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ABSTRACT
This lecture provides an introduction to the problem of managing the energy demand of mobile
devices. Reducing energy consumption, primarily with the goal of extending the lifetime of
battery-powered devices, has emerged as a fundamental challenge in mobile computing and
wireless communication. The focus of this lecture is on a systems approach where software
techniques exploit state-of-the-art architectural features rather than relying only upon advances
in lower-power circuitry or the slow improvements in battery technology to solve the problem.
Fortunately, there are many opportunities to innovate on managing energy demand at the
higher levels of a mobile system. Increasingly, device components offer low power modes that
enable software to directly affect the energy consumption of the system. The challenge is to
design resource management policies to effectively use these c apabilities.

The lecture begins by providing the necessary foundations, including basic energy ter-
minology and widely accepted metrics, system models of how power is consumed by a device,
and measurement methods and tools available for experimental evaluation. For components
that offer low power modes, management policies are considered that address the questions of
when to power down to a lower power state and when to power back up to a higher power
state. These policies rely on detecting periods when the device is idle as well as techniques for
modifying the access patterns of a workload to increase opportunities for power state transitions.
For processors with frequency and voltage scaling capabilities, dynamic scheduling policies are
developed that determine points during execution when those settings can be changed with-
out harming quality of service constraints. The interactions and tradeoffs among the power
management policies of multiple devices are discussed. We explore how the effective power
management on one component of a system may have either a positive or negative impact
on overall energy consumption or on the design of policies for another component. The im-
portant role that application-level involvement may play in energy management is described,
with several examples of cross-layer cooperation. Application program interfaces (APIs) that
provide information flow across the application-OS boundary are valuable tools in encouraging
development of energy-aware applications. Finally, we summarize the key lessons of this lecture
and discuss future directions in managing energy demand.

KEYWORDS
Energy, power management, battery power, voltage scaling, wireless, operating system
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C H A P T E R 1

Introduction

Managing energy consumption, primarily with the goal of extending the lifetime of battery-
powered devices, is widely recognized as a fundamental challenge in mobile computing and
wireless communication. The limited availability of battery energy has emerged as a significant
problem with the growth in reliance on mobile technology, the increased capabilities of the
hardware, and the rising expectations of users for ubiquitous services.

Mobility implies that a device carries its own energy supply, typically in the form of
batteries. Weight and form factor play a role in limiting the energy capacity available. Lithium-
ion batteries have become the dominant choice for rechargeable batteries in mobile electronics
because of their light weight, high energy density, and memory-free recharge characteristics.
However, lithium-ion battery density is only improving at a rate of approximately 10% per
year (Fig. 1.1) while demand for more features and greater performance can easily eat up that
improvement, resulting in no real increase in runtime that can be attributed to advances in
battery technology. The fact that batteries have become a major headache for users can be
observed at any airport where travelers focus on finding electrical outlets to recharge their
laptops and that low batteries have become a widely accepted excuse for truncated cell phone
conversations.

The focus of this lecture is on managing the energy demand of mobile devices through
a systems approach. The supply side of the problem offers important and interesting topics
including battery modeling, interfacing with smart batteries, exploiting the chemical character-
istics of batteries, harvesting energy from the environment (e.g., solar, kinetic), and developing
alternative mobile energy sources. Exploration of the energy supply issues for mobile computing
will be the topic of a separate lecture.

The second aspect of our focus is the systems approach where software techniques exploit
state-of-the-art architectural features rather than relying upon the hardware-only development
of lower power circuits and devices. Significant strides have been made in engineering lower
power hardware components by reducing the supply voltage in CMOS circuits. This is illus-
trated in Fig. 1.2 that shows power consumption trends for microprocessors intended for use
in mobile applications. Core voltages for these processors have decreased from 3.3 V in 1994
to under 1 V in 2004 while performance has grown significantly. However, hardware-only
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FIGURE 1.1: Rate of improvement of lithium-ion batteries [source of data: batteryuniversity.com].

FIGURE 1.2: Trends in maximum power consumption for selected models of processor families aimed
at the mobile market.
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improvements are becoming more challenging to achieve. Effective power management will
cut across the levels of system design. The processors offering the lower power values (shown
as min–max ranges in pink) achieve it through dynamic voltage scaling (e.g., Intel’s SpeedStep
technology), a cross-level mechanism that can be exploited by the operating system for dynamic
power management.

Fortunately, there are many opportunities to innovate on managing energy demand at
the higher levels of a mobile system. Increasingly, device components offer low power modes
that enable software to directly affect the energy consumption of the system. The challenge
is to design resource management policies to effectively use these capabilities and to suggest
improvements in those mechanisms to facilitate better techniques. Recently released processors
can run at a range of different frequencies and voltages, raising the issue of how to schedule
tasks to exploit these lower power operation points.

Mobile computing has been the initial motivation and incubator for much of the energy
and power management research. As society recognizes the need for more energy conservation
and the growing impact of computing technology on the demand for resources, innovations
bred in the mobile computing domain eventually migrate into the mainstream of computing,
providing both economic and environmental benefits. Adaptations for these techniques beyond
the domain of mobile computing include reducing the noise caused by cooling fans in medical
applications and reducing the electrical costs of operating and air conditioning large server
installations.

1.1 LECTURE OVERVIEW
This lecture is aimed at new researchers and developers who are entering the area of
power/energy management for mobile systems. In this section, we have motivated the need
for explicit attention to energy management in mobile systems. The remaining chapters are
organized as follows:

Chapter 2 provides the necessary foundations to work productively in this area. This
discussion includes the definition of basic energy terminology and widely accepted metrics, the
development of a system model of how power is consumed by the device, and the measurement
methods and tools available for experimental evaluation.

Chapter 3 focuses on management of power state transitions for a single device. Idle
time serves as the basis for policies that transition to lower power states. We explore the
manifestations of idleness and the challenges involved in detecting idle periods. We describe
examples of policies that, given an access pattern for the device, address the questions of when
to power down to a lower power state and when to power back up to a higher power state.
Then we consider techniques for modifying the access patterns of a workload to complement
policies based upon using power state transitions.
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Chapter 4 describes scheduling policies that exploit dynamic voltage scaling in processors.
This leads to consideration of the quality of service (QoS) criteria that shape these policies.

Chapter 5 discusses the interactions and tradeoffs among the power management policies
of multiple devices. We illustrate how the effective power management on one component of
a system may have a negative impact on overall energy consumption. We introduce research
efforts on whole-system energy management.

Chapter 6 explores the role of application-level involvement in energy management,
ranging from providing minimal hints to the system-level power managers to energy-aware
algorithm design. Several application program interfaces (APIs) have been proposed to provide
information flow across the application-OS boundary.

Chapter 7 summarizes the key lessons of this lecture and discusses future directions in
managing energy demand.
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C H A P T E R 2

System Energy Models and Metrics

This chapter presents basic energy terminology and widely accepted metrics. It describes mech-
anisms provided by hardware to allow systems to manage how power is consumed in mobile
devices. It addresses the measurement techniques for calibrating system models and tools for
experimental evaluation.

2.1 MODELS OF HOW POWER/ENERGY IS CONSUMED
IN MOBILE DEVICES

In order to advance the state of the art in power/energy management, it is important to
understand how power is currently used in mobile computing devices. This leads to building
models of power consumption as a first step.

2.1.1 Power and Energy Models
One method of characterizing the power consumption of a computing platform is to identify
its major hardware components and determine how much of the overall power budget each
component requires. This is often presented in the form of a pie chart, as shown in Fig. 2.1. This
kind of graph can be useful in focusing upon the major consumers within a device. However, it
is important to understand how such a chart has been generated, what data have been included,
and what assumptions have been made about the workload of the device. Unfortunately, such
graphs often appear without being accompanied by this information that is crucial to correct
interpretations. For example, Fig. 2.1 suggests that, after the CPU, the DVD is the next most
significant power hog in this laptop computer. Depending on the goals of the project, this
conclusion may not lead in a productive direction. For example, if the goal is to extend battery
lifetime and the platform is to be used primarily for accessing email and the web, then the
potentially high power consumption of the DVD is never seen in practice. This motivates our
discussion of the uses of the terms power and energy.

This particular graph in Fig. 2.1 represents the maximum power consumption of
each component in a Thinkpad R40 laptop, as described in Mahesri and Vardhan (2004).
These data for the various components may be acquired from vendor data sheets or from
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FIGURE 2.1: Maximum power measurements for each component of an IBM Thinkpad R40 Laptop:
1.3 GHz Pentium M, 256 MB, 40 GB HDD, 14.1 screen.

measurements using microbenchmarks that individually stress each single component. A syn-
thetic microbenchmark to draw maximum power is sometimes referred to as a power virus.
Vendor data sheets may report thermal design power or TDP rather than the true maximum
power. TDP is typically defined as the highest sustained power that a real application can drive
and is used for designing cooling solutions. We have composed these per-component peak
power numbers into one chart to yield the breakdown in Fig. 2.1. The chart represents the
worst-case power or highest rate of energy consumption that each component is capable of
drawing. It can serve as a starting point in the absence of other knowledge about the workload
or usage patterns for the device. It is probably impossible that any “real” program exists that can
drive all components to their peak power simultaneously. However, this breakdown is useful if
(1) the technical specifications are available, (2) there is no good information upon which to
base assumptions about the intended or expected utilization of the device, and (3) the thermal
limits of the device are of major interest.

Other profiles for this same platform use either energy or average power measurements
by introducing workload assumptions and making the element of time explicit. Energy con-
sumption is the focus when the limited energy capacity of the battery is the major concern.
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The average power consumption of a laptop running a benchmark program is the total energy
consumed during the execution of the benchmark divided by the execution time (P = E/T).
Thus, power, when it is clear that the term is referring to average power consumption over
a time interval, is often used interchangeably with energy consumption over the same time
period.

One small step toward presenting a power profile based on average power is to scale
the maximum power of each component by some estimated utilization factor to capture an
assumed load (e.g., 60% of the time is spent actively using the CPU at peak power versus 40%
at idle power). This is the approach used in Intel’s Mobile Power Guidelines to estimate power
consumption of future systems (Intel Corporation 2000).

In Fig. 2.2, the significance of the workload becomes obvious. The leftmost bar replicates
the data in Fig. 2.1 in a stacked format expressed in Watts consumed by each component at
its peak power. The remaining bars show average power consumption results from Mahesri
and Vardhan (2004) with different benchmark programs. The 3DBench program (3D gaming)
is generally accepted as a stress test for a machine. It achieves near peak power consumption
by the CPU, display, graphics card, and memory. However, it does not exercise the WLAN,

Breakdown of Average Power Consumption under Loads
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component power breakdown of Fig. 2.1.
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DVD, or disk. The other benchmarks represent a file transfer over wireless, playback of an
audio CD, and an idle system. In each case, the power breakdown is significantly different,
with the major energy-consuming components shifting from the CPU and graphics card in
3DBench to the display and WLAN for FTP transfer and the DVD and display for audio CD
playback. The conclusion about which component will make the most important contribution
to energy consumption for a target workload mix depends on how well its relative utilization
of components matches one of these measured benchmarks.

The smartphone is an example that illustrates the impact of evolving usage patterns
on the energy consumption estimates of a mobile device. Using the smartphone primarily
as a traditional cell phone does not require constant backlighting of the display and avoids
the relatively high power consumption of that component. Estimates of battery lifetime by
smartphone vendors are likely to be based on this traditional usage. However, other applications
that are becoming popular (e.g., text messaging, taking photos) are likely to make the display
a significant factor in determining the device’s battery lifetime and a good target for power
management attention.

Power models can be developed at other levels of abstraction. For example, characterizing
the power costs of different instructions in the instruction set of the processor (e.g., Tiwari et al.
1996) can be useful in guiding energy-aware compiler optimizations to change the instructions
generated in favor of lower power alternatives. Components at a lower level than considered in
the breakdowns above are of interest in power-aware hardware design. Power models of com-
ponents at the level of functional units and datapaths within a microprocessor architecture are
relevant for clock gating and powering down blocks of circuitry. Higher level characterizations
of an application domain may focus on events rather than physical components. For example,
an environmental monitoring application of sensor networks may characterize the power costs
of performing route discovery, reading a probe, sending a data packet toward the base station,
and listening for messages from neighboring nodes.

2.1.2 Discrete Power States of Device Components
Models can be considerably richer than conveyed by either the maximum or average power
consumption pie charts. Some hardware components offer a range of discrete power states that
can be exploited in response to workload demands. Figure 2.3 illustrates a device with just
two power states, drawing averages of phigh and plow Watts in those states. When the device
becomes idle, it can transition into the lower power state, incurring a transition cost in time
and power which may spike if extra power is used to affect the state change. When a new
request arrives, it can transition back up to the higher power state to service the request, again
incurring a transition cost that can add latency before the request can be processed and even
a spike in power as circuits power back up. Figure 2.3 represents this behavior as a piecewise
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FIGURE 2.3: Timeline showing an on-demand power state transition.

linear approximation, not reflecting fine-grained power fluctuations. The values ph→l and pl→h

represent the transitional power averaged over the transition periods th→l and tl→h, respectively.
In the figure, ph→l is shown as lower than phigh whereas pl→h is higher.

The capability to transition between power states introduces the notion of the breakeven
time. This is defined as the minimum amount of time that can be spent in and transitioning
in and out of the low power state in order to make the transition beneficial in terms of energy
consumption; thus, we denote it as tbenefit. The relevant parameters are shown in Fig. 2.4 where
the benefit transitions are drawn in dashed blue lines and the transitions necessary to cover the
idle time between the actual requests are shown in red. Since the transition times are assumed
to be fixed, we just need to determine the minimum tlow such that

(th→l ∗ ph→l) + (tlow ∗ plow) + (tl→h ∗ pl→h) < (th→l + tlow + tl→h) ∗ phigh.

Thus,

tlow = (th→l(ph→l − phigh) + tl→h(pl→h − phigh))/(phigh − plow).

Then we define the benefit as tbenefit = th→l + tlow + tl→h. If the idle time, tidle, is at least as
long as tbenefit, then transitioning to the lower power state can save energy.

If we hope to avoid adding latency, we must assume that the beginning of the idle gap
is recognized immediately with the transition down being immediately triggered and that the
transition back up is triggered just in time for the end of the gap. In practice, policies that
determine the triggering of transitions are based on observable behavior rather than assuming
knowledge of forthcoming gap durations. For example, Fig. 2.3 shows the idle gap ending at an
incoming request resulting in an on-demand transition that adds the latency of the transition
to the performance. In addition, the policy that triggers a downward transition may spend extra
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FIGURE 2.4: Breakeven time and idle time that justify a power state transition.

time in the high power state, drawing phigh, as when it uses a threshold of inactivity prior to
classifying the device as idle. This overhead time must be deducted from tidle before the tbenefit

comparison is performed in order to determine whether energy will, in fact, be saved. Policy
considerations for making transitions are discussed in Chapter 3. We also discuss system-
level policies such as caching (in Chapter 3) and application-level energy-aware adaptations
(in Chapter 6) that modify request patterns to extend the idle periods and provide greater
opportunity for the low-level mechanisms to exploit low power states.

Devices may have multiple power states rather than two as described above. The most
familiar examples that are easily experienced by users include hard disks that stop spinning and
displays that turn off when the system decides that they are not being used. Less noticeable
examples include wireless radios and memory devices (DRAM and flash). Figure 2.5 shows
multiple power states and transitions for a simplified hard drive. Spinning up and spinning
down are transitions with significant costs (high power to spin up and large transition times,
measured in the order of seconds), while the costs of other state transitions (narrow edges) are
abstracted away in this model. Fully active states are those in which the disk is spinning and a
read or write operation is in progress. Following the last queued request, this disk goes through
a sequence of increasingly lower power states as more parts of the hardware are powered down
(e.g., the disk may still be spinning but the heads are parked) on the way to the nonspinning
standby state. Policies in the device firmware or operating system software determine what
events will trigger each transition (e.g., thresholds of idle time) to exploit these multiple
states.

Each type of device that offers multiple power modes has different parameters to capture
in the model. The obvious issues to address are what are the set of states, how much power
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FIGURE 2.5: Power states of a generic hard disk drive.

is consumed in each state, and what are the transition latencies. It is also important to know
whether the state transitions are amenable to software control through an established interface.
For example, the Travelstar disk drives have an internal algorithm that controls the transitions
among its idle states and do not provide an interface for external software control of them.
The various power states also provide different functionalities. The disk must transition to
a spinning state to service a request, but the interface is still active to accept an incoming
disk request in a standby mode. A deeper sleep state than standby requires an explicit reset
to reactivate. Displays may be still readable even when the backlight is turned off and the
brightness of the backlight can be reduced. A radio for wireless networking can send messages
at different transmission powers, affecting the range and noise. There is also the question of
granularity of power control. In DRAM designed for mobile computing, each bank within
the memory chip may be independently transitioned. In emerging display technologies (e.g.,
organic light emitting diodes), each pixel may be separately dimmed. Thus a model should
capture the properties of each state including power consumption, transition latency, interface
accessibility, granularity, and level of functionality.

As an example, Table 2.1 gives the power model for all components in all power modes
for a Mica2 mote. The platform measured (Shnayder et al. 2004) consists of an Atmega 128 L
processor, 128 KB of code memory, 4 KB of data memory, 512 KB EEPROM, and a ChipCon
CC1000 radio. This illustrates three devices that exhibit multiple power states in different ways.
The CPU has a choice of low power states (idle, ADC, power-down, power-save, standby, and
extended standby) that can be entered via a SLEEP instruction with bit settings in a register to
select mode. These are all nonoperational in the sense that the CPU cannot execute instructions
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TABLE 2.1: Complete Power Model for Mica2 Mote (Shnayder et al. 2004)

MODE CURRENT MODE CURRENT

CPU Radio
Active 8.0 mA Rx 7.0 mA
Idle 3.2 mA Tx (−20 dBm) 3.7 mA
ADC noise reduce 1.0 mA Tx (−19 dBm) 5.2 mA
Power-down 103 µA Tx (−15 dBm} 5.4 mA
Power-save 110 µA Tx (−8 dBm) 6.5 mA
Standby 216 µA Tx (−5 dBm) 7.1 mA
Extended standby 223 µA Tx (0 dBm) 8.5 mA
Internal oscillator 0.93 mA Tx (+4 dBm) 11.6 mA
LEDs 2.2 mA Tx (+6 dBm) 13.S mA
Sensor board 0.7mA Tx (+8 dBm) 17.4 mA
EEPROM access Tx (+10 dBm) 21.5 mA
Read 6.2 mA
Read time 565 µs
Write 18.4 mA
Write time 12.9 ms

in any of these low power modes. The different modes affect the conditions required for wakeup
of the CPU to resume execution. By contrast, there are multiple programmable transmission
states for the radio. These are all operational states in that data can be transmitted in all of these
states with not only different levels of power consumption but also different levels of delivered
performance. Finally, the EEPROM shows different power consumption values that simply
correspond to different operations being performed.

Power states are the key abstraction for device specifications in the industry-standard
Advanced Configuration and Power Interface (ACPI) (Intel Corporation 2000). ACPI enables
the operating system to control power management of compliant hardware. The specification
defines global states for a system as a whole. These include the working state (G0), various
sleep states (S1–S4 within G1) that capture familiar OS-specific states such as standby, sleep,
hibernate, and safe-sleep, and power-off states (G2, G3) that necessitate rebooting to return to
G0. It also defines device (D0–D3) and CPU states (C0–C3) with the possibility of operational
lower power/performance states within the active states of D0 and C0. Figure 2.6 shows the
ACPI states.
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FIGURE 2.6: ACPI global states (Intel Corp. 2000).

2.1.3 Scaling Power Mechanisms
Another opportunity to exploit for energy savings arises from the properties of the CMOS
digital circuits typically used in microprocessors. Power consumption in CMOS is composed
of three factors: dynamic power consumption of switching logic, short circuit power, and leakage
power. The major component and focus of most higher level power management is the dynamic
switching power, which we denote as PSW. PSW = A ∗ V 2 ∗ f ∗ C . In this equation, A is the
switching activity factor, the probability of a gate switching state. V is the supply voltage. The
clock frequency is f and C is the capacitance of the circuit. Reducing any of these terms can
be effective in reducing PSW.

Voltage scaling processors rely on scaling back the voltage, V , accompanied with necessary
reductions in clock frequency, f . Voltage reduction is especially valuable because the power
is related to the square of the voltage. However, the clock rate must also be lowered for the
circuit to operate correctly because the settling time for a CMOS gate is proportional to the
voltage. The lower the voltage, the longer it takes for the circuit to stabilize. There are limits in
reducing the supply voltage; as supply voltage approaches the threshold voltage for the particular
technology, circuit delay rises dramatically.

The relationship between V and f presents a tradeoff between performance and energy
savings. If the workload demands are light and there exists idle time when running at the peak
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FIGURE 2.7: Two periodic tasks running at different speed/voltage settings (based on the Intel
Xscale).

clock frequency, it is possible to reduce f and V without any impact on performance. This
scenario is illustrated in Fig. 2.7 in which Task 1 running at a high clock frequency completes
halfway through its period and then the processor becomes idle. Task 2 runs at half the speed
and stretches its execution throughout the entire period. Because of the voltage scaling, the
energy expended by Task 2 is significantly less than for Task 1. In other cases, degrading
performance may be acceptable in order to achieve higher priority power goals (e.g., to avoid
reaching a thermal limit). The policy choices for exploiting this capability (see Chapter 4) must
determine when and to what levels to scale V and f .

Theoretically, one can view V and f as varying over a continuous range of values and
offering the prospect of finding an optimal configuration. One popular abstract model is based
upon the cubic-root rule that expresses power as a f 3 + b where the highest frequency at which
the CPU can function correctly is proportional to the supply voltage. In practice, processors on
the market provide a small number of discrete combinations of V and f across their ranges.
Table 2.2 shows several examples of processors that offer voltage and frequency scaling. These
processors may offer an interface for higher level software to affect a change. Transitioning
between levels does incur a latency cost, influencing how often changing levels can be effective.

The idea of scaling across a range of power levels is not limited to processors. It has been
suggested for displays and hard disk drives, as well. In the case of displays, this may take the
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TABLE 2.2: Examples of Voltage Scaling Processors

PROCESSOR MODEL VOLTAGE (V) FREQUENCY (MHZ)

Intel 80200

1 333

1.1 400

1.3 600

1.5 733

AMD Turion 64

0.9 800

1.15 1600

1.2 1800

Transmeta Crusoe 5900

0.875 433

0.95 533

1.05 667

1.15 800

1.25 900

1.3 1000

form of gradually scaling the brightness of the backlight. Scaling the rotation speed of disks has
also been proposed (Gurumurthi et al. 2003).

2.1.4 Simplified Battery Model
The final component in defining the energy-related system model for a mobile computing
platform is the energy supply. As stated in Chapter 1, this lecture does not explore energy
supply in detail and restricts its attention to available battery technology (lithium-ion, as the
default). However, since extending battery lifetime, meaning the runtime from one full charge
of the battery, is an important goal of energy management for mobile devices, we do need to
establish some basic assumptions about the battery resources we aim to conserve, recognizing
they simplify a complex topic.
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The rated capacity of an n-volt battery is characterized in amp-hours (Ah). For example,
one battery for the author’s laptop is rated at 10.8 V, 4.4 Ah. The very simplest (and commonly
used) model implicitly assumes that the voltage is constant and that the runtime is inversely
proportional to the current drawn. This views a battery as a fixed pool of energy that is drained
at the rate determined by power consumption.

In reality, there are many more parameters that could be included in a battery model,
including chemistry type, operating temperature, age of the battery, number of discharge/charge
cycles it has experienced, and discharge patterns. Voltage does not remain constant. In fact,
voltage dropping below a specified “cutoff” threshold is what defines battery depletion. The
voltage of a battery under steady load decreases with a slope that accelerates as it approaches
this cutoff. However, the voltage level can temporarily recover with intermittent rest periods.
During discharge, electrochemical reactions consume the active material near the electrodes.
A rest period allows the chemicals in the cell to diffuse and restore the concentration of
active material at the electrodes. This feature has motivated efforts to explore the benefits of
bursty discharge patterns (Chiasserini and Rao 1999). In the case of lithium-ion batteries,
the voltage is fairly stable until near the end where it drops rapidly. Next, the deliverable
energy capacity is not really a fixed quantity but depends on the discharge rate. Ideally, a
10 Ah battery discharged at 5 A would last 2 h. However, at sufficiently high current loads,
the effective capacity and runtime may be significantly less than expected due to losses from
internal resistance. Thus, our 10 Ah battery discharged at 10 A might last only 30 min instead
of the hour predicted by the linear model. The simple linear battery model breaks down for
relatively high demands, but it can be reasonably applied for the lower range of discharge
current.

Opportunities to incorporate energy supply information in power management projects
exist because of the introduction of smart battery technology. A smart battery provides an
interface to exchange information about the condition of the battery with the operating system.
Such information may include the fully charged capacity, the present capacity, and the discharge
rate. It may also provide runtime estimates and notifications of various levels of low battery.
The interface also allows user setting of warning trip points. ACPI (Intel Corporation 2000)
includes a standardized smart battery interface and compatibility specifications for battery
manufacturers.

2.2 ENERGY METRICS
The choice of metrics to target for optimization reflects the goals of an energy management
project. The development of the system energy model in the previous section has already
described some of the features of the common metrics. Peak power (expressed in Watts)
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applies well to thermal problems. Average power (Watts) and energy (Joules) are often used
interchangeably to measure effectiveness in conserving energy for a particular usage scenario
or set of tasks. The workload assumptions are necessary since execution time is incorporated
into these metrics. Total energy consumption for a workload is often used to estimate battery
lifetime (hours), but the two are not perfectly related as shown in the discussion above of battery
capacity under stressful loads.

There are other metrics that have been proposed for evaluating the effectiveness of
power/energy management. Productivity metrics such as megabytes per Watt (MB/W),
MFLOPS/W, or transactions per Watt make the work accomplished (the unit of work defined
appropriately for the application) explicit in the metric. These are based upon the average power
consumed in performing the work units of interest.

The metrics discussed so far do not directly address the energy/performance tradeoff. It
is possible that improving energy consumption is being achieved at the expense of performance.
Capturing this tradeoff is the justification for a single, combined metric such as energy*delay
(usually specified without units). The advantage of this metric is that it imposes a penalty for
either high energy consumption or high latency. While it is not the most intuitive metric,
it serves a purpose by producing a single value that can be compared across many alternative
design points. Another approach to capturing the performance tradeoff is to consider the energy
metric, subject to quality of service (QoS) constraints. Examples include efforts to reduce energy
such that no deadlines will be missed in a real-time system or so the latency of an operation
will be bounded.

It is important to note the scope over which any of these energy metrics are being applied.
It is common in energy/power management studies of a single component to report energy
reductions for that component alone. For example, some of the earliest systems research on
power management focused on spindown policies for hard disk drives (see Chapter 3) and
reported simulation results on disk energy consumption. Saving energy for one component
may have a little positive effect or even a negative impact upon the overall system energy
consumption if higher power components become more active in response. These impacts may
not be evident in measurement studies limited to one part of a system.

There are additional metrics that capture the global energy use of an ad-hoc network of
mobile devices or a sensor network. For such environments, the battery lifetimes of individual
nodes are important not just for local performance but also in how they contribute to the overall
lifetime of the network. If just one node’s battery dies, but it happens to be the only node
that can forward messages to maintain connectivity between other nodes, then the network
fails regardless of the average remaining battery capacity throughout the network. So, metrics
such as time to network partition and variance in power consumption among the nodes are
important in these applications.
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2.3 MEASUREMENT AND TOOLS
In Section 2.1, we noted the need for measurement to calibrate system models of power/energy
use and to help identify promising problems where energy might be saved. Methods for
measuring or estimating energy use are also needed to experimentally evaluate proposed power
management solutions. This section addresses the common challenges and methodologies at
both stages of such a project.

2.3.1 Measurement Techniques
Designing experiments to measure power consumption in battery-powered mobile devices in-
volves a number of issues including the accessibility of the platform under test, the measurement
apparatus, the software to run during the tests, and the interpretation of the results. We begin
with an elementary review of measuring DC current, tailored to our application.

The basic method employed for measuring the power consumption of a mobile platform
is to connect a digital multimeter, reading current (denoted I , measured in amps, A), in series
along the wire between the device and its power supply, as illustrated in Fig. 2.8. The alternative
method is to measure the voltage drop across a resistor inserted in series with the power supply
and then to calculate the current in the circuit using Ohm’s Law (I = V/R). For a packaged,
off-the-shelf platform, which is often the desired target for performing a power profile, this
method yields the current drawn from the whole system in a fairly nonintrusive way. If the device

FIGURE 2.8: Multimeter in series with mobile device.
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is battery powered, it is best to remove the battery and substitute an AC–DC adapter to provide
a more stable power source. Then, the voltage can be assumed to be constant in calculating
the power from current readings (P = I ∗ V ). Otherwise, relying on batteries during the test
will introduce variability in the voltage supplied. Thus, with batteries as the power source, the
supply voltage should be monitored throughout the test. In addition, if the battery is charging
when the AC power supply is plugged into the device, the power measurements will reflect the
recharging as well as the power consumption the test is intended to capture. The requirements
of measurement apparatus for this level of study are modest. The desirable capabilities of a
multimeter include the storage of sample values, flexible triggering mechanisms, high sampling
rate, and an interface to a remote data collection machine.

An ideal situation is to have “self-contained” runtime energy estimation tools built into
the device. At the present time, the instrumentation embedded in batteries and available via
the smart battery interface of ACPI delivers inadequate detail for many measurement purposes.
The reporting is coarse grained both in terms of data units and in terms of frequency of samples.
There is work toward using processor hardware performance counters to track power-related
events and estimate power consumption on the fly (Bellosa 2000, Contreras et al. 2005, Joseph
and Martonosi 2001). Event counts are linked to a precalibrated power model to calculate power
estimates. The available hardware performance counters provide information about processor
and memory activity.

The method described thus far provides a single “external” point of measurement that
gives the power consumption of the entire platform. A harder challenge is to derive the power
consumption breakdown on a per-component basis. If one is fortunate enough to have access to
development boards or platforms designed for experimentation involving power measurements,
then probes can be inserted along the wires supplying power to individual components. Another
possibility is to disassemble a packaged device to isolate the power supply wiring for those
components that are not soldered directly onto the motherboard. Such an effort is described in
detail in Mahesri and Vardhan (2004).

Without intrusive access to the internal wiring of the platform, per-component power
consumption can still be found through indirect measurements. The indirect method of isolating
the power consumption of individual components is based on a subtractive technique. The whole
system is measured with the component of interest powered off or even removed, if possible,
to serve as a baseline. Then synthetic software benchmarks are run to drive the component
into all of its different power modes and the resulting measurements are subtracted from the
baseline to give the power consumption attributable to that component in each state. Patterns
artificially built into the current waveforms through the activity of the synthetic benchmark
(e.g., a synch pulse of high current) can delimit the sequence of measurements that corresponds
with the behavior of interest.
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FIGURE 2.9: PowerScope (Flinn and Satyanarayanan 2004) c© 2004 ACM, Inc. Reprinted by per-
mission.

Measuring power consumption with a more realistic workload presents other challenges,
especially in interpreting the results. The problem is how to associate the power consumption
results with the corresponding computational behavior. PowerScope (Flinn and Satyanarayanan
1999a, 2004) is an example of an energy profiling tool that solves this problem of synchronizing
traces of multimeter output and software profiling. The analysis phase attributes a percentage of
total energy use to specific processes and procedures. The system is based on statistical sampling.
The multimeter has an external trigger input and output and its clock controls the sampling. It
first samples the power consumption of the system under test, the profiling computer in Fig. 2.9,
and records the data on the data collection computer. Next, the multimeter toggles its external
trigger line, causing an interrupt on the profiling computer so that the system monitor will
record its execution state (program counter and process id). When that is done, the multimeter
is triggered to enable another power sample. An off-line analysis tool associates each power
sample with the process state samples and estimates energy usage in terms of constructs that
are meaningful to the programmer.

2.3.2 Energy Estimation by Simulation
Given the obstacles in extracting fine-grained power measurements under realistic workloads in-
stead of synthetic microbenchmarks, simulation is commonly used for evaluation. Coarse-grain
measurements can be used to validate the overall energy estimates of the detailed simulators.
There are two challenges in designing energy simulators: providing an accurate power model
of the system and accurate timing of the simulated system behavior. Both are needed to deliver
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energy results. Providing timing accuracy in a simulator has implications on its performance
and scalability.

One approach has been to leverage execution-driven, cycle-accurate simulators from
microarchitecture research and add power models to them. These include Wattch (Brooks
et al. 2000) and SimplePower (Ye et al. 2000) for high-end architectures, XTREM for the
Intel X-Scale (Contreras et al. 2004), and a simulator designed for embedded systems based on
the StrongARM processor (Simunic et al. 1999). These simulators focus on the processor at the
level of instructions or functional units, caches, and memory. The power models differ among
these simulators, but are focused on capturing low-level capacitance or switching activity in the
processor. The simulations based on these systems are accurate but slow.

The next level of abstraction incorporates more components of a complete computer
system (e.g., I/O devices) into the simulator and enables monitoring of the execution of the
operating system code as well as the application-level code. This motivates the development
of full-system energy simulators, building upon existing full-system simulators such as SimOS
(Rosenblum et al. 1997) and Simics (Magnusson et al. 2002). SimWattch (Chen et al. 2003)
integrates Simics, running as an instruction-level functional simulator, with Wattch to study
microarchitectures with the inclusion of operating system code. The functional simulator de-
livers simulation speed, handing off an instruction trace for cycle-level processor modeling to
Wattch. The tricky issues involve carefully handling the synchronization of the two simulators
to deal with speculation and exceptions. The power estimates have been restricted to those mi-
croarchitectural elements covered by Wattch, and I/O devices are not yet considered. SoftWatt
(Gurumurthi et al. 2002) employs the multiple models in SimOS for modeling the proces-
sor, memory, and disk at different levels of detail (i.e., timing resolutions and power models).
EMSIM (Tan et al. 2002) supports execution of Linux on an instruction set simulator of the
StrongARM processor and simulation models of memory and other peripherals, each amended
with Joule per cycle energy models. EMSIM has been validated against an Itsy evaluation
board.

The speed and scalability are concerns for simulations at higher levels of abstraction,
focusing on studies of I/O systems and networking. Again, the harder problem seems to
be in dealing with time appropriately rather than in providing the system power models.
File system research has depended on trace-driven studies using widely available trace data.
Separating time-dependent and time-independent activities is key to using file traces in the
Drive-Thru power simulator of the file storage hierarchy (Peek and Flinn 2005). This approach
preserves the significant timings (e.g., disk idle time) that affect the results while accelerating the
simulation speed compared to a simulation that accurately captures all timings. PowerTOSSIM
(Shnayder et al. 2004) is a simulator for TinyOS-based sensor nodes that deals with the CPU
timing issue by mapping basic blocks in the code executed by the simulation host machine to
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cycle counts in the corresponding code as compiled for the sensor mote. This allows accurate
estimation of the time that would be spent in active versus idle (low power) modes by the
simulated processor. Avoiding cycle counting during simulation runs results in lower overhead
and enhances scalability, a desirable feature for simulating multiple nodes of a large sensor
network.
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C H A P T E R 3

Management of Device Power States

This chapter begins by considering idleness and the challenges involved in detecting idle
periods. We focus on managing power state transitions for a single device, exploiting the idle
time offered by the access pattern for the device. We describe examples of policies that, given
a workload, answer the questions of when to power down to a lower power state and when
to power back up to a higher power state. Finally, we consider techniques for enhancing idle
periods in order to improve the behavior of transition-based policies.

3.1 IDLENESS DEFINED AND DETECTED
At the top level, dynamic power management is based on powering down unused hardware
until it is needed again. In Figs. 2.3 and 2.4 from Chapter 2, the idle time gap between the
completion of an operation and the next request is used to describe the breakeven point for
power state transitions to be beneficial. While the notion of idle time seems quite intuitive, some
types of devices introduce nuances in how to detect or even define when they may be considered
to be idle. Subtle differences in definitions may lead to novel opportunities to improve energy
management strategies based on power state transitioning.

For some devices, the intuition about when they are idle is not captured well by the
operational definitions that have been applied to them. One obvious example is the display.
Typical display power management schemes are governed by the lack of keystrokes and mouse
events, whereas the need for the display is determined by whether anyone is viewing the screen.
The mismatch between the user input and the purpose of the display is illustrated by the
familiar scenario of a display powering off during a lengthy discussion of a slide in a projected
presentation. In one demonstration of redefining idle time to better match the purpose of the
display, a low power camera is used to detect when no one is facing the screen (Dalton and Ellis
2003). In another example, there is no need to power the backlight when a sensor indicates
that there is sufficient ambient light for a reflective screen to work well.

The processor is intuitively idle when there are no useful instructions to execute, but
that can only be observed if the operating system does not fill the vacuum with idle processing
or gratuitous maintenance daemons. In addition, the notion of “useful” work by application
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software is fuzzy. For example, is a busy-wait loop for synchronization a lost opportunity to
exploit idleness of the processor? Just rethinking the standard definitions of when a device is
considered to be idle may lead to innovation.

It is fairly straightforward to define when there are no pending requests for read or write
operations directed to storage, ranging from cache to main memory to disks. However, this is
an area that illustrates how policy decisions made at another level of the memory hierarchy can
affect the requests seen at other levels. For example, changing the caching policy has an impact
on the pattern of gaps in the request stream seen at a lower level of storage. The idle patterns
are subject to change by interactions with different parts of a system.

For networking interfaces and devices, idleness is not purely a locally determined phe-
nomenon. It is clear when there are no pending outgoing messages. However, whenever the
radio is off and not connected to the network, it is not able to listen for attempts from the out-
side to communicate. This uncertainty about the possible arrival of incoming messages means
that the device cannot know whether it can be considered truly idle. This has been a major
complication in the power management of wireless radios.

Even when idle time is appropriately defined for the power management task at hand,
detecting the beginning and predicting the end of a useful gap may not be simple, in practice.
Different approaches to the problem of detecting idle periods have produced many of the
variations on power transitioning policies in the literature. We discuss the range of approaches
to this issue in the next section.

3.2 POLICIES FOR POWER STATE TRANSITIONS
There are a number of issues to address in designing a policy based upon power state transitions.
These include if and when to transition into a lower power state, when to power back up to a
higher state, what information to use in the policy decision, and how deep of a low power state
to enter when there are multiple states from which to choose.

3.2.1 Transitions Among High and Low Power States
The typical power management scheme in products currently on the market is to provide a
static threshold that may be either fixed or set by the user (usually specified in minutes) for
components such as the disk, display, and system hibernation. Once the device has been idle
(however that is defined for the component in question) for the threshold length of time, it
enters a low power state. This is depicted in Fig. 3.1, which shows the delay imposed by the
threshold before powering down and the on-demand transition back to the high power state.
Note that this differs from both Figs. 2.3 and 2.4 in waiting through the threshold and, from
Fig. 2.4, by not transitioning back up in anticipation of the next request.
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FIGURE 3.1: Threshold-based power state transition.

The underlying assumption of a threshold-based power transition policy is that observing
an idle period that exceeds the threshold value predicts that the idle gap will continue for as
long as the breakeven time; or the total tidle > tbenefit + tthreshold. Given the power state model
of a device and the distribution of idle gaps in a particular workload, it is feasible to choose a
good timeout value for a static threshold-based policy for that workload. Such a study was done
for hard disks with disk traces as a workload (Li et al. 1994) and found that the best threshold
values were on the order of seconds rather than the longer thresholds typically implemented.
Any such analysis is device and workload specific and any changes in the workload may call for
a different threshold value.

Adaptive rather than fixed thresholds can address varying workloads. The decision to
transition to the lower power state is still based on the idle time exceeding a threshold, but
the timeout value currently in effect is a result of adapting to the previously seen access
patterns. Many of the concepts related to dynamic management of device power states have
been introduced for spindown policies for hard disks. For example, Douglis et al. (1995)
propose an incremental threshold adjustment in reaction to the acceptability of the previous
spindown–spinup session. Acceptability is defined in terms of the ratio between spinup delay
and the idle time prior to the spinup. A spinup is deemed unacceptable, termed a bump,
when the ratio exceeds a user-specified parameter value (e.g., 0.02–0.2). The threshold may
be increased when a bump occurs and decreased when spinups fall into the acceptable range.
Thresholds are adjusted using either additive (αa , βa ) or multiplicative (αm , βm) parameter
pairs with the α value determining the increase and β determining the decrease. For example,
(αa = 2, βa = 1) increases the threshold by adding 2s on a bump and decreases it by subtracting
1s on an acceptable spinup whereas (αm = 1.5, βm = 0.5) multiplies the thresholds by the
appropriate factor.
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FIGURE 3.2: Histogram of gaps. Breakeven point calculated from device characteristics. Timeout is
selected from a set of candidate thresholds corresponding with bucket boundaries.

The adaptive threshold selection has also been formulated in terms of a sequential rent-
to-buy problem (Krishnan et al. 1999). The single rent-to-buy problem asks how long should
one rent a resource before buying it when it is unknown how long it will be used. In power
management, renting corresponds to remaining in the high power state for the threshold time,
while buying corresponds to transitioning to the low power state when it is unknown how
long the idle gap will be. The sequential rent-to-buy problem makes a series of such decisions
where each new threshold value is informed by the history of previously observed gaps. The
distribution of idle gap lengths is not assumed to be from a known distribution. The history of
prior idle times can be captured in a histogram, carefully designed with respect to the number
and sizes of buckets to ensure algorithmic efficiency.

Histograms of past idle times are widely used in dynamic power management (e.g. Anand
et al. 2003). Consider the example in Fig. 3.2 that shows a possible gap distribution from a
wireless network to illustrate how it can be used to determine an adaptive threshold. The
number of gaps that fall into bucket i are denoted by Ni . The upper boundary of bucket i
is bi (e.g., b2 = 75 ms). The breakeven time is based solely on device characteristics, namely,
the power state model of an 802.11 wireless card given in Table 3.1. The transition energy
cost, c , captures the latency and power costs of transitions down and immediately back up as
c = ph→l ∗ th→l + pl→h ∗ tl→h. The timeout is based on choosing the best candidate threshold
from the set consisting of bucket boundaries, bcand ∈ {b0, . . . , bm}, such that this timeout yields
the lowest energy consumption for this particular access distribution. The energy consumption
using threshold bcand is calculated as follows:

E(bcand) = phigh ∗

 ∑

i≤cand

(bi ∗ Ni ) +
∑

i>cand

(bcand ∗ Ni )


 + c ∗

∑
i>cand

Ni .
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TABLE 3.1: Power State Model of Orinoco Silver Wireless Card (Anand et al.
2003)

STATE OR TRANSITION POWER (W) TIME (MS)

High power—listening 1.21

Low power—idle 0.19

Transition down (h → −l) 1.19 260

Transition up (l → −h) 1.04 230

An on-line machine learning technique has also been used to choose a timeout value as
a function of the more recently observed disk activity (Helmbold et al. 1996). There remains
a need for better solutions for aging out old data in order to quickly adapt to changing access
patterns.

Rather than spend any amount of a timeout period in the high power state, single-value
prediction-based methods attempt to predict the duration of the upcoming idle gap (Hwang
and Wu 1997). When the gap arrives and its predicted duration is long enough, the device
immediately transitions into the lower power state. The prediction of the gap length can also
be used to transition back into the higher power, active state before the end of the gap and,
ideally, just in time for the arrival of the next request, as depicted in Fig. 2.4. Whether or
not this is an effective policy depends on the quality of the predictions that are made and
the cost of being wrong in either energy expenditure or added latency. Exponential averaging
of past gaps to estimate the next gap is the most commonly used technique. The overhead
of performing on-line prediction has to be low compared to the requirements of the device
it is used to manage. For example, prediction and decision-making for DRAM power state
transitions must be much more lightweight than it needs to be for disk spindown.

There is also a body of theoretical work attempting to frame the power state transition
decision as an optimization problem by modeling access patterns by known distributions (e.g.,
Simunic et al. 2000). Empirical studies of actual access patterns (e.g., Kotz and Essien 2005)
tend to call into question the fit and stationary assumptions of these models.

3.2.2 Transitions Among Multiple Power States
When there are multiple low power states, there is the additional question of how to select which
power state should be the destination for a transition. As discussed in Chapter 2, selectively
and incrementally powering down the electronics in a device can lead to multiple power states,
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FIGURE 3.3: Power state model for RDRAM, showing power consumption in each state and transition
times back to active mode.

each with different levels of power consumption, different transition costs, and different levels
of degraded performance. An example of hardware with multiple states is DRAM designed
for mobile devices (e.g., Rambus RDRAM, Intel Mobile-RAM) where the row and column
decoders, sense amplifiers, and clock signal generation can be selectively disabled. Figure 3.3
gives the power state model for the RDRAM memory device. Figure 3.4 illustrates power
transitions stepping through the full range of power states in the RDRAM chip, with thresholds
at each stage determining the next transition (ts is the threshold in the standby mode, tn is the
threshold in the nap mode). Servicing an access request is only possible in the active state, so
the memory must transition back into the active mode at the incoming request. Policies do not
necessarily step through all states. Developing a policy involves specifying which states to use
and what threshold values to use in each power state transition.

There has been experimental exploration of appropriate threshold-based controller poli-
cies for such power-aware memories with multiple states (Lebeck et al. 2000, Delaluz et al.

FIGURE 3.4: Stepwise power-down transitions for RDRAM.



MANAGEMENT OF DEVICE POWER STATES 29

FIGURE 3.5: Energy consumption for a five-state system. For each line, the slope is the power used
in that state and the y-intercept is the energy to transition up from that state. The thresholds between
states are shown at the intersections of lines forming the lower envelope curve (Irani et al. 2003).

2001). For the architectures and workloads considered, these studies suggest that stepping down
through all states sequentially is not the best choice, especially when caches act to filter the
memory references, creating longer gaps. Delaluz et al. (2001) proposes a very simple hardware-
based prediction scheme that estimates that the length of the next gap will be the same as the
last gap and jumps directly to the power state deemed appropriate for that prediction, with
results that show significant energy savings versus stepping through fixed thresholds. Taking a
more theoretical approach, Irani et al. (2003) propose a competitive algorithm for the problem
of determining a series of thresholds to step down through multiple low power states, requiring
no information on the access patterns as well as a histogram-based method collecting data over
a window of the last w idle periods. The algorithms throw out any power states that do not
appear on a “lower envelope curve” such as that shown in Fig. 3.5. For example, State 1 does
not contribute to the envelope, shown as a darker line.

3.2.3 Duty Cycling Modes
Regularly scheduled on–off duty cycling is an alternate way of exploiting the hardware power
states instead of explicitly making each transition decision based on detecting idleness. Duty
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cycling the radio is the basis of the power-saving modes of wireless MAC protocols. The power-
saving mode (PSM) in the IEEE 802.11 standard is built on top of the duty cycling of the
radio, adding a protocol to provide coordination between endpoints to maintain connectivity. In
PSM, a wired access point buffers data intended for the wireless network interface on the mobile
device and regularly sends a beacon to indicate whether data are waiting. The client system
periodically turns on its radio, on a static schedule, to listen for the beacon and goes back to sleep
if no data are waiting. The typical beacon period is 100 msec. The radio is turned on if there are
data to be sent from the mobile client. If the mobile client is receiving a transmission, its radio
remains on for the duration of the transmission until it is complete. Otherwise, the wireless
interface duty cycles at a fixed rate, regardless of communication patterns. The alternative to
PSM is the continuously aware mode (CAM) in which the radio remains on and listening all
the time.

Although there are significant energy-saving benefits to employing PSM, negative in-
teractions affecting performance have been observed when communication patterns become
constrained by the beacon timing. Adaptive policies have been proposed to vary the sleep-
wakeup cycles in response to the traffic patterns. One policy resembling threshold-based
transitions is to switch into CAM when the access point holds more than one packet for
the mobile client and to switch from CAM to PSM after a timeout period with no packets
received.

Self-tuning wireless power management (STPM) (Anand et al. 2003) adaptively switches
coarse-grain power modes back and forth between PSM and CAM, basing its transition
decisions on information about the transition costs (which can be significant because of the need
to inform the access point), the base power consumption of the mobile computer, hints from the
application on intended usage, and observed network access patterns. The use of application
hints is proposed because the intermittent connectivity of network power management can
interfere with automatically detecting true traffic patterns. One of the criteria for switching
from PSM to CAM is the expectation, based on a hint, of a forthcoming transfer that is larger
than a breakeven size. Another is the expectation, based on past access patterns, of a long enough
run of individual transfers that together can justify being in CAM. Transitioning from CAM
to PSM involves an idle time estimation and cost/benefit calculation. The histories of idle gaps
and active runs are captured in histograms.

The bounded slowdown protocol (BSD) (Krashinsky and Balakrishnan 2002) increases
the sleep time between wakeups that check for data buffered at the access point as a function of
the increasing elapsed time since the mobile client’s request in request-response traffic patterns.
This essentially defines a TCP connection as idle, from the mobile client’s perspective, follow-
ing an awake period with no response to a client request. The device then begins intermittent
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listening with the growing cycle time. BSD bounds the increase in RTT by a protocol
parameter p.

In the realm of mobile, ad-hoc and sensor networks, there has been significant effort in
developing energy-aware protocols to ensure connectivity while allowing the radio to be cycled
on and off. These protocols generally establish a schedule for neighboring nodes to turn on their
radios, listen for and exchange data, and then turn them off again to save battery resources.
Nodes may also disable their radios throughout the remainder of transmissions they have
overheard, but which are not intended for them (e.g. PAMAS (Singh and Raghavendra 1998)).
Establishing a schedule involves the solution to other problems such as time synchronization,
route discovery to determine neighbors, and mutual agreement on the schedule.

3.2.4 Granularity of Transitions
Our discussion of power state transitions has focused primarily on timing. Some technologies
also offer opportunities to take advantage of spatial granularity of power management. In
power-aware DRAM, the ability to fully exploit the available power states benefits from having
portions of the memory to which power transitions can be independently applied and that can
be distinguished from each other based on activity levels (see Section 3.3.2).

Another example involves emerging display technology. The idea of zoned backlighting,
proposed in Flinn and Satyanarayanan (1999b), would partition the screen into zones that could
be selectively illuminated and content could be adapted to exploit the zones effectively (e.g.,
reducing the size or moving images to span fewer zones). In displays made of organic light
emitting diodes (OLEDs), the power consumption of each pixel is independent and related to
its brightness and color. Color may be viewed as a form of an implicit power state in contrast to
illumination. This fine-grained control offers opportunities to adapt the energy consumption
to different usage patterns incurred by different applications and user preferences. In Iyer
et al. (2003), a characterization of typical display usage was performed in a user study involving
a range of test users on laptop and desktop machines. The results show that, on average, only
about 60% of the screen area is used by the “window of user focus”. Results show differences
among users and among application workloads in terms of display needs for space and for
qualitative features such as range of colors (e.g., Photoshop has more stringent requirements
than pop-up alert messages). The proposed solution is called Dark Windows and it selectively
changes the brightness and color of screen areas outside the active window. Modifications to
the background screen areas that are considered include partially dimming, fully dimming,
changing to gray scale, and changing to the target OLED technology’s most power-efficient
green color as depicted in Fig. 3.6.
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Dark Windows – Brightness Control

Background half dim

Original Interface

Background grayscale Background greenscale

Background fully dim

FIGURE 3.6: Dark Windows (Iyer et al. 2003).

3.3 MODIFYING REQUEST PATTERNS TO INCREASE
IDLE PERIODS

Given a power management scheme that will react to idle time by manipulating the power
states of the device, there exist opportunities for higher level systems to reshape the patterns of
those idle periods to make the power state transition policy more effective. We present several
examples that demonstrate this theme.

3.3.1 Caching and Prefetching
Caching is a fundamental systems technique to improve performance. It is applied at various
levels of the storage hierarchy, by copying actively used data into a higher level of memory.
The cache filters out requests from the request stream that can be served from the faster cache
and reduces the number of accesses that pass through to the slower lower level storage. This
effect naturally increases the interarrival times of requests that are handled by the lower level
and creates idle opportunities that may be exploited by dynamic power management. However,
the design of the cache has typically not been optimized for the sake of effective power state
transitions and any energy benefit is usually just a side effect of the primary performance goals.
The implementation details of the caching layer may even work against power management.
For example, the typical periodicity of the OS daemon that writes back dirty disk blocks from
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the disk cache is frequent enough to reduce the risk of losing updates but can also frustrate
threshold-based disk spindown.

With an increasing emphasis on energy consumption, the redesign of caching policies
to facilitate power management is drawing attention. We discuss this issue in the context of
the operating system’s file buffer cache and disk subsystem. The problem is to design policies
for the buffer cache that shape the disk request stream in order to create beneficial blocks
of idle time for spinning down the disk and to amortize power state transitions across oper-
ations. Efforts in this area (Weissel et al. 2002, Zeng et al. 2003, Papathanasiou and Scott
2004) have addressed many aspects, including application interfaces. For now, we consider the
techniques for making the buffer cache management more compatible with disk power man-
agement within the operating system without using any knowledge about the applications (cf.,
Chapter 6).

Deferred writes are one of the ways in which the cache filters the disk request stream.
Multiple write operations to the same file block are applied to the cached copy and not written
back to disk immediately. Thus, a sequence of file system writes can be absorbed into a smaller
number of disk operations (ideally one), with a window of vulnerability when the dirty cached
block and block on disk are inconsistent. The delay of the write-back tries to balance the risk
of losing data from volatile memory and the ability to coalesce as many individual file writes
as possible into a single disk write. For example, the default settings for the timing of the
Linux update daemon (pdupdate) specify that it run every 5 s and flush dirty buffers that are
older than 30 s. Unfortunately, a modern disk drive is likely to have a breakeven time that
is greater than 5 s. This introduces a third factor, the disk spindown characteristics, into the
balancing act required in the writeback policies. Among the changes that have been proposed
is simply increasing the allowable age of a dirty buffer that forces a spinup for writeback.
For example, there is now a “laptop mode” for Linux that can be configured to increase the
maximum lifetime of dirty buffers in cache whenever the machine is running on battery. This
weighs the tradeoff between power consumption and risk of data loss in favor of energy savings.
It is also useful to be more opportunistic about an already spinning disk by writing back all
dirty data before the disk spins down, even if a dirty block is officially too young and is likely
to still be accumulating file writes. This affects the tradeoff between power and the number
of disk requests, potentially generating rewrites for a dirty block that was still actively being
written. While having explicit information about an impending spindown (e.g., Advanced
Configuration and Power Interface) may be convenient, these deferred writes only need to tag
onto other disk operations that have triggered a spinning up of the disk. Figure 3.7 illustrates
the effect of disk-friendly modifications of the update function. The power consumption
between spikes of activity and the overall energy use are significantly reduced with energy-aware
caching.
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FIGURE 3.7: Default Linux writeback activity (top) and energy-aware update daemon (below).
(Weissel et al. 2002) Reprinted by permission.

The cache also filters out file read operations that reuse a block between the time a disk
operation fetches the block into a buffer and a replacement operation evicts it. File prefetching
and replacement policies influence the remaining cache misses. The traditional designs for
these policies have focused on performance goals, and revisiting these techniques to encourage
better idle times for power management is warranted.

Prefetching for energy involves solutions to the problems of identifying which blocks to
prefetch, determining how many such blocks are needed at a time, allocating buffers for them,
and deciding when to initiate the disk operations for prefetched data. Aside from simple, but
commonly used, sequential access patterns, information from the application via hints can be
valuable in selecting which blocks to prefetch (Papathanasiou and Scott 2004) and we return
to this topic of using application-specific knowledge in Chapter 6. It is instructive to relate
the problem of prefetching for energy to hoarding for disconnected operation in mobile file
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systems (Kistler and Satyanarayanan 1991, Kuenning and Popeck 1997). In both cases, the
objective is to provide enough cached data for the application to use while the file system is
unavailable—whether it is because of disconnection or to enable long idle periods for disk
spindown. This argues for aggressive prefetching when the disk is spinning to satisfy the need
for data during long idle gaps, assuming free buffers can be acquired. This bursty activity is
one difference from traditional, performance-related prefetching where data can be smoothly
transferred into the buffer cache with the goal of a block arriving prior to the first request for
it. In Papathanasiou and Scott (2004), the authors argue that it is better to speculatively fetch
many data blocks when the disk is active, even including some data that the applications may
never use if doing so can help avoid on-demand read requests that require the disk to spin up.
They propose an epoch-based system with an active phase for prefetching and flushing dirty
buffers and an idle phase. The idle phase ends when predictions indicate that it is time to
initiate a new active phase to avoid a miss, a demand miss actually occurs, or the system needs
memory resources.

Even if each application process can prefetch the data, it needs to survive long periods
without access to the disk, the disk may not get the opportunity to spin down unless the disk
I/O of all the processes can be roughly synchronized. One role that buffer allocation can play
is to globally coordinate the I/O needs of running processes so that they all have run out of
cached data or have filled their empty buffers at approximately the same time. A solution is to
allocate the number of buffers to a process based on the process’s rate of data consumption and
data generation in the buffer cache (Zeng et al. 2003, Papathanasiou and Scott 2004).

An energy-aware replacement algorithm can also influence the disk idle periods by
changing the capacity or eviction misses that appear in the disk request stream. Most work
on this topic targets multiple disk systems in data centers rather than the mobile computing
environment. However, there is a discussion of the issues in the context of a single disk off-line
replacement algorithm in Zhu and Zhou (2005). The idea is to evict the block that has the
lowest energy penalty to refetch if and when it is requested in the future. Intuitively, if the
evicted block is requested close in time to a cold miss that requires the disk to be active, then
refetching it has less of an energy cost than if it triggered the disk spinup by itself. The tradeoff
is that this replacement strategy does not minimize the number of misses, but rather the energy
cost of the misses. There is as yet no on-line realization of this idea.

Traffic shaping by a server proxy that is communicating with a wireless device is another
example that can be viewed as a buffering solution designed to create more usable or predictable
idle periods for the client to make effective use of its radio power states. For example, in
Chandra and Vahdat (2002), popular formats for multimedia streaming are considered and the
limitations of client-side policies to predict gaps in packet arrivals are discussed. Consequently,
the authors propose an architecture to shape multimedia packet transmissions at a proxy within
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FIGURE 3.8: Policies to shape traffic in order for packets to arrive at clients at predictable intervals
(Chandra and Vahdat 2002).

the network infrastructure—either at the media server or close to the wireless access point.
Figure 3.8 illustrates the effect of a traffic shaping proxy transmitting media packets with
appropriate per-client delays to enable radio energy savings without causing performance loss.
One of the caveats of this technique is the need to counteract a media player’s adaptations to
packet reception delays.

3.3.2 Memory Management
In Section 3.2.2, we focused on the memory access gap distribution experienced by power-
aware DRAM devices. However, the overall pattern does not necessarily affect every memory
module the same because of finer grain control, as suggested in Section 3.2.4. The operating
system can play a role in modifying the memory access patterns directed to independently
power-managed memory nodes. We use the term “node” to indicate the smallest granularity
over which power state transitions can be applied (e.g., a chip or a bank). Our first example
illustrates a collaborative approach between the OS and the memory controller. Power-aware
page allocation (Lebeck et al. 2000) tailors the content of memory nodes to complement
the lower level power state management. A sequential first-touch page placement policy is
effective in grouping virtual pages of an application into a set of physical pages on a node so
that they are transitioned together. Pages with similar activity characteristics are clustered in a
small footprint instead of being scattered across several memory nodes that might otherwise be
sufficiently idle to go into a lower power state. This involvement of the OS greatly improves
the energy*delay results over those achieved with the hardware power state transitions alone. In
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Chapter 6, we describe compiler optimizations that rearrange data structures of an application
to accomplish a similar goal within the user code.

Power-aware virtual memory (PAVM) (Huang et al. 2003) assigns the responsibility
of making the transition decisions solely to the OS and also employs virtual to physical page
placement decisions. The idea is to allocate the pages mapped into a process’s address space
to a preferred set of memory nodes so that the active set of pages has a small footprint.
When a context switch occurs, the active nodes of the next process to run are transitioned
to the standby power state and those of the previous process are transitioned down to the
nap mode. The transition latency can be hidden by the other overhead of the context switch.
This is implemented in the Linux kernel with a NUMA-like memory management layer to
do the preferential physical page allocation. The initial experiences with the system revealed
how some of the traditional OS optimizations for space and time, namely shared dynamically-
loaded libraries (DLLs) and the file buffer cache for reuse of file blocks, interact with the new
goal of compact process footprints for power management. One lesson is that DLLs must be

FIGURE 3.9: Power-aware virtual memory page placement (source of data: Huang et al. (2003)).
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handled separately to prevent those pages from being pulled into the various preferred sets
of the processes sharing them and being spread all across memory. The solution proposed
is to use sequential first-touch allocation with DLL pages. The second lesson concerns the
scattering impact of file reuse through the buffer cache. The proposed solution is to migrate
pages to better placements in preferred nodes. This is accomplished by a migration daemon and
incurs additional overhead that must be kept limited (e.g., avoiding migration for short-lived
processes). Figure 3.9 shows the distribution of pages across memory nodes for four processes
under the original allocation and the more compact per-process footprints with the policy
enhancements. Experimental results show significant energy reductions with both the basic
system and the improvements. A similar system is discussed in Delaluz et al. (2002).

3.4 SUMMARY
In this chapter, we have shown that the idle periods in the request patterns for a device that are
offered by the workload are what allow policies to be developed that can exploit the low power
states available in the hardware. Threshold-based policies are common, with the timeout values
as the key parameters. Adaptive threshold selection can respond to observations of the recent
history of idle gaps.

The proactive manipulation of access patterns is a powerful approach to make power state
transitioning more effective. Techniques that change the temporal and spatial characteristics
of the accesses include caching, prefetching, scheduling, and placement. The basic idea is to
lengthen idle gaps and amortize transition overhead among a cluster of requests. The goal
is essentially to manufacture bursty access patterns to complement power state management
policies that detect idleness.
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C H A P T E R 4

Dynamic Voltage Scheduling (DVS)

This chapter discusses scheduling policies that exploit dynamic frequency and voltage scaling in
processors. The strength of scaling frequency and voltage together is that it provides quadratic
energy savings with only a linear performance cost, as explained in Section 2.1.3. Table 2.2
gives several examples of processor chips with voltage scaling capabilities. In current practice,
these features are used in simple policies such as setting voltage and frequency based on whether
the power source is AC or battery. However, the potential for fine-grained policies that exploit
dynamic voltage scaling lies in using the slowdown to squeeze out processor idle cycles that
might occur at the end of a task when it is run at the maximum processor speed, replacing those
idle cycles with continuous processing at a lower speed and voltage level.

There is an interesting contrast between the goal of continuous processor activity and
the bursty usage behavior that benefits devices which transition into nonoperational low power
modes considered in Chapter 3. This tension between the smoothing behavior of dynamic
voltage scheduling (DVS) and the bursty behavior for power state transitions is especially
important when it affects the interactions among multiple components that use these different
capabilities in their energy management. Changing the speed of the processor will have an
impact on the generation of requests for other hardware resources. Such interactions, both
positive and negative, are considered in Chapter 5.

In comparison to the detection of and reaction to idle time in managing low power
states, the scheduling of frequency and voltage changes is inherently predictive. Once idle-
ness has been observed, it is too late to extend the immediately preceding work into that
idle space. The predictions must provide enough information to guide the major DVS deci-
sions about when to adjust frequency and voltage as well as to what settings they should be
changed.

The presentation begins by considering the quality of service (QoS) criteria that formulate
what is an acceptable tradeoff between energy consumption and performance and the impact
of workload assumptions on defining that tradeoff. We then consider the impact of the system
model on the solution space. We discuss the major categories of DVS solutions and issues
involved in combining them into a working system.
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4.1 WORKLOAD AND QUALITY OF SERVICE CRITERIA
The simplest case for DVS is depicted in Fig. 2.7 from Chapter 2 with two instances of a
periodic task that has a static processing demand. In the second execution of the task, a lower
clock frequency/voltage combination can fill the period with active processing, resulting in
energy savings. This example is oversimplified in a number of ways (e.g., the trivial match
between the fixed load and the frequency settings); however, even this simple case exposes the
fundamental question of DVS: When and how is it acceptable to delay the completion time of a
task for the sake of saving energy? The assumption in this example is that the periodic behavior
corresponds to deadlines and finishing a task before a deadline has no particular value to the
application. In this case, DVS can save energy without a significant impact on the performance
goals.

The DVS problem is often formulated as an optimization of energy consumption, subject
to performance constraints that can justify slowing down the processor. Assumptions about
what is known about the workload determine what constraints are appropriate. It becomes a
different problem depending on whether the workload is categorized as hard real time, soft
real time, interactive, or a general-purpose mix. If it is a real-time workload, then is the worst-
case execution time (WCET) known deterministically or probabilistically? Are there multiple
programs that are time sharing the system and what are their priorities? These workload
distinctions, to a large degree, provide the organization of this chapter. Interval-based solutions
(Section 4.3) assume practically no a priori knowledge about the workload and target general-
purpose workloads that do not have well-defined deadlines. The performance constraints are
generally based on utilization of the processor falling into a desired range or relative to the
maximum speed setting. Real-time workloads (Section 4.4) offer much more information
including WCET, periods, and deadlines. The QoS constraints are based on missed deadlines
and the degree to which missing deadlines may be acceptable (e.g., no missed deadlines or a
bound on the fraction of deadlines missed). Complications arise when the processing demand
of a task is variable rather than fixed so that even an optimal speed-setting solution based
on WCET does not preclude idle time remaining prior to the deadline. In non-real-time
workloads, deadlines can still be exploited as a justification for degraded performance if they
can be automatically derived (Section 4.5). For example, acceptable performance degradation
for interactive processes can be defined in terms of delays of user interface events (serving as
deadlines) that may be perceived by users.

4.1.1 About Time and Idle Time
The frequency scaling aspect of DVS affects the definition and monitoring of the QoS perfor-
mance constraints. Characterizations of the work performed by tasks need to be expressed in
a frequency-independent metric (e.g., cycle counts or execution time at the processor’s highest
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speed setting). Thus, it is better to talk about worst-case execution cycles (WCEC) rather than
WCET that depends on the frequency setting in effect. Deadlines, periods, and monitoring
intervals are expressed as real time.

Implementation implications of DVS on timing involve knowing how “time” is reported
by the system. Different hardware provides different mechanisms and the developer needs to
be aware of whether the timer data accessed depend on the current speed or are invariant to
frequency changes. Some timers even stop advancing whenever the processor is in a sleep mode
which may hinder the measurement of processor idle time.

Figure 2.7 can also be reinterpreted to illustrate an important distinction between “hard”
and “soft” idle times, as articulated in Weiser (1994). Not all idle time is equally amenable
to being squeezed out by slower processing. Suppose the idle time shown in Task 1 actually
represents waiting for the delivery of data in response to a disk read request that was generated
at the end of Task 1, and Task 2 is simply the processing of that data on its arrival. If Task 1
were slowed down, it would only delay making the I/O request and do nothing to reduce the
disk latency. Soft idle time involves waiting for an independently initiated event, such as the
start of a new period for real-time tasks or the arrival of an external request. Low processor
utilization is not necessarily indicative of a great DVS opportunity.

4.2 SYSTEM MODELS OF FREQUENCY/VOLTAGE SCALING
Another factor that distinguishes DVS problem statements is where they aim on the spectrum
between an ideal system model and actual hardware and, if a solution initially assumes an
abstract model, whether there is a mapping into discrete settings. The continuous model only
makes sense when the quality of load predictions is high enough to support seeking an optimal
speed/voltage setting, favoring those types of workloads with more information available.
Figure 4.1 shows a least square fitting of the form a ∗ f 3 + b for the discrete settings for the
Intel XScale processor, a particularly close fit for commercial processors.

Consider an example in which it has been determined that a periodic task’s optimal
speed setting (calculated as its WCEC/period) is 700 MHz, a choice that is not available
on the XScale. One question is how to map that desired setting into the discrete settings
offered by the hardware. Selecting a single hardware setting for the task implies rounding up to
800 MHz to avoid missing a deadline, but that will use more energy than necessary. If we
allow one adjustment point during execution of the task, the execution time can be evenly
split between 600 MHz and 800 MHz or evenly split between 400 MHz and 1000 MHz.
This is another oversimplified example that illustrates several points. There are two alternatives
presented here that average to the desired frequency. The best choice for switching at the
midpoint of the period is the combination that will minimize the energy consumption. This
is the pair of immediately adjacent settings to the optimal value. In this example, pairing 600
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FIGURE 4.1: Abstract power function versus discrete settings for the Intel Xscale (Xu et al. 2004) c©
2004 ACM, Inc. Reprinted by permission.

and 800 MHz consumes an average of 650 mW whereas pairing 400 and 1000 MHz consumes
an average of 885 mW. If the optimal setting is based on the WCEC and the task is likely
to complete earlier than its worst case, then the ordering of the two discrete settings matters.
It is better to use the slower speed first and, hopefully, finish before executing for very long
(or at all) at the higher speed. In this example, the timing of a single transition is assumed to
be halfway through the task execution. In general, the number and timing of transitions is a
nontrivial problem that yields various solutions. This discussion illustrates a common approach
in the literature of, first, solving the problem for a continuous power model and, then, mapping
the solution onto the hardware. The alternative is to solve the problem directly for the realistic
discrete model. The nuances of this issue are discussed further in Section 4.4.1.

Other issues of the system model include whether the costs of making speed and voltage
changes are considered and whether the idle processor state is accurately captured. Transition
latencies on current voltage scaling processors can be significant (e.g., 75–150 µs for AMD pro-
cessors), limiting how often a practical solution can afford to make such changes. Formulating
the problem as one of determining the optimal setting for each cycle of a task’s execution leads
to solutions that cannot be implemented in the current technology, but may apply if transition
costs are reduced in the future.



DYNAMIC VOLTAGE SCHEDULING (DVS) 43

Much of the research in DVS considers only the energy consumption of the processor.
One aspect of the system model that matters in the effectiveness of DVS for the whole system is
how frequency scaling affects other components that are not scalable. In particular, scaling the
processor speed when the speed of external memory does not scale changes the relative memory
latency. In addition, there are potential interactions between DVS and the request patterns to
other components that trigger dynamic power management based on idle gaps (Chapter 5).

4.3 INTERVAL-BASED APPROACHES
Interval-based DVS algorithms assume no information about the workload or modifications to
user applications. The problem is defined as scaling the frequency and voltage in order to reduce
energy consumption while keeping performance, typically measured as processor utilization,
within acceptable bounds. The general approach in interval-based schemes is to break execution
into fixed length intervals and to use the utilizations measured in past intervals to predict the
utilization for the next interval and adjust the frequency (and corresponding voltage) to bring
the performance toward the desired range. Solutions in the literature differ in several ways:
(1) how the performance goal is precisely defined, (2) how much of the history is used for
prediction, (3) whether performance is monitored on a system-wide or a per-task basis, and
(4) how and when the processor clock is changed.

The most commonly used metric in interval-based DVS is processor utilization, the
percentage of nonidle time during the interval. This may be captured in terms of active cycle
counts or busy times recorded at each clock interrupt. Thresholds on utilization define the
desired range of performance. Users may provide input on what is acceptable. Early research
(Weiser 1994) used a measure of the amount of work (excess cycles) carried over from a
previous interval when the processor ran too slowly during an interval to finish it; however, such
information is not available for practical implementations. The interval length is important
in balancing responsiveness to changes and the ability to observe longer-term patterns. Most
studies that propose an operating system-level solution assume an interval in the 5–100 ms
range.

An interesting alternative (Childers et al. 2000) uses an interval-based approach at the
architectural level (with 2 µs interval) to adapt to variations in instruction-level parallelism
(ILP). The metric is a target rate for MIPS that can be achieved by increasing the clock speed
during phases of lower ILP (e.g., branch instructions) and scaling frequency back when high
ILP can produce the desired MIPS rate. A hardware counter giving the number of committed
instructions determines the observed MIPS rate.

The classic interval-based DVS algorithms first predict the utilization for the next interval
and then change the clock speed if the predicted value is above or below the thresholds. The
simplest algorithm is to use the utilization of the previous interval to predict the next one, called
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PAST. Another common algorithm is an exponential moving average of previous intervals with
a weight parameter. This is often referred to as AVGN where N is the weight. The weighted
utilization at time t, Wt = (N ∗ Wt−1 + Ut−1)/(N + 1).

Based on the prediction, the speed settings may be changed. Grunwald et al. (2000)
considered three policies: One Step, which increases or decreases the clock frequency to the next
discrete speed level, Peg, which sets it to the highest or lowest speed, and Double, which doubles
or halves the speed. Weiser (1994) increased or decreased the frequency by a percentage of
the maximum speed. Alternatively, a particular setting can be calculated directly based on a
prediction of the required work in the forthcoming interval.

Figure 4.2 shows a simplified example of the standard predictors using the One-Step
speed adjustment. The workload is shown as the utilization under the maximum frequency and
all idle times are assumed to be soft idle times. This establishes how many active cycles of work
are required by this workload. The starting frequency is assumed to be 600 MHz for the two
predictors, PAST and AVG2. The thresholds are 95%, signifying that a prediction greater than
that triggers an increase in speed to the next discrete level and 85% such that a prediction
lower than that triggers a decrease, with the goal of raising utilization. In this example,
1000 MHz is the top speed and 400 MHz is the lowest speed considered. For PAST, the
prediction in the table below each interval in the graph is the utilization from the previ-
ous interval. In response, PAST starts by decreasing speed because the prediction is lower
than 85% and then, when the utilization reaches 100%, it triggers successive speed in-
creases until the demand drops. The prediction table for AVG2 gives the weighted utiliza-
tions with N = 2 for each interval. AVG2 slowly incorporates the increased utilization but
the predictions remain below the lower threshold until interval 6, with the speed staying at
the lowest level. Finally, the predictions cross the upper threshold at interval 9 and cause
speed increases. By this time, the workload demand has increased as well, keeping utilization
high.

Other prediction algorithms are possible and several have been proposed with promising
simulation-based results. However, experimental evaluations of interval-based DVS based on
implementation (Grunwald et al. 2000) have made a case that this approach suffers because
of the limited workload information available. It is difficult, in general, to strike a balance
between responsiveness to changes in the workload, incurring the overhead of many frequency
transitions, and sluggish reaction to processor demand when longer history is incorporated.
Irregular workloads are a particular challenge. Intervals may be useful in conjunction with other
approaches (Section 4.5). For instance, the Vertigo system (Flautner and Mudge 2002) offers
a hierarchy of speed-setting policies, with each level using different workload characteristics.
At the bottom of their set of complementary choices, there is a “perspectives-based” interval
scheduler, with adjustable history windows capturing utilization on a per-task basis. If higher
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FIGURE 4.2: Classic interval predictors and one-step speed adjustment. Thresholds 85% and 95%.
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level policies have better workload information with which to make decisions, they will override
this interval scheduler.

4.4 DVS FOR REAL-TIME TASKS
Real-time task systems offer a great deal of information about the workload that DVS algorithms
can exploit and, thus, have been the focus of a wealth of research in this area. A single real-
time task is characterized by its release time, R, deadline D, and WCEC. The worst-case
execution time is the WCEC divided by the maximum frequency: WCET = WCEC/ fmax.
Periodic tasks have regular arrival times such that release times of the task instances correspond
with their deadlines and periods. In particular, the ith invocation, Ti , of a periodic task with
period P occurs at Ri = (i − 1) ∗ P with deadline Di = i ∗ P . Since an instance may not
require its WCEC, the actual number of execution cycles is denoted as AC and its execution
time is AC/ f .

Deadlines may be hard or soft. It is unacceptable to miss hard deadlines. With soft
deadlines, there is usually a requirement limiting the proportion of deadlines missed or the
severity of miss. WCEC and AC also provide a terminology for idle time. The idle time
that exists when the period exceeds WCEC/ fmax is called static slack. The difference between
WCEC/ fmax and AC/ fmax gives us dynamic slack. The goal of real-time DVS solutions can be
viewed as eliminating slack.

In systems of multiple real-time tasks, the scheduler must prioritize task invocations so
that deadline guarantees are met. The problem assumes a set of periodic tasks, {T1,. . . ,Tn},
with the j th invocation of task Ti denoted by Ti j . Well-known real-time schedulers in-
clude Earliest Deadline First (EDF) and Rate Monotonic (RM). EDF bases priorities on
which task has the most imminent deadline. RM assigns priorities based on the periods of
the tasks. Schedulability tests guarantee that a task set can meet its deadlines. For exam-
ple, a task set has a feasible schedule under EDF if �1≤ j≤nWCETi /Pi ≤ 1. Both EDF and
RM have been used as the basis for adding frequency setting to the real-time scheduling
decision.

There are two major classes of real-time DVS research: intratask and intertask. The
intratask problem involves adjusting clock frequencies during the execution of a task. There
are several motivations for intratask speed adjustments including simply mapping an optimal
solution for reducing static slack based on WCEC onto discrete settings as discussed earlier
and exploiting dynamic slack when actual executions require less than WCEC.

The intertask problem involves speed changes on a per-task basis (at dispatch or context
switch) when scheduling multiple tasks. The question is one of sharing slack that accumulates
as tasks finish early with other tasks scheduled to run in the future so that they will have more
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resources to finish by their deadlines and can afford to slow down. This focuses on redistribution
of slack among tasks.

4.4.1 Intratask DVS
The question addressed by intratask approaches is how to deal with dynamic slack within the
tasks that cause it by not always requiring the specified worst-case execution. One approach is
to model the distribution of actual task demands and schedule a speed schedule based on the
probability of slack. Another approach is to monitor the progress being made by a task execution
to detect slack and do a midcourse correction in the speed settings. Both approaches involve
the problem of determining the number and placement of transition points during execution
where the frequency and voltage adjustments may be performed.

The first approach recognizes that the actual execution cycles of tasks are often less than
the WCEC. AC is a random variable with a cumulative distribution function, F(x), that gives
the probability that AC ≤ x. For hard real-time tasks, F(WCEC) = 1. The problem is to
devise a speed schedule that reflects the distribution of AC in order to avoid the creation of
slack. This involves first deriving the distribution. The Processor Acceleration to Conserve
Energy (PACE) project (Lorch and Smith 2001) derives a theoretical formula based on the
task’s F(x) that expresses the speed schedule as a continuous function of time. Applying
this would require that the speed of the processor is capable of increasing at every cycle of
execution which is not possible in real machines. Thus, this schedule must be approximated
with a piecewise constant schedule with a limited number and granularity of transition points.
PACE proposes using quantiles of the distribution as transition points. The distribution of
task work requirements is not usually known a priori and must be estimated by observing
the history of similar task executions. Various sampling methods are explored in Lorch and
Smith (2001) and the distributions are estimated from the samples either by assuming a known
family of distributions (e.g., gamma) and estimating its parameters or by using a nonparametric
method.

A similar project, GRACE (Yuan and Nahrstedt 2003), uses histograms to capture the
AC distribution and bin boundaries to serve as the transition points. We illustrate the technique
with an example from GRACE since it is somewhat simpler to describe. In Fig. 4.3, we present
an example of a cumulative distribution of cycle demand and its estimation by a histogram of
r bins with the count in bin i being the number of task instances that use between bi−1 and bi

cycles. Figure 4.4 shows a speed schedule and how it affects three different tasks. The speed
schedule has a scaling point every 106 cycles at which point it changes to the designated speed.
Thus job1 which uses only 1.6 × 106 cycles experiences only one scaling point at cycle 106

whereas job3 which needs 3.9 × 106 cycles passes through all three scaling points during its
execution.
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FIGURE 4.3: CDF of cycle demand and histogram bins (Yuan and Nahrstedt 2003) c© 2003 ACM,
Inc. Reprinted by permission.
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Computing the piecewise constant schedule using the bin boundaries {b0, b1, . . . , bm}
as transition points, with s i as the size of the ith bin (i.e., s0 = b0; s i = bi − bi−1, 0 < i ≤ m),
involves solving the following optimization problem:

minimize
∑

0≤i≤m
si (1 − F(bi )) f 2

bi

subject to
∑

0≤i≤m
(s i ∗ 1/ fbi ) ≤ P .

The goal is to find a speed for each bin boundary, fbi , that minimizes the energy consumption
while satisfying the execution time constraint given by the task’s period, P . The speed for the
s i cycles between subsequent bin boundaries is uniform.

Practical PACE (PPACE) (Xu et al. 2004) also follows the probabilistic approach,
but assumes a more realistic power model than PACE and GRACE. PPACE provides a
polynomial time approximation algorithm that accounts for the nonzero power costs for an idle
processor, charges for making transitions, and directly targets the discrete frequency/voltage
levels supported by real processors.

The second intratask DVS approach is based on monitoring the progress of a task during
execution and detecting, early enough to respond with speed changes, whether the task is on
track to finish well before its deadline. The problem is often articulated as redistributing the
dynamic slack created during a task’s execution to the remaining processing by the same task,
thus enabling a frequency and voltage reduction. Redistributing slack may also go in the other
direction, essentially borrowing unrealized slack from the predicted future execution path to
start slowly and pay it back later in the task’s execution with higher frequencies if misprediction
threatens the task by missing its deadline. The problem becomes how to evaluate a task’s
progress relative to its worst case during execution to uncover potentially useful dynamic slack.
What runtime information can be found to suggest that the AC for the current task will be
less than WCEC? This generally requires knowledge about the program, often provided in the
form of annotations (hints or explicit actions) inserted by the compiler.

To illustrate this approach, we present an operating system solution that uses relatively
lightweight compiler hints to convey relative progress (AbouGhazaleh et al. 2006). It breaks the
task into segments such that the speed and voltage can be reconsidered for each segment. The
granularity of segments affects the overhead of scaling speed and voltage. The OS controls this
overhead by determining the interval between periodic interrupts that trigger speed adaptation.
These interrupts that serve as opportunities for speed and voltage scaling are called power
management points (PMPs). In handling a PMP, the OS reads a memory location (WCR)
that holds the most recently written value for the worst-case remaining cycles. This value
has been calculated by an instrumentation code called a power management hint (PMH) and
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FIGURE 4.5: Power management hints, PMH (inserted by the compiler) and power management
points, PMP (invoked by OS) (AbouGhazaleh et al. 2006) c© 2006 ACM, Inc. Reprinted by permission.

reflects the progress of the task. The OS uses WCR and the remaining time until the deadline to
compute a new speed. There are two schemes, one that redistributes any slack proportionally to
all remaining segments and one that greedily allocates it to the next segment. The proportional
formula is fnext = WCR/(D – current time − transition overhead).

Prior to execution, the compiler inserts PMHs throughout the program code to update
the WCR value based on the path of execution being followed. For example, if the executing
task takes a branch that bypasses a long path, the WCR exposes the resulting dynamic slack.
The PMHs are spaced to ensure that at least one PMH runs before the OS takes each PMP
interrupt. The placement of PMHs in the code is guided by offline profiling for the cycle counts
of code regions and the structure of the program control flow. The PMHs just leave the WCR
value for the OS to use in PMPs rather than directly causing scaling actions.

Figure 4.5 shows the PMHs (five points denoted by short dark bars) encountered along
a particular execution path for the task. These are spaced to occur between OS interrupts for
PMPs (denoted by hashed bars at regular intervals). When the OS takes a PMP interrupt, it
reads the latest value of WCR. This value reflects progress at the most recently executed PMH,
but not the task’s progress at the actual time of the interrupt. For example, at the third PMP
interrupt, the OS reads the value WCR = wcri and it never sees the value wcri−1 written earlier
in that interrupt interval.

4.4.2 Intertask DVS
The problem of intertask DVS is to add the dimension of speed scheduling to the real-time
scheduling for a task set of periodic tasks. The goal is to save energy without missing deadlines.
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FIGURE 4.6: Task set and scaling for WCET under EDF and RM (Pillai and Shin 2001) c© 2001
ACM, Inc. Reprinted by permission.

The frequency adjustments are performed when tasks complete or are dispatched rather than
during execution. Most work is based on modifying the EDF or RM scheduling algorithms.
Figure 4.6 gives an example of a task set scaled for EDF and RM schedulers.

The first step is to consider scaling when all tasks require their WCEC. For the system
model of continuous speed adjustments, the problem is to find a constant scaling factor to be
applied to all tasks that will not violate the QoS constraints. It is assumed that the lowest speed
for which the task set is schedulable yields the lowest energy consumption. Recall that we define
WCET as WCEC/ fmax. Let α (0 < α ≤ 1) represent a scaling factor such that the optimal
frequency is fopt = α ∗ fmax. For EDF, the problem becomes finding the smallest α such that
the task set is schedulable according to the modified test:

∑
1≤ j≤n

WCETi/Pi ≤ α.
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Thus, for the task set in Fig. 4.6, the schedulability test yields 3/8 + 3/10 + 1/14 ≤
0.75. In this example, the frequency is rounded up to one of three discrete settings, with scaling
factors of 0.5, 0.75, and 1.

The schedulability test for RM is similarly modified with the scaling factor as follows:
for all Ti in the task set ordered by period length, {T1, . . . , Tn|P1 ≤ . . . ≤ Pn},

∑
1≤ j≤i

(�Pi/Pj� ∗ WCET j ) ≤ α ∗ Pi .

This accounts for the number of instances of Tj that will precede the execution of Ti . Thus, for
Task 3 in our task set and a scaling factor of 0.75, the test fails with 13 > 0.75 × 14.

The next step is to consider dynamic slack in scheduling and frequency scaling of the
task set. In the intertask DVS problem, the dynamic slack is shared among the task set such
that if a task finishes before using its WCEC, then the slack can benefit those tasks following
it in the schedule up to some point. There are a rich variety of techniques for estimating and
redistributing dynamic slack. For a greedy solution such as the dynamic reclaiming algorithm
(DRA) (Aydin et al. 2004), the beneficiary is the next task. For the cycle-conserving algorithms
(Pillai and Shin 2001), the set is rescaled as if the WCET of the task that just finished early was
actually AC/ fmax until the task’s next release when the scaling computation reverts to using its
original WCET. We describe DRA and the cycle-conserving version based on EDF (ccEDF).

In ccEDF (Pillai and Shin 2001), the scaling computation is performed on each task
release and task completion. The computation is based on the static scaling for EDF, rewritten
as �1≤ j≤nUi/Pi ≤ fi/ fmax, where fi is the lowest of the available discrete frequencies that
satisfies the inequality. Ui are set to WCETi /Pi on each new release of task Ti and set to
ACi /( fmax*Pi ) on task Ti ’s completion. Then the scaling is recomputed based on the updated
U values. The dynamic slack created by instance j of task i , Ti j , is essentially spread across a
window from completion of Ti j to release of Ti j+1. Figure 4.7 shows ccEDF applied to the task
set of Fig. 4.6, but with the actual execution times instead of the worst case.

DRA (Aydin et al. 2004) is also based on EDF. The idea behind DRA is to track
the actual execution relative to a canonical schedule Scan that is the scaled schedule based on
WCEC. Whereas early task completion in Scan represents dynamic slack, the benefit available to
the next task is represented by the earliness of its dispatch relative to Scan. This is not necessarily
the entire amount of dynamic slack if, say, the next task had not yet been released when the
previous task completed early. Thus, the earliness is the quantity of unused computation that
can be applied toward lowering the frequency for the next task. The actual schedule is never
allowed to fall behind the canonical schedule in this scheme. The problem then becomes how
to estimate earliness efficiently. The algorithm is based on a data structure that models the
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FIGURE 4.7: Example of cycle-conserving EDF (Pillai and Shin 2001) c© 2001 ACM, Inc. Reprinted
by permission.

progress under Scan for comparison with the actual progress and is updated on task arrivals and
completions.

There are also solutions that are much more aggressive about anticipating that dynamic
slack will arise, scaling optimistically, but ensuring deadlines are met by reserving enough full
speed capacity to handle the worst case. These schemes do get ahead of the canonical schedule
but can recover at high speed. For example, the look-ahead algorithm based on EDF (Pillai
and Shin 2001) plans in reverse EDF order to defer work as late as possible in the schedule
(betting that it will not be needed), thus reducing the number of cycles that must be allocated
early and can be done at lower frequency.

4.5 TOWARD THE GENERAL-PURPOSE ENVIRONMENT
While the earliest work on DVS focused on interval schedulers and no knowledge about the
applications, the information available for a real-time workload has been attractive and effective
in developing DVS solutions. Deadlines have been a convenient rationale for performance
slowdown. In order to move toward DVS schemes that can support a more general-purpose
mix of applications, some researchers have proposed automatically inferring deadlines in non-
real-time processes based on interactive behavior or communication patterns (Lorch and Smith
2001, Flautner et al. 2001).

The first category of behavior that appears amenable to automatic deadlines is the inter-
active episode triggered by a GUI event such as pressing the keyboard or mouse. The associated
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task set is tracked through the chain of communicating processes initiated by the GUI event.
The end of the episode is defined as when all of these tasks are done and their data consumed.
The deadline for an interactive episode is defined as the perception threshold that is typically
considered to be around 50 ms. There is evidence from human–computer interaction (HCI)
research indicating that interactive users will not detect performance degradation, say from
lowering the clock frequency, below this perception threshold.

Other OS-observable communication patterns may suggest episodes with implicit dead-
lines that can be exploited for frequency scaling. Periodic episodes show little variation in run
length. Producer–consumer episodes define the producer’s deadline based on when the con-
sumer needs its data. The producer can be slowed down to produce that data just in time. These
techniques involve tracking on a per-process basis.

Since there are different solutions targeted to different classes of application, a system
designed to support a general-purpose environment must either choose the lowest common
denominator solution and sacrifice any extra knowledge that may be offered by an application
or else it must find a way to mix and match a set of scheduling algorithms. The latter is
the approach proposed in Vertigo (Flautner and Mudge 2002). Vertigo offers a mechanism
called the policy stack for installing different performance-setting policies and an interface to
specify how to blend their independent decisions. The implementation described in Flautner
and Mudge (2002) demonstrated the perspectives-based interval scheduler at the bottom of
the stack and one using deadlines based on UI events at the top. The middle layer provides a
place for specialized policies to be developed and deployed in the future. The authors argue that
the multiple policies compensate for their individual weaknesses. The question of how such an
architecture for incorporating multiple interacting policies will actually function seems to be
open for further exploration and there are some current efforts in this direction (Gurun and
Krints 2005).

4.6 SUMMARY
In this chapter, we have described various approaches used to dynamically schedule the fre-
quency and voltage settings for the processor. The majority of effort in this area has focused on
real-time workloads that provide information such as deadline requirements that can be used
to define slack times and justify slowing down the execution. Variations on DVS techniques
include intratask algorithms that make scaling decisions during execution of a task and inter-
task algorithms that distribute dynamic slack among a real-time task set. The importance of
knowledge about the workload for effective DVS is emphasized in the attempts to automatically
infer deadlines in non-real-time application domains such as interactive episodes. There appears
to be a tension between the DVS strategy of running “slow and steady” and the bursty patterns
of behavior favored for devices employing low power modes. This is an issue we consider in the
next chapter.
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C H A P T E R 5

Multiple Devices—Interactions and
Tradeoffs

While the majority of work in energy management for mobile computing has focused on a
single component at a time and the savings in consumption by that device, this chapter discusses
the interactions and tradeoffs among the power management policies of multiple devices. There
are both negative and positive implications in considering multiple devices. We illustrate how
the power management on one component of a system may have a negative impact on overall
energy consumption or motivate policy changes for another device. Opportunities exist in
systems that make choices among alternative devices on the basis of energy consumption (e.g.,
remote versus local computation, storage on flash versus disk). Finally, we introduce research
efforts that focus on whole-system energy management.

5.1 IMPACT OF DEVICE ENERGY MANAGEMENT
ON OTHER COMPONENTS

In reporting energy savings of a voltage scaling processor under DVS, it is often acknowledged
that stretching out execution time may require other subsystems to consume more energy by
remaining in their active states longer. Changing processor frequency can also change the
timing of I/O requests generated by the running program. Slowing the speed does not address
idle cycles that are caused by blocking I/O. These types of interactions can obviously dilute the
benefits of managing one component in isolation.

In particular, the interaction between memory and voltage-scaled processors is one area
that has been explored (Martin and Siewiorek 2001, Grunwald et al. 2000, Fan et al. 2003).
These interactions can complicate the simple system model that assumes performance is pro-
portional to frequency. In that model, the lowest frequency and voltage combination is assumed
to always deliver the most energy savings. This leads to speed-setting solutions with the goal of
determining the lowest speed that satisfies the quality of service (QoS) requirements. However,
memory speed does not scale along with the processor. Memory bandwidth becomes relatively
more important at the higher end of the processor’s frequency range. For applications with
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high cache miss rates, memory accesses may limit the ability of frequency increases to deliver
the expected performance for meeting a deadline. For example, consider an intratask dynamic
voltage scheduling (DVS) solution (e.g., the speed schedule in GRACE (Yuan and Nahrstedt
2003) as presented in Fig. 4.4) that starts at a low speed and speeds up at scaling points as task
execution continues. The high speed settings at the latter scaling points may not be able to
make up for the slow start if memory limitations arise to throttle performance expectations.

If the memory technology on the system can go into a low power state during the slack
time of a periodic task, then memory energy costs may dominate processor energy savings at the
lowest frequency settings where that slack is eliminated. The “sweet spot” for energy savings of
the DVS processor/memory combination may be at an intermediate frequency that has enough
slack to allow the memory to use its lower power mode while still reducing processor energy
relative to its maximum frequency/voltage level. Figure 5.1 shows this effect. This figure adopts
a variable voltage processor model based on Intel XScale and memory technology based on
Mobile RAM (275 mW in active mode, 75 mW for standby, and 1.75 mW for power-down).
The “naı̈ve” power-managed memory controller policy puts the memory into power-down
during slack times. The total lines in the figure show the energy consumed by memory added
to CPU energy. The best point for the energy consumed by CPU with naı̈ve memory is not
the lowest frequency setting but rather 200 MHz, violating the simple model. The “aggressive”
memory controller uses a threshold-based policy to transition into lower power states for fine-
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FIGURE 5.1: DVS and memory energy. Naive memory goes into a low power mode when the processor
is idle. Aggressive memory does fine-grain transitions during execution. Total refers to memory + CPU
energy.
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grain access pattern gaps throughout task execution. In this case, memory energy consumption
remains a small contribution to the total over the entire frequency range.

Interactions have an impact on the design of power management policies. As discussed
above, the speed-setting algorithm must take memory bandwidth into account. On the other
hand, DVS has an impact on the distribution of idle time gaps that may be used in determining
thresholds for power state transition policies as described in the example illustrated by Fig. 3.2.
At different frequency settings, the same workload characteristics produce different gap his-
tograms and, therefore, different optimal threshold values for transitioning to the lower power
state. Thus, the interaction with DVS adds another factor to the dynamic power management
policies of other system components such as network and I/O devices.

5.2 ENERGY-AWARE ALTERNATIVES
One of the potential benefits arising from jointly considering the energy management of
multiple devices on a system is the ability to “play off” one device against another. If there are
several different ways to achieve a particular functionality, the system can choose the one that
saves the most energy based on conditions at the moment. In this section, we consider examples
involving alternatives for computation (e.g., local versus remote execution), storage (e.g., disk
versus flash), and networking (e.g., 802.11 versus Bluetooth).

5.2.1 Computation Versus Communication
One example of trying to exploit a multiple device tradeoff is dynamically determining whether
a computational task on a battery-powered wireless platform should be computed locally or
transferred to a remote server for processing. From the point of view of the mobile computer,
this is a tradeoff between using its battery power for the local processor or using power for the
radio to communicate with the server. Presumably, the resources on the mobile device can sleep
while the remote server is busy with the computation.

Whether or not remote execution can actually save energy on the mobile device depends
on a number of factors. The first consideration is whether the task demands enough computation
to justify sending the work off the platform. This may involve assessing whether the computation
is well suited to the local processor (e.g., whether there is support for floating point operations).
The second issue is how much communication is required to find an accessible compute server,
send the request, send the input data, and retrieve the final results. This gives rise to a range
of assumptions about where the code for the computations and where the data files reside. For
example, if it is assumed that the mobile computer is already participating in a distributed file
system, then the communication cost involves maintaining consistency of updated file copies.
However, the network file system allows the mobile device to avoid shipping entire files for
each remote execution request since they would already be available to the server. The final
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consideration is how effectively the mobile platform can exploit a low power state while waiting
for the response and how well it can predict when it is the right time to wake up to get the results.
Deciding whether a particular task at a particular time can benefit from remote execution is a
challenging problem.

System frameworks have been proposed to support this dynamic local versus remote
execution tradeoff (Rudenko et al. 1999, Flinn et al. 2002). Resource monitoring and prediction
are the key differences in these systems. The common features include a distributed file system
with support for consistency with file replicas on the mobile platform as well as on the server
infrastructure. This removes some of the on-demand data transfer that might be associated with
a remote process invocation. There is also a code library of programs that have been registered
and installed on the server as remotely executable services. This avoids code migration for every
request and provides a database for storing per-process execution history. The gathering of
history and development of models for predicting future demand are areas in which solutions
differ—from occasional relearning the power costs of a process to developing models that
track the task’s use of several resources. The decision making is based on this learned history
of demand. Spectra (Flinn et al. 2002) incorporates current resource availability of local and
remote CPU load, local and remote file cache state, and network characteristics into its decision
making and selects the option that maximizes the user’s utility function.

5.2.2 Storage Alternatives
Local versus remote file storage is another example of a tradeoff, but the design space becomes
even richer when multiple local storage devices are possible, each with their own properties
and power state models. For example, a mobile platform may support a hard disk drive,
flash memory, and various removable memory devices (e.g., USB memory, microdrive card)
in addition to the wireless network that provides access to remote storage. The most energy-
efficient option for storing data may depend on the present power state of devices (e.g., whether
the disk is already spinning or requires a spinup). Exploiting the heterogeneity of storage choices
in the design of a file system for the mobile computer involves reinterpreting the notion of a
storage hierarchy. The hierarchy is not static when storage devices have low power states,
when network variability affects access to remote storage, and when removable storage devices
temporarily disappear from a working system and even reappear elsewhere. This requires a
more adaptive system model with online monitoring of the current state.

These are some of the issues addressed by the Blue File System (Nightingale and Flinn
2004). BlueFS is the first file system implemented for mobile computers with heterogeneous
storage devices and an emphasis on energy efficiency. BlueFS is designed for a traditional file
system workload. It replicates data across multiple storage devices on the mobile computing
platform in the form of persistent file caches and supports disconnection on the storage device
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granularity in contrast to the platform granularity in file systems designed for mobility and
weak connectivity. The primary copy resides at a file server.

The multiple device benefit is realized by directing file read operations to whatever is
currently the lowest cost storage option. For example, if the hard drive is not spinning and
network connectivity is strong, the low cost option may be remote storage; however, if the local
disk is already spinning, the read may be directed to the disk. The system performs monitoring
to maintain a running estimate of the current access time to each storage option and tracks the
power state of each competing storage device. The ability to choose among devices from which
to read implies a “read any, write to many” strategy to ensure that the desired data are available
at each of the multiple storage options.

The “read any, write to many” scheme also implies that there will be many more
write operations. The additional writes must be carefully managed so the energy savings by
reads are not cancelled by the energy consumed to replicate the data across multiple stor-
age devices. To accomplish this, writes are aggregated in a per-device buffer so that power
state transitions can be amortized over a number of write operations for greater energy ef-
ficiency. Updates to the primary copy result in callbacks to invalidate cached copies on a
per-device basis that are queued during disconnections, which are interpreted as states such as
hibernation.

BlueFS addresses an important problem of coordinating multiple devices, each with
its own dynamic power management based on observing request patterns for that individual
device. The problem arises when a request is directed to the currently lowest cost device,
although another of the alternatives might have been preferred if it had been in an active power
state at the time. For example, if the disk is not spinning, a read request may be sent to remote
storage via the wireless interface. Suppose this request is the first in a run of requests that could
justify the disk spinup costs and make the disk the better choice. However, the disk power
manager is normally not aware of the emerging access pattern because the requests are being
diverted to the wireless interface. BlueFS uses ghost hints (Anand et al. 2004) to address this
problem of unseen requests from the disk’s point of view. Ghost hints capture the opportunity
cost when a device was in the wrong power mode to be initially chosen, but might have been
the ideal device otherwise. So, when the disk power manager receives enough ghost hints to
justify the power state transition, it spins up the disk and, when the disk is ready, the request
stream can be redirected to it. Figure 5.2 illustrates a scenario where the disk was not spinning
but the network was active at the beginning of the request stream, initial requests are accessed
over the network, a number of ghost hints trigger a disk spinup operation, and the network
accesses hide the latency of the spinup operation. This latency hiding overlap capability is an
additional advantage of multiple devices that can provide the same functionality with a request
stream dynamically switched between them.
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1) Network accesses

2) Ghost hints issued 3) Disk spins up

Network

Disk

4) Disk accesses begin

5) Network transitions to PSM

FIGURE 5.2: Initial network access hiding spinup latency and ghost hints triggering spinup (Nightin-
gale and Flinn 2004).

5.2.3 Networking Alternatives
Choice among alternatives can also be applied to wireless network communication. Mobile
devices such as PDAs and Smartphones are being equipped with multiple wireless interfaces
that offer different capabilities. For example, devices supporting Bluetooth (for short range
access), 802.11 WiFi (for local area communication), and GPRS (for wide area access) are
currently on the market. The radios of these technologies differ significantly in power con-
sumption, range, and bandwidth. Several projects have explored the possibility of exploiting the
characteristics of multiple heterogeneous radios to reduce the energy consumption of wireless
communication.

One of the widely recognized problems of wireless networking is that, while transmitting
messages typically consume the most power, it is listening for incoming transmissions that
may or may not arrive that actually consumes more energy (using lower power but for longer
durations). Wake on Wireless (Shih et al. 2002) uses a lower power radio just as a wakeup
channel to eliminate the need for the higher power radio to expend energy on listening. The
lower power radio detects a signal indicating data are waiting to be delivered and wakes up the
higher power radio to receive the data. The lower power radio does not need to support high
bandwidth since it is not intended to actually carry data.

A mobile platform configured with both Bluetooth and WiFi wireless interfaces can
transfer data on either radio and offers a choice between multiple devices able to serve in
essentially similar roles. The idea is to allow dynamic switching back and forth between het-
erogeneous radios as conditions change to favor the characteristics of one over the other.
Table 5.1 shows the different capabilities of specific examples of these radio technolo-
gies. Idle power shown in the table is the low-power, duty-cycled, listening mode for each
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TABLE 5.1: Diversity of Radio Characteristics (Power as Reported in Datasheets)

RADIO RANGE BANDWIDTH TRANSMIT IDLE POWER
TECHNOLOGY POWER

802.11 100 m 11 Mb/s 990 mW 264 mW
(Netgear MA701)

Bluetooth 10 m 1 Mb/s 81 mW 5.8 mW
(BlueCore3)

technology—sniff mode for Bluetooth and PSM for WiFi. Notice that WiFi has the advantage
of bandwidth and range, whereas Bluetooth has the advantage of low power.

The first requirement in realizing this concept is a mechanism that enables seamlessly
switching a channel between interfaces. The second step is to discover effective policies for
deciding when it is worthwhile for energy consumption to invoke a switch.

The mechanism needed for switching an IP channel between networking interfaces
involves localized rerouting. One proposed scheme for localized network communication among
neighbors is Contact Networking (Carter et al. 2003). Its goal is to provide all the support for
connectivity among nearby nodes including neighbor discovery, localized naming, on-demand
interface binding, channel management, and local routing. It uses link-layer awareness to
provide lightweight discovery, rapid link failure detection, and optimizations that conserve
resources. The architecture puts Contact Networking on the boundary between the link and
network layers. Each node is uniquely identified by a global routable IP address (GRIP) that
is simultaneously configured on all the node’s interfaces, making the choice of interface into a
routing problem.

Given the availability of multiple network interfaces and the mechanism to change a route
from one to another, the next step is to come up with policies that decide when to switch up to
a higher power/higher performance interface or down to a lower power/lower performance one
in order to achieve energy savings. The CoolSpots project (Pering et al. 2006) is an investigation
of some of the factors informing policies on a mobile device equipped with both WiFi and
Bluetooth interfaces and a demonstration of the energy benefits of employing such policies. The
goal is to reduce power consumption by appropriate choice of interface without compromising
the needs of applications within a CoolSpot-enabled region as illustrated in Fig. 5.3.

Policies running on the mobile device must decide two things: when to switch up from
the Bluetooth interface to WiFi (the Bluetooth radio remains on) and when to switch down to
Bluetooth and turn off the WiFi radio. The process involves monitoring the network conditions
that trigger the switch, activating or deactivating the WiFi interface, and notifying the base
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FIGURE 5.3: CoolSpot-enabled region. Bluetooth access points inside a WiFi hotspot (Pering et al.
2006) c© 2006 ACM, Inc. Reprinted by permission. Courtesy Intel Research.

station. A switch incurs latency and energy overheads that may negate any benefit in the case of
a poor policy decision. Several switching policies are considered. The bandwidth-based policy
switches up or down based on the observed bandwidth crossing the same threshold in either
direction. Since it is difficult to pick a static bandwidth threshold when channel capacity can
change because of factors related to mobility, two other policies are proposed that explicitly
measure capacity using a round trip time metric. The first of these capacity-based policies uses
capacity to switch up to WiFi (e.g., RTT greater than 750 ms), but uses a static bandwidth
threshold to switch down to Bluetooth. The second policy uses the same capacity-based criterion
to switch up and a dynamic bandwidth threshold to switch down (the bandwidth at the time
of the switch up is used as the threshold).

These policies are experimentally evaluated with a variety of benchmarks, various tuning
parameters, and different locations away from the base station. The results confirm that the
bandwidth-based policy has trouble with changing channel characteristics. Explicitly measuring
capacity proves to adapt better. Averaging over all the benchmarks, the switching policies
saved energy over the always-on WiFi with a small increase in latency. For streaming video
applications, the dynamic capacity policy saves from 40% to 92% of the energy used by the
fully active WiFi interface. Compared to using only Bluetooth across all the benchmarks, the
switching policies performed significantly better in time with smaller energy savings (70–75%
savings versus 85%).

5.2.4 Platform Tiers
The next step is to envision an integrated architecture that offers choices for computation and
storage among several computing platforms with different power and performance character-
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istics, packaged in one mobile device. The goal is to use the lowest power platform that can
deliver the required functionality for the application. This is the idea being explored in the
Turducken project (Sorber et al. 2005), focusing on applications that need to maintain local
consistency with external data sources (e.g., an up-to-date view of email for the client residing
on the mail server). The target is the energy used to periodically wake up a high power device
just to check for updates.

The Turducken design is a hierarchy of platforms such that each tier is capable of waking
up the tier above when the higher level tier is in a suspended state. All tiers share a common
battery and communication links. Each tier contains its own independent processor, memory,
and persistent storage system. There may be multiple radios or a single shared wireless interface.
The user interacts with the device as a laptop (the superior tier), although any particular task
can be distributed among tiers and executed by the most appropriate tier. High power tiers
that are not needed to perform a task may go to sleep. Figure 5.4 shows the Turducken
architecture.

A prototype of this architecture has been constructed and the energy savings measured
with several data consistency applications. In the prototype, the tiers are still physically separate
devices including a laptop, a PDA, and a sensor node. These heterogeneous platforms are
shown in parentheses in each tier in Fig. 5.4. The lack of integration means that there are
extra parts that could be eliminated (e.g., multiple displays). However, this prototype allows
testing with the design concept. Three applications have been developed: time synchroniza-
tion, web page caching, and email synchronization. Experiments have been done with three
variants of the prototype: the base case of the laptop as a stand-alone device, a two-tier sys-
tem combining the laptop and the sensor node, and the three-tier system that includes the
PDA as a middle tier. Figure 5.5 summarizes some of the results with stacked bars showing
the breakdown of power used by each tier in active and suspended states. Note the energy
savings of the three-tier model. The two-tier version suffers from the overhead of the Stron-
gARM suspend mode. These results show that the Turducken concept has the potential
to dramatically extend the battery lifetime compared to a standard laptop for this class of
applications.

The problem of distributing applications across tiers is an area that needs more attention
for such architectures. In the experiments with the Turducken prototype, the applications have
been tailored to the heterogeneous processors. There is currently no way to develop transparent
software that can migrate tasks among tiers on a more dynamic basis.

5.3 PUTTING IT ALL TOGETHER—WHOLE SYSTEMS
The operating system resides in a unique position within a system where it can observe the
resource demands of the mix of applications launched on the platform as well as the activity
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FIGURE 5.4: Three-tier Turducken architecture (with platforms used in prototype) (Sorber et al. 2005)
c© 2005 ACM, Inc. Reprinted by permission.

of the multiple hardware components as they consume power in their operation. This gives
the OS a system-wide perspective on balancing the demand and supply of energy. Thus, the
goal of the ECOSystem (Energy Centric Operating System) project (Zeng et al. 2003, 2005)
is to explicitly manage energy as a first-class operating system resource and to understand the
interactions with other resource management within a device. The project has been framed
by two choices: to assume a general-purpose workload of applications that are not necessarily
energy aware and to target the energy goal of achieving a specified battery lifetime. The challenge
is to manage battery energy across time, distribute power among all the hardware devices that
share the resource, and allocate energy fairly among multiple competing application demands.
This creates a need for accurate accounting of energy use.
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FIGURE 5.5: Turducken energy results (Sorber et al. 2005) c© 2005 ACM, Inc. Reprinted by permis-
sion.

A new abstraction, “currentcy” (merging the words “current” and “currency”), is intro-
duced to give energy a concrete representation within the system that allows it to be tracked,
allocated, and scheduled like other OS resources. Applications can be granted a currentcy
budget that can be spent to gain access to hardware resources that consume power on behalf
of that application. The overall framework is illustrated in Fig. 5.6. In step 1, the over-
all allocation of currentcy per epoch of time is calculated from the target lifetime and re-
maining battery capacity. In step 2, the overall currentcy allocation is distributed among the
competing tasks. Finally, in step 3, currentcy is deducted from a task’s account as devices
consume energy to meet the task’s demands. Each step offers a variety of policy options to
explore.

This currentcy framework has been implemented in the ECOSystem prototype, manag-
ing the CPU, hard disk, and wireless interface of a laptop via their use of energy. The prototype
includes an embedded power model for each managed device, a task-tracking infrastructure
to attribute device activity to the appropriate tasks, and device-specific payback policies to
charge tasks for their energy consumption. Experiences with currentcy allocation policies in
the prototype have considered ways to reclaim unused currentcy and have shown the need to
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FIGURE 5.6: ECOSystem currentcy flow (Zeng et al. 2005).

align scheduling policies to provide opportunities to actually spend allocations once they are
made. Scheduling tasks on one hardware component, such as the CPU, can be based on their
overall rate of currentcy expenditure, even when the currentcy is spent on other devices. Thus,
currentcy can be used to coordinate scheduling of various components. Experimental results
with the ECOSystem prototype show that the target battery lifetime goal can be met and
energy efficiency can be improved by employing system-wide management.

There are other whole-system energy management frameworks that have been devel-
oped including Nemesis (Neugebauer and McAuley 2001) and the Grace Project (Yuan
and Nahrstedt 2003). Nemesis is also designed to meet a battery lifetime goal, charg-
ing processes for overuse when power consumption gets too high in order to encourage
them to adapt their behavior. Grace is designed for a workload of soft real-time mul-
timedia, taking an optimization approach to maximizing QoS, subject to battery lifetime
constraints.

5.4 SUMMARY
In this chapter, we have expanded the focus from managing the energy consumption of a single
device to consider interactions among multiple devices. We argue that these interactions may
affect the underlying assumptions of the individual device policies.

Multiple devices may offer an opportunity to provide services in a more energy-efficient
way depending on the current resource conditions. The idea is to provide different alternatives
that are capable of supplying essentially the same functionality to the application at lower
energy cost. One key to being able to effectively exploit the tradeoffs involving choices among
multiple devices is good resource monitoring to determine what the network conditions and
device power states are at the time.
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Finally, we have discussed frameworks to manage the energy of an entire system that
capture the dependencies among energy use of the various components on the platform. Ac-
counting is again an important aspect in these frameworks. The whole system perspective
elevates energy to a first-class resource to be managed by the operating system. In the next
chapter, we broaden the view further to incorporate application-level knowledge into power
management decision making.
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C H A P T E R 6

Energy-Aware Application Code

At several points in the previous chapters, we have alluded to projects that included a role for
the applications to provide more information to assist the system in making power management
decisions. Users may also want to respond with alternative behavior when energy supplies are
low. In this chapter, we focus on techniques for application-level involvement. We first look
at simple hints that the applications can provide about their usage patterns. Then we discuss
actions that the applications can take to adapt their resource demand. Finally, we consider
some challenges for application development and algorithm design specifically aimed at greater
energy efficiency. The shaded portions of Fig. 6.1 show the new features covered in this chapter
and provide context for the discussion.

6.1 APPLICATION INTERFACES TO ASSIST SYSTEM-LEVEL
POWER MANAGEMENT

6.1.1 Usage Hints
In previous chapters, we have seen that one of the major challenges to power management
has been the problem of accurately predicting the future resource demands of applications

FIGURE 6.1: Application involvement in an energy-aware system.
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running on the system. A recurring theme emerges that a little bit of information from
applications about their usage patterns could potentially go a long way toward improving
the effectiveness of system policies for both device power state transitions and voltage scal-
ing. Such application-specific knowledge may still be only advisory since the operating sys-
tem has the benefit of a more global view of the demands of the entire workload. There
have been a number of examples of applications providing hints, via new system calls, about
their current or future usage patterns to assist the system in making power management
decisions.

For devices with discrete power states, the length of the upcoming idle gap between
requests is vital information. There have been several projects addressing the timing of the next
request for I/O on a hard disk drive. In Heath et al. (2002), a new system call is proposed to
pass information about the next read request in an irregular access pattern. Irregular patterns
are hard for the OS to easily predict from observations of prior idle periods. An example is an
application that performs the same processing on every image in a directory. The knowledge
about the size of the next image file could provide an estimate of the time until the next file
access. The next R system call, with an estimated idle time as an argument, allows the system
to immediately spin down the disk on a sufficiently long idle gap and spin it back up before
the next read will be issued. The value of the parameter may be found by profiling the first
few iterations that generate disk reads to measure the average idle times. Similarly, Lu et al.
(2002) offer a system call, RequireDevice (device, time, callback), for timer-based tasks that
call a handler function (callback) on timer expiration. In this case, the time until processing by
the callback function is determined by explicitly setting the timer. An example of its use is in
an editor’s autosave function that saves the working file every 5 min. The application can call
RequireDevice (Harddrive, 5 min, savefile) to provide the OS with the information that this
application will have a 5-min idle gap before needing the disk again. This may allow the OS to
immediately spin down the disk and spin it back up just in time for the savefile function. These
proposed system calls illustrate the benefits of relatively simple information flowing to the OS
power manager.

The next kind of access pattern information that can be provided by an application to the
system involves bracketing the beginning and end of an active period. As described in Section
3.3.2, the power management of an 802.11 wireless networking interface involves switching
between power-saving mode (PSM) and continuously aware mode (CAM). The problem
for system-level management is distinguishing whether the observable data transmission rate
is an artifact of the beacon period or the natural behavior of the application. Hints from
the application can convey the user’s intent in accessing the wireless network (Anand et al.
2003, Kravets and Krishnan 2000). In self-tuning power management (Anand et al. 2003),
the application interface includes TransferHintBegin with parameters indicating whether a
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forthcoming transfer is related to foreground or background activity. This is useful since
interactive applications are particularly sensitive to latency. The hint may also give an expected
amount of data. This allows the system to transition to CAM if the data size exceeds the
breakeven size or it is interactive. A matching HintEnd informs the system that this transmission
is over and, from this application’s point of view, it is OK to transition back into PSM. Similarly,
ListenHintBegin – HintEnd calls can bracket a listening session and specify the maximum delay
that can be tolerated. Finally, SetKnob specifies the relative importance to the application of
performance versus energy conservation. A similar kind of hint is suggested in Flautner et al.
(2001) for the problem of automatically detecting episodes for dynamic voltage scaling (Section
4.5). The proposed API consists of episode begin and episode end system calls to bracket an
instance of an interactive, periodic, or producer–consumer episode and to have the option of
specifying a deadline.

File caching and prefetching are discussed in Section 3.3.1 as a technique for shaping
the disk request patterns, lengthening idle periods to provide more opportunities for spinning
down the disk. One of the challenges of prefetching data is deciding which data and how much
to prefetch in one active burst. In Papathanasiou and Scott (2004), these decisions are guided
by hints provided by the application through a system call interface. The hint interface allows
the application to explicitly specify the overall access pattern (sequential, loop, or random)
and the estimated time of first and last access for a file. If the access pattern is deemed to be
random, the interface allows the application to give a list of “hot” data clusters, the probability
of their access, and followed-by probabilities to derive likely sequences. As an alternative,
a monitoring daemon can generate hints on behalf of the application. These automatically
generated hints are based on a database of file access patterns that have been monitored and
saved from previous runs of the application. These saved profiles of application-specific behavior
are targeted at those applications whose access patterns have a significant impact on disk energy
efficiency. The system is depicted in Fig. 6.2.

Hints have also been used in dynamic voltage scheduling (DVS), as described in Section
4.4.1 where we described the use of these hints by the OS in setting the speed and voltage
during periodic interrupts called power management points (PMPs) (AbouGhazaleh et al.
2006). The off-line compiler analysis annotates the program by inserting code that updates a
designated memory location, the WCR. The value written into WCR represents the worst-case
remaining cycles in the task. It conveys to the operating system the progress of the application
and any dynamic slack that is accruing based on runtime control flow. The hint-generating
code, called a power management hint or PMH, computes a new value for WCR based
on its previous value and the actual path taken to arrive at this PMH. The placement of
PMHs must ensure that the WCR value is updated at least once during every interval between
PMPs.
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FIGURE 6.2: Combining hints from system calls issued by the application and profiles of past access
patterns to generate hints for prefetching (Papathanasiou and Scott 2004).

The placement of PMHs is performed in three steps. The first step is to form regions in
the control flow graph that aggregate one or more basic blocks while maintaining the structure
of the program. Figure 6.3 shows a control flow graph broken into five regions. Next, profiling
is performed to capture timing information about each region, for each procedure, and the
cycle count and maximum number of iterations for each loop. Then the analysis determines
the PMP interval length (in cycles) that will be communicated to the system along with the
location of the WCR via a system call (inserted by the compiler) during process initialization.
Finally, the placement algorithm traverses the control flow graph, maintaining a cycle counter,
ac, and inserting a PMH before the ac exceeds the PMP interval.

6.1.2 System Calls for More Flexibility in Timing
Beyond hints that convey usage patterns and process behavior to the system, there are usage
scenarios in which the application may be able to grant the system more flexibility in servicing
requests. APIs that specify an acceptable tolerance on performance degradation can be exploited
by the system in its scheduling of idle and busy periods. For example, the API proposed in
Anand et al. (2003) includes a maximum delay parameter in the ListenHintBegin call.

A variant of the RequireDevice system call in Lu et al. (2002) specifies a tolerance
range around the timer value. This is used by the system in process scheduling decisions for
tasks invoked through the callback mechanism on timer expiration. Flexible timers allow the
execution order of tasks to be rearranged, within their specified tolerances, to make idle periods
on the device longer. The scheduler can also group a task’s execution with other tasks requiring
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FIGURE 6.3: Compiler insertion of program management hints (PMH) into the control flow graph.
The profiled timings in cycles affect the setting of the interrupt interval, the placement of PMHs, and
the computation of the WCR hint value at each PMH (AbouGhazaleh et al. 2006) c© 2006 ACM, Inc.
Reprinted by permission.

the same device to be active within the same timeframe to amortize power state transitions
among the group. This may enable the power management system to employ deeper sleep
modes on the devices.

Another interesting example is the set of cooperative I/O system calls proposed in Weissel
et al. (2002). An application can use CoopIO to essentially give the OS its permission to reshape
disk request patterns. The cooperative versions of the basic file open, read, and write operations
include a timeout and a cancel flag as additional parameters. The specified timeout allows
the request to wait if the disk is not already spinning until another I/O request arrives or the
timeout expires to trigger a spinup operation. If the cancel flag is set when the timeout expires
and no other I/O request has arrived to cause the disk to spin up, then the CoopIO request
can be canceled altogether. The benefits to the system are that idle disks can remain in the low
power state longer. Applications may choose to use CoopIO features for logging data, periodic
requests on multimedia files, and autosave functions. The possible delay on I/O operations
suggests that a separate thread may be useful for issuing cooperative operations. An autosave
thread is a good example to illustrate the use of a write request that can be cancelled. A pending
write is unnecessary when another autosave period is already due to expire and will just issue
the next write.

6.2 OS-APPLICATION INFORMATION FLOW TO ENABLE
ADAPTATION

6.2.1 Frameworks for System Feedback
So far, we have considered information flowing from the application to the system about usage
patterns to inform power management policies. In this section, we introduce information flow
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from the system to the application that may cause the application to adapt its behavior in
response and the system mechanisms providing such two-way exchanges.

Microsoft has introduced the OnNow initiative (Microsoft Corp 2001) to establish the
operating system’s central role in power management and to encourage collaboration between
applications and the operating system toward improving their power use. The OnNow architec-
ture is built upon the Advanced Configuration and Power Interface (ACPI) specification that
standardizes the system model based on global and device power states, as discussed in Section
2.1.2. With OnNow, the OS assumes responsibility for coordinating power management at all
levels. In particular, it defines a new application interface (incorporated into the Win32 API
and extended in Vista) that exposes power management capabilities to software developers and
enables them to participate in designing more energy-aware applications. The API features
include mechanisms for applications to inform the OS of application requirements and activity
that may not be detected by the OS. For example, the SetThreadExecutionState call can be
used to indicate that the display is needed regardless of the lack of user interface events that
usually signify an idle machine. This can be used to solve the annoying problem of the display
going blank during a slide show presentation.

Information flow in the other direction, from the system to the applications, is equally
valuable. WM POWERBROADCAST messages are used to notify all running applications of
power management events such as the system being put into a sleep state. Applications have the
opportunity to properly respond to such events by cleanly closing down and preserving the user’s
work appropriately. There are also power status functions that allow applications to perform
differently based on the power source or on device power states. The GetSystemPowerStatus call
returns information on whether the power source is AC or DC and how much battery lifetime
is remaining. An energy-aware application may use this information to postpone maintenance
tasks when the machine is running on batteries or restrict certain activities when the battery
power is running low. The GetDevicePowerState call returns true or false depending on whether
the specified device is fully operational. An example using this feature is an application that
defers lower priority disk I/O while the disk is not already spinning. The goal of OnNow is to
provide the support to foster creative energy-aware application development for the Windows
environment.

Another framework offering a feedback mechanism to applications about their energy
consumption is the Nemesis OS (Neugebauer and McAuley 2001). Nemesis emphasizes accu-
rate energy accounting for both processes and devices. The proposed model for the collaborative
relationship between applications and the OS is based on economic ideas. Accurate accounting
provides the basis to charge processes a tax for excessive energy consumption. This is defined
in terms of the limit on the battery discharge rate required to reach a desired battery lifetime.
Charging processes in proportion to their excess energy consumption provides a useful feedback
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signal. Since individual processes are allocated a limited number of energy credits to spend on
energy use, these charges provide an economic incentive for the application to adapt its behavior
to use less energy. Techniques for actually performing adaptation in response to these charges
are not addressed in this work.

6.2.2 Adaptation Through Fidelity
The Odyssey system (Flinn and Satyanarayanan 1999b, 2004) addresses both a system frame-
work and techniques that applications can use to dynamically adapt their behavior. The main
abstraction is data fidelity. Application adaptation involves reducing fidelity of a data object
or degrading data quality relative to the original object in application-specific ways to reduce
the energy consumption of transmitting and/or processing the data. Examples of lower fidelity
data include digital maps with certain features (e.g., rivers, businesses, minor roads) suppressed,
images cropped to a smaller size, a video displayed in black and white instead of the original
full color version, and images distilled using lossy compression. What constitute acceptable
fidelity-reducing transformations depend both on the type of data and on the needs of the
application using them.

The Odyssey architecture supports application-specific adaptation. Figure 6.4 shows the
components of the architecture on the mobile client. The viceroy is responsible for monitoring
resource availability, in particular, the estimate of remaining battery lifetime and rate of con-
sumption. The wardens provide type-specific operations for producing data at different fidelity
levels. The API allows applications to specify resource needs and to register the fidelity levels
and type-specific operations to be supported. Odyssey provides notifications via an upcall to

FIGURE 6.4: The Odyssey architecture (Flinn and Satyanarayanan 1999b, 2004) c© 1999 ACM, Inc.
Reprinted by permission.
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FIGURE 6.5: Change in fidelity levels of four applications for battery lifetimes of 20 and 26 minutes
(Flinn and Satyanarayanan 1999b, 2004) c© 2004 ACM, Inc. Reprinted by permission.

the applications when expectations are not being met. Upon receiving notifications, an appli-
cation can adjust its data fidelity to match the new expectations on resource availability. Thus,
if the power demand is too high, Odyssey triggers adaptations by issuing notifications to the
applications. Conversely, if the battery capacity exceeds demand, applications may be notified
so that they can increase fidelity to improve the user’s experience with higher quality data.

Figure 6.5 illustrates Odyssey causing adaptations in applications in order to reach a
particular battery lifetime goal. These are the results of an experiment with concurrent applica-
tions: A browser accesses images from the web with different JPEG quality factors to yield five
supported fidelity levels. The map data have four fidelity levels including the full map, filtering
of minor roads, filtering of secondary roads, and a combination of filtering and cropping. The
video application supports four levels of fidelity including the full quality video, two levels of
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lossy compression, and a combination of compression and a reduced viewing window. The
speech recognition supports two levels of fidelity related to the size of the vocabulary used. In
these experiments, Odyssey is using an incremental, priority-based policy of notifications to
trigger adaptations. To make the experiments reasonably short, the energy supply is set to last
only 19:27 min at the highest fidelities. The graphs show the different applications adjusting
their fidelity levels in response to the battery lifetime goals of either 20 or 26 min.

6.3 DEVELOPING APPLICATIONS FOR ENERGY EFFICIENCY
There has been considerable research devoted to either compiler transformations of ordinary
programs to yield more energy-efficient code or algorithm design efforts to directly develop
low-power code that does not rely on special APIs or the support of an energy-aware OS.
These efforts usually target an abstract energy model of the hardware platform. Sometimes
manual transformations are viewed as a first step toward eventually automating energy-saving
techniques. For example, one compiler project aims to cluster array layouts within physical
memory to optimize placement for power-aware memory chips and generate code to perform
power state transitions of unused memory modules under program control (Delaluz et al.
2001). This work assumes a single program environment and no virtual memory. Similarly,
compiling approaches have been proposed to embed speed and voltage scaling points directly
into program code (e.g., Shin and Kim 2001). The potential pitfall of such techniques lies in
ignoring and, therefore, conflicting with the management efforts of the OS. Explicitly designing
application programs to be low power requires the developer to have a good energy model of
the platform and an understanding of the resource management being done in other system
layers. This is why APIs like OnNow that encourage OS/application cooperation are attractive.
The OS has a system-wide runtime perspective that purely program-directed strategies would
lack.

6.4 SUMMARY
In this chapter, we have made a case that even a little bit of semantic information about
the user-level application is valuable to the system. The application’s intentions in using the
resource may not match the system’s default management assumptions. Information exchange
across layers, at various levels and in both upward and downward directions, can have a positive
role to play in discovering new approaches to manage energy demand.
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C H A P T E R 7

Challenges and Opportunities

There is widespread recognition within the mobile computing R&D community of the im-
portance of energy management. This lecture has focused on the demand side of the energy
story. It has highlighted some of the significant contributions that have been made to our
understanding of how to manage device power consumption and influence workload demand
to save energy and prolong battery life. There is a growing appreciation that further advances in
energy/power management are needed bridging all levels of system design—from the hardware
to the applications. In this chapter, we recap some of the lessons learned from experience so far
and consider the challenges ahead.

7.1 ON IMPROVING HARDWARE CAPABILITIES
The availability of hardware features, such as low power modes and voltage/frequency scaling,
invites system efforts to explore how to creatively exploit these capabilities. These efforts have,
in turn, provided feedback on desirable improvements in the hardware that could make the
solutions that employ those features more effective.

Some of the major constraints on power management algorithms have been the properties
of the low power states provided and the transition costs to enter those states and return from
them. From the hardware side, the characteristics of the available power states are determined
by the circuitry that can be selectively and incrementally disabled and by the operations required
to restore full activity. From the systems perspective, the transition overheads, in particular,
may severely limit the cases in which low power modes can be used. The breakeven times
of the available low power states may be poorly matched to the idle gaps in the device access
patterns. Consequently, certain power states may not represent viable choices for policies to even
consider. Efforts by hardware developers to reduce transition costs can enable more aggressive
policies that employ power states. Similarly, experiments with discrete combinations of voltage
and frequency supported by some early scalable processors have identified unproductive choices.
Ideally, the hardware needs to offer software policies a sufficiently broad range of useful settings
to exploit.

Another limitation on achieving system-wide energy savings has been the relatively
high level of base power consumption that is needed on some platforms regardless of power
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management (e.g., to be responsive to wakeup events). Reducing the base power consumption
is another desirable goal for hardware improvement.

Finally, in order to enable the sophisticated policies that are possible within the operating
system, the hardware capabilities must be exposed to software control. Software policy making
can also be enhanced with more information about the power consumption of individual com-
ponents. The smart battery interface is a move in that direction, but finer-grain instrumentation
built into the hardware (e.g., the power analogue to processor performance counters) may be
attractive from the systems perspective.

7.2 ON SYSTEM SOFTWARE AS A FOCAL POINT
There is a compelling argument that the operating system is the appropriate layer to serve as
the center of power management, although all layers ultimately must be involved. The OS has
a global and dynamic view of the access patterns generated by the workload running on the
machine as well as the hardware utilization. On the other hand, there are limits to the ability
of the OS to predict resource demands. We have seen that the system can benefit significantly
from a bit of extra knowledge about the applications. Thus, information flow across boundaries
needs to be encouraged and appropriate interfaces need to be defined.

Power management for individual devices has been extensively studied with areas such as
dynamic voltage scheduling for real-time processes and spindown policies for disks becoming
relatively mature. Many of the studies have evaluated proposed solutions through simulation.
However, experiences with prototype implementations have not always achieved the predicted
levels of energy savings because of interactions with the rest of the system. Taking a whole-
system approach is increasingly important in moving forward.

7.3 ON ENGAGING APPLICATION DESIGNERS AND USERS
In general, application programs have been developed with little or no attention paid to their
energy efficiency. It is easy to find examples of wasteful activity (e.g., blinking cursors, screen-
savers) or poor timing (e.g., auto-updates that fill idle gaps). There is tremendous opportunity
to improve energy consumption by rewriting programs to eliminate waste and configuring them
so as to not work against the system’s power management. Some of this can be achieved by
simply promoting more awareness among application developers and users of power manage-
ment capabilities that already exist and how to employ them. The human–computer interaction
(HCI) community might be engaged in designing more energy-efficient user interfaces. One
idea may be to modify the feedback methods on program progress that are commonly used.

Creating truly energy-aware applications represents a new direction for most program-
mers. By working cooperatively with the OS, application design can have a significant impact
on energy use. Energy-aware applications on mobile devices can deliver improved battery life
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which should be a competitive advantage. As in any application-level optimization, the devel-
oper needs to work from a good understanding of the system-level power management model
in order to complement rather than compete with the system’s efforts.

7.4 GOING FORWARD
Several trends point to an increasing need for expertise in energy management and energy-
aware software development. One trend is the growing reliance on mobile, wireless devices in
our professional and personal lives. Another is the rapid evolution of new usage scenarios for
these devices. These will place increasing demands on the battery resources. Another trend is
society’s growing awareness of the role of energy in climate change. Energy conservation will
become a higher priority as we look for ways to reduce the size of our carbon footprint. The
skills required in developing more energy-efficient computing products and services will be
valued not only in the mobile computing field, but extending into the computing discipline as
a whole.
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