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ABSTRACT
The advent of multicore processors has renewed interest in the idea of incorporating trans-

actions into the programming model used to write parallel programs. This approach, known

as transactional memory, offers an alternative, and hopefully better, way to coordinate concur-

rent threads. The ACI (atomicity, consistency, isolation) properties of transactions provide a

foundation to ensure that concurrent reads and writes of shared data do not produce incon-

sistent or incorrect results. At a higher level, a computation wrapped in a transaction executes

atomically – either it completes successfully and commits its result in its entirety or it aborts. In

addition, isolation ensures the transaction produces the same result as if no other transactions

were executing concurrently.

Although transactions are not a parallel programming panacea, they shift much of the

burden of synchronizing and coordinating parallel computations from a programmer to a com-

piler, runtime system, and hardware. The challenge for the system implementers is to build an

efficient transactional memory infrastructure. This book presents an overview of the state of

the art in the design and implementation of transactional memory systems, as of early summer

2006.

KEYWORDS
Transactional memory, parallel programming, concurrent programming, compilers, program-

ming languages, computer architecture, computer hardware, wait-free data structures, cache

coherence, synchronization.
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1

C H A P T E R 1

Introduction

1.1 MOTIVATION
The distant threat has come to pass. For 30 years or more, pundits have claimed that parallel

computers are the inexorable next step in the evolution of computers and have warned us

to learn to program these machines. Fortunately, they were wrong. Parallel computers and

parallel programming remained a source of frustration to the small group of programmers faced

with enormous computations that outstripped conventional computers. The rest of the world

programmed sequential computers. For most people and most applications, the 40–50% increase

per year in sequential computer performance, made possible by semiconductor and computer

architecture improvements, was more than sufficient.

As Bruce Spring stem sings, “good times got a way of coming to an end.” Lost in the

clamor of the Y2K nonevent and the .COM boom and bust, a less heralded but more significant

milestone occurred. Around 2004, 50 years of exponential improvement in the performance of

sequential computers ended [1]. Although the quantity of transistors on a chip continues to

follow Moore’s law (doubling roughly every two years), it has become increasingly difficult

to continue to improve the performance of sequential processors. Increasing clock frequency to

increase performance is not feasible any longer, due to power and cooling concerns. In the

terminology of Intel’s founder, Andrew Grove, this is an inflection point—a “time in the life of

a business when its fundamentals are about to change” [2].

1.1.1 Single-Chip Parallel Computers

Industry’s response to these changes was to introduce single-chip, parallel computers, variously

known as “chip multiprocessors,” “multicore,” or “manycore” computers. The architecture of

these computers puts two or more independent processors on a single chip and connects them

through a shared memory. The architecture is similar to shared-memory multiprocessors.

This parallel architecture offers a potential solution to the problem of stalled performance

growth. The number of processors that can be fabricated on a chip will continued to increase,

at least for the next few generations, at the Moore’s law rate of approximately 40% per year, and

so will double roughly every two years. As the number of processors on a chip doubles, so does
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the number of instructions executed per second—without increasing clock speed. This means

that the performance of a well-formulated parallel program will also continue to improve at

roughly Moore’s law rate. Continued performance improvement permits a program’s developers

to increase its functionality by incorporating sophisticated, new features—the dynamic that has

driven the software industry for a long time.

Unfortunately, despite more than 40 years’ experience with parallel computers, few “well-

formulated” parallel programs exist. Programming parallel computers has proven to be far more

difficult than programming sequential computers (which pose many difficult challenges in pro-

ducing robust, reliable, and secure code). Parallel algorithms are more difficult to formulate

and prove correct than sequential algorithms. A parallel program is far more difficult to design,

write, and debug than an equivalent sequential program. The nondeterministic bugs that occur

in concurrent programs are notoriously difficult to find and remedy. Finally, to add insult to

injury, parallel programs often perform poorly. Part of these difficulties may be attributable

to the exotic nature of parallel programming, which was of interest to only a small commu-

nity, was not widely investigated or taught by academics, and was ignored by most software

vendors.

1.1.2 Difficulty of Parallel Programming

However, the authors believe that this explanation is insufficient. Parallel programming is

fundamentally more difficult than sequential programming. At its core, people have a great deal

of difficulty keeping track of concurrently occurring events. Psychologists call this phenomena

“attention” and have been studying it for a century. A seminal experiment was Cherry’s dichotic

listening task, in which a person was asked to repeat a message heard in one ear, while ignoring

a different message played to the other ear [3]. People are very good at filtering the competing

message because they attend to a single channel at a time.

Concurrency and nondeterminacy greatly increase the number of items that a software

developer must keep in mind. Consequently, few people are able to systematically reason about a

parallel program’s behavior. Consider an example. Professor Maurice Herlihy of Brown Univer-

sity has observed that implementing a queue data structure is a simple programming assignment

in an introductory programming course. The parallel analogue, which allows concurrent en-

queues and dequeues, is a publishable result because of the difficulty of coordinating concurrent

access and handling the boundary conditions [4].

In addition, program analysis tools, which compensate for human failings by systemat-

ically identifying program defects, find parallel code to be provably more difficult to analyze

than sequential code. For example, context-sensitive analysis is a fundamental technique for

analyzing sequential programs. It improves the precision of analysis in defect-detection tools

and compilers by analyzing a function with respect to a specific calling context, instead of the
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union of all possible call sites. In a concurrent program, combining context-sensitive analysis

with the synchronization analysis necessary to understand the communications between even

two threads results in an undecidable problem [5]. Fortunately, some analyses, such as safety

properties in threads that communicate only through mutual exclusion locks, are efficiently

decidable [6].

Finally—and a primary motivation for the strong interest in transactional memory—the

programming models, languages, and tools available to a parallel programmer have lagged far

behind those available for sequential programs. Consider the two prevalent parallel program-

ming models: data parallelism and task parallelism.

Data parallelism is an effective programming model that applies an operation simul-

taneously to an aggregate of individual items [7]. It is particularly appropriate for numeric

computations, which use numeric matrices as their primary data structure. Programs often

manipulate a matrix as an aggregate, for example, by adding it to another matrix. Scien-

tific programming languages, such as High Performance Fortran (HPF) [8], directly support

data parallel programming with a collection of operators on matrices and ways to combine

these operations. Parallelism is implicit and abundant in data parallel programs. A compiler

exploits the inherent concurrency of applying an operation to the elements of an aggregate

by partitioning the work among the available processors. This approach shifts the burden of

synchronization and load balancing from a programmer to a compiler and run-time system.

Unfortunately, data parallelism is not a universal programming model. It is natural and conve-

nient for some problems [7], but difficult to apply to most data structures and programming

problems.

The other common programming model is task parallelism, which executes computa-

tions on concurrent threads that are coordinated with explicit synchronization such as locks,

semaphores, queues, etc. This unstructured programming model imposes no restrictions on the

code that each thread executes, when or how threads communicate, or how tasks are assigned

to threads. The model is a general one, capable of expressing all forms of parallel computation.

It, however, is very difficult to program correctly. In many ways, the model is at the same (low)

level of abstraction as the underlying computer’s hardware; in fact, processors directly implement

many of the constructs used to write this type of program.

1.1.3 Parallel Programming Abstractions

A key shortcoming of task parallelism, however, is its lack of effective mechanisms for abstraction

and composition—computer science’s two fundamental tools for managing complexity. An

abstraction is a simplified view of an entity, which captures the features that are essential to

understand and manipulate it for a particular purpose. People use abstraction all the time. For

example, consider an observer “Jim” and a dog “Sally” barking from the backyard across the
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street. Sally is Jim’s abstraction of the dog interrupting his writing of this book. In considering

her barking, Jim need not remember that Sally is actually a one-year-old Golden Retriever

and certainly, Jim does not think of her as a quadruped mammal. The latter specifics are

true, but not germane to Jim’s irritation at the barking. Abstraction hides irrelevant detail and

complexity and allows humans (and computers) to focus on the aspects of a problem relevant to a

specific task.

Composition is the ability to put together two entities to form a larger, more complex

entity, which in turn is abstracted into a single, composite entity. Composition and abstraction

are closely related, since details of the underlying entities can be suppressed when manipu-

lating the composite product. Composition is also a common human activity. Consider an

engineered artifact such as a car, constructed from components such as an engine, brakes,

body, etc. For most purposes, the abstraction of a car subsumes these components and al-

lows us to think about a car without considering the details explored in automobile enthusiast

magazines.

Modern programming languages support powerful abstraction mechanisms, as well as rich

libraries of abstractions for sequential programming. Procedures offer a way to encapsulate and

name a sequence of operations. Abstract datatype and objects offer a way to encapsulate and name

data structures as well. Libraries, frameworks, and design patterns collect and organize reusable

abstractions that are the building blocks of software. Stepping up a level of abstraction, complex

software systems, such as operating systems, databases, or middleware, provide the powerful,

generally useful abstractions, such as virtual memory, file systems, or relational databases, used

by most software. These abstraction mechanisms and abstractions are fundamental to modern

software development, which increasingly builds and reuses software components, rather than

writing them from scratch.

Parallel programming lacks comparable abstraction mechanisms. Low-level parallel pro-

gramming models, such as threads and explicit synchronization, are unsuitable for constructing

abstractions because explicit synchronization is not composable. A program that uses an ab-

straction containing explicit synchronization must be aware of its details, to avoid causing races

or deadlocks.

Consider two examples from Tim Harris and Simon Peyton-Jones of Microsoft Research,

a hash table that supports thread-safe Insert and Delete operations. In a sequential program,

each of these operations can be an abstraction. One can fully specify their behavior without

reference to the hash table’s implementation. Now, suppose that in a parallel program, we want

to construct a new operation, call it Move, which deletes an item from one hash table and insert

it into another table. The intermediate state, in which neither table contains the item, must

not be visible to other threads. Unless this requirement influences the implementation, there

is no way to compose Insert and Delete operations to satisfy this requirement, since they
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lock the table only for the duration of the individual operations. Fixing this problem requires

new methods such as LockTable and UnlockTable, which break the hash-table abstraction

by exposing an implementation detail. Moreover, these methods are error prone. A client that

locks more than one table must be careful to lock them in a globally consistent order (and to

unlock them!), to prevent deadlock.

The same phenomenon holds for other forms of parallel composition. Suppose a procedure

p1 waits for one of two input queues to produce data, using an internal call to WaitAny, and

suppose another procedure p2 does the same thing on two different queues. We cannot apply

WaitAny to p1 and p2 to wait on any of the four queues, a fundamental loss of compositionality.

Instead, programmers use awkward programming techniques, such as collecting queues used

in lower level abstractions, performing a single top-level WaitAny, and then dispatching back

to an appropriate handler. Again, two individually correct abstractions, p1 and p2, cannot be

composed into a larger one; instead, they must be ripped apart and awkwardly merged, in direct

conflict with the goals of abstraction.

1.2 DATABASE SYSTEMS AND TRANSACTIONS
While parallelism has been a difficult problem for general programming, database systems have

successfully exploited concurrency. Databases (DBs) achieve good performance on sequential

and parallel computers by executing many queries simultaneously and by running queries on

multiple processors when possible. Moreover, the database programming model ensures that

the author of an individual query need not worry about this concurrency. Many have wondered

if the programming model used by databases, with its relative simplicity and widespread success,

could also function as a more general, parallel programming model.

At the heart of the programming model for databases is a transaction. A transaction

specifies a program semantics in which a computation executes as if it was the only computation

accessing the database. Other computations may execute simultaneously, but the model restricts

the allowable interactions among the transactions, so each produces results indistinguishable

from the situation in which the transactions run one after the other. As a consequence, a

programmer who writes code for a transaction lives in the simpler, more familiar sequential

programming world and only needs to reason about computations that start with the final

results of other transactions. Transactions allow concurrent computations to access a common

database and still produce predictable, reproducible results.

Transactions are implemented by an underlying database system or transaction processing

monitor, both of which hide complex implementations behind a relatively simple interface [9–

11]. These systems contain many sophisticated algorithms, but a programmer only sees a simple

programming model that subsumes most aspects of concurrency and failure. Moreover, the
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abstract specification of transaction behavior provides a great deal of implementation freedom

and allows the construction of efficient database systems.

Transactions offer a proven abstraction mechanism in database systems for constructing

reusable parallel computations. A computation executed in a transaction need not expose the

data it accesses or the order in which these accesses occur. Composing transactions can be

as simple as executing subtransactions in the scope of a surrounding transaction. Moreover,

coordination mechanisms provide concise ways to constrain and order the execution of concur-

rent transactions.

The advent of multicore processors has renewed interest in an old idea, of incorporating

transactions into the programming model used to write parallel programs. While programming

language transactions bear some similarity to database transactions, the implementation and

execution environments differ greatly, as databases typically store data on disks and programs

store data in memory. This difference has given this new abstraction its name, Transactional

Memory (TM).

1.2.1 What Is a Transaction?

A transaction is a sequence of actions that appears indivisible and instantaneous to an out-

side observer. A database transaction has four specific attributes: failure atomicity, consistency,

isolation, and durability—collectively known as the ACID properties.

Atomicity requires that all constituent actions in a transaction complete successfully, or

that none of these actions appear to start executing. It is not acceptable for a constituent action

to fail and for the transaction to finish successfully. Nor is it acceptable for a failed action to

leave behind evidence that it executed. A transaction that completes successfully commits and

one that fails aborts. In this book, we will call this property failure atonicity, to distinguish it

from a more expansive notion of atomic execution, which encompasses elements of other ACID

properties.

The next property of a transaction is consistency. A transaction can modify the state of the

world, that is, data in a database or memory. These changes should leave this state consistent,

since subsequent transactions start executing from this modified state. Later transactions may

have no knowledge of which transactions executed earlier, so it is unrealistic to expect a transac-

tion to execute properly if an earlier transaction left the world in an arbitrary state. Transactions

start with the assumption that the world is consistent, and they are required to leave it in a

consistent state. The requirement is trivially satisfied if the transaction aborts, since it then does

not perturb the initially consistent state.

The meaning of consistency is entirely application dependent. It typically consists of

a collection of invariants on data structures. For example, numCustomers contains the number

of items in the Customer table or that the Customer table does not contain duplicate entries.
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The next property, called isolation, requires that each transaction produce a correct result,

regardless of which other transactions are executing concurrently. We will explore the semantics

of transactions in the next chapter. This property obviously makes transactions an attractive

programming model for parallel computers.

The final property is durability, which requires that once a transaction commits, its result

be permanent (i.e., stored on a durable media such as disk) and available to all subsequent

transactions. This property is not important in transactional memory, since data in memory is

usually transient.

1.3 TRANSACTIONAL MEMORY
In 1977, Lomet observed that an abstraction similar to a database transaction might make

a good programming language mechanism to ensure the consistency of data shared among

several processes [12]. The paper did not describe a practical implementation competitive

with explicit synchronization, and so the idea lay fallow until Herlihy and Moss in 1993 [13]

proposed hardware-supported transactional memory as a mechanism for building lock-free data

structures. In the past few years, there has been a huge ground swell of interest in both hardware

and software systems for implementing transactional memory.

The basic idea is very simple. The ACI properties of transactions provide a convenient

abstraction for coordinating concurrent reads and writes of shared data in a multithreaded or

multiprocess system. Accesses to shared data originate in computations executing on concurrent

threads that run on one or more processors. Without a mechanism to coordinate these accesses,

reads and writes from various computations can intermix in ways that produce inconsistent,

incorrect, and nondeterministic results.

Today, this coordination is the responsibility of a programmer, who has only low-level

mechanisms, such as locks, semaphores, mutexes, etc., to prevent two concurrent threads from

interfering. Even modern languages such as Java and C# provide only a slightly higher level

construct, a monitor, to prevent concurrent access to an object’s internal data. As discussed

previously, these low-level mechanisms are difficult to use correctly and are not composable.

Transactions provide an alternative approach to coordinating concurrent threads. A pro-

gram can wrap a computation in a transaction. Failure atomicity ensures the computation

completes successfully and commits its result in its entirety or it aborts. In addition, isolation

ensures that the transaction produces the same result as it would if no other transactions were

executing concurrently.

Although isolation appears to be the primary guarantee of transactional memory, the other

properties, failure atomicity and consistency, are important. If a programmer’s goal is a correct

program, then consistency is important, since transactions may execute in unpredictable orders.
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It would be difficult to write correct code without the assumption that a transaction starts exe-

cuting in a consistent state. Failure atomicity is a key part of ensuring consistency. If a transaction

fails, it could leave data in an unpredictable and inconsistent state that would cause subsequent

transactions to fail. Moreover, a mechanism used to implement failure atomicity, reverting data

to an earlier state, turns out to be very important for implementing certain types of concurrency

control.

Transactions are not a panacea. It is still (all too) easy to write an incorrect concurrent

program, even with transactional memory. For example, Flanagan and Qadeer developed atomi-

city analysis, which finds where a properly synchronized program releases a lock (i.e., end a

transaction) too early [14]. Consider a slightly modified example from their paper:

class StringBuffer ... {

...

private int count;

public StringBuffer append(StringBuffer sb) {

int len = sb.length();

int newcount = count + len;

if (newcount > value.length) expandCapacity(newcount);

sb.getChars(0, len, value, count);

count = newcount;

return this;

}

public atomic int length() { return count; }

public atomic void getChars(...) { ... }

}

The atomic keyword means that a method executes in a transaction (this is not the most

felicitous keyword, since it suggests failure atomicity, rather than isolation, but it is terse and

is used most by most researchers). The append method is missing a transaction. Even though

the operations on the underlying representation (length and getChars) are transactional,

the append method should also execute in a transaction, to ensure that the buffer’s length

does not change between the call on length and when the characters are copied into the new

buffer.
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1.3.1 Differences

Transactions in memory differ from transactions in databases, and consequently require new

implementation techniques, a central topic of this book. The following differences are among

the most important:

• Data in a database resides on a disk, rather than in memory. Disk accesses take 5–10 ms,

or literally time enough to execute millions of instructions. Databases can freely trade

computation against disk access. Transactional memory accesses main memory, which

incurs a cost of at most several hundred instructions. A transaction cannot perform

much computation at a memory access. Hardware support is more attractive for TM

than for database systems.

• Transactional memory is not durable since data in memory does not survive program

termination. This simplifies the implementation of TM, since the need to record data

permanently on disk before a transaction commits considerably complicates a database

system.

• Transactional memory is a retrofit into a rich, complex world full of existing program-

ming languages, programming paradigms, libraries, programs, and operating systems.

To be successful, transactional memory must coexist with existing infrastructure, even

if a long-term goal may be to supplant portions of this world with transactions. Pro-

grammers will find it difficult to adopt transactional memory if it requires pervasive

changes to programming languages, libraries, or operating systems or compels a closed

world, like databases, where the only way to access data is through a transaction.

1.4 THIS BOOK
This book presents an overview of the state of the art in transactional memory, as of early

summer 2006. After reading this book, a practitioner, graduate student, or researcher should be

aware of the principal challenges and issues in implementing TM and the solutions investigated

to date. The focus of this book is the design and implementation of transactional memory.

Extensive research is underway both to develop effective programming models and to find

efficient implementations, in software and in hardware.

The book is not a manual on programming with TM, since no one yet has the experience

to write such a book. Nevertheless, Chapter 2 outlines the basic transactional programming con-

structs, sketches a programming model, and then presents a broad taxonomy of design choices

for software and hardware TM systems. It also briefly discusses some of the key challenges in

integrating TM into the existing software ecosystem, in particular, the issues about how TM

coexists with existing programming abstractions and facilities.
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Chapter 3 describes Software Transactional Memory (STM) implementation techniques

and related research on integrating STM into programming languages. STM implements trans-

actional memory on existing processors. Early systems cloned objects (or memory locations), so

a transaction could manipulate its own copy of the memory. When the transaction attempted

to commit, the STM system looked for conflicts with other transactions, and if none occurred,

the system atomically updates the shared state with the transaction’s modified values. Recent

STM systems have explored other implementation techniques, such as locking objects and

updating them in place. These STM systems typically have been implemented in a language

run-time system, such as a Java Virtual Machine or .NET CLR, and tightly integrated with a

programming language and compiler.

Chapter 4 describes Hardware Transactional Memory (HTM) implementation tech-

niques. HTM research investigates changes to a computer system and instruction set architec-

ture to support transactions. Early HTM systems kept a transaction’s modified state in a cache

and used the cache coherence protocol to detect conflicts with other transactions. Recent HTM

systems have explored spilling transactional data into lower levels of the memory hierarchy or

into software-managed memory, and investigate ways to integrate more software with HTM

mechanisms. Other research directions include hybrid systems, which integrate HTMs and

STMs, and hardware-accelerated STM systems, which use HTM mechanisms to accelerate an

STM implementation.

HTM systems typically provide primitive mechanisms that underlie the user-visible lan-

guages, compilers, and run-time systems. Software bridges the gap between programmers and

hardware, which makes much of the discussion of STM systems, languages, and compilers

relevant to HTM systems as well.

This book describes most published TM systems. It sometimes mentions systems de-

scribed only in technical reports, but rarely explores them in depth, under the assumption that

they will appear in the refereed literature. The discussion focuses on a paper’s new ideas and

implementation techniques. Further details about a system can be found in the original paper

or its follow-on papers. When warranted by the complexity or importance of a system, the book

explores its implementation in detail.

We omit detailed discussion of performance for three reasons. First, the benchmarks

used to evaluate TM systems are almost exclusively small data structures, such as a hash

table or red-black tree. The performance of these computational kernels offers little in-

sight into how a full application or system would execute with TM, since code that only

performs data structure accesses in tight loops is likely atypical. Guerraoui, Herlihy, and

Pochon showed that the behavior of contention management policies is easily and radically

changed by inserting a short delay—corresponding to using data—in the popular red-black tree

benchmark [15].
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Performance evaluation requires better benchmarks, but few programmers will write sub-

stantial TM programs until TM systems’ performance reaches acceptable levels. This chicken

and egg problem seems likely to resolve itself gradually, as STM systems become robust and fast

enough for early adopters. Another approach was taken by Chung et al. [16], who mechanically

converted 35 sizeable, multithreaded applications to use transactions. First, they transformed

synchronized blocks in Java and lock-based critical sections in OpenMP and Pthreads to trans-

actions. Second, they executed the code between a lock release and a subsequent lock acquire

in a transaction, to model TCC’s transactions-all-the-time execution model (Section 4.5.1).

Third, they used transactions to speculatively parallelize loops in OpenMP programs. The un-

derlying operation strongly influenced the characteristics of a transaction. Transactions used

for synchronization were of short duration and accessed a small number of memory locations.

The few large transactions either were in the JVM itself or replaced a lock held during a long

duration operation. Transactions used for speculative parallelization executed a large number

of memory operations. It is unclear if programs originally written with transactions will share

these characteristics.

Second, few papers meaningfully compare a system’s performance against prior work,

so it is difficult to evaluate a paper’s contribution on a quantitative basis. Differences in

the underlying computer hardware, TM implementation, benchmarks, and workloads frus-

trate direct comparison of the performance of two TM systems or implementation tech-

niques.

Finally, TM is a promising programming model for future multicore systems, which will

have low interprocessor communication latencies. Software implementations on today’s mul-

tiprocessor systems execute with much higher interprocessor communication latencies, which

may favor computationally expensive approaches that incur less synchronization or cache traffic.

Future systems may favor other tradeoffs.

This book does not contain the answers to many questions. At this point in the evolution

of the field, we do not have enough experience building and using transactional memory systems

to prefer one approach definitively to another. Instead, our goal in writing this book is to raise

the questions and provide an overview of the answers that others have proposed. We hope that

this background will help consolidate and advance research in this area and accelerate the search

for answers.

ON-LINE BIBLIOGRAPHY
One of the authors maintains an on-line bibliography of materials related to transactional

memory, which includes all works cited in this book. The bibliography is available at:

http://www.cs.wisc.edu/trans-memory/biblio.
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C H A P T E R 2

Programming Transactional Memory

This chapter presents transactional memory from a programmer’s perspective. Although early

hardware transactional memory (HTM) and software transactional memory (STM) research

presented transactional memory (TM) as processor instructions and a software library, respec-

tively TM is a programming abstraction. This chapter presents TM from that perspective. It

describes the basic programming language support for transactions. It also discusses the be-

havior of transactional constructs, in either libraries or languages, and their implications for

programming. The chapter also outlines many open questions about the semantics of TM and

its integration with existing language features. These questions can only be resolved by using

TM to write real software—a process that is just beginning.

For the most part, this chapter avoids discussing implementation details, since Chapter 3

on Software Transactional Memory and Chapter 4 on Hardware Transactional Memory describe

many proposed systems in detail.

An alternative view of this chapter is that it lays out the requirements for a transactional

memory system, whether implemented in hardware or in software. Unfortunately, these re-

quirements are still incomplete and underspecified, as we lack sufficient experience to choose

among the design alternatives and we can only speculate about the implementation complexity

or programming expressiveness of proposed or incompletely implemented features.

Nevertheless, it is valuable to approach TM from a programmer’s perspective. Sub-

sequent chapters on STM and HTM present a bottom-up view of TM. The danger in a

bottom-up perspective is that a profusion of details can obscure the larger picture of what

TM should accomplish for its users, the programmers. This chapter attempts to remedy that

problem.

2.1 BASIC TRANSACTIONAL CONSTRUCTS
For simplicity, we will describe only basic extensions to a Java or C#-like language to support

transactional memory. These extensions are the primary constructs proposed by researchers

[1–3], not a complete proposal for a TM language extension. Unsafe languages, such as C or

C++, may require different implementations, but language features are likely to be similar.
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Most research on transactional memory focused on using it as a parallel programming

construct, so this discussion will focus on that aspect, as opposed to using transactions for error

recovery, real-time programming, or multitasking. In a parallel program, more than one thread

executes concurrently, which requires concurrency control to prevent threads from simultane-

ously accessing a shared resource and to coordinate the actions of threads. Transactional memory

provides mechanisms to control both aspects of concurrency.

Mutual exclusion is a mechanism that prevents several threads from accessing a shared

resource (e.g., a variable, array, object, or data structure) simultaneously. We can ignore the

benign case of read sharing, in which threads only read the resource, since concurrent access

only causes problems when one thread modifies a shared resource. When this happens, other

threads can read inconsistent values or see intermediate stages in a thread’s computation. If

several threads modify the resource simultaneously, then any thread’s result can be overwritten

and the final state of the resource might not correspond to any thread’s computation. Mutual

exclusion must be conservative. Even if operations are mostly reads, and writes are infrequent,

a program must bear the cost of synchronization.

Coordination is the other reason for concurrency control. A program may require the

execution of two independent threads to be coordinated, so, for example, thread 2 executes after

thread 1 performed an action. Without coordination, threads run independently, and thread 1

may produce its result at the same time, or even after, thread 2 executes.

Transactions are not the only way to control parallel computation, but much of the recent

interest in transactional memory is due to a widespread belief that transactions offer a higher–

level and less error-prone parallel programming model than better-known alternatives such as

locks, semaphores, mutexes, monitors, etc.

2.1.1 Atomic Block

The atomic statement delimits a block of code that should execute in a transaction:

atomic {

if (x != null) x.foo();

y = true;

}

The sementics of this construct are discussed below (Sec. 2.1.2), but for now assume that the

block executes with the failure atomicity and isolation properties of a transaction. The resulting

transaction is dynamically scoped—it encompasses all code executed while control is in the

atomic block, regardless of whether the code itself is lexicographically enclosed by the block.

So, for example, the code in function foo also executes transactionally.
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A key advantage of transactions is that an atomic block does not name shared resources,

either data or synchronization mechanisms. This feature distinguishes it from earlier pro-

gramming constructs, such as monitors [4], in which a programmer explicitly names the data

protected by a critical section. It also distinguishes atomic blocks from lock-based synchroniza-

tion, in which a programmer explicitly names the synchronization protecting data. Naming a

resource used in an abstraction exposes implementation details, and so violates the abstraction’s

boundary.

Transactions, by contrast, specify the desired execution outcome (failure atomicity and

isolation) and rely on a TM system to implement it. As a result, an atomic block enables

abstractions to hide their implementation and be composable with respect to these properties.

Composition is the process of creating software from components—abstractions whose internal

details are hidden. Programming is far more difficult and error-prone if a programmer cannot

depend on the specified interface of an object and instead must understand its implementation.

Using locks in application code to achieve mutual exclusion exposes this low level of

detail. If a library routine accesses a data structure protected by locks A and B, then all code

that calls this routine must be cognizant of these locks, to avoid running concurrently with a

thread that might acquire the locks in the opposite order. If a new version of the library also

acquires lock C, this change may ripple throughout the entire program that uses the library.

An atomic block achieves the same end, but hides the mechanism. The library routine

can safely access the data structure in a transaction without concern about how the transactional

properties are maintained. Code calling the library need not know about the transaction or its

implementation, nor be concerned about isolation from concurrently executing threads. The

routine is composable.

The atomic block is not a parallel programming panacea. It is still regrettably easy to

write incorrect code. Consider this published example [5]:

bool flagA = false; bool flagB = false;

Thread 1: Thread 2:

atomic { atomic {

while (!flagA); flagA = true;

flagB = true; while (!flagB);

} }

The code in the atomic blocks is incorrect since the loops will not terminate unless the re-

spective flag is true when the block starts executing (in which case, the loop is pointless). This
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example was published to illustrate the difficulty of mechanically converting code with explicit

synchronization to use transactions, but it also illustrates that atomic blocks by themselves do

not guarantee program termination or correct results.

Composing two atomic blocks, as in this example, does not guarantee program termina-

tion or correctness. Other mechanisms or logics are necessary to reason about these properties.

Atomic blocks make this reasoning easier, since pre- and postconditions apply to the entire

transactional sequence of operations, even when the block executes concurrently.

Some languages also define atomic functions or methods, whose body executes in an

implicit atomic statement:

atomic void foo { ⇔ void foo {

if (x != null) x.foo(); atomic {

y = true; if (x != null) x.foo();

} y = true;

}

}

From the programmer’s perspective, an atomic block has three possible outcomes. If

the transaction commits, its results become part of the program’s state visible to code executed

outside the atomic block. If the transaction aborts, it leaves the program’s state unchanged. If

the transaction does not terminate, it is undefined.

The TM run-time system or the program can abort a transaction. The former is an

implementation mechanism invoked if the transaction’s access to a resource conflicts with an-

other transaction or if the transaction deadlocks waiting for a resource. In either case, the

system aborts a transaction and reexecutes it, in hope that the problem will not reoccur.

In general, this process of reexecution is not visible to a program, except perhaps as lower

performance.

These aborts differ from a program-induced abort—which may arise through an explicit

abort statement or an exception (Section 2.2.3). When the system aborts a transaction, it

reexecutes the transaction to give it another opportunity to complete. When the program

aborts a transaction, control passes to the statement after the atomic block or to an exception

handler.

What is the result of a transaction? In language proposals to date, a transaction is a

statement, so it either modifies the program’s state or transfers control. In general, program

state includes not only variables and data structures in the process running the transaction, but

also its communications with entities outside of the process. The latter includes actions such

as creating and modifying disk files, interprocess communication over pipes, or even TCP/IP
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traffic—all of which affect the larger environment in which a computation executes. Many

TM systems avoid the complexity of this communication (Section 2.4.1) by prohibiting IO

operations in transactions.

2.1.2 Semantics

A programming abstraction with a simple, clean semantics helps programmers understand

the programming construct, increases their chances of writing correct code, and facilitates

detecting errors with programming tools. The semantics of transactional memory has not yet

been formally specified, although some attempts have been made [6]. Most papers assume the

correctness criteria from database transactions (serializability [7]) or concurrent data structures

(linearizability [8]). Both criteria specify some aspects of an atomic block, but neither specifies

the semantics of nested transactions, language features such as retry or orElse (Sections 2.1.4

and 2.1.5), or the interaction between code inside atomic blocks and the non-transactional code

outside atomic blocks.

Database Correctness Criteria

Since transactions have their roots in databases, it seems natural to adopt the semantic model

used by database to specify the behavior of transactional memory. However, the model is not fully

applicable because of differences between database-manipulating and multi-threaded programs.

To understand this better, let us revisit the three database properties of atomicity, consistency,

and isolation.

Atomicity (specifically, failure atomicity) requires that a transaction execute to completion

or, in case of failure, to appear not to have executed at all. An aborted transaction should have

no side effects.

Consistency requires that a transaction transform the database from one consistent state

to another consistent state. Consistency is a property of a specific data structure, application,

or database. It cannot be specified independently of the semantics of a particular system. En-

forcing consistency requires a programmer to specify data invariants, typically in the form of

predicates.

Isolation requires that execution of a transaction not affect the result of concurrently

executing transactions. In database systems, the basic correctness condition for concurrent

transactions is serializability. It states that the result of executing concurrent transactions on

a database must be identical to a result in which these transactions executed serially. Serializ-

ability allows a programmer to write a transaction in isolation, as if no other transactions were

executing in the database system. The system is free to reorder or interleave transactions, but it

must ensure the result of their execution remains serializable.
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Serializability is useful for understanding the behavior of transactions in a transactional

memory system. The earlier example involving flagA and flagB is not serializable, since

neither transaction will terminate when executed serially. A non-terminating execution does

not produce a result, so there is no standard of the correctness for the concurrent execution.

The ACI model is only partly applicable to transactional memory. Although it specifies

legal interactions of atomic blocks, it says nothing about the interaction of atomic blocks with

code outside of a transaction. Databases, in general, do not face this difficulty since they control

access to shared data and require all accesses to occur in transactions. By contrast, transactional

memory programs directly access data and allow code to execute outside of a transaction.

If transactional and non-transactional code access shared data, their interaction needs to be

specified to describe the semantics of transactional memory fully.

Operational Semantics

An intuitive, operational semantics for specifying the interaction of atomic blocks in transac-

tional memory is single-lock atomicity, in which a program executes as if all atomic blocks

were protected by a single, program-wide mutual exclusion lock, so at most one block is in ex-

ecution at a time. This model is not an implementation technique, as it precludes concurrency,

but it specifies the isolation expected from transactions. It, however, does not capture the failure

atomicity of a transaction. This aspect of an atomic block’s semantics is probably best described

with the conventional techniques used to specify programming language constructs.

The single-lock atomicity model does not preclude aggressive transactional memory im-

plementations. For example, if transactions T1 and T2 access disjoint data, an implementation

that executes and commits them concurrently will satisfy the single-lock atomicity model. In

this case, the result of concurrently executing T1 and T2 would be the same as a serialized

execution in which either transaction executed before the other one.

Non-Transactional Accesses

So far, single-lock atomicity is nothing more than a concrete embodiment of the database

serializability condition. However, because this semantics defines a transaction in terms of a

conventional lock, it can also discuss what happens when code outside a transaction accesses

shared data, which we will call non-transactional accesses. The semantic is similar to code

executing outside of a critical section in a program written with conventional locking.

Programs of this type can contain a data race [9–11]. A conflict occurs when concurrently

executing threads access the same shared data and at least one thread modifies the data. When

the conflicting accesses are not synchronized, a datarace occurs. The behavior of code containing

data races is undefined and depends on the implementation of a computer’s memory consistency

model.
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Programs that exhibit data races often do so because of programming errors in which

a programmer incorrectly identified a critical section or because of performance-enhancing

tricks used to avoid the cost of locking and synchronization. With data races, the result of

the execution depends on the implementation of a processor’s memory consistency model. The

precise behavior of the program in the presence of data races is implementation-specific and may

differ on other hardware systems. Because data races are often symptomatic of programming

errors, they are discouraged.

In a transaction, the single lock provides synchronization (at least conceptually). Non-

transactional code does not acquire this lock. Therefore, conflicting data accesses among trans-

actional and non-transactional code can result in data races and undefined behavior.

Data races can be prevented either by using locking and other forms of synchronization

to prevent concurrent access or by arranging a program’s control flow to prevent these accesses.

Consider the following example:

Thread 1: Thread 2:

lock_acquire (lock);

obj.x = 1; obj.x = 2;

if (obj.x != 1) fireMissiles();

lock_release (lock);

Thread 1 operates on obj.x inside a critical section protected by lock. Thread 2’s un-

protected updates to obj.x compete with thread 1’s access, resulting in a data race on obj.x.

The result of the execution is not deterministic as Thread 2’s execution may change the value of

obj.x at any time. A data race is often symptomatic of an incorrect program [10]. Preventing

the data race requires Thread 2 to acquire lock before modifying obj.x or Thread 2 not to

execute concurrently with Thread 1.

Suppose that lock was the single lock for transactions, so the example becomes:

Thread 1: Thread 2:

atomic {

obj.x = 1; obj.x = 2;

if (obj.x != 1) fireMissiles();

}

This behavior of this transactional program is also undefined because of the same data

race. The remedies are the same as above. Thread 2 can execute in a transaction (semantically

using lock to ensure mutual exclusion) or can ensure that it does not access obj concurrently

with Thread 1.
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As an example of the latter behavior, consider the example:

Thread T1: Thread T2:

ListNode res; atomic {

atomic { ListNode n = lHead;

res = lHead; while (n != null) {

if (lHead != null) n.val ++;

lhead = lhead.next; n = n.next

} }

use res; }

The first thread removes an element from a list. The second thread modifies all elements

in the list. The atomic blocks ensure these two operations do not execute concurrently, but why

can Thread 1 access the item it removed from the list (res) outside the block? The answer is that

Thread 1 and Thread 2 cannot access this item concurrently. Suppose Thread 1 executes first.

When Thread 1 leaves the atomic block, it will have removed the first item from the shared

list (an operation known as privatization), so Thread 2 cannot subsequently modify it. If

Thread 2 executes first, Thread 1 will not execute its transaction or subsequent statement until

Thread 2 finishes, so there is no conflict. This example also demonstrates that not all non-

transactional operations constitute a data race. Thread 1’s access of res after the transaction

commits is not a data race.

If this program was not properly synchronized – for example, Thread 2 did not execute in

a transaction – the list modification might not execute strictly before or strictly after the Thread

1. For example:

• Thread 2 starts executing and stores lHead in a local variable.

• Thread 1 executes its atomic block and references res outside the block.

• Thread 2 iterates over the list, from its original head, and modifies each node.

• Thread 1 references res again and sees the modified value.

The behavior of a program that uses transactions is well defined if the program does

not exhibit data races when the transactions are expressed using a single lock. This semantic

provides clear guidelines to programmers using transactional memory.

Data races in a transactional memory program can expose details of the transactional

memory implementation and so may produce different results on different systems. For example,

in a deferred-update TM system, a transaction typically reads and writes a copy of a memory

location, which overwrites the program-visible location when the transaction commits. Code

outside of a transaction is only aware of the program-visible location and does not respect the

carefully crafted protocols used to update multiple locations atomically. In addition, the order
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in which these locations are physically updated depends on the TM implementation. It may not

match the underlying memory consistency model behavior. Similarly, in a direct-update TM

system, non-transactional code may not respect synchronization protocols and consequently

read the contents of a memory location that rolls back when a transaction subsequently aborts.

In general, non-transactional code that conflicts with transactions can read inconsistent state,

produce results that are overwritten and lost, or disrupt the atomicity of a transaction.

Transactions that abort should not leave shared data in an inconsistent state. In the

absence of data races, aborted transactions do not leave any side effects. Therefore, they do not

form part of the execution history used to detect data races. However, this is not true in the

presence of data races. Conflicting code may read a value from an aborted transaction. Since

this code is non-transactional, it does not abort and its read operation constitutes a side effect

of the aborted transaction.

Single-lock atomicity covers only the basic transactional construct. Simple nested trans-

actions may require recursive locks. Specifying the behavior of more complex nesting models is

an open question.

Linearizability

An alternative to serializability is linearizability. Herlihy and Wing [8] proposed linearizability

as a correctness condition for operations on shared concurrent objects. This criterion raises the

level of abstraction from a low-level systems description, such as hardware accesses to memory

locations, to a higher-level description, such as method invocations on an abstract data type.

Linearizability assumes that the effect of a method invocation occurs at an instantaneous point

somewhere between the invocation and completion of the method.

Linearizability defines the correctness of an abstract datatype in terms of its history of

method invocation and responses. An execution is linearizable if all invocations and responses

form a legal sequential history. A datatype is linearizable if all executions are linearizable.

Linearizability can be applied as a correctness criterion for transactional memory by

defining transaction method operation (begin transaction, read, write, end transaction) on a

logical object representing shared memory (or comprising the multiple objects accessed within

the transaction). This model, however, does not distinguish memory accesses inside and outside

a transaction. Therefore, as currently specified, it does not define the semantics of transactions

executing in multithreaded applications in which shared data is accessed both inside and outside

transactions.

2.1.3 Declarations

Depending on implementation details, a programmer may need to annotate functions invoked

by a transaction, to ensure that they are compiled appropriately. In the example above, if func-

tion foo executes inside and outside of a transaction, the system may need two versions of its
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body: one accessing data through transactional mechanisms and the other directly referencing

the data. STM systems usually impose this distinction. Most HTMs eliminate the need to

recompile code because hardware can dynamically change the semantics of an instruction de-

pending on whether it executes inside a transaction. Other HTMs require explicit identification

of transactional references and may require different instructions to access data in a transaction.

Declaring that a function executes in a transaction can be cumbersome, particularly if a

large fraction of a system runs in transactions. An alternative is to use interprocedural program

analysis to identify methods invoked by transactions. Another alternative is to defer compilation

until run-time, when the compiler is aware of context in which a method is running.

In addition, programmers can declare data that is shared among transactions, both to

improve the performance of a TM system and to document the program [11]. Knowing which

data is not shared permits optimizations to improve the performance of both STM and HTM

systems, since references to private data cannot conflict with other transactions and consequently

need not be tracked by the TM system [12, 13].

Shared data declarations, however, shift the burden of correctness from the TM system

back to a programmer. Accidentally omitting a declaration can cause a data race, which is a

problem that transactions should eliminate. Again, program analysis can alleviate the burden.

For example, a compiler can use escape analysis [14] or a type system [15] to conservatively

identify data that cannot be shared with another thread.

2.1.4 Retry

The discussion of semantics says nothing about the order in which two concurrently executing

transactions should modify program state: either could commit before the other. In database

systems, transactions are generally independent operations on a database and indeterminacy of

this sort is often acceptable. Within a single process, transactions are more tightly coupled; it

is often necessary to coordinate which transactions execute and when. A common example is

one transaction produces a value used by another.

Harris et al. [2] introduced the retry statement to coordinate transactions. A transaction

that executes a retry statement aborts and then reexecutes. This is the programmer-controlled

analogue of the actions that occur when most TM systems detect a conflict. retry is a general

mechanism that allows a transaction to abandon its current computation for an arbitrary reason

and reexecute in hope of producing a different result. Unlike the explicit signaling, with con-

ditional variables and signal/wait operations, or the implicit signaling, with a waituntil

predicate statement, used in monitors [16], retry does not name either the transaction being

coordinated with or the shared locations.

Harris suggested delaying reexecution until the system detects changes in one or more of

the values that the transaction read in its previous execution, so its outcome may be different.
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This makes retry into a potentially efficient mechanism for coordinating transactions. For

example, the following transaction waits until a buffer contains an item before executing its

computation:

atomic {

if (buffer.isEmpty()) retry;

Object x = buffer.getElement();

...

}

This example illustrates the advantage of combining atomic and retry statements. Since the

predicate examining the buffer executes in the atomic block, if it finds an item in the buffer,

this value will be present when the next statement in the block goes to get it. The transaction’s

isolation property ensures that there is no “window of vulnerability” through which another

thread can come in and removes an item.

Practical systems may need a mechanism to limit the number of retries, since a transaction

itself cannot keep track of the number of times it retries (each abort rolls back the counter).

The Atomos language provides such a limit. Open nested transactions (Section 2.2.2) provide

another approach to limiting the number of retries by permitting a transaction to exclude data

from the rollback process.

Atomos also allows a retry statement to specify the locations (watch set) that trigger

reexecution of an atomic block [3]. A watch set is potentially smaller than the locations read by

an aborted transaction. Reducing the size of this set can improve performance, particularly for

hardware, which may only be able to track a bounded number of changes in hardware.

2.1.5 OrElse

Harris et al. [2] also introduced the orElse operation; another mechanism to coordinate the

execution of two transactions. If T1 and T2 are transactions, then T1 orElse T2 starts by

executing transaction T1:

1. If T1 commits or explicitly aborts (with an explicit abort statement or uncaught ex-

ception), the orElse statement terminates without executing T2.

2. If T1 executes a retry statement, the orElse operation starts executing T2.

3. If T2 commits or explicitly aborts, the orElse statement finishes execution.

4. If T2 executes a retry statement, the orElse statement waits until a location read by

either transaction changes, and then reexecutes itself in the same manner.
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The orElse statement must execute in an atomic block, because the composition of two

transactions is itself a transaction that can commit, abort, or retry.

For example, suppose we want to read a value from one of two transactional queues.

getElement is a blocking operation will retry if a queue is empty, to wait until there is a

value to return. The following code checks two queues and returns a value from Q1 if possible,

otherwise it attempts to dequeue an item from queue Q2 and only blocks if both are empty:

atomic {

{ x = Q1.getElement(); }

orElse

{ x = Q2.getElement(); }

}

Harris and Peyton-Jones deliberately specified left-to-right evaluation of the transactions,

as opposed to concurrent or nondeterministic evaluation, to enable use of the orElse construct

to produce values from blocking operations that uses retry to wait until a condition is satisfied.

For example, the following code returns null if a blocking getElement operation waits on an

empty queue:

Object getElementOrNull ()

atomic {

{ return this.getElement(); }

orElse

{ return null; }

}

}

2.2 TRANSACTION DESIGN SPACE
Even for the simple programming constructs above, there are many alternatives in the semantics

of a transaction and many issues in the transaction’s interaction with other programming and

system abstractions.

2.2.1 Weak and Strong Isolation

Blundell et al. [5] introduced the terms weak atomicity and strong atomicity. Weak atomic-

ity guarantees transactional semantics only among transactions. Strong atomicity guarantees

transactional semantics between transactions and non-transactional code, in addition to trans-

actions. The terms “weak atomicity” and “strong atomicity” are misnomers, since the property
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they specify is isolation, not atomicity. The more appropriate names we will use in this book

are weak isolation and strong isolation.

With weak isolation, a conflicting memory reference executed outside of a transaction

may not fellow the protocols of the TM system. Consequently, the reference may return an

inconsistent value or disrupt the correct execution of the transaction. The exact consequences

are implementation-specific. With our single-lock atomicity semantic model (Section 2.1.2),

an access outside of an atomic block that conflicts with a reference in a transaction introduces

the possibility of a data race and makes the system’s behavior undefined.

Weak isolation is sometimes understood to necessitate that all access to shared data occur

inside a transaction. However, this requirement is unnecessarily strong. A program only needs

to ensure that non-transactional accesses do not conflict with transactional accesses, either by

making the accesses not overlap in time or in memory location.

Data types are a blunt tool for identifying mistakes in sharing data. For example, code

executed in a transaction could be restricted to access data whose type is transactional. It would

be a detectable error to access data of this type outside a transaction. This is the approach taken

by the Haskell STM [2], where mutable variables are accessible only within a transaction.

In Haskell, however, most data is read-only and is accessible both inside and outside a

transaction. In non-functional languages, most data is mutable and must be partitioned into

transactional and non-transactional data. This distinction effectively divides a program into

two worlds, which communicate only through immutable values. This division complicates the

architecture of a program, where data may originate in the non-transactional world, be processed

in transactions, and then return to the non-transactional world for further computation or IO.

Lev and Maessen propose tracking the sharing of objects at runtime, to detect when a

shared object is accessed outside a transaction [18]. The tracking conservatively assumes that

an object is not shared only if it is visible to only one thread. Objects start local and transition to

shared when a global variable or a shared object points to them. The cost of tracking is unclear.

Strong isolation automatically converts all operations outside an atomic block into in-

dividual transactional operations, thus replicating the database model in which all accesses to

shared state execute in transactions.

For a program without data races, weak and strong isolation is equivalent with respect to

the semantics of single-lock atomicity.

Although strong isolation appears to specify precise behavior even in the presence of data

races, it by itself does not necessarily lead to correct and safe concurrent execution. A programmer

may have incorrectly marked transaction boundaries, so that a (transactional) statement executes

between two operations that should have executed atomically. For example, the debit and credit

operations that occur when money is transferred between two bank accounts should appear

atomic, or another thread can see an inconsistency. If a programmer incorrectly delimits a
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transaction, the program’s concurrent execution can be incorrect, even under strong isolation,

although the incorrect execution itself would be well defined.

Strong isolation, nevertheless, has some advantages. The mechanisms used to implement

strong isolation can help detect conflicting data accesses, if a programmer’s goal is to eliminate

data races. Strong isolation also specifies program behavior in the presence of data races, which

may aid in debugging programs.

2.2.2 Nested Transactions

A nested transaction is a transaction whose execution is properly contained in the dynamic

extent of another transaction. For now, we assume that there is only one thread of control

for the transactions, so the outer one passes control to the inner one. The inner transaction

sees modifications to program state made by the outer transaction. The behavior of the two

transactions can be linked in several ways.

If the transactions are flattened, aborting the inner transaction causes the outer transaction

to abort, but committing the inner transaction has no effect until the outer transaction commits,

at which point the inner transaction’s changes become visible to other threads. The outer

transaction sees modifications to program state made by the inner transaction. If the inner

transaction is flattened in the following example, when the outer transaction terminates, the

variable x has value 1:

int x = 1;

atomic {

x = 2;

atomic flatten {

x = 3;

abort;

}

}

Flattened transactions are easy to implement, since there is only a single transaction in ex-

ecution. However, they are a poor programming abstraction that subverts program composition,

since an abort in a library routine terminates all surrounding transactions.

Transactions that are not flattened have two alternative semantics. A closed transaction

aborts without terminating its parent transaction. When a closed inner transaction commits

or aborts, control passes to its surrounding transaction. If the inner transaction commits, its

modifications become visible to the surrounding transaction. However, nonsurrounding trans-

actions see these changes only when the outermost surrounding transaction commits. In the
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following example, variable x is left with the value 2 because the inner transaction’s assignment

is undone by the abort. Closed nesting can have higher overheads than flattened transactions.

For executions that commit successfully, the behavior of flattening and closed nesting is equiv-

alent. If commits are common, a TM system can take advantage of flattening transactions as a

performance optimization and switch to closed nesting if aborts occur:

int x = 1;

atomic {

x = 2;

atomic closed {

x = 3;

abort;

}

}

By contrast, when an open transaction commits, its changes become visible to all other

transactions in the system, even if the surrounding transaction is still executing. Moreover, even

if the parent transaction aborts, the results of the nested, open transactions will remain com-

mitted. In the following example, even after the outer transaction aborts, variable x is left with

the value 3:

int x = 1;

atomic {

x = 2;

atomic open {

x = 3;

}

abort;

}

Open transactions permit a transaction to make permanent modifications to a program’s

state, which are not rolled back if a surrounding transaction aborts. In addition, they permit

unrelated code, such as a garbage collector, to execute in the middle of a transaction and make

permanent changes that are unaffected by the surrounding transactions. These uses of open

transactions can improve program performance.
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For example, a common programming paradigm is to use a counter to generate unique

tokens. If this counter is incremented in a closed transaction, then every transaction that uses

the counter conflicts, and the counter effectively serializes their execution. If the transaction

that obtains value N from the counter aborts, then every transaction that obtains a later value

must also abort. Open transactions provide a mechanism to increment the counter atomically

without serializing execution:

int counter = 1;

atomic {

...

atomic open {

counter += 1;

}

...

}

On the other hand, open transactions can subvert the ACI properties of transactions.

The correctness of an optimization may depend on a subtle understanding of the semantics

of a program. Consider the example above. In general, tokens only have to be unique (not

contiguous), so it does not matter if an aborted transaction generated a value that was dis-

carded. However, if this counter were recording the number of operations successfully com-

pleted, an aborted transaction must decrement the counter when it fails, an action known as

compensation.

Moss and Hosking describe a reference model for nested transactions that provides a

precise definition of open and closed nesting [19].

Zilles and Baugh described an operation similar to open nested transactions which they

called “pause” [20]. This operation suspends a transaction and executes nontransactionally until

the transaction explicitly resumes. Unlike open nesting, operations in a pause do not have

transactional semantics and must use explicit synchronization.

Appropriate semantics for nested transactions become murkier if multiple nested trans-

actions execute concurrently, say because a transaction forked off threads to execute the nested

transactions. To preserve isolation, the inner transactions should not see modifications made

by the concurrent outer transaction, nor should the outer transaction see the results com-

mitted by an inner transaction. In essence, the situation is closer to independent, nonnested

transactions.
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2.2.3 Exceptions

An exception thrown from within a transaction that leaves the scope of the transaction can

either terminate or abort the transaction. An exception that terminates a transaction is similar

to a nonlocal goto statement that terminates and exits the transaction. Before control leaves the

transaction, the system attempts to commit the transaction. In the following example, the value

that is printed is 2:

int x = 1;

try {

atomic {

x = 2;

throw new AtomicTerminatingException();

}

} catch(Exception) { print(x); };

An exception that aborts a transaction causes the transaction to abort as control leaves its

scope. In the following example, the value that is printed is 1:

int x = 1;

try {

atomic {

x = 2;

throw new AtomicAbortingException();

}

} catch(Exception) { print(x); };

Another design decision is whether an exception of this type (or an abort statement)

should cause the transaction to reexecute or whether it should terminate it. The latter alternative

is more flexible, since a programmer can reexecute the atomic block by catching the exception

and looping.

A TM system, with appropriate language and compiler support, can implement both

models by providing different classes of exceptions for each alternative, different variants of

‘throw’ statements, or different forms of ‘try’ or ‘atomic’ blocks.
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An exception caught within a transaction does not terminate the transaction, so the

following code leaves x with value 4 and does not print the value:

int x = 1;

try {

atomic {

x = 2;

try {

throw new AtomicAbortingException();

} catch {

x = 4;

}

}

} catch(Exception) { print(x); };

2.3 TRANSACTIONAL MEMORY SYSTEM TAXONOMY
In addition to the language features discussed above, implementation differences in transactional

memory systems can affect a system’s programming model and performance. This section

discusses some key differences relevant to both hardware and software transactional memory.

2.3.1 Transaction Granularity

Transaction granularity is the unit of storage over which a TM system detects conflicts. Most

STM systems extend an object-based language and implement object granularity, which detects

a conflicting access to an object even if the transactions referenced different fields. Other alter-

natives are word granularity or block granularity, which detect conflicting accesses to a memory

word or adjacent, fixed-size group of words. Most HTM systems are agnostic of language

characteristics and detect conflicts at block or word granularity. For convenience of discussion

in this section, we will refer to a unit of shared resource as an “object,” regardless of whether the

unit is a word, block, data structure, or object in an object-oriented language.

Object granularity has implementation and comprehension advantages. A TM system

must associate metadata with each item that it tracks. In some languages, it is easy to extend an

object with a field to provide quick access to the TM metadata for the object. By contrast, an

STM system must record metadata about a word or block of words in an auxiliary table, such

as a hash table. In this case, mapping from a memory address to metadata can be expensive.

HTM systems can associate metadata directly with the data; for example, a data cache entry

can store metadata along with the cache line.
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Moreover, object granularity provides a more understandable performance model than

block granularity, since the memory layout of objects may not be visible to programmers, who

can be confused by conflicts that arise when more than one object reside in a memory block.

However, word or block granularity permits finer grain sharing than do objects. This

consideration is particularly important for aggregate data structures, such as arrays, which many

transactions may concurrently access if they can be logically partitioned. Treating an array as a

single object for conflict detection can cause unnecessary conflicts, which inhibit concurrency.

Finer grained approaches generally do not require changes to structure or object lay-

out, the lack of which facilitates interoperability with nontransactional software and allows

legacy and nontransactional-aware code to run inside a transaction. In particular, C and C++
impose severe constraints on TM implementations since structure layouts are fixed and the

languages allow pointers into the interior of structures. However, even safe, object-oriented

programs manipulate nonobject data, such as an integer static variable, that may require fine

granularity.

2.3.2 Direct and Deferred Update

A transaction typically modifies an object. If the TM uses direct update, the transaction directly

modifies the object itself and the system uses some form of concurrency control to prevent other

transactions from concurrently modifying the object or committing after reading an updated

value. Direct update requires that the system record the original value of a modified object, so

it can be restored if the transaction aborts.

If a TM uses deferred update, the transaction updates the object in a location private to

the transaction. The transaction must ensure that it reads the object’s updated value from this

location. Other transactions can concurrently modify their private copies of the object. When a

transaction commits, it updates the actual object from its private copy. The object can be updated

in place by copying values from the private copy, or it can be replaced by the private copy. If the

transaction aborts, it discards the private copy.

Early STM systems used deferred update, but some recent systems use direct update,

which appears to be more efficient. Direct update eliminates one or two memory references per

read or write. In addition, it can reduce the amount of work needed to commit a transaction,

by eliminating the need to copy from a private copy to an object.

On the other hand, direct update requires a mechanism to reverse (undo) memory up-

dates and to impose concurrency control on memory accesses. Direct update increases the cost

of aborting a transaction, since every modified object must be restored. Since aborting is in-

trinsically expensive, because it discards computation, it is sensible to favor the performance of

commits over aborts.
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Deferred update can increase a program’s memory usage by making private copies of every

object a transaction modifies. On the other hand, direct update must log the original value of

the object. Logging may require less memory if objects are only partially modified.

The tradeoffs for HTMs differ slightly if a transaction executes successfully. An HTM

can use the hardware caches that exist in processors for seamless and fast deferred updates. A

cache stores a private copy of a memory location, and memory references first access the cached

copy. Further, both commits and aborts can be local operations in a cache.

However, when a transaction exceeds the cache and overflows into memory, the tradeoffs

for a deferred or direct update HTM become similar to that of an STM. Some HTMs support

a mixture of deferred and direct updates, in which updates are deferred as long as data fits the

caches. These systems use direct update when data overflows the cache.

Data races, including false data races, complicate the implementation of both systems.

Buffering and logging can have subtle interactions with isolation in a TM system, es-

pecially if buffering and logging occurs at a coarser granularity than updates in a transaction.

Consider, for example, a non-transactional thread and a transactional thread updating two dif-

ferent fields of the same object. Since the locations differ, the updates do not conflict and the

threads are not involved in a data race. Suppose, however, that the TM system records an entire

object for undo. Care is required to ensure the non-transactional updates are not undone if the

transaction aborts. This scenario is similar to false sharing.

In a TM system that provides weak isolation, the non-transactional access would not

detect a conflict with a rollback and might observe an anomaly due to the data race. Even

though HTM systems may buffer or log at the granularity of cache lines, HTM systems that

provide strong isolation would detect the conflict and not observe an anomaly.

TM systems may need to ensure that a transaction’s modifications become visible to

other transactions in an order consistent with program order. For example, in a deferred-update

system, the transaction should not release ownership of locations until all of them have been

updated, so another transaction does not read an inconsistent intermediate state. A direct-

update system has the opposite problem, when a transaction aborts, the system must make sure

other transactions do not read the partially rolled back state.

TM systems that support weak isolation face a challenge in making the behavior of

a deferred-update system consistent with the underlying hardware’s memory model in the

presence of data races. Updating locations during commit in the original program order requires

capturing the order in which locations are modified, an expensive proposition. Direct-update

systems face a similar challenge when they abort a transaction. In a weak isolation system, a

conflicting read (data race) from a non-transactional thread might see an intermediate value

that was later undone when a transaction aborted. A TM should probably deviate from legacy

memory model behaviors in the presence of data races, because the cost of enforcing this behavior
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may be disproportional to the benefit, which accrue primarily to incorrect programs. The issue

of data races and TM semantics was briefly discussed earlier in Section 2.1.2.

2.3.3 Concurrency Control

A TM system that executes more than one transaction concurrently requires synchronization

to mediate concurrent accesses to an object. This is necessary both in a direct update system,

where transactions directly modify an object, and in a deferred-update system, in which the

commit operation modifies the object.

A conflict occurs when two transactions perform conflicting operations on the same object.

At least one of the transactions must modify the object, since two read accesses do not conflict.

The conflicting transactions may not access a common memory location if the granularity of

conflict detection is a block or an object.

The conflict is detected when the underlying system (SW, HW, or a combination) deter-

mines that the conflict occurs.

The conflict is resolved when the underlying system or code in a transaction takes some

action to ensure correctness, by delaying or aborting one of the conflicting transactions.

These three events (conflict, detection, resolution) can occur at different times, but not

in a different order—at least until systems predict or otherwise anticipate conflicts.

Broadly, there are two approaches to concurrency control.

With pessimistic concurrency control, all three events occur at the same point in execution;

as a transaction is about to access a location, the system detects a conflict, and resolves it. This

type of concurrency control allows a transaction to claim exclusive ownership of an object prior

to proceeding and prevent other transactions from accessing it. Exclusive access can lead to a

deadlock, in which each of two transactions holds exclusive access to an object and wants access

to the object held by the other transaction. Deadlocks can be avoided by acquiring exclusive

access to objects in a fixed, predetermined order, or they can be resolved by aborting a transaction

in the deadlock cycle.

With optimistic concurrency control, conflict detection and resolution can happen after a

conflict occurs. This type of concurrency control allows multiple transactions to access an object

concurrently. It only must detect and resolve any conflicts before a transaction commits, which

provides considerable implementation leeway. A conflict is resolved by aborting and restarting

or by delaying one of the conflicting transactions. The other conflicting transaction can continue

execution. If conflicts are infrequent, optimistic concurrency control can eliminate the cost of

locking and increase concurrency by allowing more concurrency (Section 2.3.4).

Hardware systems can defer detecting conflicts to increase concurrency. For example,

consider two transactions T1 and T2 executing concurrently on two different processors. T1

reads a location X and T2 writes location X. Assume that both processors cache location X in
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a shared state. When the transactions issue their respective read and write requests, a conflict

occurs.

However, neither processor must check for the conflict. T1’s read returns the cached value.

T2’s write is queued into its store buffer. The coherence protocol eventually processes this write

request. At this point, the protocol sends the write to T1 and the coherence protocol detects the

conflict. However, when T2’s write arrives at T1, T1 may have committed. Thus, even though

both processors support early conflict detection, both transactions can optimistically commit

successfully. Moreover, if T1 has not committed and T1 does not miss in its cache before it

commits, T1 is free to ignore the incoming invalidation because its state remains consistent and

the execution of the transactions is still serializable. Thus, even though two transactions issue

conflicting requests, both can commit.

Most HTM and STM systems use optimistic concurrency control. Some TM systems use

hybrid mechanisms that combine aspects of both policies. For example, a common approach in

direct update STMs is to use an exclusive lock to exclude other transactions that want to modify

an object, but to allow readers to proceed without locking and to detect read–write conflicts

later by validating a transaction’s read set (Section 2.3.4). This approach simplifies the locks,

as fair read–write locks are complex and more expensive than mutual-exclusion locks [21], but

may change the semantics of transactions (Section 2.3.5).

Another dimension to concurrency control is its forward progress guarantees: the assur-

ance that a transaction seeking to access an object will eventually complete its computation.

Again, there are two alternative approaches.

Blocking synchronization is the most familiar form of concurrency control embodied in

conventional locks, monitors, and semaphores. Programs constructed with blocking synchro-

nization do not guarantee the forward progress of a system if threads may be preempted while

holding exclusive access to resources. The system could deadlock or be delayed for an arbitrary

period as one thread waits for a lock held by another thread.

Early TM systems grew out of research in nonblocking data structures, and naturally,

these TM systems were constructed with nonblocking synchronization. This mechanism offers a

stronger guarantee of forward progress: a stalled thread cannot cause all other threads to stall

indefinitely. From a practical viewpoint, three most common guarantees are as follows:

• Wait freedom. This is the strongest guarantee that all threads contending for a com-

mon set of objects make forward progress in a finite number of their individual time

steps.

• Lock freedom. This guarantee assures that at least one thread from the set of threads

contending for a common set of objects makes forward progress in a finite number of

time steps of any of the concurrent threads.
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• Obstruction freedom. This is the weakest guarantee that a thread will make forward

progress in a finite number of its own time steps in the absence of contention over

shared objects. It is particularly well suited to transactions, as it allows a thread involved

in a conflict to be aborted and retried.

Experience with STM systems, at least to date, suggests that those constructed with

nonblocking synchronization are more complex and lower performing than those built with

blocking synchronization; in part, because the former group uses deferred update and the latter

uses direct update and in part because of the increase in memory traffic caused by nonblocking

techniques.

STM systems can be built with blocking synchronization, and use timeouts to detect and

abort deadlocked or blocked transactions. Systems built this way can provide higher perfor-

mance, while maintaining strong forward progress guarantees for users of an STM system [12,

13, 22–24]. This claim should not be surprising, as database systems constructed with blocking

synchronization provide database programmers with a nonblocking abstraction (transactions).

2.3.4 Early and Late Conflict Detection

A TM system can detect a conflict at three points in a transaction’s execution:

• A conflict can be detected on open, when a transaction declares its intent to access an

object (by “opening” or “acquiring” the object) or at the transaction’s first reference to

the object.

• Conflict can be detected on validation, at which point a transaction examines the col-

lection of objects it previously read or updated, to see if another transaction opened

them for modification. Validation can occur anytime, or even multiple times, during a

transaction’s execution.

• A conflict can be detected on commit. When a transaction attempts to commit, it may

(often must) validate the set of objects that it read and updated to detect conflicts with

other transactions.

HTM systems built on cache coherence typically detect conflicts early. A processor issues

a memory request, and the cache coherence protocol sends it to the appropriate caches. If the

HTM detects and resolves a conflict, the failing HTM transaction can abort immediately.

Some HTMs do not abort a transaction immediately but leave an indication of a conflict in the

hardware status and rely on software to check the status (detected on validation) and abort a

transaction. Some HTM systems add specialized support in a cache controller to detect conflicts

on commit.
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A system may treat write–write or read–write conflicts differently. The former may be

easier to detect, since an object may only have a single writer, whose identity may be stored with

the object. Many systems do not track the identity of the transactions reading a data object,

since the size of this collection of transactions may be unbounded, which makes it difficult to

record in a fixed-size structure.

Either a transaction can validate an object by comparing its value against the value recorded

when the transaction started or by recording the version number of an object, which must be

updated when a transaction modifies the object. Version numbers avoid the “ABA” problem:

• Object O’s initial value is “A.”

• Transaction T1 reads this value and records it in its read set.

• Transaction T2 changes O’s value to “B” and commits.

• Transaction T1 reads O again, but this time sees the value “B.”

• Transaction T3 changes O’s value back to “A” and commits.

• Transaction T1 commits and validates its read set. Since O’s value has returned to “A,”

the transaction will validate, even though it read two, inconsistent values for O.

Version numbers have a boundary condition, when a counter wraps around. This should

be an infrequent occurrence with a suitably large counter, but must be handled correctly.

Detecting a conflict early (on open or validation before commit) reduces the amount of

computation lost by the aborted transaction. On the other hand, aborting a transaction early

can terminate a transaction that could have committed. For example,

• suppose transactions TB and TC conflict with transaction TA over two different objects;

• TB is aborted as soon as its conflict with TA occurs;

• TA is aborted because of a conflict with TC;

• with TA terminated, TB could have completed execution.

Late detection could have avoided this problem, by waiting until a transaction attempts

to commit its results before determining if the transaction is in conflict. However, late detection

maximizes the amount of computation discarded when a transaction aborts. A doomed transaction

cannot commit because of conflicts.

Detecting conflicts requires a TM system to maintain an association between transactions

and the objects they access. There are two approaches to tracking this relation:

• A transaction can record the set of objects that it read or updated. A read set or a write set

can be private to a transaction (also known as invisible), in which case other transactions
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cannot examine the set to find potential conflicts. The set can also be public (visible), in

which case other transactions can examine the objects.

• The TM system can record the transactions that have an object open for reading (in a

reader set) or open for update (in a writer set).

Consider two transactions TA and TB that access the same object. Scott [8] identifies four

practical policies for detecting conflicts (Fig. 2.1):

• Lazy invalidation. Transactions TA and TB conflict if TA writes an object, TB reads the

same object, and TA commits before TB. Systems such as Harris and Fraser’s WSTM

System (Chapter 4) use this policy to provide late conflict detection.

• Eager W–R. Transactions TA and TB conflict if TA and TB have a lazy invalidation

conflict or TA writes an object, TB subsequently reads the same object, but neither

transaction has committed.

• Mixed invalidation. Transactions TA and TB conflict if TA and TB have a lazy invali-

dation conflict or TA writes an object, TB reads and then writes the same object, but

neither transaction has committed.

• Eager invalidation. Transactions TA and TB conflict if TA and TB have an eager W–R

conflict or TB reads an object, TA subsequently writes the same object, but neither

transaction has committed. Systems, such as Herlihy et al.’s DSTM System (Chapter

4), use this policy to provide early conflict detection.

Fig. 2.1 also shows the relationship among these four policies. The circles represent the

set of transaction executions each policy can identify as conflicting. Therefore, for example,

eager invalidation subsumes the other policies, but not all pairs of transactions identified as

conflicting by the eager W–R policy are conflicts under the lazy invalidation policy.

2.3.5 Detecting and Tolerating Conflicts

Most TM systems allow multiple transactions to read an object concurrently, which makes

it impossible to track reader sets in a fixed-size data structure. A TM system that does not

track readers (also called an invisible read TM system) cannot immediately detect a write-after-

read conflict, which opens the possibility that a transaction will continue executing after such

a conflict and consequently find itself running with inconsistent state in which some values

changed after the transaction started. Inconsistencies of these sorts should cause a transaction

to terminate, but few STM systems detect these problems immediately.

As an example, suppose that

• transaction TR reads objects O1 and O2 and transaction TW updates O1 and O2;

• TR first reads O1;
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FIGURE 2.1: Scott’s conflict classes

• TW then executes and modifies O1 and O2;

• TR resumes execution and reads O2; the state of the two objects is inconsistent, and TR

should abort since its execution is no longer serializable.

Inconsistent state can cause incorrect or unexpected program behavior. For example,

suppose both objects’ value was initially nonnull, TW set the values to null, and TR executed

the statement:

if (O1 != null)

O2.f1 = 2;

TR would evaluate the predicate with O1 as nonnull, but when it executed the next statement,

O2 would be null, which produces a paradoxical null-pointer exception.

TM systems use three mechanisms to avoid problems with inconsistent updates:

• Validation. A transaction can validate each object in its read set by checking if another

transaction modified an object. If all objects in a transaction’s read set validate, the

transaction’s state is consistent.
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In many deferred-update TMs, validating the read set when opening an object

prevents inconsistent execution, since an update does not change a previously opened

object. Inconsistencies between two objects, as in the example above, become apparent

when opening the second object.

In a direct update TM or a deferred-update TM that replaces objects in place, an

object may change between consecutive reads, so validation only assures that execution

up to the validation itself is consistent. The TM must tolerate inconsistent execution

(below).

Validating the entire read set when opening an object can be expensive, since the

number of validations is O (N2), where N is the number of items in the set.

All invisible–read TMs must validate the read set before committing a transaction,

to ensure that its execution is serializable.

• Invalidation. Another approach is to track the transactions that read an object (or a

subset of these transactions, as in [25]), and abort these transactions when another

transaction opens the object for updating.

• Inconsistency toleration. Because validation is potentially expensive and, in the case of a

direct update TM, provides no assurance that subsequent execution remains consistent,

transactions may execute with an inconsistent state. So long as an inconsistent trans-

action does not affect other threads and the transaction eventually validates its read set

and aborts, inconsistency does not affect program correctness.

Inconsistent execution, however, may manifest itself by exceptions (null pointer, array

bounds, type casting, etc.) in a safe programming language, such as Java or C#. The system can

distinguish these exceptions by validating the read set. If the state is inconsistent, the exception

should abort the transaction.

HTM systems can also suffer from inconsistent execution. An HTM system may not

signal a transaction immediately on a conflict, but instead allow the transaction to continue

executing until it validates (for example, by testing a hardware flag to determine the conflict

occurred).

In unsafe languages, such as C or C++, inconsistency can cause incorrect behavior

without raising an exception. This behavior can corrupt memory and affect the execution of

other threads, before the inconsistency manifests itself. Validating before every memory write

could detect this problem, but performance would be poor.

Moreover, in all languages, a program executing a loop or recursive call sequence whose

termination might depend on values read from shared memory must periodically validate—or
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else an inconsistency could cause an infinite loop. Consider the following two transactions

(x=y=0; initially):

Transaction T1 : Transaction T2 :

atomic { atomic {

temp1 = x; x = 10;

// Transaction 2 runs here y = 10;

temp2 = y; }

while (temp1 != temp2) { };

}

Suppose transaction T1 executes its first statement and then T2 runs in its entirety. T1

will loop forever, and will not raise an exception. This problem occurs in both deferred and

direct update TM systems. Fixing the problem requires that either T1 validate its read set on

reading y, validate its read set on the loop backedge, or expose its read set so that T2 can detect

the conflict.

However, validation and toleration are not always sufficient. In some TM implementa-

tions (e.g., those in Sections 3.5.2 and 3.5.4) that do not track publicly, but maintain private sets

and rely on inconsistency tolerance, the program behaviour may not always be correct. Consider

the following example,

Transaction T1 : Transaction T2 :

ListNode res; atomic {

atomic { ListNode n = lHead;

res = lHead; while (n != null) {

if (lHead != null) n.val ++;

lHead = lHead.next; n = n.next

} }

use res multiple times; }

Transaction T1 removes the first element from a list and then uses it outside the atomic block.

It seems reasonable that code inside an atomic block should be able to remove an item from a

shared structure and make it private; for example, if the list implements a queue distributing

work among concurrent threads. Transaction T2 iterates over the list, modifying each element.

The transactions obviously conflict, but suppose they execute as follows:

• T2 starts executing and stores lHead in a local variable in the atomic block.

• T1 executes its atomic block.
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• T1 references res (the node it removed from the list) outside the transaction.

• T2 iterates over the list, from its original head, and modifies each node.

• T1 references res again and sees the modified value.

• T2 attempts to commit, but validation fails because T1 changed the head of the list.

• T2 aborts.

• T1 references res again and sees the unmodified value.

The correct behavior of this code is that either T2 increments the node before T1 removes

it from the list or T2 does not modify the node. This is the behavior when atomic blocks are

implemented with the semantics-defining technique of single-lock atomicity. With a single

lock, the interleaving above cannot arise since the execution of T1 and T2 will not overlap.

Even aggressive validation fails to resolve this conflict in a predictable manner, which

means that many existing STM systems, both direct and deferred update, can fail in the manner

above. Other implementation techniques produce the expected result. A lock-based implemen-

tation would not have data races and would produce equivalent correct executions. An exposed

read TM would also work correctly since T1 could abort T2 before it modifies the list. Strong

isolation (for example, in an HTM system) is another potential solution, since it detects the

conflict between T2 and the statements following T1.

This example demonstrates the need for additional research to specify formally the be-

havior of transactional memory and to verify that the algorithms in an STM system are correct

and are correctly implemented.

2.3.6 Contention Management

A conflict between two transactions over an object can be resolved by aborting either one. A TM

system typically has a contention manager, which implements one or more contention resolution

policies that decide which conflicting transaction to abort. The choice of which transaction to

abort (or, alternatively, to delay) can affect the performance of the system and its semantic

guarantees. For example, not all contention resolution policies guarantee fairness—in the sense

that a given transaction will eventually prevail despite repeated conflicts. Scherer and Scott

describe a number of contention resolution policies and provide examples to show that no policy

is uniformly better than all other polices [26]. Guerraoui describes a hierarchical classification

of contention managers, based on their cost [27].

A key concern for transactional memory is forward progress. Processor instructions are

guaranteed to complete, no matter what else executes. Even atomic read-modify-write sequences

(for example, compare-and-swap (CAS)) guarantee forward progress at the instruction level.

At higher levels of abstraction, these primitives can construct synchronization methods that
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provide limited guarantees of forward progress. HTM systems that provide transactional mem-

ory of bounded size have proposed hardware mechanisms to ensure varying degrees of forward

progress. These vary from ad hoc policies to fair timestamps. Providing forward progress over

operations that access large sets of memory locations typically requires contention management

support from software, even in an HTM system.

Another question concerns the responsibility for contention management. Should a pro-

grammer specify policies for each transaction? Or, will a TM system be able to select contention

resolution polices automatically?

2.4 PROGRAMMING AND EXECUTION ENVIRONMENT
For a new programming abstraction like transactional memory to become successful, it must

fit into existing programming and execution environments, it must interoperate with existing

libraries and services, and it must provide a usage model with few, if any, surprises in functionality

and behavior. Below, we discuss various aspects of modern execution environments that interact

with transactional memory.

2.4.1 Communication

Transactional memory, as its name implies, is an abstraction for manipulating data structures

in memory. Because TM also affects a program’s control flow—by aborting and reexecuting

statements—it also changes the way in which the program interacts with the external world.

Perhaps the most serious challenge in using transactions is communication with entities

not under the control of the TM system. Modern operating systems such as Unix and Windows

provide a very large number of mechanisms for communication, including system calls on the

operating system, file manipulation, database accesses, interprocess communication, network

communication, etc.—many of which are buried in libraries or other programming abstractions.

These operations cause changes in entities not under the control of a TM system, so if a

transaction aborts, the TM system may have no way to revert these effects.

While there is no general mechanism to undo these changes, solutions exist on a case-

by-case basis. A system can buffer operations such as file writes until a transaction commits,

and then write the modified blocks to disk. Similarly, the system could also buffer input, to

be replayed if the transaction aborted and reexecuted. These seem like simple solutions, until

we combine them in a transaction that both reads and writes. Suppose the transaction writes a

prompt to a user and then waits for input. Because the output is buffered, the user will never

see the prompt and will not produce the input. The transaction will hang.

Another solution is to allow IO operations in transactions only if the IO supports transac-

tional semantics, so the TM system can rely on another abstraction to revert changes. Databases
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and some file systems are transactional. However, the granularity of these systems’ transactions

may not match the requirements of an atomic block. For example, Windows Vista supports

transactional file IO. These transactions start when a file is first opened. Therefore, if an atomic

block only performs one write, it is not possible to use a file system transaction to revert this

operation, without discarding all other changes to the file.

Many systems support transaction processing monitors (TPMs) [28], which serve as a

coordinator for a collection of systems, each of which supports transactions and wants to ensure

that the operation of the collection appears transactional to all parties outside the group. TPMs

generally use a two-phase commit protocol, in which the constituent transactions first all agree

that they are ready to commit their transactions (and all abort if any wants to abort), and then

commit en masse.

Another approach is to use compensating actions to undo the effects of a transaction.

For example, a file write can be reverted by buffering the overwritten data and restoring it if a

transaction aborts. Compensation is a very general mechanism, but it puts a high burden on a

programmer to understand the semantics of a complex system operation and be able to revert

it. This becomes particularly difficult in the presence of concurrency, when other threads and

processes may be manipulating the same system resources.

A number of papers discuss transaction handlers that invoke arbitrary pieces of code when

a transaction commits or aborts [3, 20, 29, 30]. These handlers can interface transactions to

TPMs or other transactional systems and implement compensating actions to revert external

side effects.

Similar challenges exist when a transaction performs a system call to the operating system.

Even if the call does not cause IO operations, it may update kernel data structures. If the transac-

tion subsequently aborts, kernel state may not match program state. Furthermore, the operating

system is a shared system resource, so a user transaction should not interfere with unrelated user

transactions through system calls. These considerations suggest that operating system kernels

may need to support transactions, or transactions will need to be tightly circumscribed in their

interaction with the system.

Another alternative is to serialize the execution of all external communications, by al-

lowing only a single transaction to communicate at a time [31]. This transaction becomes

nonabortable and always runs to completion without a rollback. However, eliminating overlap

among IO operations may greatly reduce the performance and responsiveness of a system.

2.4.2 System Abstractions

Systems use software to implement complex abstractions, which appear as primitive operations

to a program. Two common examples are virtual memory, implemented by an operation system’s

paging code, and garbage collection, implemented by a run-time system’s garbage collector.
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Although the code for these abstractions typically runs on the same processor as transactions,

these abstractions probably should not execute transactionally.

Consider, for example, garbage collection. If a garbage collection occurs in the middle of

a transaction, we do not want the storage reclamation to be reverted, even if the transaction has

aborted. There are three ways to handle this situation.

The first is to distinguish between instructions that execute transactionally and those that

do not. A garbage collector could use the latter type of instructions and so its changes would

persist even if the surrounding transaction aborted. Of course, garbage collection moves data

around in memory, and the collector must communicate these changes to the transactional

memory system. Updating an STM system’s metadata typically is not a problem, since the

system’s structures are conventional data updated by the collector. However, for HTMs with

hidden transactional state, the garbage collector needs a mechanism to update the addresses of

transactional objects that moved.

The next alternative is to treat the garbage collection as if it was executing in an open

nested transaction. The garbage collector, if it completes successfully, will commit, and its

changes will then be visible to all executing transactions, including the surrounding one. This

approach puts a large burden on the transaction mechanism, as a garbage collector may access

far more memory than a typical transaction.

The final approach is to abort all transactions if a page fault, context switch, or garbage

collection occurs and then restart them after the operation completes. This approach has the

advantage of simplicity, since it takes advantage of a necessary mechanism to avoid more complex

mechanisms or semantics. However, if page faults or garbage collections are frequent, the

approach could reduce performance. Perhaps more important, it also reduces the likelihood

that a long-running transaction will complete and so puts an upper bound on the size and

duration of permissible transactions.

2.4.3 Existing Programming Languages

Programming languages were designed without consideration of transactions. These languages

contain many features that might interact poorly with transactions. However, since these features

are standardized and existing programs use them, it is difficult to eliminate, change, or prohibit

them.

Consider an object-oriented language running in a managed environment. Object final-

izers are pieces of code associated with an object that are supposed to execute just before the

garbage collector reclaims the object. Although finalizers are a source of considerable confusion

and many errors, they are widely used to close file descriptors and free system resources [32].

Suppose an object containing a finalizer is created in a transaction. When and how does the

finalizer run? If the transaction aborts, presumably the finalizer need not run, since the side
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effects caused by creating the object (i.e., opening a file) should be reverted by the transaction.

However, system resources may not all be transactional, so running the finalizer may be the only

way in which the resource will be reclaimed. If the object is reclaimed when the transaction

is still executing, should the finalizer run in the transaction? Alternatively, if the transaction

commits and the object subsequently becomes garbage, how is the finalizer run? Does it execute

in a transaction? In Java, a class may be loaded when first accessed. The class loading may also

invoke a JIT compilation and a complex series of interactions with the underlying managed

system. If the first access to a class occurs inside a transaction, what happens if the transaction

aborts? Can the original semantics of class loading be maintained? In C#, managed code can

pass a pointer to a managed object to native (unsafe) code. How do managed and native code

interact if a native method is called inside a transaction? These design questions do not have

clear answers.

2.4.4 Libraries

Another challenge is separately compiled and dynamically linked software libraries. Libraries

are an integral part of any software and transactions need to call precompiled or newly compiled

libraries. Today, we link libraries from different compilers and languages into a single application.

Can we achieve this level of interoperability in the presence of transactional memory? Can

a compiled library separate semantics from implementations? Can we compile libraries that

do not carry implementation details of a particular TM system? If implementation details

are embedded into a library, will a system need multiple versions of a library for different

TM run-time systems? How do we deliver libraries to be used both inside and outside a

transaction?

2.4.5 Synchronization Primitives

A further challenge is the numerous existing synchronization primitives. Transactional mem-

ory must safely coexist and interoperate with code that uses primitives such as conventional

lock-based synchronization and atomic operations such as atomic increment and decrement.

Introducing transactional memory should not break existing software synchronization. Does

this require transactions to observe a locking protocol before referencing data? An alternative is

to translate code that relies on locks to use transactions. This approach has subtleties that make

automatic translation a challenge [5, 33].

2.4.6 Debugging

Software development tools and development environments must evolve to support transac-

tional memory. The concepts of optimistic or aborted execution do not exist in today’s tools.
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Debugging is a critical issue. What does it mean to single step through an atomic transaction?

A breakpoint inside the transaction should expose the state seen by the transaction. However,

how does a debugger present a consistent view of a program’s state, since part of the state not

relevant to the transaction, but visible to the debugger, may have been modified by other threads?

Furthermore, in deferred-update systems, transactionally modified state resides in two places:

the original location and a buffered location. The debugger must be aware of this separation

and able to find appropriate values. In addition, how does a programmer debug a transaction

that aborts because of conflicts? Lev and Moir discuss the challenges of debugging transactional

memory [34].

2.4.7 Performance Isolation

Programs today expect some degree of isolation from other programs executing on the same

system. Performance isolation is not guaranteed, but an operating system can deschedule or

terminate an application that consumes inappropriate amounts of system resources. Transac-

tional memory must provide similar degrees of isolation. Performance isolation is not an issue

for STMs, but using hardware support can introduce performance isolation challenges because

of shared hardware resources. Zilles and Flint [35] explore the issue of performance isolation.

2.4.8 HTM Implementation

Modern processors employ numerous mechanisms to improve performance, such as pipelining,

branch prediction, superscalar and out-of-order execution, load and store buffers, and caches.

Processors use these features to build an instruction window and to keep the pipeline busy

and flowing smoothly. Operations such as serializing instructions disrupt pipeline flow and

hurt performance. Frequent interruptions can prevent a processor from fully extracting perfor-

mance from the instruction stream and can limit scalable performance [36]. Hardware support

for transactional memory—including new hardware features and instructions to utilize these

features—must integrate seamlessly into modern processor implementations and instruction set

architectures.

As transactions become common, it is important to ensure that they do not limit the

ability of a processor to execute a sequential instruction stream efficiently. This raises a number

of questions. How do transactions interact with existing processor features? Do they introduce

complexity in high-performance implementations? Can these mechanisms avoid disrupting

pipeline flow? Do the new mechanisms affect a critical path? How do these mechanisms and

instructions interact with the load and store buffers and memory ordering? How do you ensure

correct execution for these instructions in the presence of branch mispredictions and speculative

execution? Commercial implementations of instructions for optimistic synchronization imposed
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numerous restrictions that limited their utility (Chapter 4, Section 2.3.3). Hardware support

for transactional memory faces similar challenges.

In addition, transactions increase the difficulty of validating a processor, not just the

hardware but also the instruction set extensions and the overall software stack running on this

hardware.
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C H A P T E R 3

Software Transactional Memory

3.1 INTRODUCTION
Software transactional memory (STM) is a software system that implements nondurable trans-

actions with the ACI (failure atomicity, consistency, and isolation) properties for threads ma-

nipulating shared data. STM systems run, for the most part, on conventional processors; though

some early systems postulated more aggressive synchronization primitives than implemented by

current processors. Research on STM systems is distinct from the considerable previous work

on persistent data structures, which focused on providing durable transactions (the missing “D”)

for in-memory data structures [1].

The performance of recent STM systems, particularly those integrated with an optimizing

compiler, has reached a level that makes these systems a reasonable vehicle for experimentation

and prototyping. However, it is still not clear how low the overhead of STM can reach without

hardware support. STM systems, nevertheless, offer a number of advantages over HTM:

• Software is more flexible than hardware and permits the implementation of a wider

variety of more sophisticated algorithms.

• Software is easier to modify and evolve than hardware.

• STMs can integrate more easily with existing (software) systems and language features,

such as garbage collection.

• STMs have fewer intrinsic limitations imposed by fixed-size hardware structures, such

as caches.

Given our limited experience implementing and using transactional memory, these con-

siderations suggest that STM will play an important role in transactional memory. Approaches

in which hardware accelerates STM operations that are frequent or expensive can help reduce

STM overheads (Chapter 4).

3.1.1 Chapter Overview

A linear presentation of a rich set of research results inevitably becomes a compromise among

competing imperatives. A chronological presentation can capture the large-scale evolution of
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the area but may obscure smaller–scale interactions by separating related papers. Alternatively,

grouping papers by topic raises questions of which are the most important dimensions of the

research area and which contribution most clearly defines a paper.

The organization of this chapter is one such compromise. The chapter divides the STM

research into four categories:

• Precursors to modern STM systems (Section 3.3).

• Deferred-update STM systems, in which a transaction modifies a copy of an object and

updates the original object when the transaction commits (Section 3.4).

• Direct-update STM systems, in which a transaction modifies an object in-place (Sec-

tion 3.5). These systems divide into those that use optimistic and pessimistic concur-

rency control.

• Language-oriented STM systems, which focus on integrating transactional memory

into a programming language (Section 3.6).

Chapter 2 contains a taxonomy that outlines the main distinctions in STM systems.

However, the difference between deferred- and direct-update systems appears to be fundamen-

tal, as the alternatives lead to very different implementation techniques and constrain many of

the other design parameters. Hence, we will use them as broad categories for collecting and

comparing similar research.

Fortuitously, this organization roughly parallels the evolution of the field—with the excep-

tion that the language research was intermixed with the development of deferred-update STM

systems. In a linear arrangement, like a book, there is no good way to capture this relationship,

except cross-references.

3.2 A FEW WORDS ON LANGUAGE
Papers in this chapter present the STM systems in many different programming languages.

To improve clarity, when an implementation is described in detail, its code is recast in C#-like

pseudolanguage [2], with a few extensions for low-level systems programming, such as type

unions. The code generally follows a system’s published description, both to avoid introducing

errors and to make clear the connection with a paper. Consequently, the code is often incomplete

and far from a paragon of programming style. It is as an algorithm sketch, rather than an

implementation of a running system. Moreover, our implementations often rename variables

and types to improve readability. However, we do not translate proposed language features for

transactional memory programming.

The synchronization operations are compare-and-swap (CAS) and load-linked (LL)

and store-conditional (SC). Section 4.3.3 describes the implementation of these instructions.
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CAS(a, o, n) atomically replaces the contents at memory location a with n, if the location

held the value o. Otherwise the location is left unchanged. LL(a) returns the value of memory

location a. A subsequent SC(a, n) stores value n in location a, if not write to the location

occurred since the previous LL operation. Unless noted, we assume the simple form of LL–SC

that does not permit nesting of these operations and is the only one implemented in an actual

processor.

The scope of identifiers is local to a particular system (or alternatively, a subsection of this

paper). Most systems use similar naming conventions, e.g., STMCommit, but in this presentation

there is no code sharing among the system descriptions.

3.3 STM PRECURSORS
STM systems evolved from research into better synchronization, in particular lock-free and

nonblocking primitives, and hardware transactional memory. The former is a significant research

area in its own right [3], which would take us too far afield to cover completely in this book.

Chapter 4 discusses the latter.

The papers in this section are precursors of the STM systems because they either propose

some of the key ideas used in these systems or are themselves preliminary attempts to build an

STM system. Lomet, in 1977, proposed a programming language construct essentially identical

to transactional memory (Section 3.3.1). Shavit and Touitou introduced the term “software

transactional memory” and described one of the first implementations (Section 3.3.2).

3.3.1 Lomet, LDRS 77

Many of the concepts and implementation principles for STM were anticipated in a paper

by Lomet in 1977 [4], which was published soon after the classic paper by Eswaran [5] on

two-phase locking and transactions. Lomet reviewed the disadvantages and shortcomings of

synchronization mechanisms, such as semaphores, critical regions, and monitors, and noted that

programmers used these constructs to execute pieces of code atomically. His suggestion was to

express the desired end directly and shift the burden of ensuring atomicity onto the system.

An atomic action appears atomic from a programer’s perspective, as no other thread or process

can see the intermediate steps of an action until the action completes and commits. The paper

introduced atomic procedures (called actions), whose syntax is

<identifier> : action(<parameter-list>);

<statement-list>

end

The body of an action is invoked and executes in a manner similar to a procedure. How-

ever, its execution is isolated with respect to concurrently executing threads (strong isolation).
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Data shared among threads must be annotated with a shared attribute, both to reduce im-

plementation overhead, by forgoing locking nonshared data, and to document a programmer’s

intent.

Lomet recognized the necessity for a coordination mechanism between transactions and

proposed delaying an action’s execution until a predicate is satisfied:

<identifier> : action(<parameter-list>);

await <predicate> then

<statement-list>

end

Lomet’s implementation only evaluated the predicate when the value of one of the explicitly

listed parameters changed, to avoid busy waiting. The predicate’s evaluation is part of the action

and its execution is atomic with respect to the action’s body, which can therefore assume that

the predicate holds when it starts execution.

As an example, consider the following simple bounded queue that can pass data between

threads:

buffer:class shared;

frame:array(0:N-1) of T;

count:integer initial(0);

head:integer initial(0);

send:action(x:T);

await(count < N-1) then

begin;

frame[(head + count) % N] := x;

count := count + 1;

end;

end send;

receive:action(y:T);

await(count > O) then

begin;

y := frame[head];

head := (head + 1) % N;
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count := count - 1;

end;

end receive;

end buffer;

The notation is from Lomet’s paper, because the constructs do not have ready analogues in C#.

send atomically adds an item to the queue, when space becomes available. receive atomically

removes an item from the queue.

Lomet noted that this queue (or, in fact, even a conventional queue) is not particularly

useful to atomic actions, since the changes made by the inner transaction (the queue operations)

are not visible to other threads until the outer transaction commits (open nested transactions

had not yet been invented). In particular, an action cannot receive any more messages than the

queue contained when the action first started execution, since no other thread’s enqueues can

affect the state of the queue.

The paper also observed that failure atomicity without isolation is by itself a useful pro-

gramming abstraction, previously introduced by Randell as a recovery block [6, 7]. In this role,

an action is a mechanism for error recovery, which restores a program’s state to its condition on

entry to the action. Lomet elaborated this idea by introducing a reset operation, which aborts

the surrounding action and rolls back the program’s state.

STM Characteristics

LOMET

Strong or Weak Isolation Strong

Transaction Granularity Unknown

Direct or Deferred Update Direct

Concurrency Control Pessimistic

Synchronization Blocking

Conflict Detection

Inconsistent Reads

Conflict Resolution

Nested Transaction

Exceptions
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Implementation

Lomet’s paper explicitly disclaimed providing an implementation, but it suggested using two-

phase locking to synchronize access to shared data and logging to rollback on an explicit reset.

3.3.2 Shavit, Touitou, PODC 1995

Shavit and Touitou’s 1995 PODC paper [8] coined the term “software transactional memory”

and described the first software implementation of transactional memory. Their programming

abstraction required a transaction to declare, in advance, all memory locations that it might

access and the system incurred significant memory overhead (a word per word of data). Knowing

the memory locations enabled the STM system to acquire ownership of them with the two-

phase locking protocol [5]. Once a transaction acquires ownership of its memory locations, it

can execute to completion without the possibility of rollback. Moreover, the STM system can

acquire ownership of the locations in a predetermined order (e.g., increasing memory address),

which prevents two transactions from deadlocking.

Shavit and Touitou’s STM system offers the strong liveness guarantee of lock-free progress

that, after a finite number of attempts, some thread running a transaction will succeed, even in the

face of thread failure and thread scheduling. STM implements this guarantee with a technique

called helping, in which a transaction that fails to obtain ownership of a location attempts to

execute the transaction that holds ownership, under the assumption that the thread running

this latter transaction has been descheduled. As we will see, helping introduces complexity into

the implementation, as it exposes data structures private to a transaction to manipulation by

two or more threads.

STM Characteristics

STM

Strong or Weak Isolation N/A

Transaction Granularity Word

Direct or Deferred Update Direct

Concurrency Control Pessimistic

Synchronization Nonblocking (lock-free)

Conflict Detection Early

Inconsistent Reads None (exclusive read access)

Conflict Resolution Helping

Nested Transaction

Exceptions
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Implementation

A transaction is represented by a data structure, which records the data necessary to execute the

body of the transaction and information on the transaction’s status. The structure field addr

holds the addresses of the memory locations accessed by the transaction. This list is sorted

in increasing order, to avoid deadlock and ensure the correctness of this algorithm. The field

body contains a delegate1 that supplies the code that comprises the transaction. The delegate’s

argument is a vector containing the contents of these memory locations. The field oldValues

records the contents of the memory locations when the transaction acquired ownership. The

version, status, and executing fields track the state of the transaction:

enum Status { NONE, SUCCESS, FAILURE };

struct TransStatus { Status status; int word; };

delegate void TransactionBody(MemWord[]);

struct Transaction {

// Parameters to the transaction:

MemAddr[] addr; // Sorted in increasing order

TransactionBody body;

// Active transaction status:

MemWord[] oldValues;

int version = 0;

TransStatus status;

bool executing = false;

}

Each memory word has a corresponding entry that records which transaction (if any) owns the

memory location:

int MemorySize = <constant>;

MemWord Mem[MemorySize];

Transaction Ownership[MemorySize];

The StartTransaction routine executes a transaction whose code is encapsulated in the

delegate body. The second parameter lists all memory addresses that the transaction could

access. This routine first initializes a new transaction object and then invokes DoTransaction,

which acquires ownership of the locations and executes the transaction:

1In C#, a delegate is a pointer to a method and the object it will be applied to. It is similar to a closure in a functional

language.
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Status StartTransaction(TransactionBody body, MemAddr[] dataSet) {

Transaction trans = new Transaction(body, dataSet);

trans.executing = true;

DoTransaction(trans, trans.version, true);

trans.executing = false;

trans.version++;

return tran.status.status; // SUCCESS or FAILURE

}

Throughout the STM system, a common idiom is

LL(trans.field);

...

if (version != trans.version) return;

SC(trans.field, newval);

This code sequence loads and uses a value from a transaction object, then checks that the

transaction’s version is unchanged before updating a field in its structure. The version check

ensures that the value came from the appropriate version of the transaction. The atomicity of

the entire code sequence is ensured by the store-conditional operation, which fails if field is

modified by another thread while running between the LL (load-linked) and SC (store condition)

operations. The STM implementation issues multiple, nested LL and SC operations, which is

not a facility provided by any processor.

The DoTransaction routine atomically executes a transaction. The first step is to acquire

ownership of the locations accessed by the transaction. If the routine acquires ownership, it

changes the transaction’s status to SUCCESS, records old (pretransaction values), executes the

body of the transaction, updates memory, and then releases ownership of the locations:

void DoTransaction(Transaction trans, int version, bool isInitiator) {

AcquireOwnership(tran, version);

TransStatus stat = LL(tran.status);

if (stat.status == NONE) {

if (version != tran.version) return;

SC(tran.status, new TransStat(SUCCESS, O));

}

stat = LL(tran.status);

if (stat.status == SUCCESS) {
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// Transaction acquired all locations.

RecordOldValues(tran, version);

MemWord[] newValues = body(tran.input); // Execute transaction!

UpdateMemory(tran, version, newValues);

ReleaseOwnership(tran, version);

}

else {

// Transaction aborted since it could not acquire all locations.

// Help conflicting transaction finish first.

ReleaseOwnership(tran, version);

if (isInitiator) {

Transaction conflictTrans = Ownership[conflictAddr];

if (conflictTrans == null) return;

else {

int conflictVersion = conflictTrans.version;

if (conflictTrans.executing) {

// Help the conflicting transaction complete.

DoTransaction(conflictTrans, conflictVersion, false);

}

}

}

}

}

If this routine cannot acquire ownership of a location, because of a conflict with another transac-

tion, this transaction helps the conflicting transaction to complete. Helping ensures that STM

is wait-free by preventing a descheduled or terminated transaction from retaining ownership of

memory locations, thereby preventing other transactions from making forward progress. Much

of the complexity of nonblocking STMs is due to helping: since helping causes two threads to

execute the same transaction, the Transaction data structure must be carefully manipulated

to avoid races.

It is difficult in general to determine if a thread is making progress or is blocked (for

one such technique, see [9]). STM does not attempt to determine if a conflicting transaction

is stalled, even though it makes little sense to help an executing transaction. In fact, overly

aggressive helping can degrade performance by causing unnecessary conflicts, as several threads

contend for cache lines or object ownership, and thereby increase the number of transactions that
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fail. To avoid these problems, STM introduced a key restriction: it only permitted a top-level

(nonhelping) transaction to help another.

The following routines acquire and release ownership of the memory locations for the

transaction. If the AcquireOwnership routine acquires all the transaction’s memory locations,

the transaction’s status is set to (NONE, 0), otherwise its status is set to (FAILURE, i), where

i is the index of the first (lowest) memory location owned by another transaction:

void AcquireOwnership(Transaction tran, int version) {

for (int i = 1; i < tran.addr.size; i++) {

while (true) {

MemAddr location = tran.addr[i];

TransStatus stat = LL(tran.status);

if (stat.status != NONE) return; // Transaction already finished

Transaction owner = LL(Ownership[tran.addr[i]]);

if (tran.version != version) return;

if (owner == tran) break; // Already own location

if (owner == null) {

// No other transaction owns the location, so claim it

if (SC(tran.status, new TransStat(NONE, O))) {

if (SC(Ownership[location], tran)) break;

}

}

else {

// Location owned by another transaction, so this transaction fails

if (SC(tran.status, new TransStat(FAILURE, i))) return;

}

}

}

}

void ReleaseOwnership(Transaction tran, int version) {

for (int i = 1; i < tran.addr.size; i++) {

MemAddr location = tran.addr[i];

if (LL(Ownership[location]) == tran) {

if (tran.version != version) return;

SC(Ownership[location], null);

}

}

}
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This routine captures the value in all locations accessed by a transaction. It may only be invoked

when the transaction owns these locations:

void RecordOldValues(Transaction tran, int version) {

for (int i = 1; i < tran.addr.size; i++) {

MemAddr location = tran.addr[i];

MemWord oldvalue = LL(tran.oldValues[location]);

if (tran.version != version) return;

SC(tran.oldValues[location], Memory[location]);

}

}

Finally, after the transaction completes, this routine updates memory with the new values

computed by the transaction’s body. This routine too may only be invoked when the transaction

owns these locations:

void UpdateMemory(Transaction tran, int version, MemWord[] newvalues) {

for (int i = 1; i < tran.addr.size; i++) {

MemAddr location = tran.addr[i];

MemWord oldvalue= LL(Memory[location]);

if (tran.version != version) return;

if (oldvalue != newvalues[i]) {

SC(Memory[location], newvalues[i]);

}

}

}

3.3.3 Other Precursors

Other papers also explored techniques to implement lock-free data structures. Some work

explored ways to implement multiword load-linked, store-conditional or compare-and-swap

operations on conventional processors [10–13], to allow several memory locations to be updated

simultaneously. These papers missed other important aspects of transactions such as conflict

detection or abort. Other systems anticipated implementation techniques used in STM systems

[14, 15], but only used the techniques to transform algorithms to be lock-free, rather than as

the basis for the transactional system. These papers (and there are many others) provide the

background for, and anticipate many aspects of, transactional memory systems.
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3.4 DEFERRED-UPDATE STM SYSTEMS
The first STM systems were developed by researchers from the field of nonblocking data struc-

tures, so it is not surprising that these systems were implemented using these techniques. These

STM systems used deferred update, which permitted every transaction to compute optimisti-

cally on its own copy of the data, without interference from concurrently executing transactions.

When a transaction attempted to acquire another object or to commit, it might discover a con-

flict with another transaction and be forced to abort. Experience using these systems showed

the importance of the conflict resolution policy that determined which transaction in a pair of

conflicting transactions would pause or abort and which would continue.

Herlihy et al. described the first dynamic STM system (Section 3.4.1). Harris and Fraser

described a roughly contemporaneous STM system along with programming language support

(Section 3.4.2). Fraser’s Ph.D. thesis described another STM system (Section 3.4.3). In a series

of papers, researchers at the University of Rochester explored a variety of conflict resolution

policies (Sections 3.4.4, 3.4.6, and 3.4.8). Guerraoui et al. also explored techniques for incor-

porating these policies into an STM system (Section 3.4.5). Ananian and Rinard built an STM

system that provides strong isolation (Section 3.4.7). Dice and Shavit described an STM system

called TL that combines deferred update with blocking synchronization (Section 3.4.9).

3.4.1 Herlihy, Luchangco, Moir, and Scherer, PODC 2003

Herlihy, Luchangco, Moir, and Scherer’s PODC paper [16] was the first published paper to

describe a dynamic STM (DSTM) system that did not require a programmer to specify a

transaction’s memory usage in advance. It improved on Shavit and Touitou’s system (Section

3.3.2) in several other ways:

• DSTM used obstruction freedom as the nonblocking progress condition for transac-

tions. This criterion, which is weaker than lock freedom or wait freedom, guarantees

that a halted thread does not prevent active threads from making progress. In general,

this criterion does not preclude an active thread from causing a livelock (Guerraoui

et al. showed that the greedy contention management policy allowed stronger guaran-

tees [17]). However, obstruction freedom is simpler to implement than the stronger

guarantees and offers potentially higher performance.

• DSTM introduced an explicit contention manager, which encapsulated the policy de-

cision as to how to resolve a conflict between two transactions.

• DSTM allowed a transaction to release an object before committing. This mechanism

can improve STM performance, by reducing the size of a transaction’s read set and the

cost to validate it; albeit with the possibility of introducing errors that allow a transaction

to commit after reading an inconsistent state.
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DSTM is the canonical deferred-update STM system and forms the basis for a considerable

amount of subsequent research and engineering. As such, we will examine its implementation

in detail.

STM Characteristics

DSTM

Strong or Weak Isolation Weak

Transaction Granularity Object

Direct or Deferred Update Deferred (cloned replacement)

Concurrency Control Optimistic

Synchronization Nonblocking (obstruction free)

Conflict Detection Early

Inconsistent Reads Validation

Conflict Resolution Explicit contention manager

Nested Transaction Flattened

Exceptions

Implementation

DSTM was implemented as a library usable from C++ and Java. A programmer must explicitly

invoke library functions to create a transaction and to access shared objects. Transactions run on

threads of a new class. The programmer must introduce and properly manipulate a container

for each object involved in a transaction. For example, the method below inserts an integer in

an ordered list. It uses a transaction to isolate multiple updates to a list. The DSTM library

calls (explained below) are underlined in this code:

public bool insert(int v) {

List newList = new List(v);

TM0bject newNode = new TM0bject(newList);

TMThread thread = (TMThread)Thread.currentThread();

while (true) {

thread.beginTransaction();

bool result = true;

try {



P1: XXX

MOBK061-01 MOBK061-Larus.cls January 3, 2007 14:49

66 TRANSACTIONAL MEMORY

List prevList = (List)this.first. open(WRITE);

List currList = (List)prevList.next. open(WRITE);

while (eurrList.value < v) {

prevList = currList;

currList = (List)currList.next. open(WRITE);

}

if (currList.value == v) { result = false; }

else {

result = true;

newList.next = prevList.next;

prevList.next = newNode;

}

} catch (Denied d) {}

if (thread. commitTransaction()) {

return result;

}

}

}

The DSTM library exports two abstractions. The TMThread class extends the Java Thread

class with operations to start, commit, and abort a transaction:

class TMThread : Thread {

void beginTransaction();

bool commitTransaction();

void abortTransaction();

}

The TMObject class is a wrapper for transactional objects. These objects must be explicitly

opened before being read or written in a transaction:

class TMObject {

TMObject(Object obj);

enum Mode { READ, WRITE };

Object open(Mode mode);

}
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Detailed Implementation

DSTM is a deferred-update STM. A transaction modifies a private copy of an object created

by open(WRITE), which replaces the original object when the transaction commits. Conflicts

are detected when a transaction first opens an object and finds that it is open for modification

by another transaction or when the transaction validates its read set (on opening an object or

committing the transaction).

DSTM adds two levels of indirection to an object (Fig. 3.1(a)). First, a transaction

references an object through a TMObject, which provides a level of indirection that allows the

commit operation to replace the object’s Locator using an atomic read-modify write operation.

The Locator is an immutable structure that points to a read-only version of the object and, if

the object is opened for update, to a modifiable, cloned copy private to the transaction.

The open operation prepares a TMObject to be manipulated by a transaction and exposes

the underlying object to the code in the transaction. The actions that open performs depend on

whether an object is open for reading or writing.

Consider first opening an object for reading (mode parameter equal to READ). The open

method records the TMObject and the underlying object in the transaction’s read set, validates

this set, and then returns the underlying object to the program (Fig. 3.1(b)).

Validating the transaction’s consistency relies on the read set. The method

Transaction::validate compares each object entry in a transaction’s read set against the

current version of the object (obtained by following the TMObject reference). If the objects

differ, the transaction should abort since it potentially read an object subsequently updated by

another transaction. (The DSTM implementation in the paper stored the read set in thread-local

storage. For the sake of this presentation, we moved it to the transaction class, where it belongs.)

The current version of an object is found through the object’s Locator. If the Locator

does not contain a transaction, the object is opened read-only and the current version is the

original object (oldVersion). If the Locator points to a transaction that has committed,

the current version is the one modified by the transaction (newVersion). If the transaction

aborted, the current version is the original object (oldVersion). If the transaction is active, it

conflicts with the transaction trying to access the object. The contention manager must resolve

the conflict by aborting or delaying one of the transactions.

At a conflict, the STM system has the freedom to choose which of the two conflicting

transactions to terminate (or delay) and which to allow to continue. DSTM does not constrain

which transaction must prevail at a conflict. Instead, it provides a general interface that allows

a contention manager to implement a wide variety of policies. The only constraint on these

managers is that they do not violate the system’s obstruction-free policy, which informally

requires that any active transaction that tries sufficiently many times must eventually receive

permission to abort a conflicting transaction.
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FIGURE 3.1: DSTM data structures and operations
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When a transaction opens an object for writing (mode parameter equal to WRITE), the

open method creates a cloned copy of the object that the transaction can modify (Fig. 3.1(c)).

Until the transaction commits, this clone is visible only to the transaction, which can access

it without synchronization. A transaction can upgrade from read-only to writable access by

reopening an object for writing.

The open method ensures atomicity through the invariant that a Locator object is

immutable (its fields do not change after they are initialized). Because of immutability, open

can read multiple fields from this object by first copying the pointer from the TMObject, to

ensure that the Locator will not change between accesses.

DSTM also provides a release operation (not shown) that removes an object from a

transaction’s read set because it will no longer be used. Releasing an object shrinks the transac-

tion’s read set, which lowers the cost of validating the set, and prevents the object from being the

nexus of a conflict that causes a transaction to abort. This operation is potentially dangerous,

since an unvalidated object can result in inconsistent execution. Releasing an object depends on

knowing application-specific knowledge that precludes such inconsistency:

class TMObject {

private class Locator {

public Transaction trans;

public Object oldVersion;

public Object newVersion;

}

private Locator locInfo;

public TMObject(Object obj) {

locInfo = new Locator();

locInfo.trans = null;

locInfo.oldVersion = obj;

locInfo.newVersion = null;

}

public enum Mode { READ, WRITE };

public Object open(Mode mode) {

TMThread curTMThread = (TMThread)Thread.currentThread();

Transaction curTrans = curTMThread.getTransaction();

if (mode == READ) {
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// Record the TMObject and its current value (version) in transaction’s read table.

curTrans.recordRead(this, currentVersion(locInfo));

if (!curTrans.validate()) { throw new Denied(); }

return version;

}

else { // mode == WRITE

// Create a new Locator pointing to a local copy of the object and install it.

Locator newLocInfo = new Locator();

newLocInfo.trans = curTras;

do {

Locator oldLocInfo = locInfo;

newLocInfo.oldVersion = currentVersion(oldLocInfo);

newLocInfo.newVersion = newLocInfo.oldVersion.clone();

} while (CAS(locInfo, oldLocInfo, newLocInfo) != oldLocInfo);

if (!trans.validate()) { throw new Denied(); }

return newLocInfo.newVersion;

}

}

static private Object currentVersion(Locator loc) {

if (loc.trans == null) { // Read-only

return locInfo.oldVersion;

}

else {

switch (loc.trans.status) {

case COMMITTED: return locInfo.newVersion; break;

case ABORTED: return locInfo.oldVersion; break;

case ACTIVE: /* conflict resolution */ break;

}

}

}

}

Now, consider the implementation of the transactional thread class. The TMThread class

creates the Transaction object for the transaction running on the thread (Fig. 3.1(d)). The

methods in the class allocate, validate, and update the transaction’s status, but most of the
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work is done elsewhere:

class TMThread : Thread {

private Transaction trans;

Transaction getTransaction() { return trans; }

public void beginTransaction() {

trans = new Transaction();

trans.status = ACTIVE;

}

public bool commitTransaction() {

return trans.validate() && CAS(trans.status, ACTIVE, COMMITTED);

}

public void abortTransaction() {

trans.status = ABORTED;

}

}

The Transaction class records the status of a transaction and tracks its read set, so

the transaction can be validated by verifying that these locations have not been updated since

they were opened by the transaction. A transaction commits by validating its read set, and if

that operation succeeds, by changing its status from ACTIVE to COMMITTED. This modifica-

tion makes all of the transaction’s modified objects into the current version of the respective

objects:

class Transaction {

public enum Status { ACTIVE, ABORTED, COMMITTED };

public Status status;

private class readPair {

TMObject tmObj;

Object obj;

readPair(TMObject tmObj, Object obj)

{ this.tmObj = tmObj; this.obj = obj; }

}



P1: XXX

MOBK061-01 MOBK061-Larus.cls January 3, 2007 14:49

72 TRANSACTIONAL MEMORY

private HashSet readSet;

void recordRead(TMObject tmObj, Object value) {

readSet.add(new readPair(tmObj, value));

}

bool validate() {

for (Iterator e = readSet.iterator(); e.hashNext();) {

readPair pair = (readPair)e.next();

if ((pair.tmObj.locInfo.trans == NULL)

&& pair.tmObj.locInfo.oldValue != pair.obj)

{ return false; }

if (!(pair.tmObj.locInfo.trans.status == COMMITTED

&& pair.tmObj.locInfo.newValue == pair.obj))

{ return false; }

}

return this.status == ACTIVE;

}

}

Kumar et al. describe hardware support to integrate DSTM with an HTM to eliminate some

DSTM overheads (Section 4.6.2).

3.4.2 Harris and Fraser, OOPSLA 2003

Harris and Fraser’s 2003 OOPSLA paper [18] was the first to describe a practical STM system

integrated into a programming language. They implemented WSTM (word-granularity STM)

in the ResearchVM from Sun Labs. It contained a number of advances:

• Like Herlihy et al.’s DSTM system (Section 3.4.1), but unlike Shavit and Touitou’s

original STM system (Section 3.3.2), WSTM did not require a programmer to declare

the memory locations accessed within a transaction.

• Like Herlihy et al.’s DSTM system, WSTM used obstruction freedom as the forward-

progress guarantee.

• WSTM is one of the few word-granularity STM systems. Although implemented

in an object-oriented language ( Java), WSTM detected conflicts at word granu-

larity, which eliminated the need to change objects’ layout, but did complicate the

implementation.
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• WSTM adopted the guard mechanism from Hoare’s conditional critical regions [19]

(anticipated in Lomet’s transaction programming proposal (Section 3.3.1)) as a mech-

anism to coordinate atomic regions. The guard delays the execution of an atomic region

until a predicate evaluates to true. Since the guard’s predicate evaluates within the atomic

region, its condition holds when the region itself executes. WSTM allowed the guards

to depend on arbitrary program state, rather than explicit parameters, as in Lomet.

• WSTM improved on earlier mechanisms for implementing conditional critical regions

by delaying reevaluation of the predicate until another transaction updates at least one

of the variables in its expression.

• WSTM was integrated into a modern, object-oriented language ( Java) by extending

the language with the atomic operation. Strangely enough, WSTM did not exploit

the object-oriented nature of Java and could support procedural languages as well.

STM Characteristics

WSTM

Strong or Weak Isolation Weak

Transaction Granularity Word

Direct or Deferred Update Deferred (update in place)

Concurrency Control Optimistic

Synchronization Nonblocking (obstruction free)

Conflict Detection Late

Inconsistent Reads Inconsistency toleration

Conflict Resolution Helping or aborting

Nested Transaction Flattened

Exceptions Terminate

Implementation

WSTM extended Java with a new statement:

atomic (<condition>) {

<statements>;

}
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A modified JIT ( Just-In-Time, i.e., run-time) compiler translated this statement into

bool done = false;

while (!done) {

STMStart();

try {

if (<condition>) {

<statements>;

done = STMCommit();

} else {

STMWait();

}

} catch (Exception t) {

done = STMCommit();

if (done) {

throw t;

}

}

}

A notable aspect of this translation is that an exception within the atomic region’s pred-

icate or body causes the transaction to commit. Subsequent systems more typically treated an

exception as an error that aborts a transaction. Harris and Fraser based this design choice on two

considerations. First, aborting a transaction at an exception requires special handling for the ex-

ception object, to avoid discarding it along with the rest of the failed transaction’s state. Second,

an exception thrown from within a nested transaction, but caught in its surrounding trans-

action, will cause both transactions to abort with flattened nested transactions. A subsequent

paper (Section 3.6.1) discussed and expanded these design choices.

The code produced by the compiler relies on five primitive operations provided by the

WSTM library:

void STMStart()

void STMAbort()

bool STMCommit()

bool STMValidate()

void STMWait()
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In addition, all references to object fields from statements within an atomic region are

replaced by calls to an appropriate library operation:

STMWord STMRead(Addr a)

void STMWrite(Addr a, STMWord w)

The semantics of data differs for code executing in an atomic region. The current (“log-

ical”) value of a memory location manipulated by a transaction is found in an auxiliary data

structure, rather than the memory. This duality enables a transaction to execute up to its commit

point without modifying program state visible to other threads. The transaction then commits

its changes to the global state in a single logically atomic operation.

Because the JVM’s JIT compiler performs this translation, only references from Java

bytecodes, not those in native methods, are translated to access these auxiliary structures. A

few native methods were hand translated and included in a WSTM library, but a call on most

native methods (including those that perform IO operations) from a transaction would cause a

run-time error. Moreover, this translation only occurs for references within an atomic region.

The STM library maintains two auxiliary data structures, in addition to the applica-

tion’s original heap (Fig. 3.2(a)). The first auxiliary structure is a transaction descriptor. Each

transaction has a unique transaction descriptor:

enum TransactionStatus { ACTIVE, COMMITTED, ABORTED, ASLEEP };

class TransactionEntry {

public Addr loc;

public STMWord oldValue;

public STMWord oldVersion;

public STMWord newValue;

public STMWord newVersion;

}

class TransactionDescriptor {

public TransactionStatus status = ACTIVE;

int nestingDepth = 0;

public Set<TransactionEntry> entries;

}

The status field records the transaction status. A transaction starts in state ACTIVE

and makes a transition into one of the three other states. The nestingDepth field records the

number of (flattened) transactions sharing this descriptor.
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FIGURE 3.2: WSTM data structures and operations
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The entries field holds a TransactionEntry record for each location the transaction

reads or writes. The compiler redirects memory reads and writes to the appropriate descriptor. A

TransactionEntry records a location’s original value (before the transaction’s first access) and

its current value. For a location only read, the two values are identical. A transaction increments

the version number when it modifies the location. The system uses the version number to detect

conflicts.

The other auxiliary structure is a collection of ownership records for memory locations.

These records serve two roles. First, an OwnershipRec records the version number of the

memory location, produced by the most recent committed transaction that updated the location.

Second, when a transaction is in the process of committing, an OwnershipRec records the

transaction that has acquired exclusive ownership of the location. Each ownership record holds

either a version number or a pointer to the transaction that owns the location:

class OwnershipRec {

union {

public STMWord version;

public TransactionDescriptor* trans;

} val;

public bool HoldsVersion() { return (val.version & 0x1) != 0; }

}

A type union is not valid C# (but is valid for C, in which WSTM is written). Their low bit can

distinguish the two values. TransactionDescriptors are word-aligned pointers with a zero

low bit. Version numbers are odd numbers, with a nonzero low bit.

In practice, WSTM uses a fixed-size hash table to map from a memory address to an

OwnershipRec. Consequently, WSTM shares anOwnershipRec among the multiple addresses

that map to a hash-table bucket, which complicates the algorithms and causes spurious conflicts.

This book avoids the complexity introduced by this sharing by assuming a one-to-one mapping

from an address to its ownership record.

The function FindOwnershipRec(a) maps memory address a to its associated

OwnershipRec. The function CASOwnershipRec(a, old, new) performs a compare-and-

swap operation on the OwnershipRec for memory address a, replacing it with value new, if the

existing entry is equal to old.

It is valuable to contrast the WSTM and DSTM (Section 3.4.1) implementations. A

clear functional distinction is that WSTM is not tied to an object-oriented language, as it

maintains transaction state at word, not object, granularity and does not assume the ability to

clone an object. WSTM is suitable for languages, such as C or C++, whose weak type system
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and unchecked pointers make it difficult to identify the boundary of a C struct or copy it. The

McRT system (Section 3.5.2) addresses these issues by segregating C structs by size, so that the

run-time system can find a struct’s boundary, even from an interior pointer, and make a copy

of it.

The principal disadvantage of WSTM’s implementation is its high cost, both in memory

overhead and computation. Each word of memory accessed in a transaction has an overhead of

up to seven words, plus some fraction of the hash table. On the other hand, DSTM clones an

entire object, so the overhead can be higher if a transaction accesses only a fraction of a large

object, for example, an array.

In WSTM, each memory reference in a transaction entails a hash-table lookup and two

additional dereferences. DSTM, by contrast, requires two dereferences to first open an object.

Subsequently, the code in an atomic block directly references the cloned object.

Detailed Implementation

We can now describe the operation in the STM library. If no transaction is active, the STMStart

operation creates a new transaction descriptor and stores it in thread-local storage. If a trans-

action is already active, the nested transaction shares its descriptor, so that the two transactions

will commit or abort together (i.e., the transactions are flattened):

LocalDataStoreSlot ActiveTrans; // Thread local storage

ActiveTrans = Thread.GetNamedDataSlot("Active Transaction");

void STMStart() {

if (ActiveTrans == null

| | ActiveTrans.status != TransactionStatus.ACTIVE) {

ActiveTrans = new TransactionDescriptor();

ActiveTrans.status = TransactionStatus.ACTIVE;

}

AtomicAdd(ActiveTrans.nestingDepth, 1);

}

The STMAbort operation changes the active transaction’s status. The descriptor and all

of its records can be reclaimed immediately, since they are not visible to another thread:

void STMAbort() {

ActiveTrans.status = TransactionStatus.ABORTED;

ActiveTrans.entries = null;

AtomicAdd(ActiveTrans.nestingDepth, -1);

}
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The STMRead operation returns the transaction’s current value for a location. There are two cases

to consider. The first is that the transaction descriptor already contains a TransactionEntry

(te) for the location. In this case, the location’s value is found in the newVersion field. If

no entry exists, the method creates an entry for the location and initializes it with the value in

memory (Fig. 3.2(b)):

STMWord STMRead(Addr a) {

TransactionEntry* te = ActiveTrans.entries.Find(a);

if (null == te) {

// No entry in transaction descriptor. Create new entry (get value from memory)

// and add it to descriptor.

ValVersion vv = MemRead(a);

te = new TransactionEntry(a, vv.val, vv.version, vv.val,

vv.version);

ActiveTrans.entries.Add(a, te);

return vv.val;

}

else {

// Entry already exists in descriptor, so return its (possibly updated) value.

return te.newValue;

}

}

The function MemRead returns the value of a memory location, along with its version

number. This information resides in different places, depending on whether another transaction

that accessed the location is in the process of committing or has already committed:

• If no other transaction accessed the location and started committing, then the current

value resides in the memory location and its ownership record contains the version

number.

• If another transaction accessed the location and committed, the value is in the transac-

tion’s newValue field and the version in the newVersion field.

• If another transaction accessed the location and has started, but not finished committing,

the value is stored in the transaction’s oldValue field and the version in its oldVersion

field:

struct ValVersion {

public STMWord val;
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public STMWord version;

}

ValVersion MemRead(Addr a) {

OwnershipRec orec = FindOwnershipRec(a);

if (orec.HoldsVersion())

{ // Location not owned by another transaction.

STMWord version;

STMWord val;

do {

version = orec.val.version;

val = (*((STMWord*)a);

// Recheck after reading value to avoid inconsistency caused by a race.

} while (version != orec.val.version);

return new ValVersion (val, version);

}

else { // Location owned by another transaction that has/is committing.

TransactionDescriptor* td = orec.val.trans;

TransactionEntry* te = td.entries.Find(a);

if (td.status == TransactionStatus.COMMITTED)

{ return new ValVersion (te.newValue, te.newVersion); }

else

{ return new ValVersion (te.oldValue, te.oldVersion); }

}

}

STMWrite first ensures that a transaction record exists for the location (most simply by calling

STMRead) and then updates the record’s newValue and newVersion fields (Fig. 3.2(c)):

void STMWrite(Addr a, STMWord w) {

STMRead(a); // Create entry if necessary.

TransactionEntry te = ActiveTrans.entries.Find(a);

te.newValue = w;

te.newVersion += 2; // Version numbers are odd numbers.

}

The commit operation (Fig. 3.2(d)), STMCommit, first acquires the ownership records for all

locations accessed by the transaction. If successful, STMCommit changes the transaction’s state
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to COMMITTED, copies the modified values to memory, and releases the ownership records.

These three steps appear logically atomic to concurrent transactions because the committing

transaction’s status changes atomically (and irrevocably) from ACTIVE to COMMITTED using an

atomic read-modify-write operation. Once this change occurs, MemReadwill return the updated

value, even before the transaction copies value back to memory.

WSTM detects conflicts as part of the commit operation, when it attempts to acquire

a location. Unlike DSTM, WSTM does not repeatedly validate a transaction’s read set, so

code in the transaction may execute with inconsistent state. If the inconsistent state causes an

exception, the atomic statement aborts and reexecutes the transaction. The compiler, however,

inserts calls on STMValidate (below) in all loops, to ensure that the transaction does not loop

endlessly because of an inconsistency.

STMCommit acquires ownership of a memory location by performing a compare-and-

swap to replace the version number in the location’s ownership record with a pointer to the

transaction entry. The compare-and-swap operation can fail because the ownership record does

not contain the expected version number or because it points to another transaction’s descriptor.

If the version number differs, then another (committed) transaction modified the location, so

the committing transaction must abort. If the ownership record points to another transaction,

then the two transactions are both in the process of committing and a decision must be made

as to which one should be allowed to commit.

The STMCommit operation described in this book is blocking, since a thread must wait

until another thread releases a location’s ownership record before acquiring it. This implemen-

tation can be made nonblocking, at the cost of considerable complexity. To ensure that actual

implementation is delay-free, WSTM allows a transaction to steal an OwnershipRec from

another transaction, which may have stalled during the process of committing. Similar to the

helping operation in other systems (Section 3.3.2), this process is too complicated to describe

and to implement correctly. We will avoid presenting details, as other systems achieve this end

with considerably less complexity.

STMCommit releases the acquired ownership records by replacing the transaction’s de-

scriptor with the appropriate version number (the old one if the transaction failed and a new

one if it succeeded):

void STMCommit() {

// Only outermost nested transaction can commit.

if (AtomicAdd(ActiveTrans.nestingDepth, -1) != 0) { return; }

// A nested transaction already aborted this transaction.

if (ActiveTrans.status == TransactionStatus.ABORTED) { return; }
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// Acquire ownership of all locations accessed by transaction.

int i;

for (i = 0; i < ActiveTrans.entries.Size(); i++) {

TransactionEntry* te = ActiveTrans.entries[i];

switch (acquire(te)) {

case TRUE: { continue; }

case FALSE: {

ActiveTrans.status = TransactionStatus.ABORTED;

goto releaseAndReturn;

}

case BUSY: { /* conflict resolution */ }

}

}

// Transaction commits.

ActiveTrans.status = TransactionStatus.COMMITTED;

//Copy modified values to memory.

for (i = 0; i < ActiveTrans.entries.Size(); i++) {

TransactionEntry te = ActiveTrans.entries[i];

*((STMWord*)te.loc) = te.newValue;

}

releaseAndReturn: // Release the ownership records.

for (int j = 0; j < i; j++) { release(te); }

}

bool acquire(TransactionEntry* te) {

OwnershipRec orec = CASOwnershipRec(te.loc, te.oldVersion,

ActiveTrans);

if (orec.HoldsVersion())

{ return orec.val.version == te.oldVersion; }

else {

if (orec.val.trans == ActiveTrans) { return true; }

else { return BUSY; }

}

}
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void release(TransactionEntry* te) {

if (ActiveTrans.status == TransactionStatus.COMMITTED) {

CASOwnershipRec(te.loc, ActiveTrans, te.newVersion);

} else {

CASOwnershipRec(te.loc, ActiveTrans, te.oldVersion);

}

}

Nested transactions slightly complicate committing a transaction since only the outer-

most transaction can make the updated values visible, but any inner transaction can cause the

surrounding transactions to abort. Each transaction descriptor tracks the number of active,

nested transactions using the descriptor and defers committing the transactions until the final,

outermost transaction commits. If an inner transaction previously aborted, the commit does

not occur. A more sophisticated implementation could unwind nested transactions on an abort,

rather than let them continue executing.

STMValidate is a read-only operation that checks the ownership records for each location

accessed by the current transaction, to ensure that they are still consistent with the version the

transaction initially read:

bool STMValidate() {

for (int i = 0; i < ActiveTrans.entries.Size(); i++) {

TransactionEntry* te = ActiveTrans.entries[i];

OwnershipRec orec = FindOwnershipRec(te.loc);

if (orec.val.version != te.oldVersion) { return false; }

}

return true;

}

STMWait can be used to implement a conditional critical region by suspending the trans-

action until its predicate should be reevaluated. It aborts the current transaction and waits until

another transaction modifies a location accessed by the first transaction. It acquires ownership of

the TransactionEntry accessed by the transaction, changes the transactions status to ASLEEP,

and suspends the thread running the transaction. When another transaction updates one of these

locations, it will conflict with the suspended transaction. The conflict manager should allow

the active transaction to complete execution and then resume the suspended transaction, which
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releases its ownership records and then retries the transaction:

void STMWait() {

int I;

for (i = 0; i < ActiveTrans.entries.Size(); i++) {

TransactionEntry* te = ActiveTrans.entries[i];

switch (acquire(te)) {

case TRUE: { continue; }

case FALSE: {

ActiveTrans.status = TransactionStatus.ABORTED;

goto releaseAndReturn;

}

case BUSY: { /* conflict resolution */ }

}

}

// Transaction waits, unless in conflict with another transaction and

// needs to immediately re-execute.

ActiveTrans.status = TransactionStatus.ASLEEP;

SuspendThread();

// Release the ownership records.

releaseAndReturn:

for (int j = 0; j < i; j++) { release(te); }

}

In the design above, if two transactions share a location that neither one modifies, one

transaction will be aborted, since the system does not distinguish read-only locations from modi-

fied locations. This performance issue is easily corrected. STMWrite can set a flag (isModified)

in a transaction entry to record a modification of the location. STMCommit should acquire owner-

ship of modified locations and validate unmodified locations, to ensure that no other transaction

updated them. This latter step introduces a new transaction status (READ PHASE) before val-

idation. The transaction remains in this state until it commits. The read phase introduces a

window of vulnerability, during which another transaction can read a location and be unaware

of the final state of the transaction. The value read is consistent, but the read can cause the

transaction to fail [20]:

void STMCommit() {

for (int i = 0; i < ActiveTrans.entries.Size(); i++) {
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TransactionEntry* te = ActiveTrans.entries[i];

if (te.isModified) {

switch (acquire(te)) {

case TRUE: { continue; }

case FALSE: {

ActiveTrans.status = TansactionStatus.ABORTED;

goto releaseAndReturn;

}

case BUSY: { /* conflict resolution */ }

}

}

}

ActiveTrans.status = TransactionStatus.READ_PHASE;

for (int i = 0; i < ActiveTrans.entries.Size(); i++) {

TransactionEntry* te = ActiveTrans.entries[i];

if (!te.isModified) {

ValVersion vv = MemRead(te.loc);

if (te.oldVersion != vv.version) {

// Another transaction updated this location.

ActiveTrans.status = TransactionStatus.ABORTED;

goto releaseAndReturn;

}

}

}

// Transaction commits. Write modified values to memory.

ActiveTrans.status = TransactionStatus.COMMITTED;

for (int i = 0; i < ActiveTrans.entries.Size(); i++) {

TransactionEntry te = ActiveTrans.entries[i];

*((STMWord*)te.loc) = te.newValue;

}

// Release the ownership records.

releaseAndReturn:

for (int j = 0; j < i; j++) { release(te); }

}
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3.4.3 Fraser, Ph.D.

Fraser’s Ph.D. dissertation at the University of Cambridge [20] described an STM called

OSTM, which was similar to Herlihy et al.’s DSTM system (Section 3.4.1), except that OSTM

is lock free. It was implemented as a library for C code.

STM Characteristics

OSTM

Strong or Weak Isolation Weak

Transaction Granularity Object

Direct or Deferred Update Deferred (cloned replacement)

Concurrency Control Optimistic

Synchronization Nonblocking (lock free)

Conflict Detection Late

Inconsistent Reads Validation

Conflict Resolution Abort transaction trying to commit

Nested Transaction Closed

Exceptions

Implementation

Fig. 3.3 illustrates the data structures used by OSTM. An object header points to an ob-

ject (actually a struct, since the language is C), which provides a level of indirection to the

data manipulated by a program. This indirection is essential to lock and update objects when

committing a transaction. Distinct from an object header is an object handle, which a trans-

action descriptor holds on either its list of readers or writers. A handle records the object’s

header, its data, and, if it is being updated, a shadow copy of the data for the transaction to

modify.

When a transaction attempts to commit, it acquires ownership of all objects on its write

list in a canonical order and validates all objects on its read list. OSTM acquires ownership by

performing a CAS operation on an object’s header, to replace the pointer to the object by a

pointer to the transaction descriptor. If its CAS fails because another transaction updated the

object header to point to an updated copy of the object, the transaction attempting to commit

will abort. However, if its CAS fails because another transaction is in the process of committing
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FIGURE 3.3: OSTM data structure

(i.e., its descriptor is in the header), then the first transaction recursively helps this transaction

to ensure the system’s lock-free behavior (see discussion of helping in Section 3.3.2).

3.4.4 Scherer and Scott, PODC 05

Scherer and Scott investigated contention management policies for the DSTM system [21, 22].

Contention management becomes necessary when a transaction attempts to open an object for

reading and finds that another transaction previously opened the object for writing or when a

transaction attempting to write the object finds another transaction reading or writing it. The

contention manager selects which of the two transactions to abort. Alternatively, the manager

can delay the acquiring transaction to allow the other transaction additional time that might

enable it to completion.

Policies

A contention manager can implement a wide variety of policies, which vary considerably in

complexity and sophistication:

• Polite. The acquiring transaction uses exponential backoff to delay for a fixed num-

ber of exponentially growing intervals before aborting the other transaction. After

each interval, the transaction checks if the other transaction has finished with the

object.

• Karma. This manager uses a count of the number of objects that a transaction has

opened (cumulative, across all of its aborts and reexecutions) as a priority. An acquiring

transaction immediately aborts another transaction with lower priority. If the acquiring
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transaction’s priority is lower, it backs off and tries to reacquire the object N times,

where N is the difference in priorities, before aborting the other transaction.

• Eruption. This manager is similar to Karma, except that it adds the blocked transaction’s

priority to the active transaction’s priority; to help reduce the possibility that a third

transaction will subsequently abort the active transaction.

• Kindergarten. This manager maintains a “hit list” of transactions to which a given

transaction previously deferred. If the transaction holding the object is on the list, the

acquiring transaction immediately terminates it. If it is not on the list, the acquiring

transaction adds it to the list and then backs off for a fixed interval before aborting

itself. This policy ensures that two transactions sharing an object take turns aborting

(hence the name).

• Timestamp. This manager aborts any transaction that started execution after the acquir-

ing transaction.

• Published Timestamp. This manager follows the timestamp policy, but also aborts older

transactions that appear inactive.

• Polka. This is a combination of the Polite and Karma policies. The key change to Karma

is to use exponential backoff for the N intervals.

The goal of a contention manager is to produce good system throughput. The paper

measured these policies for a variety of simple, data structure manipulating benchmarks. No

policy performed best for all benchmarks, though Polka appeared to be the best overall.

The paper also evaluated the alternative of invalidating a transaction that opened an object

for reading when another transaction opens the object for writing to avoid inconsistent reads.

Each object maintains a list of transactions that are reading it (visible reads). When a transaction

opens the object for update, it invalidates these transactions. Visible reads greatly reduced the

validation overhead, but the bookkeeping cost of maintaining the reader list was sometimes

large enough to negate these performance improvements. Subsequent work confirmed the high

cost of visible reads for conventional clustered shared-memory multiprocessors (Section 3.4.8).

This conclusion may not apply to multicore processors, which have lower communication costs.

3.4.5 Guerraoui, Herlihy, and Pochon, DISC 05

SXM [23] is a deferred, object-based STM system implemented as a library for C# code. It is

similar in operation to Herlihy et al.’s DSTM system (Section 3.4.1). Its innovation is to permit

a transaction to select a contention manager from a collection of managers that implement a

diverse set of policies (see Scherer and Scott [Section 3.4.4] for a description of some policies).

The system also provides a mechanism to adjudicate conflicting transactions’ different policies.
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In addition, SXM used run-time code generation to produce some of the boilerplate code that

programmers need to write in other library-based STM systems.

STM Characteristics

SXM

Strong or Weak Isolation Weak

Transaction Granularity Object

Direct or Deferred Update Deferred (cloned replacement)

Concurrency Control Optimistic

Synchronization Nonblocking (obstruction free)

Conflict Detection Early

Inconsistent Reads Inconsistency toleration

Conflict Resolution Explicit contention manager

Nested Transaction Closed

Exceptions

Implementation

SXM’s deferred-update structures are similar to those of DSTM, although the implementation

technology differs. SXM’s major contribution is polymorphic contention management, which is

a flexible, high-performance framework for managing conflicts between transactions. Each

transaction selects a contention management policy. The system provides the mechanism to

resolve the differences between the policies of two conflicting transactions.

A contention manager implements a specific policy, represented by a specific class. A

transaction is bound to an instance of the class that implements the desired policy. The SXM

system invokes methods in the manager object when the associated transaction starts, attempts

to read or write an object, aborts, and commits. The system also queries the manager when the

transaction accesses an object and encounters a conflict with another transaction. The manager

can select the transaction to abort, or it can delay the first transaction’s execution to allow it to

retry the access. A manager may use the history of the transaction (or other information) to

make this decision.

SXM provides conflict resolution policies similar to those in Section 3.4.4 [22]. Another

level of resolution is necessary when conflicting transactions choose different policies. SXM’s
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goal is to apply the policy that results in the best system throughput. To this end, SXM classifies

policies based on the cost of the state that they maintain:

RANK POLICY CLASS POLICY STATE

1 Aggressive, Polite –

2 Ad hoc Greedy, Killblocked Transaction start time

3 Local Timestamp Transaction start time, variable

4 Kindergarten List of transactions

5 Historical Karma, Polka, Eruption List of objects

A higher–numbered policy is more expensive to compute than a lower–ranked one; but it

is not necessarily more predictive of future behavior. SXM does not favor higher–ranked

policies.

Instead, the ranking identifies policies that are comparable to each other. SXM assumes

that two transactions with policies from different policy classes were not intended to conflict, so

neither transaction’s policy is preferable. Instead, SXM uses the Greedy policy, which aborts the

transaction that has executed the least amount of time. On the other hand, if the two transactions’

policies belong in the same class, SXM applies the conflict policy from the transaction that

discovered the conflict (i.e., wants to acquire the object).

3.4.6 Marathe, Scherer, and Scott, DISC 05

Adaptive STM (ASTM) is a deferred, object-based STM system that explored several perfor-

mance improvements to the basic design of Herlihy et al.’s DSTM system (Section 3.4.1):

• ASTM eliminated a memory indirection in accessing fields in an object not open for

update, thereby reducing the cost of reading objects. When a transaction opens an

object for modification, it modifies the object’s data representation.

• ASTM uses an adaptive (run-time) system to change its conflict resolution policy from

early to late detection for transactions with a small number of memory writes and a

large number of reads.

Implementation

ASTM follows the design and implementation of Herlihy et al.’s DSTM system (Section 3.4.1)

in many respects. An object opened for update has the same representation, with two levels of

indirection between the TMObject and the object’s fields. In ASTM, however, an object opened
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STM Characteristics

ASTM

Strong or Weak Isolation Weak

Transaction Granularity Object

Direct or Deferred Update Deferred (cloned replacement)

Concurrency Control Optimistic

Synchronization Nonblocking (obstruction free)

Conflict Detection Early or late (selectable)

Inconsistent Reads Validation

Conflict Resolution Explicit contention manager

Nested Transaction

Exceptions

for reading by a transaction has a single level of indirection, so the TMObject points directly

to the object’s fields (Fig. 3.4(a)). This representation eliminates a pointer dereference when

reading the object’s fields.

The reduction in indirection was inspired by OSTM (Section 3.4.3). Other systems,

such as RSTM (Section 3.4.8), further reduce indirection. Direct-update systems (Section 3.5)

eliminate this overhead entirely.

Naively implemented, this approach would allocate and deallocate Locator objects when

a transaction opens an object for modification and subsequently when the transaction commits

or aborts. ASTM reduces this overhead by deferring the deallocation until another transaction

subsequently opens the object for reading. This heuristic eliminates unnecessary changes in

representation that would have occurred when the object is repeatedly written.

ASTM implements either early or late conflict detection for objects opened for update.

(DSTM only implemented early conflict detection.) With both policies, objects opened for

reading are recorded in a private read list and are revalidated when every subsequent object is

opened.

With late conflict detection, a transaction does not acquire ownership of an object that

it is modifying. Instead, it modifies a cloned copy of the object and defers conflict detection

until the transaction commits, which reduces the interval in which an object is locked and

avoids some unnecessary transaction aborts. When the transaction commits, it may find that the
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object modified or may find another transaction in the process of committing changes to the

object. The first case causes the transaction to abort, while the second one invokes a contention

manager to resolve the conflict.

To avoid erroneous behavior in a doomed transaction, each transaction maintains a private

write list and revalidates it every time an object is opened, to guard against the possibility that

the transaction read the object before modifying it.

The paper observes that both policies have comparable overheads for most benchmarks,

but early detection is simpler to implement. However, late acquire performs better for a long-

running transaction that reads a large number of objects and updates only a few, because this

policy allows concurrent readers and writers. In this situation, early acquire allows a transaction

to hold an object open for a long interval, which causes conflicts with other transactions that

read the object. Late conflict detection only aborts transactions actually reading an object when

the writer transaction commits.

ASTM implements an adaptive policy that recognizes a transaction that modifies few

objects (below a threshold) but reads many objects (above a threshold). ASTM then switches

the thread executing the transaction from early to late detection for subsequent transactions. If

a transaction falls below the thresholds, it reverts to early detection.

Simple benchmarks show that the optimized data representation improved performance

by up to a factor of 3–4 on read-dominated benchmarks, as compared to DSTM. The adaptive

algorithm provided little benefit for most benchmarks, but improved the performance of long-

running, read-dominated transitions by a similar margin.

3.4.7 Ananian and Rinard, SCOOL 05

Ananian and Rinard describe a software transactional memory system with the distinguishing

attribute of strong isolation [24]. In this system, a memory access outside of a transaction can

abort a running transaction. Most other STM systems implement weak isolation, in which

nontransactional reads and writes may access transactional data, but do not conflict with trans-

actions, to avoid the overhead cost of adding instrumentation to every nontransactional memory

read and write. Ananian and Rinard’s system lowers the overhead of the instrumentation by

placing a sentinel value in memory locations accessed by a transaction. The test for the sentinel

is inexpensive enough to perform at every load and store in a program. This technique was

previously used in the Shasta DSM system [25].

Their STM system is implemented in the FLEX Java system with object-granularity

conflict detection, similar to Herlihy et al.’s DSTM system (Section 3.4.1). The system runs

on a simulated computer architecture, which is used to study hybrid STM systems.
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Another novel aspect of this system is that the STM algorithm is written in Promela, so

it can be directly verified with the SPIN model checker [26]; an exercise that found several data

races.

STM Characteristics

ANANIAN AND RINARD

Strong or Weak Isolation Strong

Transaction Granularity Object

Direct or Deferred Update Deferred (in-place)

Concurrency Control Optimistic

Synchronization Nonblocking

Conflict Detection Early

Inconsistent Reads Invalidation

Conflict Resolution Abort conflicting transaction

Nested Transaction Flatten

Exceptions Terminate or abort

Implementation

Each Java object is extended by two fields. The first, named versions, is a linked list containing

a version record for each transaction that modified a field in the object. A version record identifies

the transaction and records the updated value of each modified field. The second field, named

readers, is a list of transactions that read a field in the object.

A novel aspect of this system is the use of a sentinel (signalling a conflicting access) value

in a memory location to redirect read and write operations to the transactional data structures.

Testing for a sentinel is a simple comparison, performed at every load and store in a program. The

sentinel introduces complexity when a program manipulates the sentinel value itself, but careful

choice of the sentinel (e.g., an invalid memory address and not a small, common immediate

value) can minimize the program’s legitimate use of the value.

When a nontransactional read encounters a sentinel, it aborts the transaction modifying

the object containing the value (but not those just reading the object), restores the field’s value

from the most recently committed transaction’s record, and re-reads the location (taking into

account the possibility that the location actually holds the sentinel value). A nontransactional

write aborts all transactions reading and writing the object and directly updates the field in the
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object (overwriting the sentinel). If the program is actually writing the sentinel value, the write

instruction is treated as a short transaction to ensure proper handling.

A transactional read first ensures that its transaction descriptor is on the object’s reader

list. It aborts all uncommitted transactions that modified the object. After this bookkeeping, the

transaction can read the field in the object and directly use any values other than the sentinel.

The sentinel value, on the other hand, requires a search of the version records to find one with

the same version and the updated value of the field.

A transactional write aborts all other uncommitted transactions that read or wrote the

object. It also creates, if none previously existed, a version object for the transaction. The next

step is to copy the unmodified value in the field to all version records, including those of the

committed transactions, so that the field can be restored if the transaction is rolled back. If the

versions list does not contain a committed transaction, one must be created to hold this value.

Finally, the new value can be written to the running transaction’s version record and the object

field set to the sentinel value.

This STM system aggressively resolves conflicting references to an object. A read aborts

transactions in the process of modifying the object and a write aborts all transactions that

accessed the object. In essence, the system implements a multireader, single-writer lock on an

object.

The system requires an extended (multiword) version of load-linked–store-conditional,

rather than mutual exclusion, which makes the low-level synchronization nonblocking. The

simple conflict resolution policy (of aborting conflicting transactions) does not provide a guar-

antee of forward progress for a transaction, which can be repeatedly aborted while accessing

heavily contended objects. On the other hand, this policy eliminates the need to validate trans-

actional reads to avoid observing an inconsistent state.

Lie describes an integration of this STM with an HTM, to improve STM performance

(Section 4.6.1).

3.4.8 Marathe, Spear, Heriot, Acharya, Eisenstat, Scherer, Scott, TRANSACT 06

RSTM is a nonblocking STM system implemented as a C++ class library [27]. It contains

several enhancements intended to improve the performance of a deferred-update STM:

• RSTM only uses a single level of indirection to an object, instead of the two levels used

by previous systems such as DSTM (Section 3.4.1) or ASTM (Section 3.4.6). This

feature, however, requires modifying objects’ layout to add two fields.

• RSTM avoids dynamically allocating many of its data structures and contains its own

memory collector, so it can work with nongarbage collected languages such as C++.
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• RSTM uses invalidation to avoid inconsistent reads. It employs a new heuristic for

tracking an object’s readers, which reduces the bookkeeping overhead found by previous

systems of these sorts [22].

The paper strongly argues that STM should be implemented with nonblocking syn-

chronization, since blocking synchronization remains subject to a host of problems, including

priority inversion, thread failure, convoying, preemption, and page faults.

STM Characteristics

RSTM

Strong or Weak Isolation Weak

Transaction Granularity Object

Direct or Deferred Update Deferred (cloned replacement)

Concurrency Control Optimistic

Synchronization Nonblocking (obstruction free)

Conflict Detection Early or late (selectable)

Inconsistent Reads Bounded invalidation

Conflict Resolution Conflict manager

Nested Transaction Flatten

Exceptions

Implementation

In RSTM, every transactional object is accessed through an ObjectHeader, which points

directly to the current version of the object (Fig. 3.5). RSTM uses the low-order bit of the

NewData field in this object as a flag. If the bit is zero, then no transaction has the object open

for writing and the field points directly to the current version of the object. If the flag is 1, then

a transaction has the object open.

The TransactionDescriptor referenced through an object’s header determines the

transaction’s state. If the transaction commits, then NewDataObject is the current version

of the object. If the transaction aborts, then OldDataObject is the current version. If the

transaction is active, no other transaction can read or write the object without aborting the

transaction.
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TransactionDescriptor

NewData

VisibleReader[1]

VisibleReader[n]

...

ObjectHeader

Owner

OldData

NewDataObject
(new version)

OldDataObject
(old version)

Owner

OldData

FIGURE 3.5: RSTM data structures

A transaction opens an object before accessing it:

1. If opening the object for update, the transaction must first acquire the object with the

following actions:

(a) Read the object’s NewData pointer and make sure no other transaction owns it. If it

is owned, invoke the contention manager.

(b) Allocate the NewDataObject and copy values from the object’s current version.

(c) Initialize the Owner and OldData pointers in the new object.

(d) Use a CAS to atomically swap the pointer read in step (a) with a pointer to the

newly allocated copy.

(e) Add the object to transaction’s private write list.

(f ) Iterate through the object’s visible reader list, aborting all transactions it contains.

2. If opening the object for reading and space is available in the object’s visible reader

list, add the transaction to this list. If the list is full, add the object to the transaction’s

private read list.

3. Check the status word in the transaction’s descriptor, to make sure another transaction

has not aborted it.

4. Incrementally validate all objects on the transaction’s private read list.
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One of RSTM’s new contributions is a visible reader list (VisibleReader[]) which

avoids the quadratic cost of validating a transaction’s read list each time it opens an object. An

ObjectHeader contains a fixed-size list of transactions that have the object open for reading.

When a transaction acquires the object for update, it aborts these transactions. A transaction on

an object’s visible reader list does not need to validate reads, since a conflicting write will abort

the transaction. However, if the list is full, the transaction must add the object to its private

read list and validate it. Even so, visible readers can reduce the size of this list and the cost of

validating it.

RSTM runs without garbage collection. It is parsimonious about memory allocation: a

single transaction descriptor suffices for all transactions executed on a thread, and it does not

dynamically allocate read or write lists (until they overflow). When a transaction completes,

RSTM is able to reclaim its data structures.

Limited performance measurement of RSTM suggests that visible readers are actually

more costly, because of the extra cache traffic caused by updating the visible read table in each

object. In addition, the measurements found that late conflict detection performed better than

early, because it permits more transactions to complete execution in situations with complex

conflict relationships among transactions.

Shriraman et al. describe instruction set extensions and hardware extensions to accelerate

the RSTM implementation (Section 4.6.3).

3.4.9 Dice and Shavit, TRANSACT 06

Dice and Shavit described an STM system called transactional locking (TL), which combined

deferred update with blocking synchronization [28]. Unlike other lock-based STM systems—

such as McRT-STM (Section 3.5.2) or BSTM (Section 3.5.4), which lock an object at first

access—TL locks an object when a transaction commits. Deferred locking requires deferred

update to hold uncommitted modifications. Using a lock simplifies the data structures required

by other nonblocking STM systems, such as DSTM (Section 3.4.1), and improves performance.

Limited experiments found that acquiring locks late, when a transaction commits, generally

performed better than acquiring them early, at first access to an object. This performance

improvement was particularly noticeable in benchmarks with heavy contention.

Implementation

The paper sketched and evaluated several variants of the TL algorithm. The preferred variant

acquires locks when a transaction commits (Fig. 3.6). An alternative is to acquire locks at first

access to an object. The implementation of the two is similar, but we will only present the

former, which performs better. Similarly, we only discuss object-granularity locking, not the

word- or region-granularity locking that is also feasible, though generally slower.
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STM Characteristics

TL

Strong or Weak Isolation Weak

Transaction Granularity Object, word, or region

Direct or Deferred Update Deferred (in-place)

Concurrency Control Optimistic

Synchronization Blocking

Conflict Detection Early or late (selectable)

Inconsistent Reads Inconsistency toleration

Conflict Resolution Delay and abort

Nested Transaction Flatten

Exceptions

Each object is associated with a lock, similar to the one in McRT-STM (Section 3.5.2).

A lock is either locked, and pointing to the transaction holding exclusive access, or unlocked,

and recording the object’s version, which is incremented when a transaction updates the object.

A transaction maintains a read set and a write set. An entry in the read set contains the

address of the object and the version number of the lock associated with the object. An entry

in the write set contains the address of the object, the address of its lock, and the updated value

of the object.

When the transaction executes a write, it first looks for the object’s entry in its write set. If

it is not present, the transaction creates an entry for the object (Fig. 3.6(b)). The write modifies

the entry in the write set, not the actual object. The transaction does not acquire the lock in the

preferred variant of the algorithm.

A memory load first checks the write set (using a Bloom filter [29]), to determine if the

transaction previously updated the object. If so, it uses the updated value from the write set.

If the object is not in the set, the transaction adds the referenced object to the read set and

attempts to read the actual object (Fig. 3.6(b)). If another transaction locked the object, the

reading transaction can either delay and retry or abort itself.

When a transaction commits, it first acquires locks for all objects in its write set

(Fig. 3.6(d)). A transaction will only wait a bounded amount of time for a lock to be released;

otherwise, the system would deadlock if two transactions acquire locks in opposite orders. After

acquiring locks for the objects it modified, the transaction validates its read set. If successful,

the transaction can complete by copying updated values into the objects, releasing the locks,

and freeing its data structures.
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Performance measurements on simple benchmarks showed that TL performed better than

other STM systems, such as Harris and Fraser’s nonblocking WSTM system (Section 3.4.2)

and Ennals’ STM system [30]. The measurements showed that acquiring locks at commit time

performed as well or better than acquiring locks on first access to an object. The benefits of

acquiring locks later increased with higher contention for a shared data structure. In addition,

per-object locking had lower overhead than locking memory words or regions, even though the

rate of conflicts was higher. Finally, measurements also showed that the cost of maintaining and

validating read sets is large.

3.5 DIRECT-UPDATE STM SYSTEMS
Recently, researchers have started to explore alternative implementation strategies for STM

systems. The most important of these is direct update, in which a transaction immediately

modifies an object and uses explicit synchronization to prevent other transactions from reading

or writing the modified object. Despite this synchronization, most of these systems require a

mechanism to roll back a transaction’s changes if it aborts. When a transaction encounters no

conflicts, these systems can be very efficient, as they incur only the overhead of locking and

logging.

Many of the direct-update systems use optimistic concurrency control. Manassiev et al.

describe an STM system built for a cluster of computers running a distributed shared-memory

system (Section 3.5.1). Adl-Tabatabai et al. investigate a variety of STM implementation tech-

niques, including direct update (Sections 3.5.2 and 3.5.3). Harris et al. described a very similar

direct-update STM system (Section 3.5.4).

However, other systems have investigated pessimistic concurrency control. McCloskey

et al. described a TM-like system in which a user annotates data structures with the locks that

protect them and the system uses this information to implement atomic regions (Section 3.5.5).

Hicks et al. described a technique to infer locks and a consistent locking order necessary to

implement transactions using pessimistic concurrency control (Section 3.5.5).

3.5.1 Manassiev, Mihailescu, Amza, PPoPP06

Distributed multiversioning (DMV) [31] differs fundamentally from the other systems in this

survey. It does not implement transactional memory for threads executing in the address space of

a single computer. Rather, it implements transactions on the Treadmarks software distributed

shared-memory system (S-DSM) [32], which provides shared memory among a cluster of

computers connected by a network.

Treadmarks creates a shared address space among processes running on distinct machines

by trapping the first write to a page of memory with the processor’s virtual memory hardware.

Treadmarks records the initial contents of the page and enables subsequent writes to the page. At
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synchronization points, the system sends other computers a list of modified pages. When another

computer subsequently references one of these pages, it requests the page’s change list and

updates the replica of the page, which is mapped into its address space at the same virtual address.

The system provides a consistent view of memory across the computers. In general, S-DSM

systems implement a release-consistent memory model [33], in which updates are propagated

at synchronization points and installed on other computers at synchronization points. A pro-

perly synchronized program sees a sequentially consistent view of memory across all computers.

This paper observes that the mechanisms of an S-DSM system can easily be adapted to

implement transactional memory. The key differences are that transactions provide a mechanism

to specify the execution interval over which memory updates are buffered on a machine before

being propagated, and that transactions provide a different semantics for resolving conflicting

memory references.

The DMV system tracks page modifications using the Treadmarks mechanisms. When a

transaction commits, DMV sends the change list to other computers, which record, but do not

apply the changes. After all computers acknowledge receipt of the change list, the transaction

can commit. On a given computer, if the change list updates a page being modified by an active

transaction, the transaction is aborted. If the page is not being modified by a transaction, the

changes are applied on demand, when the page is subsequently referenced, to avoid delaying the

committing transaction. DMV also allows a read-only transaction to continue executing with

an outdated version of a page, even after receiving an update, to reduce the number of rollbacks

on updates.

STM Characteristics

DMV

Strong or Weak Isolation Strong

Transaction Granularity Word

Direct or Deferred Update Direct

Concurrency Control Optimistic

Synchronization None (distributed memory)

Conflict Detection Late

Inconsistent Reads None (multiple version)

Conflict Resolution Abort uncommitted transaction

Nested Transaction

Exceptions
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3.5.2 Saha, Adl-Tabatabai, Hudson, Minh, Hertzberg, PPoPP06

A group at Intel built an STM system for Java and C/C++ code called McRT-STM, after

its underlying concurrent run-time system named McRT [34, 35]. McRT-STM has three

distinguishing features.

• Transactions directly update memory locations, rather than buffering updates until

commit time. Before modifying a location for the first time, a transaction must record

the location’s value, to be able to restore if the transaction aborts. Direct updating

reduces the cost of reading a location and of committing a transaction, as compared to

buffered updates. It increases the cost of aborting a transaction, but this operation is

inherently expensive, since it discards computation, and should not occur frequently.

• McRT-STM uses two-phase locking rather than a nonblocking design. Locking sim-

plified the STM implementation and yielded higher performance by reducing the fre-

quency of transaction aborts relative to a nonblocking implementation.

• The user-perceptible benefits of a nonblocking STM are maintained by linking the

STM system to the run-time system’s thread scheduler, so a thread will wait to acquire

a lock held by an executing transaction, and by using timeouts and aborts to detect and

resolve deadlocks.

• McRT-STM implements transactions for C/C++ code, as well as Java. It supports

both object- and cache-line-granularity locking for both safe and unsafe code.

STM Characteristics

MCRT-STM

Strong or Weak Isolation Weak

Transaction Granularity Word or object

Direct or Deferred Update Direct

Concurrency Control Optimistic read, Pessimistic write

Synchronization Blocking

Conflict Detection Early write–write conflict

Late write–read conflict

Inconsistent Reads Inconsistency toleration

Conflict Resolution Abort

Nested Transaction Closed

Exceptions
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The McRT STM systems implement a different semantic model than the single-lock

atomicity described in Chapter 2. For example, it fails to ensure the serializeability of the list

example discussed in Section 2.3.5. Other STM systems also used direct update and locking:

Ennals’ STM system [30], Hindman and Grossman’s AtomicJava [36], and Microsoft’s Bartok

STM system (Section 3.5.4). Dice and Shavit’s TL system used deferred update and locking

(Section 3.4.9).

Implementation

The paper described and evaluated alternative implementations of several STM mechanisms

for lock granularity, locking discipline, and deferred and direct update. We will describe in detail

the preferred implementation and briefly note the alternatives. Section 3.5.4 presents a more

detailed implementation of a similar system.

McRT-STM uses two-phase locking to control access to an object. This protocol allows

multiple transactions to read an object, but only a single transaction to modify the object. After

acquiring a read lock, a transaction records the object’s version number in its read set, to permit

subsequent validation. After acquiring a write lock, the transaction records the location’s value

and object’s version number in a log, to allow rollback if the transaction aborts. Conflicting

writes from other transactions are detected by verifying that the version numbers of all locations

read by a transaction remain unchanged when the transaction commits. Deadlock is detected

by timeouts on lock acquires. Aborting a transaction and rolling back its side effects resolves

conflicts or deadlocks.

Each object contains a transaction lock, which can be in one of two states. If the object

is unlocked or only being read, its lock contains the object’s current version number. In this

state, another transaction can open the object for reading by simply recording, in its read set,

the object and its current version.

The other state indicates that the object is open for writing. In this case, the lock points

to the transaction descriptor of the transaction modifying the object. When a transaction opens

the object for writing, it records the object and its version number (from the lock) and replaces

the version number in the lock with a pointer to its transaction descriptor. When the transac-

tion commits and releases its lock, it increments the object’s version number and replaces the

transaction descriptor in the lock with the new version number. Upgrades—from reading to

writing an object—require that the reader acquire a write lock and, at commit time, verify that

the object’s read version number matches the initial write version number. Active readers do

not prevent a writer from acquiring a lock and modifying an object; the conflict is detected and

resolved when a reader transaction attempts to commit.

When an object is open for writing, other transactions that attempt to open the object for

reading or writing will block on its write lock. McRT-STM implements a policy of suspending
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these contending transactions if the thread holding the lock is active and aborting the transaction

holding a write lock if its thread is suspended. This policy approximates the obstruction-free

behavior of other STM systems, by ensuring that a suspended transaction does not prevent

active transactions from making forward progress.

When a transaction opens an object for writing and modifies its value, it does not abort

transactions that previously read the object. Each of these transactions will detect the conflict

when it checks the version numbers of the objects in its read set, as part of the commit process.

Since transactions directly modify locations, any of these transactions may read values modified

by another transaction and so observe inconsistent program state. This can cause abnormal

executions, for example, unexpected exceptions or improper loop termination. The former

problem can be handled by catching these exceptions, aborting the transaction, and subsequently

retrying it. The latter problem requires the consistency of a transaction’s read set to be validated

on the backedge of every loop whose termination may be dependent on state potentially modified

by another transaction.

McRT-STM also investigated a more complex locking protocol that uses read locks to

prevent a transaction from reading inconsistent state. The scheme allowed multiple concurrent

readers, but gave writers priority (including upgrades from reader to writer) to avoid the well-

known problem that “writers starve”; as a steady stream of readers never allow the read count

to drop to zero so a writer can acquire its exclusive lock. Read versioning was considerably

faster than read locking (by up to an order of magnitude) for two reasons. First, read locking

required atomic memory operations at every manipulation of the lock word. These operations

are expensive in some processor implementations. Second, read locking increased the latency

of the common operation of upgrading from reader to writer, since a transaction must wait for

all other readers to complete their transaction and release their lock.

McRT-STM also compared two mechanisms that enable a program’s state to be restored

when a transaction aborts: deferred update and direct update and logging. Deferred update

stores a modified value in a location distinct from the original object, for example in a clone

of an object. Other transactions can read the original value from the original location, but the

transaction modifying the value must both read and write the new, transaction-specific location.

If the transaction aborts, the clone can be discarded. By contrast, direct update acquires exclusive

access to an object and modifies it in place. The original value of the object must be captured

in a log, so it can be restored if the transaction aborts.

Deferred update only requires that locks be held when a transaction is in the process of

committing, not when it is computing the new values, which can reduce contention and the

frequency of conflict-induced rollback. This is the approach taken in Dice and Shavit’s TL

system (Section 3.4.9). On the other hand, a transaction modifying a location must find and

use the buffered value for subsequent reads, which increases the cost of reading these values.



P1: XXX

MOBK061-01 MOBK061-Larus.cls January 3, 2007 14:49

106 TRANSACTIONAL MEMORY

McRT-STM found that logging performed better (by a factor of 2 to 6) than buffering because

of the overhead of searching for the most recent value. This considerations may not apply to

all systems since eager locking is easier to implement in a HTM system. Late locking requires

a more complex synchronization protocol and increases the amount of wasted work when a

transaction aborts, which may be an important consideration for a HW design.

The McRT-STM system can provide transactional memory for C/C++ code, as well

as Java. A major complication is that programs written in C/C++ can manipulate “interior”

pointers, which point into the middle of a structure or object. Transactions need a mechanism

to map one of these pointers to its containing object, which contains the transactional lock.

The McRT run-time system provides size-segregated heaps, each of which holds objects of a

single size that is a power of 2. A pointer into an object can be easily converted into a pointer

to its heap, by masking the low-order bits. A heap’s header records the objects’ size, which can

be used as a mask to convert an interior pointer to the object’s starting point in the heap.

In addition to object locking, McRT-STM also investigated memory region locking,

similar to Harris and Fraser’s WSTM system (Section 3.4.2) [18]. McRT-STM used the middle

bits of a pointer as an index into a table of locks, which provided a fast, but not necessarily unique,

mapping between a pointer and the lock on the cache line it referenced. Neither form of locking

performed consistently better. Performance depended on object size and access patterns.

3.5.3 Adl-Tabatabai, Lewis, Menon, Murphy, Saha, Shpeisman, PLDI06

This paper further elaborates the McRT-STM system by providing more specific details about

the system’s implementation than the previous paper (Section 3.5.2) and by describing the

compiler optimizations used to reduce the STM overhead [35]. The system’s implementation

is similar to Harris et al. (Section 3.5.4), which also appeared in PLDI 2006. We will defer a

detailed description of the implementation of a direct-update STM system to the discussion of

that paper and will focus on the McRT-STM compiler optimizations.

The StarJIT compiler used in the McRT-STM system optimizes STM-related code, both

with conventional and STM-specific optimizations. A key issue in all compiler optimizations

is to ensure that the program transformation preserves the program semantics. In the low-

level representation seen by a compiler, the STM operations must be explicitly connected to a

specific transaction so a compiler does not optimize across transaction boundaries; for example,

by eliminating logging of a variable in all but the first atomic block in a series of transactions. In

addition, disparate STM-related operations, such as opening and logging a memory reference,

must be explicitly connected, so the compiler can remove all STM operations when it eliminates

the reference.

McRT-STM translates transactions into an intermediate form that explicitly represents

these program constraints, so existing compiler optimizations correctly transform STM code.
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This system translates an atomic block into a series of statements that delimit a scope corre-

sponding to the transaction. For example, the statements

atomic { obj.f1 = x1; };

atomic { obj.f2 = x2; obj.f2 = x2; }

are translated into

while (true) {

TxnHandle th = txnStart();

try { txnOpenObjectForWrite(th, obj);

txnLogObjectRef(th, obj, f1_offset);

obj.f1 = x1;

break; }

finally { if (!txnCommit(th)) continue; }

}

while (true) {

TxnHandle th = txnStart();

try { txnOpenObjectForWrite(th, obj);

txnLogObjectRef(th, obj, f2_offset);

obj.f2 = x2;

txnOpenObjectForWrite(th, obj);

txnLogObjectRef(th, obj, f2_offset);

obj.f2 = x2;

break; }

finally { if (!txnCommit(th)) continue; }

}

Although their names are identical, the two transaction handles are distinct values held

in distinct variables whose scope is delimited by the transaction (loop) bodies. Compiler opti-

mizations will not try to eliminate the calls on txnOpenObjectForWrite in the second loop

as redundant, since their first arguments differ from calls in the previous loop.

The compiler encodes the dependence between an object reference and its open and

logging statements with pseudovariables (called “proof variables” [37]) that exist within the

compiler representation, but not the generated code. For example, if redundancy elimination in

the compiler deleted the first assignment toobj.f2 in the second atomic statement, the compiler

will also eliminate the associated calls on txnOpenObjectForWrite and txnLogObjectRef

because of these proof variables.
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The compiler also performs STM-specific optimizations, such as hoisting the load of

a transaction descriptor from thread-local storage out of a loop, as a reference to thread-

local storage is expensive. Similarly, it replaces an open for reading with an open for writing,

if the latter operation dominates the former. In addition, the compiler aggressively in-lines

STM operations. Finally, the compiler eliminates open and logging operations on references to

immutable locations and local objects whose lifetime is contained within a transaction, since

the former are read-only and the latter cannot be shared by other transactions.

The compiler optimizations produce a substantial improvement in the speed of executed

code, in some cases reducing McRT-STM’s overhead by an order of magnitude.

3.5.4 Harris, Plesko, Shinnar, Tarditi, PLDI06

This STM system from Microsoft is similar in many aspects to the McRT-STM from Intel

(Sections 3.5.2 and 3.5.3) [38]. Microsoft’s BSTM was implemented with the Bartok compiler

and run-time system, an optimizing MSIL (Microsoft Intermediate Language) to x86 compiler

developed at Microsoft Research. BSTM is a direct-update STM that uses two-phase locks to

ensure exclusive access to objects being updated, version numbers to ensure read consistency,

and compiler optimizations to eliminate unnecessary STM operations. BSTM also aggressively

attempts to reduce the size of logs, both by filtering unnecessary entries and through tight

integration with the system’s garbage collector. This system is the successor to a previous system

[39], which provided transactions without isolation as an error recovery mechanism. The Bartok

STM systems implement a different semantic model than the single-lock atomicity described

in Chapter 2. For example, it fails to ensure the serializeability of the list example discussed in

Section 2.3.5.

Detailed Implementation

Conceptually, BSTM adds a field of type STMWord to each object (Fig. 3.7). This field contains

two values. The first is a bit indicating if a transaction has the object open for updating. If

this bit is set, the field’s other value points to the transaction descriptor of the transaction that

opened the object. If the bit is not set (the object is not open for update), the other field is the

object’s version number. The following atomic operations manipulate the field:

word GetSTMWord(Object o)

bool OpenSTMWord(Object o, word prev, word next)

void CloseSTMWord(Object o, word next)

BSTM also associates a hint, called a Snapshot, with each object. It changes value when

a thread that opened the object for update calls CloseSTMWord. A Snapshot is an inexpensive

indication that the object has been updated. BSTM stores the STMWord in a dynamically
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STM Characteristics

BSTM

Strong or Weak Isolation Weak

Transaction Granularity Object

Direct or Deferred Update Direct

Concurrency Control Optimistic read, Pessimistic write

Synchronization Blocking

Conflict Detection Early write–write conflict

Late write–read conflict

Inconsistent Reads Inconsistency toleration

Conflict Resolution Abort

Nested Transaction Closed

Exceptions Abort

allocated header word, so the Snapshot incurs no additional cost, as the address of this header

changes when the word is updated. For simplicity, the code below does not use Snapshots, and

so only illustrates the slow, but general path in case this hint fails.

A transaction is represented by a TMMgr structure. It is manipulated by the usual set of

operations:

TMMgr TMGetTMMgr()

void TMStart(TMMgr tx)

void TMAbort(TMMgr tx)

bool TMCommit(TMMgr tx)

bool TMIsValid(TMMgr tx)

A transaction contains three append-only logs. The read and update logs record the

objects that the transaction reads or modifies. When opening an object for reading, the system

records the object and its version number in the read log (Fig. 3.7(b)):

void TMOpenForRead(TMMgr tx, object obj) {

tx.readLog.obj = obj;

tx.readLog.stmWord = GetSTMWord(obj);

tx.readLog ++;

}
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FIGURE 3.7: BSTM data structures and operations

Note that this operation does not check if the object is open for modification. When the reading

transaction validates its read set, it detects a conflict when an object is locked for writing or

its version number is updated. Since a transaction must always validate its read set to detect

conflicts that arise after it opened a location for reading, checking for a conflict as part of the
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TMOpenForRead operation would slow down the common case and only provide benefit if

conflicts are frequent.

Opening an object for updating is more complex, as the operation acquires an exclusive

lock on the object that prevents other transactions from updating it (Fig. 3.7(c)). To acquire

this lock, a transaction must ensure that no other transactions either have the object open for

update or are concurrently opening the object for update:

void TMOpenForUpdate(TMMgr tx, object obj) {

word stmWord = GetSTMWord(obj);

if (!IsOwnedSTMWord(stmWord)) {

// Object is not owned by any transaction

tx.updateLog.obj = obj;

tx.updateLog.stmWord = stmWord;

tx.updateLog.tx = tx;

word newSTMWord = MakeOwnedSTMWord(tx);

if (OpenSTMWord(obj, stmWord, newSTMWord)) {

// Open succeeded: advance our log pointer

tx.updateLog ++;

} else {

// Open failed: make the transaction invalid (and/or invoke contention manager)

BecomeInvalid(tx);

}

} else if (GetOwnerFromSTMWord(stmWord) == tx) {

// The object is already open for update by the current transaction: nothing more to do

} else {

// The object is already open for update by another transaction: abort our transaction

BecomeInvalid(tx);

}

}

After opening an object for reading, a program can directly manipulate it. However, before

updating a field in an object, the system must record its value in the transaction’s undo log, so

the modification can be rolled back:

void TMLogFieldStore(TMMgr tx, object obj, int offset) {

tx.undoLog.obj = obj;

tx.undoLog.offset = offset;
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tx.undoLog.value = obj[offset]; // pseudo code

tx.undoLog ++;

}

TMCommit commits a transaction in two phases (Fig. 3.7(d)). It first validates the con-

sistency of the objects read by the transaction and then closes the objects opened for updating.

Only the first phase can cause this operation to fail, since the transaction holds exclusive locks

on the objects it opened for updating:

bool TMCommit(TMMgr tx) {

foreach (ReadLogEntry e in tx.readLog) {

if (!ValidateReadObject(tx, e.obj, e.stmWord)) { return false; }

}

foreach (UpdateLogEntry e in tx.updateLog) {

CloseUpdatedObject(tx, e.obj, e.stmWord);

}

return true;

}

Validating an object ensures that (1) no other transaction had the object open for updating

when this transaction first opened it for reading, (2) no other transaction opened the object for

updating after this transaction opened it for reading, and (3) no other transaction has the object

open for updating:

bool ValidateReadObject(TMMgr tx, object obj, STMWord oldSTMWord) {

word curSTMWord = GetSTMWord(obj);

if (!IsOwnedSTMWord(oldSTMWord)) {

// Object originally was not opened by us for update

if (oldSTMWord == curSTMWord) {

// No intervening access by another transaction

} else if (!IsOwnedSTMWord(curSTMWord)) {

// Object was opened and closed by another transaction

BecomeInvalid(tx);

return false;

} else if (GetOwnerFromSTMWord(curSTMWord) == tx) {

// Object is currently opened by this transaction

UpdateLogEntry *updateEntry =

tx.GetEntryFromSTMWord(curSTMWord);

if (updateEntry.stmWord != oldSTMWord) {
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// Object was opened and closed by another transaction

BecomeInvalid(tx);

return false;

} else {

// No intervening access by another transaction

}

} else {

// Object is opened by another transaction

BecomeInvalid(tx);

return false;

}

} else if (GetOwnerFromSTMWord(curSTMWord) == tx) {

// Object was opened by us for update before opening it for reading

} else {

// Object was opened by another transaction for update before we opening it for reading

BecomeInvalid(tx);

return false;

}

return true;

}

Closing an object opened for update has two effects: increment the object’s version number

and release the exclusive lock held by the transaction:

void CloseUpdatedObject(TMMgr tx, object obj, word oldSTMWord) {

word newSTMWord = GetNextVersion(oldSTMWord);

CloseSTMWord(obj, new_word);

}

TMAbort aborts a transaction by restoring the locations that it modified and by releasing

its exclusive locks. Objects opened for reading require no action:

bool TMAbort(TMMgr tx) {

foreach (UndoLogEntry e in tx.undoLog) {

object o = e.obj;

int offset e.offset;

object value = e.value;

o[offset] = value;

}
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foreach (UpdateLogEntry e in tx.updateLog) {

CloseSTMWord(e.obj, e.stmWord); // do not change version number

}

return true;

}

Compiler Optimizations

The Bartok compiler, like the StarJIT compiler in the McRT-STM (Section 3.5.3), performs

optimizations to eliminate unnecessary calls on the STM system. These optimizations fall into

a number of categories:

• Conventional compiler optimizations can optimize BSTM operations whose semantics

are known to the optimizer. For example, TMGetTMMgr returns a constant result within a

transaction, and consequently can be moved out of a loop by loop-invariant code motion.

TMOpenForRead and TMOpenForUpdate are idempotent within a transaction, and so

duplicate calls can be eliminated.

• Objects allocated within a transaction need not be logged, since they cannot be refer-

enced by another transaction and are discarded (and garbage collected) if the transaction

aborts. Bartok uses a simple dataflow analysis to determine which variables always con-

tain newly allocated objects and eliminates logging on these variables.

• Redundant open operations—for example, a method opening an object already

opened by its caller—can be eliminated by moving calls on TMOpenForRead or

TMOpenForUpdate to a method’s caller and eliminating the redundant call there.

• Objects that are first read, then updated, for example in the statement o.a = o.a +

1, incur two open operations. The call on TMOpenForRead can be avoided by initially

opening the object for update.

• The buffer overflow checks in the logging operations in a transaction can sometimes

be optimized into a single test, which checks whether there is sufficient space for all of

the data logged in the transaction.

These optimizations can reduce the number of log entries by 40–60% on a variety of benchmarks,

with a roughly similar improvement in execution time.

Run-time Optimizations

Even after the compiler optimization, the logs contain many duplicate and unnecessary entries.

BSTM uses run-time tests to eliminate more unnecessary log entries. The expense of these
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tests must be traded off against a reduction in memory usage and in the cost of committing or

aborting a transaction. These optimizations fall into several categories:

• Objects allocated in a transaction do not need undo log entries, since these objects

become unreachable if the transaction aborts. Static compiler analysis cannot identify

all of these objects. BSTM tracks objects allocated in a transaction and does not record

them in the undo log. However, these objects require read and update log entries, so

they can be committed.

• BSTM uses a hash-table filter to detect and eliminate duplicate entries in the read and

undo logs.

• Bartok’s garbage collector (GC) compacts the logs when it performs a garbage collection.

This compaction removes unreachable (garbage collected) objects’ log entries, entries

in the read log for objects subsequently opened for update, and duplicate log entries.

Although these run-time optimizations can increase some programs’ execution time, they

can also dramatically reduce the execution time of other applications by a large amount.

3.5.5 McCloskey, Zhou, Gay, Brewer, POPL06

McCloskey et al’s Autolocker system adopted a different approach to implementing con-

currency control for transactions [40]. It used pessimistic concurrency control and two-phase

locking, the approach Lomet proposed (Section 3.3.1). With this system, the code generated

for a transaction acquires locks for all shared locations accessed by the transaction. The locks

prevent other transactions from accessing the locations until the first transaction completes and

releases them. The system ensures that locks are acquired in a well-defined order to prevent a

deadlock. Transactions do not abort, but they may block waiting for a lock.

The Autolocker system transforms C code by inserting the lock acquire and release

operations. A programmer delimits transactions in an atomic block and supplies annotations

that relate a lock to the shared data it protects. An annotation names an explicit lock (either

exclusive or reader/writer) and a data structure. The Autolocker tool inserts code to acquire

the lock on entry to an atomic block that accesses the structure and to release the lock on exit.

Autolocker will reject a program if it cannot determine that the locks it needs can be acquired

in a deadlock-free order.

Hicks et al. described a technique for automatically inferring these locks and a consistent

locking order (Section 3.5.6). McCloskey, on the other hand, argues that explicit (programmer-

specified) locks provide control over locking granularity, which can improve performance by

increasing concurrency with finer grained locking. By separating the specification of locking

from its implementation and automating the insertion of lock acquires and releases, Autolocker
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supports a composable locking model (albeit one that requires global program analysis) and

facilitates modification and evolution of code.

The paper also argues that the optimistic concurrency mechanisms in STM systems are

handicapped by their need to roll back transactions, a mechanism that coexists poorly with

other system facilities such as IO. The paper also criticizes these systems for not providing

programmers with mechanisms to control performance. McCloskey concedes, however, that

optimistic locking is valuable in situations in which fine-grain locking algorithms are complex

to implement, for example, structures such as red-black trees.

STM Characteristics

AUTOLOCKER

Strong or Weak Isolation Weak

Transaction Granularity User-selectable

Direct or Deferred Update Direct

Concurrency Control Pessimistic

Synchronization Blocking

Conflict Detection None (exclusive locking)

Inconsistent Reads None (exclusive locking)

Conflict Resolution None (exclusive locking)

Nested Transaction

Exceptions

3.5.6 Hicks, Foster, Pratikakis, TRANSACT 06

Hicks et al., like the Autolocker system (Section 3.5.5), use pessimistic concurrency control

and two-phase locking to insert locks in C code containing explicit atomic blocks [41]. Before

executing, a transaction acquires exclusive locks for all shared locations it will read or write. The

locks ensure exclusive access to the location, until the transaction commits and releases them.

The contribution of this paper is a technique to infer automatically the collection of locks

that a transaction must acquire and to determine an order in which to acquire them to avoid

deadlock. The technique relies on a points-to–analysis; a standard, scalable compiler analysis

that creates an abstract name to represent one or more memory locations and computes the

mapping from a variable reference to the set of names representing locations accessed through

the variable.
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Hicks associates a lock with each symbolic name and computes a total order on these

locks. At the start of a transaction, generated code acquires the locks for the transaction, based

on the points-to-sets of the statements in the transaction. The locks are acquired in an order

consistent with the total order. The paper also describes optimizations that eliminate locks on

locations not shared between threads and that recognize that one lock subsumes another, which

eliminates the need to acquire the latter. Until this system is implemented and evaluated, it

will not be clear if points- to-sets are precise enough to allow fine-grain locking or if the large

number of points-to-sets accessed in a transaction will produce high locking overhead.

STM Characteristics

HICKS

Strong or Weak Isolation Weak

Transaction Granularity Variable

Direct or Deferred Update Direct

Concurrency Control Pessimistic

Synchronization Blocking

Conflict Detection None (exclusive locking)

Inconsistent Reads None (exclusive locking)

Conflict Resolution None (exclusive locking)

Nested Transaction

Exceptions

3.6 LANGUAGE-ORIENTED STM SYSTEMS
Beyond the implementation of STM systems themselves, research has used STM systems to ex-

plore the semantics and programming models for transactional memory. Harris and Fraser pro-

posed and implemented extensions to Java, which made the atomic construct a programming

construct, not just a notation for specifying behavior [42] (Section 3.4.2). Harris’s subsequent

paper explored the interaction between exceptions and IO and transactions (Section 3.6.1).

Pizlo et al. showed how transactional memory could help resolve priority inversion problems

in Real-Time Java (Section 3.6.2). Harris et al.’s influential paper on Haskell STM introduced

the retry and orElse statements and showed how a type system could aid in the static ver-

ification of transactions’ properties (Section 3.6.3). Ringenburg and Grossman implemented
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AtomCaml, which adds atomic execution to the Objective Caml (OCaml) language (Section

3.6.4).

3.6.1 Harris, CSJP04

Harris’s paper [43] elaborated on two important issues left undiscussed in his and Fraser’s

OOPSLA paper (Section 3.4.2) [18]. The first is the semantics of exceptions within atomic

blocks. In the earlier paper, an exception terminated an atomic block, but did not abort it. That

is, any side effects produced by code in the atomic block, up to the point of the exception,

remained visible after the exception transferred control out of the block. This paper explored an

alternative semantics: an exception causes an atomic block to abort and roll back all side effects.

The second issue is the inclusion of IO operations in an atomic block, which was prohibited in

the earlier paper.

The paper motivates the change in the semantics of exceptions with an example that

demonstrates the utility of transactions as an error recovery mechanism (an aspect explored

elsewhere [6, 39]). Consider moving an item between two lists:

Bool move(List<Item> s, List<Item> d, Item item) {

atomic {

if (!s.Remove(item)) { /* R1 */

return false; /* Could not find object */

}

else {

try {

d.Add(item); /* A1 */

}

catch (RuntimeException e) {

s.Add(item); /* A2 */

throw e; /* Move failed */

}

return true; /* Move succeeded */

}

}

}

Without atomic blocks, the code needs to provide explicit compensation (statement A2)

to return the item to the first list, if the insert into the second list fails (note, moreover, that if

the reinsertion fails, then the item is lost).
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Allowing an exception to abort an atomic construct simplifies the code by eliminating

the need for explicit error recovery code:

Bool move(List<Item> s, List<Item> d, Item item) {

try {

atomic {

if (!s.Remove(item)) { / ∗ R1 ∗ /

return false; /* Could not find object */

} else {

d.Add(item); / ∗ A1 ∗ /

return true; /* Move succeeded */

}

}

} catch (RuntimeException e) {

return false; /* Move failed */

}

}

If statement R1 or A1 fails with an exception, the atomic statement aborts and rolls back changes

to both lists, and so leaves the program’s state at the point it was when control first entered

the function. (Harris’s example is slightly more complex, because he distinguishes between

classes of exceptions that terminate and abort atomic blocks, and so needs to translate the

RuntimeException exception into an aborting exception.)

Harris pointed out that this semantics for exceptions causes problems:

• The rollback may violate invariants that previously held after the exception occurred.

These invariants might expose intermediate program states. It is easy to argue that this

is an undesirable state of affairs, but it is probably common in practice, since explicit

compensation code is complex and difficult to implement correctly.

• When an atomic block rolls back a program’s state, it also discards the exception object

allocated within the block. This object requires special treatment, to pass it across the

atomic block’s boundary. Harris suggests serializing the exception object into a byte

array—the mechanism used to pass objects between machines. Additional restrictions

on this object are probably also necessary, since the exception object can point to ob-

jects allocated both before and within the atomic block, and this serialization does not
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preserve sharing of the former group of objects, nor does it provide a reasonable se-

mantics for the second group.

This paper also raised a warning of the complexity of invoking IO operations in an atomic

block. It described a wrapper library, similar to a transaction-processing monitor [44], that

facilitated buffering data in IO classes. The wrapper provided methods that enabled the class

to vote on whether to commit, and that provided notification of the surrounding transaction’s

abort and commit. The approach, unfortunately, has serious and obvious flaws that point out

the need for considerably more research in this area.

For example, to make IO transactional, an input operation could buffer the values read,

to allow them to be replayed if the atomic block aborted and the input statement reexecutes.

Similarly, output could be buffered and only transmitted when an atomic block commits. Un-

fortunately, even this simple buffering can introduce deadlocks, as demonstrated by a simple

example of printing a prompt string and waiting for user input. The string only appears when

the surround atomic block commits, which of course cannot happen until the user types his or

her response.

Moreover, Harris pointed out that integrating database operations into atomic transac-

tions is difficult, without a two-phase commit protocol for each transaction that would permit

the other to cause an abort.

3.6.2 Pizlo, Prochazka, Jagannathan, Vitek, CJSP04

Pizlo et al. describe an application of transactional memory to resolve priority inversion problems

in Real-Time Java, which is an extended version of Java for embedded systems [45]. Priority

inversion occurs when a low-priority thread running in a critical section precludes a higher

priority thread from entering the section, thereby delaying its execution despite the threads’

priorities.

Pizlo el al. proposed transactional lock-free (TLF) objects, which support atomic meth-

ods on objects. These methods are transactional critical sections, in which a high-priority

thread can preempt a lower priority thread and evict it from an atomic method. The state

changes caused by the low-priority thread are rolled back before the high-priority thread en-

ters the critical section, thereby hiding the potentially inconsistent state resulting from early

termination.

Atomic methods, unlike other STM systems, use mutual exclusion to provide a critical

section for only a single object (similar to Java’s synchronized methods). The conflict resolution

policy, in addition, is closely tied to thread priority so that a high-priority thread always aborts

a lower priority thread.
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Within an atomic method, writes to the object are logged, so they can be rolled back if a

higher priority thread aborts the method.

STM Characteristics

TLF

Strong or Weak Isolation Weak

Transaction Granularity Object (single)

Direct or Deferred Update Direct

Concurrency Control Optimistic

Synchronization Blocking (single lock)

Conflict Detection None

Inconsistent Reads None

Conflict Resolution Abort lower priority transaction

Nested Transaction Flatten

Exceptions Terminate

3.6.3 Harris, Marlow, Peyton Jones, Herlihy, PPoPP 05

This paper describes the HSTM system for Concurrent Haskell [46], a lazily evaluated func-

tional language [47]. At first glance, this combination may seem like a strange mixture, since

functional languages are not supposed to perform side effects, and so they should not have

conflicts between concurrent threads. However, even functional languages must perform IO,

a side effect, so Haskell introduced a mechanism, called a monad, which allows side-effecting

operations to coexist with a pure, functional base language. Moreover, communication between

concurrent threads is also a side effect that requires a synchronization mechanism such as

transactions.

Haskell’s clean semantics and robust type system provided the basis to explore several

interesting extensions to previous STM systems:

• HSTM used the Haskell type system to distinguish atomic statements from other

side-effecting IO statements and to prevent the latter from appearing in atomic blocks.

• It also used the type system to ensure that transactional locations were only referenced

within atomic blocks, thereby trivially ensuring strong isolation without the need to

instrument every variable access.
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• HSTM refined an idea from Harris and Fraser [18] by using conditional variables as

the principal synchronization mechanism. HSTM made this mechanism an explicit

programming construct.

• HSTM provided explicit operations to compose two transactions as alternatives.

STM Characteristics

HSTM

Strong or Weak Isolation Strong

Transaction Granularity Word

Direct or Deferred Update Deferred (cloned replacement)

Concurrency Control Optimistic

Synchronization Blocking

Conflict Detection Late

Inconsistent Reads Inconsistency toleration

Conflict Resolution

Nested Transaction None (not allowed by type system)

Exceptions Abort

Haskell STM Extensions

HSTM introduced new, language-appropriate mechanisms to express transactions. We will

discuss the extensions without going into detail about the syntax or semantics of the Haskell

language [48], which differs greatly from more common imperative languages, such as C and

Java.

Transactions update values stored in transactional variables (TVar). A nontransactional

variable is bound, so its value cannot be modified after it is initialized, and is obviously unaffected

by transactions. A TVar is read by an explicit readTVar operation and modified by writeTVar.

For example,

type Resource = TVar Int

putR :: Resource -> Int -> STM ()

putR r i = do { v <- readTVar r; writeTVar r (v+i) }
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introduces a new type (Resource) for a TVar holding an integer and then defines function

putR, which increments a Resource r by i units. Both readTVar and writeTVar return

STM actions, which tentatively update TVars. The atomic function transactionally committed

(or aborted) these updates:

main = do { ...; atomic (putR r 3); ... }

Haskell’s type system has a dual perspective that splits the world into disjoint halves. STM

operations, including updating TVars, are functional statements allowed in an atomic function.

Moreover, STM actions, such as accessing TVars, can only appear inside a transaction, so there

cannot be a conflict between a transaction and a statement executed outside of an atomic block.

IO operations, by contrast, can only execute outside of a transaction.

HSTM also introduced an explicit retry statement as a coordination mechanism be-

tween transactions. The retry statement aborts the current transaction and prevents it from

reexecuting until at least one of the TVars accessed by the transaction changes value. For

example,

getR . Resource.Int.STM ()

getR r i = do { v <- readTVar r

; if (v < i) then retry

else writeTVar r (v-i) }

atomically extracts i units from a Resource. It uses a retry statement to abort an enclosing

transaction if the Resource does not contain enough units. If this function executes retry,

r is the only TVar read, so the transaction reexecutes when r changes value.

This construct is a development of the conditional critical regions in [18], which only

permitted a predicate to be evaluated before a transaction begins executing. HSTM’s retry

builds on Harris and Fraser’s earlier observation that there is no reason to reexecute a transaction

until another transaction modifies some part of the state the first transaction read.

HSTM also introduced the binary orElse operator for composing two transactions. This

operator first starts its left-hand transaction. If this transaction commits, the orElse opera-

tor finishes. However, if this transaction retries, the operator tries the right-hand transaction

instead. If this one commits, the orElse operator finishes. If it retries, the entire orElse

statement waits for changes in the set of TVars read by both transactions before retrying. For

example, this operator turns getR into an operation that returns a true/false success/failure

result:

nonBlockGetR . Resource.Int.STM Bool

nonBlockGetR r i = do { getR r i ; return True }‘orElse‘ return false
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The left-hand transaction invokes the blocking version of getR. If it fails to find enough

resources, and retries, the orElse operation invokes the right-hand transaction, which simply

returns false.

In HSTM, an exception aborts a transaction (unlike Harris’s first STM system). The

paper notes that this design choice reflects the semantics of Haskell, which uses exceptions

to signal error conditions, rather than effect control transfer. To get the opposite semantics, a

programmer only needs to catch the exception within the transaction and return normally.

Implementation

The initial version of HSTM did not run on parallel machines, and consequently could take

advantage of the well-defined points at which a thread context switch is allowed to occur in

Haskell to avoid the need for low-level synchronization. A transaction’s reads and writes to

TVars all access a transaction log, which hides these variable references from other trans-

actions. When the transaction commits, it first validates its log entries, to ensure that no

other transaction modified the TVars values. If valid, the transaction installs the new values

in these variables. If validation fails, the log is discarded and the transaction reexecuted. Since

HSTM uses Haskell threads, validation and installing new values do not require low-level

synchronization.

If a transaction invokes retry, the transaction is validated (to avoid retries caused by

inconsistent execution) and the log discarded after recording all TVars read by the transaction.

The system binds the transaction’s thread to each of these variables. When a transaction updates

one of these variables, it also restarts the thread, which reexecutes the transaction.

The orElse statement requires a closed nested transaction to surround each of the two

alternatives, so that either one can abort without terminating the surrounding transaction. If

either transaction completes successfully, its log is merged with the surrounding transaction’s

log, which can commit. If either or both transactions invoke retry, the outer transaction waits

on the union of the TVars read by the transactions that retried.

3.6.4 Ringenburg, Grossman, ICFP 05

Ringenburg and Grossman implemented AtomCaml, which adds atomic execution to the

Objective Caml (OCaml) language [49]. OCaml is mostly a functional language based on the

ML programming language. It runs on uniprocessors, although it supports multiple threads with

preemptive scheduling. The absence of true concurrency simplified the implementation (which

only implemented failure atomicity, not isolation). Atomicity provides a useful mechanism to

synchronize access to data shared among threads.
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STM Characteristics

ATOMICCAML

Strong or Weak Isolation Weak

Transaction Granularity Word

Direct or Deferred Update Direct

Concurrency Control Optimistic

Synchronization None

Conflict Detection None

Inconsistent Reads None

Conflict Resolution None

Nested Transaction Flattened

Exceptions Terminate

Language Extensions

AtomCaml introduces two new programming constructs. The atomic primitive is a first class

function, which accepts a function as its argument and executes it atomically. For example,

atomic (fun () .

let totalWidgets= !blackWidgets + !blueWidgets in

if totalWidgets > 0

then print_string (pickWidget () ^ " available")

else raise NoWidgets)

atomically reads the quantity of each widget (the ! operator) and then prints a result or throws an

exception. If the thread running this atomic block runs without preemption, the block executes

normally. However, if the thread is preempted, the side effects within the block are rolled back.

The atomic statement reexecutes the next time the thread runs.

An uncaught exception in an atomic block is handled consistent with this semantics: it is

a control transfer that leaves the atomic function and commits its side effects. Similarly, nested

transactions need no special treatment. They all execute without preemption and commit, or

their thread is preempted and they all reexecute.

The other language construction is a mechanism for conditional critical regions, similar

to those in Harris et al. [18, 48]. OCaml provides a yield function, which yields control of

the processor to another thread. In AtomCaml, yield terminates and rolls back an atomic
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block, which subsequently can reexecute. AtomCaml supports an optional second argument to

yield, which specifies a single mutable reference whose value must change before rescheduling

the yielded thread.

Implementation

Without true concurrency, an atomic primitive is easily implemented. ML’s type system dis-

tinguishes mutable from read-only data. Only the former needs to be logged and rolled back,

because read-only values created in an atomic block have a shorter lifetime than the block (unless

a mutable value is set to point to them) and consequently their values will be reevaluated when

the block reexecutes.

Side effects new bytecodes added to the OCaml virtual machine log changes to the

mutable global state. A modified compiler produces two versions of each function: one for use

in an atomic block and one for use outside. When an atomic block terminates normally, its log

is discarded. However, if the block is preempted, the log is rolled back and mutable locations

are restored to the value they held on entry to the block.
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C H A P T E R 4

Hardware-Supported Transactional

Memory

4.1 INTRODUCTION
Hardware transactional memory (HTM) is a hardware system that support implementing non-

durable ACI (failure atomicity, consistency, and isolation) properties for threads manipulating

shared data. HTM systems typically have a moderate software component and a larger hard-

ware component. Their goal is to achieve the best performance with low overheads. HTMs

introduce new hardware features to track transactional accesses, buffer tentative updates, and

detect conflicts, while STMs use software to do the same.

Although STM systems are more flexible than HTMs and offer some advantages (Section

3.1), HTM systems have several key advantages over STM systems:

• HTMs can typically execute applications with lower overheads than a.

HTMs can have better power and energy profiles and higher performance.

HTMs execute independent of compiler technology and independent of memory access

characteristics.

• HTMs are minimally invasive in an existing execution environment as they can po-

tentially accommodate transactions that call functions that are not transaction aware,

transaction-safe legacy libraries, and third-party libraries.

• HTMs can provide high-performance strong isolation without requiring application-

wide changes.

• HTMs are better suited for unmanaged and unsafe environments.

4.1.1 Chapter Overview

The chapter divides HTM research into five categories:

• Precursors (Section 4.3).

• Bounded/large HTMs (Section 4.4).
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• Unbounded HTMs (Section 4.5).

• Hybrid HTM–STMs/hardware-accelerated STMs (Section 4.6).

• HTM semantics (Section 4.7).

The chapter does not present the papers in strict chronological order; instead, it discusses

related approaches together. A basic division is between modern HTMs that support unbounded

transactions and those that support large but bounded transactions. Most of the HTMs focus

on mechanisms to increase the buffering for transactions seamlessly. Recent efforts broaden

this focus to include ways of bridging the performance and flexibility gap between STMs and

HTMs by either integrating more software components and language constructs in an HTM

or by using HTM hardware to speed up an STM. The papers in the last section present a

discussion of possible interfaces to an HTM.

In this chapter, we use “atomic” and its variants strictly in the sense of a set of committed

memory operations appearing to occur instantaneously at a single point in some ordering of all

memory operations in the system. All other operations are either ordered before or after this

set of memory operations. We start by presenting a brief discussion of hardware mechanisms

pertinent to HTM.

4.2 A FEW WORDS ON HARDWARE
Transactional memory assists parallel applications that run on multiprocessors. The communica-

tion mechanism between processors often differentiates multiprocessor systems. Two common

communication mechanisms are message passing and shared memory. In message-passing sys-

tems, each processor has local memory accessible only to itself, and communicates through

explicit messages. Shared-memory systems make at least part of the memory accessible to all

processors. Processors communicate through read and write operations to memory. Shared-

memory systems have emerged as the dominant class of systems due to the relative ease of

writing shared-memory parallel programs as compared to message-passing programs.

Three aspects of hardware systems are pertinent to HTMs. Memory consistency models

help to reason about the ordering of load and store operations in a multiprocessor system, cache

coherence ensures that multiple processors have a coherent view of locally cached data and

speculative execution techniques provide mechanisms to recover architectural register state and

to tolerate the latency of serializing operations.

4.2.1 Memory Consistency Models

A memory consistency model defines the semantics of memory operation and allows program-

mers to use shared memory correctly. The memory consistency model specifies the behavior of

memory with respect to read and write operations from multiple processors. The strictest, but
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most intuitive, model considers the sequential semantics of memory operations in uniprocessors

and views a multiprocessor as a multiprogrammed uniprocessor. Lamport formally defined this

sequential consistency model in which the result of any execution is the same as if the operations

of all processors were executed in some sequential order and the operations on each processor

appeared in this sequence in the order specified by its program (an order known as program

order) [30].

Sequential consistency provides the behavior that most programers expect [24]. Consider

multiple processors sharing memory. Each processor issues its memory operation in program

order. Memory operations execute one at a time; they appear to occur atomically with respect to

other memory operations. The order of servicing of operations from different processors may

be arbitrary, thus leading to an interleaving of memory operations from different processors

into a single sequential order. An execution of a program is sequentially consistent if at least

one execution exists on a sequentially consistent system that can produce the same result.

Besides caches, many modern processors use write buffers (also known as store buffers)

between the processor and caches, to allow a processor to continue executing while a store

operation is made visible through the cache coherence protocol. Caching and write buffering

introduce complexity in the specification, definition, and implementation of memory consis-

tency models. This has led to significant work in the area in relaxing memory ordering [15].

Broadly, memory consistency models are differentiated based on two characteristics [2]:

1. How is the program order of memory operations relaxed? This may involve relaxing

the order—when the operations access different addresses—of a write following a read,

a read following a read or write, or between two writes.

2. How is write atomicity relaxed? This relaxation may allow a read to return the value

of another processor’s write before all other processors have seen the write. Here, the

relaxation applies to operation pairs on the same address.

Sequential consistency enforces strict ordering requirements, but relaxed models allow

relaxing these orderings. With relaxed models, programmers can use explicit mechanisms to

prevent such reordering from occurring. A tutorial on shared-memory consistency models by

Adve and Gharachorloo [2] provides background on various memory consistency models.

An open question concerning transactional memory is which memory model program-

mers should assume when programming with transactional memory, a topic briefly discussed

in Section 2.1.2.

4.2.2 Caches and Cache Coherence

Processors use local caches to store frequently referenced data. This reduces long latency memory

operations and bandwidth requirements. However, caching in shared-memory multiprocessors
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results in multiple copies of a given memory location. Cache coherence is the mechanism used to

keep all copies up-to-date. Broadly speaking, the mechanisms underlying any cache coherence

protocol are as follows:

1) Mechanisms to locate all cached copies of a memory location.

2) Mechanisms to keep all cached copies of a memory location up-to-date.

Snoop-based and directory-based are two common schemes for locating copies of a mem-

ory location. A snoop-based coherence protocol broadcasts the address of a memory location to

all caches. A directory-based coherence protocol maintains a directory per memory location to

record a where all the copies of a location reside. Various alternatives exist, but all require some

mechanism to locate all cached copies.

A write operation to a cache must keep all cached copies up-to-date. This operation often

involves either invalidating stale (out-of-date) copies or updating the cached copies to the newly

written value. If two processors simultaneously issue a write to the same location with different

values, cache coherence protocols ensure that all processors observe the two writes in the same

order, with the same value persisting in all copies.

In most invalidation-based cache coherence protocols, the cache with the dirty copy (i.e.,

the cache that owns the copy and that has modified it with respect to memory) of the cache

line is responsible for servicing read requests from other processors for either shared copies or

exclusive copies of the cache line. A cache that does not have the cache line in dirty state need

not respond. For such caches, an incoming read request is simply ignored and an incoming

read-for-exclusive-ownership request is treated as an invalidate request.

Systems maintain cache coherence at the granularity of a cache line (64 bytes being a

common size) and processors perform fetches and invalidations at the granularity of a cache

line. While larger granularity improves performance if data accesses have spatial locality, poor

spatial locality degrades performance due to false sharing. Goodman and Woest [18] were the

first to define false sharing as a situation when two processors alternately read or write different

parts of the same cache line, resulting in the line being moved repeatedly between the two

processors as if the data were shared, when in fact no values are flowing between the processors.

Sweazey and Smith [48] classified cache coherence protocols based on the stable states

of a cache line, and proposed the modified, owned, exclusive, shared, and invalid (MOESI)

classification. A cache line in stable state has valid data and has no outstanding state transition:

• Modified. The line is dirty (memory copy is stale) and exclusively owned by the cache.

• Owned. The line is dirty (memory copy is stale), the line is possibly shared among

multiple caches, and this cache is responsible for ensuring memory is kept up-to-date.
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• Exclusive. The line is clean (memory copy is up-to-date) and exclusively owned by the

cache.

• Shared. The line is clean (memory copy is up-to-date) and the line is possibly shared

among multiple caches.

• Invalid. The line is not present in the cache.

While stable states identify the cache coherence protocol, implementing high-

performance cache coherence protocols often requires additional states, also known as transient

or pending states. This is because a delay exists between the request initiation and request com-

pletion phases of a memory operation. The processor may perform other operations during this

delay. A cache line makes a transition out of the stable state (typically one of the MOESI states

or variants) at the request initiation phase and makes another transition into a stable state at

the end of the request completion phase (which may involve the completion of data transfer).

The cache line remains in a pending state between the two phases and may transition to multi-

ple pending states depending on the coherence events occurring. Hennessy and Patterson [21]

provide an example to demonstrate the complexity introduced by the addition of pending states

to a cache coherence protocol.

4.2.3 Speculative Execution and Modern Processors

Programs have a sequential execution model based on a simple processor model. In this model,

a program counter identifies the instruction that the processor fetches from memory. The

processor executes the instruction, may reference memory as part of the instruction, and may

operate on registers in which data may be stored. When the execution completes, the program

counter is incremented to identify the next instruction to execute. In a parallel program, each

individual thread or task executing on a processor executes the above sequence.

While processors still maintains a sequential execution model, their implementations of-

ten perform tasks in parallel. The processor takes in the sequential specification in the program,

and uses various mechanisms, including control, data, and dependence prediction, to execute

instructions in parallel. Thus, the processor, while maintaining the appearance of a sequen-

tial execution, is internally executing a parallel version of the sequential program, in which

multiple instructions execute in an out-of-order fashion. Processors record sufficient recovery

information that, on an incorrect prediction, they restore state and restart execution from a

prior point. This includes restoring any register state in processors. Numerous schemes exist for

such designs, and Smith and Sohi provide an overview of modern high-performance processor

designs [44].



P1: XXX

MOBK061-01 MOBK061-Larus.cls January 3, 2007 14:49

136 TRANSACTIONAL MEMORY

L1 cache

Processor

L2 cache

Coherence protocol

Register
Checkpoint

Processors typically have a multi-level cache 
hierarchy. If cache levels are shared among 
multiple hardware contexts,  transactional 
memory extensions have to differentiate them.

 

Most systems support cache coherence, and we 
assume such support. We indicate protocol support

extensions in the figures with a t.
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to these schemes make them applicable 

for use in transactional memory

FIGURE 4.1: Baseline hardware organization

4.2.4 Baseline Hardware Framework

Transactional memory relies on mechanisms that enable a processor to execute a sequence of

instructions optimistically, to detect conflicting data accesses with other concurrently executing

transactions, to use caches to buffer updates temporarily and not make any intermediate updates

visible until commit, to make all state instantaneously visible on commits, and to discard any

updates and register modifications on an abort and restore state to a known good point in the

past. The Fig. 4.1 shows the baseline organization of a hardware system that we will use in this

book to discuss various HTM proposals.

HTMs exploit various hardware mechanisms such as speculative execution, register

checkpoints, caches, and cache coherence. Speculative execution techniques allow nonseri-

alized execution of transactional memory regions. Register checkpoints enable a processor to

execute a code segment (similar to how a branch is predicted) with high performance and

without requiring a compiler to have visibility into the function for optimizing register saving.

Cache coherence mechanisms allow for no-overhead conflict detection among concurrently ex-

ecuting transactions, and caches provide the ability to record reads and writes of a transaction,

and buffer intermediate uncommitted state. Various HTM proposals use some or all the above

mechanisms.
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4.3 PRECURSORS
We start with two seminal works on hardware support for transactions. The 801 Storage Man-

ager added hardware for database transactions and was the first industrial implementation of

transactional locking in hardware (Section 4.3.1). It introduced lock bits in page table entries and

translation look-aside buffers, and implicitly invoked hardware assists to call software routines

for lock management. Knight added hardware for speculatively parallelizing single-threaded

programs (Section 4.3.2). He proposed the use of caches to buffer speculatively updated mem-

ory state and to track read and write sets, and the use of a cache coherence protocol for conflict

detection. While not discussed in this book, the Multiscalar work [45] popularized and drove

later research into speculative parallelization. Other speculative parallelization proposals fol-

lowed the Multiscalar work [19, 46].

The next three papers focused on transactional memory. Jensen et al. presented the first

proposal for optimistic synchronization on a single word (Section 4.3.3). The other two papers

presented proposals for optimistic synchronization over multiple words; Stone et al. used reser-

vation registers to specify the multiple locations (Section 4.3.4), while Herlihy and Moss used

a special cache (Section 4.3.5). These proposals assumed simple atomic updates, limited the

size of a transaction to the quantity of local reservation registers or cache space, and restricted

atomic updates to one scheduling quantum.

The last two papers in this section, by Rajwar and Goodman (Sections 4.3.6 and 4.3.7),

connected critical sections with transactional memory and showed how to use speculative ex-

ecution mechanisms such as register checkpointing and speculative write buffering to execute

critical sections as transactions. These proposals executed and committed lock-based critical

sections without any thread acquiring locks, thus achieving lock-free execution when possible.

Other proposals for speculative execution of critical sections focused on overlapping execu-

tion latency with lock acquisition latency, maintained locking behavior, required one thread

to always acquire a lock, and serialized commit operations on the lock acquisition or release

[16, 33, 42].

4.3.1 Chang and Mergen, ACM TOCS 1988

Overview

This paper describes the IBM 801 storage manager system [10, 37]. The system provided

hardware support for locking in database transactions. Specifically, the system associated a lock

with every 128 bytes in each page under control of the transaction locking mechanism. It

extended the page table entries (PTE) and translation look-aside buffers (TLB) to do so. If

during a transaction, a memory access did not find the associated lock in the PTE in an expected

state, the hardware would automatically invoke a software function. This software function then
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performed the necessary transaction lock management. This implicit invocation of transaction

management functions by hardware was analogous to the implicit invocation of page fault

handlers by hardware to implement virtual memory. The paper argued that removing the need

to insert library calls directly into software and instead having the hardware invoking them

simplifies software development and engineering. Requiring explicit transaction management

function calls wherever the program references transaction data presents difficulties for multiple

languages. In addition, the called functions need use-specific parameters, thus complicating

software engineering.

The proposal extended the processor with new architectural registers to capture informa-

tion about the executing transaction. It extended the page tables to record which transaction

owned a lock in a page and provided locking at 128-byte granularity. If the executing transac-

tion accessed such a page and its transaction identifier did not match the owner of the lock,

then the processor triggered a hardware assist, called the lock-interrupt fault. The hardware

assist transfered control to a software function, called the lock-fault handler, which performs

appropriate transactional lock management functions.

This is, to the best of our knowledge, the first industry implementation of transactional

locking in hardware. The paper describes a uniprocessor implementation and discusses de-

tails in terms of files on disk. The ideas, however, are equally applicable to a multiprocessor

implementation and memory.

Implementation

The paper describes transactions over a set of file segments. The paper defines a transaction as

all operations performed by a process between two calls to a commit operation. Each process has

a unique transaction identifier, the tid. The processor loads the tid of the running transaction

into its transaction id register.

Each segment register in the 801 architecture has an S protection bit. If the S bit was

0 the conventional page protection is in effect and if the S bit was 1, the transaction locking

mechanism was applicable to the segment.

The 801 extended each page table entry (PTE) with three additional fields: a tid, W,

and lockbit fields. A lock bit in the lockbit field exists for each line of 128 bytes in the page.

With 2 kB pages, each PTE entry has 16 lockbit fields. Each PTE contains the locks of

one transaction in that page, and the tid field identifies the transaction. The W bit determines

whether the lock bits represent write locks or read locks. The hardware allowed write access to

line only if both, the line’s lock bit in the lockbit field and W are 1. Read access to a line is

allowed if the line’s lock bit in the lockbit field is 1 or if W is 1. The tid in the transaction

id register must match the tid in the PTE for access to the segment. The hardware triggered
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TLB extended with 
tid, W, and lock bits

FIGURE 4.2: The 801 transaction locking extensions

a lock interrupt fault when a transaction accesses a segment to which it does not have access

permissions. This redirects control to a software function.

Fig. 4.2 shows the architectural extensions. All transaction management is implemented

in software.

The system maintains information about locks in a separate software structure called the

lock table. Each entry in the lock table, called lockwords, has fields similar to the PTE. A

lockword is allocated when a transaction first accesses a page following a commit, and it is

freed on the next commit. Each page accessed in the transaction since the last commit allocates

a lockword. Two lists are maintained to allow fast accesses to this table. One list is accessed

using the tid, to identify all lockword entries belonging to the tid. Commit operations use

this list to find all the locks held by the committing transaction in all pages. The other list is

accessed in a the segment id and vpage. The lock-fault handler uses these lists to find all locks

of any transaction in the referenced page, to detect conflicts, and to remember locks granted or

released.

The hardware triggers a lock-fault interrupt if the locks in the PTE for a page are not

those of the current transaction, and control transfers to the lock-fault handler. The handler

searches the lock table and makes the transaction wait if there are conflicting locks, or grants

and adds the requested lock in the table.

The lock table sits in pageable memory and is accessed in a critical section. The lock

table is similar to the ownership tables in modern word-based software transactional memory

systems (Chapter 3).
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The system provides two options to open a file. If the locks option is used, then the file

segment register’s S bit is set to 1. A journal option allows reads without read locks and avoids

certain deadlocks under careful use.

CHANG AND MERGEN 1988

Strong or Weak Isolation N/A

Transaction Granularity 128 bytes

Direct or Deferred Update N/A

Concurrency Control Function of database

Conflict Detection Early

Inconsistent Reads Optional

Conflict Resolution Software

Nested Transaction Nested

4.3.2 Knight, LFP 198

Overview

Knight describes a hardware system to parallelize a single thread program speculatively, and

to execute it on a multiprocessor system. A compiler divides a program into a series of code

blocks called transactions. For doing the division, the compiler assumes that these transactions

do not have memory dependencies. These blocks then execute optimistically on the processors.

The hardware enforces correct execution and uses caches to detect when a memory dependence

violation between threads occurs [27].

In Knight’s proposal, each processor has two caches, one to track memory dependences

and the other to buffer temporary updates. The serial order of transactions in the sequential

program determines the order in which transactions commit. When a processor is ready to

commit its transaction, it waits for its transaction to become the next to commit. When this

happens, the processor broadcasts the transaction’s cache updates to all other processors. Other

processors then match the incoming writes to their transaction’s reads and writes. If a processor

detects a conflict, it aborts and restarts the transaction. The processor performing the broadcast

successfully commits.

This is the first paper, to the best of our knowledge, that proposed to use caches and cache

coherence to maintain ordering among speculatively parallelized regions of a sequential code

in the presence of unknown memory dependences. While the paper did not directly address

explicitly parallel programming, it set the groundwork for using caches and coherence protocols

for future transactional memory proposals.
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FIGURE 4.3: The compiler divides a sequential program into a series of transactions

Programming Interface

Knight describes his system in the context of a LISP application. The compiler transforms a

sequential LISP program into a series of transactions. The compiler uses many heuristics for

the transformation. These include traversing a call-tree to determine the order of execution,

allowing dual-path execution at conditional branches and discarding the wrong path, using

loops as transactions, and predicting whether a value of a memory location changes at commit

time. The programmer or compiler was not responsible for checking memory dependencies.

Each block manages its own register state and no dependencies are carried through

registers between transactions. However, dependencies between transactions could exist through

memory. Each block terminated at one final side-effecting store. A side-effecting store means

that another transaction can potentially read the location modified by the store. A transaction

could have multiple side-effecting stores but only one final side-effecting store. The order of

committing transactions was captured by the block pointer and was based on sequential program

order. Fig. 4.3 shows a sequential program divided into a series of transactions.

Implementation

The proposal assumes a shared-memory multiprocessor and a network supporting broadcasts

and snooping [17]. Each processor executes a transaction until the final side effect store. At
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System Wide Commit Control

FIGURE 4.4: Knight’s hardware organization

that point, the processor waits until it can commit. During execution, the processor maintains a

dependency list recording all memory locations accessed in the block and updates its cache, but

does not make the updates visible to other processors. Commit, called confirming, occurs when

the system’s transaction block counter identifies this processor’s transaction block as the next

to commit. The processor then broadcasts all writes to other processors and other processors

detect conflicts. Fig. 4.4 shows the hardware organization.

The processor is augmented with two fully associative caches. The dependency cache holds

data read from memory. It also watches for side-effecting writes from other processors. The

confirm cache temporarily holds data written in the transaction block. On read operations, the

processor first accesses the confirm cache and on a miss in accesses the dependency cache. The

cache lines in the confirm cache are discarded when a transaction is initialized. The confirm

cache is scanned at commit and modified lines are broadcast to other processors.

The dependency cache has three basic states (INVALID, VALID, and DEPENDS) and three

heuristic-driven states (PREDICT/VALID, PREDICT/INVALID, and PREDICT/ABANDON). The

INVALID state means the cache-line data and state are not valid, the VALID state means the line

has up-to-date value from memory, and the DEPENDS state means the cache line has the correct

value from memory but the correctness of the execution depends on the continued correctness

of this value. This latter concept is similar to a processor speculating on dependence through

memory. The PREDICT/VALID state means that the transaction block correctly predicted the

value for this line. The processor writes the predicted value in the local cache and, at commit,

compares this value to the value in memory, and if correct, transitions the cache-line state into

the PREDICT/VALID state. The PREDICT/INVALID state is similar to the PREDICT/VALID
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state except the predicted value was different from the value in memory at the time of

commit.

The dependency cache snarfs values on the bus/network written as part of a confirm

operation by other processors. A mismatch of the new content from the old content implies

that a prediction was incorrect. Snarfing is a technique supported in some coherence protocols

where a processor can observe bus activity and view/copy data exchanges between two other

processors.

The architecture provides a Cons operator (Cons constructs memory objects holding two

values or pointers). A program uses this to update an independent free pointer and restore its

value following a transaction end. The Cons operator updates memory using a write-through

technique. The Depends cache must not contain stale copies of data written with the Cons

operator. The architecture provides an unsafe load to allow incoherence of iterative algorithms

in explicitly parallel applications. The dependency list does not track unsafe operations.

An important difference between Knight’s work and subsequent transactional memory

works was the concept of a known total order of transactions. Since program order in a se-

quential program determines correctness, it accommodates situations in which the hardware

cannot perform optimistic execution. This occurs if the local caches are insufficient to record

the footprint of the transaction block or if IO or system calls occur. The system can wait until

such an operation is the oldest in the system. However, a parallel application using trans-

actional memory does not typically have a prior known commit order and thus cannot take

advantage of such order. This difference has led to many challenges in transactional memory

implementations.

KNIGHT 1986

Strong or Weak Isolation Strong

Transaction Granularity Cache line

Direct or Deferred Update Deferred (in cache)

Concurrency Control Optimistic

Commit serialized globally

Conflict Detection Late write–write conflict

Late write–read conflict

Inconsistent Reads No

Conflict Resolution Program order (sequential program)

Nested Transaction N/A
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4.3.3 Jensen, Hagensen, and Broughton, UCRL 1987

Overview

This paper describes architectural support for optimistic synchronization using a single memory

location. Programmers could use such support for writing lock-free programs, thereby avoiding

performance overheads associated with locking. The paper describes the idea as implemented

in the S-1 AAP multiprocessor [25].

The paper replaces the complex conditional store synchronization instruction (simi-

lar to a compare&swap instruction [7]) with a series of simpler instructions. This change exposes

the latency of the simpler instructions to a compiler. The compiler could then schedule these

instructions appropriately and thereby tolerate the latency inherent in a complex coherence

protocol. The simpler instructions perform a load operation, set an appropriate condition to

watch for, and then perform a store if the condition is still held.

The paper observed that a processor could use the cache coherence protocol to optimisti-

cally monitor a memory location for conflicts and conditionally perform operations if the loca-

tion did not experience a conflict. This was the first proposal to split the conditional store

instruction into two instructions. The idea found its way into numerous commercial micropro-

cessor instruction sets, including the MIPS [26], the PowerPC architecture [13], and the Alpha

architecture [12].

Programming Interface

The paper introduced three new memory instructions. The programmer must take care that

these instructions do not interact with regular load and store instructions:

1. sync load. This instruction computes an address (called xa-address), indicates that

the processor requires exclusive access to a synchronization block containing this ad-

dress, and loads the accessed data into a general register. The computed address is

treated as a sentinel for the synchronization block.

2. sync store. This instruction is used for two actions:

a. Conditional stores. If the sync store succeeds, it conditionally stores data to mem-

ory. If the presumption of exclusive access in (1) above holds, the sync store

completes.

b. Selecting alternate path. If the sync store fails, the program’s execution follows an

alternate code path. In the S1-AAP implementation, if the instruction succeeds, the

next instruction is skipped and a condition code is returned. If a failure occurs, then

the next instruction is executed, allowing a retry path.

3. sync clear. This instruction ends presumed exclusive access to a memory region. It

does not store data and does not change program flow; it serves merely as a semantic
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convenience. A common use is to execute this instruction as part of a context switch.

This would abort any optimistic synchronization in progress by forcing a subsequent

sync store to fail.

The sync load and sync store form the read and write phases of the optimistic read–modify–

write sequence of a conditional store instruction. However, in a subtle but key difference,

these load and store instructions need not be to the same data address. This allows optimistic

monitoring of data itself and allows programmers to monitor one location and write another.

For example, if the algorithm computes only one data item from a set of data, a programmer

convention can establish one data item to define exclusive access over the entire data set. With

this functionality, a programmer can write powerful synchronization constructs. However, the

burden of correctness lies with the programmer and writing powerful synchronization constructs

requires a level of sophistication from the programmer.

The code sequences shown below demonstrate the use of these new instructions to acquire

a lock. In the S1-AAP, the jump q instruction executes its following instruction only if the

branch condition is true. If the sync store instruction executes successfully, the processor

skips executing the following instruction:

// if (lock == 0) { lock = ProcessID; } %perform this atomically

// else goto LockHeld... %lock was held

Retry: sync_load R10, lock ; declare exclusive intent

jump_q .neq (R10,0), LockHeld ; test for zero

sync_clear ; lock non-zero, hence abort

load R10, ProcessID ; prepare to update lock

sync_store R10, lock ; update lock if not aborted

goto Retry ; try the update again

MyLock:

Implementation

The paper required coherence protocol support to implement optimistic synchronization. To

detect when a conflict occurs on a monitored location, cache coherence protocols must detect

when a processor is attempting to write to a memory location. In an invalidation-based protocol,

the protocol simply invalidates other copies as part of obtaining exclusive permissions when a

write occurs. However, the S1-AAP did not have such a protocol. It used a write update

protocol in which the system sends the write to all interested caches without requesting exclusive
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FIGURE 4.5: Hardware organization for optimistic synchronization

permissions first. To implement optimistic synchronization, the protocol required the S1-AAP

hardware to perform the following sequence:

1. When a processor executes a sync load instruction to an address, it sends an explicit

query to remote caches that have the address.

2. Remote caches respond with either an ACK response, which means the remote cache

is also trying a presumed exclusive region to the same address, or a NACK response.

When the processor receives an ACK response, its subsequent sync store instruction

fails since another processor also required exclusive access. A regular store to the same

address from other processors forces the sync store instruction to fail.

The S1-AAP optimistic synchronization implementation (abstractly shown in Figure 4.5)

performed conflict resolution in hardware. The paper describes two policies. In one, the requestor

that receives an ACK response fails in its attempt and retries. In the other, an arbitrary conflict

resolution (such as the processor identifier) is used to ensure that one processor always gets

exclusive access. The S1-AAP used the latter conflict resolution. While this prevents livelock,

static conflict resolution introduces the possibility of starvation.

The paper influenced synchronization mechanisms in numerous commercial micropro-

cessors. Commercial microprocessor instruction sets, including MIPS [12, 26], Alpha [12], and

PowerPC [1], implemented variants of the optimistic synchronization proposed in this paper.

Sometimes it was the sole synchronization primitive. Optimistic synchronization was different
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from a conditional store in one significant aspect. The instruction conditional store

guaranteed forward progress at an instruction level because it was a single instruction (this

does not imply forward progress for the synchronization itself as a process may spin on a

location arbitrarily long). Optimistic synchronization, on the other hand, splits the instruc-

tion, and thus places the burden of forward progress on programmer discipline and system-

wide support, especially if it is the sole synchronization primitive. Doing so introduces several

challenges.

While the idea of optimistic synchronization is simple, designing optimistic synchro-

nization into an instruction set was a difficult task. For example, the Alpha Architecture Hand-

book [12] listed various restrictions on the use of the load-linked/store-conditional

instructions. The manual recommended against using memory-accessing instructions be-

tween the load-linked and store-conditionals, required branches be taken imme-

diately preceding load-linked and store-conditional instructions, and limited the

number of instructions that could be executed between the load-linked and store-

conditional instructions. Such restrictions seriously limited the general applicability of these

primitives.

These difficulties arise because the behavior of these new instructions was also dependent

on their interactions with other events happening in the system and processor. For example,

the store-conditional depends on the load-linked and events that occurred since the

load-linked instruction’s execution. This kind of behavior is different from conventional

instructions, such as an add instruction, in which the behavior is specified in terms of the

instruction’s fixed known inputs when the instruction executes. The add instruction output

does not change if a timer tick or an invalidation occurs. The above difference points to the

challenge in design of such an instruction set extension. Some architecture specifications of

optimistic synchronization, such as the PowerPC [1], only specify legal behaviors and provide

instruction sequences guaranteed to work, but leave the results of all other instruction sequences

as undefined.

Many hardware proposals for transactional memory propose similar new instructions.

These instructions also face similar specification challenges. Unfortunately, these proposals do

not consider how these instructions behave in the presence of existing events in the processor,

and interactions with other instructions. It is not clear whether these new instruction proposals

will end up with restricted behaviors that limit their broad usability.

Some optimistic synchronization implementations would also require broader system

support. The SGI Origin 2000 [31], which used MIPS processors, provided special support in

its directory cache coherence protocol to ensure that a failing store conditional does not cause

other executing store-conditional operations to fail spuriously.
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Modern implementations of complex instruction set architectures such as x86, however,

implement a single compare&swap instruction as a series of micro-operations to make them

suitable for out-of-order pipelines.

JENSEN ET AL. 1987

Strong or Weak Isolation Strong

Transaction Granularity Cache line

Direct or Deferred Update Conditional direct store (single word)

Concurrency Control Optimistic (single word)

Conflict Detection N/A for a single word

Inconsistent Reads None

Conflict Resolution Processor id or first to request ownership

Nested Transaction N/A

4.3.4 Stone et al., IEEE Concurrency 1993

Overview

This paper describes the Oklahoma Update protocol, a hardware proposal to implement atomic

read–modify–write operations on a bounded number of memory locations [47]. It proposed an

alternative to critical sections and was aimed at simplifying the construction of concurrent and

nonblocking code sequences for managing shared data structures (such as queues and linked

lists) and atomic updates on multiple shared variables.

The proposal augmented a processor with new instructions and special registers, called

reservation registers. The new instructions read and wrote these reservation registers. These

registers specified addresses and buffered updates to these addresses. The processor used the

cache coherence protocol to monitor updates to these addresses from other processors. When

a processor performed a write as part of the Oklahoma Update, it did not immediately request

write permission for the address and buffered the updates locally in the reservation registers.

Only when it was ready to commit, the processor would use the coherence protocol to arbitrate

for write permissions for the addresses in the reservation registers. On a successful arbitration,

the processor would commit its updates to memory.

The Oklahoma Update protocol was an extension of Jensen et al. (Section 4.3.3) to

multiple memory locations. The paper introduced hardware features to improve performance,

such as restarting a failed update early, exponentially backing off when a conflict occurs, and

providing forward progress through address-based conflict resolution.
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Programming Interface

The proposal introduced three new instructions: read-and-reserve, store-contingent,

write-if-reserved:

1. read-and-reserve. This instruction reads a memory location into a specified general-

purpose register, places a reservation on the location’s address in the reservation register,

and clears the reservation register’s data field.

2. store-contingent. This instruction locally updates the reservation register’s data

field without obtaining write permissions.

3. write-if-reserved. This instruction specifies a set of reservation registers and up-

dates the memory locations reserved by those registers. It is used to initiate the commit

process. It attempts to obtain exclusive ownership for each of the addresses in the reser-

vation registers. If the reservations remain valid during this process, the instruction

updates memory with the modified data from the reservation registers. The instruction

returns an indication whether the update succeeded or not.

The following code demonstrates the use of these new instructions to insert an item into

a linked list queue (from [47]):

// Usage of new instructions to construct data structure

// Memory[] contains the linked list queue

// head and tail are pointers to the head and tail of the list

// reservation1 and reservation2 signify the hardware reservations

void Enqueue(newpointer) {

Memory[newpointer].next = NULL;

status = 0;

while (!status) {

last_pointer = Read_and_Reserve(Memory[tail].next, reservation1);

if (last_pointer == NULL) {

// this is an empty queue

first_pointer =

Read_and_Reserve(Memory[head].next, reservation2);

Store_Contingent(newpointer, reservation1);
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Store_Contingent(newpointer, reservation2);

status = Write_If_Reserved(reservation1, reservation2);

}

else {

// non-empty queue

temp_pointer =

Read_and_Reserve(Memory[last_pointer].next, reservation2);

Store_Contingent(newpointer, reservation1);

Store_Contingent(newpointer, reservation2);

status = Write_If_Reserved(reservation1, reservation2);

}

} // repeat until successful

return;

}

Implementation

Fig. 4.6 shows the hardware organization necessary for the Oklahoma Update protocol.

The proposal assumes a standard cache-coherent shared-memory multiprocessors and adds

L1 cache

Processor

Address V
W 

privilege

+ coherence protocol support

Reservation
Registers

Data Updated Restart/Rvalid/Delay

HW machinery for performing 
2-phase commit of writes, 
deferring requests, and 

exponential backoff

FIGURE 4.6: Oklahoma Update protocol support
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reservation registers and hardware support for two-phase commits. The hardware optimisti-

cally executes the transaction assuming no conflicts.

The reservation registers have five primary fields. The address field records the address

of the memory location. The V field records whether the reservation is valid. The W privilege

field in the reservation registers is set if the processor already has permissions to write the

address before executing the Read-and-Reserve instruction or received the permissions to

write the address during its execution. The Updated field records whether the Data field

has received the modified value of the location. The remaining fields are for performance. The

Restart/Rvalid/Delay fields in the reservation registers provide information to the hardware

for implementing an early restart capability and exponential backoff.

The Oklahoma Update protocol divided the implementation of thewrite-if-reserved

instruction into two phases. In the first phase, the processor requests write permission for

locations in reservation registers that did not have these permissions. Deadlocks may arise during

the permissions acquisition phase. To avoid deadlocks, the hardware obtains write permissions

in ascending order of address [11]. If the incoming request address is larger than the least

reserved address for which the processor does not have write permissions, the processor releases

its reservation. If the incoming request address is smaller than the least reserved address for

which the processor does not have write permission, the processor defers the request in a buffer

and services it later. This prevented livelock but did not provide starvation freedom or wait

freedom.

Once all permissions have been obtained, the second phase starts and the processor

commits the data values. During this phase, the processor does not abort and is uninterruptible.

The two-phase implementation was similar to two-phase locking from database transaction-

processing systems [4].

The Oklahoma Update implemented its conflict resolution policy in hardware. The pro-

cessor deferred external requests for addresses in the reservation registers and serviced these

external requests on commits and aborts, servicing the first request to a given address and then

forcing a retry of the remaining requestors queued to the same address.

To improve performance, the processor implemented eager restart where, instead of wait-

ing until the end to detect a conflict, execution would abort and restart when a reservation was

lost due to a data conflict.

Interactions between the new instructions and regular store operations introduce forward-

progress concerns. Regular stores do not participate in the new instructions’ conflict resolution

mechanism. If a regular store from one processor conflicted with an address specified in a

reservation register of another processor, this processor would abort its update. This processor

might have a forward-progress problem, as the regular store does not participate in the conflict

resolution of the Oklahoma Update. While programmer convention can sometimes eliminate
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stores to the same address, it is more difficult to eliminate false sharing. For example, a regular

store may reference the same cache line as an address in a reservation register. Since cache

coherence (and thus conflicts) is resolved at line granularity, the reservations would be lost. The

authors propose implementing exponential backoff in hardware to ensure forward progress in

such situations.

STONE ET AL. 1993

Strong or Weak Isolation Strong

Transaction Granularity Cache line

Direct or Deferred Update Deferred (in reservation registers)

Concurrency Control Optimistic

Commit initiates acquiring ownership

Conflict Detection Late write–write conflict (if not a regular store)

Late write–read conflict (if not a regular store)

Inconsistent Reads None

Conflict Resolution Address-based two-phase commit

Nested Transaction N/A

4.3.5 Herlihy and Moss, ISCA 1993

Overview

This paper describes Transactional Memory, a hardware proposal to implement atomic read–

modify–write operations that operate on a bounded number of arbitrary memory locations [23].

The motivation was similar to that of the Oklahoma Update proposal (Section 4.3.4), to develop

lock-free data structures that avoid performance degradation and priority, inversion, deadlocks,

and convoying in locking.

The proposal augmented a processor with new instructions and a transactional cache

to monitor and buffer transactional data. The new instructions operated on the transactional

data. The transactional cache buffered transactional state until a transaction committed and an

ownership-based cache coherence protocol detected memory access conflicts among concur-

rently executing processors. The transactional memory proposal was for short-lived instruction

sequences that accessed a relatively small number of memory locations. The footprint of the

transaction could be limited to an architecturally specified number. For transactions that over-

flow the local cache space, the authors sketched a scheme for using software support to handle
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overflow. The programmer was responsible for ensuring forward progress through software

mechanisms.

This paper coined the term transactional memory, and identified the use of cache mech-

anisms for performing optimistic synchronization to multiple memory locations in a shared-

memory multiprocessor. This was in contrast to the Oklahoma Update proposal that used

reservation registers instead of a transactional cache.

Programming Interface

The proposal introduced six new instructions: load-transactional, load-

transactional-exclusive, store-transactional, commit, abort, and validate.

The programmer used these instructions for lock-free data structures and was responsible for

saving register state and for ensuring forward progress. Transactions were expected to be short

lived and complete in one scheduling quantum.

A transaction that experiences a data conflict does not abort immediately and may continue

to execute. To prevent accessing nonserializable data (Section 2.3.5, “Detecting and Tolerating

Conflicts”), a transaction must regularly use the validate instruction to check if a conflict

had occurred. The authors considered using an asynchronous abort mechanism that traps to an

abort handler before a transaction reads any inconsistent data. However, at the time designers

deemed this overhead expensive [22]:

1. load-transactional. This instruction reads a value into a private register.

2. load-transactional-exclusive. This instruction reads a value into a private reg-

ister and generates an ownership request if it misses the cache.

3. store-transactional. This instruction writes a value from a private register into

a memory location in the cache but does not make the value visible to others un-

til the transaction successfully commits. It generates an ownership request as appro-

priate.

4. commit. This instruction attempts to make memory changes permanent. The instruc-

tion succeeds only if no other transaction conflicted. The instruction returns a success

or failure condition. Instruction failure discards all tentative memory changes. The

commit operation does not require communication with other processors nor does it

require writing data to memory.

5. abort. This instruction discards all updates in the write set.

6. validate. This instruction tests the current executing transaction’s status. A return

value of true implies that the transaction has not yet aborted. A return value of false
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implies that the transaction aborted (from the hardware’s perspective) and discards the

write set.

The following code sequence demonstrates the use of the new instructions to insert an

element into a doubly linked list (taken from [23]):

// Usage of new instructions to construct data structure

typedef struct list_elem {

struct list_elem *next;

struct list_elem *prev;

int value;

} entry;

entry *Head, *Tail;

void Enqueue(entry* new) {

entry *old_tail;

unsigned backoff = BACKOFF_MIN;

unsigned wait;

new->next = new->prev = NULL;

while (TRUE){

old_tail = (entry*) LOAD_TRANSACTIONAL_EXCLUSIVE(&Tail);

// load pointer transactionally

if (VALIDATE()) { // ensure transaction still valid

STORE_TRANSACTIONAL(&new->prev, old_tail);

// store pointer transactionally

if (old_tail == NULL){

STORE_TRANSACTIONAL(&Head, new);

// store pointer transactionally

}

else {

STORE_TRANSACTIONAL(&old_tail->next, new);

// store pointer transactionally

}
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STORE_TRANSACTIONAL(&Tail, new);

// store pointer transactionally

if (COMMIT()) // try to commit

return;

}

wait = random() % (01 << backoff);

while (wait--);

if (backoff < BACKOFF_MAX)

backoff++;

}

}

Implementation

Fig. 4.7 shows the hardware organization for transactional memory. The hardware optimistically

executes the transaction assuming no conflicts. The processor is augmented with two flags. The

tactive flag signals whether the transaction is in progress. The flag is implicitly set when

the first transactional memory operation executes and marks the beginning of a transaction;

no explicit start instruction is used. The tstatus flag indicates whether the transaction in

progress is active or aborted. For example, if another processor invalidates a transactionally

accessed line, then the tstatus flag is set. This flag has meaning only if the tactive flag

is set.

L1 cache

Processor

Transactional 
Tag

Tag
Transactional 

Data

Fully Associative Transactional Cache

+ coherence protocol support (

TACTIVE

TSTATUS

Cache
State

new bus cycles )

FIGURE 4.7: Herlihy and Moss Ttransactional Mmemory support
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Events such as interrupts and cache overflows abort a transaction by setting the appropriate

flag. Transactional operations performed while a transaction is aborted do not cause any bus

traffic but may return arbitrary values.

Each processor has two caches: the regular cache to service normal loads and stores,

and a transactional cache to buffer transactional memory updates and monitor accesses. This

separation was to avoid affecting the performance of regular loads and stores. The regular cache

is a direct-mapped cache with four coherence states: INVALID, SHARED (and not modified),

DIRTY (not shared and is modified), and RESERVED (not shared and not modified, but valid).

The transactional cache is a fully associative cache that holds all transactional writes without

propagating their values to other processors or to main memory until the transaction commits.

The transactional cache has additional tags with each line that add special meaning to the regular

cache states. If tag is empty, the line has no data. If tag is normal, the line has committed data.

An xcommit tag means the contents must be discarded on commit, and an xabort tag means

the contents must be discarded on an abort.

The cache coherence protocol is augmented by three new bus cycles. The t read bus

cycle is for a transactional read request that goes across the bus. This request can be refused

(NACK) by a busy cycle. The t rfo bus cycle is for a transactional read-for-exclusive request that

goes across the bus. This can be refused (NACK) by a busy cycle. The busy bus cycle prevents

too many transactions from aborting one another too often. This approach may starve some

transactions but a queuing mechanism can address starvation. A busy response does not cause

the transaction execution itself to abort immediately but records hardware state to allow the

transaction to check for whether the transaction has aborted from the hardware’s perspective.

Until this check, the transaction may continue to execute without aborting.

The allocation policy in the transactional cache is changed such that first an empty line

is replaced, followed by normal, and then xcommit. The cache writes back the data first if the

line was dirty and had the xcommit tag. We step through a load-transactional instruction

example (the paper discusses others scenarios). The processor probes the transactional cache for

an address-matching entry with the xabort tag, and returns its value if there is one. If a normal

tag entry exists, then the tag changes to xabort and the cache allocates a second entry with

the xcommit tag and the same data. Otherwise, the processor issues a bus request for the data.

When the data returns, the transactional cache allocates two entries, one with the xcommit tag

and another with the xabort tag. A busy response from the bus results in transaction abort. This

involves setting tstatus to false, invalidating all xabort tag entries, and setting all xcommit

tag entries to normal tag.

To allow transaction state to spill over from the transactional cache, the authors suggest

the use of a LimitLESS directory scheme [9], in which software can emulate a large directory.

This allows using hardware for the common case and software for the exceptional case.
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HERLIHY AND MOSS 1993

Strong or Weak Isolation Strong

Transaction Granularity Cache line

Direct or Deferred Update Deferred (in cache)

Concurrency Control Optimistic

Conflict Detection Early

Inconsistent Reads Yes

Conflict Resolution Receiver NACKs/Requestor software backoff

Nested Transaction N/A

4.3.6 Rajwar and Goodman, MICRO 2001

Overview

The paper describes speculative lock elision (SLE), a hardware mechanism that permits pro-

grammers to use frequent and conservative lock synchronization to write correct multithreaded

code easily but achieves the same performance as well-tuned synchronization [38]. SLE im-

proves the performance and programmability of lock-based multithreaded applications while

retaining the lock-based programming model.

SLE used hardware support for optimistic execution of critical sections (including the

use of register recovery mechanisms), to convert a lock variable dynamically, and in a binary

transparent manner, from an active serialization mechanism to a passive one invoked only when

it was required. The key observation in SLE was that a processor did not have to acquire (modify

the value of ) a lock, but needed only to monitor it for correct execution. The processor predicts

a lock as unnecessary and elides the lock acquire and release operations.

The processor executes the critical section optimistically as if it is lock-free. This makes

the program behave as if locks were not present. If the memory operations between the lock

acquire and release occur atomically, then the processor can elide the two writes corresponding

to acquire and release. This is because the second write (lock release) undoes the changes of the

first write (lock acquire). By doing so, the lock remains free and critical sections can execute

concurrently. The coherence protocol detects data conflicts. On a data conflict, execution aborts,

register state is recovered and execution restarts. The processor retries the critical section on

a conflict, and after some threshold acquires the lock. This allows the proposal to provide the

same forward-progress guarantees as the underlying locking algorithm used by the program.

On repeated data conflicts, the processor explicitly acquires the lock. If the execution exceeded

hardware resources and speculation could not continue, the processor acquires the lock and
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ends speculation. SLE did not require identification of locks since hardware used prediction.

This allowed SLE to be programming model and binary compatible without requiring new

semantic instructions. However, it required the program to have a lock pattern SLE could

predict.

SLE demonstrated how to execute and commit lock-based program execution without

acquiring locks or requiring write permissions to them. Two threads contending for the same

lock could execute and commit in parallel without communication if their execution was data

independent. SLE treated all operations within the critical section as transactional unlike prior

proposals where special instructions identified transactional locations.

Programming Interface

SLE assumes that programmers use lock patterns such as test&test&set and test&set.

This allows the hardware to infer them. Beyond this, SLE does not require soft-

ware support. SLE treated existing atomic read–modify–write operations such as a

load-linked/store-conditional pair or a compare&swap instruction as possible lock ac-

quires for critical sections, and does not require new instructions. The C language sequence

below shows a hash table protected by a lock. The Alpha assembly language sequence be-

low shows the lock acquire and release operations using the ldl l (load-linked) and stl c

(store-conditional) instructions. A regular store operation releases the lock:

LOCK (hash_tbl.lock) LOCK(hash_tbl.lock)

var = hash_tbl.lookup(X); var = hash_tbl.lookup(Y);

if (!var) if (!var)

hash_tbl.add(X); hash_tbl->add(Y);

UNLOCK (hash_tbl.lock) UNLOCK(hash_tbl.lock)

L1: ldl t0, 0(t1) # t0 = hash_tbl.lock

bne t0, L1: # if not free, goto L1

ldl_l t0, 0(t1) # load locked, t0 = lock

bne t0, L1: # if not free, goto L1

lda t0, 1 (0) # t0 = 1

stl_c t0, 0 (t1) # conditional store, lock = 1

beq t0, L1: # if stl_c failed, goto L1

... <hash table access critical section> ...

stl 0, 0 (t1) # lock = 0, release lock
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L1 cache

Processor

Register
Checkpoint

Lock Predictor

Silent Pair
Detector

Register checkpoint for recovery, Cache used to track
accesses, store buffer to record speculative state

L1 cache

Processor

Lock Predictor

Silent Pair
Detector

Reorder Buffer for recovery and store buffer used to
store speculative state

FIGURE 4.8: Speculative lock elision microarchitecture organization

Implementation

Fig. 4.8 shows the hardware organization for SLE. The hardware predicts a critical section,

records register recovery state, tracks memory accesses and buffers updates, and performs the

lock elision.

SLE uses one of two techniques to maintain register recovery state. In the first approach, it

executes using the existing reorder buffer. This allows SLE to use existing recovery mechanisms

for branch mispredictions, but limits the critical sections to those that fit in the reorder buffer.

The second approach allows critical section size to be larger than the reorder buffer. It uses

either a flash copy of the architectural register file or a checkpoint of the alias table.

SLE associates an access bit with each cache line to track addresses accessed during

optimistic execution. These bits interact with the cache coherence protocol to detect data

conflicts. SLE used a merging store buffer to record speculative data. This data was not exposed

to the other processors until after commit. For commit, a processor requires all cache lines

accessed in the optimistic critical section to be in the cache. Then, the write buffer drains the

buffered writes into the cache. During this duration, the processor stalls snoops from other

processors to the cache to prevent them from observing stale data until commit completes.

The processor starts SLE by predicting that the read of an atomic read–modify–write

operation is part of the lock acquire of a critical section. A predictor and confidence estimator

determines candidates for lock elision by inspecting the synchronization instructions used to

construct locks. The processor issues this read operation as a regular load, and records the load’s

address and data value it returned. The processor also records the data of the write of the read–

modify–write operation but does not make this write operation visible to other processors or
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request write permissions for it. This has two effects. First, it leaves the lock variable in a free

state. Since the processor did not write the value to the cache, the cache line remains in shared

state. This allows other processors to see the lock as free. Second, the write value allows detection

of a lock release and elision by a value and address comparison. This provides program order

semantics: subsequent accesses to the lock variable from the processor performing the elision

will return the last written value in program order. The sequence below demonstrates this.

External threads see the lock variable as free while the speculating thread sees it as HELD:

Program Semantic Instruction Stream Value of hash_tbl.lock

as seen by as seen by

self others

TEST _lock_ L1: i1 ldl t0, 0(t1) FREE FREE

i2 bne t0, L1:

TEST _lock i3 ldl_t t0, 0(t1) FREE FREE

& i4 bne t0, L1:

SET _lock_ i5 lda t0, 1 (0)

i6 stl_c t0, 0 (t1) HELD FREE

i7 beq t0, L1:

... <hash table access critical section> ...

RELEASE _lock_ i56 stl 0, 0 (t1) FREE FREE

The data cache or the load and store buffers track memory accesses. If another processor

makes a conflicting request to a line that has been speculatively accessed, the processor aborts

execution and acquires the lock (possibly after a retry).

During optimistic execution, the processor inspects stores to determine if they write to

the same address as the earlier write of the atomic read–modify–write operation and write the

same value as the read of the atomic read–modify–write operation. If an address and value

match occurs, the processor has identified a lock release operation. Execution commits once

all earlier speculatively written lines are ordered. If the value does not match but the address

matches, the processor makes the earlier buffered store value of the lock acquire visible to the

coherence protocol, followed by this store. Since the algorithm relies on observed value- and

address-patterns and does not change program semantics, it does not need to identify a lock

accurately.
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If optimistic execution cannot continue (e.g., due to lack of cache resources or IO opera-

tions), the buffered write data of the atomic read–modify–write is made visible to the coherence

protocol without triggering a misspeculation. If the coherence protocol orders this request

without any intervening data conflicts to either the lock or the speculatively accessed data, then

the execution is committed. Here, the execution transitions from a lock elision mode into an

acquired lock mode without triggering a misspeculation.

SLE did not provide transactional memory semantics all the time because in the presence

of conflicts and resource constraints, execution reverts to the original lock-based execution. SLE

was beneficial only if programmers employed the assumed lock patterns.

RAJWAR AND GOODMAN 2001

Strong or Weak Isolation Strong if hardware resources sufficient

Transaction Granularity Cache line

Direct or Deferred Update Deferred (in cache)

Concurrency Control Optimistic

Conflict Detection Early

Inconsistent Reads No

Conflict Resolution Receiver aborts/Heuristically acquires lock

Nested Transaction Flattened

4.3.7 Rajwar and Goodman, ASPLOS 2002

Overview

This paper described transactional lock removal (TLR), an extension to SLE (Section 4.3.6), that

uses timestamp-based fair conflict resolution to provide transactional semantics and starvation

freedom [39]. In SLE, the processor acquired the lock if repeated conflicts occurred. In TLR,

the lock is acquired only due to resource constraints, thus achieving lock-free execution in the

presence of data conflicts. TLR maps a critical section to a transaction and treats all operations

inside the critical section as implicitly transactional. It converts lock-based critical sections

transparently and dynamically to lock-free optimistic transactions and enables the concept of

a transaction to be reflected in common multithreaded programs while allowing the continued

use of the familiar lock-based critical section paradigm.

TLR used hardware support in the cache coherence protocol and cache controllers for

conflict resolution. TLR employed a fair timestamp-based conflict resolution using Lamport’s

logical clock construction [29] and Rosenkrantz et al.’s wound-wait algorithm [41]. In the
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FIGURE 4.9: Transactional lock removal system organization

algorithm, a transaction with higher priority never waits for a transaction with lower prior-

ity. A conflict forces the lower priority transaction to restart or wait. The algorithm provided

starvation freedom.

Programming Interface

The programmer interface is the same as SLE (Section 4.3.6).

Implementation

TLR uses hardware to perform conflict resolution in the presence of data conflicts, and without

having to fall back on the lock. Fig. 4.9 shows the hardware organization. The new hardware

required is the addition of a timestamp and support to defer incoming requests based on times-

tamps. TLR can ensure atomic execution of the critical section by obtaining all required cache

lines accessed within the transaction in an appropriate ownership state, retaining such ownership

until the end of the transaction, executing the sequence of instructions forming the transaction,

speculatively operating on the cache lines if necessary, and making all updates visible atomically

to other processors at the end of the transaction.

TLR uses the existing cache coherence protocol to implement the conflict resolution

algorithm. The algorithm is similar to that proposed by Rosenkrantz et al. [41]. In the algorithm,

a transaction with higher priority never waits for a transaction with lower priority. A conflict
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forced the lower priority transaction to restart or wait. The priorities in the TLR algorithm are

based on Lamport’s logical clock construction.

A timestamp has two components: a local logical clock and a processor identifier. The

local logical clock assigns a number to a successful TLR execution and captures the logical

time at which the execution occurred. The local logical clock is incremented by 1 or higher

value on a successful TLR execution. A processor identifier appended to the logical clock

breaks ties among locally generated clocks. This forms a globally unique but locally generated

timestamp. All requests from within a transaction on a processor are assigned the same times-

tamp. Drift among various processors is resolved by ensuring that on a commit, the processor

sets its local logical clock to a value larger than an incoming conflicting request received. A

processor retains and reuses its timestamp following a misspeculation. This allows the pro-

cessor to retain its position, eventually have the lowest timestamp in the system, and avoid

starvation.

The conflict resolution algorithm allows a higher priority transaction to retain owner-

ship of its cache lines when it conflicts with a lower priority transaction. TLR uses coherence

protocols to retain cache-line ownership either by using NACKs or by deferring requests. With

NACK-based techniques, a processor does not process an incoming request but sends a negative

acknowledgement to the requestor. The requestor then retries at a future time. This requires the

baseline coherence protocol to support NACKs. With deferral-based techniques, a processor de-

fers processing an incoming request by buffering the request and masking any conflict. However,

the protocol transition has indeed occurred from the perspective of the coherence protocol. The

paper discusses a deferral-based scheme because it does not require a special coherence protocol

substrate (such as support for NACKs). Such deferrals support implicit construction of coherence

requests to allow high-performance data transfers.

With deferrals, the conflict-winning processor with an exclusively owned cache line delays

processing the incoming request for a bounded time, preferably until the processor has completed

its transaction. The coherence state transitions as seen by the “outside world” are assumed

to have occurred but the processor does not locally apply the incoming request. Deferrals

introduce the possibility of deadlock. TLR uses new messages, called marker messages, to

ensure deadlock-free execution. These messages do not affect the coherence state transitions

and only implement the deadlock-free conflict resolution. The marker messages are required

only when the processor is doing TLR and receives a conflicting request for an exclusively

owned line.

Deadlock is not possible if only one cache line is under conflict within the transaction

because a cyclic wait is impossible; the head node of the coherence chain is always in a stable

coherence state. If the processor requests only a single cache line on which it depends, then the

processor can ignore timestamp-based ordering. If an additional cache line is accessed, then
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deadlock may occur if the access generates a cache miss. Here, the timestamp-based order must

be enforced.

TLR also performs another optimization for coherence protocols that do not require

explicit acknowledgement of invalidations when a shared cache line is written. Typically, in a

critical section, a processor reads a shared location, operates on the value, and writes a new

value to the same location, thus resulting in an upgrade request. TLR uses an instruction-based

predictor to identify such situations where the processor should issue a read for ownership

request itself as part of the original read of the shared location. The processor completes the

sequence in a single memory request instead of the typical two. This obtains a similar effect to

Herlihy and Moss’s load-transactional-exclusive instruction (Section 4.3.5).

RAJWAR AND GOODMAN 2002

Strong or Weak Isolation Strong if hardware resources sufficient

Transaction Granularity Cache line

Direct or Deferred Update Deferred (in cache)

Concurrency Control Optimistic

Conflict Detection Early

Inconsistent Reads No

Conflict Resolution Timestamps (Lamport clocks) on conflicts

Nested Transaction Flattened

4.4 BOUNDED/LARGE HTMS
The remaining papers in this chapter allow a transaction to exceed the footprint of the level one

data cache but do not support context switches and thread migration during a transaction. We

refer to these proposals as bounded/large HTMs. The proposals, however, significantly differ

from each other in their implementations and characteristics.

Hammond et al. use deep write buffers and a two-level cache to track transactional state

(Section 4.4.1). Ananian et al. spill transactional state into a local uncached memory table

(Section 4.4.2). Moore et al. allow transactional state to escape out of the local cache and

into the memory system, and use coherence protocol extensions to perform conflict detection

(Section 4.4.3). Ceze et al. do not describe a TM system but describe a new implementation of

HTM mechanisms that does not use the cache coherence protocol to perform conflict detection

(Section 4.4.4). It uses signatures to capture read and write sets, including efficient tracking of

nested transactions.
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These papers used hardware mechanisms (caches, cache coherence mechanisms, and

signatures) to track transactional reads and writes, to detect conflicts among transactions, and

to commit transactions. Of these papers, only Moore et al. maintained undo information in

a software-accessible log (hardware wrote this log directly) of and used software to perform

recovery following an abort. This also gave software visibility into aborted state of a transaction

because undo was not automatic, thus exposing this typically hidden HTM transaction state.

The other papers abort and automatically undo using hardware. Since these papers maintain state

in hardware structures tightly linked to the processor on which the transaction was executing,

they do not support descheduling or moving an active transaction from one processor to another

without aborting.

4.4.1 Hammond et al., ISCA 2004

Overview

This paper describes transactional coherence and consistency (TCC), a shared-memory model

in which all operations execute inside transactions. A transaction is the basic unit of work,

interprocessor communication, cache coherence, and memory consistency [20]. TCC was an

alternative to conventional synchronization to simplify parallel software development.

In TCC, the programmer or compiler divides a program into a series of transactions.

These transactions can have dependences through memory. For an explicitly parallel program,

the programmer has to identify the transaction boundaries. The TCC hardware then executes

these transactions in parallel.

TCC did not implement a cache-line ownership protocol. Instead, TCC broadcasts

memory changes at transaction boundaries. A processor executes a transaction speculatively

without requesting cache-line ownership and buffers updates locally. Multiple transactions can

write the same locally cached memory location concurrently. When a transaction is ready to

commit, its processor arbitrates for a global token. This token determines which transaction

commits; only one transaction can commit system-wide at a time. Once the processor obtains

the token, its transaction commits and it broadcasts its writes to all other processors. All other

processors compare the incoming writes to their own transaction read and write sets. If a

match occurs, a processor aborts and reexecutes its transaction. Interprocessor communication

takes place at transaction boundaries only. If the transaction exceeds local cache buffers, then the

transaction enters a nonspeculative mode. Here, the processor executing the transaction acquires

the global commit token to prevent any other processor in the system from committing. The

transaction executes nonspeculatively directly updating memory.

TCC unified two known techniques: speculative parallelization of sequential programs

(ordered transactions) and optimistic synchronization in parallel programs (unordered
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transactions). Knight in his paper (Section 4.3.2) outlined a similar approach for speculative

parallelization but the paper did not explicitly connect his approach to optimistic synchroniza-

tion in explicitly parallel programs.

Programming Interface

The TCC programming model divides all programs into a series of transactions. A transaction

may be a single instruction. To divide a sequential program, these transactions can be determined

heuristically. To divide an explicitly parallel program, the programmer must identify these

transactions correctly so as not to break any atomicity or mutual exclusion requirements in the

program. The programmer can specify the order in which various transactions commit; a useful

mechanism in speculative parallelization.

Implementation

TCC uses hardware to recover register state, track read and write sets, and to buffer transactional

updates until commit. It also performs commits and aborts in hardware. Fig. 4.10 shows the

hardware organization.

L1 cache

Processor

Register
Checkpoint

L2 cache

R

Broadcast Network

Rn M

RRn M

Local Cache Hierarchy

Write
Buffer

CommitsSnoops

Sequence PhaseNode 0

System Wide
Commit Control

Sequence PhaseNode X

Commit Token Information

Node 0

FIGURE 4.10: TCC hardware organization
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The paper describes various schemes to manage register state: a shadow checkpoint of

the entire register file, a checkpoint of only the register rename table, or software support to

save register state. TCC extends hardware caches with rename bits (Rn), read bits (R) and

modified (M) bits. The write buffer stores all updates until a commit or abort. The read bits

in the cache maintain the read set. Multiple bits per line mitigate the problem of false sharing.

The modified bits in the cache track the write set. The Renamed bits, one for each word/bytes

in a cache line, are set if a store writes all parts of the word/byte. Subsequent loads to such

words/bytes do not set the Read bit because the processor previously generated the read data

and therefore cannot depend on another processor.

To commit a transaction, a processor arbitrates globally for a hardware commit token

and broadcasts the transaction’s write set to all other processors and to memory. The hardware

collects all memory updates by a transaction into a commit packet and broadcasts it to other

processors. TCC uses this to order transactions without a software construct.

Similar to the transaction block order in Knight’s proposal (Section 4.3.2), the commit

token provides TCC with the capability to serialize execution in the system. When the processor

executes an operation such as IO or exceeds local buffers, it arbitrates for and acquires the global

commit token. This way the processor prevents other processors in the system from committing

and interfering with this processor’s execution. The processor updates memory directly and

nonspeculatively. The token is released only when the processor completes and commits its

transaction. Other processors then resume arbitration for the token and commit. The paper

describes double buffering to prevent unnecessary stalls while a processor waits for a prior

transaction to commit. Double buffering provides extra write buffers and extra set of read and

modified bits for the caches.

HAMMOND ET AL. 2004

Strong or Weak Isolation Strong

Transaction Granularity Cache line

Direct or Deferred Update Deferred (in cache)

Concurrency Control Optimistic

Commit serialized globally

Conflict Detection Late write–write conflict

Late write–read conflict

Inconsistent Reads None

Conflict Resolution Via global commit coordination

Nested Transaction Flattened
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4.4.2 Ananian et al./LTM, HPCA 2005

Overview

This paper describes an HTM implementation called large transactional memory (LTM) that

allows transactional cache lines to spill into a reserved region in local memory without aborting

the transaction [3]. This allows the transaction to access data sets in excess of local cache sizes.

LTM does not allow a transaction to survive context switches. This paper also describes UTM

(Section 4.5.1), an unbounded transactional memory system. However, the authors viewed

UTM as too complex to implement, and proposed LTM as an alternative.

LTM allocates a special uncached region in local memory to buffer transaction state that

spills from the cache. This region is maintained as a hash table. Each cache set has an associated

overflow bit. This bit is set when a transactional cache line is evicted and moved into the hash

table. When a request from another processor accesses a cache set with its overflow bit set

but does not find a match for its request’s tag, a hardware state machine walks the hash table to

locate the line with a matching tag.

Programming Interface

LTM assumed a simple transaction usage and provided two new instructions: xbegin <pc>

and xend. The xbegin instruction specifies a user handler. This handler is executed whenever a

transaction aborts. This provides programmers an ability to specify actions on aborts. A typical

usage of these new instructions is shown below:

XBEGIN <PC of user handler>

... <transaction code> ...

XEND

Implementation

LTM is a hardware proposal in which all transactional state is maintained and managed by

hardware. LTM can relax the UTM design requirements because LTM does not require a

transaction to survive context switches and therefore does not require persistent transactional

state management.

Fig. 4.11 shows the LTM hardware organization. LTM assumes an HTM system where

a processor executes transactions in hardware. It uses register recovery mechanisms and uses

the cache to track and buffer transactional accesses (T bit per cache line). LTM assumes

that the cache coherence protocol can respond with a NACK to incoming requests from other

processors.

To support spilling transactional state safely, LTM extends each set in the cache with

an O bit. When the processor executing a transaction overflows the cache, the LTM hardware
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FIGURE 4.11: LTM hardware organization

moves the evicted block into a hash table in memory, and sets the O bit for the corresponding

set in the cache. This signals an overflow for the cache set. During this process, the processor

responds to incoming snoops with a negative acknowledgement (NACK). The processor does not

service incoming snoops until it has checked both the cache and the memory hash table for a

conflict.

If a processor’s request hits in the cache and the O bit is not set, the cache treats the

reference as a regular cache hit. If the processor request misses in the cache and the O bit is not

set, the cache treats this request as a regular cache miss. If the O bit is set, even if the request

does not match a tag in the cache, the line may be in the hash table in memory. The processor

has to walk the hash table in memory. If the walk finds the tag in the hash table, the walker

swaps the entry in the cache set with the entry in the hash table. Otherwise, the walker treats

this as a conventional miss.

LTM implements its conflict resolution policy in hardware. If a processor executing a

transaction receives a snoop request that conflicts with a transactional line (the line’s T bit is

set), then the transaction is aborted.

In LTM, any incoming snoops that hit a set with the O bit set but do not match the tag

interrupt the processor and trigger a walk of the hash table. Consequently, two independent

programs that do not share any data and are in their own virtual address spaces may interfere with

each other. Because a transaction in one program can continually interrupt another transaction
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in another program by virtue of simply running on the same system, the system does not offer

performance isolation [50].

ANANIAN ET AL./LTM 2005

Strong or Weak Isolation Strong

Transaction Granularity Cache line

Direct or Deferred Update Deferred (in cache and in overflow memory)

Concurrency Control Optimistic

Conflict Detection Early

Inconsistent Reads None

Conflict Resolution Processor receiving conflict request aborts

Nested Transaction Flattened

4.4.3 Moore et al., HPCA 2006

Overview

The paper describes LogTM, an HTM implementation that seamlessly overflows transactional

data from the local data cache and into the rest of the memory hierarchy [35]. This allows a

transaction to have footprints greater than the local cache. LogTM, like LTM (Section 4.4.2),

did not allow a transaction to survive a context switch.

LogTM had two key features. First, LogTM supported eviction of transactionally ac-

cessed cache lines during a transaction by retaining ownership of the cache line. These evicted

cache lines are treated as sticky by the cache coherence protocol; even though the lines were

evicted, the evicting cache continued to be the owner. This way, transactions use existing cache

coherence mechanisms to detect conflicts when a transaction overflows its cache.

Second, LogTM used a software log to record values of memory locations updated in a

transaction, so they could be restored if an abort occurs. In earlier bounded HTMs, before a

transactional write, processors write back the earlier copy of the line to the next level of the

memory hierarchy and keep the transactionally updated line in the cache until commit. Instead

of writing to lower levels of the hierarchy, LogTM copies the earlier value into a software log

and allows the transactional write to propagate to the lower levels. When an abort occurs, a

software handler walks the log and restores the values.

The LogTM implementation was optimized for commit operations and it assumed that

most transactions commit successfully. LogTM performed transactional updates directly to

memory while keeping an earlier copy of the updates in a log; it does not copy data on commits.
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FIGURE 4.12: LogTM hardware organization

Programming Environment and Interface

LogTM assumed a simple transactional memory usage model where a thread begins, commits,

and aborts a transaction. It assumes that threads are running in user mode and in a single virtual

address space. Every thread is allocated its own log in virtual memory. The LogTM system

software has an interface to initialize a thread’s transactional state, log space, per-thread conflict

handlers, and to perform rollback and aborts. The LogTM system communicates the bounds

of the per-thread software log to hardware.

Implementation

In LogTM, the processor recovers register state following an abort. The hardware cache and

cache coherence protocol track addresses accessed in the transaction and participate in conflict

detection. Fig. 4.12 shows the LogTM hardware organization. Each cache line is extended

with read (R) and write (W) bits. The R bit tracks whether this line has been read from in the

transaction and the W bit tracks whether this line has been written to in the transaction.

The processor has hardware support to add entries to the executing thread’s software

log. When a store operation occurs inside a transaction, the LogTM hardware appends the

earlier value of the cache line and its virtual address to the thread’s software log. The W bit is set

to filter redundant log operations. Since the log resides in software, the log’s virtual address is

pretranslated to a physical address for the hardware to directly add to the log. This is done using a

single-entry micro-TLB. When a transaction aborts, control transfers to a software handler. This
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handler then walks the software log backwards and restores memory state. When a transaction

commits, the pointer to the log is reset. The log is maintained even if the transaction fits in

the local cache. The paper describes various optimizations for reducing logging overhead. The

hardware could buffer the updates to the log locally and not write the software log itself unless

it is necessary. If a transaction commits without overflowing the cache, then LogTM never

writes the software log. The write to the log can be delayed until either an abort or an overflow.

The processor has a nesting depth counter and an overflow bit. LogTM flattens nested

transactions. Eviction of a transactional cache line sets the processor’s overflow bit, and a commit

or abort resets it.

The paper describes LogTM behavior using a directory-based MOESI cache coherence

protocol. When a transactional cache line is evicted from the cache, the directory state is not

updated and the cache continues to be associated with the line; it becomes sticky. This is

unlike a conventional protocol where a writeback of a modified line results in the directory

assuming ownership of the line.

Consider eviction scenarios for the M, S, O, and E cache-line states. Eviction of a trans-

actionally written cache-line results in a transactional writeback instead of a conventional write-

back. The directory entry state does not change and the processor remains the owner of the line.

When the directory receives a request for this line, it forwards the request to the owner. If the

owner receives the request for line that is not present in the cache and the owner has its over-

flow bit set, then the owner signals a potential conflict by sending a negative acknowledgement

(NACK) to the requestor. The requestor then invokes a conflict handler; it does not interrupt the

processor that responded to the request.

A protocol that supports silent evictions of clean-shared cache lines works without special

actions since the evicting processor will receive invalidation requests from the directory for the

cache line. If the protocol does not support silent evictions, then a sequence similar to that for

the M state ensures correct handling by preventing the directory from removing the processor

from the sharing vector.

A cache line in the owned state means that the data value is not the same as in the main

memory but the line is potentially shared. Here, the cache writes the line back to the directory

and transitions it to an S state. LogTM treats a silent E eviction as if the line was in M state.

The processor must interpret incoming requests unambiguously; it can no longer simply

ignore requests that do not match in the cache. This is because commit operations do not

actively clean directory state; these states are cleaned lazily. Consider that processor P receives

a request to an address not in its cache. If P is not in a transaction and receives a forwarded

sticky state, it must be from an earlier transaction and thus is stale. If P is in a transaction but

its overflow count is zero, it must be from an earlier transaction. In both cases, P responds to

the directory with a CLEAN message.
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The requestor performs conflict resolution after receiving responses from other processors.

The requestor sends a request to the directory. The directory responds and possibly forwards it

to one or more processors. Each processor then inspects its local cache state and responds with

either an ACK (no conflict) or a NACK (a conflict). The requestor collects this information and

then resolves the conflict. Instead of the requestor immediately aborting on receiving a NACK, it

may reissue the request if the conflicting processor completes its transaction. However, to ensure

forward progress and avoid unnecessary aborts, LogTM uses a distributed timestamp method,

and invokes a software conflict handler if a possibility of a deadlock arises. Such a deadlock

may arise because a transaction may be simultaneously waiting for an older transaction and may

force an older transaction to wait.

The proposal does not require log or hash-table walks for detecting conflicts. As currently

defined, the proposal requires the abort handler execution to be nonpreemptible.

MOORE ET AL. 2006

Strong or Weak Isolation Strong

Transaction Granularity Cache line

Direct or Deferred Update Direct (into cached memory)

Concurrency Control Optimistic

Conflict Detection Early

Inconsistent Reads None

Conflict Resolution Requestor invokes software

Nested Transaction Flattened

4.4.4 Ceze et al., ISCA 2006

Overview

This paper describes an implementation of HTM that does not use caches or cache coherence to

track transactional accesses and detect data conflicts. The new implementation, called Bulk, com-

presses address information for conflict detection into a signature and broadcasts the signature at

commit time [8]. Other processors use this signature to detect conflicts. Other HTMs that detect

conflicts at commit time are by Knight (Section 4.3.2), Stone et al. (Section 4.3.4), and Ham-

mond et al. (Section 4.4.1). Bulk’s signature mechanism does not require cache-line extensions

to track transactional state, buffer transactional updates, and commit or discard this state. Bulk

also does not require special coherence protocol support to implement late conflict detection.

Bulk represented transaction addresses into a compact signature. All transactional reads

formed the read signature and all transactional writes formed the write signature. Hardware
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generates, maintains, and operates on these signatures. Because of compression, the signature

represents a superset of the addresses added to it. This can result in false conflicts between

transactions. A transaction that is ready to commit requests arbitration for commit permission.

Once it receives commit permissions, it broadcasts its write signature to other processors. Bulk

supports word-level conflict detection without requiring the coherence protocol granularity to

change. The paper also describes applying Bulk to speculative parallelization using transactions

(similar to Sections 4.3.2 and 4.4.1).

Implementation

The paper assumes a programming interface where the hardware is informed of a begin oper-

ation and a commit operation. The begin starts transactional execution and the commit ends

transactional execution. The paper focuses on the implementation that manages transactional

state accessed during the transaction.

In Bulk, each transaction has a read and write signature. If transactions are nested, then

each nesting level has a read and write signature. The signature has a fixed size, typically

2048 bits. Bulk introduces a new hardware component, called the Bulk disambiguation module

(BDM), for managing these signatures.

When a processor performs a transactional read, the address is added to the read signature,

and on a transactional write the address is added to the write signature. For adding an address,

the hardware permutes the address bits and selects a subset of the permuted bits. These bits are

then decoded and ORed into the signature. Compressing multiple addresses into 2048 bits of

signature introduces aliasing.

Because these signatures are used to detect conflicts, the hardware supports additional

operations on these signatures. For example, to test whether two signatures have any addresses

in common, the hardware implements an intersection function. Similarly, a signature union

combines the addresses from multiple signatures into a single signature. This is used when

address sets of nested transactions have to be combined. Hardware supports testing an address

for membership in a signature. This is used to allow the signature to coexist with a conventional

cache coherence protocol and nontransactional read and write operations from other processors

conflict with the transaction. The hardware implements a set extraction function—the signature

can be expanded into a list of cache sets which the addresses map to. The exact list of addresses

cannot be extracted since this information is lost during the construction of the signature.

Instead, hardware uses the set list to identify a superset of addresses.

When a transaction aborts or commits, the processor has to either invalidate and discard

transactional state or make state visible. To do so, it has to identify which lines in the cache are

transactional. Since Bulk does not record this information in the cache lines, this information

is determined from the signatures. The read signature determines which addresses have been
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transactionally read and the write signature determines which addresses have been transaction-

ally written. Note that the addresses determined from the signature are a superset of the actual

addresses accessed in the transaction. Determining the addresses from a signature is a two-step

process. First, the hardware extracts the cache sets corresponding to all the addresses in the

signature. Then a membership function is applied to each valid address in the selected cache

sets. A decode operation on a signature extracts an exact bitmask corresponding with the sets

in the cache. For each selected set in the bitmask, Bulk reads the addresses of the valid lines in

the set and applies the membership operation on each address. This way, the list of addresses is

enumerated.

Before a processor can commit, it arbitrates system-wide for commit permissions. Once it

obtains permission, it broadcasts its write signature to other processors. Unlike earlier proposals

for conflict detection at commit, Bulk does not send out the list of addresses. When a processor

receives the write signature, the processor performs an intersection operation between its local

read signature and the incoming write signature. This operation detects conflicting addresses in

the two signatures. If the receiving processor aborts, the processor uses its local write signature

to identify and invalidate speculatively modified lines in the cache. It then clears the read and

write signatures. To avoid extending each cache line with a bit to track speculatively written

lines, Bulk requires that if a set has a speculatively modified cache line, then that set cannot

have any nonspeculatively modified cache line. This restriction prevents an invalidation of a

nonspeculatively modified cache line in the set. This could happen because a signature is an

inexact representation of addresses and may alias to include nonspeculatively modified cache

lines. The signature, however, expands to an exact representation of cache sets with speculatively

modified cache lines.

If the receiving processor does not abort, all lines that are written to by the committing

processor and are present in the receiving processor’s cache must be invalidated. The write

signature of the committing processor is used to invalidate these lines. If a cache line receives

regular coherence invalidations, the hardware performs a membership operation of the incoming

address on the local signature to check for a data conflict. Execution aborts if a match exists.

Bulk supports conflict detection at word granularity without changing the granularity of

the cache coherence protocol. If word granularity is used for conflict detection, then Bulk must

merge updates made to different parts of a cache line on different processors—one processor

that is committing and another processor that receives the write signature (these updates do not

conflict at a word granularity). For this, Bulk uses special hardware to identify a conservative

bitmask of the words the receiving processor updated in the cache line. It then reads the latest

committed version of the cache line and merges the local updates with the committed version.

This way, it retains its updates while incorporating the updates of the committing processor.

Bulk does not require cache-line bit extensions for this.
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Bulk supports a nested transaction model where an inner transaction does not become vis-

ible to other threads until the outer transaction commits, but if a nested transaction experiences

a conflict and aborts, then execution is rolled back only to the beginning of that transaction. A

separate read and write signature is maintained for each nested level. Incoming write signatures

or addresses are checked (via intersection or membership) with each of these nested signa-

tures for conflicts. If any is found, then execution rolls back to the beginning of the aborting

transaction. If an inner transaction commits, the signatures are not combined. When the outer

transaction commits, then a union of all the write signatures is broadcast to other processors

for conflict detection. Bulk can track multiple read and write sets for the nesting levels without

requiring per-nesting level cache bits (Sections 4.7.1 and 4.7.2 describe alternatives). The paper

suggests moving signatures into a memory location if more nesting levels are required than that

provided by the processor.

Bulk does not describe an overflow scheme when transactional data does not fit the cache.

It suggests that Bulk signatures to detect if an address is in the overflow space without a lookup

of the overflow space. The signatures support addresses larger than the cache footprint.

Bulk uses approximate representations of physical addresses for conflict detection. The

LTM had a similar approach using the O bit (Section 4.4.2). In such schemes, unrelated processes

may alias and interfere with one another, and prevent performance isolation. Bulk records

all signatures in hardware. Because Bulk does not provide a means to move signatures and

transactional state from a processor’s hardware structures to another processor, Bulk cannot

migrate a transaction thread from one processor to another. The interaction with page mapping

changes is undefined.

CEZE ET AL. 2006

Strong or Weak Isolation Strong

Transaction Granularity Cache line/word

Direct or Deferred Update Deferred (in cache and in overflow space)

Concurrency Control Optimistic

Commit serialized globally

Conflict Detection Late write–write conflict

Late write–read conflict

Inconsistent Reads No

Conflict Resolution Via global commit coordination

Nested Transaction Flattened/Closed
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4.5 UNBOUNDED HTMS
Unbounded HTMs allow a transaction to survive context switch events. Such support typically

requires transactional state to be maintained in persistent space, preferably virtual memory. The

three papers in this section do this. Ananian et al. (Section 4.5.1) present an unbounded HTM

design that maintains all transactional metadata information in a table in the system’s virtual

address space, and architecturally extends each memory block with metadata information to

detect conflicts without caches and cache coherence support. The table also maintains an undo

log for aborts (direct-update TM system). UTM hardware operates on this table. Rajwar et

al. (Section 4.5.2) present an unbounded HTM design that maintains metadata information

for transactions that exceed hardware resources in a table in the application’s virtual address

space, and adds processor support to selectively intercept load and store operations, and invoke

microcode routines to check for conflicts against the overflowed transactional state in the table.

The table also maintains a buffer for transactional updates (deferred-update TM system). These

two papers did not present implementation-specific details or an evaluation.

Zilles and Baugh (Section 4.5.3) extend the Rajwar et al. unbounded HTM (Section

4.5.2) in numerous ways. First, they modify it to support direct updates instead of deferred

updates. This optimizes the system for commits, which are more common. Second, they extend

the HTM interface beyond a simple begin and end, and integrate the HTM with software

functions of compensation, waits, and retry. The system was prototyped on the Linux operating

system.

In these systems, execution takes advantage of hardware caches for buffering and tracking

transactional accesses, and for conflict detection if hardware resources are sufficient for all

transactions. When a transaction overflows into a table in software-maintained space, then

these systems also need to check for conflicts against this table.

4.5.1 Ananian et al./UTM, HPCA 2005

Overview

This paper describes unbounded transactional memory (UTM); a hardware transactional mem-

ory system that allows a transaction to survive context switches and exceed hardware buffer

limitations [3]. The authors believe that such support is necessary for transactional memory to

be widely used.

UTM proposed architectural extensions to decouple transactional state maintenance and

conflict checking from the hardware caches and cache coherence protocol. To maintain trans-

actional state outside hardware, UTM introduced a system-wide memory-resident data struc-

ture, called the XSTATE. The XSTATE maintained the transactional information, including read

and write sets, for all transactions in the system. To make conflict checks independent of the
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coherence protocol, UTM extended every memory block in the system with access bits and an

owner pointer. This extended information was also stored in the page tables and on disk. A

transaction could consult this extended information on memory accesses and determine con-

flicts. The UTM hardware operated on these extensions. UTM did not require a cache or cache

coherence protocol for correct execution; the caches only accelerated UTM execution.

UTM was the first proposal to allow for transparent overflow of transaction state while

maintaining transactional memory semantics and allowed a transaction to survive a context

switch. The paper also describes a restricted implementation of UTM, called large transactional

memory (LTM). We discussed LTM in an earlier section (Section 4.4.2).

Programming Interface

The UTM programming interface is the same as LTM (Section 4.4.2). The operating system

(OS) manages the allocation of the UTM data structures, and these data structures are not

visible to the application programmer.

Implementation

In UTM, the hardware operates on the UTM data structures. Hardware saves register state

for recovery on aborts. UTM assumes a physical register file organization in the processor. It

takes a snapshot of the processor’s register rename table and prevents the release of the physical

registers that are live in at the time the transaction starts. Nested transactions are flattened and

this is captured in the nesting depth counter. UTM makes the abort handler, nesting depth,

and the microarchitecture register rename table snapshot part of the architectural state. The

operating system is responsible for saving and restoring these on context switches.

UTM proposes two key architectural extensions. The first extension supports persistent

maintenance of transaction state. The second extension allows for checking conflicts without

involving a cache coherence protocol.

Fig. 4.13 shows the architectural UTM extensions. The first architectural extension is

the XSTATE; a single memory-resident data structure that represents the state of all transactions

in the system. The OS manages the allocation of this data structure. This structure has three

key components:

a) Commit record. The commit record tracks the status of the transaction, which may be

in pending, committed, or aborted state.

b) Log entry. A log entry is associated with a memory block read or written in the trans-

action. The log entry provides a pointer to the block in memory, the old value of the

block, and a pointer to the commit record. These pointers also form a linked list to all

entries in the transaction log that refer to the same block.
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FIGURE 4.13: UTM data structures

c) Transaction log. The transaction log contains the commit record and a vector of log

entries corresponding with the thread executing the transaction. Each active transaction

in the system has its own transaction log. The OS allocates the transaction log and

two hardware control registers record the range for the currently active threads. The

transaction log also records a timestamp. UTM uses this timestamp to resolve conflicts

between transactions.

The second architectural extension (for conflict checks) is the addition of a RW bit and a

pointer, called the log pointer, for each block in memory and disk (when paging). If the RW bit

is not set, then no active transaction is operating on that memory block. If the bit is set, then

the pointer for the memory block points to the transaction log entry for that block. This check

is performed by the UTM system on all memory accesses. The access may result in a pointer

traversal to locate the transaction that owns this block.

The log pointer and the RW bit for each user memory block are stored in addressable

physical memory to allow the operating system to page this information. Every memory op-

eration (both, inside and outside a transaction) must check the pointer and bits to detect any

conflict with a transaction. Page tables also record information about the locations. Since dur-

ing a load or store operation, an XSTATE traversal may result in numerous additional memory

accesses, the processor must support restart of a load or store operation in the middle of the

traversal, or the operating system must ensure that all pages required by an XSTATE traversal are
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simultaneously resident. One can inspect the log pointer and determine whether a transaction

was in the XSTATE.

UTM had the option to store either the new values or the old values of the memory

location in the log. The design sketched in the paper optimizes for commits and records old

values of the memory location in the log; the transaction updates memory directly in place.

An abort requires restoring the older values to the transactionally updated memory locations.

Commit operations do not require data movement but require iterating the log entries and

clearing the log pointers.

While UTM did not require caches for functional correctness, it used caching for perfor-

mance. If a transaction fits in the local HTM cache, then UTM uses the HTM mechanisms of

cache coherence and cache buffering. The log pointer and RW bits are not updated if the state

fits in the cache. If a transactional line is evicted, then the UTM system updates the log pointer

and RW bits, and creates its log entry. To ensure that the HTM can correctly interact with the

XSTATE, the processor must always check the log pointer and RW bits for a memory block, even

if no transaction has overflowed. All conflicting transactions can be identified by walking the

log pointer. The paper describes optimizations to avoid unnecessary writebacks on aborts and

commits.

ANANIAN ET AL./UTM 2005

Strong or Weak Isolation Strong

Transaction Granularity Memory block/Cache line

Direct or Deferred Update Deferred in cache/Direct in memory

Concurrency Control Optimistic

Conflict Detection Early

Inconsistent Reads None

Conflict Resolution Timestamp

Nested Transaction Flattened

4.5.2 Rajwar, Herlihy, and Lai, ISCA 2005

Overview

The authors describe virtual transactional memory (VTM); an HTM system that shields pro-

grammers from hardware implementation details by virtualizing limited resources such as hard-

ware buffer sizes and scheduling durations [40]. This allows transactions to survive context

switches and exceed hardware buffer limitations. The virtualization is analogous to how virtual

memory shields programmers from limited physical memory.
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VTM decoupled transactional state maintenance and conflict checking from the hard-

ware. VTM used software data structures resident in the application’s virtual memory. The

transaction address and data table (XADT) maintained information for transactions that over-

flowed hardware caches or exceeded scheduling durations, and served as the central coordination

structure for overflowing transactions. Transactions that fit in the cache do not add state to the

XADT, even if another transaction has overflowed. Processors continually monitored a shared

memory location that tracked whether the XADT has overflowing transactions. To accelerate the

conflict check and avoid an XADT lookup, VTM used a software conflict filter, the XADT filter

(XF). The XF returned whether a conflict existed without requiring to look up the XADT.

VTM added a microcode/firmware capability in each processor to operate on the data

structures, similar to hardware page walkers in today’s processors. In the absence of any overflows,

VTM executed transactions using HTM without invoking any VTM-related machinery or

overhead. In the presence of overflows, the VTM machinery on each processor would take

appropriate actions without interfering with other processors.

VTM ensured that transactions execute directly in hardware without overheads when

hardware was sufficient. It was the first proposal to provide unbounded transaction using only

processor-local support. In contrast, UTM required architectural extensions to memory blocks.

Programming Interface

VTM was an overflow management and conflict checking system for transactional memory

state. The paper did not discuss a programming model, semantics, or software policy. The

paper assumes a simple transactional memory programming model in which an application has

multiple software threads running in a single shared virtual address space. Each thread has a

transaction status word (XSW) monitored continually by the processor executing the thread. Each

thread serially executes transactions explicitly delimited by the instructions begin xaction and

end xaction. Nested transactions are flattened.

The XADT is common to all transactions sharing the address space. Transactional state can

overflow into the XADT in two ways: a running transaction may evict individual transactional

cache lines, or an entire transaction swaps out, evicting all its transactional cache lines. Each

time a transaction issues a memory operation that causes a cache miss and the XADT overflow

count signals an overflow in the application, it must check whether the operation conflicts with

an overflowed address.

If the XADT signals a conflict with an overflowing transaction, the conflict is resolved

based on a uniform but unspecified policy. Such a policy is maintained as part of the XADT and

it may consider numerous factors, including a transaction’s age and its operating system thread

priority. The operating system handles the allocation of the VTM software data structures and

the application programmers do not directly operate on these structures.
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FIGURE 4.14: VTM hardware organization

Implementation

Fig. 4.14 shows the hardware organization for a VTM system. VTM assumes that the processor

has support for a typical bounded HTM; it has support to buffer tentative updates, track

transactional accesses, and detect conflicts using hardware mechanisms. VTM does not dictate

a type of HTM implementation. The HTM executes transactions that can fit within the

hardware and scheduling resources. VTM extends the HTM system with hardware support

in the form of continually monitored locations, selectively intercepting memory operations

from the processor and invoking appropriate hardware assists, and microcode/firmware that

implements these assists for operating on the VTM data structures.

VTM implements a deferred-update TM system. It leaves the original data in place

and records new data in the XADT. When an overflow occurs, the VTM system moves the

evicted address into a new location in the XADT. The transaction state for the overflowing

transaction is split between caches and the XADT. In a deferred-update system, reads must

return the last write in program order. For performance, reads must quickly know which lo-

cation to access for the buffered update. The processor caches the mapping of the original

virtual address to the new virtual address in a hardware translation cache, the XADC. This cache

speeds subsequent accesses to the overflowed line by recording the new address of the buffered

location.
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FIGURE 4.15: VTM HW and SW modes

VTM requires the virtual address of the evicted cache line to be available for moving it into

the XADT. When a context switch occurs, VTM moves transactional state from the hardware

cache to the XADT. This increases the context switch latency for such transactions.

If no transactions overflow in the application, the Overflow monitored location retains

the value zero. Consequently, transactions execute directly in hardware using the baseline HTM

and do not invoke any VTM machinery. When a transaction overflows, then the Overflow

monitored location changes to 1 and processor-local VTM machinery gets involved. It intercepts

load and store operations from the processor and invokes assists to microcode/firmware. The

processor running the overflowing transaction performs overflow transaction state management.

The assists add metadata information about the overflowing address into the XADT. An XADT

entry records the overflowed line’s virtual address, its clean and tentative value (uncommitted

state), and a pointer to the XSW of the transaction to which the entry belongs. The other

processors perform lookups against overflow state. A hardware walker, similar to the page miss

handler, performs the lookups.

Fig. 4.15 shows the coexistence of overflowed software and hardware state. The left shows

the software-resident overflow state and the right shows the hardware-resident nonoverflow state

for a transaction. The overflow entries have a pointer to the XSW, which allows other transactions

to discover information about a given transaction. The XF is a software filter (implemented as

a counting bloom filter [5, 14]) that helps a transaction to determine whether a conflict for

an address exists. VTM uses this filter to determine quickly if a conflict for an address exists

and avoid an XADT lookup. In the example shown, G and F map to the same entry in XF and
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thus result in a value 2 for that entry. Strong isolation ensures that the committed lines copied

from the XADT to memory are made visible to other non-transactional threads in a serializable

manner. Other threads (whether in a transaction or not) never observe a stale version of the

logically committed but not yet physically copied lines.

Conflicts between nonoverflowing hardware transactions are resolved using HTM mech-

anisms. For transactions that have overflowed, a processor requesting access to such an address

will detect the conflict when it looks up the XADT. This localizes conflict detection, allows con-

flicts with swapped transactions to be detected, and avoids unnecessary interference with other

processors.

The paper also describes criteria that transactional memory virtualization schemes must

meet to integrate into existing systems. Virtualization must ensure that the performance of

common-case hardware-only transactional mode is unaffected. Conflict detection between ac-

tive transactions and transactions with overflowed state should be efficient, and should not

impede unrelated transactions. Committing or aborting a transaction should not delay transac-

tions that do not conflict. Context switches and page faults may impede transaction progress,

but should not prevent transactions from eventually committing. Nontransactional operations

may abort transactions but should not compromise any transaction’s consistency (strong isola-

tion). Lastly, this virtualization should be transparent to application programmers, much in the

way virtual memory management is.

RAJWAR ET AL. 2005

Strong or Weak Isolation Strong

Transaction Granularity Cache line

Direct or Deferred Update Deferred (in cache and in XADT)

Concurrency Control Optimistic

Conflict Detection Early

Inconsistent Reads None

Conflict Resolution Software controlled

Nested Transaction Flattened

4.5.3 Zilles and Baugh, TRANSACT 2006

Overview

This paper describes an alternate implementation of the VTM proposal (Section 4.5.2). First,

it modifies VTM to perform direct instead of deferred updates to memory, and optimizes
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the implementation for commit operations. Second, it describes software and instruction set

extensions to allow VTM transactions to wait on events and retry efficiently by communicating

with the scheduler, to pause themselves temporarily, and to perform compensation actions [49].

To avoid confusion with the original VTM paper (Section 4.5.2), we refer to the design in this

paper as the Illinois VTM system.

The Illinois VTM system adds new instructions, new software exception support, and

extends the VTM metadata structures. To allow a transaction to efficiently wait and retry,

the paper introduces four new software exceptions that allow the hardware to communicate

with the software scheduler. The xact wait and xact completion allow a transaction to

deschedule and wait for another transaction and for the other transaction to wake up the

waiting transaction. The retry and retry wakeup software exceptions allow a transaction to

deschedule and wait for a data conflict. Two new instructions xact pause and xact unpause

allow a transaction to escape the transaction domain and execute nontransactionally. The system

provides support for executing compensation actions when such a transaction later aborts.

The system maintains information about waiting transactions and compensation functions in

software data structures. The paper describes the use of pause and compensation for memory

management inside transactions.

Programming Interface

The paper describes the software interface to the TM system. The Illinois VTM system has

two key software metadata structures that maintain a transaction’s software state. Because this

state exists in software, programmers can operate on this state.

The local transaction state segment (LTSS) maintains per-transaction state. The LTSS

is demand allocated. The LTSR, a new architectural register, points to the LTSS of the trans-

action executing on the processor. The LTSS fields are shown below. The XSW maintains the

transaction’s status. The transaction num provides an identifier for conflict resolution and

reg chkpt stores the transaction’s register state for recovery. The remaining fields provide

support for compensation and waiting. A programmer can register a list of compensation

functions (comp lists) to execute when this transaction aborts. The programmer, via the

software exception interface, can also record information about waiting transactions (waiters,

waiters chain prev, waiters chain next):

typedef struct local_xact_State_s {

xsw_type_t xsw;

int transaction_num;

x86_reg_chkpt_t *reg_chkpt;

comp_lists_t *comp_lists;

struct transaction_state_s *waiters;
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struct transaction_state_s *waiters_chain_prev;

struct transaction_state_s *waiters_chain_next;

...

} local_xact_state_t;

The global transaction state segment (GTSS) maintains all transaction state for the address

space in which the application is executing. The kernel allocates the GTSS. The GTSR, a new ar-

chitectural register, points to the GTSS. The GTSS fields are shown below. The overflow count

records the number of transactions that have exceeded hardware resources and are executing

with software support. The XADT points to the software data structure that maintains the ad-

dress and data undo log for transactions executing with software support. Two locks exist for

correctly operating on the shared data structures:

typedef struct global_xact_State_s {

int overflow_count;

xadt_entry_t *xadt;

spinlock_t gtss_lock;

spinlock_t xact_waiter_lock;

...

} global_xact_state_t;

The paper describes a prototype implementation of the Illinois VTM system in a Linux

operating system executing on the x86 architecture, primarily because of the lack of user-level

exception handling support in x86. If user-level exception support is available, then kernel sup-

port for exceptions is not necessary. Programmers can write these exceptions into the transaction

and use them for communication between the hardware and software.

Implementation

The paper does not describe the details of the unbounded HTM implementation beyond noting

that the original VTM proposal was modified to support direct updates. Instead, it focuses on

the key aspects that provide the HTM with enhanced software capability. The paper introduced

new software exceptions for the HTM hardware and software schedulers to communicate. It

does not require hardware support beyond its baseline HTM implementation:

• xact wait, xact completion. A transaction raises the xact wait exception when

it wants to wait. Consider two transactions T1 and T2 and T2 wants to wait for T1.

T2 raises the xact wait exception. This transfers control to a software handler. The

handler marks T2 as unavailable for scheduling and informs the scheduler. The handler

also records this information in T1’s LTSS XSW field and adds T2 to the list of waiting

transactions. This communicates waiter information to T1. When T1 aborts or commits,
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it will raise the xact completion exception. The software handler will scan the list of

waiting transactions (T2 in this example) and wake them.

• retry, retry wakeup. A transaction that wants to deschedule and wait for a data

conflict raises the retry exception. The handler marks the transaction as blocked, sets

the transaction’s priority to the lowest to make it abort on all conflicts. It marks its LTSS

XSW to indicate that another transaction will wake this transaction. If a transaction on a

list of waiters is aborted, then the retry wakeup exception occurs. The handler wakes

up the waiting thread.

Care is required to ensure that wakeup responsibility is properly transferred. The Illinois

VTM system uses a compare&swap operation to ensure that the transaction to which a transfer

of responsibility occurs has not yet aborted or committed.

The paper uses two new instructions, xact pause and xact unpause to allow a trans-

action to escape its transactional scope and execute nontransactionally. During a pause, accesses

are not added to a transaction’s read and write sets, and memory updates are performed di-

rectly to memory and to the undo log. Updating the undo log ensures that these updates are

not lost when a transaction aborts. The system allows a thread to register a data structure that

includes pointers to two linked lists, one for actions to perform on an abort and another to

perform actions on a commit. Each transaction maintains a list of actions and tracks whether

compensation code runs or a deallocation of the action occurs.

The paper describes the use of compensation for memory management including cases

where an allocation occurs inside a transaction and the deallocation occurs outside the transac-

tion. It presents wrappers to perform malloc and free operations nontransactionally and to

allow compensation if necessary.

ZILLES AND BAUGH. 2006

Strong or Weak Isolation Strong

Transaction Granularity Cache line

Direct or Deferred Update Deferred in cache, direct in memory

Concurrency Control Optimistic

Conflict Detection Early

Inconsistent Reads None

Conflict Resolution Software controlled

Nested Transaction Flattened
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4.6 HYBRID HTM–STMS/HARDWARE-ACCELERATED STMS
An alternate approach to providing unbounded transactions in a HTM (Section 4.5) is to assume

an STM as the baseline and use an HTM or HTM-like mechanisms to improve performance.

This approach maintains flexibility while the STM is used, and achieves unbounded behavior

with bounded HTM mechanisms. However, it gives up on various HTM benefits (See Section

3.1 and Section 4.1 for the tradeoffs of STM and HTM systems). Chapter 5 discusses possible

ways unbounded TM systems may evolve.

Lie describes a hybrid HTM–STM proposal in which an object-based STM is the baseline

(Section 4.6.1). The TM system, however, first executes the transaction in an HTM and on

failure executes the transaction in an STM. The key here is to integrate an object-based software

system with a line-based hardware system, and detecting conflicts between the two. Kumar et al.

describe a similar scheme in which they integrate a line-based HTM and an object-based STM

(Section 4.6.2). These approaches use the HTM to execute transactions in hardware directly,

when possible, and enhance the software to perform appropriate conflict checks. Shriraman

et al. describe an alternate approach where instead of directly integrating an HTM and STM

they provide an instruction set interface for the STM to control individual HTM hardware

mechanisms at a fine granularity (Section 4.6.3).

Proposals in this section are based on STM proposals discussed in Chapter 3 and the

descriptions are not repeated here.

4.6.1 Lie, MIT ME Thesis 2004

Overview

Lie proposes a hybrid hardware–software transactional memory system (HSTM) in which a

transaction first executes as a hardware transaction using a line-based HTM, and if unsuccessful,

restarts and executes as a software transaction using an object-based STM [32]. This approach

provides unbounded transactions with a simple HTM, but it has overheads and requires re-

compilation for integration into existing execution environments.

In HSTM, two versions of transaction code are generated, one for an HTM and another

for an STM. The HTM transaction code also contains software checks to allow the hardware

transaction running in an HTM to detect conflicts with a software transaction running in an

STM.

This was the first published work on a hybrid transactional memory model where a

transaction first runs in an HTM and if unsuccessful, runs in an STM.

Programming Interface

The STM in HSTM is an object-based FLEX STM (Section 3.4.7). The compiler directly

implements the STM and performs analysis to optimize checks. For example, if a transaction
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reads from a field it previously wrote, it reads the value directly from the transactional version

without checking the original version. In HSTM, if an STM transaction writes an object, it

replaces the value with a special value FLAG and updates the object in a separate buffer. HTMs

use this value to detect conflicts.

Implementation

The HTM is line based where caches track memory accesses, detect conflicts, and buffer

updates. HSTM generates two versions of transaction code: one that executes as an HTM and

another that executes in an STM. The HTM version of the transaction code performs checks

in software to detect conflicts with a transaction executing in an STM. A special FLAG value

is used for this. On each transactional load in a hardware transaction, the transaction checks

the loaded value. If the value is FLAG, then a running software transaction may have written

to the field. The HSTM aborts the hardware transaction. On each transactional store, HSTM

checks to ensure that the readers pointer is NULL. If it is not NULL, then the HSTM aborts the

hardware transaction. To allow the hardware transaction to abort itself, HSTM uses a xABORT

instruction.

Lie discussed tradeoffs between HSTM [32] and UTM [3, 32]. HSTM incurs memory

overhead due to additional software checks and the additions of the readers and versions pointer

even when running hardware transactions. Since HSTM runs most of the transactions in

hardware, this overhead is usually unused. HSTM can support unbounded transactions with

minimal hardware modification. However, HSTM has overheads as compared to an HTM and

cannot call into legacy functions.

4.6.2 Kumar et al., PPoPP 2006

Overview

This paper describes hybrid transactional memory, a hardware–software transactional memory

system where a transaction executes first as a hardware transaction on a line-based HTM, and

if it fails, it executes as a software transaction in an object-based STM, DSTM [28]. This way,

the system can achieve the performance of a hardware transaction whenever possible, and fall

back to a software transaction when hardware was insufficient. The paper describes extensions

to a DSTM system to make it coexist with an HTM.

Hybrid transactional memory introduces new instructions, and extends the DSTM data

structures to integrate with an HTM. Hybrid transactional memory requires two versions of

a transaction, one for executing in an HTM and another for executing in a DSTM. The

instruction extensions for the two versions are different because of differences in design of

the DSTM and HTM systems. The DSTM system was object based and explicitly identified
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transactional operations. The HTM system was line based and implicitly assumed all operations

in the transaction as transactional. Hybrid transactional memory maintains DSTM semantics

when the programmer explicitly aborts a transaction. When a transaction running as a hardware

transaction aborts, the execution aborts and restarts as a software transaction in an STM. This

maintains abort semantics for the DSTM.

Programming Interface

Hybrid transactional memory uses DSTM as its baseline STM and inherits its programming

interface. The paper identifies two DSTM actions as contributing to significant overheads:

versioning, and allocation and copying required when a transaction opens an object for writing.

HTM is used to remove these overheads where possible. A transaction executes either in

hardware mode or in software mode. During execution, the transaction opens all its objects in

the same mode as its execution. The paper introduces the following instruction set extensions

for the two modes:

1. xba. This instruction starts a transaction in hardware mode. All operations inside the

transaction default to transactional.

2. xbs. This instruction starts a transaction in software mode. All operations inside the

transaction default to nontransactional.

3. xc, xa. These instructions commit and abort the transaction.

4. ldx/stx. These are explicit transactional load and store operations and are used inside

transactions in software mode.

5. ldr/str. These are explicit nontransactional load and store operations and are used

inside transactions in hardware mode.

6. sstate/rstate. These instructions checkpoint and restore architectural register state.

7. xhand. This instruction sets up an exception handler for aborts.

The authors do not discuss the implications of the new instructions on processor imple-

mentations or on the instruction set architecture design.

Implementation

Hybrid transactional memory extends the objects in DSTM and extends the processor and its

caches. Fig. 4.16 shows the original DSTM TMObject and the TMObject with extensions for

Hybrid transactional memory.

A software mode transaction only uses the HTM hardware to monitor the Locator

State object. Another hardware or software mode transaction can abort this transaction by
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FIGURE 4.16: Hybrid transactional memory software meta data structures

writing the State object. Software mode transactions on opening a TMObject check the read

and write fields of the locator for conflicts with other transactions. If the object is opened for

writing, then the copy of the object occurs only after the transaction has switched the TMObject.

This is because a concurrently executing hardware mode transaction might have modified the

data in place. A hardware mode transaction does not have a locator and it updates data directly

in the cache without making a software copy.

Fig. 4.17 shows the hardware implementation. The paper describes the hardware for a

two-thread multithreaded processor. The HTM uses a register checkpoint for recovering register

state. Two new structures are added. A hardware transactional buffer records two versions for a

line, the transactionally updated value and the value before the update. A hardware transaction

state table has two bits per hardware thread. These bits record if the thread is executing a

transaction and if the transaction started in a software or hardware mode.

Each line in the cache has two bit-vectors recording reads and writes, one for each hard-

ware thread. The HTM uses these vectors to detect conflicts. Conflicts between two hardware

transactions are resolved by aborting the transaction that receives the conflicting request. A

conflict between a hardware transaction and a nontransaction request aborts the transaction.

When a hardware transaction detects a conflict and aborts, the hardware invalidates all

transactionally written lines in the transactional buffer and clears all read and write vectors.

The abort sets an exception flag in the transaction state table but does not abort execution
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WStateOld DataTag New Data R
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Register
Checkpoint

Begin PC

Handler PC

FIGURE 4.17: Hybrid transactional memory hardware organization

right away. The abort is triggered and a software abort handler invoked when the transaction

performs another memory operation or tries to commit.

Hardware and software mode transactions can abort each other. A hardware mode trans-

action aborts another hardware mode transaction using cache coherence. The hardware mode

transaction aborts a software mode transaction by reading the State field of the Locator and

atomically replacing the value ACTIVE with ABORTED. Software mode transactions detect the

abort because they cache the Locator. Software mode transactions abort hardware mode trans-

actions by swapping the TMObject pointer to the new locator it had created. This aborts the

hardware mode transaction because the HTM has transactionally read this pointer. Software

mode transactions abort other software mode transactions using DSTM mechanisms.

The preferred execution mode for a transaction can be determined heuristically. The

paper assumes that a transaction tries to run in HTM three times before switching to an STM.

Profile-driven hints and distinguishing between conflict and capacity-induced restarts can help

decide the default execution mode of a transaction.

In DSTM, a transaction may abort itself explicitly. When this happens, DSTM requires

nontransactional object updates made in the transaction to be persistent and not rolled back.

However, hardware mode transactions consider all updates as transactional and roll back all

state. To maintain DSTM requirements, if an explicit abort is executed in hardware mode, then

execution aborts and restarts in software mode and reexecutes the abort.

Context switches pose a problem for hybrid transactional memory as described. However,

checking the transaction’s state on rescheduling to ensure that it did not abort would address

the problem.
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4.6.3 Shriraman et al., TRANSACT 2006

Overview

The paper describes Rochester transactional memory (RTM), a hardware-accelerated software

transactional memory system [43]. RTM uses HTM mechanisms only to accelerate an STM.

RTM assumes an object-based STM system. In the hybrid approaches discussed so far, the

behavior of the HTM component of the hybrid HTM–STM system was determined by the

HTM implementation and the STM system did not have fine control over HTM mechanisms.

RTM on the other hand provides the STM with direct and fine control of individual HTM

mechanisms.

RTM introduces instruction set extensions through which an STM can control HTM

mechanisms and perform STM-specific operations directly in hardware. RTM, in a key differ-

ence from prior HTM proposals, gives software control over which cached lines are exposed to

the cache coherence protocol and which are not. RTM also provides software with control over

which cache lines should be transactionally monitored and kept exposed to the cache coherence

protocol.

Programming Interface

RTM assumes an object-based RSTM (Section 3.4.8) and inherits its programming interface.

RTM assumes that each object in the RSTM is allocated to its own cache line. This avoids false

sharing because hardware cache coherence works at the granularity of cache lines. It increases

the data footprint of the program because otherwise multiple objects could reside on the same

cache line. RTM only manages objects explicitly identified as shared; all other objects are

treated as nontransactional.

A transaction must explicitly open a shared object for either read-only access or a read–

write access before using the object. The open RO function opens an object for read-only access.

It returns a pointer to the current version of the object and maintains information for conflict

tracking. The open RW function opens an object for read–write access. It creates a clone of the

object and returns a pointer to it. Other transactions use the original copy. A transaction abort

discards the clone and a transaction commit installs this clone as the latest copy replacing the

original copy using an atomic operation. A transaction uses a transaction descriptor to record

whether it is active, committed, or aborted. Each object’s header is extended with a pointer

to the transaction descriptor of the last transaction that modified the object. The header also

has pointers to the original and cloned data.

The sequence below shows insertion into a sorted linked list in C++ using the RTM

programming interface:

void intset::insert (int val) {

BEGIN_TRANSACTION;
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const node* previous = head->open_RO();

const node* current = previous->next->open_RO();

while (current != NULL){

if (current->val >= val) break;

previous = current;

current = current->next->open_RO();

}

if (!current | | current->val > val) {

node *n = new node (val, current->shared());

previous->open_RW()->next = new Shared<node>(n);

}

END_TRANSACTION;

}

RTM first executes a transaction by using hardware to buffer writes (eliminate clone

overhead) and for conflict detection (eliminate validate overhead). If the transaction fails, RTM

retries the transaction as a software-only transaction. Hardware state is cleared on every kernel

and user-level thread switch.

RTM introduces the following instruction set extensions:

1. SetHandler(HandlerAddress). This instruction, typically executed at the beginning

of every transaction, specifies the address to which control transfers on an abort. This

is similar to the xhand instruction in Kumar et al. (Section 4.6.2).

2. TLoad(Address,Register), TStore(Register,Address). RTM uses these in-

structions to access transactional data. While these instructions bring data into the

cache, once in the cache, these cache lines do not participate in the coherence proto-

col. For example, exclusive ownership requests from other processors do not invalidate

these cache lines. Other processors cannot see data stored in these cache lines using the

TStore instruction. RTM relies on a software protocol to provide correct execution

when invalidation requests to these lines are ignored.

3. ALoad(Address,Register). This instruction specifies an address to monitor. If the

address receives an invalidation request from another processor, RTM immediately

calls an abort handler. A common use of this instruction is for a reader to monitor a

transactional object’s header for writes by other transactions. This is a similar use to the

ldx instruction in the Kumar et al. hybrid TM proposal (Section 4.6.2).
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4. ARelease(Address). This instruction undoes the effect of the ALoad instruction and

stops RTM from monitoring this address. This is a performance optimization and

serves the same purpose as the release instruction in McDonald et al. (Section 4.7.2.)

5. CAS-Commit(Address,O,N). This instruction performs a compare&swap(CAS) on

Address and if successful, commits the hardware state of the transaction. If the CAS

fails, then RTM discards the transactional hardware state and control transfers to

the handler specified by the SetHandler instruction. This instruction operates on

the transaction’s status. The instruction combines the software commit operation of an

STM with the hardware commit operation of an HTM, similar to how VTM performs

its commit (Section 4.5.2).

6. Abort. A program uses this instruction to explicitly abort an execution.

7. Wide-CAS(Address,O,N,K). This instruction supports a CAS on K adjacent words

that sit in a single cache line. It is used to accelerate certain STM-specific operations.

The authors do not discuss the implications of these new instructions on modern processor

implementations or their impact on instruction set design and instruction set validation.

The STM used in RTM implements a visible reader protocol (Section 2.3). This is

to allow a software transaction and a hardware transaction to detect conflicts. Each software

transaction reads its own transaction descriptor using the ALoad instruction. Since RTM is

based on an object-based STM, conflict detection occurs only on the object header; data in the

object does not participate in conflict detection.

Implementation

RTM extends the hardware with support to buffer transactional state in a cache; mechanisms to

prevent a cache line from participating in a cache coherence protocol, and to mark address in the

cache to be actively monitored for invalidation operations. When RTM executes in hardware

mode, it uses write buffering and conflict detection for all accessed objects. If a hardware mode

transaction aborts, it restarts completely in software.

When RTM executes a transaction with hardware support, the data cache buffers trans-

actionally written data. This data is not exposed to other processors and the cache line does not

participate in the cache coherence protocol. For example, invalidations from other processors to

this cache line are ignored. This allows two transactions to write the same data at the same time.

Software is responsible for providing correct execution when this happens. RTM immediately

aborts a transaction when a monitored cache line receives an invalidation, and is similar to the

asynchronous abort in many HTMs. This avoids the inconsistent read problem faced by some

TM systems. RTM has hardware support for a wide compare&swap which atomically inspects



P1: XXX

MOBK061-01 MOBK061-Larus.cls January 3, 2007 14:49

196 TRANSACTIONAL MEMORY

and updates adjacent locations of memory in the same cache line. This removes an STM pointer

indirection.

RTM uses a “threatened” signal analogous to the existing “shared” signal. A transaction

writing an address uses this signal to warn another transaction reading the address.

4.7 HTM SEMANTICS
Papers so far focused on implementation techniques and hardware mechanisms for HTMs.

This section discusses two papers that describe possible interfaces for HTMs. The first paper

is by Moss and Hosking (Section 4.7.1). It describes a framework for reasoning about nested

transactions, both open and closed, and develops a set of semantic rules for nesting. The paper

centers the discussion around a set of hardware structures to allow transactions to discover

nesting relationships. The second paper is by McDonald et al. (Section 4.7.2). It describes a

collection of instructions that provide software with greater control over the HTM policies and

implementation. It also describes how these instructions help software to perform compensation,

two-phase commit and coordination, and open and closed nesting. This paper also describes a

cache implementation to support open and closed nesting directly in hardware.

These papers do not describe a complete TM system, and focus on few key aspects of a

TM system.

4.7.1 Moss and Hosking, SCP 2006

Overview

In this paper, Moss and Hosking use a hardware model to describe a framework to reason about

nested transactions [36]. HTMs so far supported flattened nesting where nested transactions

were subsumed into the outermost transaction. The paper describes hardware extensions to

support closed and open nested transactions. Closed nested transactions minimize roll back

when a transaction conflicts and aborts. Open nested transactions increase concurrency when

executing large transactions.

The paper does not describe a programming interface and focuses primarily on models to

reason about nested transactions. While the model describes nesting for hardware, the concepts

are also applicable to software systems. To increase concurrency for open nested transactions,

the paper proposes an open nested semantic, in which an open nested transaction, when it

commits, it removes from its parent’s read or write set any address the open nested transaction

updated.

Semantic Description

The paper describes a reference model for reasoning about nesting. We do not reproduce

its formal descriptions of open nesting semantics, but informally touch upon it. The paper
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differentiates open and closed nesting (see Chapter 2) only in terms of their behavior when a

transaction commits. If an open transaction commits, then its read set is discarded and its writes

are merged into the top-level (i.e., the outermost) transaction. It also removes the written data

elements from the read and write set of all other transactions. Compensation action is necessary

if a parent subsequently aborts.

Implementation Sketch

The paper does not describe an HTM system. Its focus primarily is on representing nested

transactions and sketching a hardware implementation to support nesting. The paper frames

the discussion around parent and child transactions and sketches various models. We describe

one model and refer the reader to the paper for other models.

The paper uses three table structures to model transactional state, including nesting

relationships. These tables also have an in-memory representation and the processor lo-

cally caches these structures. Processors use these tables to identify nesting relationships be-

tween transactions. The transaction data cache is fully associative and maintains the transac-

tional state and data for memory locations accessed in the transactions. The fields are shown

below:

TID Address Data Valid Dirty Written Ancestor From Write/

Written TID RCount

The TID identifies the transaction that owns this location and a zero value means no

transaction owns this location. The address field records the address of the cache location and

data field records the data. If the dirty field is set, then it means this entry does not exist in

the in-memory representation of the table. The written field tracks if the transaction wrote

this location. The remaining fields track information for nesting. The ancestor written field

indicates if some ancestor of this transaction has a written copy of this location. The from TID

field indicates the transaction from which this value was read. The write field records the TID

of any descendant that read and wrote this location. The rcount field records the number of

live descendants that read this copy.

The transaction parent cache tracks the child and parent pairs for live transactions. This

table can be used to discover the TID of a transaction’s parent. The cache can drop clean entries

silently but must flush dirty entries to main memory. The fields are shown below:

Parent Child Valid Dirty OV Open
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The parent field tracks the TID of the transaction’s parent and the child field tracks

the child transaction’s TID. The valid field marks the entry as valid. If the dirty field is set,

then this entry does not exist in the in-memory representation of the table. If the transaction

overflows the transaction data cache into memory, then the OV field is set. If the transaction is

an open nested transaction, then the open field is set.

The overflow summary table is a memory-resident bit vector to track overflowed addresses.

It is indexed using a hash of the address.

The paper describes many scenarios. We discuss one where a processor performs a read

or write operation inside a transaction. A transaction first obtains a free TID on creation and

allocates an entry in the transaction’s parent cache, marking its entry valid and dirty. When

the transaction reads or writes a location, the processor looks up the transaction data cache. If

it misses, then it checks the overflow summary table. If the entry does not exist in the table,

then the processor determines the parent of the transaction and looks up its entry. If the parent

lookup also does not return an entry for this location, the system creates two new entries: one

for a transaction with a TID as zero representing committed state for the location and another

for the current transaction. If the parent lookup returns an entry, then the system only creates

an entry for the current transaction in the transaction data cache with the data returned from

the ancestor. The fields are initialized to reflect the ancestor information.

If a location has no ancestor or has an ancestor with only a reader count, then a read

to this location will have no conflict. If the ancestor has a write TID field, then a read would

conflict with the writer. A write access conflicts only if the cache has an unwritten entry and

the ancestor has a reader count greater than 1, or if there is no entry and the youngest ancestor

has a reader count greater than 0 or has a write TID associated.

The operations described are complex for hardware to implement. To simplify the imple-

mentation, the authors propose not tracking ancestors in the data cache. The paper also describes

operations to abort and commit nested transactions. While the paper presents a sketch of vari-

ous schemes, it provides a model to reason about nested transactions, both in hardware and in

software.

4.7.2 McDonald et al., ISCA 2006

Overview

This paper describes instruction set extensions for HTMs. These extensions allow programmers

to specify rich transactional memory semantics to an HTM [34]. The extensions include support

to perform a two-phase commit of a transaction, to execute closed and open nested transactions,

and to invoke software handlers when a transaction commits, aborts, or has a data conflict. The

extensions are intended as a set of primitives for software to use flexibly, and the extensions do

not dictate an implementation.
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The paper introduces a transactional control block (TCB), a memory-resident data struc-

ture. The TCB captures information about an executing transaction. The paper also describes

extensions to architectural register state and the implementation of nested transactions using

extensions to hardware caches and the implementation of two-phase commit. The paper does

not describe the implementation of all the new instructions. The paper describes the imple-

mentation challenges for supporting rich nesting in caches.

Programming Interface

The paper provides programmers with a transaction control block (TCB) and new architectural

registers to maintain HTM transaction state. The TCB records a transaction’s status word,

the register checkpoint, the read and write set, and data state in the form of an undo log or a

write buffer. The TCB also records a stack of software handlers for commits, aborts, and data

conflict violations. Abort, commit, and violation handlers allow software to perform specialized

actions. Software can register these handlers. The system invokes commit handlers in the order

they were registered, and invokes violation handlers when a data conflict occurs. Violation

handlers execute as part of the transaction but use open nesting to access shared state. The

application uses these handlers to execute compensation code or to perform software contention

management.

The location of the current TCB is stored in the xtcbptr base and xtcbtr top reg-

isters. The software handler code address is stored in the xchcode (for commit), xvhcode

(for data conflict violation), and xahcode (for abort) registers. The xstatus register records a

transaction’s state, its identifier, if it is an open or closed transaction, if it has aborted or commit-

ted, and its nesting level. The xvPC and xvaddr registers record the program counter when a

violation or abort occurred. Since violations may occur at any transaction level, the xvcurrent

and xvpending: registers record a bit mask, one bit per nesting level, for the current violation

and any pending violations.

The paper also provides an extensive set of new instructions:

1. xbegin, xbegin open. These instructions begin a closed or open nested transaction.

2. xvalidate. This instruction checks the validity of the read set of the transaction,

and if successful, marks the transaction as validated. After a successful validation, the

transaction cannot abort due to a prior conflict. The transaction may however abort

voluntarily.

3. xcommit, xabort. The xcommit instruction commits the current transaction. The

xabort instruction aborts the transaction, jumps to the abort handler, and disables

further violation reporting.
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4. xrwsetclear. This instruction discards the current read and write sets. It also clears

the bit in the violation bit mask for the current nesting level.

5. xregrestore. This instruction restores the register checkpoint.

6. xvret, xenviolrep. The xvret instruction returns from the abort or violation han-

dler and enables violation reporting. The xenviolrep instruction enables violation

reporting.

7. imld, imst, imstid. The imld and imst instructions perform loads without adding

to the read set and stores without adding to the write set. It, however, maintains undo

information for the store. The imstid instruction stores without adding to write set

and without maintaining undo information.

8. release. This instruction removes an address from the current read set.

The xvalidate and xcommit instructions allow implementation of two-phase com-

mit. The code sequence between these two instructions operates as part of the transaction

(and has access to the transaction’s speculative state) but is not protected against shared data

conflicts. Open nesting is necessary to avoid data conflicts between these two phases. The

authors propose using these instructions to perform IO and system calls and for coordinated

commits.

The paper describes an alternative to Moss and Hosking’s definition of open nesting

(Section 4.7.1). Moss and Hosking suggest that when an open nested transaction commits, it

removes from its ancestor’s read or write set any address the transaction updated. The paper

argues that this is a nonintuitive semantic, and that the address should not be removed from

the ancestor’s read or write set.

Implementation

The paper describes the behavior of the xvalidate instruction. If an HTM performs early

acquisition of exclusive ownership and early conflict detection, the xvalidate instruction

blocks execution until all prior loads and stores complete execution without conflicts. The

hardware acquires all ownerships before the xvalidate instruction’s completion. If an HTM

performs late acquisition of exclusive ownership and late conflict detection, the xvalidate

instruction starts to acquire ownerships for appropriate cache lines or to arbitrate for a global

commit protocol.

The paper describes two cache implementations to support nesting directly in hardware.

In the first implementation, the cache line is extended to track read and write sets for multiple

nested transactions. In the described implementation, the cache line supports nesting depth of
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four. The cache-line extensions for the first implementation are shown below. The read and

write sets are identified by Ri Wi bits for a nesting level i :

V D E Tag DataR1 W1 R4 W4R2 W2 R3 W3

Nesting
level 1

Nesting
level 2

Nesting
level 3

Nesting
level 4

Address
Match

} } } }

In this implementation, data in a cache line corresponds with the innermost nesting level.

Therefore, before a nested transaction writes the line, it must copy the older value into an undo

log. If the cache receives a read request from another processor, the cache checks all R and W

bits in parallel and if a conflict is detected, it is propagated to the violation xvpending and

xvcurrent bit masks.

When a closed nested transaction commits, the undo log entries of the committing

nested transaction are appended to the parent transaction’s undo log. The R and W bits for the

committing transaction must be logically ORed into the R and W bits of the parent transaction.

The paper describes a lazy scheme to implement this operation where the merge occurs when

the processor next accesses the cache line. During this lazy update, the two unmerged bits are

treated as one for conflicts. Another nesting level cannot start until the merge is completed. An

open nested transaction commit clears the transaction’s R and W bits in the cache.

When a closed nested transaction aborts, the transaction’s R and W bits are cleared and

the undo log is rolled back. If a transaction aborts and it had an open nested transaction that

committed, then the parent’s data might have been overwritten by the open nested transaction.

In this case, care is needed to make sure that the parent does not roll back the open nested

transaction’s updates.

The second implementation uses different cache lines in the same cache set to track the

same address for nested transactions. This scheme does not extend a cache line to have multiple

R and W bits. The fields are shown below:

V D E Tag DataR W
Nesting
Level

MatchAddress

Nesting level
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Here, each line is extended with one set of R and W bits and a nesting level field.

The nesting level records the transaction nesting depth corresponding with this line. In this

implementation, a cache lookup can return multiple hits to cache lines in the same set and

requires an additional check to determine the most recent version. When a new nesting level

accesses a line with a nesting level field set to some value, a new line is allocated, data from the

old line is copied into the new line, and the nesting level field of the new line is updated.

A commit of a closed nested transaction at nesting level i changes all cache lines with

level i to i − 1. If i − 1 entry already exists, its read-set and write-set information merges into

the older entry. Then the cache discards this entry. For an open nested commit, all entries in i

change to zero. If there are more versions, their data updates to that of nesting level i. On an

abort operation at nesting level i, all Ri and Wi bits are flash cleared.
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C H A P T E R 5

Conclusions

Transactional memory (TM) is a popular research topic. The advent of multicore computers and

the absence of an effective and simple programming model for parallel software have encouraged

a belief (or hope) that transactions are an appropriate mechanism for structuring concurrent

computation and facilitating parallel programming. The underpinning of this belief is the success

of transactions as the fundamental programming abstraction for databases, rather than practical

experience applying transactions to general parallel programming problems. Confirmation of

this belief can come only with experience. The research community has started exploring the

semantics and implementation of transactional memory, to understand how this abstraction can

integrate into existing practice, to gain experience programming with transactions, and to build

implementations that perform well.

This book surveys the published research in this area, as of early summer 2006. As is

normal with research, each effort solves a specific problem and starts from strong, though often

narrow, assumptions about how and where the problem arises. Software transactional memory

(STM) papers offer a very different perspective and start from very different assumptions than

hardware transactional memory (HTM) papers. Nevertheless, there are common themes and

problems that run through all of this research. In this survey, we have tried to extract the key

ideas from each paper and to describe a paper’s contribution in a uniform context. In addition,

we have tried to unify the terminology, which naturally differs among papers from the database,

computer architecture, and programming language communities.

Looking across the papers in this book, a number of common themes emerge.

First, transactional memory is a new programming abstraction. The idea evolved from

initial proposals for libraries and instructions to perform atomic multiword updates to modern

language constructs such as atomic{ }, which allow arbitrary code to execute transactions.

Moreover, researchers have elaborated the basic concept of a transaction with mechanisms

from conditional critical sections such as retry and mechanisms to compose transactions such

as orElse. These language features lift a programmer above the low-level mechanisms that

implement TM, much as objects and methods build on subroutine call instructions and stacks.

Control over the semantics and evolution of the programming abstractions belongs in

large measure to programming language designers and implementers. They need to invent new
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constructs and precisely define their semantics; integrate transactional features into existing

languages; implement the language, compiler, and run-time support for transactions; and work

with library and application developers to ensure that transactions coexist and eventually support

the rich environment of modern programming environments.

This level of abstraction is what we loosely refer to as the semantic layer of transactional

memory. Programmers will think at this level and write their applications with these abstrac-

tions. A key challenge is to ensure that these constructs smoothly coexist with legacy code

written, and perhaps even compiled, long before TM. This code is valuable, and for the most

part, it will not be rewritten. Building a system entirely around transactions is a long-term en-

deavor. Transactions will coexist with nontransactional code for a long time. It is also important

that transactional memory systems provide features and programming conventions suitable for

multiple languages and compilers, so a construct written in one language and compiled with

one compiler interoperates with code written in other languages and compiled with other com-

pilers. A further challenge is to learn how to program with transactions and to teach the large

community of programmers, students, and professors a new programming abstraction.

Second, high-performance software implementations of transactional memory will play

an important role in the evolution of transactional memory, even as hardware support becomes

available. STM offers several compelling advantages. Because of their malleability, STM systems

are well suited to understanding, measuring, and developing new programming abstractions and

experimenting with new ideas. Until we measure and simulate “real” systems and applications

built around transactions, it will be difficult to make the engineering tradeoffs necessary to build

complex HTM support into processors. Changing a processor architecture has implications

on engineering, design, and validation costs. Further, instruction-set extensions need to be

supported for an extended period, often the lifetime of an architecture.

Moreover, since STM systems run on legacy hardware, they provide a crucial bridge that

allows programmers to write applications using TM long before hardware support or HTMs are

widely available. If STM systems do not achieve an acceptable and usable level of performance,

most programmers will wait until computers with HTM support are widely available before

revamping their applications or changing their programming practice to take advantage of the

new programming model.

Third, STM and HTM complement each other more than they compete. It is easy

to view these two types of implementations as competitors, since they both solve the same

problem by providing operations to implement transactional memory. Moreover, the respective

research areas approach problems from opposite sides of the hardware–software interface and

often appear to be moving in opposite directions. However, each technique has strengths that

complement the weaknesses of the other. Together they are likely to lead to an effective TM

system that neither could achieve on its own.
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A key advantage of STM systems is their flexibility and ability to adapt readily to

new algorithms, heuristics, mechanisms, and constructs. The systems are still small and sim-

ple (though they are often integrated into more complex platforms, such as Java or .NET

run-times), which allows easy experimentation and rapid evolution. In addition, manipulat-

ing TM state in software facilitates integration with garbage collection, permits long-running,

effectively unbounded transactions, and allows rich transaction nesting semantics, sophisti-

cated contention management policies, natural exceptions handling, etc. Moreover, the tight

integration of STMs with languages and applications allows cross-module optimization, by

programmers and compilers, to reduce the cost of a transaction.

STMs also have limitations. When STMs manipulate metadata to track read and write

sets and provision for rollback, they execute additional instructions, which increases the overhead

in the memory system and instruction execution. Executing additional instructions also increases

power consumption. Moreover, STMs have not yet discovered an economical way of providing

strong isolation. Unmanaged and unsafe languages (such as C and C++) offer few safety

guarantees, and thus constrain compiler analysis and limit STM implementation choices in

ways that may lead to lower performance or difficult-to-find bugs. STMs also face difficult

challenges in dealing with legacy code, third-party libraries, and calls on functions compiled

outside of the STM.

HTM systems have a different collection of strengths. A key characteristic of most HTMs

is that they are decoupled from an application. This allows an HTM to avoid the code bloat

necessary for STMs. Consequently, HTMs can execute some transactions (those that fit hard-

ware buffers) with no more performance or instruction execution overhead than that caused by

sequential execution. In addition, most HTMs support strong isolation. Furthermore, HTMs

are well suited to unmanaged and unsafe code, whose fixed data layouts and unrestricted pointers

constrain STM systems. HTMs can also accommodate transactions that invoke legacy libraries,

third-party libraries, and functions not specially compiled for TM.

However, HTMs have limitations. Hardware buffering is limited, which forces HTMs

to take special action when a transaction overflows hardware limits. Some HTMs spill state

into lower levels of the memory hierarchy, while others use STM techniques and spill to or

log to software-resident TM metadata structures. Since hardware partially implements the

mechanisms, it does not always offer the complete flexibility of an STM system. Early HTMs

implemented contention management in hardware, which required the policy to be simple.

Recent HTMs have moved contention management into software. Finally, HTMs have no

visibility into an application. Optimization belongs to a compiler and is only possible through

the narrow window of instruction variants.

While STMs and HTMs both have advantages and limitations, the strength of an

STM is often a limitation in an HTM, and an HTM often excels at tasks STMs find
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difficult to perform efficiently. We see three obvious ways in which these two fields can come

together.

The STM community can identify instruction set extensions and hardware mechanisms

to accelerate STM systems. Obvious areas are the high cost of tracking read, write, and undo

sets and detecting conflicts between transactions. Such support must be general enough to aid a

wide variety of STM systems. Hardware mechanisms identified in recent proposals (Section 4.6)

retain much of the complexity of a typical HTM but provide finer control over the hardware.

The challenge here is to design mechanisms that integrate into complex, modern processors

and provide architecturally scalable performance over time. Other approaches are necessary

to give STM the same transparency that HTM can achieve for strong isolation, legacy code,

third-party libraries, and perhaps for unsafe code.

The hardware community can continue to develop self-contained HTM systems, which

rely on software to handle overflows of hardware structures and to implement policy decisions.

This approach preserves the speed and transparency of HTM, but may not have the flexibility of

a software system, unless the interfaces are well designed. Experimentation with STM systems

may help to divide the responsibilities appropriately between software and hardware and to

identify policies that perform well in a wide variety of situations and that can be efficiently

supported by hardware. The challenges are to ensure that aspects of the TM system that are

not yet well understood are not cast into hardware prematurely and to ensure that the system

can be integrated into a rich and evolving software environment.

The final approach is to combine the strengths of the two approaches into a hybrid

hardware–software TM system that offers low overhead, good transparency, and flexible policy.

The contributions of the STM community can include software definition of the metadata

structures and their operations, software implementation of policy, and close integration into

compilers and run-time. The HTM community can contribute strong isolation, support for

legacy software, TM-unaware code, and low-performance penalties and overheads.

TM holds promise to simplifying the development of parallel software as compared

to conventional lock-based approaches. It is yet unclear how successful it will be. Success

depends on surmounting a number of difficult and interesting technical challenges, starting with

providing a pervasive, efficient, well-performing, flexible, and seamless transactional memory

system that can be integrated into existing execution environments. It is not clear what such a

system would look like, but this book describes a fountain of research that may provide some

of the ideas.
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