q3 is shown in Fig. 2.8. At the end of the circuit, qubit q 1 has been teleported to the

location of qubit q3, while the no-cloning rule has not been violated since the original state at

the location of qubit q1 has been destroyed by the measurement operation.

2.3.2 Deutsch’s Quantum Algorithm

The discussion on the destructive nature of quantum measurement brings us back to the question

of the power of quantum computing and more specifically, how can quantum parallelism be

utilized? If all possibilities but one are destroyed when measuring a quantum register, then the

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-02 MOBK053-Metodi.cls October 30, 2006 19:18

BASIC ELEMENTS FOR QUANTUM COMPUTATION 21

ZX

?

?H

H

q2

q1

q3 q1

FIGURE 2.8: Complete circuit for quantum teleportation. The first four gates are the same as the ones

shown in Fig. 2.3. The measurement operations and the recovery operation of X and Z gates are added

to complete the teleportation of qubit q1 into the location of qubit q 3. The “?”s indicate that we cannot

predict the outcome of the two measurements with perfect accuracy but the final states of qubits q1

and q2 are collapsed to values that depend entirely on the probabilistic measurement outcome. In this

manner, measurement is the only nonreversible quantum operation.

computational resources may seem to have been applied in vain. As mentioned at the beginning

of this section, an explanation of why this is not true can be seen through the description of

Deutsch’s quantum algorithm [4, 31]. The algorithm uses the fact that quantum states interfere

with one another, thus the probability of measuring a specific state is influenced by the values

of all other states that this state interferes with.

Before we continue with Deutsch’s algorithm, let us consider how quantum parallelism

works when evaluating f (x) as described in [38]. Suppose we start with two qubits in the initial

state |�〉 = |00〉, and the two-qubit unitary transformation U f which takes the state |ab〉 to

|a, b ⊕ f (a)〉. The transformation U f can be simply the cnot gate where f (a) = 0 if a = 0

and f (a) = 1 if a = 1. Applying the Hadamard gate on the first qubit we obtain the state

|�〉 → H1|�〉 = 1√
2

(|00〉 + |10〉). (2.24)

The Hadamard gate is the key to accessing quantum parallelism as it transforms any state |a〉 into

a superposition of all possible values of a , namely “0” and “1.” After the unitary transformation

U f on the two-qubit state |�〉 the state takes the form

|�〉 → U f |�〉 = 1√
2

(|0, f (0)〉 + |1, f (1)〉). (2.25)

Note that the state of |�〉 contains the evaluated function f (x) for both possible inputs “0” and

“1,” which we have derived with a single clockstep. The problem is that, upon measurement of

one of the two qubits we will obtain information about the function f (x) for only one input.

If instead, we start with the state |�〉 = |01〉 and apply a Hadamard gate to both qubits

before we apply the unitary transformation U f we have the state

|�〉 → H1 H2|�〉 = 1√
2

(|0〉 + |1〉) ⊗ 1√
2

(|0〉 − |1〉). (2.26)

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-02 MOBK053-Metodi.cls October 30, 2006 19:18

22 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

Applying another Hadamard gate on the first qubit after the two-qubit U f transformation, we

obtain the following final state:

|�〉final = ±| f (0) ⊕ f (1)〉
[|0〉 + |1〉√

2

]
. (2.27)

We see that the state of the first qubit is the quantity f (0) ⊕ f (1) for the function f (x), which

is a global property of the function f (x) that depends on both inputs. Unlike probabilistic

classical computation where the two alternatives of f (x) exclude one another, they have the

option to interfere with each other in quantum computation. The interference was caused by

the third Hadamard gate, which was applied to the first qubit in Deutsch’s algorithm.

In general, the design of quantum algorithms involves the identification of a function

f (x) which possesses some global property over its inputs that is easy to achieve through some

clever quantum transformation. The evaluation of f (x)’s global property should be chosen such

that it will help us obtain a solution to a problem that is difficult to compute classically. One

example, is using the Fourier transform to force a quantum state into a superposition such

that all superposition states whose value is the period of some periodic function have a higher

probability of being measured [39]. The calculated period is subsequently used to find the factors

of a large number N in Shor’s factoring algorithm [7].

2.4 QUANTUM ENTANGLEMENT AND EPR PAIRS
Three qubits are in a superposition of eight different states in Eq. (2.18) with varying probability

amplitudes a and b. There is no way to rewrite the equation such that the state of any of the three

qubits can be distinguished independently from the rest. Herein lies one of most amazing and

powerful tool of QIP, the unique occurrence of quantum entanglement. Quantum entanglement

is another way to describe the interference of different quantum states that is needed for quantum

algorithms, by inseparably linking the superposition states of a collection of qubits.

Independently, each qubit is its own entity where there is some probability associated

with obtaining either a |0〉 or |1〉 when measured and any logic gate can be applied on a single

qubit. However, any action such as a gate or measurement on a single qubit will affect the states

of the other qubits entangled with it. The exploitation of this enormously parallel interconnect

has led to the application of entanglement to many of the most important quantum applications

such as teleportation, quantum key encryption, and superdense coding [40, 41]. In addition,

entanglement plays a major role in the difficulty of implementing quantum computation since

a small error on one qubit is distributed across all qubits entangled with it.

The most important entangling gate between two qubits is the cnot gate. Consider

Fig. 2.9, where we begin with two qubits initialized at the state |00〉. The application of a

Hadamard gate on the first qubit sends the system into the state: (|0〉 + |1〉)|0〉, which can be

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-02 MOBK053-Metodi.cls October 30, 2006 19:18

BASIC ELEMENTS FOR QUANTUM COMPUTATION 23

0

11
2

1
00

2

1 +
H0

00

FIGURE 2.9: Creation of a maximally entangled EPR pair.

rewritten as |00〉 + |10〉, where the first qubit is in an equal superposition of |0〉 and |1〉 and the

second qubit remains |0〉. A cnot gate with the first qubit as target flips the state of the second

qubit only when the first qubit is |1〉 giving us the fully entangled state (|00〉 + |11〉)/√2. Notice

that in this case the unitary transformation U f discussed in Section 2.3.2 is the cnot gate. The

fully entangled state is known as an EPR pair named after its discoverers, Einstein, Podolsky,

and Rosen in 1935. The two qubits are completely correlated. If the first qubit is measured and

we obtain the bit “0,” then not only have we destroyed the state of the first qubit, but also the

state of the second qubit, which would also yield “0” with almost near certainty if measured

immediately after. EPR pairs are also known as two-qubit cat states. An n-qubit cat state can be

generalized to |�〉 = |00...0〉 + |11...1〉. An analogy for a four-qubit cat state using four cubes

drawn without a particular frame of reference is shown schematically in Fig. 2.10.

FIGURE 2.10: Four cubes that aid in visualizing a four-qubit cat state [42, 43]. The four cubes are

initially drawn without particular frame of reference. The moment an observer is shown a single cube

with the south face brought forward, or the north face brought forward, the observer’s mind will be

immediately fixed to the shown frame of reference for all cubes. Thus, showing an observer a particular

frame of reference for one cube is equivalent to measuring not just the shown cube, but the entire entangled

set of four cubes. The figure shows the two possible outcomes of observing either frame of reference in

the bottom rows of four cubes each.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-02 MOBK053-Metodi.cls October 30, 2006 19:18

24 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

2.4.1 Teleportation (Revisited)

EPR pairs play an integral part in the quantum teleportation protocol described in Fig. 2.8.

Note that the first Hadamard gate and the first cnot gate are used to prepare an EPR pair

between qubits q2 and q3, which is then entangled with the data qubit q1 through the second

cnot gate in Fig. 2.8. In general, quantum teleportation works by interacting an arbitrary data

qubit with a previously prepared two-qubit EPR pair, such that the state of the data qubit

is recreated into the state of one of the EPR qubits up to some error. Teleporting one qubit

state from one location to another allows us to send quantum information through very large

distances without directly distributing the information in the data qubit itself, but rather the

physical distribution of EPR pair qubits between the source and destination. Even though EPR

pairs are physically moved, they are replaceable and thus with enough quantum resources we

may have a way to communicate valuable data at very large distances. After the EPR pair has

been created one of the two EPR qubits travels to the data qubit and is entangled with it through

the second cnot gate in the circuit of Fig. 2.3. The other EPR qubit travels to the destination.

The measurement result of the source qubit and its local qubit from the EPR pair yields the

correcting X and Z operations that will recreate the data over the qubit that traveled to the

destination.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-03 MOBK053-Metodi.cls October 30, 2006 19:19

25

C H A P T E R 3

High-Level Architecture Criteria

and Abstractions

The QIP model described in Chapter 2 follows the circuit model for quantum computation.

In summary, the circuit model allows the execution of algorithms in the form of a sequence

of operations applied on a number of qubits, where each qubit is a quantum system with the

two states |0〉 and |1〉. We will restrict ourselves to a small set of universal quantum gates com-

posed of any arbitrary single-qubit operation, the two-qubit controlled-NOT (cnot) gate, and

measurement. Other examples of computational models are adiabatic quantum computation

[44, 45, 11], cluster state quantum computation [46–49], geometric quantum computation

[50], and the theory of topological quantum computation [51]. In adiabatic quantum compu-

tation the computer is initialized with some initial Hamiltonian, Hi . Hi is then adiabatically

deformed into a final Hamiltonian, Hf , that represents the solution to the problem being calcu-

lated. Cluster states are a collection of highly entangled qubits with the property that arbitrary

quantum computation can be performed purely through single-qubit measurement operations.

Topological quantum computation uses hypothetical quantum systems with particular kinds of

topological excitations to avoid decoherence. Recent studies suggest that such systems may exist

in nature. Combined, the variety of quantum computation models provides different methods

for extending the application space for quantum computation, and may some day redefine the

system design of a large-scale machine. In this book, we focus on the circuit model to describe

a clocked, scalable quantum architecture scheme that overcomes the primary scalability issues

of size and resource distribution. The model we describe is capable of performing any arbitrary

quantum computation.

3.1 A HIGH-LEVEL ARCHITECTURE VIEW
The high decoherence rate of qubits forces us to design quantum architectures aimed at mini-

mizing the time and spatial scope each qubit of data is used throughout the application, especially

when quantum information is shuttled frequently without the ability to copy it. The physical

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-03 MOBK053-Metodi.cls October 30, 2006 19:19

26 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

P1

physical
qubits

Pk
P4

P2 P3

INTERCONNECT

Quantum Hardware

Classical
Control

Processors&

Information

Scheduling

results
measurement

FIGURE 3.1: High level schematic for a quantum computer architecture. The computer model is

composed of a number of processing elements composed of some collection of physical qubits. Each

of the processing elements is designed to execute a localized piece of the larger application, and com-

munication between processing elements is implemented through the teleportation-based interconnect.

Classical control processors orchestrate the scheduling of quantum operations, where the only means of

communication between the classical and quantum hardware is through measurement results.

model of a potential quantum architecture may consist of a number of qubit structures who

exploit the principle of locality to compute and protect as much qubits as possible by limit-

ing the transmission distance of the quantum data. The qubit structures can be connected by

a carefully designed teleportation-based interconnect that allows information to be preserved

over significantly large distances.

A high-level schematic of a quantum architecture is shown in Fig. 3.1. The architecture

shown in the figure is composed of a number of processing elements. Each of the processing

elements is designed to execute a localized piece of the larger application. Communication be-

tween processing elements can be implemented through the teleportation-based interconnect

if the distances are too large, while communication within, is implemented through physical

qubit movement as allowed by the underlying technology. Classical control processors orches-

trate the scheduling of quantum operations, where the only means of communication between

the classical and quantum hardware is through measurement results. A conventional quantum

architecture compiler run by the classical control processors should have the freedom to fully

orchestrate computation and communication in order to optimize the usage of quantum data

such that the data is maximally protected through the course of the application. Quantum error

correction codes are used to encode quantum data for continuous state stabilization through the

application execution.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-03 MOBK053-Metodi.cls October 30, 2006 19:19

HIGH-LEVEL ARCHITECTURE CRITERIA AND ABSTRACTIONS 27

3.2 REQUIREMENTS FOR QUANTUM ARCHITECTURES
The trapped ion scheme proposed by Cirac and Zoller in 1995 was the first work that described

a clear model for physically implementing a quantum computer in the laboratory [24]. Sub-

sequently, DiVincenzo [32] from IBM put together a set of rules that generalized the task of

the physical realization of a quantum computer and demonstrated that if the technology can

satisfy the proposed rules then it could, in principle, be used to build a working computer. The

quantum technology roadmap [52] uses DiVincenzo’s requirements to describe the current state

of existing technologies. The set of rules proposed by DiVincenzo can be summarized with the

following four bullet points:

• A quantum register described as a collection of well-defined single-qubit states must

be initialized to a well-known starting state (i.e., |00 ... 0〉).
• A “universal” set of quantum logic must be available, where the gate time cycle must

be much shorter than the relevant decoherence time cycle of the quantum register.

• Reliable measurements must be performed on any single-qubit state.

• The ability to transmit quantum information between specified locations, either through

the direct physical movement of the qubit, or by passing the information to “flying”

qubits which can then pass it back to “stationary” qubits for gate manipulation.

In the next Chapter we describe in better detail the implications of DiVincenzo’s require-

ments on the existing physical proposals for implementing a computer. There is a difference,

however, between physically implementing the necessary components needed for a quantum

computer, and designing a complete, large-scale quantum architecture that is intended to per-

form arbitrary computationally relevant programs. Previous work in large-scale quantum archi-

tecture design based on the circuit model [53–55, 27] has allowed us to extrapolate the chief

requirements for building a large-scale quantum architecture. The scalability requirements can

be summarized with three main bullet points, which are:

• Reliable and realistic implementation technology, that adheres to the DiVincenzo

requirements [32] for implementing quantum computation.

• Robust, fault-tolerant structures encoded using efficient error correction algorithms.

This requirement provides system-level fault tolerance that will allow the execution of an

arbitrarily large sequence of universal quantum logic operations within the architecture

decoherence time.

• Efficient quantum resource distribution at both the application level and the physical

qubit level that allows maximum overlap of computation and error correction.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-03 MOBK053-Metodi.cls October 30, 2006 19:19

28 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

We review each of the three scalability requirements in detail in the subsequent Chapters.

In Chapter 4 we review the existing technologies for realizing large-scale quantum computation

and provide an overview of some of the components for trapped ion quantum computation and

optical quantum computers. In Chapter 5 we build intuition about how quantum error correction

codes can be used to build robust, fault-tolerant structures that allow the necessary scalability

for large applications. Finally, we review the different meanings behind the notion of quantum

communication in Chapter 6 and provide an idea of how data can be distributed in scalable

quantum computers. Good system-level design choices will lead to a quantum computer where

the underlying logic structures are synchronized such that the time cycles of refreshing, moving,

and computing on quantum data are fully synchronized.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-04 MOBK053-Metodi.cls October 30, 2006 19:21

29

C H A P T E R 4

Reliable and Realistic

Implementation Technology

The basic quantum information processing (QIP) components described in Chapter 2 are

carefully chosen to encompass the necessary low-level elements of the large-scale architecture

framework we describe in this work. The physical realization of these components has gathered

much attention in the recent years and realistic technologies have emerged that have made the

concept of QIP a feasible prospect. There are now physical schemes that have demonstrated every

major low-level architectural component needed for scalable computing. Even so, the limitations

of existing QIP technologies are significant and the technology models vary to such an extent

that identifying a clear winner at such an early stage may adversely affect future development.

This is especially true for large-scale system design publications, which if carefully written have

the potential to impact the direction of development for future computing machines.

The major limitations for technologies that can be used to build quantum hardware for a

large-scale computer are two-fold:

• A number of qubits must be prepared and isolated from the environment such that they

are protected from external forces that cause decoherence. Unlike classical bits which

are robustly implemented through an electric current, a qubit may be contained in a

single fragile ion [24] with very limited time before the qubit decoheres and loses its

superposition. Limited coherence time for physical quantum states is the main reason

for classical behavior in both the microscopic and macroscopic world.

• The second major difficulty for emerging quantum technologies is the fundamental

inability to copy a quantum state combined with the need to perform logic operations

and measurement on any one or a pair of qubits.

The second limitation is particularly difficult to overcome. Classical data can be replicated

through a FANOUT gate and transmitted on wires from the memory elements to the processing

units. An imperfect classical gate or a leaking wire may have some effect on parts of the classical

state, but usually not enough to outweigh the multitude of electrons used to encode a single bit

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-04 MOBK053-Metodi.cls October 30, 2006 19:21

30 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

of information. On the other hand, to perform computation and apply gates on a number of

qubits, we must be able to build them not only extremely weakly coupled to external decoherence

forces, but be strongly coupled to each other and to an external gate device for the duration

of a quantum logic gate. In addition, the transmission of the quantum information without

the ability to leave any trace behind requires that information must be carefully guarded while

physically moving.

Physical implementations of qubits that move the quantum information easily and ones

that allow operations easily are two very contradicting concepts. A qubit defined by the po-

larization states of photons is ideal for movement because it does not interact easily with its

environment easily and moves very fast. Photons, however, are hard to contain and two-qubit

gates are very difficult to implement, since it is very hard to couple two photons. Heavy atoms

are ideal for computation because they are relatively easy to slow down and apply operations on

(usually by the application of lasers), but they are difficult to transport. A middle ground qubit

is one that is not only exposed to the environment for computation, but also moves with relative

ease and speed. Unfortunately, the qubit’s ease of exposure also exposes it to uncontrollable

forces from the environment both during computation and movement, making any choice for

a qubit a choice with fundamentally limited reliability and decoherence time.

Physical realizations of the circuit model of quantum computation divide into several

experimental proposals from very diverse fields of physical science, such as nuclear magnetic

resonance (NMR) quantum computation [56, 57]; ion trap quantum computation [24] both

optically through the coupling of neutral atoms with photons [58, 59] and physical segmented

traps [60, 25, 61]; cavity quantum electro-dynamic (QED) computation [62]; optical quantum

computation [63, 64]; solid state spin-based quantum computation [65–68]; quantum dots [69,

70]; superconducting quantum computation where the circuits are made with Josephson Junc-

tions operating at millikelvin (0 kelvin = –273.15 celsius) temperature [71, 72]; and “unique”

qubits such as electrons floating on liquid helium [73], the quantum Hall effect [74], and qubits

encoded in the charge distribution of a single electron on two donors [75]. The distinguishing

feature for all proposed technologies is the implementation of the qubit, which in turn guides

the control infrastructure of the computer itself.

Each approach has different strengths and weaknesses for implementing a truly scalable

computer. For example, the Kane technology where qubits are realized by the electronic states of

phosphorus atoms embedded in a silicon substrate, has the advantages that it draws from existing

investments in silicon fabrication techniques. Current measurement methods, however, can take

as long as 4 days with a qubit lifetime of less than 60 ms, in addition to nonexisting laboratory

gate implementations [68, 76]. In another well-developed work, qubits are held in pairs of

energy levels of ions trapped in space by the electric potentials of metal electrodes [24, 25]. The

ion-trap scheme is the only technology where every universal element for quantum computation

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-04 MOBK053-Metodi.cls October 30, 2006 19:21

RELIABLE AND REALISTIC IMPLEMENTATION TECHNOLOGY 31

has been realized with a clear scalable communication model [77, 78]. The caveat is that the

ion-trap scheme is spatially expensive and it is not clear if it will remain a good technology

for universal quantum computation in the distant future. It is important to realize that the

importance of a certain technology must be judged as much for its potential promise as for its

current experimental state. Reference [79] offers a very comprehensive review of the available

technologies and their current parameters that are useful for building small computer prototypes.

Here we give a brief description of two of the most successful experimental techniques so far:

optical quantum computers and trapped-ion quantum computers.

4.1 OPTICAL QUANTUM COMPUTATION:
PHOTONS AS QUBITS

The importance of photons as qubits is evident in their application to experimentally and

commercially realizing quantum cryptography protocols [13, 80]. In addition, the proposal for

quantum computation is based on photons as qubits [63], along with the fact that photon-based

qubits are the first physical system used to experimentally demonstrate entanglement [81–83],

teleportation [84–88], and various small-scale quantum algorithms [89–91]. The photon is

the smallest physical unit for quantum information and has the advantage that it is virtually

free of decoherence when implementing single-qubit gates and during transport. This stability

is also the source of a severe experimental challenge, since quantum information tends to be

“trapped” in the photon making two-qubit gates very difficult to utilize with sufficient success

rate. Photons do not interact easily with each other and it was generally believed that they would

be unsuitable for scalable quantum computation although ideal for quantum key distribution.

The first experimental implementation needed exponential photon and control resources to

achieve two-qubit gates and measurement of single photon qubits. An excellent review on

optical quantum computation can be found as [52].

Knill, Laflamme, and Milburn developed a scheme in 2001 [64] which demonstrates

that, in principle, it is possible to create highly efficient scalable quantum computers using

linear optical components made up of phase shifters and beam splitters, single photons, and

photo detectors with only a polynomial resource overhead. Before this scheme was proposed it

had been shown that any unitary operator can be realized with linear optical components [92].

Single-qubit operators are relatively straightforward with beam splitters and phase shifters,

which are mathematically described as 2 × 2 operators along the Z and Y axes of the qubit

state representation. As shown in [38], any single unitary operator can be decomposed to a

combination of Z and Y rotations.

For two-qubit gates, linear optics alone is not sufficient. Photo detectors are used to

perform measurement, which combined with teleportation can be utilized to implement two-

qubit operations. The most reliable cnot implementation with linear optics succeeds with

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-04 MOBK053-Metodi.cls October 30, 2006 19:21

32 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

probability of nearly 7% [93], while single-qubit operations are virtually noiseless. The use of a

generalized beam splitter combined with the Fourier transform can help bring the success of the

teleportation procedure close to unity at the expense of exponential photon resources. Scalable

quantum computation is possible, when the reliability of two-qubit gates through teleportation

is reduced to a level such that quantum error correction can be utilized [93, 94].

Photon-based qubits offer ideal environment for distributed quantum computation. Pho-

tons are an attractive medium for shuttling quantum information from one part of the proces-

sor to another where the processor itself is composed of qubits that allow efficient quantum

computation such as ion traps. Optical qubits offer by far the most advance experimental im-

plementation for entangling two remote ions [43, 95, 96], or inducing qubit–qubit interactions

between solid-state qubits using a common laser beam acting as a shared quantum bus [97, 98].

Entangling two remote qubits will allow the transfer of quantum information from one location

to another through the teleportation procedure. Recently, linear optics quantum computation

received a significant boost with the development of cluster state quantum computation [46–49],

where initially entangled states are created that represent every necessary qubit resource in the

architecture. Through single-qubit measurements on the entangled states, arbitrary quantum

circuits can be simulated.

4.2 TRAPPED-ION QUANTUM COMPUTERS
Recent experiments with trapping ionized atoms in the form of trapped ions have shown so far

the greatest promise for the development of quantum hardware capable of performing large-

scale computations. Ion-trap quantum computation, initially proposed by Cirac and Zoller

in 1995 [24], uses a number of atomic ions that interact with lasers to quantum compute.

Quantum data is stored in the internal nuclear and electronic states of the ions, while the traps

themselves are segmented metal traps (or electrodes) that allow individual ion addressing. The

electrodes are placed typically on a 2D alumina substrate together with the needed electronics

that control the trapping potentials. Two ions in neighboring traps can couple to each other

forming a linear chain of ions whose vibrational modes provide qubit–qubit interaction used for

multi-qubit quantum gates [99, 100]. Together with single–bit rotations this yields a universal

set of quantum logic. All quantum logic is implemented by applying lasers on the target ions,

including measurement of the quantum state [101, 60, 25, 102]. Multiple ions in different

trap arrays can be controlled in parallel by focusing lasers through MEMS mirror arrays [2].

Additional sympathetic cooling ions are used to absorb unwanted vibrations from data ions, which

are then dampened through laser manipulation [103, 59].

Fig. 4.1 shows a schematic of the physical structure of a trap element in an ion-trap

computer. In Fig. 4.1(a) we see a single ion group trapped in the middle trapping region. An

ion-group will be abstracted as an inseparable pair of a data ion and a sympathetic cooling ion

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-04 MOBK053-Metodi.cls October 30, 2006 19:21

RELIABLE AND REALISTIC IMPLEMENTATION TECHNOLOGY 33

(a) (b)

junction

Ion Group
Cooling + Data

Trapping
Electrodes

Interaction
Region

Logical
Gate

FIGURE 4.1: (a) The physical structure of an ion-trap quantum computer. An optimistic size of the

trapping electrodes is in the order of tens of micrometers [105]. The data ion is kept together with a

cooling ion and cooled before and after each movement step or logic gate. The ion-group can move to

any of the six adjacent trapping regions for interaction with another ion group. (b) A two-qubit gate

sequence, where the ion group in the top left junction moves to the middle for a two-qubit gate. The

gate is implemented with an external laser beam acting on the two ion-groups.

that will always move together. In reality, it may be technologically unfeasible to implement

reliable two-qubit quantum operations with the cooling ions present between the data ions, in

which case the cooling ions must be provided separately. The cooling ions are needed to absorb

the vibrational heating of the ion qubits. Trapping regions are the locations where ions can be

prepared for the execution of a logical gate, which is simply an external laser source shining

on the ion group. Fig. 4.1(b) demonstrates an ion group moving from the top left trapping

region to the middle for the execution of a two-bit logical operation. A fundamental time step,

or a clock cycle, in an ion-trap computer will be defined as any logical operation (one-bit or

two-bit), a basic move operation from one trapping region to another, and measurement. It has

been suggested in the literature that optimistic expectations for the failure rate of fundamental

operations in ion-traps are on the order of 10−7 [104], and the time duration is of approximately

10 μs [52, 105]. This time is sufficient for the absorption of cooling and additional join and

split operations needed for each fundamental operation [105].

4.2.1 Scalable Ion-Trap Model

Recent experiments that realize quantum teleportation using trapped ions [77, 78] have demon-

strated all the necessary elementary components needed to build a large-scale ion-trap processor

such as ions trapped in segmented electrode structures, laser induced ion cooling and manip-

ulation, measurement using a pump laser that causes a state-dependent scattering of photons

from the ion, and finally the ability to move ions around by changing the trapping potentials.

In reference [105], Steane combines the increasing confidence in the experimental methods

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-04 MOBK053-Metodi.cls October 30, 2006 19:21

34 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

for laser controlled trapped ions with the quantum error correction requirements for a scalable,

computationally relevant quantum computer to outline a natural ion-trap model that is experi-

mentally feasible and does not omit any significant technological challenges. The computer is

based on the quantum charge coupled device (QCCD) architecture proposed by Kiepinski et al.

[25] that describes a scalable ion-trap design by creating a linear array of ion traps such as the

ones shown in Fig. 4.1. The QCCD structure is intended to keep the number of ions chained

together in a single trapping region as small as possible to avoid the technical difficulties in pre-

serving and manipulating large chains of ions. Ions in different interconnected trap arrays can

be ballistically shuttled from trap to trap by changing the trapping potentials in the electrodes.

This allows the interaction of any two ions in the system, provided that the accumulation of

errors during ion shuttling does not destroy the state of the stored qubit in each ion.

A schematic of Steane’s ion-trap computer is shown in Fig. 4.2. His model of the ion

chip is composed of ions trapped between segmented gold electrodes deposited on aluminum

substrate [106]. An electrode structure that allows greater scalability as outlined in [2] are the

planar ion traps where the ions are trapped above a set of individually addressable electrodes in

a plane [107–109]. The planar traps allow the ions to “float” above the surface of the electrodes,

thus allowing greater freedom for the angles at which the lasers can enter the vacuum chamber

that holds the ion chip. The ion-trap electronics that are marked under the ion chip in Fig. 4.2

allow the control of the trapping voltages from one trap location to another which in turn allows

the controlled shuttling of ions from one trap location to another. The implementation of a

ion chip

control
mirrors

control
mirrors

measurement optics

laser
system

laser
system

iontrap electronics

vacuum chamber

FIGURE 4.2: Schematic for a scalable ion-trap computer as shown in [105]. A large number of ions are

trapped in an ion-trap chip whose implementation is suitable for efficient communication of ions around

the chip for qubit–qubit interactions during the course of the algorithm. The ion chip rests in a vacuum

chamber together with specialized electronics that control ion motion through the trapping electrode

voltages. Qubit manipulation such as preparation, measurement, various logic gate implementations, and

ion cooling are implemented with the different laser pulses generated by the laser system. The laser beams

are distributed to different regions of the ion chip through the mirror control system.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-04 MOBK053-Metodi.cls October 30, 2006 19:21

RELIABLE AND REALISTIC IMPLEMENTATION TECHNOLOGY 35

high-density control electrode interconnects that allow the individual control of millions of trap

locations remains a significant technological challenge. As described in [2], control voltages

can be supplied vertically to the trapping electrodes through the use of via technologies that are

currently being made at the densities and dimensions required by an ion-trap computer [110,

111]. A major optimization goal for system designers is to create scalable ion-trap geometries

that minimize the needed electronics infrastructure in addition to the need to allow relatively

easy access of the laser beams across the entire ion chip.

The laser systems outlined in Fig. 4.2 provide the different laser pulses needed for ma-

nipulating the ion qubits such as qubit preparation, logic gate operations, measurement, and

cooling of ions after logic gates or movement. As shown in Fig. 4.1, sympathetic ions are used

to absorb the accumulated heating from ion movement and gate operations. The sympathetic

ions are cooled using cooling laser beams that are needed for both the sympathetic ions and the

data ions [103]. Similarly, different laser beams with different wavelengths are needed for gate

operations. These laser beams must precisely address individual ions for the reliable realization

of both single- and two-qubit gates. In addition to the implementation of logic operations

the computer must be capable of reading out qubit states quickly and reliably. Fault tolerant

system designs that rely on error correcting codes require repeated measurements of individual

qubit states throughout the application execution, which in turn require the implementation

of measurement pump lasers that cause state-dependent scattering of photons from the ions.

The scattered photons are detected by a CCD chip through the measurement optics region

in Fig. 4.2. The precision and sheer size of the measurement optics region may force system

designers to create ion-trap geometries that divide the ion chip into an ion interaction/storage

region and a separate measurement region. Finally, the system-level parameters, control set-

tings, and optimization techniques of the ion-trap computer infrastructure will depend heavily

on the choice of ion species used for computation. Making a concrete choice for a general

ion-trap computer is difficult at this stage of development since significant tradeoffs exist be-

tween different system requirements for different ion types [105]. The quantum computing

roadmap, ARDA [52] contends that the choice of ion species best suitable for scalable quantum

computation will be accepted by existing experimental groups by the year 2012.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-04 MOBK053-Metodi.cls October 30, 2006 19:21

36

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

37

C H A P T E R 5

Robust Error Correction and

Fault-Tolerant Structures

The existence of “good” error-correcting codes that allow the design of efficient fault-tolerant

structures that overcome decoherence is, perhaps, the most critical requirement for a truly useful

scalable machine. Due to the high volatility of quantum data, actively stabilizing the system’s

state through error correction (EC) will be one of the most resource-intensive operations through

the course of a quantum algorithm. Unlike classical computation, which relies on the fact that

failures are so rare that it is better to take longer for recovery than to spend extra resources for

error correction [112], errors are frequent enough in quantum computing that recovery times

are critical for the latency of the computation.

Quantum error correction and quantum fault-tolerance constitute a significant field of

research [23, 113–119] that has produced some very powerful quantum error correcting codes

analogous to, but fundamentally different from, their classical counterparts. The most important

result, for our purposes, is the Threshold theorem [116], which says that an arbitrarily reliable

quantum gate can be implemented using only imperfect gates, provided the imperfect gates have

failure probability below a certain threshold value. This remarkable result is achieved through

four main ideas: (1) using quantum error-correction codes; (2) performing all computations on

encoded data; (3) using fault tolerant procedures; and (4) recursively encoding until the desired

reliability is obtained. A successful architecture must be carefully designed to minimize the

overhead of recursive error correction and be able to accommodate some of the most efficient

error correcting codes.

The basic goal of quantum error correction is to purify an unknown n-qubit state |�〉 from

accumulated decoherence through some sequence of operations. The amount of decoherence

can be abstracted as a random unitary, error operator that acts on |�〉. Provided that the error

operator acts nontrivially on t < n qubits, error correction provides recovery procedures that

can correct t errors on a register of n qubits by transferring the errors to a set of ancillary

qubits to avoid direct measurement of the data qubits. After the transfer, the ancillary qubits

are discarded or initialized to |0〉 for reuse. In the subsequent sections we give a brief overview

of quantum error correction and the error correction codes we use in our architecture analysis

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

38 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

by first describing the noise model we adopt throughout the rest of this book. The reader may

look at [38] for a more detailed description of quantum error correction theory. We base our

description on a class of quantum error correcting codes known as Calderbank–Shor–Steane

codes [120, 121] that allow relatively straightforward quantum computation using the circuit

model without the need to decode the encoded states.

5.1 NOISE MODEL
The most prevailing assumptions for noise on classical systems are a noise model called White

noise: (1) the noise is stochastic where there is an equal probability ε of an error occurring in

each position; and (2) errors are uncorrelated, and occur independently of each other. In practice,

errors cannot be completely uncorrelated and may appear in bursts rather than independently,

but the noise problem will then become an equipment design related problem and is thus not

considered by error codes. Given the noise assumptions, if there are A locations where an error

may occur in a classical circuit and an error occurs at each location with probability ε, the

probability that t errors occur is given by(
A

t

)
εt(1 − ε)A−t, (5.1)

which can be understood as the number of possible ways to have t locations that fail and (A − t)

locations that do not.

Classically, let a bit be in the state “0” with probability p0 and the state “1” with probability

p1 initially. After the occurrence of a noise operator which flips the bit with the transition

probability ε, the bit will be in the state 0 with probability q0 and the state 1 with probability

q1. Then the evolution of the classical system for each independently occurring noise operation

can be modeled as [
q0

q1

]
=

[
1 − ε ε

ε 1 − ε

] [
p0

p1

]
, or −→q = E−→p , (5.2)

where E is the matrix of transition probabilities. In quantum computation, the evolution of

a quantum system can be modeled in a similar manner. Suppose that we would like to apply

the gate U on an n-qubit quantum register |�〉. Even if the technology allows the state to be

completely isolated from the environment, the physical mechanism used to implement the gate

will most certainly introduce an error with some probability ε to our original state due to the

fact that the possible unitary operators that can be applied on a state |�〉 form a continuum.

The final state after we apply the gate U can be written as

|�〉→
∑

a

EaU |�〉 ⊗ |a〉, (5.3)

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

ROBUST ERROR CORRECTION AND FAULT-TOLERANT STRUCTURES 39

where |a〉 are states of the environment (unentangled from the data register), and Ea are summed

over 22n possible error operators that act on our state after the gate has been applied. Each error

operator is a string of n Pauli matrices {I, X, Y, Z} given in Eq. (2.15) and below:

I =
[

1 0

0 1

]
, X =

[
0 1

1 0

]
, Z =

[
1 0

0 −1

]
, Y = −i ZX =

[
0 −i

i 0

]
.

For example, after a three-qubit gate on a three-qubit register, the error on the three qubits may

be any of the possible combinations of

{I, X, Y, Z}⊗3 = {X ⊗ I ⊗ I}, {Z ⊗ I ⊗ Y }, . . . , etc.,

where in each n-bit Pauli operator, the ith entry acts on the ith qubit. In the subsequent text

we will omit the ⊕ signs within each n-qubit Pauli operator. The weight w of an n-qubit Pauli

operator is defined as the number of elements which are not the identity matrix I . A general

noise channel that can be used to estimate the effects of noise on a register of n-qubits that is

also correctable by current quantum error correcting codes is known as the depolarizing channel,

where at each location in a quantum circuit each of the n-qubits undergoes a transformation by

one of the Pauli operators with probability ε and remains unaffected with probability (1 − ε).

Most error correcting protocols rely on the fact that the weight of the n-bit Pauli operators

is small, and that the occurrence of highly correlated errors that damage more than one qubit at

each step is very rare. It is, however, very unlikely that the technologies will allow the complete

elimination of uncorrelated errors. The Kane technology [66], for example, stores qubits in the

electronic spins of phosphorous atoms embedded in silicon. Qubit interactions are controlled

via metallic control structures built on the surface of the silicon substrate. To perform a two-

qubit operation, the electron which stores the qubit from one atom is transferred to the other

atom. Along the transfer process, the charge fields introduced by the control structures interact

with the qubit states stored in the data electrons and in reality, pose the biggest difficulty for

physically realizing reliable quantum operations using the Kane technology.

An error on a single qubit happens when a failure occurs during the execution of a gate on

that qubit. A failure of the two-qubit cnot gate can introduce two errors in a quantum circuit,

one on the control qubit and one on the target qubit. Based on this assumption, the noise model

we use to study the behavior of quantum architectures is as follows:

• Failures are uncorrelated and stochastic. This means that an error on qubit qi will not

result in error on qubit q j unless the two qubits are explicitly entangled in the quantum

circuit.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

40 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

• An arbitrary error on a single qubit can be written as a superposition of the Pauli

operators, where a failure at a single time step takes the density operator of our original

system state |�〉 to

|�〉new = (1 − ε)I |�〉 + ε

3
(X|�〉 + Z|�〉 + Y |�〉).

In other words, before the execution of a gate the qubit undergoes a rotation by X, Z,

or Y with probability ε, and remains unchanged with probability (1 − ε).

• A two-qubit gate introduces two errors with probability ε on the in-

put qubits equivalent to any of the 15 possible error patterns on two

qubits: {I X, XI, I Z, ZI, IY, Y I, XY, Y X, XZ, ZX, ZY, Y Z, XX, ZZ, Y Y }, each

with probability ε/15. Single-qubit gates introduce an error with probability ε/3 any

of the three possibilities between {X, Y, Z}. The T gate is the only exception, which

introduces an error that can be written as a superposition of the X and Z gates.

• Memory failure rates and movement failure rates are equivalent to a gate failure rate per

cycle. A particular technology model has a predefined distance that each qubit can travel

in the duration of a single-gate cycle, with a specific failure rate ε that the move gate

will introduce an error. Similarly a memory cycle is equivalent to the qubit staying idle

for a single-gate cycle, with a specific failure rate ε that the qubit will decohere.

• Steane [119] makes the important distinction that qubits participating in a gate at a

given cycle undergo only gate noise and not memory noise. Similarly, qubits that move

undergo movement noise introduced by the channel and not memory noise.

As mentioned earlier, errors cannot be completely uncorrelated. Initially, the state of

a quantum computer is prepared such that it is independent of the environment system as

much as the implementation technology will allow. As the computer state becomes entangled

with the environment, the amount of entanglement governs how strongly correlated errors are

between single qubits in the quantum computer. In addition, the application of a logic gate on

a qubit also causes an unknown error operator to be applied on the state of the environment,

thus the noise at each time step is shared between the computer system and the environment.

If the entanglement between the two systems is small compared to uncorrelated gate failure

rates ε, correlated errors do not asymptotically affect the scale of reliability achieved due to

error correction. The qubit states in the ion-trap technology, for example, are affected by phase

changes due to the fluctuating global electric and magnetic fields on the ion-trap chip. By fixing

a single ion-qubit to be encoded using two physical ions such that

|0〉 → |01〉; |1〉 → |10〉; | + 〉 → 1√
2

(|01〉 + |10〉),

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

ROBUST ERROR CORRECTION AND FAULT-TOLERANT STRUCTURES 41

known as a decoherence free subspace (DFS) [122], we can significantly reduce the correlation of

our qubits with the environment by protecting them from a phase rotation on both qubits. Any

phase error on both qubits will flip the sign of both the encoded |0〉 and |1〉 states, which would

make the error global and it can be factored out.

An example of nonstochastic errors in the computer are small rotations in each of the

qubits introduced by the classical control mechanisms at each gate. These rotations can be a

constant change in the phase or a random rotation at each gate. If the state is randomly rotated

by a very small angle θ , then the total angle of rotation after m operations will be approximately√
mθ with probability mθ2 [119]. As system designers we must make the assumption that

coherent nonstochastic errors will eventually add up to sufficiently larger rotations which can

be discretized into a superposition of the Pauli operators as assumed in the incoherent noise

model. A quantum computer would not be possible if nonstochastic contributions from the

apparatus are such that the coherent errors at each time step are larger than correctable.

5.2 ERROR CORRECTION: BASIS AND NOTATION
The simplest way to deal with errors is to detect them without the need for correcting them.

Errors are detected through error-detecting codes, which are used in classical computation in the

transferring of information packets through noisy channels. Error detecting codes can be so

computationally inexpensive that if the classical transmission channel introduces a sufficiently

small number of errors, then it may be cheaper to retransmit the information packet upon the

detection of error rather than calculating the exact error location.

In general, an error code C is defined by two parameters n and k, where n is the number

of bits used to encode a piece of information and k is the minimum bits necessary to represent

the information (C is denoted as an [[n, k]] code). A single error can always be detected in a

n-bit binary bitstring by using an [[n, n − 1]] parity check code that introduces only one bit of

overhead. The parity check codes work by counting the number of times the bit 1 appears

in the original n-bit binary message string. If the number of 1’s is even, an extra bit of 0 is

appended to the string, otherwise a 1. For example, the original message codeword 101 has an

even number of 1’s, so the check digit should be 0, changing the codeword to 1010, which is

now a codeword in a [[4, 3]] code. A single error on any of the original bits will change the parity

of the example codeword from even to odd. Thus, upon receiving the codeword we do a parity

check by counting the number of 1’s and determining whether the parity bit at the end matches

the parity of the received codeword. If not, then the message is discarded and a duplicate can

be sent. Note that the parity check code only allows us to detect the existence of an odd number

of errors and provides no information about the actual location of any error that has occurred.

To correct errors requires the ability to encode the data in such a way that the location

of the errors can be distinguished. Perhaps, the simplest error correcting code is the 3-bit

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

42 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

0

0

0

1

0

0

0

0

0

0

1 0

s1 s2

FIGURE 5.1: Correction procedure with the 3-bit classical repetition code. After the error occurs on

the first bit, the syndrome bits (s 1, s 2) are set by measuring the parity between bits (1,2) and (2,3). The

correction operation is just a NOT gate on the bit where the error has occurred.

repetition code with codewords “000” and “111.” Each bit in the original information bitstring

is redundantly encoded three times, where the bit “0” becomes “000” and “1” becomes “111.”

If one of the bits is flipped through some error occurrence, a majority vote is taken to determine

the location of the error. For example, if the received codeword is “110” and the error probability

ε is sufficiently low, we can safely assume that the string encodes the bit “1” and recover the

original value, or we can correct the error by flipping the value of the third bit to “1.”

The error correction procedure is illustrated in Fig. 5.1, where initially the bit “0” is

repeated three times as 000 and sent through a noisy channel. An error on first bit flips its value

to 1. The majority vote is taken by measuring the parity (i.e., applying the XOR gate) between

the first and second bits, and the second and third bits whose result is stored in the syndrome

string (s1, s2). In Fig. 5.1, the measured syndrome is (1, 0) which tells us that the error is in the

first bit. The syndromes (1, 1) and (0, 1) would tell us that the error is in the second and third

bits respectively. Clearly, the 3-bit repetition code cannot help us if more than one error occurs.

In fact, two errors will cause the error correction to correct the wrong bit, or simply return the

opposite original data bit, thus introducing an error in our computation. A majority vote for a

5-bit repetition code (i.e., 0 → 00000 and 1 → 11111) will distinguish between any one and

two-bit errors, but not three errors.

For a quantum error correcting code a little more is needed. Due to the no-cloning

theorem, logical qubit states are highly entangled physical qubit states rather than a single

physical qubit replicated a number of times. In addition, we need to worry about sign errors due

to the phase-flip Z operator as well as bit-flip errors. The simplest code is the Shor code [23],

which is similar to the classical repetition codes and can correct both types of errors uses nine

physical qubits to encode a single qubit of information as three blocks of three qubits each:

|0〉 −→ |0〉 = 1√
8

(|000〉 + |111〉)(|000〉 + |111〉)(|000〉 + |111〉)

|1〉 −→ |1〉 = 1√
8

(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉) (5.4)

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

ROBUST ERROR CORRECTION AND FAULT-TOLERANT STRUCTURES 43

where the logical |0〉 and |1〉 states are written as |0〉 and |1〉, and an arbitrary encoded one-qubit

superposition state can be written as

|�〉 = α|0〉 + β|1〉. (5.5)

Bit-flip errors can be detected and corrected by comparing the values of qubits within blocks,

while by comparing the signs of the three blocks we can detect and correct phase-flip errors.

Because all errors are a combination of X and Z errors, this code can correct an arbitrary

single-qubit error on any of the nine qubits used in the encoding.

The circuit that encodes nine qubits to represent a single encoded qubit as a superposition

of the |0〉 and |1〉 states is shown in Fig. 5.2, where the arbitrary single qubit |Q〉 = α|0〉 + β|1〉
is encoded to α|0〉 + β|1〉. The data that we need to encode and protect is stored in qubit q1 as

the arbitrary state |Q〉, which is entangled with eight additional qubits {q 2−q 9} individually

initialized to the |0〉 state. The first two cnot gates distribute the state of qubit q1 into qubits

q4 and q7 similar to the 3-bit repetition code: |q 1, q4, q 7〉 −→ α|000〉 + β|111〉. The three

Hadamard gates transform the three-qubit state into

|q1, q4, q7〉 −→ α√
8
| + + + 〉 + β√

8
| − − − 〉, (5.6)

where | + 〉 is the familiar (|0〉 + |1〉)/√2 state. The state the three qubits are in after the

Hadamard gates allows us to correct a phase-flip Z error on any of the three qubits if we

compare the signs between qubits (q1, q4) and (q 4, q7). To enable the correction of bit-flip

errors, we encode the three qubits with the 3-bit repetition code using the other six qubits

0

0

0

0

0

0

0

0

Q

q7

q6

q5

q4

q3

q2

q1

q8

q9

H

H

H

FIGURE 5.2: Encoding procedure for the 9-bit code. A three-qubit state is prepared initially that allows

for the detection and correction of Z errors. Each of the three qubits is encoded with the quantum 3-bit

repetition code to protect against bit-flip errors using 6 additional qubits.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

44 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

{q2, q3, q5, q6, q8, q9}, where each | + 〉 and | − 〉 become

| + 〉 −→ 1√
2

(|000〉 + |111〉)

| − 〉 −→ 1√
2

(|000〉 − |111〉).

The result is the encoded arbitrary single qubit state (α|0〉 + β|1〉) as given in Eq. 5.4. Extracting

the syndrome for a bit-flip error in any of the three qubits within each group of three is identical

to the classical 3-bit repetition code. Each of the three blocks of three qubits are in the state:

|q1q2q3〉 = |000〉 + |111〉, (5.7)

where the global phase factor of 1√
8

has been omitted. The 2-bit syndrome string that would

tell us which qubit was flipped can be obtained by performing the parity checks (q1 ⊕ q2) and

(q2 ⊕ q3). For example, if a bit-flip error on qubit q 3 occurs:

|q1q2q3〉 = |000〉 + |111〉 → |001〉 + |110〉, (5.8)

the syndrome measurement should yield the syndrome bitstring (0, 1). The correction step

is then performed by applying an X gate on the flipped qubit. Similarly, bit-flip errors are

determined for the remaining two blocks of three qubits, |q4q5q6〉 and |q7q8q9〉.
The phase-flip Z errors are detected and corrected on any one of the nine qubits by

comparing the signs of the three blocks. If a phase-flip error occurs, for example, on qubit q 6,

then the sign of the middle block will be flipped as shown below:

|0〉 = 1√
8

(|000〉 + |111〉)(|000〉 − |111〉)(|000〉 + |111〉)

|1〉 = 1√
8

(|000〉 − |111〉)(|000〉 + |111〉)(|000〉 − |111〉). (5.9)

Thus, the resulting syndrome string obtained by measuring the parity between the block 1 and

block 2 and the parity between block 2 and block 3 should give us the syndrome (1, 1) indicating

that there was a Z error in the middle block. Curiously, we can apply the correction on any

one of the three qubits in the middle block q4, q 5, or q6, and the sign will be flipped to the

original state. The nine-qubit code is guaranteed to correct any one X or Z error in any of the

nine-qubits in the state. It will not correct more than one Z error, but it may correct some higher

weight X errors. For example, the error operator “I I XI I XI I X” of weight w = 3 where there

is an X error on qubits q3, q6, and q9 causes all three errors to be in separate blocks, thus the

nine-qubit code will be able to detect and correct them. On the other hand, the error operator

“XXI I I I I I I” will cause the first block to correct qubit q3, which will be wrong and the entire

encoding will be taken out of the codespace, destroying the data that we are trying to protect.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

ROBUST ERROR CORRECTION AND FAULT-TOLERANT STRUCTURES 45

The nine-qubit code is just one error correcting code and is perhaps the simplest truly

quantum error correcting code that is capable of correcting both bit-flip and phase-flip errors.

Many more quantum error correcting codes are known, where in general a quantum error code

C encodes k qubits in n qubits and can correct errors on up to t qubits. Typically codes are

identified by the three parameters [[n, k, d]], where d is the code distance such that t = (d − 1)/2.

The nine-qubit Shor code can be thought of as a [[9, 1, 3]] code, whose distance d is equal to 3.

A code that corrects any combination of two errors in its encoded codewords will have distance

equal to 5.

It is not enough. However, to simply store quantum information, we must also have a way

to reliably operates on it for the duration of the algorithm. If a qubit is encoded and protected

with some [[n, k, d]] error-correcting code, decoding it for processing will prove fatal, for the

gates in quantum computation introduce an error with probability ε each time a gate is applied.

Classical circuits are extremely reliable, where after the application of each gate the process

of dissipation is used to “cool” each bit by releasing some of the accumulated error into the

environment. Clearly, we cannot couple a qubit to the environment after each unitary operator

U , nor at any stage of the computation. Von Neumann [123] proposed that a classical computer

with noisy gates can be made more reliable by performing each gate a number of times and

accepting the majority of agreeing gates as the correct gate function. This would require to create

multiple copies of the data to be sent through the same gate type, something that we cannot

do in quantum computation. The solution is to perform operations on states that are already

encoded. In addition, we need to do it fault-tolerantly, where more errors are not introduced than

it is possible to correct. A nine-qubit encoded state that forms a single logical qubit guarantees

protection of the encoded data from any one error which happens with probability ε. The data

will be lost if more than one uncorrectable error occur, but if we never decode, higher errors

occur with exponentially smaller probability (see Eq. 5.1).

In general, performing quantum computation on registers composed of n logical qubits

{Q1, Q2, . . . , Qn}, where the qubits are encoded with clearly defined logical computational

states |0〉 and |1〉, is functionally not different than computing with physical qubit registers.

A logical gate U is constructed from a number of physical gates such that the function of U

on an arbitrary logical qubit state is the same as the function of a corresponding physical gate

U on functionally the same arbitrary physical qubit state. For example, applying the operator

“I I ZI I ZI I Z” on an arbitrary nine-qubit logical qubit state encoded with the nine-qubit code

will change the sign of each of the three blocks that make up the logical states |0〉 and |1〉, effec-

tively flipping the value of the logical qubit from |0〉 to |1〉, or |1〉 to |0〉 Thus, with the nine-qubit

encoding described in this section, the logical bit-flip operator X is implemented by applying

a Z gate on qubits q3, q6, and q9. Similarly, the nine-qubit operator “XXXXXXXXX” (i.e.,

applying an X gate on all nine-qubits) is equivalent to applying a logical Z gate, taking the state

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

46 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

α|0〉 + β|1〉 to the state α|0〉 − β|1〉. Unfortunately, the implementation of other logical gates

is not as straightforward with the nine-qubit code, thus it is important to consider the universal

gate implementation circuitry when choosing an error correcting code for a given application.

During computation each logical gate may be followed by a syndrome extraction procedure

which would correct any errors (X, Z, or both) that have occurred during the sequence of

operations that implement the gate.

Due to the no-cloning theorem, logical qubit states are highly entangled physical qubit

states rather than a single physical qubit replicated a number of times. There are three major

obstacles to overcome when performing error correction on encoded qubit states:

• Quantum states live in a continuous space identified by the probability amplitudes of

the state vector, thus errors are continuous and in principle it should take an infinite

number of resources to determine the exact error that has occurred. On single qubits

we may see bit-flip X operator errors, along with phase-flip Z errors, or a combination

of phase- and bit-flip errors such as the Y operator denoted as −i ZX, or even a tiny,

almost insignificant rotation of the qubit state.

• Measurement destroys the superposition of quantum data, but the only way to extract

the error syndrome is by measuring an encoded qubit. Thus, we must indirectly measure

the qubit such that its quantum information is not destroyed.

• Quantum data is fundamentally more faulty than classical data. Even if an implemen-

tation technology becomes extremely reliable, it may not be better than 1 error for every

108 operations [104] for ion traps, for example. In addition, quantum data is entangled.

Thus quantum error correcting codes must prevent decoherence not only at higher than

classical error rates, but against the exponential spread of errors introduced by entangle-

ment. Section 5.4 details how quantum fault-tolerance achieved through concatenated

quantum error correction can greatly reduce the error rate of quantum operations.

One of the most remarkable characteristics and breakthroughs in the theory of quantum

error correction (QEC) is that errors can be discretized [23], thus solving the first obstacle

for QEC. Unlike classical analog systems, any arbitrary error on one or more qubits may be

corrected by correcting a small discrete set of errors: namely X, Z, and the combined X and Z

errors. After an arbitrary error operator Ei on the ith qubit in the encoded logical qubit, the

data state |�〉 can be written as a superposition of the original state |�〉, Xi |�〉, Zi |�〉, and

Zi Xi |�〉. No matter how small the error is, the error syndrome extraction procedure collapses

the data state into one of the four elements of the superposition, which can then be corrected

by applying either an X, Z, or both. The nice property in error discretization is that extracting

the error within a logical qubit can be done simply by extracting a syndrome for X errors and

then a syndrome for Z errors, each followed by the corresponding correction operation.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

ROBUST ERROR CORRECTION AND FAULT-TOLERANT STRUCTURES 47

Prepare &
Verify
Ancilla

Prepare &
Verify
Ancilla

0

+

Data Block
Logical

for Z Errors
Ancilla Block

for X Errors
Ancilla Block

H

X & Z
Correct

FIGURE 5.3: Extracting the syndrome using the Steane method. Two n-qubit ancilla blocks are pre-

pared, where each line represents a logical block of physical qubits marked by a diagonal dash at the

beginning of the line. The ancilla blocks are used to absorb information about the X and Z errors from

the data, after which the data can be corrected. The first ancilla block is prepared in logical |+〉 state

which absorbs the X errors from the data. The second ancilla block is used to correct Z errors. Usually

each of the two logical cnot gates between the data and the ancilla blocks is a transversal cnot gate

composed of n physical cnot gates applied in parallel.

The second obstacle is the inability to measure an encoded qubit directly to extract the

error syndrome. Interestingly, this obstacle is not fatal either; however, it does introduce a large

auxiliary qubit overhead. The error syndrome is transferred from the encoded qubit to a number

of specially encoded ancillary qubits, which are then decoded and measured to reveal the location

of the error. Commonly in the QEC codes we discuss here, interaction between the encoded

data and the ancilla to extract the error syndrome for an [[n, k, d]] code is done in a method

known as the Steane Method for syndrome extraction [124] which is shown in Fig. 5.3.

The Steane method for X and Z syndrome extraction is commonly used for Calderbank–

Shor–Steane (CSS) quantum error correcting codes [120]. Two sets of n ancilla qubits are

encoded using the same error code as the data. To measure X errors, the ancilla is prepared in

the logical |+〉 = 1√
2
(|0〉 + |1〉) state and a logical cnot gate is applied between the data block of

n qubits as control and the ancilla block as target. A cnot gate propagates bit-flip errors forward

(i.e., control → target), thus the bit-flip X errors from the data block will be transferred to the

ancilla. The errors and the location of the error can be extracted by measuring each of the ancilla

qubits in the computational basis. To detect and correct phase-flip Z errors, the ancilla is prepared

in the logical |0〉 state and the ancilla is used as the control block during the interaction with the

data (Z errors propagate backward in a cnot gate). Applying a logical Hadamard gate on

the ancilla forces the Z errors into bit-flip errors, which can be detected upon measurement in

the computational basis.

Measurement of an encoded block of qubits works much the same way as measuring a

physical qubit, where the state is collapsed to either the logical |0〉, or |1〉 basis states. If the

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

48 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

encoded block is intended for a code that corrects up to t errors, measuring a state with any errors

of weight w ≤ t present will yield the correct measurement unless some of the measurement

gates fail themselves.

The Ancilla factory concept. In Fig. 5.3 we show two n-qubit ancillary blocks, one for

the X errors syndrome and one for the Z errors syndrome. What is not shown, is the fact

that the ancilla blocks, once prepared must be verified against the presence of X and Z errors

themselves to ensure that errors created when preparing the ancilla (1) do not propagate to the

data causing errors of higher than correctable weight, or (2) do not cause an incorrect syndrome

to be measured. Once verified the ancilla blocks can be used for interaction with the data to

extract the error syndrome of the data.

The {Ancilla factory} refers to the idea that ancilla blocks must be constantly prepared and

verified throughout the error correction procedure. Ancilla blocks can be verified by preparing

additional ancilla blocks much like the error correction process and measuring those. More

optimal verification structure can be explored by studying circuit synthesis rules and the ways

errors propagate through gates such that we need to verify only against errors that could have

propagated to the end of the ancilla preparation networks. Since error correction needs to be

done frequently in quantum computation, the ancilla preparation process will be critical for the

latency of the computation. It is possible to use only a single ancilla block for both X and Z

errors and perform the syndrome extraction sequentially by re-preparing the ancilla for each

error type, which would increase the error correction time, but reduce auxiliary resource usage.

Alternately, we can prepare many ancilla at once that guarantee that, when error correction is

needed, there will always be a prepared and verified ancilla block ready for syndrome extraction

for both X and Z errors.

5.3 EXAMPLE: THE STEANE [[7, 1, 3]] CODE
For the case studies in the large-scale architecture model presented in this publication we use

the Steane [[7, 1, 3]] code [113], which encodes a single logical qubit in 7 physical qubits and

can correct up to any single-qubit error. It is based on the classical [[7, 4]] Hamming code, which

allows the correction of any single-bit error where the error location is given by the syndrome

string that represents the binary numbers between zero and seven. The syndrome string of “000”

denotes no error and the string “010” denotes an error on the second qubit.

The [[7, 1, 3]] quantum code is a member of the family of some of the most powerful error

correcting codes known today as Calderbank–Shor–Steane (CSS) codes which allow transver-

sal logical cnot gate operations and whose error correction procedure requires only cnot and

Hadamard gates as shown in Fig. 5.3. A logical operator U is transversal if its implementation is

achieved by applying U in parallel to all n encoded physical qubits in a logical qubit block. Fur-

thermore, the [[7, 1, 3]] code is the smallest CSS code that allows transversal implementation of

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

ROBUST ERROR CORRECTION AND FAULT-TOLERANT STRUCTURES 49

quantum operations which are members of the Clifford Group. The clifford group is composed of

{H, CNOT, X, Z, Y = −i ZX, S}, (5.10)

where the S gate is the familiar phase rotation along the ẑ-axis of a qubit with a phase angle

equal to φ = π/2 as defined in Eq. 2.14. The T gate (the other phase rotation gate defined

in Eq. 2.14) is all that is necessary to complete the logically-universal gate set for quantum

information processing; however, the logical construction of this gate is considerably more

complicated when encoding our data with the [[7, 1, 3]] code. The |0〉 codeword for the Steane

[[7, 1, 3]] code is given by the seven-qubit state:

|0〉 = |0000000〉 + |1111000〉 + |1100110〉 + |1010101〉
+ |0011110〉 + |0101101〉 + |0110011〉 + |1001011〉,

where the |1〉 state is obtained by applying the logical X operator, which is simply seven

one-qubit X operators on each of the 7 qubits in the Steane state. It is straightforward to verify

that the action of any of the Clifford group gates transversally on an arbitrary logical qubit

state |�〉 = α|0〉 + β|1〉 for the [[7, 1, 3]] code is equivalent to the action of the corresponding

physical gate on an arbitrary single-qubit state. In addition, the measurement operation is

also transversal. Measuring each of the seven qubits and calculating the parity of the resulting

bitstring, will identify correctly if we have measured the logical |0〉 or |1〉 state.

Fig. 5.4 shows the circuit used to correct a logical data bit for X errors with the

[[7, 1, 3]] code. For the correcting procedure we use the Steane method, where the steps are:

• First we prepare a block of ancilla in the encoded |0〉 state as described in [124] and

shown in the expanded encoding gate of Fig. 5.4. Traditionally the preparation network

involves just nine cnot gates; however, this would require additional block of seven

ancilla qubits for the verification, which is applied after the encoding. The circuit

shown uses only one ancilla verification bit, and the verification is part of the encoding

procedure.

• Second, a transversal Hadamard gate is applied which places the ancilla in the |+〉 state.

The ancilla is then interacted with the data block using a transversal cnot gate, where

the data block is the control qubit and the ancilla block is the target qubit.

• Measuring the ancilla block allows us to extract the error syndrome. If the syndrome is

nontrivial (e.g., shows an error) we repeat the process again until we get two identical

syndromes with a maximum of three repetitions.

• Finally we apply the corrective X gate on the corrupted data bit.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

50 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

vbit

a1

a2

a3

a4

a5

a6

a7

Data

Ancilla

Encode

Encode H Move Move M

X

H
M

M H
M

H

Start Over

FIGURE 5.4: Circuit for extracting X-error syndrome and correcting X errors for the Steane

[[7, 1, 3]] code using only one verification qubit when the ancilla is prepared. After the preparation

network completes (lower part of the figure), the ancilla is in the logical |0〉 state and is placed in the

needed |+〉 state for X-error correction by the logical Hadamard gate which follows the preparation

procedure (top circuit). Either the data or the ancilla is then “moved” for the implementation of the

logical cnot gate which transfers the X-error information from the data to the ancilla. The measure-

ment operation denoted by the letter M measures each of the physical ancilla qubits in parallel and the

syndrome is extracted by multiplying the measurement string by the parity-check matrix for the 7-bit

Hamming code.

The same syndrome extraction is repeated for correcting Z errors on the logical data qubit,

with the only difference being the flipped control-target blocks for the transversal cnot gate

and the placing of the Hadamard gate after the transversal cnot (see Fig. 5.3). The repetition

of the syndrome extraction before the corrective operation is necessary with this encoding

procedure because the encoder does not verify the ancilla for Z errors. Subsequently, by applying

the transversal Hadamard gate, all Z errors are converted to X errors, causing us to measure the

wrong error syndrome. By repeating the syndrome extraction we ensure that the probability of

measuring the wrong syndrome due to Z errors in the encoder is a second-order event.

Generally, it is preferable to choose error correcting codes that allow the implementation

of as much transversal logical gates as possible. The fact that the Steane [[7, 1, 3]] code is a CSS

code guarantees a transversal cnot gate between two logical data qubits and the transversal

implementation of the clifford group gates only makes this code more desirable. Codes exist

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

ROBUST ERROR CORRECTION AND FAULT-TOLERANT STRUCTURES 51

Logical
Data Block

Ancilla
Qubits

S

Prepare

A

TGate
Applied

FIGURE 5.5: T-gate implementation with the [[7, 1, 3]] code.

that allow transversal implementation of the T gate; however, the other gates are not transversal,

and clifford group gates are by far the most dominant set of gates executed during the course

of a large-scale quantum application.

The T gate implementation with the [[7, 1, 3]] code requires an additional ancilla block

specially encoded such that the concept of 1-bit teleportation can be used [125]. Any arbitrary

single-qubit unitary operator U can be implemented using one-bit teleportation. Particularly

for the implementation of the T gate the one-bit teleportation method is shown in Fig. 5.5.

A seven-qubit Aπ/8 ancilla state is prepared using additional ancillary qubits and interacted

with the logical data block to which we want to apply the gate. Because phase information

propagates backward in cnot gates, the action of the T has been applied on the logical data

block with some error. A measurement of the Aπ/8 qubit will tell us if we should correct the

error by applying the S gate on the data block.

5.4 QUANTUM FAULT TOLERANCE: THE THRESHOLD RESULT
The theory of QEC is powerful and much deeper than we can possibly present here; however,

for it to be truly useful for scalable, computationally relevant quantum information processing,

there needs to be a way to overcome the exponential spread of errors in an entangled quantum

system during the execution of an algorithm. This is especially important because not only are

the gates from the application faulty, but so are the gates involved during error correction. The

formulation of fault-tolerant quantum circuits and the threshold result [116, 126] has made all

discussions for scalable, reliable quantum computation possible. The threshold result states that

an arbitrarily long quantum computation can be executed with arbitrary reliability using faulty

physical gates, provided that the failure rate of each gate is below a certain accuracy threshold

value. Strict requirements for the existence of the threshold value are

• The noise on the quantum hardware occurs independently at each location in a quantum

circuit. A location in a quantum circuit is defined as any operation on a qubit such as a

gate, or even an idle cycle while the qubit waits for a gate on another qubit to complete.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

52 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

Idle cycles and movement operations on qubits can be abstracted as a wait gate and a

move gate, respectively.

• Each location in a quantum circuit must introduce an error on the qubit with proba-

bility ε, and must work perfectly with probability (1 − ε). In other words, the noise is

stochastic, where the failure probability ε depends entirely on the operation type.

• If n qubits are encoded to form a single logical qubit, the logical circuit structures for

gates and error-correction routines such as encoding networks and syndrome extraction

networks, must be fault-tolerant. A fault-tolerant circuit is a circuit where a single error

on any lower-level physical qubit with probability ε will not spread to (t + 1) or more

errors elsewhere in the circuit. The assumption is that we have an error-correcting code

capable of correcting at most t errors.

In a logical circuit each line implies an encoded set of physical qubits using a certain

[[n, k, d]] code with a sequence of logical gates. Given that the lower level circuit structures and

hardware noise satisfy the fault-tolerant requirements, a fault-tolerant logical gate is followed by

an error-correction step on the logical qubit block. The abstraction for a fault-tolerant cnot gate

is shown in Fig. 5.6. The physical cnot gate is shown to the right, where the control and target

qubits are both physical qubits. At the encoded logical level, both the control and target are

logical qubit structures of n qubits in an [[n, k, d]] code for the data and the additional ancilla

needed for error correction. For the [[7, 1, 3]] code the logical cnot gate is transversal and is

composed of seven physical cnot gates applied in parallel. The error-correction step that follows

every logical gate overlaps with the error correction step that precedes the next logical gate on

the same set of qubits. In essence, each gate in a logical circuit is followed by an error-correction

step. The central assumption is that the number of errors that slip through the logical gate

construction network will be corrected by the following error-correction procedure, provided

Control

Target

Logical
Block
Target

Logical
Control
Block

QEC

QEC

Logical

Gate
Circuitry

QEC

QEC

FIGURE 5.6: Physical → logical gate construction, where a fault-tolerant logical gate is preceded and

followed by error correction.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

ROBUST ERROR CORRECTION AND FAULT-TOLERANT STRUCTURES 53

that the gate construction and the error-correction procedures are constructed fault-tolerantly

where the probability of errors of weight greater than t is a second-order event.

The failure rate of each logical operation for level one encoded data, which is preceded

and followed by error correction (as shown in Fig. 5.6) can be bounded as

ε1 ≤ Aε(t+1), (5.11)

where A is the number of locations in the logical gate circuit shown on the right-hand-side of

Fig. 5.6 that cause greater than (t + 1) errors to appear at the output of the circuit. The “1”

subscript on ε denotes a single level of encoding, while ε without a subscript denotes the failure

rate of a physical gate, which is at level 0 encoding. If a logical qubit is encoded in a block of n

qubits, it is possible to encode each of those n qubits again with an m-qubit code to produce an

mn encoding. Such recursion, or concatenation, of codes can reduce further the logical operations

failure rates, provided that the physical failure rates are below the threshold value.

Concatenated error correction introduces an exponential cost with each increasing level

of recursion. If each logical qubit block, or each logical line in Fig. 5.6, is implemented with an

[[n, k, d]] code concatenated L times, then each line consists of at least nL physical qubits. Fig.

5.7 shows the structure of a logical qubit at level L encoding, where level 1 encoding is defined

as the encoding of n physical qubits. Encoding once more for a cost of n2 physical qubits we

have a logical qubit at level 2.

Logical circuits composed of logical gates, which themselves are composed of self-similar

lower level logical gates must obey the same rules of fault tolerance as the rules for the physical

Qubit
Logical

Level 0
physical qubits

Level 1

Level 2

Level L
Logical
Qubit

FIGURE 5.7: The tree structure for a logical qubit using concatenated error-correcting codes.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

54 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

circuit outlined above. An upper bound for the failure rate of a level L logical gate can be defined

as:

εL ≤ A(εL−1)(t+1) = 1

A
(Aε)(t+1)L

. (5.12)

Notice that the “≤” sign will not hold for εL if the physical component failure rate ε is greater

than A−1. Therefore the accuracy threshold value εth for an [[n, k, d]] error-correcting code is

given as 1/A, where A is directly affected by the error-correcting code used. For a given error-

correcting code, if the physical component failure rate is below εth = 1/A we can increase the

level of recursion until we reach a desired reliability of computation, or even a reliability that is

good enough to sustain computation until the application completes.

As a system designer, calculating the threshold value for a chosen error-correction code

will help determine the amount of reliability obtainable with the code at different levels of

recursion. The most commonly cited threshold value is εth = 10−4 for the Steane [[7, 1, 3]] code

[38]. The existence of this value, however, assumes perfectly noiseless and instantaneous qubit

communication along with fast and reliable measurement operations. Gottesman [118] showed

that a threshold value exists in a local setting where qubit communication is considered. In his

work he allows qubits to interact with their nearest neighbors only where movement is performed

through successive swapping of the qubit states. The threshold for a local architecture based on

Gottesman’s specifications was subsequently computed to be on the order of 10−5 [127]. The

Steane method for syndrome extraction has allowed a significant simplification in the error-

correction networks and thus much higher threshold values have been recently calculated when

neither movement nor wait gates are considered [119, 128].

In general, any assumption made about the model of a quantum circuit and its thresh-

old value is accounted for by the total number of fault locations A. Any existing threshold

calculation has made simplifying assumptions to make the task of calculating the number of

fault-locations tractable. Quantum architecture designers’ main concern, however, is not the

exact threshold value, but the design of a fault-tolerant system such that computation can be

sustained throughout the application with the minimal number of resources. A qubit at level

L may be encoded using one [[n, k, d]] code, while its lower level qubits may use another. The

best way to predict the value of the threshold and the system behavior is through repeated

simulations of each component if exact values of the fault locations A are not available.

5.5 CONSTRUCTION OF A LOGICAL QUBIT TILE
From a computer architect’s perspective, stabilizing an n-qubit quantum state is equivalent to

recursively building logical qubit tiles (or blocks) such that the error rate per logical operation

followed by error correction falls below some desired value that will allow us to sustain the

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

ROBUST ERROR CORRECTION AND FAULT-TOLERANT STRUCTURES 55

needed computation. Each logical qubit tile at level L recursion must be crafted in such a way

that the failure rate per tile scales as O(εt+1), where ε is the failure rate of each level (L − 1)

tile used to encode the higher level qubit. In other words, the physical design and construction

of each level L logical qubit must be fault-tolerant.

The efficiency of the design of a fault-tolerant logical qubit tile can depend on several

design choices that are not orthogonal: (1) the first and most important design choice is the

[[n, k, d]] error-correcting code that serves best the functionality of the qubit tile in relation

to the entire processor design. (2) Once a satisfactory code is chosen, the lower level qubits

that are encoded to form each higher level qubit must be arranged in a fault-tolerant manner

such that the communication pattern over the error correction network with those qubits is

minimized. The more efficient the physical arrangement of the qubits is, the less the negative

impact of erratic qubit movement will be on the accuracy threshold value. In addition, the more

efficient the physical structure of the networks is, the lower the chances that the preparation

of the encoded ancilla used in error correction will fail. (3) Another very important design

choice is the allocation of physical qubit resources for error correction. A number of ancilla

blocks may be allocated for a single-error correction procedure such that they are prepared

in parallel and we are guaranteed that at least one ancilla block will have passed verification

for the extraction of the syndrome. Alternately, we may allocate qubits for only one ancilla

block and wait with the syndrome extraction until the ancilla has been prepared and passed

verification.

A hypothetical schematic of a recursively constructed logical qubit tile is shown in Fig.

5.8 without any specific low-level constructions. The figure as a whole shows a logical qubit at

(L-1)
data

(L-1)
data

(L-1)
ancilla

(L-1)
ancilla

(L-1)
data

(L-1)
data

(L-1)
data

(L-1)
ancilla

(L-1)
ancilla

(L-1)
ancilla

L
Data

L
Ancilla

(L-2)
data

(L-2)
data

(L-2)
data

(L-2)
ancilla

(L-2)
ancilla

(L-2)
ancilla

(L-2)
data

(L-2)
data

(L-2)
data

(L-2)
ancilla

(L-2)
ancilla

(L-2)
ancilla Level L

Qubit

FIGURE 5.8: Tile-based logical qubit structure.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

56 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

level L, which is composed of a level L ancilla block and a level L data block. The ancilla block

is needed for the Steane syndrome extraction method. Each qubit block at level L is constructed

using 2n level (L − 1) blocks, which in turn are constructed of level (L − 2) blocks as shown

in the figure. One requirement for the existence of a threshold value and thus, the ability to

reduce the reliability with each higher level construction, is that a level L data block be near the

level L ancilla block used for syndrome extraction [118]. In addition, Fig. 5.8 does not show

any additional ancilla blocks that are needed for extracting X and Z syndromes in parallel, nor

for verification of the ancilla blocks used in the syndrome extraction process.

5.6 COST OF QUANTUM ERROR CORRECTION
While quantum computation promises computation that may be exponentially powerful in the

number of qubits, coping with decoherence introduces a time and space overhead that is also

exponential in the number of qubits and the running time of an algorithm. In this section, we

examine this “contest of two exponentials” and outline how to design systems that win this

contest and retain the computational advantages of quantum systems.

Concatenated error correction introduces an exponential cost as the level of concatenation

increases at the physical resources, number of operations, and time per logical operation in a

single application. The physical resource increase may prove to be the most costly parameter as

we recurse, since we must provide ancillary qubits for each logical qubit to perform quantum

error correction at each operation. In addition a data qubit at level L encoding must also support

several ancillary qubits at level L encoding if the Steane QEC method is used, or O(nL)-qubit

cat-states at level (L − 1) per line, which must be error corrected and verified. The increase

in computational resources, however, comes with super-exponential decrease in the probability

of failure per logical operation. As shown in Eq. 5.12, the reliability gain from concatenated

error correction increases as (t + 1)L rather just L at the exponent. The probability of failure εL

per logical operation decreases doubly-exponentially with L for distance three quantum codes

such as the Steane [[7, 1, 3]] code. Therefore, reaching a desired level of reliability for a given

application may only require a few levels of recursion preserving the exponential improvement

over the application’s execution on conventional computers.

5.6.1 System Size

The system size S for a given application can be defined as the product of Q logical qubits and

K time steps [119]. The duration of a time step is taken to be the time it takes to perform

the logical operation, which includes error correcting the n lower level qubits that are encoded

in the logical qubit, followed by the time to error correct each logical qubit. The failure rate

necessary to achieve a system size S = K Q per logical operation is εdesired = 1/K Q = 1/S.

A quantum computer with sufficient computational resources may take as many resources as

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

ROBUST ERROR CORRECTION AND FAULT-TOLERANT STRUCTURES 57

necessary for each application to encode data at the desired level of encoding for a carefully

chosen error-correcting code to reach the desired system size. For applications with small

K Q parameter this would leave many qubit resources unused. Another method would be

to assume a fixed error-correcting code and level of recursion with the hope that too large

applications will be unrealistic to achieve. Allowing for a very large system size K Q at all

times, however, would be like driving an all-time four-wheel-drive automobile. The system

reliability is not always necessary and only causes computation at higher than needed levels of

recursion.

Clearly, a lower failure rate could be achieved faster with [[n, k, d]] error-correcting codes

with t > 1 as opposed to the Steane [[7, 1, 3]] code we describe in Section 5.3. Such codes,

however, use a much higher number of encoded lower level qubits for each logical qubit and the

number of locations A that may produce a fault have not been clearly identified, especially when

qubit communication is considered within the error-correction procedure. In addition, careful

studies [119] exist for larger error-correcting codes that suggest much more efficient logical

circuit structures in terms of resources and latency when k > 1. Codes that encode n qubits in

k > 1 qubits are known as block codes and n is usually quite large. The usefulness of these codes,

however, for large-scale quantum architecture is still unclear, as the error-correction procedures

themselves are very complicated.

To evaluate the expected logical gate failure rate at some level of recursion L for quantum

codes where k = t = 1, one can use Gottesman’s estimate for local architectures [118] shown

below

εL = 1

Ar 2r L
(Ar 2ε)2L = εth

r L
(ε−1

th ε)2L

, (5.13)

where the value for r is the communication distance within level 1 encoded blocks defined as the

average number of move operations per physical qubit. Equation (5.13) is a rather pessimistic

estimate that assumes that the distance the qubits travel before they are being corrected increases

exponentially with the recursion level L. While this is true, for sufficiently long distances the

concept of teleportation may be used to change the movement model and allow for lower failure

rate εL estimates.

5.6.2 Error-Correction Slowdown

From a first look, it seems that the exponential slowdown due to error correction even with

qubit tiles of only a few levels of recursion is prohibitive when the system size S becomes

very large. For some applications, however, the exponential slowdown from error correction

is balanced by the exponential speedup offered by the quantum algorithm structure versus its

classical counterpart. One such application is Shor’s quantum factoring algorithm, which is

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

58 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

designed to break the widely used RSA public-key cryptosystem. RSA’s security lies at the

assumption that factoring large integers is very hard, and as the RSA system and cryptography

in general have attracted much attention, so has the factoring problem. The efforts of many

researchers have made factoring easier for numbers of any size, irrespective of the speed of the

hardware. However, factoring is still a very difficult problem. The best classical algorithm known

today [9] has complexity of

exp ((1.923 + o (1))(log N)1/3(log log N)2/3)

for an N-bit integer. As a basis of comparison we use the most recent success at factoring a 663-

bit number [129] classically for an estimated 121,000 MIPS years (≈ 4 × 1018 instructions).

This is equivalent to a little over one year on a 100 GHz PC with a perfectly parallelized and

distributed factoring implementation.

A plot of the required level of recursion versus the problem size N for factoring an N-bit

integer using Shor’s algorithm is shown in Fig. 5.9(a). The system parameters used are the

Steane [[7, 1, 3]] code with ion-trap technology assumptions that are optimistic, but within

the fundamental limits of the technology and not out of reach in the future. The details of

the architecture are described in Chapter 9. We see that for factoring a 1024-bit (or even a

(a) (b)

10
0

10
1

10
2

10
3

10
4

10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

Problem Size (N)

Le
ve

l o
f R

ec
ur

si
on

 R
eq

ui
re

d

Level of Recusion vs. Problem Size (N)

L = 1

L = 2

L = 3

10
3

10
4

10
5

10
6

10
10

10
0

10
10

10
20

10
30

10
40

10
50

10
60

Problem Size (N)

S
pe

ed
up

 o
f S

ho
r

A
lg

or
ith

m

Speedup vs. Problem Size

Speedup w/o QEC
Speedup w/ Ideal Technology Parameters

Speedup w/ Parameters at Threshold

FIGURE 5.9: (a) Required level of recursion for Shor’s algorithm as a function of the problem size

N defined in the context of an N-bit number that is being factored. (b) Speedup of Shor’s algorithm

as a function of the problem size N. The top-most line shows the speedup without error correction,

the middle line shows the speedup with error correction, but at error parameters approximately three

orders of magnitude below the accuracy threshold for the Steane [[7, 1, 3]] code, the bottom line the error

parameters are at the threshold value of the [[7, 1, 3]] code. Each “glitch” in the two lower lines is an

increase in the level of recursion.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

ROBUST ERROR CORRECTION AND FAULT-TOLERANT STRUCTURES 59

2048-bit) number, level 2 recursion with the Steane [[7, 1, 3]] code may be sufficient given

the provided architecture design. The optimistic error rates for the ion-trap technology are

almost three orders of magnitude below the existing estimate for the accuracy threshold value

of approximately 10−5 for the Steane [[7, 1, 3]] code [130].

The slowdown due to error correction can be seen in the logarithmic scale plot shown

in Fig. 5.9(b), where the ŷ-axis marks the speedup of the quantum algorithm from its classical

counterpart. The speedup is calculated as the number of days classically divided by the number

of days quantum mechanically. The top line is the speedup without error correction. The middle

line is the speedup with the optimistic ion-trap parameters, while the bottom line is the speedup

with technology error rates at the threshold value of approximately 10−5. Each “blip” on the

speedup lines with error correction corresponds to increasing the level of recursion by one

unit. The smallest problem size shown is N = 700, which requires level 2 encoding. The same

problem size requires level 3 encoding if the technology parameters are at the threshold value.

As we can see, even with error correction, the exponential speedup is preserved over classical

computation. The asymptotic cost of Shor’s algorithm is polynomial, and the polynomial cost

incurred by the computation is responsible for the deviation of the speedup lines from being truly

exponential (note the slight curvature). A physical operation in an ion-trap quantum computer

is on the order of 10 μs thus at the physical level, the speedup calculated is based on a kHz

quantum computer.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-05 MOBK053-Metodi.cls October 30, 2006 19:22

60

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-06 MOBK053-Metodi.cls October 30, 2006 19:23

61

C H A P T E R 6

Quantum Resource Distribution

Fundamentally, technologies that are well-suited for quantum computation are not ideal for

quantum communication. This tension arises from the need to interact qubits with each other

and the application of control signals on the qubits during computation, versus the need to

insulate qubits from any interactions during information exchange from one location to another.

For the execution of an arbitrary single-qubit operation the physical qubit carrier is usually

exposed to an external field such as an ion shined on by a laser light. Similarly, a two-qubit

operation such as the cnot gate requires a specially focused external field to induce a coupling

between the two qubits. On the other hand, the transport of a qubit requires the movement

of the physical qubit carriers in such a way that they are isolated from external environment

fields in order to preserve the qubit states during transport. Trapped atomic ions are well-suited

carriers for computation since the qubit state lifetime is relatively long in trapped ions and

laser light can be adjusted to induce quantum operations with a failure rate of as little as 10−7

[104]. The transport of ions requires the control of the trapping potentials and the movement

of the ions through external electric and magnetic fields which contribute to increased failure

rate in the quantum operations and the possibility of losing the qubit states during transport.

Photons traveling through optical fibers are ideal for reliable communication since they do not

interact well with the environment and with each other. The weak photon–photon interactions,

however, make photon qubit carriers not desirable for extensive computation unless clever

entangling methods are employed such as quantum gate implementations through collective

photon measurements [93].

Consequently, communication is a significant challenge in scalable quantum computers.

At the lowest level each qubit is a carrier of quantum information which cannot be cloned, and

must be physically transported from a source to a destination. This makes each qubit either

a physical transmitter of quantum information, where the qubit itself is physically moved, or

operations are applied to transmit the information across a given distance. Both methods place

great constraints on the reliability and speed of quantum data distribution. One method to

protect the data from corruption is to repeatedly error correct along the channel at a cost of

additional error correction resources. Another solution is to use the purely quantum concept

of teleportation [26] to implement a long-range wire [54], which has been experimentally

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-06 MOBK053-Metodi.cls October 30, 2006 19:23

62 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

demonstrated on a very small scale [131, 78, 77]. As described in Section 2.4, teleportation

transmits a quantum state between two points without actually sending any quantum data, but

rather two bits of classical information for each qubit on both ends. In addition, the coupling

of remote atomic qubits which are well suited for computation can be achieved through photon

interactions [58, 95, 97, 98]. The design and optimization of a quantum architecture to support

efficient data communication scalably to arbitrary large applications will be one of the key areas

of contribution for computer architects.

6.1 PHYSICAL QUBIT MOVEMENT
Using the circuit model of computation with sufficient error correction, a cnot gate between

two qubits will be the most dominant operation that requires qubit–qubit interaction [130].

There is a large variety of physical qubit communication mechanisms employed by the available

technologies to allow two qubits to interact. In fact, the classification of the qubit types heavily

depends on the communication mechanisms available for interacting two or more qubits.

Qubits identified as flying qubits such as photons are constantly in motion, and gates are

stationary physical devices that affect the photon qubits as they fly through the gate. Tradition-

ally, photons are sent through fiber optic wires and the main source of decoherence in the wires

is photon absorbtion. Photon qubits, however, are difficult to use in a quantum circuit model

implementation for relevant computation, as it is very difficult to transfer the state of a “flying”

qubit to a stationary qubit for computation.

Stationary qubits such as the solid-state qubit proposals occupy a specific physical space

(or a fixed qubit container), where qubit-qubit interactions are limited to nearest neighbor only

[56, 71, 66]. The construction of arbitrary one- and two-dimensional lattices for logical qubits

using “stationary” qubits is perfectly possible through successfully swapping two neighboring

qubit states until two specific qubit states reside in neighboring qubit containers. The nearest-

neighbor communication channels are limited by the reliability of the swap operation, which

is implemented by applying three successive cnot gates. The physical gate mechanism for

“stationary” qubits is an external system applied at the location of the qubit.

Trapped atomic ions that hold the qubit states offer a cross between “flying” and “sta-

tionary” qubits where the ions can be trapped between the segmented electrodes. Lasers can be

applied to perform a logic gate at any previously defined interaction region. Two ions interact

by ballistically shuttling the ions across the physical layout such that they occupy the same trap.

An interesting proposal for Josephson junction qubits supports long-distance gates, where any

two qubits are allowed to interact without the need to move them; however, the proposal limits

the circuit execution to only one gate at a time [132, 79] on a single chip.

Nearest-neighbor and ballistic qubit communication mechanisms are best suited for

implementation of the circuit model for quantum computation as they offer the most

straightforward implementation of reconfigurable quantum logic [133]. From a system

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-06 MOBK053-Metodi.cls October 30, 2006 19:23

QUANTUM RESOURCE DISTRIBUTION 63

designer’s perspective, the two communication models can be indistinguishable: the cost of

successive swap operations across a swapping channel can be compared to physically moving

ions through a sequence of unit distances in an empty ballistic channel. The challenge for system

designers will be to map quantum circuits to physical layouts such that the latency of commu-

nication has minimal effect on the latency of the circuit execution. In addition, the physical

layout designer must consider that an increased number of swap operations, or move opera-

tions through a unit length channel is equivalent to performing random faulty operations on

the transported qubit. Thus great care must be taken to create schedules that optimize not only

for latency constraints, but reliability constraints.

The error correction procedures for qubits encoded at relatively low levels of concatenation

may require an enormous amount of physical qubit movement, however, through clever opti-

mization techniques it can be possible to limit the movement errors on the data. A significant

problem arises when qubits encoded at a relatively high level of recursion must communicate

with one another (for example, the execution of a transversal two-qubit gate between two log-

ical qubits at level 3 concatenation). The exponential increase in the separation between the

physical qubits at each additional level of recursion introduces distances that are impossible to

traverse physically without a prohibiting loss of data. In the next section we describe the concept

of quantum teleportation as the means for reliable long-distance communication in quantum

architectures.

6.2 TELEPORTATION-BASED INTERCONNECT:
QUANTUM REPEATERS

The concept of using teleportation as a long-distance communication channel is illustrated in

Fig. 6.1 in three stages. The first stage involves the entangling of two qubits into an EPR pair

through the network shown in Fig. 2.9. The two qubits are then transported through a physical

channel where one is moved next to the source qubit and one to the location where we would

like to transport the source qubit. Once the source qubit is interacted with the EPR qubit, the

two are measured and the source can be recreated at the destination.

FIGURE 6.1: Illustration of the stages of teleportation.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-06 MOBK053-Metodi.cls October 30, 2006 19:23

64 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

Note that we are still physically moving the entangled EPR qubits; however, unlike the

source qubit, EPR qubits are replaceable. The damaged EPR pairs can be fixed by a process

called entanglement purification [134, 18], which uses ancillary EPR pairs to distill the good

pairs from the bad pairs. The caveat to purification is that the amount of resources increases

exponentially with the EPR separation distance, along with the fact that if the EPR pair becomes

too corrupted it may not even be purifiable. As the physical distance the EPR pairs must travel

approaches the coherence length allowed by the implementation technology: (1) the number

of additional EPR pairs required for purification of a single EPR pair increases exponentially;

and (2) the fidelity of each of the qubits sent through the channel decreases exponentially. For

large-scale quantum architectures we will need to send qubits at distances much larger than the

coherence length of the physical channels [27, 28], and it would seem that an enormous amount

of resources would be needed to achieve these distances.

Fortunately, entanglement is preserved through teleportation. For example, if one qubit

is entangled with another qubit in the system, after it is teleported, the two qubits are still

entangled in the same way. Thus, a very large channel may be divided into a number of smaller

channels that are within the allowable physical coherence length and EPR pairs can be created

and purified only within each segment of the channel. Through entanglement swapping we can

1.

2.

3.

5.

Source

EPR Pair

Destinationunit
distance

teleport

teleport

teleport

Data is finally teleported to Destination

FIGURE 6.2: Illustration of Entanglement Swapping. A long-distance channel between the source

qubit and the destination qubit is divided into a number of smaller segments connected with an EPR pair.

EPR pairs only travel to two nearby islands, where they can be efficiently purified using the purification

protocols with some additional ancillary EPR pairs. In stages 1 through 3 we teleport in parallel across the

stations to reduce the number of connecting EPR pairs by half at each step, but still keep the connection

between the source and the destination. Finally, we teleport the source qubit to its desired location when

a single EPR pair spans the connection channel.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-06 MOBK053-Metodi.cls October 30, 2006 19:23

QUANTUM RESOURCE DISTRIBUTION 65

transfer the entanglement of the EPR pairs to create a single entangled pair that spans the two

ends of the channel [135].

Fig. 6.2 demonstrates the stages of the entanglement swapping protocol. A long-distance

channel between the source qubit and the destination qubit is divided into a number of smaller

segments by quantum repeater stations, which are connected with a single EPR pair. The quantum

repeaters can be implemented as islands that are strategically placed in the channels between

the logical qubits to limit the distance traveled by each EPR pair. EPR pairs only travel to two

nearby islands, where they can be efficiently purified using the purification protocols with some

additional ancillary EPR pairs. To expand a single entangled EPR pair between the source and

the destination over the entire channel we use a logarithmic algorithm similar to computing

the transitive closure. In Fig. 6.2 there are four stages after the EPR pairs have been created to

connect each neighboring repeater station. In stages 1 through 3 we teleport in parallel across

the stations to reduce the number of connecting EPR pairs by half at each step, but still keep

the connection between the source and the destination. Finally, we teleport the source qubit to

its desired location when a single EPR pair spans the connection channel.

As we shall see further in Section 11, teleportation is a remarkable concept and can be

used for much more than simply connecting two relatively distant locations on a chip. In fact,

through teleportation it is even possible to avoid direct qubit-qubit interaction when executing

two-qubit gates. Another remarkable property of quantum teleportaiton is the ability to error

correct logical qubits as entire qubit blocks are being teleported. In general, the existence of

the elegant long-distance quantum repeater protocol opens up many possibilities for the use of

teleportation in large-scale quantum architectures.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-06 MOBK053-Metodi.cls October 30, 2006 19:23

66

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-07 MOBK053-Metodi.cls October 30, 2006 19:24

67

C H A P T E R 7

Simulation of Quantum Computation

As the technology for implementing QIP continues to advance one of the central challenges

for system designers now and in the future will be the ability to accurately simulate the behavior

of large-scale quantum computers. The main challange stems from the fact that quantum

information processing can be described as an extension of the classical computational model

when information is represented as a superposition of quantum bitstring states rather than as

single classical bitstrings. This perspective helps us understand why the classical computational

model is a subset of the larger quantum information processing scheme, and thus a classical

system cannot efficiently simulate a quantum system.

In addition, as the general structure of large-scale quantum computers emerges clearer

with each technological advancement, the need to accurately model such systems will increase

in both urgency and importance.

A unitary operation on an n-qubit quantum register requires O(2n) operations to simulate

and an O(2n) data bitstring entries to store the state of the register. Because of the limits

imposed by destructive measurement, researchers are not convinced that quantum computation

is necessarily more powerful than the classical model, and it is unclear where the boundary

between the two models is. One fundamental boundary value is the accuracy threshold for

fault-tolerant circuits. The state of an entangled quantum system, such as a logical qubit, can

be sustained for an arbitrarily long period of time if the physical component failure rates are

below the accuracy threshold of the encoding used. If the component failure rates are above the

threshold value, then the entanglement will decohere exponentially quickly and the system will

be forced to a single classical state [116].

Even worse for the simulation of quantum computers is the fact that no quantum computer

system is completely isolated from its environment. In fact, to allow the implementation of

a desired set of operations to be applied by some external system, quantum computers are

inherently open to noise introduced by the environment. As our system evolves through time,

it becomes entangled with the surrounding environment, and unknown forces that act on the

environment cause decoherence directly to our system. This means that to accurately track

the evolution of a quantum system, which is coupled, to the environment, we must store more

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-07 MOBK053-Metodi.cls October 30, 2006 19:24

68 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

information then necessary as opposed to tracking the superposition state of an isolated quantum

register [38].

As system designers, however, we may not need to track the exact computations performed

by quantum applications, but rather the application behavior in the architecture, such as latency,

fault-tolerance, and effect on overall system size. As we shall see in this chapter, the challenges

of efficiently simulating a general-purpose quantum computer with conventional techniques are

far from prohibiting when we attempt to efficiently model the behavior of large-scale quantum

applications. After all, if it were possible to simulate a general-purpose quantum computer

efficiently, then there would be no need to build one. Luckily it is not possible.

Several general-purpose quantum simulators exist in the literature, including the QCE

simulator specifically designed to simulate quantum computer hardware at the lowest level

possible [136], the high-level language for quantum computation (also known as QCL) [137] is a

functional-level general-purpose simulator with no knowledge of the hardware, and the quantum

decision diagrams (QuiDD) package by Viamontes et al. [138] allows us to simulate arbitrary

circuits. All general-purpose simulators incur exponential cost with each additional qubit, and

thus simulating even several hundred qubits is completely unrealistic. Other simulators that

impose limits on the entanglement of the system can simulate quantum circuits in polynomial

time as long as the functionality of the circuits satisfies the imposed constraints [139, 140].

A restriction on entanglement is prohibitive for a systems designer who attempts to model

error correction, which requires highly entangled qubits for a single logical codeword. There

are two types of simulation methods that allow us to model the behavior of quantum circuits

using methods that are polynomial in time, but do not impose any limits on the entanglement

produced by the simulated circuit: simulation of error propagation and using the unique stabilizer

representation of an n-qubit register. Both methods, however, require that the circuits are

composed of only the Clifford group gates. This is, in fact, more than enough to simulate

quantum error correction which is the bulk of the computational resources [53] during an

application execution.

In Section 7.2 we describe in better detail the stabilizer formalism for quantum circuits,

where we use it to simulate stabilizer circuits directly. Any n-qubit state |�〉 that can be formed

entirely with the Clifford group gates

{H, CNOT, X, Z, Y = −i ZX, S}, (7.1)

where the qubits must start in the initial state |0102 . . . 0n〉, is known as a stabilizer state.

The stabilizer circuit is the circuit composed of the Clifford group gates that form |�〉. Any

stabilizer state |�〉 can be described uniquely using only O(n2) unitary one-qubit Pauli operators

{I, X, Y, Z}. It is a powerful representation for quantum states first published by Gottesman in

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-07 MOBK053-Metodi.cls October 30, 2006 19:24

SIMULATION OF QUANTUM COMPUTATION 69

1996 [115], where Gottesman provides a description for a very powerful class of error-correcting

codes known as stabilizer codes. The class of CSS codes such as the Steane [[7, 1, 3]] code is a

subset of the class of stabilizer codes.

7.1 SIMULATION OF ERROR PROPAGATION
If, as a system designer, one is not concerned with the precise state of the system at a given point

in time, but rather is concerned with the failure rate of the system as a whole, or even each fault-

tolerant component, one can use error propagation to accurately simulate the behavior of any

active state stabilization mechanism in a logical qubit tile. In addition, inter-tile communication

based on teleportation is also implemented using a stabilizer circuit (see Fig. 2.3). Thus, one

can simulate the reliability and efficiency of the logical interconnect efficiently on a classical

computer using error propagation. The key to simulation of error propagation is that an error on

a qubit at any location of a circuit changes the state of the qubit, which causes any control gates

based on that qubit to behave differently. Thus the error propagates through two-qubit gates

and spreads to other qubits as the program progresses. This is why it is absolutely necessary to

implement error-correcting circuits fault-tolerantly in such a way that an error on any 1 to t

qubits will not spread to more than t qubits if the network is a recovery network, or a logical

gate network for an [[n, k, d]] code correcting t = (d − 1)/2 errors.

Consider the simple circuit examples shown in Figs. 7.1 and 7.2, which demonstrate the

propagation of X and Z errors, respectively. Both networks are carbon copies of the encoding

network for the Steane [[7, 1, 3]] code shown in Fig. 5.4 but both start at the first measurement

operation. Because the measurements measure in the computational basis, they will detect

the states |0〉 or |1〉, and the X error will be detected by either measurement gate. Phase-flip

errors on the other hand slip through the network and have the potential to multiply to more

than one error as shown in Fig. 7.2. Should more than one Z error really does slip during

vbit
a1
a2
a3
a4
a5
a6
a7

M
H

M

M

x x

x

x

FIGURE 7.1: X-error propagation. The qubit lines affected by the error are shown in a thicker dot-

dashed line. The measurement operations in the middle and the end of the network are designed to yield

“1” if error is present and “0” otherwise.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-07 MOBK053-Metodi.cls October 30, 2006 19:24

70 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

vbit
a1
a2
a3
a4
a5
a6
a7

M
H

M

M

z

z

z

z

FIGURE 7.2: Z-error propagation. The qubit lines affected by the error are shown in a thicker solid

line. Note that the Z errors are undetected by this network, and a single Z error occurring in the middle

of the circuit has caused three Z errors in the output.

recovery procedure, the syndrome extraction will yield the wrong error location and thus we

run the potential of correcting the wrong data bit (see Section 5.3). This is the reason why the

syndrome extraction is repeated if a nontrivial syndrome is found, and we correct only upon

matching consecutive syndrome measurements.

In reality, the effect of errors due to all gates can be traced through error-propagation

simulations. Adding the T to the mix of gates whose errors we would like to track would

complete the universal set for computation. The problem is that errors introduced by the T

gate are a probabilistic superposition of the X and Z gates; thus we must follow both error

paths. With each T gate in a quantum circuit, the number of paths doubles, and quickly the

circuit becomes intractable to simulate. Applications such as Shor’s algorithm rely heavily on

the Toffoli gate described in Section 2.2.1, which is composed almost entirely of T gates.

Note that X and Z errors propagate differently through the two-qubit cnot gates. Bit-flip

errors propagate “forward” (i.e., control → target), while phase-flip errors propagate “backward”

through a cnot gate. This is easy to see for bit-flip errors since the state of the target bit is

flipped depending on the state of the control bit. For phase flips we can see this more easily

if we consider the states of both the input and the target qubit to be (|0〉 + |1〉) ⊗ (|0〉 + |1〉).
After a Z error on the target qubit, the target qubit state will be (|0〉 − |1〉). The application

of the cnot gate puts the system in the state (|00〉 − |01〉 + |11〉 − |10〉), which can be written

as (|0〉 − |1〉) ⊗ (|0〉 − |1〉). Thus, we can see that the Z error has now been propagated to the

control qubit as well as the target qubit after the cnot gate.

The extensive quantum architecture tools known as QUALE by Balensiefer et al. [141,

142] use the error to verify the fault-tolerant properties of the error-correction networks they

have modeled. QUALE uses traditional compiler techniques to map quantum circuits onto a

realistic physical layout in order to enable the study of large-scale quantum applications and

hardware. The intent of the software tool chain of QUALE is to simplify the development of

large-scale quantum applications, where error correction—the most dominant application—is

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-07 MOBK053-Metodi.cls October 30, 2006 19:24

SIMULATION OF QUANTUM COMPUTATION 71

verified through simulating the propagation of errors. Since the noise model is stochastic and

errors occur with associated probabilities, Monte Carlo simulation can be used to find the failure

probability of any stabilizer circuit such as a logical operation as defined in Fig. 5.6. After the

network is executed a sufficient number of times, the essential failure of the entire circuit is

the number of registered failures divided by the number of registered successes per trial. A

registered failure is any time more errors have propagated at the output of the circuit than

the error correction code can correct. If a large-scale quantum computation is composed of a

sequence of logical gates such as the gate in Fig. 5.6, the application is marked as “failed” and is

restarted whenever one of two things happen: (1) more errors enter the recovery network than

is possible to correct, which would completely change the meaning of the encoded codeword;

and (2) either the recovery network or the logical gate circuitry are not fault tolerant, and cause

a single fault at any location to propagate to more errors than the next recovery network can

correct.

The drawback of simulating propagation of errors however, is that the failure probability

results are pessimistic when compared to statistical data obtained from other simulation meth-

ods. Without knowing the state of the quantum register it is impossible to determine how and

what type of fault will actually be a real fault. It is true that any of the Pauli operators are applied

with equal probability ε, but the phase-flip operator Z, for example, does not affect the |0〉
state. Thus, simulating propagation of errors sometimes introduces faults on qubit states that

are unaffected by the error operator, which makes it effectively a nonerror. A logical qubit in

the encoded |+〉 state is unaffected by a logical X operator; however, if enough X errors have

propagated to that logical qubit such that they implement the X operator, this will be registered

as a logical error and crash the entire application.

7.2 STABILIZER METHOD SIMULATION
Another method for efficiently simulating stabilizer networks is through the stabilizer formalism

[115, 126]. Recall that any arbitrary n-qubit state |�〉 which can be formed with gates in the

Clifford group, provided that all qubits in the register have been initialized to |0〉, is a stabilizer

state. An n-qubit operator U stabilizes the state |�〉 if U does not change the state: U |�〉 = |�〉.
The key to the stabilizer formalism’s use for the simulation of quantum circuits is the Gottesman–

Knill theorem, which states that if the n-qubit state |�〉 is a stabilizer state, then:

• |�〉 is stabilized by a set of n-qubit operators composed of the Pauli group matrices

given in Eq. 2.15.

• The stabilizer group can be generated by an O(n) number of n-qubit Pauli operators

(i.e., every stabilizer operator of the state |�〉 can be written as a product of a small set

of stabilizer operators for |�〉).

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-07 MOBK053-Metodi.cls October 30, 2006 19:24

72 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

• The state |�〉 is uniquely described by the set of operators that generate all of its

stabilizers. These operators are known as the stabilizer generators for |�〉.

The last point states that it is exponentially cheaper to describe a stabilizer state |�〉 using

its stabilizer generators, rather than describing the state explicitly. Consider, for example, the

stabilizer generators for some unknown three-qubit state {III, ZZI, IZZ, ZIZ }, where the ith

Pauli operator in a stabilizer string is understood to act on the ith qubit only. The first operator

III stabilizes anything, because it is just the identity on all three qubits. The second operator ZZI

stabilizes the four states |000〉, |001〉, |110〉, and |111〉. The third operator IZZ stabilizes the

states |000〉, |100〉, |011〉, and |111〉. Finally, the last operator stabilizes the states |000〉, |101〉,
|010〉, and |111〉. Note that common to all four operators are the two states |000〉 and |111〉;
thus the state stabilized by the generators {III, ZZI, IZZ, ZIZ } is |�〉 = 1√

2
(|000〉 ± |111〉).

Usually, the stabilizer generator will include a sign.

The total number of classical bits needed to specify an n-qubit stabilizer state |�〉 is

(2n + 1), where the “1” is due to the sign bit, and there are 2n Pauli operators to write down.

Additionally, Gottesman and Knill showed that unitary operations on the qubits that are part of

the Clifford group such as the cnot, Hadamard, S-gate, and measurement take each stabilizer

state to a different stabilizer state; thus the action of these gates can be modeled in only O(n) time.

Measurement is slightly more expensive if the outcome is deterministic, where the stabilizer

generators can be updated in O(n3) time. Aaronson and Gottesman later demonstrated an

implementation of a stabilizer-based simulator (known as CHP), where measurement can be

updated in O(n2) time [143].

While we cannot simulate Shor’s algorithm exclusively with stabilizer circuits, we can

simulate efficiently the largest and most efficient class of error-correcting codes known: stabilizer,

CSS codes such as the Steane [[7, 1, 3]] code, in addition to some of the most important quantum

protocols such as teleportation, and superdense coding. In fact, the stabilizer formalism can

be used to directly derive encoding and error-correcting procedures for stabilizer codes. For

example, the set of n-qubit Pauli operators that generate the stabilizers for the encoded logical

states |0〉 and |1〉 for the Steane [[7, 1, 3]] is given by the six operators {g1, g2, g3, g4, g5, g6}
where

{g1, g2, g3, g4, g5, g6} = {XXXXI I I, XXI I XXI, XI XI XI X,

ZZZZI I I, ZZI I ZZI, ZI ZI ZI Z}. (7.2)

The reader can verify that applying any of the above operators to the encoded |0〉 and |1〉 states

for the [[7, 1, 3]] code (given in Eq. 5.11), will not change the two codewords. On the other

hand, a Pauli error on any of the seven qubits will change the stabilizers for the two codewords.

Thus, measuring each of the stabilizer generators to determine which ones still stabilize the

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-07 MOBK053-Metodi.cls October 30, 2006 19:24

SIMULATION OF QUANTUM COMPUTATION 73

codeword states is another way of obtaining an error syndrome for the [[7, 1, 3]] code. Two

Pauli errors on any two qubits in the seven-qubit encoded states will transform the stabilizers

to seven-qubit Pauli operators that are generated by the product of some of the six generators

defined above, which will leave the stabilizer generators untouched. For this reason, two-qubit

errors are undetectable with the Steane [[7, 1, 3]] code.

Stabilizer networks can be verified for fault tolerance and functionality using Monte Carlo

simulations much the same way as simulating error propagation in networks. The interoperable

tool chain QASM-TOOLS developed by Cross et al. [144] uses the assembly language QASM

as an input language to represent and study fault-tolerant quantum circuits by estimating de-

polarizing noise thresholds using Monte Carlo simulation, and functionally verify stabilizer

circuits using Aaronson’s improved stabilizer simulator CHP. In addition, QASM-TOOLS

can find lower bounds for the accuracy threshold of distance three codes such as the Steane

[[7, 1, 3]] code using general malignant set counting [145], which counts all combinations of

locations in a logical gate circuit that cause the network to fail.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-07 MOBK053-Metodi.cls October 30, 2006 19:24

74

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-08 MOBK053-Metodi.cls October 30, 2006 19:25

75

C H A P T E R 8

Architectural Elements

Given our discussion at this stage of the book, we may deduce that a natural model for a large-

scale quantum architecture is a homogeneous, tiled architecture with two main component

categories:

1. Logical qubits implemented as self-contained computational tiles allowing gates to be

performed directly on the encoded data while containing the necessary error-correction

resources to correct data immediately following a logical gate execution.

2. Teleportation-based communication channels that may employ the concept of quantum

repeaters to allow information transmission across arbitrary regions in the architecture.

One major drawback of such a homogeneous architecture is that by definition it allows

the application of gates on encoded data blocks at any tile containing a logical qubit. In addition,

active state stabilization (i.e. error correction) is required for each logical qubit after each logical

gate (see Figure 5.6). This requirement makes independent lower-level qubit resources for

adequate error correction an integral part of every logical qubit block, which in turn leads to

forbidding area requirements when constructing a computationally relevant quantum chip. This

is especially true when a spatially sparse technology is used as the trapped atomic ions, which

could bring the computer area to as much as one square meter when factoring a 1024-bit number

[27] and the underlying substrate is a piece of silicon dye. On the other hand, the homogeneous

“sea-of-qubits” design for a quantum architecture makes sense, as every single logical qubit tile

requires error correction, which is a process no different than executing a quantum circuit. Thus,

memory and computation in quantum hardware use the same technology, and allowing logical

operations at every tile while each tile is capable of active state stabilization is not limited by

the physical implementation of the hardware.

Quantum applications, however, much like classical ones, exhibit natural serialization.

By exploiting the limited parallelism at both the application and the physical microarchitecture

level of a quantum computer, it is possible to reduce the area requirement while improving

performance by limiting the wasted error-correction qubit resources [28]. In particular, a scal-

able quantum architecture design may employ specialization of the system into memory and

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-08 MOBK053-Metodi.cls October 30, 2006 19:25

76 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 196 144 100 64 36 16 4

O
ve

ra
ll

U
ti

liz
at

io
n

Number of Compute Blocks

32-qubit adder
64-qubit adder

128-qubit adder
256-qubit adder
512-qubit adder

1024 -qubit adder

 0

 10

 20

 30

 40

 50

 60

2015105

N
u

m
b

er
 o

f
G

at
es

 in
 P

ar
al

le
l

Time

Unlimited Resources
Only 15 Compute Blocks

(a) (b)

FIGURE 8.1: Total communication and computation times for the two components of Shor’s

algorithm, (a) for a 64-qubit adder, the amount of parallelism that can be extracted when resources

are unlimited, and when the number of gates per cycle are limited. This figure shows that if 15 gates,

or an unlimited number of gates could be performed in each cycle, the total run time would remain the

same. (b) Change in utilization as the number of compute blocks increases.

computational regions, each individually optimized to match hardware support to the avail-

able parallelism. A system designer for a quantum architecture may gain density increase by

specializing components as blocks of memory and blocks of computation. As shown in the

case study for a quantum architecture in Chapter 9, the area improvement over a homogeneous

architecture can be as large as nine times. Shor’s factoring algorithm, for example, is dominated

by modular exponentiation, which is composed of adders. Fig. 8.1(a) plots the number of gates

executed in parallel versus the run time of a 64-bit quantum adder routine. We see that the total

run time remains the same when the logical qubit tiles that allow computation are limited to

15 instead of unlimited number at any given execution cycle. This is explained by the simple

fact that the utilization of the available compute blocks drops as the number of compute blocks

increases. The utilization of the compute blocks as a function of the number of compute blocks

is plotted in the ŷ-axis of Fig. 8.1(b). Clearly, a more sophisticated scheduler may not need all

64 logical qubit tiles to allow gate execution, but distributing the execution cycles among lower

number of tiles will allow us not only to reduce the error-correction resources in the tiles where

computation is not allowed, but it may help with the classical resource distribution.

The high-level specialized architecture model we describe is shown in Fig. 8.2. The

model is constructed from a collection of specialized architectural elements much like a classical

architecture, independent of the physical implementation technology. Each element is composed

of a number of “tiles” where each tile represents one or more logical qubits composed of a

number of physical qubits encoded using a prespecified error-correcting code. The shaded tiles

are taken to be logical data qubits and the clear tiles are logical ancilla blocks used for error

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-08 MOBK053-Metodi.cls October 30, 2006 19:25

ARCHITECTURAL ELEMENTS 77

T
R

A
N

SF
E

R

 N
E

T
W

O
R

K

C
O

M
P

U
T

E

C
A

C
H

E

M
E

M
O

R
Y

LEVEL 1 LEVEL 2

FIGURE 8.2: High-level general processor view.

correction at the highest level of recursion. Assuming that the implementation technology

allows a wait gate to be considerably more reliable than other gates (a notion not completely

unrealistic), we can reduce the overall computer area by changing the ratio of logical data blocks

to logical ancilla blocks between memory and computational regions. For example, the memory

tile shown on the right-hand-side of Fig. 8.2 is primarily concerned with storing the actively

stabilizing state of encoded data qubits. The intervals between error-correction operations are

increased by increasing the number of data qubits for each ancillary qubit that can be used for

error correction. This cannot be done in the computational tiles, because error correction is

needed after the execution of each gate, and a single computational tile may be used for the

execution of both one- and two-qubit gates. In addition, we may be able to combine area savings

with improved performance, by defining a specialized compute code (CC) used in the processing

elements, and memory code (MC) used for storing data. The only logical operation employed by

the memory code would be a wait gate, which is simply doing nothing.

The introduction of different encodings between tiles that allow computation and tiles

that only store qubits will require a complex transfer network between the different encodings,

where the data must not be decoded in the transfer process. As we will see further in this chapter,

the transfer network is slow for it is composed of a number of gates on the encoded data and

measurement operations, each followed by error correction. Fig. 8.2 shows an additional cache

region used to buffer encoded data with the computational code after it is transferred from

memory. In some ways, the memory hierarchy we describe in this chapter is a code hierarchy,

where the hierarchical structure is needed to overcome the latency differences between state

stabilization and code transfer from one encoding to another. The structure and optimization

of the hierarchy is perhaps the most complex component of the architecture as it provides the

transition operations necessary to take data encoded in the highest level of the hierarchy to the

encoding needed for computation without delaying the algorithm execution.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-08 MOBK053-Metodi.cls October 30, 2006 19:25

78 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

8.1 QUANTUM PROCESSING ELEMENTS (PEs)
All logical quantum operations take place in the processing element (PE) tiles. A schematic of a

hypothetical PE tile is shown in Fig. 8.3. When a logical qubit is teleported to an available PE it

is stored in either of the two accumulators encoded with the compute code (CC), where the CC is

chosen to be fast and relatively inexpensive in the number of physical qubits needed for encoding

and error correcting a single logical qubit. The error correction is performed before and after

the application of a single logical gate on the data stored in any of the two accumulators using

the closer of the two ancillary blocks. The logical qubit needed for a single-qubit operation is

loaded into one of the two accumulators of an available PE. The qubit can be found waiting in

the quantum cache encoded with the same CC, or is teleported directly from the main memory if

there is an available accumulator in some PE unit. A two-qubit gate requires both accumulators,

where the physical qubits of each of the two participating logical qubits must interact with one

another. There are enough CC ancilla provided to correct both logical qubits in each of the

accumulators. The lines between the different regions in each PE are not as clear in reality as

drawn in Fig. 8.3. For example, in the ion-trap technology the execution of a two-qubit gate

with the Steane [[7, 1, 3]] code will require 49 pairs of ions to be placed in the same trap. Thus,

both accumulators can be constructed by having 49 traps that allow physical two-qubit gates to

be executed.

Gates acting on logical qubits must be implemented to preserve fault tolerance, where a

single error on any of the lower level logical qubits will not spread to more lower level qubits than

the CC can correct. The gates act on logical qubits without decoding the states; thus a compiler

optimizing the fault-tolerant structure of each gate must have clearly defined transformation

rules that preserve fault tolerance. The best CCs are the ones that (1) use very little physical qubit

resource overhead and (2) allow “easy” fault-tolerant gate implementation. Good candidates for

CC codes are the Steane [[7, 1, 3]] code, or the newly optimized Bacon–Shor [[9, 1, 3]] code

[146, 147]. The Bacon–Shor [[9, 1, 3]] code is based on the well-known Shor nine-bit code

Accumulator 1
Accumulator 2

Ancilla 2

Ancilla 1

FIGURE 8.3: Hypothetical schematic of a processing element (PE) tile. Each high-level ancilla block is

used to correct encoded data in the corresponding accumulator before and after the execution of a logical

gate at the accumulator block. The PE tile requires two accumulator blocks to allow for two-qubit logical

gates, where both qubits are teleported through the teleportation-based interconnect into either of the

accumulator stations.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-08 MOBK053-Metodi.cls October 30, 2006 19:25

ARCHITECTURAL ELEMENTS 79

Load
Qubits
into PE

Error
Correct
Qubits

Apply
Gate

Sequence

Error
Correct
Qubits

Store
Qubits

in Memory

FIGURE 8.4: The five stages for an instruction execution from the perspective of a processing element.

[23] and allows very fast and efficient error-correction routines. The T gate (see Equation

2.14), however, is usually more difficult to implement as shown in Section 5.3. It requires the

interaction of the logical qubit with a specially prepared encoded Aπ/8 ancilla (also in CC),

making the T gate essentially a two-qubit gate [125]. Many of the tiles in the processing region

must be used to prepare the Aπ/8 logical qubits used in the implementation of the T gate.

Thus, when a T gate is executed the logical qubit and a ready Aπ/8 qubit are teleported to two

accumulators in an empty PE.

From the perspective of each PE, an instruction is executed through five stages shown in

Fig. 8.4: (1) the logical qubits are loaded into an available PE; (2) the logical qubits are error

corrected; (3) the gate implementation sequence is applied on the logical qubits; (4) again error

correction is applied; and finally, (5) the logical qubits are sent to an available cache address.

8.2 QUANTUM MEMORY HIERARCHY
While classical memory hierarchies optimize for speed, given technologies of differing perfor-

mance and cost (for example SRAM and DRAM), a quantum memory hierarchy optimizes for

error-correction codes which can either facilitate computation or improve storage density. The

memory hierarchy in quantum architectures exists because of error correction, it exists to provide

the reliability necessary to fault-tolerantly encode and store quantum data for the duration of a

given application. The lowest level structures of the hierarchy are designed to meet the speed

and efficiency of the processing elements by accepting and storing encoded data residing in the

higher levels of the hierarchy.

While the Steane [[7, 1, 3]] and the Bacon–Shor [[9, 1, 3]] codes seem to be best suited for

computation, more efficient [[n, k, d]] block codes (where k > 1) form multiple logical qubits

together in a block of encoded physical qubits and can be used as a memory code (MC) for

higher density storage. While block codes are very expensive for computation, their relatively

large distance parameter d and compact n/k scale up with each level of encoding make them a

promising candidate for memory codes. The caveat is that using different CC and MC codes

calls for a considerably more complex transfer network when transporting a logical qubit resting

in memory to an accumulator in the processing region. The transfer process of a logical qubit to

a different location with a different encoding state code cannot be implemented only with the

straightforward repeater-based interconnect used within each architecture region. The transfer

network must provide for fast and efficient conversion between the CC and MC codes, as well

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-08 MOBK053-Metodi.cls October 30, 2006 19:25

80 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

Processing
Elements (CC) Cache (CC)

Main
Memory (MC)

Logical Qubit
Teleportation

Error Code
Teleportation

FIGURE 8.5: Memory hierarchy high-level concept. The concept is very similar to classical memory

hierarchies; however, the separation between cache and processing elements is not spatial, but rather

dependent of the encoding type. The error code employed by the cache is intended to match the speed

and efficiency of the compute code employed by the processing elements.

as exploit temporal and spatial locality to effectively cache data in the CC code. The concept

of the memory hierarchy is illustrated in Fig. 8.5.

When an instruction is ready for execution in an available PE, a check is made to deter-

mine if the logical qubits are in the cache. If so, the logical qubits are delivered to the processing

element through the teleportation interconnect provided they have been successfully error cor-

rected in the cache. If not, the logical qubit is transferred to the PE directly from the main

memory.

Translating between the MC and the CC codes can be problematic—decoding and re-

encoding leaves the data vulnerable and can produce correlated errors that our codes cannot

correct. Fortunately, we can teleport from one code to another by encoding one of our maximally

correlated pairs in one code and the second in the other [125]. The transfer region between

memory and cache is one of the most interesting components of the memory hierarchy. This

region transfers data encoded in code C1 to a second code C2 without the need to decode.

Fig. 8.6 illustrates this concept. The transfer network teleports the data in C1 to C2, where

C1 and C2 may be any two error-correcting codes. The code teleportation procedure works

much the same way as standard data teleportation that is used for communication. A correlated

ancillary pair is prepared first between C1 and C2 through the use of a multiqubit cat state

(i.e., (00...0 + 11...1)). The data qubit interacts with the equivalently encoded ancillary qubit

through a cnot gate, and the two are measured. Following the measurement the state of the

data is recreated at the C2 encoded ancillary qubit. This process is required every time we

transfer a qubit from memory to the cache or vice-versa. The most important property of the

transfer network is that C1 and C2 need not be two different codes such as a CC code and an

MC code, but can be the same code at different levels of encoding between compute regions

and memory regions.

Fig. 8.7 illustrates the steps taken when an operation needs to be applied to a number of

logical qubits. The classical controllers identify an available PE and look for the logical qubits

involved in the operation in the cache region, which stores logical qubits already converted to the

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-08 MOBK053-Metodi.cls October 30, 2006 19:25

ARCHITECTURAL ELEMENTS 81

Encode

Ancilla (+)

Data (C1)

Ancilla (C1)

Ancilla (C1)

Cat-State

W(ZC1) + W(ZC2) X X

(4CatQubits + 6) cycles

cat
prepare

Encode

Ancilla (+)

FIGURE 8.6: Code teleportation network from code C1 to code C2. C1 and C2 can even be the same

error-correcting code, but different levels of encoding. The solid triangles denote an error-correction

step. The cost of the “Cat-Prepare” gate in the bottom-most line is equal to the cost of preparing four cat

qubits + six additional cycles. We refer to a cat qubit as a collection of n qubits prepared in an n-qubit cat

state as described in Section 2.4. Note that this is the familiar teleportation network. The only difference

is the creation of the EPR pair. Because C1 and C2 are different codes, we cannot create an encoded

EPR pair by entangling them through a direct cnot gate as shown in Fig. 2.9, but must measure their

respective logical X operators and apply the corresponding gates (shown as the dashed X gate) for the

EPR creation.

Receive Logical
Qubit ID from

Classical Controller

Is Qubit in
Cache?

Find Qubit in
Main Memory

NO

Teleport Qubit
to an Available

Accumulator in PE

YES

Does “K” = 1
for MC

YES

NO

Prepare CC-MC
Cat-State

Teleport Qubit to
Cat-State Region and

Entangle

Teleport Qubit to
Code Transfer

Region

DONE
Execute Operation

START

FIGURE 8.7: Cache read operation.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-08 MOBK053-Metodi.cls October 30, 2006 19:25

82 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

CC. If the qubits are there, they are teleported to the PE and the sequence shown in

Fig. 8.4 is applied. If the qubits are not found in the cache region, they must be transferred

from the main memory, where they are encoded with the memory code (MC) through the code

teleportation procedure outlined in the steps of Fig. 8.7. In the architecture organization of

Fig. 8.2 every region (the processing elements, the cache, the main memory, and the transfer

region) is composed of logical qubit tiles interconnected by the programmable teleportation-

based bus lines. When a cache hit occurs the classical control resources are focused on the

teleportation channels that connect the cache and the PE, where second priority is given to

transferring additional qubits to the cache. This, however, is a scheduling decision and currently

no true schedulers exist for large-scale quantum computation.

The next stage of the architecture description is to implement efficient simulators that

will allow us to fully exploit and parameterize the architectural design. Parameterizations of

the cache read time, memory access time, operations times, and qubit failure rates are not only

functions of our error-correction choices, but also functions of interconnect design and the

structure of the architectural elements. Some important questions we need to answer involve

the error-correction choices, cache replacement rules, and the availability of classical resources.

Error-Correction Choice: A key decision is to determine the error-correction codes for the main

memory (MC) and the computation (CC). Much depends on the parameters and the properties

of an error-correcting code: the time of execution for logical operations, the size of each tile, the

time of failure of the application, and most importantly the coupling between communication

and computation at the high level. In addition, at the physical level, the data communication

patterns of different error-correcting codes differ wildly and may affect the efficiency of the

code itself. For example, the Bacon–Shor [[9, 1, 3]] code is a recently optimized version of

the [[9, 1, 3]] code described in Section 5.2 that allows almost no physical qubit movement

between the two-qubit physical gates during encoded state preparation and error-correction

procedure at the first level of encoding. Perhaps, the Bacon–Shor [[9, 1, 3]] code coupled with a

different smaller code at the next level of encoding may offer a much more efficient and reliable

computational tile than using the same CC code from one level of encoding to the next.

Cache Replacement Rules: It is important to understand clearly the replacement rules when the

cache is full. The application being executed is known in advance, so our compiler will be able

to schedule the operations and the cache usage statically at compile time; however, preparation

of the interconnect channels on demand and time to error correct can only be predicted with a

limited accuracy. There is always a certain probability of failure which leads to stalling.

Code Conversion Choices: When is the best time to convert from CC to MC? We assume that

qubits will not be sent back to the cache after usage, unless they are needed within the time of

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-08 MOBK053-Metodi.cls October 30, 2006 19:25

ARCHITECTURAL ELEMENTS 83

failure for a qubit resting in the cache. They will be teleported directly to the main memory in

reverse of the operations outlined in Fig. 8.7. The cache can perform memory correction but

with limited classical resources; thus qubits should not stay there for long.

Classical Resource Availability: What are the available classical resources? In our previous work

[27] we have assumed unlimited classical control signals, which take the form of lasers for ion

traps. If we have a very small number of lasers available, however, the replacement rules in the

cache and the PE units will become extremely important. Currently the replacement rule is

to send a qubit directly to memory when the computation is finished and only send it to the

cache if it is needed before the cache storage failure rates. Sending it to memory may prove

advantageous because it is designed to store qubits for long periods of time with very small

number of laser resources. A careful balance must be reached, however, between the cost of

code transfer from memory and memory storage.

8.3 QUANTUM SEARCH: QUANTUM ADDRESSING SCHEME
FOR CLASSICAL MEMORY

The separation between memory and compute regions discussed so far is a system-level sepa-

ration that provides a computer architect with various knobs to turn when optimizing a specific

quantum application. A different and interesting separation between memory and computation

is offered by the implementation of the quantum search algorithm known as Grover’s algorithm

for searching an unsorted database of N entries [10]. While classically the search would take

O(N) operations, quantum mechanically the cost is O(
√

N). A naive classical architecture for

searching a database is to store all data entries into a long-term memory unit and perform a max-

imum of N load operations from the memory to the processor for each entry in the database.

The freshly loaded entry string is then compared to a solution string stored in the processor.

The main engine for the quantum searching algorithm is the oracle operator O whose

action can be written as

|x〉 → (−1) f (x)|x〉, (8.1)

where x is the index register which points to the data entry in the database. The input x into the

search function f returns 1 if x is a solution to the search problem and 0 otherwise. The index

register |x〉 is composed of log N qubits, where each bitstring state |xi〉 in the superposition

indexes a data entry. Thus, the function of the oracle is to flip the sign of the index register if a

solution is found. Along with the n-qubit index register (where n = log N), the processing unit

of the search algorithm involves an l-qubit register to hold an l-bit data entry initialized to |0〉
and an l-qubit register that stores the solution string.

What makes the architecture of the quantum search implementation interesting is that

data can be stored classically, and thus reliable storage of the database is not a concern. For the

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-08 MOBK053-Metodi.cls October 30, 2006 19:25

84 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

1
2
3
4
5
6
7
8

FIGURE 8.8: Schematic for classical memory that is addressed with qubits. The figure illustrates the

concept with a three-qubit address memory of eight data entries. Each circle represents an ancillary qubit

used as a switch to route the input index register to the correct data entry.

polynomial speedup to be achieved, an N-entry memory must be addressed quantum mechan-

ically by log N qubits [38]. Fig. 8.8 illustrates the concept with a three-qubit address memory

of eight data entries. Each circle represents an ancillary qubit used as a switch to route the input

index register to the correct data entry. Each of the data register qubits is routed to the corre-

sponding entries in the memory based on the state of each qubit switch, which is determined

by the index register in the processor. The data register qubits enter at the left and exit at the

right of Fig. 8.8. If a particular switch is in the superposition state 1√
2
(|0〉 + |1〉), then the data

qubit is routed in both directions. In this manner the load operation returns a superposition

of data entries that can be compared with the l-qubit register that stores the solution string.

To match one of the data strings from memory with the solution string stored by the l-qubit

solution requires O(
√

N) load operations.

In reality, the searching of an unsorted database quantum mechanically is not more

efficient than storing and searching the database classically. The quantum addressed classical

memory requires O(N log N) ancillary qubit switches, in addition to the operations overhead

once the data is loaded into memory. Should error correction be needed for storing and searching

through large databases, the modestly polynomial improvement over classical searching will be

overwhelmed by the exponential slowdown due to error correction. For technology parameters,

for example, that are three orders of magnitude below the accuracy threshold value of the

[[7, 1, 3]] code, we would need to insert error correction for any database greater than half a

million entries. The database size allowed before error correction is needed to be dropped to

less than ten thousand if the technology parameters are at the threshold value.

Should qubits become, as easily and cheaply implementable as classical logic transistors

are, then it may become interesting to implement quantum addressable memories. One use of a

quantum addressing scheme is prefetching classical registers in the classical memory hierarchy.

In a single clockstep the quantum address will be able to fetch an entire superposition of classical

registers at any location of the memory.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

85

C H A P T E R 9

Case Study: The Quantum Logic

Array Architecture

The authors of reference [27] describe a homogeneous, tile-based quantum architecture based on

the ion-trap technology, that overcomes primary challenges of reliability, scalability and efficient

quantum resource distribution. The quantum logic array (QLA) model integrates concepts for

a large-scale quantum architecture design to enable substantial performance improvements

critical to supporting full-scale applications such as Shor’s factorization algorithm.

In this section we describe the QLA architecture as a case study for a large-scale quantum

architecture design and extend the example further to include system parameters when the effects

of specialization are introduced in the architecture design. The QLA quantum computing

system, as shown in Fig. 9.1, is a homogeneous array of logical qubits implemented as self-

contained computational tiles, and connected through the teleportation-based communication

channels that utilize the concept of quantum repeaters as discussed in Chapter 6.

At the lowest level, the QLA is based on trapped-ion technology. Fig. 9.2 demonstrates

the abstraction of the physical ion-trap layout in studying the QLA scheme. The layout can

be represented as a collection of trapping regions connected together through shared junctions.

A fundamental time step, or a clock cycle, in an ion-trap computer can be defined as any

physical, operation (one-bit or two-bit) on a single ion-qubit, a basic move operation from

one trapping region to another, and measurement. Table 9.1 summarizes current experimental

parameters and corresponding optimistic parameters for ion traps. In our subsequent analysis

we will assume that each clock cycle for a fundamental time step has a duration of 10 μs, failure

rates are 10−8 for single-qubit operations and measurement, 10−7 for cnot gates [104], and

10−6 per fundamental move operation. The movement failure rate is expected to improve from

what it is now as trap sizes shrink and electrode surface integrity continues to improve. We

assume trap sizes of 5 μm each [148], and on the order of 10 electrodes per trapping region

[108], which gives us a trapping region dimension (including the junction) of 50 μm. The

parameters chosen for the example are optimistic compared to [141] and [79]. Both of those

papers assume more pessimistic near term parameters which are useful for building a 100-bit

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

86 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

Channel

C
h

a
n

n
elSea of

Qubits

Lower
Level

R
Q

Q

Q Q

R R

R

QQ
R

R

QQQQ

Q

Q

R

RRR

C
la

ss
ic

a
l

C
on

tr
ol

Classical Control

R

R

R

FIGURE 9.1: High-level view of the QLA architecture.

prototype, but probably not a scalable quantum computer that can factor 1024-bit numbers using

Shor’s algorithm. Based on the quantum computing ARDA roadmap [52], we feel justified in

using aggressive parameters when looking 10–15 years into the future.

9.1 THE LOGICAL QUBIT DESIGN
The structure of the logical qubit in the QLA is driven by the ion-trap characteristics shown

in Table 9.1, which place us significantly below the accuracy threshold value required by the

threshold theorem. These parameters are optimistic, but not fundamentally impossible. Partic-

ularly important is the fact that the lifetime of an ion (measured in seconds and even minutes)

is much larger than quantum operations which are on the order of tens of microseconds. These

FIGURE 9.2: Our abstraction of the ion-trap layout. Each trapping region can hold up to two ions for

two-qubit gates. The trapping regions are interconnected with the crossing junctions which are treated

as a shared resource.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

CASE STUDY: THE QUANTUM LOGIC ARRAY ARCHITECTURE 87

TABLE 9.1: Column 1 Gives Estimates for Execution Times for Basic Physical Operations

Used in the QLA Model. Currently Achieved Component Failure Rates are Based on Ex-

perimental Measurements at NIST with 9Be+ Ions, and Using 24Mg+ Ions for Sympathetic

Cooling [60, 100]. All Parameters are Followed by Their Projected Parameters in Parenthe-

sis, Extrapolated Following Recent Literature [52, 105, 104], and Discussions with the NIST

Researchers; These Estimates are Used in Modeling the Performance of Our Architecture.

TIME μs FAILURE RATE

OPERATION NOW (FUTURE) NOW (FUTURE)

Single gate 1 (1) 10−4 (10−8)

Double gate 10 (10) 0.03 (10−7)

Measure 200 (10) 0.01 (10−8)

Movement 20 (10) 0.005 (5 × 10−8)/μm

Split 200 (0.1)

Cooling 200 (0.1)

Memory time 10 to 100 s

Trap size ∼ 200 (1–5) μm

relatively low memory error rates allow us to significantly reduce the area of a logical qubit by

reducing the parallelism within a single error correction cycle, and the ancillary qubits required

by the error-correction algorithm.

Fig. 9.3 shows the full implementation of a level 2 qubit tile. To reduce communication

and complexity, we chose to model each logical qubit as a self-contained hardware structure

that requires no external quantum resources to perform logical gates and state stabilization (i.e.

error correction). This will allow an application level compiler to divide the quantum program

into distinct data independent threads that are executed on separate computational units, which

are simply the logical qubits in a homogeneous architecture such as the QLA. There are two

high-level ancilla blocks in a level 2 qubit, which allows the error correction of two level 2 qubits

when a two-qubit gate is executed inside a single-qubit tile. The two sets of high-level ancilla

are necessary in computational tiles to ensure that both logical data qubits are error corrected

immediately after the execution of a two-qubit gate without stalling the application execution.

A single data logical qubit at level 2 is built by encoding 7 level 1 qubit blocks with the

Steane [[7, 1, 3]] code. A level 1 qubit block is shown at the top of Fig. 9.3. We choose the

[[7, 1, 3]] code because it allows the implementation of a large set of logical gates transversally,

with the exception of the T gate (see Section 5.3). This means that a logical quantum bit-flip

gate on our qubit can be implemented by applying 49 physical bit-flip gates on the ions, in

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

88 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

A1 A3 A4 A5 A6 A7

D2 D3 D4 D5 D6 D7D1

A2 A3 A4 A5 A6 A7A1

700 µm

200
µm

FIGURE 9.3: The logical qubit: seven groups of three level 1 blocks make a single level 2 logical qubit

(middle). The two identical conglomerations on the sides are ancillary blocks used for error correction.

The shaded boxes of the level 2 qubit are the encoded data level 1 blocks, which are supported by their

respective level 1 ancilla blocks.

parallel. A logical cnot gate is implemented by bringing 49 ions from some qubit tile A in the

same trap as the 49 ions in qubit tile B. After 49 cnot gates on the joined ions, the two sets

are error corrected by the ancilla on both sides of the data region in a level 2 tile. The ancilla

preparation network at level 2 does not require specially designated verification blocks, as the

errors are detected during lower level syndrome extractions [128].

Considering communication, the level 1 error correction circuit shown in Fig. 2.17 will

take 154 cycles, where each cycle is in the order of 10 μs, and can be as large as 0.003 s per

error correction procedure at level 1. In our time estimates we choose to provide a single laser

per level 1 block. The latency introduced by serializing the level 1 circuit is not significant

since a maximally parallelized circuit would take approximately 127 cycles per error correction

procedure. A fully serialized error correction at level 2 will last approximately 0.3 s, which is

two orders of magnitude more than the time to error correct at level 1.

We have made the following assumptions when extracting the error syndromes for both

level 1 and level 2 qubit blocks: (1) two syndromes are extracted in serial for both X and Z errors;

and (2) we assume that in the case of a nontrivial syndrome the next extracted syndrome will

match it, thus we can proceed with the error correction step. Since our logical qubit at level 2 is

equipped with parallel syndrome extraction, assumption (a) makes Eq. 9.1 an overestimate of

the final latency:

TL,ecc =
⎧⎨
⎩

2 × T
L,synd, trivial syndrome

2(2T
L,synd + T1 + TL−1,ecc), nontrivial

(9.1)

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

CASE STUDY: THE QUANTUM LOGIC ARRAY ARCHITECTURE 89

where TL,synd is the time to extract a syndrome at level L, which is a function of the time to

prepare the logical ancilla block. T1 denotes the time of a logical one-qubit gate, and TL−1,ecc is

the time for a lower level error-correction step that follows each level L logical gate. A syndrome

is considered *trivial* if no errors are detected on the data, in which case no error correction

is necessary and the syndrome is not repeated to reconfirm the location of any found error. In

contrast a syndrome is considered *nontrivial* when one or more errors are detected in the data

block.

Numerical simulations of a level 2 qubit showed that a nontrivial syndrome was measured

for level one with a rate of 3.35 × 10−4 ± 0.41 × 10−4, and for level two at a rate of 7.92 ×
10−4 ± 0.81 × 10−4. Our simulations did not yield a syndrome repetition of more than two

times before the error correction step at the optimistic error rates for ion traps. Thus, it is a

reasonable assumption that in the case of a nontrivial syndrome we require at most one more

syndrome extraction before we are ready to apply the correcting gate. Taking a weighted average

of the two cases in Eq. 9.1 we determine a level 2 error correction time of approximately 0.3 s.

As shown in Fig. 5.9, using level 2 recursion with this qubit tile design is sufficient for factoring

numbers as large as 2048-bit modulus.

We used QASM-TOOLS, formerly known as ARQ, to empirically compute pth at level 2

for the QLA logical qubit. Our results, displayed in Fig. 9.4, show that the failure probability

of a single one-qubit logical gate rapidly drops to zero at component failure rates lower than

1 1.5 2 2.5

x 10
−3

1

2

3

4

5

x 10
 3

Physical Component Failure Rate

G
at

e
F

ai
lu

re
 R

at
e

Level 2

Level 1

FIGURE 9.4: Estimate of the failure probability (ŷ axis) of a single logical one-qubit gate followed by

recursive error correction procedure at levels 1 and 2. The x̂ axis denotes individual physical component

failure rates.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

90 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

pth = (2.1 ± 1.8) × 10−3. Above this value the rapid decrease in the reliability of our system as

recursion increases can be attributed to the additional resource overhead of recursion.

The estimated threshold failure probability is much higher than the theoretical estimate of

7.5 × 10−5 computed in [149] for several reasons: (1) the structure of the qubit is optimized for

the error correction circuit and may vary for different codes; (2) the high reliability of ion-trap

memory has allowed us to significantly reduce the overall area and ancillary resources required;

(3) the fixed, low movement error probability, and the fact that we made the design decision to

never physically move the data, pushed our qubit’s threshold closer to the 9 × 10−3 threshold

value estimated by Reichardt [128]. We observed no failure at level 2 recursion as the physical

component errors approached the expected ion-trap parameters from Table 9.1, which was

expected. Reevaluating Eq. (5.13) with the empirical value for pth we get an estimated level 2

reliability approaching the remarkably low value of 10−21.

9.2 LOGICAL QUBIT INTERCONNECT
A logical two-qubit gate between level 2 qubits Q1 and Q2 is executed by moving all 49

physical ion qubits that encode qubit Q1 to the computational tile where qubit Q2 resides.

If the application being executed is the factoring of a 1024-bit number using Shor’s factoring

algorithm, Q1 could be moving as far as 0.5 m (or 256 logical qubits) across the ion-trap chip.

The long-distance communication channel employed by the QLA architecture is the repeater-

based teleportation protocol described in Chapter 6, where a repeater station is placed between

every logical qubit tile. The ultimate purpose of the repeater-based channel is to create a single

EPR pair (i.e., two ions in the maximally entangled state (|00〉 + |11〉)/√2) such that one of two

qubits is at the location of qubit Q1 and the other one at the location of qubit Q2. An EPR pair

distributed in such a way is required for each of the 49 ion qubits of qubit Q1 (not necessarily

created in parallel) such that each of the 49 qubits can be teleported to the computational tile

of qubit Q2.

Each EPR pair that connects to adjacent repeater stations is created in the middle where

two ion qubits are entangled and separated to the two opposing ends. There are many ways

to achieve entanglement between two ion qubits. In one scalable entanglement technique for

ion traps [150], the ion qubits are initialized to the ground state |00〉 and placed in the same

trap. An entangling controlled-phase gate adapted for coupling two ions together is used to

implement a cnot gate (also known as the Mollmer–Sorrensen entangling gate) placing the ions

in the intermediate maximally entangled state (|01〉 + |10〉)/√2 [99], which can be followed by

single-qubit rotations to place the two-ion-qubit state in the desired EPR state. An alternative

proposal [151] combines the features of optical lattices and ion traps, where individual ions

are entangled through a common interaction with a pulsed, high-strength optical lattice. The

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

CASE STUDY: THE QUANTUM LOGIC ARRAY ARCHITECTURE 91

EPR
CreatePURIFY PURIFY

Initialize Initialize

Ions

EPRIsland Island

FIGURE 9.5: Detail of a channel between two repeater stations. The channel is a two-way ballistic

transport region, where the EPR pairs are created in the middle and distributed in a pipeline fashion to

the two Island/Reapeater stations.

benefits of this proposal are that the two ions do not need to be physically together for the

entanglement operation; however, using this proposal would drastically change the underlying

physical microarchitecture we have described so far. The Molmer–Sorrensen entangling gate

has been used recently in two simultaneous, independent experiments that demonstrate the

experimental realization of quantum teleportation using trapped ions [78, 77]. To model EPR

creation we assume that two ions are brought together and the actual EPR generation routine

is a resource that can be abstracted as a single box (as shown in Fig. 9.6) whose implementation

can be modeled as the familiar entangling circuit shown in Fig. 2.9 from Section 2.4.

To optimize space and performance, we can model the channels between each island as

a two-way ballistic transport region as shown in Fig. 9.5, which also illustrates the pipeline

purification protocol employed by the QLA architecture for purifying a single EPR pair. The

basic idea of purification [134] is to use several copies of lower fidelity EPR pairs to distill a

single high fidelity EPR state that can be used for teleportation. Generally, it is not possible to

create a perfect EPR state with unit fidelity mostly because of the usage of noisy gates in the

process of creation and the transmission of the two qubits through the noisy physical channel

between each repeater station.

If the initial preparation fidelity is high enough, by applying successive purification steps

an EPR pair can be purified to an arbitrarily high fidelity. The pipeline purification sequence

works by designating one EPR pair as the data pair which is continually purified in round-

robin pipeline fashion by the additional ancillary EPR pairs. We assume to have enough ion

resources in the pipeline to handle the maximum number of required purification steps without

having to wait for the creation of new EPR pairs before each successive purification step.

The original purification protocol was formulated by Bennett [134] where the efficiency of

0 0 1 1+

2

0

0

H0

0

EPR

FIGURE 9.6: EPR generation can be abstracted as a box or modeled using a Hadamard gate followed

by a cnot gate between two qubits.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

92 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

0

0

0

0

0

0

0

0

EPR

EPR

EPR

EPR

H

H

0

0

0

0
EPR

0

0

EPR

detect X errors detect Z errors

EPR
H

H

(a) (b)

FIGURE 9.7: (a) The data EPR pair (top) is created in parallel with an additional ancillary EPR pair

used to detect bit-flip errors first. Phase-flip errors are detected with a third EPR pair or the previous

ancillary pair reinitialized. (b) Four EPR pairs are created, two of which are used to check the other two

for bit-flip errors. This is followed by the detection of phase-flip errors on the two EPR pairs remaining.

purification depends highly on reliability of the physical gates that make up the protocol (namely

Hadamard and cnot gates) and the inital fidelity of the EPR pair [135]. We use the recursive

fidelity equations in [135] (where the first detailed analysis of quantum repeaters is performed)

to study the implementation employed by our architecture for purification protocols whose

efficiency depends as much on the gate reliability as it does on the type of errors that occurs and

how the errors accumulate in the EPR states before and during purification. This allows us to

distill higher fidelity EPR pairs with fewer purification steps. The purification circuit is shown

in Fig. 9.7 where there are two possible network choices. Using the first network in Fig. 9.7(a)

and limiting purification to be only between two adjacent islands we determine sufficient island

distribution to be one island at every logical level 2 qubit.

After its creation, or even during the purification procedure the data EPR pair accumulates

bit-flip of phase-flip errors that can place it in any of the four possible states known as the four

Bell states {|�+〉, |�−〉, |�+〉, |�−〉} [152]:

|�+〉 = 1√
2

(|00〉 + |11〉) →no errors

|�−〉 = 1√
2

(|00〉 − |11〉) → Z error on q1 or q2

(9.2)

|�+〉 = 1√
2

(|01〉 + |10〉) → X error on q 1 or q2

|�−〉 = 1√
2

(|01〉 − |10〉) → both X and Z errors.

The purification circuit shown in Fig. 9.7(a) uses one ancillary EPR pair to check the state

|�+〉 = (|00〉 + |11〉)/√2 first for bitflip errors and then uses another ancillary EPR pair to

check the state for phase-flip (i.e., sign) errors. After interaction with the data EPR pair through

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

CASE STUDY: THE QUANTUM LOGIC ARRAY ARCHITECTURE 93

the cnot gates the two ancillary qubits are measured where odd parity for either X or Z error

checks will indicate that there is an error in the data EPR pair. In the case of an error, the data

EPR qubits are recycled in the pipeline and the next ancillary EPR pair resumes the function

of the data, which is then purified. Each successful purification step increases the likelihood

that the data EPR pair is free of errors, thus it increases its fidelity. The principle is the same as

throwing a weighted coin with unknown weight for obtaining either heads or tails. Each time

the coin lands heads given that it has landed heads the previous throw, the probability that the

coin is weighted toward heads increases.

An alternate purification procedure is shown in Fig. 9.7(b), where four EPR pairs are

prepared in parallel at the beginning. The data EPR pair is at the top and it is checked in

parallel with an additional EPR pair for X errors. If both pass, the data EPR is checked for

Z errors. Although we have not studied this protocol, it may have the potential to offer better

purification efficiency by ensuring that the ancillary EPR pair used in the Z error detection is

checked against X errors. The interaction between the two EPR states when checking Z errors

will cause an X error in the ancilla to propagate to the data through the cnot gates, which would

remain undetected when the teleportation procedure is executed. The implementation of the

network in Fig. 9.7(b) would require different EPR generation and island structure where each

island would need to hold more than one data EPR pair at each node. In reality, any of the four

Bell states can be used for teleportation, thus the purification efficiency can be further improved

if we allow X or Z errors to remain and use the subsequent purification steps to ensure that

indeed the X and Z errors detected in the previous step are present. In such cases we know which

of four Bell states our EPR qubit is in, and modify the teleportation protocol accordingly, where

the modification consists of different interpretations of the 2-bit bitstring that signifies how to

apply the correcting X and Z gates on qubit q3 in Fig. 2.8 at the end of the teleportation protocol.

Suppose we define the scope of an EPR pair as the distance between each of the two EPR

qubits as a function of the number of teleportation islands (i.e, repeater stations) between them.

If the entire channel between logical qubits Q1 and Q2 is divided by K repeater stations, the

ultimate goal is to create a number of single EPR pairs with a scope of K islands that connect

the two logical qubits. EPR pairs that connect two adjacent repeater stations have a scope of

zero.

The first tradeoff arises as the number of ion-qubit resources required to distill a single high

fidelity EPR pair at any scope (note: we assume the network construction shown in Fig. 9.7(a)).

Clearly, the minimum resources required are four ion qubits, two for the data EPR pair and

two for the ancillary pair used for purification. The ancillary pair is continuously reprepared

for each purification step. Alternately, the maximum number of resources used can be reached

by creating all EPR pairs required for j purification steps which would require η(2 × 3) j ion

qubits, where η is some constant that takes into account the possibility of failure at some stage

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

94 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

A B

A B

EPR

FIGURE 9.8: Minimum and maximum number of resources needed to purify a single EPR pair.

in the purification. The number of ion qubits needed is bounded by

4 ≤ resources ≤ η(2 × 3) j . (9.3)

Both concepts are shown in Fig. 9.8, where the protocol that uses the minimum resources is

shown on the left-hand side. Ion qubits A and B are continuously reprepared and interacted

with the data EPR pair at each step of purification. In the scheme on the right-hand side, a

two-step purification tree is shown, where 18 ion qubits are prepared into three groups of 3 EPR

pairs used for the first purification step. After the first step, three purified EPR pairs are left

and used to further distill a single EPR pair. While the first protocol uses far less resources, the

final fidelity of the data EPR pair is severely limited by the fact that the ancillary EPR pair is

continuously reprepared retains the same level of noise throughout the purification process. In

the second protocol, on the other hand, the data and ancillary EPR pairs are equally purified

at each step, and a much higher fidelity is achieved for the final EPR pair. This, however,

is at the expense of high ion-qubit resources, and a complex microarchitecture that supports

movement of all EPR pairs at each purification step. The pipeline approach we use as shown in

Fig. 9.5 allows sequential purification without memory cycle delay between each purification

step. By avoiding recursive purification and pipelining the ancillary EPR qubits, the QLA is

able to utilize a significantly reduced bandwidth requirement for each distillation of EPR pairs

between two adjacent repeater stations.

A second important trade-off arises when deciding the scope at which EPR pairs are

purified. There are three possible ways to connect a source and a destination separated by K

repeater islands, such that the final teleportation step of the data qubit between the source and

the destination is teleported with the desired threshold fidelity required for error correction:

1. A purely linear approach, which distills high-fidelity EPR pairs only between adjacent

islands to some fidelity F that will allow O(log K) teleportation hops (see Fig. 6.2) to

be performed such that final fidelity of the data teleported is within the threshold value.

The total time to achieve a given relatively large distance varies as the separation between

repeater islands is changed. As the separation decreases, purification will be followed

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

CASE STUDY: THE QUANTUM LOGIC ARRAY ARCHITECTURE 95

destinationsource

3 4 5 6 821 7

FIGURE 9.9: Nested purification protocol as described in [135]. We have three nesting levels, where

the source and the destination are separated by eight repeater islands. At the most bottom level EPR

pairs are created to connect three islands and are used to purify each other. The purified EPR pairs are

further connected at the second level, to span the entire communication channel. EPR pairs at a given

nesting level are constantly recreated to purify an EPR pair at the corresponding level.

by a greater number of teleportation hops between the source and the destination, thus

more purification is needed to achieve a higher EPR starting fidelity. Alternately, as the

separation increases, there are less teleportation hops, but the data and ancillary EPR

pairs travel longer in the pipeline, thus more purification is needed to reduce the fidelity.

It is an interesting tradeoff for a system designer to explore, and offers an opportunity

to design a reconfigurable dynamic interconnect.

2. A nested, semilinear approach, which distills EPR pairs at different nesting levels with

an increasing scope per level. This method was analysed in detail in [135]. At the lowest

nesting level EPR pairs are created with a scope of m junctions, which are used to purify

an EPR pair with the same scope at the second nesting level. The freshly purified scope

m EPR pairs are connected to create an EPR pair with scope km for some other constant

k, which are then used to distill a single EPR pair of scope km at the third nesting level.

This process is repeated until we have a single EPR pair connecting the source and the

destination as shown in Fig. 9.9.

3. Finally, we can create EPR pairs directly between the source and the destination without

purifying at any intermediate scope. The purification is performed for an EPR pair that

spans the source and the destination until a desired fidelity is reached.

The QLA architecture utilizes Approach 1, where we find that at the optimistic tech-

nology parameters for ion traps, the distances required for communication when factoring a

2048-bit number are attainable without the need to purify EPR pairs with scope higher than

zero. Although Aproaches 2 and 3 offer much longer final distance, the pipelined linear approach

offers a comparatively smaller bandwidth by providing only a single pipeline based channel from

the source to the destination. In addition, the structure of the repeater islands is very simple

when EPR pairs do not need to be purified at scopes higher than zero—all data EPR pairs are

fixed in space until the entire purification procedure ends and the teleportation is complete.

Approach 3 was studied in detail in a recent paper from Berkeley [153], where the creation of

hundreds of EPR pairs is required between the source and the destination to purify EPR pairs

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

96 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

that span the source and the destination. The authors achive a design that provides a potentially,

very large communication distance, by utilizing the tree purification structure.

The latency cost of communication between logical qubits is critical for the success of the

entire architecture during the execution of an application. We have made a design decision that

ballistic transport must be used for moving ions within a logical qubit, and teleportation will be

preferred when moving across larger distances in order to keep the failure rate due to movement

below the threshold amount. Since EPR pairs are required for teleportation, we can reduce

communication costs to a minimum if we have the required number of EPR pairs available at

a logical qubit at the same time that it is ready to move. Fortunately, this is possible because

of the high cost of error correcting the logical qubits. We can create, purify and transport the

required EPR pairs to their respective qubits while they are undergoing error correction. But

can this be done at a large scale?

To answer this question, we can use a tool to schedule the movement of EPR pairs in QLA

[27]. One channel is assigned to carry the created EPR pairs to their destinations and another

channel to return the used EPR pairs. Within each channel, the EPR pairs are pipelined. We

define the bandwidth of QLA’s communication channels as the number of physical channels in

each direction—the channel shown in Fig. 9.5 has a bandwidth of 2. The goal of the scheduler

is to find paths between logical qubits to transport all the required EPR pairs within the time

it takes to perform a level 2 error correction.

The scheduler is heuristic, greedy scheduler that works by grabbing all available bandwidth

whenever it can. However, if this means that the scheduler cannot find the necessary paths,

it will back off and retry with a different set of start and end points. A simple approach to

doing a two-qubit gate between logical qubits A and B would be as follows: teleport A to B’s

physical location, perform the gate and teleport it back. An optimization that the scheduler

incorporates is that it only moves logical qubit A back if necessary. As a result, the logical qubits

drift from one location to another. This adds a level of complexity to the scheduler, but at the

same time reduces the amount of movement that the qubits are subjected to. With all of the

above considerations in the scheduler, we found that given two channels in each direction (i.e., a

single-pipeline structure), we could schedule communication such that it always overlapped with

error correction of the logical qubits. The end result is reliable movement over arbitrarily large

distances with minimal overhead. Table 9.2 summarizes the performance of the homogeneous

QLA architecture when executing Shor’s quantum factoring algorithm.

9.3 SPECIALIZED QLA ARCHITECTURE: CQLA
In the QLA computation can occur at any logical qubit tile, where each logical gate is followed

by an error-correction procedure. To preserve homogeneity and maximum flexibility for large-

scale applications each logical qubit is accompanied by the necessary error-correction auxiliary

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

CASE STUDY: THE QUANTUM LOGIC ARRAY ARCHITECTURE 97

TABLE 9.2: System Numbers for Shor’s Algorithm for Factoring an N-bit Number

Using the Circuit Descriptions of [154, 155] and the QLA Microarchitecture Model.

The QLA Chip Area is Determined by the Number of Logical Qubits and Channels.

N = 128 N = 512 N = 1024 N = 2048

Logical qubits 37,971 150,771 301,251 602,259

Toffoli gates 63,729 397,910 964,919 2,301,767

Total gates 115,033 1,016,295 3,270,582 11,148,214

Area (m2) 0.11 0.45 0.90 1.80

Time (days) 0.9 5.5 13.4 32.1

qubit resources such that both accumulators in each tile can be error corrected in parallel. In this

manner, each logical qubit tile has a ratio of (1 : 2) between the number of physical ions used

to store encoded logical data and the number of physical ions used to store encoded high-level

ancilla for error correction.

In Chapter 8, we discussed the possibility of specialized regions in the architecture to

perform computation and storage in separately constructed logical qubit tiles. We even spec-

ulated that it may be beneficial to encode data differently between compute tiles and memory

tiles, a design choice which may help us reduce the area introduced by the homogeneous ar-

chitecture, and hopefully improve the time performance of the computer. Perhaps, the simplest

way to reduce the area requirement is leaving the level of recursion and the chosen error-

correcting code unchanged, but designate some qubit tiles for computation and some for data

storage.

Such a separation between memory and computation introduces a very important concept

which is counterintuitive to the classical architecture specialization model: the computational

tiles that allow encoded gates to be applied on the data contain a greater amount of error

correcting resources in order to allow faster error correction after each logical gate. Higher

physical ion density in terms of number of ions that store data per unit area, can be achieved

in the memory region by increasing the ratio between physical ions that store data and physical

ions used to correct the encoded data as shown in Fig. 8.2. By surrounding a single logical ancilla

block by eight logical data blocks to form one memory tile, we greatly reduce the turn-around

efficiency of error correction per logical data, but we increase the ratio of data per ancilla from

(1 : 2) to (8 : 1) [28].

The underlying assumption is that memory errors are a second-order event and the

probability that an ion qubit will fail while waiting for the next error-correction cycle is within

the accuracy threshold value of the [[7, 1, 3]] code. Additionally, when a logical data residing in

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

98 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

a memory tile is needed for gate execution while waiting for the next error-correction procedure,

the teleportation of the logical qubit combined with the error the data has accumulated while

waiting may introduce too many physical errors for the computing tile to recover the logical

qubit once the data is teleported there. A system scheduler must issue a “stall” for the operation

and wait for the logical data to complete an error-correction cycle in memory before it can be

teleported to the compute region, where it must be immediately error corrected upon arrival.

To test the specialization model as compared to the homogeneous QLA architecture, we

scheduled the quantum modular exponentiation component of Shor’s factoring algorithm for

several problem sizes. Quantum modular exponentiation is the most time consuming part of

Shor’s algorithm, and the Draper carry-lookahead adder is its most efficient implementation

[154, 155]. This adder comprises single-qubit gates, two-qubit cnot gates and three-qubit

Toffoli gates and is heavily dominated by Toffoli gates. The time to perform a single fault-

tolerant Toffoli is equal to the time for fifteen two-qubit gates, each of which is followed by

an error-correction step. Table 9.3 shows the area savings that can be achieved when using

TABLE 9.3: For Various Size Inputs, This Table Shows How the QLA Performs for Modular

Exponentiation. The Space Saved Due to Compressing The Memory Blocks and Separating

Memory and Compute Regions is Shown as Compared to Prior Work [27]. The Gain Product

is Compared With the Homogenous Architecture, the QLA, Which has a Gain Product of 1.0

and a SpeedUp of 1.0. A SpeedUp of 0.54 is Actually a Loss in Performance, Since the Original

Performance is Multiplied by the SpeedUp Number.

INPUT COMPUTE AREA REDUCED GAIN

SIZE BLOCKS (FACTOR OF) SPEEDUP PRODUCT

32-bit 4 6.69 0.54 3.61

9 3.22 0.97 3.14

64-bit 9 6.36 0.70 4.45

16 3.79 0.98 3.71

128-bit 16 7.24 0.72 5.24

25 4.90 0.96 4.70

256-bit 36 6.65 0.92 6.12

49 5.07 0.98 4.96

512-bit 64 7.42 0.92 6.80

81 6.06 0.98 5.94

1024-bit 100 9.14 0.80 2.19

121 7.81 0.97 2.65

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

CASE STUDY: THE QUANTUM LOGIC ARRAY ARCHITECTURE 99

denser memory for various adder sizes. Note that performance is, as expected impacted for the

[[7, 1, 3]] error-correcting code as we exploit the limited parallelism in the negatively. To limit

the performance degradation we have addressed the parallelism available within the application

itself and determined the number of compute blocks to maximally exploit this parallelism with

changes in the problem size N (i.e., factoring an N-bit number). For a fixed problem size,

utilization of each compute block decreases with an increase in the number of compute blocks

as shown in Fig. 5.9(b). Clearly, the decrease in utilization is offset by the increase in overall

performance. Thus the challenge in this case is to find the balance between utilization and

performance.

9.3.1 The Gain Product: Architecture Performanc Metric

When the overall performance of the new specialized architecture is compared to the homo-

geneous QLA architecture [27], we see that area is reduced by a factor of 9 when factoring a

1024-bit number using only 100 compute blocks. The performance reduction is almost 20%,

where the underlying error-correcting code remains the [[7, 1, 3]] code. Since one of the most

feasible large-scale ion-trap schemes requires the electrodes to be etched into a Silicon substrate

[25, 61], we place equal importance on reducing the area requirements of the architecture as

improving the time performance of the application execution.

A good metric for comparing the merit of our design choices taken that affect both area

and computational speed is the gain product (GP) [28] defined as

GP = (Areaold × ExecutionTimeold)

(Areanew × ExecutionTimenew)
, (9.4)

where ExecutionTime is the execution time per application procedure. In the case of Table

9.3, ExecutionTime is defined as the average time per adder for modular exponentiation. The

GP indicates the improvement in system parameters relative to a well defined base architec-

ture which is assumed to have a GP value of 1. The higher the gain product, the better the

collective improvement in area and time of the system. As can be seen in Table 9.3, when fac-

toring a 1024-bit number the GP is nearly 2, which is a Gain Product improvement of nearly

100%.

9.3.2 Communication Issues: Executing the Toffoli Gate

The communication constraints in quantum adders, which are the building blocks of the modular

exponentiation component of Shor’s algorithm, deserve some attention. The most intensive data

communication pattern forms during the execution of the Toffoli gate. As described in Section

2.2.1, Toffoli gates cannot be directly implemented on encoded data and must be broken down

into multiple one and two-qubit gates. The one-qubit gates include the T gate, which requires

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

100 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

0 T T’ T T’

0000000
1111111

+
H

7-bit
Cat-State

0000000
1111111

+
H

7-bit
Cat-State

extract

[7,1,3]
syndrome

extract

[7,1,3]
syndrome

FIGURE 9.10: The circuit for the creation of a single Aπ/8 ancillary state. Not shown is the preparation

and verification process for the 7-bit Cat States.

the specially prepared encoded Aπ/8 ancillary state to execute the T gate implementation shown

in Fig. 5.5 in Section 5.3. The circuit used for preparation of the Aπ/8 ancilla state is described

in detail in [145] and is given in Fig. 9.10, where we see that the preparation requires two

error-correction steps and measurement of an additional two seven-qubit cat-states. Separate

specialized ancilla tiles must be designated to ensure a fresh supply of prepared Aπ/8 ancilla

states is available when needed. The execution of a T gate requires both accumulators in a single

computational tile, where one accumulator is occupied by the data qubit and the other by the

Aπ/8 ancilla.

The flow of data between the three qubits to complete a single Toffoli forms the most

intense communication pattern during the entire addition operation. To study the bandwidth

requirements during the Toffoli gates, a scheduler is created that would have all the requirements

for communication (creating EPR pairs, transporting EPR repairs, and purifying them) in place

while the logical qubit to be transported is undergoing error correction after completion of the

previous gate [28]. As it turns out, with the bandwidth of a single channel as shown in Fig.

9.5, it may be possible to completely overlap communication and computation when using the

Steane [[7, 1, 3]] code.

Superblocks: To avoid the mismatch between the long error correction cycle of logical qubits

stored in memory and logical qubits stored in the compute blocks, we execute highly localized

routines such as the Toffoli gate implementation in specially defined superblock regions. The

notion of a superblock is defined to mean a collection of one or more closely grouped compu-

tational tiles. The computational tiles are grouped together to exploit the principle of locality

inherent in quantum applications, which (much like the classical definition) means that data is

most likely to be reused soon after each usage. Larger superblock regions have the advantage

of an increased perimeter bandwidth between the compute and memory regions of the spe-

cialized architecture. This increase in bandwidth of a larger superblock is offset by the much

greater increase in communication required by having to move data from the computing region

to the memory region. Intuition suggests that at a certain point, it may be more efficient to

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

CASE STUDY: THE QUANTUM LOGIC ARRAY ARCHITECTURE 101

 0

 1000

 2000

 3000

 4000

 5000

 6000

 10 20 30 40 50 60 70 80

B
an

d
w

id
th

 r
eq

u
ir

ed

Number of Compute Blocks

B/W Required: Worst Case
B/W Required: Draper adder

B/W Avail per Compute Super-block

FIGURE 9.11: The point of intersection of the two bottom curves is the optimal size of a compute

superblock. These two curves are bandwidth required (at the perimeter of the compute superblock) in

modular exponentiation and bandwidth available. The third steep curve is the worst case bandwidth

required.

have multiple small superblocks instead of one large superblock. The authors in [28] explore

this notion and determine this number concretely. Plotted is the change in bandwidth required

against change in bandwidth available as the number of compute blocks increases in Fig. 9.11.

The cross-over point is 36 compute blocks per superblock, immaterial of what error-correction

code is used. Thereafter it is no longer beneficial to increase the size of an individual compute

superblock.

9.3.3 Memory Hierarchy in the QLA Architecture

At this stage we have not yet discussed the notion of cache introduced in Section 8.2. In fact,

the specialized QLA discussed in the previous section does not even have a memory hierarchy

to discuss, since both the computational tiles and the memory tiles were constructed using the

same error-correcting code at the same level of recursion. We saw how the mere separation

between memory and computation when decoherence of idle ion qubits is a second-order

event, can dramatically reduce the area of the quantum processor, but we also witnessed some

performance degradation. Consider, for example, that we do not use level 2 encoding in the

computational tiles, but rather remain at level 1 for the Steane [[7, 1, 3]] code. This introduces

two substantial concerns:

• The computational tiles are exponentially faster than memory, and thus a single memory

cycle introduces significant overhead during the application execution;

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

102 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

• Increasing the number of level 1 computational tiles to reduce processor-memory com-

munication, is tricky because the doubly exponential loss of logical gate reliability at

level 1 compared to level 2 is prohibitive for the execution for large-scale applications.

The benefits, however, are clear, logical gates become exponentially faster at level 1 than they

are at level 2, and area reduction from using 7 instead of 49 ion qubits per logical data qubit is

significant. To make the scheme work, the cache is introduced to utilize the familiar principle

of locality and serve the purpose of a buffer between the encoding in the processing elements

and the encoding in memory. The data that resides in the cache is placed there either from

the processing elements, or has been teleported there through the transfer network shown in

Fig. 8.2. Recall that the transfer network is a tile-based computational structure that implements

the process of code teleportation to prevent decoding the data between its transfer from one

encoding to another. Once again, the cache is at level 1, and we must account for the doubly

exponential loss in reliability of the logical data stored there.

To see why the loss in reliability cannot be ignored: recall that the failure per component

for the entire system of size S = K Q must be at most 1/K Q where K is defined as the number

of logical timesteps in the application and Q is the number of logical qubits. Suppose that all

operations required by a given quantum application and performed by the QLA architecture

are divided between level 1 and level 2 operations. An extremely important observation here

is that error-correction cycles on a logical data residing in the main memory are considered

a logical operation on the data with an associated level of reliability. Even error correction is

performed using noisy lower-level gates and can introduce errors on the data. The fact that it

must be implemented fault-tolerantly, is to ensure that errors do not spread to more lower level

qubits than the [[7, 1, 3]] code can correct.

The QLA architecture now consists of a memory at level 2, a compute region also at

level 2, a cache and a compute region at level 1 and transfer networks for changing the qubit

encoding levels. A revised estimate of the required failure per component is needed to account

for the loss of reliability due to the level 1 encoding.

An intuitive interpretation of the K Q system size parameter is that it is the area of a 2-D

rectangle, where one side is the number of logical qubits and the other side is the length of

the computation as a function of the number of time steps K . The area of the rectangle can be

divided into several regions: (1) the region of operations that take place at level 1; (2) the region

of operations that take place at level 2; (3) the region where qubits are “dead,” whose states

have not yet been initialized; and (4) the transfer regions between levels 1 and 2. The transfer

region is actually divided into logical operations between levels 1 nd 2, so there is no need to

distinguish between operations performed during the transfer and operations performed in the

computational region. In addition, the third region of “dead” qubits is insignificant for the overall

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

CASE STUDY: THE QUANTUM LOGIC ARRAY ARCHITECTURE 103

system KQ value while executing Shor’s algorithm, because after only the first few time steps all

qubits have been utilized in the evenly distributed adders. Given the KQ rectangle for different

regions of encoding levels, the modified desired crash failure probability per component is equal

to:

εfail = 1

fL1 K QL1 + fL2 K QL2

, (9.5)

where fL1 is the fraction of the time spent computing at level 1 and fL2 is the fraction of the time

spent computing at level 2. The total KQ parameters for pure systems at level 1 and level 2 are

denoted by KQL1 and KQL2 respectively. The crash failure rate at level 2 is doubly exponentially

smaller than the one at level 1, thus we cannot divide the total operations evenly between the two

regions. It is also incorrect to assume that the longer the data stays at level 2, the more reliable it

becomes, and thus, the more operations we can have at level 1 before they fail. The moment the

encoding of a logical qubit is teleported to a different level of error correction, the first error-

correction cycle or logical operation must ensure that the qubit does not accumulate more errors

than the new level of encoding can handle. The reliability of the encoded qubit immediately

becomes controlled by the new encoding, and the time we can compute or store the qubit at

that encoding state is controlled by the KQ parameter of the subprocedure executed with the

data in question.

TABLE 9.4: This Table Shows the Results of Incorporating a Memory Hierarchy and Two Sepa-

rate Encoding Levels. Depending on the Number of Parallel Transfers Possible Between Memory

and Cache, we Can Expect Different Speedup Values for the Adder at Level 1. This Combined

with Results From Table 9.3 Give us the Final Gain Product. Comparatively, the Homogeneous

Architecture has a Gain Product Number of 1.0. (Note: All Numbers have been Rounded to First

Significant Digit After the Decimal.)

PAR ADDER L1 L2 ADDER AREA GAIN

XFER SIZE SPEEDUP SPEEDUP SPEEDUP REDUCED PRODUCT

STEANE [[7, 1, 3]] CODE

10 256 17.4 1.0 6.2 5.1 31.7

512 17.4 1.0 6.3 6.1 38.4

1024 18.2 0.9 5.0 9.1 45.1

5 256 10.4 1.0 4.1 5.1 25.0

512 10.4 1.0 4.0 6.1 24.5

1024 11.0 0.9 2.9 9.1 26.9

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

104 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

In fact, the doubly exponential decrease in reliability means that to sustain scalability for

Shor’s algorithm in the QLA architecture, we can perform just 1% of the total operations at

level 1 and the rest must be performed at level 2. One can imagine this to mean that we can only

spend 1% of the total logical cycles over all qubits at level 1 recursion, including error-correction

cycles. Since quantum modular exponentiation is performed by repeated quantum additions, we

find that to comfortably maintain the fidelity of the system, we can perform one level 1 addition

for every two level 2 additions. All the operations performed at level 1 this way constitute only

1% of the total system KQ parameter, should we have performed everything at level 2. The

resulting increase in performance measured as the Gain Product is shown in Table 9.4. Over

the entire system KQ rectangle the additions performed at level 1 have constituted less than 1%

of the entire computation.

The only communication between the QLA architecture and the classical control pro-

cessors is the results of measurement and commands for executing classically scheduled quan-

tum instructions. All communication patterns and instruction order execution is orchestrated

through software tools that run in the classical processors. To study the behavior of a spe-

cialized architecture into software-managed caches, or scratchpad memory Thaker et al. [28]

 90

 80

 70

 60

 50

 40

 30

 20

 10

1024-bit512-bit256-bit128-bit64-bit

C
ac

he
 h

it
ra

te
 (

in
 %

)

Adder sizes

Cache = PE
Optim. Cache = PE

Cache = 1.5*PE
Optim. Cache = 1.5*PE

Cache = 2*PE
Optim. Cache = 2*PE

FIGURE 9.12: Shows the cache hitrate for different adders when both cache and compute region are

at level 1 recursion. Largest cache considered holds twice the number of logical qubits as the compute

block. Results for both the nonoptimized version and the optimized version are shown.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

CASE STUDY: THE QUANTUM LOGIC ARRAY ARCHITECTURE 105

have created a simulator that models a cache as described in this section. The simulator takes

into account the computation cost in both encoding levels and also the cost of transferring

logical qubits between encoding levels. The application under consideration is still the Draper

carry-lookahead adder [154]. Input to the simulator is a sequence of instructions where each

instruction is similar to assembly language for quantum computation and describes a logical

gate between a number of qubits.

When the simulator runs this code in the sequence intended by the Draper carry-

lookahead adder, the cache hit-rate is limited to 20%. To improve the hit-rate, the authors

in [28] utilize the following optimized approach. Since the scheduling is static (i.e., run-time

instruction scheduling is not assumed at this stage of development), the instruction fetch win-

dow for the simulator can be the entire program being executed. The simulator takes advantage

of this by first creating a dependency list of all input instructions. Then it carefully selects the

next instruction such that probability of finding all required operands in the cache is maximized.

This optimized fetch yields a cache hit-rate of almost 85% immaterial of adder size and cache size.

The replacement policy in the cache is least-recently-used. Fig. 9.12 shows the cache hit-rates

for different sized adders for the nonoptimized and optimized instruction fetch approaches. If

n is the number of logical qubits in the compute region, the cache sizes studied are n, 1.5n, and

2n. As the graph shows, the increase in hit-rate is more pronounced due to the optimized fetch

than due to increasing cache size. A sensible choice for the QLA architecture is to employ a

cach cache size of twice the number of qubits in the compute region. The high hit-rate means

the complex transfer network of Fig. 8.2 will not be overwhelmed.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-09 MOBK053-Metodi.cls October 30, 2006 19:27

106

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-10 MOBK053-Metodi.cls October 30, 2006 19:28

107

C H A P T E R 1 0

Programming the Quantum

Architecture

We begin this Chapter with a description of instruction set architecture (ISA), which captures

the interface between a quantum compiler and the architecture. At the application level we

have logical instructions acting on logical qubits where measurement operations give the control

processors knowledge about the algorithm execution. Below the application level is the physical

layout where basic logical gates are decomposed into a fault-tolerant sequence of elementary,

technology-dependent, assembly-like instructions. At both levels of execution, the instruction-

set environment should provide easy separation of quantum computations from classical data

interpreted by the classical control processors. Our discussion is focussed on the description of

the high-level instruction set, which is independent of physical implementation technology and

allows the compiler to orchestrate the architectural resources available.

The machine instructions we describe operate on both quantum data (logical qubits) and

classical data (such as logical qubit addresses, measurement results, and classical control bits). All

classical data is stored and manipulated by the classical control processors. The only access the

classical processors have with the quantum hardware is through the execution of measurement

instructions, which contain both classical and quantum arguments. If an instruction argument

is a logical qubit, an address is not explicitly provided. This is because each qubit is a physical

entity, and quantum data cannot be cloned, so the control processors are able to keep track of

the qubit locations.

A summary of some of the suggested instruction types is shown in Table 10.1. Most

instructions at the architecture level of a quantum computer can be classified as procedure call

instructions. For example, a basic quantum gate instruction could be “gate_cnot Q1,Q2,”

where Q1 is the control logical qubit and Q2 is the target is implemented in the hardware using

a fault-tolerant sequence of operations on lower level qubits. It is therefore a self-contained

computer program in itself that is incorporated into the larger application and is separately

optimized. The control processors are instructed to execute the entire procedure of lower level

operations necessary for the completion of a cnot gate. Error-correction procedures are also

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-10 MOBK053-Metodi.cls October 30, 2006 19:28

108 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

TABLE 10.1: The Set of Possible Instructions That the High-level Compiler Can Use to Rep-

resent the Progression of a Quantum Program on Our Architecture Model. FETCH/SEND and

LOAD/STORE May Seem Redundant, but They are Not. LOAD/STORE is Only Intended for

Communication Between the Cache and Memory.

INSTRUCTION ARGUMENTS TYPE FUNCTION

GATE A Q1, [Q2] Quantum Single or two-qubit operations

MEASURE Q1, cbit Quantum Measurement, result stored in

the classical cbit

PREPARE Q1 Quantum Prepare an initial encoded

logical qubit state

FETCH Q1, PEi , AC j Classical Fetch qubit Q1 into PEi and

accumulator j

SEND Q1, memory address Classical Send Q1 from a PE into memory

(cache or main)

LOAD/STORE Q1, memory address Classical Load/store Q1 to the specified

address

REFRESH Q1 Classical Error correct qubit Q1

implemented as a single instruction with a logical qubit as an argument. Branching instructions

serve the same purpose as classical branches, though the decision of whether to branch or not

is always dictated by a classical bit set by the result of a quantum measurement.

10.1 PHYSICAL INSTRUCTION SCHEDULER
A similar ISA is described in practice by the low-level quantum assembly language (QASM)

first proposed and implemented by Balensiefer et al. [142, 141]. QASM consists of a sequence

of declarations and commands for physical qubits similar to the logical procedures shown in

Table 10.1. Qubits, classical bits, gate names, and classical functions are initially declared. The

preparation procedure is classified with the two physical gates xprepare and zprepare, which

place a qubit in either eigenstate of the X or Z operator, respectively, and can be decomposed

into a measurement operation followed by a corresponding single-qubit gate. The zprepare

operation is implemented by applying a measurement gate followed by a bit-flip gate if the

measurement result yields a “1.” The qubit is this way initialized to the |0〉 state. The xprepare

gate places the qubit in either the | + 〉 or | − 〉 state by applying a Hadamard operation on a

zprepare’d qubit.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-10 MOBK053-Metodi.cls October 30, 2006 19:28

PROGRAMMING THE QUANTUM ARCHITECTURE 109

Irrespective of the underlying technology used to implement a circuit-model-based quan-

tum system, one of the central challenges of accurately modeling the physical components of

a large-scale architecture is the ability to map and schedule a quantum application onto a

physical layout by taking into account the cost of communication, the classical resources, and

the maximum parallelism that can be exploited. Error correction is by far the most dominant

application and the driving application for optimizing quantum architectures; however, what

is missing to being able to simulate the fault tolerance and functionality of error-correction

networks, is the automatic generation of communication commands and ILP representation

of an arbitrary quantum circuit—a need that a physical scheduler based on traditional classical

scheduling techniques may meet. Just as in classical superblock schedulers, the output of a quan-

tum physical operations scheduler can also be a QASM file, but one that is fully parallelized

and communication instructions have been inserted.

In addition to generating two-dimensional information about the communication paths

for a given quantum circuit, a physical operations scheduler allows us to determine the exploitable

instruction-level parallelism (ILP) in quantum circuits. Studying the limits of ILP can be used

by hardware designers to avoid spending resources on classical control features that will remain

unutilized throughout the computation. Furthermore, massive ILP is an underlying requirement

for achieving the best possible schedule in quantum error correction [116]. Even though it has

been shown that a threshold value exists when movement is considered [118, 149], the ability to

precisely predict the amount of communication during error correction is crucial for determining

how high the threshold value really can be. In addition, knowledge of the communication

requirements and available ILP will provide us with better understanding of the exact hardware

resources needed for error correction.

The QUALE tool-chain from the University of Washington [142] uses the classical

Path-Finder package [156] to map the instruction of a quantum circuit onto a physical layout,

provided that it is known ahead of time which qubits are supposed to move. Alternatively, QPOS

is a quantum physical operations scheduler based on traditional classical instruction scheduling

heuristics [157–159] through careful priority calculation at both the circuit level and the physical

layout level that does not place any physical constraints on the qubits. QPOS is described in detail

in [160]. At the circuit level, instruction priorities are based on the number of instructions that

depend on each operation. The priorities are used to choose the desired communication paths

after the source qubits and the destination qubits have been disambiguated. If instructions have

the same priorities the paths are prioritized based on least path interference and shortest path.

This amounts to maximally parallelize the movement operations. In our case study in Chapter 9

we employ QPOS to schedule the fault-tolerant qubit tiles of the example architecture provided.

While recent breakthroughs in error-correction algorithms [146, 147] combined with

clever large-scale quantum architecture design [135, 28] allow us to be optimistic about the

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-10 MOBK053-Metodi.cls October 30, 2006 19:28

110 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

realization of applications such as Shor’s quantum factoring algorithm [7], the precise orches-

tration of millions of interacting physical qubits at the cycle level, will undoubtedly prove to

be necessary for realistic implementations. Clever cycle-level schedulers that build on existing

knowledge of efficient classical scheduling algorithms to provide us with a starting base for

developing sophisticated scheduling techniques tailored for quantum circuits.

10.2 HIGH-LEVEL COMPILER DESIGN
We can identify several levels of reordering rules that a quantum compiler may employ at any

stage of the compilation. On one level are network optimizations independent of the underlying

architecture (i.e., communication cost is not considered and each gate has a unit cost). The next

level of algorithm optimization/compilation is the coupling of computation and communication,

where a given high-level network is mapped to a specific set of logical hardware resources. A

third level of optimization is when the specific logical gate implementation is parameterized

and considered not only in the architectural resources, but also in the high-level network syn-

thesis. For a fixed set of universal gates, individual gate costs and size vary wildly depending

on the error-correction procedure. In addition, the teleportation-based communication mech-

anism at the high level may be used by the compiler to allow the execution of single-qubit

gates during the logical qubit movement [125], provided sufficient communication channels’

bandwidth.

Fig. 10.1 is an example of the elements for a possible quantum architecture compiler. A

description of the program in a very general high-level manner such as a large unitary matrix

or a high-level C-like language such as QCL [137] that is technology and layout independent

High Level

Program Description

Static Code

Generator

Technology

Dependent Gate

Decomposition

Physical

Layout

Generator

Simulator

or

Architectural Device

Pulse

Sequence

Architecture

Independent

Circuit Synthesis

Decomposition

to

Basic Gates

High-Level

Resource

Scheduler

Choose MC/CC

Calculate High-Level

Architecture

Resources

Fault-Tolerant

Gate

Decompos.

List of Technology

Specific

Logic Operations

FIGURE 10.1: Compilation layers.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-10 MOBK053-Metodi.cls October 30, 2006 19:28

PROGRAMMING THE QUANTUM ARCHITECTURE 111

serves as an input to the static code generator (SCG). The bottom of Fig. 10.1 shows the steps of

the SCG component.

The first SCG stage is to perform technology- and architecture-independent circuit

synthesis that breaks the algorithm into a useful identifiable set of quantum operations. Once

a universal set of basic gates is determined the SCG further decomposes the network into

those gates exposing all high-level qubit resources needed for the application. Next, the SCG

determines useful error-correcting codes for the memory and the computation together with

the architectural resource constraints and high-level structures. At this point the program is

composed of assembly language-like instructions as in Table 8.1 fully exposing the hardware

resources and ready to be scheduled by the high-level scheduler. Finally, the SCG implements

fault tolerance into each operation by decomposing each logical gate and LOAD/STORE

operation into a fault-tolerant list of lower level quantum/classical instruction based on the

choices for MC and CC.

The output of the SCG is a high-level quantum assembly language that will describe

a fault-tolerant, error-correction enabled quantum algorithm with a clear description of the

available quantum and classical resources at the system level. The next stage is the technology

dependent compiler (TDC), which knows nothing about the geometrical layout of individual

tiles, but decomposes the quantum operations into the equivalent elementary operations avail-

able for the particular technology. In the case of ion traps the output is a giant list of ion-trap

logic gates consisting of single qubit rotations and controlled-Z gates.

Last is the physical layout generator (LG), which takes in the available resources and

allocates physical locations and data paths for each physical qubit in the system. The LG has

full knowledge of the physical layout of each tile and schedules the elementary qubit operations

accordingly, even if this changes the original sequence provided by the SCG. Assuming that

maximum parallelism has been implemented at previous stages the LG attempts to (1) minimize

the communication costs for multiqubit gates at the physical level and (2) optimize the resource

distribution and minimize the cost due to resource constrains on the achieved parallelism already

in the network description for each logical gate. The output of the LG is a sequence of fine

grained control pulses fed into the physical device.

10.3 ARCHITECTURE-INDEPENDENT CIRCUIT SYNTHESIS
Architecture-independent circuit synthesis is analogous to the design and optimization of clas-

sical integrated networks, where technology-independent synthesis is performed using abstract

logic gates. After this, the network is mapped to the technology by converting the gates to

the gates best suited to the specified technology as described in Section 10.2. At any stage of

the compilation flow (except perhaps the layout generator), given a general logical network, a

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-10 MOBK053-Metodi.cls October 30, 2006 19:28

112 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

compiler may identify various subnetwork structures which lend themselves to different opti-

mization techniques.

At the highest possible level of a quantum algorithm, the action of the algorithm on n

logical qubits is described as a 2n × 2n unitary matrix. This is analogous to a given boolean

function in classical computation. Just as it is relatively easy to translate a boolean function into

a corresponding network of operations, it is similarly possible to decompose an arbitrary n-qubit

unitary operator into basic quantum logic gates. Also, exactly as in classical computation, the

optimization of the resulting network is a nontrivial task. What may be truly different are the

transformation rules for a quantum network.

There is a significant amount of ongoing work in architecture-independent quantum

network synthesis. The first subnetworks that may be identified by a compiler are networks

composed entirely of controlled-NOT gates. Considerable work has been done for the synthe-

sis of controlled-NOT networks and general classical reversible networks [161, 162]. Provided

are local transformation rules for arbitrary controlledk-NOT networks (interconnected NOT

gates controlled by the AND of k bits). The transformation rules take any controlledk-NOT

network to an equivalent network in its canonical form, which can then be optimized using

a heuristic whose cost is to minimize the average number of control qubits. Quantum mod-

ular exponentiation—the most expensive component of Shor’s factoring algorithm—can be

written entirely as a controlledk-NOT network. Additionally, a technique for restructuring

stabilizer networks which are used in every error-correction routine is given. Aaronson and

Gottesman [143] prove that any stabilizer network has an equivalent network in canonical

form with only O(n2/ log n) gates, leaving open the question whether an optimal construc-

tion exists. Much research has been done with arbitrary two-qubit operators. It is desirable

to decompose any two-qubit operator into a number of controlled-NOT gates (i.e., cnot)

since the universal gate library [33] consists of cnot gates and one-qubit gates. Song and

Klappenecker [163] contribute a method for optimizing arbitrary controlled two-qubit op-

erators, Shende, Bullock, and Markov [164–166] propose tests and implement an algorithm

that gives quantum networks that simulate arbitrary two-qubit unitary operators. More specif-

ically, they provide a method to determine which two-qubit operators are cnot optimal,

with the worst case being three cnot gates. Moreover, Shende and Markov [167] have stud-

ied the problem of finding optimal networks implementing incompletely specified two-qubit

operators usually used for state preparation when the input is known or after measurement

operations. Other network synthesis work has been with arbitrary n-qubit diagonal opera-

tors [168, 169]. All the above-mentioned network optimizations are implemented during the

first of the quantum compiler: the static code generator before the architectural resources are

considered.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-10 MOBK053-Metodi.cls October 30, 2006 19:28

PROGRAMMING THE QUANTUM ARCHITECTURE 113

Looking ahead: Although extensive groundwork has been done in architecture-independent

circuit synthesis, a carefully designed quantum compiler can provide a framework from which

to unify, refine, and expand these optimizations. In particular:

• A set of concrete transformation rules for stabilizer networks can be given to provide a

better canonical form than the one in [143], which can be used to create heuristics that

optimize error-correction networks.

• Creation of fault-tolerance preserving transformation rules that allows us to change the

universal set of basic gates while maintaining maximum time to failure in a high-level

algorithm.

• The combination of all different transformation rules has never been explored before.

For example, it is unknown how the rules affect each other once they are implemented

in common optimization tool.

• Finally, there is much promise in the exploration of incompletely specified n-qubit

operators when decomposing high-level quantum algorithms.

10.4 MAPPING CIRCUITS TO ARCHITECTURE
While circuit synthesis is an important step, mapping these idealized circuits to a physical ma-

chine is perhaps the greatest opportunity for optimization. A custom hardware implementation

of each circuit is not only impractical due to machine size constraints, but also technology-

dependent elementary operations, large fault-tolerance overheads, and the use of teleportation

all make the classical approach of direct circuit synthesis to hardware unappealing in the quan-

tum domain. Creating schedulers that map quantum circuits onto equivalent fault-tolerant

procedures that utilize the tradeoffs associated with the quantum hardware and possibilities at

the systems level will be one of the key contributions of computer architects.

Let us consider an example which describes part of the process of mapping and optimizing

a controlledk-NOT network. This is illustrated in Fig. 10.2, which shows three equivalent

controlledk-NOT-based networks. It is clearer to describe the network schematically rather

than showing the instructions explicitly as in Table 10.1. When shown schematically one can

“see” the needed communication from qubit to qubit when executing multiqubit gates such as

controlled operations.

The network in Fig. 10.2(a) is the derived canonical form using the transformation rules

provided in [161] of an initial unoptimized cnot-based network. The canonical form is a

useful starting point for the optimization of any boolean cnot-based network since it allows

all NOT operations to be concentrated on the last qubit (q7). This means that the gates can be

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-10 MOBK053-Metodi.cls October 30, 2006 19:28

114 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

q2
q1

q3
q4

q5

q6
q7

(b)

q2
q1

q3
q4

q5

q6
q7

X X

(c)

q2
q1

q3
q4

q5

q6
q7

X X

(a)

FIGURE 10.2: Optimizing networks for fewer control bits. The circles are NOT gates controlled by

the AND of the qubits connected by solid dots on the vertical lines. The boxes marked with an “X” are

bit-flip gates. We want to minimize the number of solid dots per gate without dramatically increasing

the number of gates. (a) An unoptimized controlled-NOT-based network in its canonical form [161].

(b) Using the transformation rules in [161] to reduce the number of control qubit per gate (1.7 per gate).

(c) Using boolean algebra simplification of the network in (a) to reach 1.4 control qubits per gate.

executed in any order and it would be straightforward to apply boolean algebra simplification. A

good cnot-based network cost metric is the minimization of the number of control qubits per

gate, which is what the authors of [161] strive for. Their result is shown in Fig. 10.2(b). This

is a reasonable assumption since any controlledk-NOT gate with k > 2 must be divided into

(2 ∗ �log k� + 1) Toffoli gates (a three-input, three-output reversible NAND gate; implemented

as a NOT with two control bits) using �log k� additional logical ancilla qubits adding to the

overall resources needed from the architecture. In addition, the synthesis of each Toffoli gate into

one- and two-qubit operations is relatively expensive: a Toffoli gate divides into two Hadamard

gates, one S gate, six cnot gates, and seven T gates [38] as in Fig. 2.5 gates are essentially

two-qubit gates since they require interaction with the specialized ancilla qubits and need both

accumulators in a PE. An even better network in terms of the control-qubit cost is Fig. 10.2(c)

which we derived using simplification rules derived from boolean algebra (i.e., A ⊕ B A = AB).

Calculating the cnot circuit cost: Ideally, quantum researchers would like to create a com-

piler that can recognize the optimal network structure of Fig. 10.2 for the specified architectural

constraints. The compiler will choose the MC and CC encodings, decompose the basic net-

work gates into fault-tolerant procedures, each individually optimized over the architecture such

that the cost of communication, computation, and classical resource overhead throughout the

high-level network execution is minimized. In a network of one- and two-qubit gates, the most

expensive operation is a transfer of a logical qubit from the MC encoded memory to the CC

encoded cache or PE. The memory read time (MRt) roughly estimated from Fig. 8.7 is equal to

two MC teleportation steps, five MC error corrections, five logical gate times over MC whose

sequence diagram is shown in Fig. 8.4, and one error correction step over CC. A cache miss

is equal to MRt ; however, a cache hit is just a single teleportation step from the cache to the

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-10 MOBK053-Metodi.cls October 30, 2006 19:28

PROGRAMMING THE QUANTUM ARCHITECTURE 115

q2
q1

q3
q4

q5

q6
q7

(c)

q2
q1

q3
q4

q5

q6
q7

X X

q2
q1

q3

q4

q5

q6
q7

(a)

X X

(b)

FIGURE 10.3: Equivalent networks to the ones in Fig. 10.2, but with all gates decomposed into Toffoli

gates and full exposure of the logical qubit resources required. The dotted horizontal lines represent ancilla

qubits, which are added to reduce overall communication costs once mapped to the architecture. Network

(a) is least desirable, using the most logical qubits. Network (c) is the most desirable as it decomposes

into fewer elementary operations.

processing element over the CC encoding. Thus, the cache read time (C Rt) is therefore

C Rt = X(ttel,CC) + Y (MRt),

which is a weighted average of the expected cache-hit rate versus the expected cache-miss rate.

The CC is chosen such that the time for a logical operation after the retrieval of the data should

be much less than the time for an operation over an MC encoded qubit, where the tradeoff is

that the logical qubits stored over MC are much more reliable.

Fig. 10.3 shows the networks from Fig. 10.2 with all controlledk>2-NOT gates broken

into cnot and Toffoli’s only using a number of auxiliary logical qubits initialized at the “0”

encoded state (dashed lines). The gates are reordered to expose the available parallelism at this

level; however, each Toffoli gate is not yet decomposed into one- and two-qubit gates as shown

in Fig. 2.5. Each gate is a fault-tolerant logical gate composed of a number of physical operations

over the PE tile whose physical network depth and dimensions are determined by the choice

of CC. One can imagine the magnitude of the computation even for such a small network.

Without explicitly calculating the schedule for each network over basic single and two-qubit

operations, we see that the network in Fig. 10.3(a) uses three more logical qubits than both

other networks. In addition it requires 10 Toffoli gate time steps over 15 total Toffoli gates.

Figs. 10.3(b) and 10.3(c) require only 7 and 6 Toffoli time steps and 8 and 7 total Toffoli gates

respectively. The number of Toffoli time steps limits the network’s overall performance making

the network in Fig. 10.3(a) least desirable, even with infinite resources and parallelism. This,

however, does not provide us with much information about the network’s communication costs

without more careful consideration. To avoid any cache misses a Toffoli gate will require two

PE units and two logical qubit cache tiles. The time for a Toffoli gate will be roughly equal

to the time of 14 logical operations over CC, plus the starting cost of loading the three data

qubits from memory. Note that in addition to being very time consuming, loading a qubit from

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-10 MOBK053-Metodi.cls October 30, 2006 19:28

116 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

memory exposes it to greater risks of failure over the network. We must also consider that in

reality, classical control resources are equally as expensive as quantum ones in addition to a need

to control the overall area explosion due to recursive error correction, thus limiting the available

parallelism.

Looking ahead: The controlledk-NOT circuit example provides only an overview of the

complexity involved in implementing just one portion of the compiler design flow shown in

Fig. 10.1—the static code generator. We have presented this example without a specific theory

of the reordering rules for architecture-dependent quantum networks. The most important first

stages of a workable compiler implementation must be to identify the unique elements of quan-

tum computing networks and properties of quantum computation that will allow us to create

the corresponding intermediate compiler data structures and representations. Apart from trac-

ing the necessary intermediate steps of a quantum compiler we can identify several important

challenges for system designers when designing a compiler for the development of large-scale

quantum applications. The first challenge is the development of simulation and modeling tech-

niques for the quantum circuits involved in the implementation of the high-level architectural

elements; secondly, we must find suitable cost metrics for compiler optimization that will allow

us to generate and evaluate efficient fault-tolerant networks at both the architecture level and

the physical level of execution for a given quantum application; thirdly, it is desirable to identify

algorithms to insert, preserve, and optimize low-level, fault-tolerant networks that implement

high-level computations; finally, it is important to identify architectural strategies that can ex-

ploit uniquely quantum computation and communication resources, such as teleportation-based

error correction and varying logically universal sets of quantum operations. In the next Chapter

we describe the possibility of teleportation-based quantum operations and error correction.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-11 MOBK053-Metodi.cls October 30, 2006 19:29

117

C H A P T E R 1 1

Teleportation-Based Quantum

Architectures

It would be ideal to treat the physical implementation of quantum logic gates with a specific tech-

nology in mind such as the QLA’s treatment of ion traps. The problem is that there is an enor-

mous amount of available choices for physical gate implementation, which is equally matched

by an enormous amount of available possibilities for constructing logically universal circuits.

In Chapter 2 we described the circuit model for quantum computation which implements

universal quantum logic as a sequence of unitary matrices that act on the probability amplitude

vector describing a collection of units of quantum data known as qubits. Furthermore, in Chap-

ter 2 we introduced the Clifford group operations (see Eq. 5.10) combined with the single-qubit

T gate as an elementary basis for universal quantum computation. The chosen basis of gates

offers relatively straight forward, fault-tolerant constructions for implementing quantum logic

on encoded qubits. Steane [170] summarizes several proposals for constructing a fault-tolerant

universal set of quantum operations that includes the Clifford group. Some proposals include the

three-qubit Toffoli gate as an elementary operation, and some the controlled-S gate [171, 172].

When designing a quantum architecture, or modeling software for quantum architectures, a

system designer may need to allow flexibility in the software to choose the appropriate universal

set of gates that allows the generalization to all [[n, k, d]] error-correcting codes.

Perhaps, even more interesting is the fact that we may not even need the direct application

of gates to perform universal quantum computation. All we need is a circuit structure (or a

mechanism) that implements the functionality of universal gates. More specifically, a mechanism

that allows the unitary transformation of a quantum state |�〉 without the physical application

of the unitary operation itself. Such a mechanism is teleportation. In 1998, Gottesman and

Chuang published a paper [125] that showed teleportation as a universal quantum logic primitive

that can be used to perform any quantum computation. The teleportation gate scheme is

used to allow two-qubit operations in optical quantum computers (see Section 4.1). We can

extend this further by looking at the possible tradeoffs when designing an architecture that

utilizes universal quantum logic on encoded data through teleportation. Such investigations

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-11 MOBK053-Metodi.cls October 30, 2006 19:29

118 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

H Z H

FIGURE 11.1: A cnot gate can be build by using a controlled-Z gate and two Hadamard gates.

may drastically change the structure of the entire quantum system as defined by the QLA

architecture case study.

One of DiVincenzo’s principal requirements for quantum technologies is the ability to

orchestrate universal quantum logic, which is generally composed of single-qubit gates, two-

qubit gates, and measurement in the circuit model of quantum computation. Except for su-

perconducting qubits, most technologies allow a relatively easy arbitrary single-qubit rotations.

Therefore, the ability to perform qubit–qubit interactions, or two-qubit gates is the most critical

requirement for a given technology, particularly, since an implicit assumption in any qubit–qubit

interaction is the ability to communicate quantum information between the two qubits.

Many of the circuit synthesis papers mentioned in Section 10.3 assume the cnot gate

to be the standard elementary two-qubit gate and synthesize circuits to be cnot optimal.

Perhaps incorrectly, a general assumption is that DiVincenzo’s criteria demand the ability for a

technology to demonstrate a reliable cnot gate; however, the direct application of a cnot gate is

not necessarily required. The elementary two-qubit gate in the ion-trap technology, for example,

is the controlled-Z rotation [77, 78], which can be used to functionally construct a cnot gate

as shown in Fig. 11.1.

Any two-qubit gate used to implement a cnot operation requires the interaction of two

qubits, either through direct qubit–qubit interaction, which implies that the quantum data for

both qubits is placed at the same spatial location through teleportation, or through direct physical

movement of the qubit carriers; or indirect qubit–qubit interaction, which is done through some

shared medium that allows the two-qubit states to be coupled without the need to bring the

data spatially close together.

Both types of interactions have their respective drawbacks. Qubits that interact directly

require either information swapping between nearest neighbors, or shuttling qubits through

empty channels: introducing errors proportional to the length of the channels. Transferring

quantum information creates the need for complex low-level schedulers such as QPOS [160],

or the inner workings of QUALE [142], both of which assume technologies that require direct

physical qubit communication. In addition, bringing the states of two qubits together creates

difficulties for distinguishing the qubits from one another and opportunities for correlated errors.

The indirect qubit–qubit interaction may seem more efficient on the outset by leaving

the qubits in place, but it still requires a common medium that is used to couple the qubits

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-11 MOBK053-Metodi.cls October 30, 2006 19:29

TELEPORTATION-BASED QUANTUM ARCHITECTURES 119

and can potentially introduce correlated errors. There are several techniques to achieve this:

one technique uses single photons to implement multi qubit gates between trapped atoms

[43, 95, 96], another technique couples qubits through a common quantum field mode, which

can be thought of as a shared quantum “bus” and can be realized with a laser beam [97, 98].

11.1 THE CNOT GATE AND SINGLE-QUBIT GATES
THROUGH TELEPORTATION

The simplest way to consider the implementation of a cnot gate using teleportation is already

utilized by the QLA architecture we described in Chapter 9. A schematic is shown in Fig. 11.2.

Qubits Q1 and Q2 residing in the memory region are teleported to a processing element (PE)

through E P R pairs created between each respective memory address and the PE.

The gates in the dashed boxes in the circuit of Fig. 11.2 implement a Bell measurement

between any two qubits. Recall the four two-qubit Bell states {|�+〉, |�−〉, |�+〉, |�−〉} given

in Eq. 9.2, where the state |�+〉 is the familiar two-qubit EPR state. Just as a single-qubit state

can be written as a superposition of two basis states such as | + 〉 and | − 〉 or |0〉 and |1〉, a

two-qubit state can be written as a superposition of the four Bell states:

|q1, q2〉 = c 0|�+〉 + c 1|�−〉 + c 2|�+〉 + c 3|�−〉. (11.1)

A Bell measurement such as the circuit in the dashed boxes of Fig. 11.2 determines which of the

four Bell states the two qubits are in. As a result of the measurement the two qubits are collapsed

into one of the four Bell states. In addition, the Bell measurement also serves as an entangling

operation between the two qubits if they are originally unentangled. It helps to abstract the Bell

measurement procedure as a box (see Fig. 11.3) much like we did with the EPR pair creation

because each technology has a very specific method for implementing a Bell measurement on

two qubits.

In Chapter 9 we described an architecture which required a direct cnot gate between

two logical qubits encoded with 49 physical qubits at level 2 recursion. We presented the

0

0

0

0

Q1

Q2

Z X

Z X

Q1EPR

EPR

H

H

Q1 (xor) Q2

FIGURE 11.2: Standard cnot operation between two logical qubits in remote locations. The qubits

are teleported to a common destination such as two adjacent accumulators in a processing element and

interacted with a cnot gate.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-11 MOBK053-Metodi.cls October 30, 2006 19:29

120 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

H
BELL

FIGURE 11.3: We abstract the Bell measurement circuit as a box with the inscription “Bell.”

long-distance communication channel between the two logical qubits as a repeater-based inter-

connect which creates 49 purified elementary EPR pairs that span the entire channel between

qubits Q1 and Q2. The teleportation procedure then is used to teleport each of the 49 physical

qubits from Q1 and Q2 so that the two logical qubits are directly next to each other in the two

destination accumulators. The direct application of a transversal cnot gate follows the logical

qubit transfer once they are located in adjacent accumulators as shown in Fig. 11.2.

To avoid the direct interaction between the two logical qubits shown on the right-hand-

side of Fig. 11.2, we can move the cnot gate through the preceeding single-qubit X and Z

operations by changing their order without affecting the functionality of the circuit. The result

is shown in Fig. 11.4. In this new (but equivalent) construction, there is no direct interaction

between qubits Q1 and Q2, but there is a direct cnot gate between the EPR blocks. The

interaction between the EPR blocks is only possible if the four blocks themselves are encoded

logical qubits initially in the logical |0〉 states as shown in the Figure 11.4. The creation of

the two logical EPR blocks followed by a cnot gate between the two blocks is enclosed with

a dashed line in Figure 11.4, to enforce the notion that this procedure can be done in place

without any interaction with the data blocks Q1 and Q2. In this manner, the implementation

of the cnot gate decomposes into encoding four qubits initialized to |0〉 into some prespecified

four-qubit state, denoted as the state |M〉, where

|M〉 = (|00〉 + |11〉)|00〉 + (|01〉 + |10〉)|11〉√
2

. (11.2)

0

0

0

0

Q1

Q2

BELL

BELL

Q1

Q1 (xor) Q2

EPR

EPR
X

X

Z

Z Z

X

FIGURE 11.4: Teleporting two-qubits through a controlled-NOT gate by using only single-qubit

rotations, Bell measurements, and a special four-qubit state |M〉 which can be composed of two EPR

pairs, or two GHZ states. If two GHZ states are used, the cnot gate between the two EPR pairs will

be replaced by a Bell measurement between the two GHZ states. The circuit shown and the procedure

is given in [125].

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-11 MOBK053-Metodi.cls October 30, 2006 19:29

TELEPORTATION-BASED QUANTUM ARCHITECTURES 121

Q

Q

some
encoded

state

BELL
corrective
operation

U

FIGURE 11.5: An implementation of a single-qubit operator U through teleportation. The imple-

mentation requires the preparation of an encoded state using two logical ancillary qubits and a Bell

measurement followed by the corrective operation.

Moreover, the |M〉 state can be prepared using two three-qubit cat states (|000〉 + |111〉), also

known as GHZ states [173], by applying a Bell measurement between two of the qubits in each

GHZ state followed by single-qubit gates controlled on the result of the Bell measurement [125].

The four qubits not involved in the Bell measurement will retain the |M〉 state and can be used

for the implementation of the cnot gate. This gives us a cnot gate mechanism that requires

only classically controlled single-qubit gates, a specially created four-qubit entangled state, and

two Bell basis measurements. Given that the creation of the |M〉 state can be performed offline,

and deterministically much like the creation of EPR qubits, then the cnot gate between two

logical qubit may be implemented without any direct qubit–qubit interaction.

Remotely entangling two qubits to form an EPR pair is possible [43, 95, 96]. In addition,

it may be possible to remotely entangle three qubits into a GHZ state, or even create a black box

mechanism that creates GHZ states of encoded qubits and distributes them in the architecture

through a repeater-based channel as used in the QLA model. Even if the black box consists

of traditional data shuttling to create qubit–qubit interactions for the encoded special states, it

can be localized to a special state “factory” region where the distances are short relative to the

application level system.

Gottesman and Chuang [125] further show that the same methodology can be used to

construct a teleportation-based mechanism for any encoded single-qubit logical operation. A

schematic for implementing an arbitrary single-qubit operator U is shown in Fig. 11.5.

The universal gate set we are considering only requires a teleportation implementation

for the T gate for any other single-qubit gate is transversal and can be applied locally. The T

gate circuit shown in Fig. 5.5 of Section 5.3 is much simpler than the network of Fig. 11.5 and

utilizes the concept of one-bit teleportation [174]; however, it requires a cnot gate between the

data state and the specially prepared |Aπ/8〉 ancilla state. To avoid direct qubit–qubit interaction,

the required cnot gate in Fig. 5.5 can be implemented using the teleportation circuit shown in

Fig. 11.2 with the resource cost of four additional qubits for the creation of the |M〉 state.

11.2 THE ARCHITECTURE
We are faced with two gate implementation choices. The first one is to teleport data to a

processing region using the repeater-based interconnect, and the second choice is to teleport

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-11 MOBK053-Metodi.cls October 30, 2006 19:29

122 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

Anc

x1

s1

C

s2

x2

TT’H T ’

T’ T’

T

T

S

H

Anc

x1

s1

C

s2

x2

TT’H T ’

T’ T’

T

T

S

H

FIGURE 11.6: The model used by in [175] to distinguish between teleporting data and teleporting

gates in a distributed quantum computer. The upper half of the figure shows a 2-bit adder of six qubits

where the middle Toffoli gate has been expanded into its one- and two-qubit gate decomposition. The

thin dashed line separates the two processing regions evenly as it is intended to illustrate that gates are

teleported from one region to the other, while the data remains in place. The lower part of the figure

shows data teleportation as described by the QLA architecture.

gates through specially created ancillary states. Fig. 11.6 shows the distinction between the two

choices of distributing quantum computation in the two-bit adder from Section 2.2.1. The

adder is divided into two main processing regions that initially perform computation in parallel

through the first two time steps. The third time steps requires a Toffoli gate between the ancilla

qubit in the first region and two qubits from the lower (second) region. The Toffoli gate has

been decomposed into elementary one- and two-qubit gates in the dashed box of each half of

Fig. 11.6. If the two three-qubit regions are significantly far apart, we have a choice to teleport

the data as described in Section 9.2, or to teleport the qubits through the gates involved in the

decomposition of the Toffoli gate (see Fig. 2.5 in Section 2.2.1).

The trade-offs associated with teleporting gates as we discussed so far have been given

in more detail in [175], and teleporting data on a distributed quantum computer, where the

schematic distinction shown in Fig. 11.6, is introduced. The authors base their study on several

implementations of the adders used for Shor’s factoring algorithm and find that, at the large-

scale, it is more expensive to teleport gates than it is to teleport data in terms of the number

of elementary operations competing for shared resources. The authors of [175] use a clever

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-11 MOBK053-Metodi.cls October 30, 2006 19:29

TELEPORTATION-BASED QUANTUM ARCHITECTURES 123

0

0

0

0

Q1

Q2

BELL

BELL

Q1 (xor) Q2

Q1

EPR

H H

H

X Z Z

X X

FIGURE 11.7: Teleporting two-qubits through a controlled-NOT gate that requires four ancillary

qubits, but only two need to be encoded as an EPR pair. The other two are used to couple with the data

before the Bell measurement operation.

construction of the teleported cnot gate that does not require the four ancillary qubits to be

placed in the |M〉 state and leaves the cnot gate implementation in the encoded data qubits,

rather than in the EPR qubits. Their construction is shown in Fig. 11.7.

The underlying architecture is based on solid-state qubits coupled indirectly through

a universal quantum bus [97, 98]. Similar distributed architecture can be realized with the

ion-trap technology by coupling two ions through photo detector stations and beam splitters

[43, 95, 96]. The quantum bus connects the distributed pieces of the application level system,

where each piece uses transceiver qubits to connect to the bus. In this manner, data or gates

can be transferred between multiple distributed regions by using the transceiver qubits as EPR

pairs for teleportation. Two transceiver qubits in different regions can be remotely entangled

through the quantum bus.

Intuitively, the observation that teleporting gates are less efficient than teleporting data is

reasonable when looking at Fig. 11.6. Once the data is teleported to a specific region, it becomes

local to that region and the sequence of gates can be executed directly to complete the Toffoli

operation without much communication overhead. On the other hand, the teleportation of

gates requires repeated usage of the quantum bus and the contention for the transceiver qubits

increases [175].

But what about encoded gates on fault-tolerantly constructed logical qubit states, which

will undoubtedly be required for large-scale applications? The cnot gate construction in Fig.

11.7 is not a truly teleported cnot gate because it requires two local cnot operations between

the data qubits and the ancillary qubits before the Bell measurement procedure. If locally

executed cnot gates are allowed where data is transferred between the control qubit and the

target qubit, then we can use much simpler teleportation-based cnot gate construction given

in [174]. Fig. 11.8 shows two versions of a teleported cnot gate where only two ancillary qubits

are required as an encoded EPR pair between the control and target qubits.

An interesting trade-off would be to study the optimal logical distances at which tra-

ditional direct interaction cnot gates are allowed, and larger distances where cnot gates are

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-11 MOBK053-Metodi.cls October 30, 2006 19:29

124 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

A

0

0

B

X

X

Z

Z

A

A (xor) B
EPR

H

A

0

0

B

A

A (xor) B

EPR
H

Z

X

X

FIGURE 11.8: Two versions of a simplified “remote” cnot gate.

sent through teleportation procedures through remote data coupling. Our architecture can be

a distributed logical architecture, where there are N regions labeled {R1, R2, . . . , RN}, which

contain both logical data qubits and logical ancillary qubits used for the creation of specialized

states for gate teleportation. This has the potential to significantly improve the reliability of

the application. Standard direct interaction logical cnot gates are executed within each region.

The logical data never leaves to another region, but inter-region cnot gates are implemented

through the specialized ancillary qubits in each region.

This scheme has the potential to significantly improve the reliability of the architecture,

as logical gate distances between regions are relatively short, and inter-region gates are tele-

ported. The specialized states between regions can be prepared independently of the execution

of the application and verified for correctness. The coupling of the individual qubits can be

done remotely through entangling trapped ions through fiberoptic wires or using the shared

quantum bus. Only specialized states that pass the verification procedures will be used for gate

teleportation where Bell measurements are performed. Of course, this scheme would require

sufficient amount of resources invested in the preparation of the specialized ancillary states for

gate teleportation. The logical data qubits and specialized ancillary qubits would necessarily

be equipped with the error-correction mechanisms needed for each logical qubit tile, further

increasing the amount of error-correction resources.

An alternative construction would be to use gate teleportation to speed up quantum

applications. For example, if qubits Q1 and Q2 are required for a certain sequence of operations

and the two qubits reside in the memory region, the first operation in the program can be

performed while teleporting the qubits to the processing region.

11.3 ERROR CORRECTION THROUGH TELEPORTATION
Even more amazing are the potential system level error-correction advantages gained when

allowing sufficient interconnect bandwidth such that encoded EPR pairs are communicated

instead of elementary EPR pairs. Note the relationship between the control data qubit and

the nearest EPR qubit in Fig. 11.8 (lines 1 and 2). If the qubits are encoded using some CSS

[[n, k, d]] code such as the Steane [[7, 1, 3]] code, then the sequence of operations between lines

1 and 2 is strikingly similar to the Steane method for error correction. As a matter of fact it

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-11 MOBK053-Metodi.cls October 30, 2006 19:29

TELEPORTATION-BASED QUANTUM ARCHITECTURES 125

is the Steane method, and while we are teleporting the gate, the measurement performed is

equivalent to extracting the error syndrome of the data.

In fact, teleportation itself is error correction. Let’s take a step back and consider the

standard teleportation procedure that simply teleports quantum data as in the original circuit of

Fig. 2.8 in Section 2.3.1, or the cnot gate from Fig. 11.2. If less than t = (d − 1)/2 errors have

occurred on the logical data by the time the Bell measurement is complete, then the encoded

state of the qubit will be correctly identified through the logical measurement operation. The

correct state will then be recreated at the destination EPR logical qubit. If the EPR qubit

is sufficiently well distilled, teleportation is another method for correcting errors on encoded

data. The only difference is that the data is not corrected in place given some error syndrome

but recreated at some other location marked by the logical destination EPR qubit. A large-

scale system designer can explore the potential trade-offs that may arise in the fault-tolerant

properties of the architecture vs. the required communication bandwidth as encoded EPR pairs

are used to connect distant logical qubits. One of the most intuitive potential advantages offered

by teleportation-based error correction is the possibility to reduce the number of error correction

procedures required to perform on the logical data after each computational step.

Knill [64, 93, 94] has studied the fault tolerant properties of using teleportation as error-

correction protocol applied on linear optical architectures. He has devised extensive error-

detecting code procedures and has demonstrated that the accuracy threshold for scalable quantum

computation can be as high as 1% error rate per physical gate. His method of postselected

quantum computation uses the property that logical states used for computation are accepted

only if no errors are detected with sufficiently high probability. He uses simple two-and six-

qubit concatenated quantum error-detecting codes to show that, by postselecting the output of

the logical operations, the probability of error in his architecture can be reduced arbitrarily. All

quantum logic in knill’s architecture models is performed through teleportation of gates rather

than direct qubit-qubit interactions.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-11 MOBK053-Metodi.cls October 30, 2006 19:29

126

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-12 MOBK053-Metodi.cls October 30, 2006 19:30

127

C H A P T E R 1 2

Concluding Remarks

In this book, we have explored the design of large-scale quantum architectures in the context

of system-level balance between fault-tolerant, logical qubit structures and communication

mechanisms that protect quantum data while in transmission. Logical qubit structures include

the number of ancillary qubits necessary for the required rate of error correction. The bandwidth

of the interconnect channels is balanced with the size and speed of the computational blocks

that work on these logical qubits. The distribution of the quantum computational resources

is matched to the application’s support for gate teleportation or data teleportation, and thus

allowing for the creation of logical teleportation resources. The amount of usage for different

error-correcting codes or levels of encoding is matched to the size of the application and the

needed reliability to finish the application with a high enough success rate. In general, the

inherently high decoherence rate of quantum information places the issue of fault tolerance at

the heart of a balanced system design.

Design of large-scale quantum systems is in its infancy. As quantum technologies continue

to improve, however, the opportunities for system designers will dramatically increase. There

are already several groups exploiting these opportunities:

• Emanuel Knill at the National Institute for Standards and Technology (NIST) is the

leading architect behind fault-tolerant optical systems with teleportation-based error

correction and gate implementations [64, 94]. His leading work in teleportation-based

error detecting and correcting schemes offers one of the most viable alternatives to the

architectures based on the Steane method of error correction.

• Mark Oskin and David Bacon at the University of Washington are working to design

tools to study and model quantum architectures based on some of the most efficient

error-correcting codes known [53, 54, 146, 147, 176].

• Mircea Vladutiu from the Politehnica University of Timisoara, Romania has published

extensively about modeling quantum algorithms on reconfigurable circuit structures

that use reconfigurability to improve the scalability of quantum error-correcting codes

[177, 178]

• Researchers at the Quantum Architectures Research Center (QARC) led by Isaac

Chuang at MIT, Frederic T. Chong at UC Santa Barbara, Mark Oskin at the University

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-12 MOBK053-Metodi.cls October 30, 2006 19:30

128 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

of Washington, and John Kubiatowicz at UC Berkeley, have made a significant impact

on the studying of the implementation and control of classical control structures for

emerging quantum technologies [153, 54, 179].

• Teleportation-based distributed quantum systems for large-scale applications are being

studied at Keio University, Japan guided by Kohei Itoh [175, 176].

• The quantum circuits led by Igor Markov and Columbia (Alfred Aho) have provided sig-

nificant contributions to quantum logic circuit synthesis and testing, including the devel-

opment of fault-tolerant software architecture for quantum computers that maps a high-

level program into fault-tolerant machine-level instructions [127, 130, 162, 166, 167].

• The QLA Model has recently provided a base architecture for system designers to work

with and improve as evidenced from the work led by Prof. T. N. Vijaykumar at Purdue

University.

• In general, the numerous theoretical and experimental research projects that are ongo-

ing, make the field of quantum computing one of the fastest growing fields of science.

We have focused on the QLA architecture as a case study from which to develop a frame-

work of architectural abstractions. To model the QLA architecture we have made some very

strict design assumptions such as the fault-tolerant structure of the long-distance interconnect,

the error-correcting code of the encoded qubits, and finally the low-level microarchitecture

model based on the ion-trap technology. While the assumptions made are sufficient to demon-

strate that, within existing technological boundaries, scalable quantum computation is feasible,

there are still many possibilities for constructing the basic fault-tolerant elements of an archi-

tecture. Our hope is that this book will help provide the necessary background and abstractions

for system designers to explore this space of technologies and potential designs. Leveraging

our collective experience in computer design will be instrumental in making practical quantum

computing a reality.

ACKNOWLEDGMENTS
The authors would like to thank their research collaborators, Darshan Thaker, Jedidiah Crandall,

John Oliver (all from UC Davic), Andrew Cross, and Professor Isaac Chuang from MIT for

discussing much of the material with us and most importantly providing us with useful criticism

for the content of this book. We would also like to thank MIT ion trappers Ken Brown,

Jaroslaw Labaziewicz, and Rob Clark for answering technical questions about the physical

implementations of quantum computers. Rodney Van Meter (Keio University, Japan), Marc de

Kruijf (University of Madison, Wisconsin), Jack Lewin (UCI) provided invaluable line-by-line

comments in the later stages of writing. And finally, we thank Mark Hill from the University

of Wisconsin, Madison for making this book possible and subsequently providing us with the

necessary guidance for the content of the book.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

Appendix MOBK053-Metodi.cls October 30, 2006 19:31

129

Appendix Timeline of Quantum

Computers

The timeline for quantum computation is largely taken from [180] with some needed addi-

tions such as references to the relevant articles and additional technological and theoretical

contributions we found important to include.

1973 • Alexander Holevo publishes a paper showing that n qubits cannot carry more than n

classical bits of information [29].

1975 • R. P. Poplavskii shows that simulating quantum systems on classical computers is

computationally infeasible due to the superposition principle [181].

1976 • Polish mathematical physicist Roman Ingarden [182] shows that Shannon information

theory cannot directly be generalized to the quantum case, but rather that it is possible to

construct a quantum information theory which is a generalization of Shannon’s theory.

1980 • Yuri Manin discusses the need for a theory of quantum computation that captures

the fundamental principles of computation without committing to a physical realization

[183].

1981 • Richard Feynman in his talk at the First Conference on the Physics of Computation,

held at MIT, observed that the act of setting up a multiparticle interference experiment

and measuring the outcome is equivalent to performing quantum computation exponen-

tially more powerful than the classical simulation of the experiment. • Tommaso Toffoli

introduced the reversible Toffoli gate [34], which provides a universal set for reversible

classical computation.

1984 • Charles Bennett and Gilles Brassard employ Wiesner’s conjugate coding for distribu-

tion of cryptographic keys [40, 16].

1985 • David Deutsch describes the first universal quantum computer based on a universal

quantum Turing machine [5, 4].

1991 • Artur Ekert invents entanglement-based secure communication [184].

1993 • Dan Simon invents an oracle problem for period finding, where a quantum computer

would be exponentially faster than conventional computer [39].

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

Appendix MOBK053-Metodi.cls October 30, 2006 19:31

130 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

1994 • Peter Shor extends Simon’s work to create an algorithm that allows a quantum computer

to factor large integers quickly [7]. The algorithm solves both the factoring problem and

the discrete log problem becoming the first discovery that threatens the security of some

of the most important cryptographic schemes such as the RSA [8] public key encryption.

Additionally, physical realization of Shor’s algorithm quickly becomes the driving force

behind realizing scalable and reliable quantum computation.

1995 • Benjamin Schumacher discovers a way to interpret quantum states as information

and coins the term qubit [30]. • Ignacio Cirac, at University of Castilla-La Mancha at

Ciudad Real, and Peter Zoller and the University of Innsbruck proposed an experimental

realization of the controlled-NOT gate with trapped ions [24]. • Peter Shor and Andrew

Steane simultaneously proposed the first schemes for quantum error correction. This is

recognized as the key technology for building large-scale quantum computers that work

and the first step toward eliminating the prohibitive nature of decoherence. • Christopher

Monroe and David Wineland at NIST (Boulder, Colorado) experimentally realize the

first quantum logic gate with trapped ions, according to Cirac and Zoller’s proposal.

1996 • Lov Grover invents the quantum database search algorithm [10], allowing the po-

tential to solve in quadratic time any brute-force random search problem. • Daniel

Gottesman publishes the first paper [115] that classifies the stabilizer class of quantum

error-correcting codes and defines the stabilizer formalism.

1997 • David Cory, Amr Fahmy, and Timothy Havel [56], and at the same time Neil

Gershenfeld and Isaac L. Chuang at MIT [57], publish the first papers on quantum

computers based on bulk spin resonance. Qubits are stored in the spin of the protons and

neutrons of small molecules and placed in MRI machines.

1998 • Chuang, Gershenfeld, and Kubinec demonstrate the first execution of Grover’s algo-

rithm [185]. • Daniel Gottesman formulates the Heisenberg representation for quantum

codes [186], which is responsible for the Gottesman–Knill theorem allowing efficient

simulation of stabilizer quantum circuits.

1999 • Sympathetic cooling is used to cool trapped ions for quantum computation [103].

• Distant atoms are entangled indirectly by coupling them with photon-based qubits

[58]. • Daniel Gottesman and Isaac Chuang demonstrate that quantum teleportation

can be used as a logically universal computational primitive [125].

2000 • Researches at the Technical University of Munich demonstrate the first work-

ing five-qubit NMR quantum computer [187]. • Briegel and Raussendorf formulate

the cluster-state model for quantum computation which allows universal computation

through single-qubit measurements [46]. • David DiVincenzo formulates the five plus

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

Appendix MOBK053-Metodi.cls October 30, 2006 19:31

APPENDIX TIMELINE OF QUANTUM COMPUTERS 131

two requirements for quantum technologies proposals that aim to demonstrate scalable,

general-purpose quantum computation [32].

2001 • First execution of Shor’s algorithm at IBM’s Almaden Research Center led by Isaac

Chuang and researchers at Stanford University [1]. The number 15 was factored using

1018 identical molecules, each containing seven active nuclear spins. • Experimental

implementation of the order-finding algorithm is demonstrated by the same research team

[188]. • Emanuel Knill develops an efficient scheme of scalable quantum computation

using linear optical components and measurements [64].

2002 • The Quantum Information Science and Technology Roadmapping Project, involving

some of the main participants in the field, laid out the quantum computation roadmap

[52]. • Mark Oskin, Fred Chong, and Isaac Chuang publish the first work on comprehen-

sive scalable quantum architecture design [53]. • Kielpinski, Wineland, and Monroe

propose the CCD-based architecture as the first truly scalable scheme for large-scale

quantum computation based on the trapped-ions technology [25].

2003 • Shi-Biao Zheng and colleagues experimentally demonstrate quantum teleportation

using the cluster state model for quantum computing [47]. • Michael Freedman and

colleagues from Caltech formulate the topological model for quantum computation [51].

2004 • A collaboration of researchers proves that adiabatic quantum computation is equiva-

lent to the circuit model of quantum computing [45]. • Michael Nielsen and C. Daw-

son publish the first work on scalable fault-tolerant computation using cluster states

[48]. • Independent experiments at the National Institute for Standard and Tech-

nology (NIST) [77] led by David Wineland and a team in Austria [78] led by Rainer

Blatt successfully realize quantum teleportation with trapped atomic ions. Their ex-

periments demonstrate all necessary components in practice for a scalable quantum

architecture.

2005 • Researchers at the Georgia Institute of Technology led by Alex Kuzmich demonstrate

storage and retrieval of single photonic qubit states between remote quantum memories

[189] by transferring the state from photons to atoms and back again, marking an im-

portant step toward distributed quantum computation. • A scalable quantum computer

chip for atomic qubits was built for the first time by researchers at the University of

Michigan led by Christopher Monroe [108], offering hopes for making a practical quan-

tum computer using conventional semiconductor manufacturing technology. • David

Bacon from the University of Washington develops the idea of self-correcting quantum

memories using operator quantum error correction [1], which leads David Poulin from

Caltech to formulate the highly efficient structure of the Bacon-Shor codes [2].

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

Appendix MOBK053-Metodi.cls October 30, 2006 19:31

132 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

2006 • HP Labs’ Quantum Information Processing Group begins finding ways to use photons,

or light particles, for information processing, rather than the electrons used in digital elec-

tronic computers today [190]. Their work holds promise for someday developing faster,

more powerful, and more secure computer networks. • Peter Zoller, from the University

of Innsbruck in Austria, discovers method of using cryogenic polar molecules to make

stable quantum memories [191]. • Researchers at Cambridge University and Toshiba

announce a new quantum device that produces entangled photons [192]. • Ameenah

Al-Ahmadi and Sergio Ulloa from Ohio University discover how to make coherent light

travel between quantum dots, facilitating communication in optical quantum computers

[193]. • Sam Braunstein at the University of York along with the University of Tokyo,

and the Japan Science and Technology Agency gave the first experimental demonstration

of quantum telecloning [194]. Researches led by David Wineland at NIST are able to

trap atomic ions on a silicon-based chip paving the way for smaller and more reliable

ion-trap quantum computers [61]. • Researchers at the University of California Santa

Barbara led by J. Martinis and University of California Riverside led by A. Korotkov

experimentally demonstrate measurement of superconducting qubits [1] • Researchers

at the University of Southern California led by Min-Hsiu Hsieh develop an alternative

theory of quantum error correction using entanglement [2].

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-ref MOBK053-Metodi.cls October 30, 2006 20:44

133

References

[1] L. M. Vandersypen et al., “Experimental realization of Shor’s quantum factor-

ing algorithm using nuclear magnetic resonance,” Nature, Vol. 414, p. 883, 2001.

doi:10.1038/414883a

[2] J. Kim, S. Pau, Z. Ma, H. R. McLellan, J. V. Gates, A. Kornblit, and R. E. Slusher,

“System design for a large-scale ion-trap quantum information processor,” Quantum Inf.

Comput., Vol. 5, No. 7, pp. 515, 2005.

[3] P. Benioff, “Quantum mechanical models of Turing machines that dissipate no energy,”

Phys. Rev. Lett., Vol. 48, pp. 1581–1585, 1982. doi:10.1103/PhysRevLett.48.1581

[4] D. Deutsch, “Quantum theory, the Church-turing principle and the universal quantum

computer,” In Proc. R. Soc. Lond., Vol. A 400, pp. 97–117, 1985.

[5] D. Deutsch, “Quantum computational networks,” Proc. R. Soc. Lond., Vol. A 400,

pp. 97–117, 1985.

[6] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM J. Comput., Vol. 26,

No. 5, pp. 1411–1473, 1997. doi:10.1137/S0097539796300921

[7] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms

on a quantum computer,” in 35th Annual Symposium on Foundations of Computer Science,

1994, pp. 124–134.

[8] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures

and public-key cryptosystems,” Commun. ACM, Vol. 21, No. 2, pp. 120–126, 1978.

doi:10.1145/359340.359342

[9] J. P. Buhler, H. W. Lenstra, and C. Pomerance, “Factoring integers with the number

field sieve,” The Development of the Number Field Sieve, Lecture Notes in Mathematics,

Vol. 1554, Berlin: Springer-Verlag, 1994, pp. 50–94.

[10] L. Grover, “A fast quantum mechanical algorithm for database search,” in Symposium

on Theory of Computing (STOC 1996), pp. 212–219.

[11] A. M. Childs, E. Farhi, and J. Preskill, “Robustness of adiabatic quantum computation,”

Phys. Rev. A, Vol. 65, 2002, quant-ph/0108048.

[12] I. L. Chuang, “Quantum algorithm for clock synchronization,” Phys. Rev. Lett.,

Vol. 85, 2006, 2000, quant-ph/0005092.

http://dx.doi.org/10.1038/414883a
http://dx.doi.org/10.1103/PhysRevLett.48.1581
http://dx.doi.org/10.1137/S0097539796300921
http://dx.doi.org/10.1145/359340.359342

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-ref MOBK053-Metodi.cls October 30, 2006 20:44

134 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

[13] C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and

coin tossing,” in IEEE International Conference on Computers, Systems, and Signal Pro-

cessing, 1984, pp. 175–179.

[14] W. van Dam and G. Seroussi, “Efficient quantum algorithms for estimating gauss sums,”

2002, e-print: quant-ph/0207131. doi:10.1103/PhysRevLett.77.2818

[15] S. Hallgren, “Polynomial time quantum algorithms or Pell’s equation and the princi-

pal ideal problem,” in Symposium on Theory of Computing (STOC 2002), May 2002,

pp. 653–658.

[16] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quan-

tum cryptography,” J. Cryptogr., Vol. 5, No. 1, 1992.

[17] S. M. Barnett and S. J. D. Phoenix, “Information-theoretic limits to quantum cryptog-

raphy,” Phys. Rev. A, Vol. 48, No. 1, pp. R5–R8, 1993.

[18] D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum

privacy amplification and the security of quantum cryptography over noisy channels,”

Phys. Rev. Lett., Vol. 77, 1996, pp. 2818–2821. doi:10.1103/PhysRevLett.77.2818

[19] H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution,” Science,

Vol. 283, pp. 2050–2056, 1999, quant-ph/9803006. doi:10.1126/science.283.5410.2050

[20] T. Nakassis, J. C. Beinfang, P. Johnson, A. Mink, D. Rogers, X. Tang, and C. J. Williams,

“Has quantum cryptography been proven secure,” in Proc. SPIE Defense and Security

Symposium, Orlando, FL, 2006.

[21] G. Gelfond, MagiQ technologies. www.magiqtech.com, 2002.

doi:10.1103/PhysRevLett.74.4091

[22] G. Ribordy, O. Guinnard, and H. Zbinden, “id Quantique,” www.idquantique.com,

2004.

[23] P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys.

Rev. A, Vol. 54, pp. 24–93, 1995.

[24] J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev.

Lett, Vol. 74, pp. 4091–4094, 1995. doi:10.1103/PhysRevLett.74.4091

[25] D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap

quantum computer,” Nature, Vol. 417, pp. 709–711, 2002. doi:10.1038/nature00784

[26] C. H. Bennett et al., “Teleporting an unknown quantum state via dual clas-

sical and EPR channels,” Phys. Rev. Lett., Vol. 70, pp. 1895–1899, 1993.

doi:10.1103/PhysRevLett.70.1895

[27] T. S. Metodi, D. D. Thaker, A. W. Cross, F. T. Chong, and I. L. Chuang, “A

quantum logic array microarchitecture: scalable quantum data movement and com-

putation,” in Proc. 38th International Symposium on Microarchitecture, MICRO-38,

2005.

http://dx.doi.org/10.1103/PhysRevLett.77.2818
http://dx.doi.org/10.1103/PhysRevLett.77.2818
http://dx.doi.org/10.1126/science.283.5410.2050
http://dx.doi.org/10.1103/PhysRevLett.74.4091
http://dx.doi.org/10.1103/PhysRevLett.74.4091
http://dx.doi.org/10.1038/nature00784
http://dx.doi.org/10.1103/PhysRevLett.70.1895

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-ref MOBK053-Metodi.cls October 30, 2006 20:44

REFERENCES 135

[28] D. D. Thaker, T. S. Metodi, A. W. Cross, F. T. Chong, and I. L. Chuang, “Quantum

memory hierarchies: efficient designs to match available parallelism in quantum com-

puting,” in International Symposium of Computer Architecture (ISCA-33), Boston, MA,

2006.

[29] A. S. Holevo, “Bounds for the quantity of information transmitted by a quantum com-

munication channel,” Prob. Pered. Inf, Vol. 9, No. 3, pp. 3–11, 1973.

[30] B. Schumacher, “Quantum coding,” Phys. Rev. A, Vol. 51, pp. 2738–2747, 1995.

doi:10.1103/PhysRevA.51.2738

[31] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proc.

R. Soc. Lond., Vol. A 439, pp. 553–558, 1992.

[32] D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschr.

Phys., Vol. 48, pp. 771–783, 2000, quant-ph/0002077. doi:10.1038/299802a0

[33] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator,

J. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev.

A., Vol. 52, p. 3457, 1995, quant-ph/9503016.

[34] T. Toffoli, Reversible Computing, New York: Springer, 2000.

[35] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, “Quantum Algorithms Revisited,”

In Proceedings of the Royal Society of London, Vol. A, No. 454, pp. 339–354, 1997,

quant-ph/9708016.

[36] G. Song and A. Klappenecker, “Optimal realizations of controlled unitary gates,”

J. Quantum Inform. Comput., Vol. 3, No. 2, pp. 139–155, 2003, quant-ph/0207157.

[37] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature,

Vol. 299, pp. 802–803, 1982. doi:10.1038/299802a0

[38] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information,

Cambridge, UK: Cambridge University Press, 2000.

[39] D. Simon, “On the power of quantum computation,” in Proc. 35th Annual Symposium on

Foundations of Computer Science IEEE Computer Society Press, Los Alamitos, CA, 1994,

pp. 116–123.

[40] C. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on

Einstein–Podolsky–Rosen states,” Phys. Rev. Lett., Vol. 69, No. 2881, 1992.

[41] A. Harrow, P. Hayden, and D. Leung, “Superdense coding of quantum states,” Phys.

Rev. Lett., Vol. 92, No. 187901, 2004, quant-ph/0307221.

[42] F. A. Wolf, Taking the Quantum Leap, San Francisco, CA: Harper and Snow, 1981.

[43] C. Monroe, “Quantum information processing with atoms and photons,” Nature,

Vol. 416, pp. 238, 2002. doi:10.1038/416238a

[44] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum Computation by Adia-

batic Evolution,” 2000, quant-ph/0001106. doi:10.1103/PhysRevLett.86.910

http://dx.doi.org/10.1103/PhysRevA.51.2738
http://dx.doi.org/10.1038/299802a0
http://dx.doi.org/10.1038/299802a0
http://dx.doi.org/10.1038/416238a
http://dx.doi.org/10.1103/PhysRevLett.86.910

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-ref MOBK053-Metodi.cls October 30, 2006 20:44

136 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

[45] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, “Adiabatic

quantum computation is equivalent to standard quantum computation,” 2004.

[46] H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interact-

ing particles,” Phys. Rev. Lett, Vol. 86, pp. 910–913, 2001, quant-ph/0004051.

doi:10.1103/PhysRevLett.86.910

[47] B. Zeng, D. L. Zhou, Z. Xu, and C. P. Sun, “Quantum teleportation using cluster

states,” Quantum Physics, 2003, e-print: quant-ph/0304165.

[48] M. A. Nielsen and C. M. Dawson, “Fault-Tolerant Quantum Computation with Cluster

States,” 2004. doi:10.1038/35002528

[49] M. Nielsen, “Optical quantum computation using cluster states,” Phys. Rev. Lett,

Vol. 93 (040503), 2004, quant-ph/0402005.

[50] J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, “Geometric quantum com-

putation using nuclear magnetic resonance,” Nature, Vol. 403, pp. 869–871, 2000.

doi:10.1038/35002528

[51] M. H. Freedman, A. Kitaev, M. J. Larsen, and Z. Wang, “Topological quantum

computation,” Bull. Am. Math. Soc., Vol. 40, pp. 31–38, 2003, quant-ph/0101025.

doi:10.1090/S0273-0979-02-00964-3

[52] D. Wineland and T. Heinrichs, “Ion trap approaches to quantum information processing

and quantum computing,” in A Quantum Information Science and Technology Roadmap,

2004. URL: http://quist.lanl.gov.

[53] M. Oskin, F. Chong, and I. Chuang, “A Practical Architecture for Reliable Quantum

Computers,” IEEE Comput., Vol. 35, No. 1, p. 79–87, January 2002.

[54] M. Oskin, F. T. Chong, J. Kubiatowicz, and I. L. Chuang, “Building quantum wires:

the long and the short of it,” in ISCA-30, San Diego, CA, 2003.

[55] D. Copsey et al., “Toward a Scalable, Silicon-Based Quantum Computing Archi-

tecture,” Selected Topics, J. Quantum Electron., Vol. 9, No. 6, pp. 1552–1569, 2003.

doi:10.1109/JSTQE.2003.820922

[56] D. Cory, A. Fahmy, and T. Havel, “Nuclear magnetic resonance spectroscopy: an exper-

imentally accessible paradigm for quantum computing,” in Proc. 4th Workshop on Physics

and Computation, New England Complex Systems Institute, 1996.

[57] N. A. Gershenfeld and I. L. Chuang, “Bulk spin-resonance quantum computation,”

Science, Vol. 275, No. 350, pp. 350–356, 1997. doi:10.1126/science.275.5298.350

[58] C. Cabrillo et al., “Creation of entangled states of distant atoms by interference,” Phys.

Rev. A, Vol. 59, pp. 1025–1033, 1999. doi:10.1103/PhysRevA.59.1025

[59] B. B. Blinov, L. Deslauriers, P. Lee, M. J. Madsen, R. Miller, and C. Monroe, “Sym-

pathetic cooling of trapped Cd+ isotopes,” Phys. Rev. A., Vol. 65, pp. 040–304, 2002.

http://dx.doi.org/10.1103/PhysRevLett.86.910
http://dx.doi.org/10.1038/35002528
http://dx.doi.org/10.1038/35002528
http://dx.doi.org/10.1090/S0273-0979-02-00964-3
http://dx.doi.org/10.1109/JSTQE.2003.820922
http://dx.doi.org/10.1126/science.275.5298.350
http://dx.doi.org/10.1103/PhysRevA.59.1025

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-ref MOBK053-Metodi.cls October 30, 2006 20:44

REFERENCES 137

[60] D. J. Wineland et al., “Experimental issues in coherent quantum-state manipulation of

trapped atomic ions,” J. Res. NIST, Vol. 103, pp. 259–328, 1998, quant-ph/9710025.

[61] J. Britton, D. Leibfried, J. Beall, R. B. Blakestad, J. J. Bollinger, J. Chiaverini, R. J.

Epstein, J. D. Jost, D. Kielpinski, C. Langer, R. Ozeri, R. Reichle, S. Seidelin, N. Shiga,

J. H. Wesenberg, and D. J. Wineland, “A microfabricated surface-electrode ion trap in

silicon,” 2006, quant-ph/0605170. doi:10.1103/PhysRevLett.62.2124

[62] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measure-

ment of conditional phase shifts for quantum logic,” Phys. Rev. Lett., Vol. 75, p. 4710,

1995.

[63] G. J. Milburn, “Quantum optical fredkin gate,” Phys. Rev. Lett., Vol. 62, pp. 2124–2127,

1989. doi:10.1103/PhysRevLett.62.2124

[64] E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation

with linear optics,” Nature, Vol. 409, pp. 46–52, 2001. doi:10.1038/35051009

[65] T. D. Ladd, J. R. Goldman, F. Yamaguchi, Y. Yamamoto, E. Abe, and K. M. Itoh, “An

All Silicon Quantum Computer,” Physics Online Archive, 2001.

[66] B. Kane, “A silicon-based nuclear spin quantum computer,” Nature, Vol. 393, pp. 133–

137, 1998. doi:10.1038/30156

[67] B. E. Kane, “Silicon based quantum computation,” Prog. Phys., Vol. 48, pp. 1023–1041,

2000.

[68] A. J. Skinner, M. E. Davenport, and B. E. Kane, “Hydrogenic spin quantum computing

in silicon: a digital approach,” Phys. Rev. L, Vol. 90, No. 087901, p. 1–4, 2003.

[69] G. Burkard, D. Loss, and D. P. DiVincenzo, “Coupled quantum dots as

quantum gates,” Phys. Rev. B, Vol. 59, pp. 20–70, 1999, cond-map/9808026.

doi:10.1103/PhysRevB.59.20

[70] S. Hellberg, “Robust quantum computation with quantum dots,” 2003, quant-

ph/0304150. doi:10.1109/77.622206

[71] Y. Makhlin, G. Schoen, and A. Shnirman, “Josephson-junction qubits with controlled

couplings,” Nature, Vol. 398, p. 305, 1999.

[72] M. Bocko, A. Herr, and M. Feldman, “Prospects for quantum coherent computation

using superconducting electronics,” IEEE Trans. Appl. Supercond., Vol. 7, pp. 3638–

3641, 1997. doi:10.1109/77.622206

[73] P. M. Platzman and M. I. Dykman, “Quantum computing with electrons floating on liq-

uid helium,” Science, Vol. 284, pp. 1967–1969, 1999. doi:10.1126/science.284.5422.1967

[74] V. Privman, I. D. Vagner, and G. Kventsel, “Quantum computation in quantum-hall

systems,” Phys. Lett. A, Vol. 239, p. 141, 1998.

[75] L. C. L. Hollenberg, A. S. Dzurak, C. Wellard, A. R. Hamilton, D. J. Reilly, G. J.

http://dx.doi.org/10.1103/PhysRevLett.62.2124
http://dx.doi.org/10.1103/PhysRevLett.62.2124
http://dx.doi.org/10.1038/35051009
http://dx.doi.org/10.1038/30156
http://dx.doi.org/10.1103/PhysRevB.59.20
http://dx.doi.org/10.1109/77.622206
http://dx.doi.org/10.1109/77.622206
http://dx.doi.org/10.1126/science.284.5422.1967

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-ref MOBK053-Metodi.cls October 30, 2006 20:44

138 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

Milburn, and R. G. Clark, “Charge-based quantum computing using single donors

in semiconductors,” Phys. Rev. B, Vol. 69, No. 113301, p. 1–4, 2003, cond-mat/

0306235.

[76] S. Amesha, K. MacLean, D. Zimbūhl, I. Radu, M. A. Kastner, M. P. Hanson, and

A. C. Gossard, “Toward the manipulation of a single spin in an algaas/gaas single-

electron transistor,” in Proc. SPIE Defense and Security Symposium, Orlando, FL, 2006.

[77] M. Barrett, J. Chiaverini, T. Schaetz, J. Britton, et al., “Deterministic quantum telepor-

tation of atomic qubits,” Nature, Vol. 429, 2004.

[78] M. Riebe, H. Haffner, C. F. Roos, et al., “Deterministic quantum teleportation with

atoms,” Nature, Vol. 429, No. 6993, pp. 734–737, 2004. doi:10.1038/nature02570

[79] R. Van Meter and M. Oskin, “Architectural implications of quantum computing tech-

nologies,” ACM Journal on Emerging Technologies in Computing Systems (JETC), Vol. 2,

No. 1, pp. 31–63, 2006. doi:10.1145/1126257.1126259

[80] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod.

Phys., Vol. 74, pp. 145–195, 2002. doi:10.1103/RevModPhys.74.145

[81] Z. Y. Ou and L. Mandel, “Violation of bell’s inequality and classical probability

in a twophoton correlation experiment,” Phys. Rev. Lett., Vol. 61, pp. 50–53, 1988.

doi:10.1103/PhysRevLett.61.50

[82] P. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih,

“New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.,

Vol. 75, pp. 4337–4341, 1995. doi:10.1103/PhysRevLett.75.4337

[83] P. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright

source of polarization-entangled photons,” Phys. Rev. A, Vol. 60, pp. 773–776, 1999.

doi:10.1103/PhysRevA.60.R773

[84] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger,

“Experimental quantum teleportation,” Nature, Vol. 390, pp. 575–579, 1997.

doi:10.1038/37539

[85] J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entan-

glement swapping: entangling photons that never interacted,” Phys. Rev. Lett., Vol. 80,

pp. 3891–3894, 1998. doi:10.1103/PhysRevLett.80.3891

[86] D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental

realization of teleporting an unknown pure quantum state via dual classical and

Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett., Vol. 80, pp. 1121–1125, 1998.

doi:10.1103/PhysRevLett.80.1121

[87] A. Furusawa, J. Sorensen, S. L. Braunstein, C. Fuchs, H. J. Kimble, and E. S.

Polzik, “Unconditional quantum teleportation,” Science, Vol. 282, pp. 706–709, 1998.

doi:10.1126/science.282.5389.706

http://dx.doi.org/10.1038/nature02570
http://dx.doi.org/10.1145/1126257.1126259
http://dx.doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1103/PhysRevLett.61.50
http://dx.doi.org/10.1103/PhysRevLett.75.4337
http://dx.doi.org/10.1103/PhysRevA.60.R773
http://dx.doi.org/10.1038/37539
http://dx.doi.org/10.1103/PhysRevLett.80.3891
http://dx.doi.org/10.1103/PhysRevLett.80.1121
http://dx.doi.org/10.1126/science.282.5389.706

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-ref MOBK053-Metodi.cls October 30, 2006 20:44

REFERENCES 139

[88] Y.-H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state

with a complete bell state measurement,” Phys. Rev. Lett., Vol. 86, pp. 1370–1373,

2001. doi:10.1103/PhysRevLett.86.1370

[89] P. A. Kwiat, J. R. Mitchell, P. D. D. Schwindt, and A. G. White, “Grovers

search algorithm: an optical approach,” J. Mod. Opt., Vol. 47, pp. 257–266, 2000.

doi:10.1080/095003400148187

[90] S. Takeuchi, “Analysis of errors in linear-optics quantum computation,” Phys. Rev. A,

Vol. 61, No. 052302, 2000.

[91] J. C. Howell, J. A. Yeazell, and D. Ventura, “Optically simulating a quantum associative

memory,” Phys. Rev. A, Vol. 62, No. 042303, 2000.

[92] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realiza-

tion of any discrete unitary operator,” Phys. Rev. Lett., Vol. 73, pp. 58–61, 1998.

doi:10.1103/PhysRevLett.73.58

[93] E. Knill, “Quantum gates using linear optics and postselection,” Phys. Rev. A, Vol. 66,

2002.

[94] E. Knill, “Quantum computing with very noisy devices,” 2004, quant-ph/0410199.

doi:10.1038/nature02377

[95] L. M. Duan, B. B. Blinov, D. L. Moehring, and C. Monroe, “Scalable trapped ion

quantum computation with a probabilistic ion-photon mapping,” 2004, e-print: quant-

ph/0401020.

[96] B. B. Blinov, D. L. Moehring, L. M. Duan, and C. Monroe, “Observation of en-

tanglement between a single trapped atom and a single photon,” Nature, Vol. 428,

pp. 153–157, 2004. doi:10.1038/nature02377

[97] D. N. Matsukevich and A. Kuzmich, “Quantum state transfer between matter and

light,” Science, Vol. 306, No. 5696, pp. 663–666, 2004. doi:10.1126/science.1103346

[98] T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. van Loock, and G. J.

Milburn, “Quantum computation by communication,” 2005, quant-ph/050902.

doi:10.1038/nature01492

[99] A. Sorensen and K. Molmer, “Entanglement and quantum computation with ions in

thermal motion,” Phys. Lett. A, Vol. 62, p. 02231, 2000.

[100] D. Leibfried et al., “Experimental demonstration of a robust, high-fidelity geometric two

ion-qubit phase gate,” Nature, Vol. 422, pp. 412–415, 2003. doi:10.1038/nature01492

[101] E. L. Hahn, “Spin echoes,” Phys. Rev., Vol. 80, pp. 580–594, 1950.

doi:10.1103/PhysRev.80.580

[102] J. V. Porto, S. Rolston, T. B. Laburthe, C. J. Williams, and W. D. Phillips, “Quan-

tum information with neutral atoms as qubits,” Phil. Trans. R. Soc. Lond., Vol. A361,

pp. 1417–1427, 2003.

http://dx.doi.org/10.1103/PhysRevLett.86.1370
http://dx.doi.org/10.1080/095003400148187
http://dx.doi.org/10.1103/PhysRevLett.73.58
http://dx.doi.org/10.1038/nature02377
http://dx.doi.org/10.1038/nature02377
http://dx.doi.org/10.1126/science.1103346
http://dx.doi.org/10.1038/nature01492
http://dx.doi.org/10.1038/nature01492
http://dx.doi.org/10.1103/PhysRev.80.580

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-ref MOBK053-Metodi.cls October 30, 2006 20:44

140 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

[103] B. B. Blinov, L. Deslauriers, P. Lee, M. J. Madsen, R. Miller, and C. Monroe, “Sym-

pathetic cooling of trapped ions for quantum logic,” Phys. Rev. A., Vol. 61, p. 032310,

2000, quant-ph/9909035.

[104] R. Ozeri et al., “Hyperfine coherence in the presence of spontaneous photon scattering,”

2005, ph/0502063. doi:10.1016/S0924-4247(99)00381-7

[105] A. M. Steane, “How to build a 300 bit, 1 gop quantum computer,” 2004, quant-

ph/0412165.

[106] M. A. Rowe et al., “Transport of quantum states and separation of ions in a dual rf ion

trap,” Quantum Inf. Comput., Vol. 2, pp. 257–271, 2002.

[107] J. Chiaverini, R. B. Blakestad J. Britton, J. D. Jost, C. Langer, D. Leibfried, R. Ozeri,

and D. J. Wineland, “Surface-electrode architecture for ion-trap quantum information

processing,” 2004, e-print: quant-ph/0501147.

[108] W. K. Hensinger, S. Olmschenk, D. Stick, D. Hucul, M. Yeo, M. Acton, L. Deslau-

riers, J. Rabchuk, and C. Monroe, “T-junction ion trap array for two-dimensional ion

shuttling, storage and manipulation,” 2005, quant-ph/0508097.

[109] S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, et al., “A microfabricated surface-

electrode ion trap for scalable quantum information processing,” 2006, e-print: quant-

ph/0601173.

[110] E. M. Chow, H. T. Soh, H. C. Lee, J. D. Adams, S. C. Minne, G. Yaralioglu, A. Ata-

lar, C. F. Quate, and T. W. Kenny, “Integration of through-wafer interconnects with

a two-dimensional cantilever array,” Sensors Actuators, Vol. 83, pp. 118–123, 2000.

doi:10.1016/S0924-4247(99)00381-7

[111] D. Rosn, J. Olsson, and C. Hedlund, “Membrane covered electrically isolated through-

wafer via holes,” J Micromech. Microeng., Vol. 11, p. 344, 2001.

[112] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach (The

Morgan Kaufmann Series in Computer Architecture and Design). San Francisco, CA:

Morgan Kaufman, 2003.

[113] A. Steane, “Error correcting codes in quantum theory,” Phys. Rev. Lett, Vol. 77,

pp. 793–797, 1996. doi:10.1103/PhysRevLett.77.793

[114] E. Knill and R. Laflamme, “A theory of quantum error-correcting codes,” Phys. Rev. A,

Vol. 55, pp. 900–911, 1997, quant-ph/9604034. doi:10.1103/PhysRevA.55.900

[115] D. Gottesman, “A class of quantum error-correcting codes saturating the quantum

hamming bound,” Phys. Rev. A, Vol. 54, pp. 18–62, 1996, quant-ph/9604038.

[116] D. Aharonov and M. Ben-Or, “Fault tolerant computation with constant error,”

pp. 176–188, quant-ph/9906129. doi:10.1080/095003400148240

[117] A. Y. Kitaev, “Quantum error correction with imperfect gates,” in 3rd Int. Conf. of

Quantum Communication and Measurement, 1997, pp. 181–188.

http://dx.doi.org/10.1016/S0924-4247(99)00381-7
http://dx.doi.org/10.1016/S0924-4247(99)00381-7
http://dx.doi.org/10.1103/PhysRevLett.77.793
http://dx.doi.org/10.1103/PhysRevA.55.900
http://dx.doi.org/10.1080/095003400148240

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-ref MOBK053-Metodi.cls October 30, 2006 20:44

REFERENCES 141

[118] D. Gottesman, “Fault tolerant quantum computation with local gates,” J. Mod. opt.,

Vol. 47, pp. 333–345, 2000, quant-ph/9903099. doi:10.1080/095003400148240

[119] A. M. Steane, “Overhead and noise threshold of fault-tolerant quantum error correc-

tion,” 2002, e-print: quant-ph/0207119. doi:10.1109/18.796388

[120] A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,” Phys.

Rev. A, Vol. 54, p. 1098, 1996.

[121] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, “Enlargement

of Calderbank-Shor-Steane quantum codes,” IEEE Trans. Inform. Theor., Vol. 45,

pp. 2492–2495, 1999, quant-ph/9802061. doi:10.1109/18.796388

[122] D. A. Lidar and L.-A. Wu, “Encoded recoupling and decoupling: an alternative to

quantum error correcting codes, applied to trapped ion quantum computation,” Phys.

Rev. A., Vol. 67, No. 032313, 2003.

[123] J. Von Neuman, “Probabilistic logic and the synthesis of reliable organisms from unre-

liable components,” in Automata Series, C. Shannon and J. McCarthy, Eds., Princeton,

NJ: Princeton Univ. Press, 1956, pp. 43–98.

[124] A. M. Steane, “Space, time, parallelism and noise requirements for reliable quan-

tum computing,” Fortsch. Phys., Vol. 46, pp. 443–458, 1998, quant-ph/9708021.

doi:10.1038/46503

[125] D. K. Gottesman and I. L. Chuang, “Quantum teleportation is a universal computational

primitive,” Nature, Vol. 402, pp. 390–392, 1999, quant-ph/9908010. doi:10.1038/46503

[126] D. Gottesman, “Theory of fault-tolerant quantum computation,” Phys. Rev. A, Vol. 57,

pp. 127–137, 1998, quant-ph/9702029. doi:10.1103/PhysRevA.57.127

[127] K. M. Svore, A. W. Cross, A. V. Aho, I. L. Chuang, and I. L. Markov, “Toward a

software architecture for quantum computing design tools,” in Workshop on Quantum

Programming Languages (QPL), 2004.

[128] B. W. Reichardt, “Improved ancilla preparation scheme increases fault-tolearant thresh-

old,” 2004, e-print: quant-ph/0406025. doi:10.1038/37539

[129] F. Bahr, M. Boehm, J. Franke, and T. Kleinjung, “Rsa-640 is factored!,”

2005.

[130] K. M. Svore, A. W. Cross, I. L. Chuang, and A. Aho, “Pseudothreshold or threshold?—

more realistic threshold estimates for fault-tolerant quantum computing,” 2005, e-print:

quant-ph/0508176.

[131] D. Bouwmeester et al., “Experimental quantum teleportation,” Nature, Vol. 390,

pp. 575–579, 1997. doi:10.1038/37539

[132] J. Lantz, M. Wallquist, V. S. Shumeiko, and G. Wendin, “Josephson Junction Qubit

Network with Current-Controlled Interaction,” Phys. Rev. B, Vol. 70, No. 140507(R),

pp. 60–70, 2004.

http://dx.doi.org/10.1080/095003400148240
http://dx.doi.org/10.1109/18.796388
http://dx.doi.org/10.1109/18.796388
http://dx.doi.org/10.1038/46503
http://dx.doi.org/10.1038/46503
http://dx.doi.org/10.1103/PhysRevA.57.127
http://dx.doi.org/10.1038/37539
http://dx.doi.org/10.1038/37539

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-ref MOBK053-Metodi.cls October 30, 2006 20:44

142 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

[133] A. Yao, “Quantum circuit complexity,” in Proc. 34th Annual Symposium on Foundations

of Computer Science, 1993, pp. 352–361.

[134] C. H. Bennett et al., “Purification of noisy entanglement and faithful teleportation via

noisy channels,” Phys. Rev. Lett., Vol. 76, p. 722, 1996.

[135] W. Dur, H. J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entan-

glement purification,” Phys. Rev., A59, p. 169, 1999.

[136] K. Michielsen and H. De Raedt. QCE: a simulator for quantum computer hardware,”

Turk. J. Phys., Vol. 27, p. 343, 2003.

[137] B. Omer, “A procedural formalism for quantum computing: Qcl,” Master thesis technical

physics, TU, Vienna, 1998.

[138] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Graph-based simulation of quantum

computation in the density matrix representation,” Quantum Inform. Comput., Vol. 5,

No. 2, pp. 113–130, 2005, quant-ph/0403114.

[139] L. G. Valiant, “Quantum circuits that can be simulated classically in polynomial time,”

in Proc. ACM Symposium on Theory of Computing (STOC), 2001, p. 114.

[140] G. Vidal, “Efficient classical simulation of slightly entangled quantum computations,”

Phys. Rev. Lett., Vol. 91, No. 147902, 2003.

[141] S. Balensiefer, L. Kregor-Stickles, and M. Oskin, “An evaluation framework and in-

struction set architecture for ion-trap based quantum micro-architectures,” in ISCA-32,

Madison, WI, 2005.

[142] S. Balensiefer, L. Kregor-Stickles, and M. Oskin, “Quantum architecture

tools: Quale,” online at: http://www.cs.washington.edu/homes/lucasks/tools.html.

doi:10.1038/35007021

[143] S. Aaronson and D. Gottesman, “Improved simulation of stabilizer circuits,” Phys. Rev.

A, Vol. 70, No. 052328, 2004, quant-ph/0406196.

[144] Andrew Cross. qasm-tools: An interoperable open-source software tool chain

for studying fault-tolerant quantum circuits,” Available for download online at:

http://web.mit.edu/awcross/www/qasm-tools/.

[145] P. Aliferis, D. Gottesman, and J. Preskill, “Quantum accuracy threshold for distance 3

codes,” 2005, e-print: quant-ph/0504218.

[146] D. Bacon, “Operator quantum error correcting subsystems for self-correcting quantum

memories,” 2005, e-print: quant-ph/0506023.

[147] D. Poulin, “Stabilizer formalism for operator quantum error correction,” 2005, e-print:

quant-ph/0508131.

[148] D. J. Wineland, D. Leibfried, M. D. Barrett, A. Ben-Kish, et al., “Quantum control,

quantum information processing, and quantum-limited metrology with trapped ions,”

in Proc. Int. Conf. on Laser Spectroscopy (ICOLS), 2005, quant-ph/0508025.

http://dx.doi.org/10.1038/35007021

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-ref MOBK053-Metodi.cls October 30, 2006 20:44

REFERENCES 143

[149] K. M. Svore, B. Terhal, and D. P. DiVincenzo, “Local fault-tolerant quantum compu-

tation,” 2004, e-print: quant-ph/0410047.

[150] C. Monroe, C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt,

M. Rowe, Q. A. Turchette, W. M. Itano, and D. J. Wineland, “Scalable entanglement

of trapped ions,” in Workshop on Trapped Ion Quantum Computing, NIST, Boulder, CO,

2000.

[151] I. Cirac and P. Zoller, “A scalable quantum computer with ions in an array of microtraps,”

Nature, Vol. 404, pp. 579–581, 2000. doi:10.1038/35007021

[152] J. S. Bell, “On the Einstein–Podolsky-Rosen paradox,” Physics, Vol. 1, pp. 195–200,

1964.

[153] N. Isailovic, Y. Patel, M. Whitney, and J. Kubiatowicz, “Interconnection networks

for scalable quantum computers,” in International Symposium of Computer Architecture

(ISCA-33), Boston, MA, 2006.

[154] T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore, “A logarithmic-depth quantum

carry-lookahead adder,” 2004, e-print: quant-ph/0406142. doi:10.1109/71.372778

[155] R. Van Meter and K. M. Itoh, “Fast quantum modular exponentiation,” 2004, e-print:

quant-ph/0408006.

[156] L. McMurchie and C. Eberling, “Pathfinder: a negotiation based performance-driven

router for fpgas,” in Proc. ACM Symp. on Field Programmable Gate Arrays, 1995,

pp. 111–117.

[157] H. Chou and C. Chung, “An optimal instruction scheduler for superscalar pro-

cessor,” IEEE Trans. Parallel Distrib. Syst., Vol. 6, No. 3, pp. 303–313, 1995.

doi:10.1109/71.372778

[158] B. L. Deitrich and Wen mei W. Hwu, “Speculative hedge: regulating compile-time

speculation against profile variations,” in Proc. 29th International Symposium on Microar-

chitecture, 1996, p. 29.

[159] C. Chekuri, R. Johnson, R. Motwani, B. Natarajan, B. Rau, and M. Schlansker, “Profile-

driven instruction level parallel scheduling with applications to superblocks,” in Proc.

29th Int. Symp. on Microarchitecture, Vol. 29, 1996, pp. 58–67.

[160] T. S. Metodi, D. D. Thaker, A. W. Cross, F. T. Chong, and I. L. Chuang, “Physical

operations scheduler in a quantum information processor,” in Proc. SPIE Defense and

Security Symposium, Orlando, FL, 2006.

[161] K. Iwama, Y. Kambayashi, and S. Yamashita, “Transformation rules for designing

cnot-based quantum circuits,” in Proc. Design Automation Conference (DAC), 2002,

pp. 419–424, quant-ph/0401162.

[162] K. N. Patel, I. L. Markov, and J. P. Hayes, “Efficient synthesis on linear reversible

circuits,” 2003, e-print: quant-ph/0302002. doi:10.1103/PhysRevLett.78.2252

http://dx.doi.org/10.1038/35007021
http://dx.doi.org/10.1109/71.372778
http://dx.doi.org/10.1109/71.372778
http://dx.doi.org/10.1103/PhysRevLett.78.2252

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-ref MOBK053-Metodi.cls October 30, 2006 20:44

144 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

[163] G. Song and A. Klappenecker, “Optimal realizations of controlled unitary gates,”

J. Quantum Inform. Comput., Vol. 3, No. 2, pp. 139–155, 2003, quant-ph/0207157.

[164] V. V. Shende, S. S. Bullock, and I. L. Markov, “Recognizing small-circuit structure in

two-qubit operators and timing Hamiltonians to compute controlled-not gates,” Phys.

Rev. A, (012310), 2003, quant-ph/0308045.

[165] V. V. Shende, I. L. Markov, and S. S. Bullock, “Minimal universal two-qubit quantum

circuits,” Phys. Rev. A, Vol. 69, No. 062321, pp. 1–7, 2003, quant-ph/0308033.

[166] Vivek V. Shende, Igor L. Markov, and Stephen S. Bullock, “Finding small two-qubit

circuits,” Proc. SPIE, No. 5436, pp. 348–359, 2004.

[167] V. V. Shende and I. L. Markov, “Quantum circuits for incompletely specified two-qubit

operators,” Quantum Inform. Comput., Vol. 5, No. 5, pp. 048–056, 2005.

[168] T. Hogg, C. Mochon, W. Polak, and E. Rieffel, “Tools for quantum algorithms,” Int.

J. Mod. Phys., Vol. C10, pp. 1347–1362, 1999, quant-ph/9811073.

[169] S. S. Bullock and I. L. Markov, “Asymptotically optimal circuits for arbitrary n-qubit

diagonal computations,” Quantum Inform. Comput., Vol. 4, No. 1, pp. 027–047, 2004,

quant-ph/0303039.

[170] A. M. Steane, “Efficient fault-tolerant quantum computing,” Phys. Rev. Lett., Vol. 78,

pp. 2252–2255, 1997, quant-ph/9809054. doi:10.1103/PhysRevLett.78.2252

[171] P. W. Shor, “Fault-tolerant quantum computation,” in Proc. 37th Symp. on Foundations

of Computer Science, 1996.

[172] E. Knill, R. Laflamme, and W. Zurek, “Threshold accuracy for quantum computation,”

1996. doi:10.1119/1.16243

[173] D. Greenberger, M. Horne, A. Shimony, and Zeilinger, “Bell’s theorem without the

inequalities,” Am. J. Phys., Vol. 58, pp. 1131–1143, 1990. The GHZ state inventors.

doi:10.1119/1.16243

[174] X. Zhou, D. Leung, and I. L. Chuang, “Methodology for quantum logic gate construc-

tion,” e-print: quant-ph/0002039. doi:10.1145/1126257.1126259

[175] R. Van Meter et al., “Distributed arithmetic on a quantum multi-computer,” in Inter-

national Symposium of Computer Architecture (ISCA-33), Boston, MA, 2006.

[176] R. Van Meter and M. Oskin, “Architectural implications of quantum computing tech-

nologies,” ACM J. Emerging Technol. Comput. Syst. (JETC), Vol. 2, No. 1, pp. 31–68,

2006. doi:10.1145/1126257.1126259

[177] M. Udrescu, L. Prodan, and M. Vladutiu, “Using hdls for describing quan-

tum circuits: a framework for efficient quantum algorithm simulation,” in 2nd

ACM International Conference on Computing Frontiers (CF’05), Ischia, Italy, 2004,

pp. 96–110.

http://dx.doi.org/10.1103/PhysRevLett.78.2252
http://dx.doi.org/10.1119/1.16243
http://dx.doi.org/10.1119/1.16243
http://dx.doi.org/10.1145/1126257.1126259
http://dx.doi.org/10.1145/1126257.1126259

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-ref MOBK053-Metodi.cls October 30, 2006 20:44

REFERENCES 145

[178] M. Udrescu, L. Prodan, and M. Vladutiu, “Improving quantum circuit dependabil-

ity with reconfigurable quantum gate arrays,” in 2nd ACM International Conference on

Computing Frontiers (CF’05), Ischia, Italy, 2005, pp. 133–144.

[179] N. Isailovic, M. Whitney, Y. Patel, J. Kubiatowicz, D. Copsey, F. T. Chong, I. L.

Chuang, and M. Oskin, “Datapath and control for quantum wires,” Trans. Archit. Code

Optim. (TACO), Vol. 1, No. 1, pp. 34–61, 2004. doi:10.1145/980152.980155

[180] Timeline for quantum computing. http://en.wikipedia.org/wiki/Timeline-of-

quantum-computing, 2006. doi:10.1016/0034-4877(76)90005-7

[181] R. P. Poplavskii, “Thermodynamical models of information processing,” Usp. Fiz. Nauk,

Vol. 115, No. 3, pp. 465–501, 1975.

[182] R. S. Ingarden, “Quantum information theory,” Rep. Math. Phys., Vol. 10, pp. 43–72,

1976. doi:10.1016/0034-4877(76)90005-7

[183] Y. Manin, “Computable and uncomputable,” Moscow, Sovetskoye Radio, 1980.

doi:10.1103/PhysRevLett.69.1293

[184] A. Ekert et al., “Practical quantum cryptography based on two-photon interferometry,”

Phys. Rev. Lett., Vol. 69, pp. 1293–1295, 1992. doi:10.1103/PhysRevLett.69.1293

[185] I. L. Chuang, N. Gershenfeld, and M. Kubinec, “Experimental implementation of

fast quantum searching,” Phys. Rev. Lett., Vol. 18, No. 15, pp. 3408–3411, 1998.

doi:10.1103/PhysRevLett.80.3408

[186] D. Gottesman, “The heisenberg representation of quantum computers,” Hobart, Group

theoretical methods in physics, 1998, pp. 32–43, e-print: quant-ph/9807006.

[187] R. Marx, A. F. Fahmy, J. M. Myers, W. Bermel, and S. J. Glaser, “Realization of a

5-bit nmr quantum computer using a new molecular architecture,” Phys. Rev. A, Vol. 62,

No. 012310, pp. 1–8, 2000. doi:10.1146/annurev.physiol.62.1.1

[188] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, R. Cleve, and I. L. Chuang,

“Experimental realization of order-finding with a quantum computer,” Phys. Rev. Lett.,

Vol. 15, pp. 5452–5455, December 15, 2000. doi:10.1103/PhysRevLett.85.5452

[189] T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and

A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quan-

tum memories,” Nature, Vol. 438, pp. 833–836, 2005. doi:10.1038/nature04315

[190] W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical

quantum computation,” New J. Phys., Vol. 7, p. 137, 2005, quant-ph/0507084.

[191] A. Andre, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl,

R. Schoelkopf, and P. Zoller, “Polar molecules near superconducting resonators:

a coherent, all-electrical, molecule-mesoscopic interface,” 2006, e-print: quant-ph/

0605201.

http://dx.doi.org/10.1145/980152.980155
http://dx.doi.org/10.1016/0034-4877(76)90005-7
http://dx.doi.org/10.1016/0034-4877(76)90005-7
http://dx.doi.org/10.1103/PhysRevLett.69.1293
http://dx.doi.org/10.1103/PhysRevLett.69.1293
http://dx.doi.org/10.1103/PhysRevLett.80.3408
http://dx.doi.org/10.1146/annurev.physiol.62.1.1
http://dx.doi.org/10.1103/PhysRevLett.85.5452
http://dx.doi.org/10.1038/nature04315

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-ref MOBK053-Metodi.cls October 30, 2006 20:44

146 QUANTUM COMPUTING FOR COMPUTER ARCHITECTS

[192] J. C. Blakesley, P. See, A. J. Shields, B. E. Kardynal, P. Atkinson, I. Farrer, and D. A.

Ritchie, “Efficient single photon detection by quantum dot resonant tunneling diodes,”

Phys. Rev. Lett., Vol. 94, No. 6, p. 067401, 2005.

[193] A. N. Al-Ahmadi and S. E. Ulloa, “Extended coherent exciton states in quantum dot

arrays,” Appl. Phys. Lett., Vol. 88, No. 043110, 2006.

[194] S. Koike, H. Takahashi, H. Yonezawa, N. Takei, S. L. Braunstein, T. Aoki, and F. Fu-

rusawa, “Demonstration of quantum telecloning of optical coherent states,” Phys. Rev.

Lett., Vol. 96, pp. 060504, 2006. doi:10.1103/PhysRevLett.96.060504

http://dx.doi.org/10.1103/PhysRevLett.96.060504

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-bio MOBK053-Metodi.cls October 30, 2006 19:32

147

Biographies

Fred Chong is a professor of computer science at the University of California at Santa Barbara.

Prof. Chong received his BS in 1990, MS in 1992, and PhD in 1996, all from MIT. He

was an assistant professor at UC Davis from 1996–2001, was an associate professor at UC

Davis from 2001–2005, and has been a professor at UCSB from 2005-present. Dr. Chong’s

research interests include quantum computing architectures, nanoscale electronics, embedded

processing, computer security, and the environmental impact of computing technologies. Prof.

Chong is a UC Davis Chancellor’s Fellow (2002–2007) and received an NSF CAREER Award

(1998–2002).

Tzvetan Metodi is a 5th year computer science PHD student at the University of California

at Davis as a member of the computer architecture laboratory under the guidence of Professor

Frederic T. Chong. Tzvetan received his B.A. in physics also at UC Davis in 2002. He spent

August 2003 through December 2003, and January 2006 through June 2006 as a visiting scholar

at MIT under the guidance of Professor Isaac L. Chuang. Tzvetan is a member of the Quantum

Computer Architecture Center (QARC), which intends to create an interoperable software tool

chain for fault-tolerant quantum computer architecture synthesis and evaluation.

P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK053-bio MOBK053-Metodi.cls October 30, 2006 19:32

148

