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INTRODUCTION

Some parts of functional analysis and general topology are devoted to
the relationship between a completely regular topological space X and
Coo(X)e By C,o(X), we mean the [R-algebra C(X) of all continuous,
real-valued functions of X, equipped with the topology of uniform
convergence on compact subsets of X, Many of these investigations of

this relationship are hindered by the fact that the evaluation map

® CCO(X) x X—> [R

(sending each pair (f,p) € C(X) x X into f(p)) is not continuous.
Another handicap is that, in general, Cco(x) is not complete. In

these notes we replace the concept of uniform convergence on compact
subsets of X by the concept of continuous convergence. This type of
convergence on C(X) does not arise from a topology. However, it is
generated by a so-called convergence structure, a notion which generali-
zes that of a topology. The convergence structure of continuous conver-
gence (the continuous convergence structure) is finer than the topology
of compact convergence and coincides with it when X is a locally com-
pact topological space. The algebra C(X), endowed with the continuous

convergence structure, yields a complete convergence algebra, denoted

by CC(X), and a continuous evaluation map

 : C,(X) x X——>MR.

The convergence algebra CC(X) carries the coarsest among all the con-
vergence structures A on C(X) for which o : CA(X) x X—>R is
continuous., This fact provides CC(X) with many convenient properties,
However, difficulties occur in many approximation problems especially

in the context of a Stone-Weierstrass type of theorem.
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The purpose of these notes is to present the foundations of the inter-
actions between a general convergence space X and CC(X).

In Chapter o, we introduce the theory of convergence spaces (convergence
spaces, continuous convergence structure, etec.), In Chapter 1, we collect
some properties of C(X) needed in the subsequent chapters (e.g. Stone-
Eech- and realcompactifications etec.)

We demonstrate in Chapter 2, that, for a completely regular topological
space X, there is (in general) no [R-vector space topology T on

C(X) for which

® CT(X) x X——> R

is continuous.

In the third chapter, we exhibit and study a special class of conver-
gence spaces, the class of c-embedded spaces., For any two such spaces X
and Y, the convergence algebras CC(X) and Cc(Y) are bicontinuously
isomorphic iff X and Y are homeomorphic. This class turns out to be
very large: Any Cc(Z), where Z 1is an arbitrary convergence space,
can be represented by CC(Z'), where Z' 1is a c-embedded space. Among
other topological spaces any completely regular topological space is
c-embedded, The structure of c-embedded spaces is expressed by Schroder's
theorem, which asserts that any c-embedded space is the projective limit
of inductive limits of compact topological spaces., To find these topolo-
gical results, we have to develop the functional analytic apparatus of
Co,(X). Along the way, we observe that the relationship between a c-em-
bedded space X and CC(X) is an extension of the classical correspon-
dence between a compact topological space Y and the Banach algebra
Cc(Y)‘

The problem of studying which convergence fR-algebras are of the form
Cc(Y) is the principal intent of Chapter U4, However, we restrict our-

selves mostly to subalgebras of CC(X). These investigations have, of



IX

course, some similarities to the Gelfand theory. We conclude the chap-
ter with a study of the c-embeddedness of general function spaces.
There the reader may notice that the category of c-embedded spaces is
cartesian closed,

Chapter 5 is devoted to parts of the diectionary of topological proper-
ties of c-embedded spaces X and functional analytic properties of
Cc(X). In this context we will in particular characterize normal,
separable metric and Lindeldf spaces. Necessary and sufficient conditions
are given on a completely regular topological space X 1in order that
CC(X) be representable as an inductive 1limit of topological [R~vector
spaces.

In the appendix, we develop some results on the linear and Pontryagin
duality of CC(X) and of general topological [R-vector spaces., Here the
respective dual spaces will be endowed with the continuous convergence
structure.

Finally we remark that the items in the Bibliography, not quoted in the
text, contain interesting suplements to the material presented in

these notes,



O, CONVERGENCE SPACES

In this introductory chapter we collect some elementary material

on convergence spaces,

0.1 Convergence spaces

Roughly speaking, a convergence space is a set, together with a
concept of convergence. This concept is based on the notion of a filter,
in the sense of [ Bou ], to whom we refer for terminology and general
properties of filters.,

We denote by F(X) the set of all filters on X, and by P(F(X))
the power set of ¥%(X). The definition of a convergence structure and
a convergence space now reads as follows:

Let X be a set, A map A : X—a3P(F(X)) is said to be a conver-

gence structure if the following properties hold for any point p € X:

(i) p € A(p).
(ii) O, ¥ € A(p) =0 A ¥ € A(p),
(iii) ® € A(p) and V¥ € (xX)

with ¥ » o=V € A(p).

Here @ A ¥ denotes the infimum of ® and ¥ and p stands for the

filter formed by all supersets of { p } < X.

The pair (X,A) is named a convergence space. The filters in A(p)

are sald to be convergent to p.
We usually write ®——>p instead of ® € A(p).
To illustrate the terms introduced, we list the following two exam-

ples of convergence structures:

1) Let X be a (non-empty) topological space. By assigning to each



point p € X the set J(p) of all filters on X which converge with
respect to the given topology to the point p, we obtain a convergence
structure. Hence any topology can be interpreted as a convergence struc-
ture. We therefore call a convergence structure topological or simply

a topology 1f the convergent filters are precisely those of a topology.

2) To construct a convergence structure which is not topological,
we assume that E 1is an infinite dimensional vector space over IR
(the reals)., For the filters convergent to p € E we choose the filters
on E having a basis $, where B 1is a filter on some finite dimen-
sional subspace R of E which converges on R to the point p with
respect to the natural topology. It is an easy exercise to check that

the convergence structure defined in this way is not a topology.

More examples of convergence structures will appear throughout the
text, others and applications of them can be found in [ Ba 1, [ Ke 1,

[ Ma 1, and [ W1 ], as well as in other items quoted in the "Biblio-
graphy".

To reach our goal, we need to develop the general theory of conver-
gence structures a little further. In doing so we follow closely the
pattern of general topology laid out in [ Bou ].

To simplify the notation, we normally use the symbol X to denote
the convergence space (X,A).

Let F be a subset of X. The point p € X 1is a point of adheren

ce of F if it admits a filter converging to p which has a trace on
F. The adherence of ¥, the set of all points adherent to ¥, is deno
ted by E.

As in general topology, we call a subset A of X closed if A =
The complements of the closed subsets are salid to be open sets. Those
are characterized by saying that a set O « X is open if it belongs to
every filter which converges to a point of 0.

The collection of open sets of a convergence space X fulfills

A.



the axioms of a topology. This topology is called the topology asso-

ciated to the convergence structure of X. For the resulting topolo-

gical space we use the symbol XT and refer to it as the topological
space assocliated to X.

A convergence space X is Hausdorff if a filter on X converges
to at most one point,

A map f from a convergence space X into another such space Y

is continuous at a point p € X 1if for any filter @ convergent to p

the filter f(®) (generated by all sets f(F), where F runs through
® ) converges to f(p). If f 1is continuous at every point p € X,
then f 1is said to be continuous., If f is bijective and both f and
f-l are continuous, then we speak of f as a homeomorphism.

As a simple exercise one may prove that a map f defined on a con-
vergence space X with values in a topological space Y is continuous
iff f Xp— Y is continuous.

If for two convergence structures A and A2 on a set Z the

1
identity

id @ (Z,8) —> (Z,4A,)

is continuous, then Aq is said to be finer then A2, expressed in
symbols by A1 > A2 or A2 £ Al‘
Next we introduce the notions of initial and final convergence

structures and some concepts based on them, Let

fL : X—m™ YL

be a family of maps from a set X into a family { YL}L €T of conver-
gence spaces. To any point p € X we assign all those filters & on
X for which fL(Q) converges to fL(p) for every o € I. The conver-

gence structure Q on X defined in this way is the initial conver-

gence structure induced by the family { fL }L € I* It is of course the

coarsest of all the convergence structures on X which allow every fL

to be continuous,



Hence a map f from a convergence space S 1into (X,Q) is con-
tinuous iff fLo f 1is continuous for every € I. This universal pro-
perty is characteristic for the initial convergence structure.

Clearly if every convergence space of the family ({ Y }L €1 is
topological then Q is a topology.

Based on the notion of the initial convergence structure one de-
fines subspaces and products in the obvious way. A subset F of a con-
vergence space X 1is turned into a subspace of X if it is endowed
with the initial convergence structure induced by the inclusion map.

The product LEIXL of a family { XL }L €1 of convergence spaces

is the product of the underlying sets of the family endowed with the
initial convergence structure induced by the family of all the canonical
projections.

For a family { X }

L"L €T
maps { fL}L €1 into a set Y, we define the final convergence struc-

of convergence spaces and a family of

ture Q' induced by the family (fL)L €1 by stating: A filter @

on Y converges to p €Y iff & 3D or @ > A £, .(¥;), where the
i=1 i

filters ¥; converge to a preimage under fL. of p for ] € I and
i

i =1,se.5n. The universal property characterizing the final convergence
structure reads as follows:

A map f from (Y,Q') into a convergence space Z 1s continuous
iff i‘ofL is continuous for every . € I.

The gquotient convergence structure on the set X' of all equiva-

lence classes in a convergence space X is the final structure induced
by the canonical projection.
For a detailed study of the general theory of convergence spaces

we refer to [ C,F 1, [ Bi,Ke 1, [ Fi 1, [ Ko 1, and [ Wo 1.



0.2 The structure of continuous convergence

The structure of continuous convergence Ac will be defined on the

function space C(X,Y), the set of all continuous maps from a conver-
gence space X 1nto a convergence space Y. It will be a convergence

structure closely connected with the evaluation map

® : C(X,Y) x X—Y,

which sends each couple (f,p) into f(p).

In fact, a filter © belongs to Ac(f) if
o(8 x ) —> f(p) €Y

for any filter ® converging to p € X and any point p € X. The sym-
bol © x ® denotes the filter generated by all sets of the form T x F,
where T € 8 and F € ® . The set C(X,Y) equipped with Ac is de-
noted by CC(X,Y). If Y 1is Hausdorff clearly Ac is Hausdorff too.

We will reach the converse below.

A convergence structure A on (C(X,Y) is called @-admissible if
o : (C(X,Y),A) x X —>Y

is continuous (the product carries the product convergence structure).

It is a simple exercise to Vverify that A, is w-admissible and

moreover A, is coarser than every w-admissible convergence structure
on C(X,Y).

A subset H < C(X,Y) regarded as a subspace of CC(X,Y) is de-
noted by H, and said to be equipped with the structure of continuous
convergence.

A characteristic universal property of H, is the following one:
A map g from a convergence space S into H, is continuous iff the

composition w o (g x idx) of the map

gXidX Sxx——-)chx



and the restriction of w onto H again denoted by

c?

@ : H, x XY,

is continuous.

Using this universal property one easily proves that the set K
of all constant maps endowed with the structure of continuous conver-
gence is, via the canonical map from K into Y, homeomorphic to Y.
Hence CC(X,Y) is Hausdorff iff Y is Hausdorff,.

Let us point out here that in case X 1is a locally compact topo-
logical space and Y coincides with IR, the convergence structure A,
on C(X,R) 1is the topology of compact convergence [ Schae 1.

Detailed studies of the structure of continuous convergence ("Limi-
tierung der stetigen Konvergenz") can be found in [ Ba 1, [ C,F ],

[ Bi,Ke 1, and [ Po ].



1, FUNCTION ALGEBRAS

As indicated in the preface, one of our major aims is to describe
the relationship between a convergence space X and CC(X) (we use
C(X) as a shorthand of C(XJR)). To do so, we firstly have to turn our
attention to the relationship between X and C(X). This will be the

purpose of the following two sections.

1.1 The completely regular topological space

associated to a convergence space

The set C(X) endowed with the pointwise defined operations is a
lattice [R~algebra [ G,J 1.

We allow ourselves to use the term "function algebra of X" or on
some occasions simply "function algebra"™ to speak of an [R-algebra of
the form C(X).

To get a close relationship between X and C(X) one should at
least know that C(X) is able to separate points. This means that
f(p)=f(q) for each f € C(X) should imply p=q. However, it is easy
to construct examples of even topological spaces for which their function
algebras do not separate points [ G,J ]. To study C(X) we will there-
fore associate to X a certain quotient space Xs which has a point-
separating function algebra isomorphic to C(X). Moreover, the topology
on Xs will be determined by C(X).

In the set X we define an equivalence relation by saying, that
any two points p and q are equivalent iff f(p)=f(q) for all
f e Cc(Xx).

We would have obtained the same equivalence classes if we had re-
quired that any two points p and q are equivalent if f(p)=f(q) for

each f € CO(X) where C°(X) denotes the lattice subalgebra of C(X)

consisting of all bounded elements of C(X).



Let us denote the set of all equivalence classes by X and the ca-
nonical projection from X onto i by m .

Each function f € C(X) induces a function

f: X— R,

by defining f(B):f(p) for each 5 € X (by 5 we denote the equiva-
lence class of a point p € X).
The set X together with the initial convergence structure induced

by the family { f } is a completely regular topological space

f € C(X)
denoted by X . The reader may verify that the initial convergence struc-

tures on X induced by { t }f € c(X) and { f }roe cO(x) are iden-

tical.

A topological space Z 1is said to be completely regular 1if each

set consisting of one point is closed and moreover, if any point p

and any closed set F not containing p can be strongly separated by
some f € C(Z). By strongly separated we mean f(p)=1 and f(gq)=o for
each g € F. Evidently, Xg is completely regular. It is called the
completely regular topological space assoclated to X.

If n : X-————éxs is an injection it need not to be a homeomorphism

as the following example (in [ G,J 1, p. 50) shows:

Let S denote the subspace of MR xR obtained by deleting (o0,0)
and all ( %,q ) where n runs through the natural numbers [N and
q through MR. Define g : S—8>MR by g(p,q)=p for each pair
(p,q) €M x M. Endow the set of the reals with the finest topology for
which g 1s continuous. Call the resulting topological space E. As
one easily verifies E 1is Hausdorff and has the same continuous real-
valued functions as I[R. Thus E  =MR. The set { % | n €N } is closed
in E. But it can not be strongly separated from o. Thus E 1is not
completely regular. This example shows in addition, that the quotient
of a completely regular topological space is in general not completely

regular (the quotient is taken within the category of topological spaces)



Clearly if X 1is a completely regular topological space, then
o X— X is a homeomorphism,

The [R-algebra homomorphism (sending unity into unity)
*
mor C(Xg) ——C(X),

defined by n*(g) = gon for each g € C(Xs), is an [R-algebra isomor-
phism,

To simplify terminology let us replace '"R-algebra homomorphism
sending unity into unity" just by "homomorphism".

Now let X and Y be convergence spaces and let
f: X —> ¥

be a continuous map. By
*

£ C(Y)=—> C(X)

*
we mean the homomorphism defined by f (g)=gef each g € C(Y).
*
Clearly f sends bounded functions into bounded functions. Instead of
. * 0 . . *
using f | C°(Y) we often will write f only.

We again leave it to the reader to check that if X and Y are
completely regular topological spaces, then f 1is a homeomorphism iff
either

*
£ C(Y) = C(X)

or
*

£ co(y)y— ¢

is an isomorphism.

Is it true that any homomorphism h : C(Y) —> C(X) (resp.
h : c9%(Y) ——> ¢%(X)) 1is of the form f* for some map f : X——> Y,
where X and Y are any two completely regular topological spaces? If
it were true, then any two completely regular topological spaces would
be homeomorphic if their function algebras are isomorphic. The next

section gives the answer.
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1.2 Real-compactification and Stone~Cech compac-

tification of a completely regular topologi-

cal space

To investigate the problems connected with the question asked
above, we exhibit spaces depending only on C(X) and c°(X), respec-
tively .

The underlying sets of the spaces we are looking for are Hom C(X)
and Hom C°(X), the collection of all real-valued homomorphisms of
C(X) and CQ(X), respectively.

The map
j* : Hom C(X) — > Hom CO(X),

assigning to each element h € Hom C(X) its restriction to CO(X),
is injective. Indeed, let h,,h, € Hom C(X) be distinet elements and

let f € C(X) be such that
hl(f) = 0 and h2(f) > 0.
The function
(C=hy(f) - 1) v 1) ahy(f) - 1,

where 1 denotes the constant funetion on X assigning the value 1,
is certainly bounded and continuous. Since every homomorphism on C(X)

is a lattice homomorphism ([ G,J ], theorem 1.,6), Wwe have
h,(g) = o and hz(g) = hy(f) > o.
¥ .
From now on let us identify each h € Hom C(X) with J (h). We equip

both sets Hom C(X) and Hom C°(X) with the following topologies.

Every function f € C(X) induces a function

d'(f) : Hom C(X) —m—> R,

sending each h € Hom C(X) into h(f). Similarly we define

d'(f) : Hom C°(X)——>R



"

it £ € c°X).
Let us denote by HomsC(X) and HomsCO(X) the sets Hom C(X) and
Hom C°(X) carrying the initial topology induced by the families
] 1 3

{ar(f) 1s ¢ c(x) éand {av(f) s ¢ cO(x) respectively. Clearly the
spaces just constructed are Hausdorff.
We leave it to the reader to verify that HomSC(X) is a subspace of

o
HomC (x).

How are HomsC(X) and HomsCO(X) related to X ?

Every point p € X defines a homomorphism

ig(p) : C(X)— R

by requiring i,(p)(f) = f(p) for each f € C(X). Since we have

f(p) = d'(f)(ix(p)) for each f € C(X) and p € X, the map

J'.X : X—-)HomsC(X),

sending each p into ix(p), is continuous.,
The subset iX(X), turned into a subspace of HomsC(X), is homeo-

morphic to X_ . Indeed the map, assigning to each ix(p) the equiva-

s*

lence class mn(p) € Xs, is a bicontinuous bijection.

Lemma 1

For each convergence space X, the set iX(X) is dense in HomsCO(X)

and therefore is dense in HomsC(X).

Proof:

Let h € HomsCO(X). We have to show that for any choice of finitely
many functions fl"“’fn in ¢°(X) and any positive real number e

the neighborhood U of h given by

n
N { k € Hom cO(X)| | d'(£;)(k)-d"(£5)(h) | <€}
i=1

intersects iX(X) non-trivially.
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Therefore let us form the function

n 2
g =.E (fi - h(fi) . _l) 'y
1=1

for which h(g) = o. Clearly g is not a unit in C°®(X) and hence
assumes values which are arbitrarily close to zero. In other words,

there is a p € X such that g(p) < 52. This means that

[ £;(p) = h(fy) « 1| <

for i = 1,...,n, and hence ix(p) € U.
Lemma 1 ylelds immediately:

Theorem 2
For any convergence space X the map
*
iX : C(HomsC(X)) —> C(X)
is an isomorphism whose inverse is

d' i c(X) —> C(HomyC(X)).

To represent C%(X) as the function algebra of HomsCO(X) we

first prove:

Lemma 3

For any convergence space X the space Homsco(x) is compact.

Proof:

Let a function f € C®°(X) be given. Since f is bounded, there is a

natural number n such that f(X) « [ -n,n 1. Hence
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a'(f)(iy(X)) e [ -n,n 1, and because of Lemma 1 we have
d'(f)(HomsCO(X)) e[ -n,n ],

that is, d'(f) is bounded for any function f € c(x).
Now if we give an ultrafilter ® on HomSCO(X), then clearly

d'(£)(®) converges for any f € CO(X). We define a map
h: co(x) —> R,
assigning to each f the limit of d'(f)(®). This map is a homomorphism.

Since HomsCO(X) carries the initial topology induced by the family

{ar(e) }s ¢ cO(x)» We know that

@ —> h € HomsCO(X).

Hence HomsCO(X) is compact.
The last two lemmas combined together immediately yield:

Theorem 4

For any convergence space X the space HomsCO(X) is compact and

¢(Homyc®(x)) — > ¢°(X)

. %
1x

is an isomorphism whose inverse is

ar : c®x) ——> C(HomsCO(X)).

Since for any convergence space X the space HomsC(X) is com-

pletely regular, we have that

iy ¢ X —_> Hom C(X)

and therefore
i : X —> HomsCO(X)
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are homeomorphisms onto a subspace iff X is a completely regular topo-
logical space. Therefore we assume for the rest of this sectlion that X
is a completely regular topological space.

If we regard X as being identified with iX(X) via the map iX’
then we replace HomsC(X) and HomsCO(X) by the symbols wuvX and BX
respectively.

The spaces vX and PBX are called the realcompactification and

the Stone—Eech—compactification of X respectively.

Clearly wuX 1s the largest subspace of PBX to which every function
in C(X) has a continuous real-valued extension.

A space X 1is sald to be realcompact iff X = vX. To give an
example we point out that any subspace of R? (n a natural number) is
realcompact, For a very rich collection of examples of realcompact
spaces we refer to [ G,J ].

For any compact space X we obviously have X = vX = BX. Clearly

if X 1is not realcompact (resp. compact), then

dr : c(Xx) —m8m— ¢ (Hom C (X))

(resp, d' : c%(x) —> CO(HomsCO(X))) are not induced by maps from
HomsC(X) (respectively from HomsCO(X)) into X. This answers the
question stated at the end of seetiom (1.1).

Next let us derive the universal properties characterizing uvX and
BX. They are based on the fact that for any pair of convergence space
Y and Z we have the following commutative diagram of continuous maps:

i

Y
y ————> Hom C(Y) c HomsCO(Y)

(1)

i

z
z ——> Hom,C(Z) c Hom,c(7) ,
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where f denotes a continuous map. By f** we mean either the map sen-
ding each h into h of*l c®(z) or h of*, depending upon whether
h € HomsCO(Y) or h € HomsC(Y).
Let X and T be completely regular topological spaces and
f : X——>T be continuous. Via the identification mentioned above,

diagram (1) turns into:

c vX c X

luf laf

c uT [~ BT .

P—](-__H) kel

Here vf and PBf are those maps extending f to u»X and BX re-

spectively.

We therefore have

Theorem 5

Any continuous map from a completely regular topological space X into
a realcompact space can be (uniquely) extended to UX. This statement also
holds true with realcompact replaced by compact, and uX replaced by

BX. Hence if X is pseudocompact, i.e. if C(X) = c°(X), then uX=pX

and conversely.

We conclude the chapter by presenting an example of a completely
regular topological space which is not realcompact., Let us denote by
W(a) the set of all ordinals o 1less than a given ordinal a. This set
is well-ordered. We equip it with the interval topology. A system of
basic open neighbourhoods of an element =T € W(a) consists of the sets
of the form

(o, T+1)={ A lo<cr<T+1} o < T.



The space W(w), where o is the first infinite countable ordinal, is
homeomorphic to IN, the set of natural numbers endowed with the dis-
crete topology. For every ordinal a, the space W(a) 1is normal

(L G, 1, p.73). Now let @, be the smallest uncountable ordinal. Then
w(ml) is not compact. However, w(m1 + 1) 1is a compact space; indeed
it 1s the one-point compactification of w(ml).

Call a space X countably compact if every family of closed sets
with the finite intersection property has the countable intersection
property or, equivalently, if every countable open cover has a finite
refinement. A countably compact space is pseudocompact, as one easily
verifies, Since every countable infinite subset of w(ml) has a 1limit
point, w(ml) is countably compact, hence pseudocompact., Thus w(ml)
is not realcompact. The Stone—éech compactification of w(ml) is

W(w; + 1), For omitted details consult ([ G,J 1, p. 73 £f.).

2. VECTOR SPACE TOPOLOGIES ON C(X) FOR WHICH
THE EVALUATION MAP IS CONTINUQUS

As we learned in the previous chapter, two completely regular topo-
logical spaces need not be homeomorphic, even if their function algebras
are isomorphic, But it is well known that any two completely regular
topological spaces are homeomorphic iff their function algebras, en-
dowed with either the topology of compact or of pointwise convergence
are bicontinuously isomorphic [ Mo,Wu 1.

However, the fact that both types of topologies on function alge-
bras are in general not w-admissible, together with the lack of com-
pPleteness of these topologies (in general), forces us to devote some
attention to vector space topologies on function algebras being at
least w-admissible.

We will use our knowledge about the most elementary facts of con-

vergence spaces and of function algebras to derive that for a complete-
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ly regular topological space X there is in general no w-admissible
vector space topology on C(X).

The tool we will use is a so-called Marinescu structure [ Ja ] on
C(X). This structure - called I = turns out to be also useful in des-
cribing the relationship between X and CC(X). We therefore investi-
gate I more closely than we would if it were necessary to use it on-
ly as a tool .,

Throughout this chapter we denote by X a completely regular to-

pological space.

2.1 A natural Marinescu structure on C(X)

The structure mentioned in the title relies on BX. This chapter
let us reserve the symbol K for the collection of all compact subsets
of BX~X.

For any K € K the space PBX~K 1s a locally compact space con-
taining X as dense subspace. The inclusion map jK 1 X —> BX~K

induces a monomorphism

»
Jg 1 C(BXNK) — > C(X).
Let us therefore identify each g € C(BX~K) with its restriction glX,
for any K € K, This means that for each K € K the function algebra
C(BX~K) 1is a lattice subalgebra of C(X),

Basic to our construction is:

LJCc(BX~K) = €(X).
KeK

To show this we must prove that each g € C(X) can be extended to BX~K
for some K € K. Regarded g as a function into R U { = }, the one-

point-compactification of fR, the map g can be extended to PBX.

1

Clearly g- (@) = BXNX 1is a compact set (it might be empty). Hence
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g € C(B}(\g-1

(»)), establishing the above equality.

For each K € K the continuous convergence structure on C(BX~K)
coincides - because of the local compactness of PBXNK = with the topo-
logy of compact convergence. Hence we have a family { j; }K € K of
maps defined on topological algebras having their values in C(X). The
final convergence structure on C(X) induced by the above family is de-
noted by I,

This convergence structure is a Marinescu structure in the sense of
[ Ja ]. We will explain this term in the next section. The properties
of I can be found in [ Bi, Fe 1 ] and [ Bi et al 1, out of which
we take some of the following material,

The algebra C(X) endowed with I, denoted by CI(X), is a con-
vergence algebra [ Bi, Fe 1 ], meaning that the algebra operations
defined on CI(X) x CI(X) and CI(X) x R are continuous maps into
CI(X). A filter @ on C(X) converges to Zero in CI(X) iff @ has
as a basis a filter converging to zero in CC(BX\K) for some K € K,

It is easy to show that I is w-~admissible. Hence

id @ Cp(X) ——> C (X)
is continuous. Let us point out that CC(X) is also a convergence al-
gebra.
The two convergence algebras -~ CI(X) and CC(X) ~ are closely

related to each other, as expressed in:

Theorem 6

Let X be a completely regular topological space. For any linear map
t from a topological R-vector space E 1into C(X), the following

are equivalent:
(1) t 1s continuous into CC(X)

(ii) t 1is continuous into CC(BX\K) for some K € K

(iii) t 1s continuous into CI(X).



Proof;

We only show that (i) implies (ii) since the other implications are
obvious.,

The image filter t(UL(o)) of the neighborhood filter d(o) of
zero in E converges to the zero function o in CC(X). Hence to
each point p € X there is in X a neighborhood Vp of p and a

filter element Up in (o) for which

(2) co(t(Up) x vp) cl[ -1,11].

The closure clBX Vp (formed in PBX) of Vp is in PBX a neigh~
borhood of p.
All the functions in t(Up), regarded as functions into R U {«},

extend continuously to BX. They remain, however, real~valued on

clBX Vp, because of (2). Since Up is absorbant in E, all functions
in t(E) extend continuously and real~valued to clBX Vp.
Let us form in PBX the interior wp of clBX Vp . Clearly
LJw
peX p

is a locally compact subspace of BX and, as such, of the form PBX~K

for some K € K. From what we have just established we conclude:

t(E) e c(lJ W) e C(X).
peX p

Next we prove the continuity of

t : E— cc(L_J wp).
peX

To any positive real number €, we have

(3) o(t(e . Up) x Wy)e [ ~e,e ]

for each p € X. Since € - U_ e (o) and since each q € LJ W
P peX P
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has a neighborhood of the form wp, we deduce from (3) that
o(t( UL(o) x ¥ (q)) converges to o €MR, where A#(q) denotes the
neighborhood filter in Jw of q. Hence t( W (0)) converges to

pexp
c€C (L JW).
Cpexp

2.2 A universal characterization of CI(X)

The characterization of Cy(X) mentioned in the title is based
on the notion of the "inductive 1limit of topological vector spaces"
taken in the category of convergence [R~vector spaces. By convergence
R-vector space we always mean an [R~vector space endowed with a con-
vergence structure allowing the operations from E x E into E, and
from E xR into R, to be continuous. The category of convergence
R~vector spaces is defined in the obvious way. Let { Eq }q enN bea

family of topological [R~vector spaces such that:
(1) N is directed (a,B € N= 3 y € N with vy > a,B).

(i1) to any two indices a,B € N with B g a there is

a continuous linear map

ig ¢ Eg —_ E,
(Eq)q €N is called an inductive family of topological MR-~vector
spaces.
Let { Eq }0. e N be an inductive family of topological [R~vector

spaces. A convergence [R~vector space L is said to be the inductive

1limit of the family ({ Ey }q €N if the following two conditions hold:

(1') To any a € N there is a continuous linear map

i, + Eg — L,

a
such that iqo iB = iB for all a,B €N with B g a.
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(iiv) Let F be a convergence space. If to any a € N there

exists a continuous linear map : Eo.—_> F such that

da
for each B € N with B € a the diagram

commutes, then there i1s a unique linear eontinuous map

j ¢+ L — > F satisfying jOiq = jo. for each a € N.

We refer to [ Fi ] for the existence and uniqueness of the in-~
ductive limit (in the category of convergence [R~vector spaces) of
a family of topological [R~vector spaces.

In case the family ¢ E, }u € N consists of loeally convex vec-~

tor spaces, its inductive limit is called a Marinescu space and the

convergence structure on it a Marinescu structure [ Ja ] and [ Ma ].

The convergence [R-vector space CI(X) is the inductive 1limit of

{ CC(BX\K) } To any pair of compact sets K, K!' < BX~X with

K € K

K o K' the maps

Th
Kl

*
) CC(BX\K') e CC(BX\K)
induced by the inclusion map

K
Jgr ¢ BXSK ——> BXNK!

are obviously continuous. In fact because of the identification we made

. . . Koo . . .
in the previous section, (JK') is the inclusion map. Moreover a linear

map t from CI(X) into a convergence [R~vector space ¥ is continuous
iff
. %
tejy * C_(BXNK) —_—> F
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is continuous for any K € K.

The property of CI(X), expressed in theorem 6, shall now be used
to exhibit a certain class of convergence [R~vector spaces: A conver-
gence [R~vector space F 1is said to satisfy property IC with respect
to a completely regular topological space X and a continuous linear
map

iy F———> CC(X)

if any continuous linear map j from a topological [R~vector space E

into CC(X) can be uniquely 1lifted to j : E —> F, which means

that

commutes,

Lemma 7

Let F ©be a convergence I[R~vector space satisfying the property Ic
with respect to a completely regular topological space X and the con-

tinuous linear map
i ¢+ F —> CC(X).

Then there exists one and only one continuous linear map
i 2 C(X) — > F

for which iej = id. Hence J 1is injective and 1 1is surjective,

Proof:

For any compact set K < BX~X the inclusion map
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¥ 1 C _(BX~K) —m > C _(X)
K C C

is continuous. Hence it can be lifted in a unique way to

3; : CC(BX\K)——)F.

For any pair of compact sets K, K' € K with K o K' we have a

diagram of inclusions
¥
JK
CC(BX\K) _— CC(X)

CC(BX\K'}

yielding the commutative dlagram

. ‘*
CC(BX\KJ JK
WK
(;R,} ¥
.A*
d,
CC(BX\K'} K

and thus a unique map j for which 1ie0j = id.

Using lemma 7 and theorem 6 the reader may verify as an exercise

the following theorem [ Bi et al ]:

Theorem §

Let L be a convergence [R~vector space satisfying the property Ic

with respect to a completely regular topological space X and the

continuous linear map
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i L — cc(x).

If L 4is an inductive 1limit of a family of topological [R~vector spaces,
then
i+ L ——> Cci(X)

is a homeomorphism.

Corollary ¢

Let X be a completely regular topological space, The algebra CC(X)
is an inductive limit of a family of topological [R-vector spaces iff

Co(X) = Cp(X)

Let us point out that in general CC(X) and CI(X) do not coin-
cide. To show this we form for each n €N the set F(I,) of all
functions in €(Q) (where & denotes the rationals) that vanish on
I, the intersection of [ -n,n ] with Q. Obviously {F(I,)In € N}
forms a basis of a filter @ convergent to o € CC(Q). In order that

8 —> 0 € CI(Q) it would be necessary that F(In) c C(BO~K) for some

compact set K « BRN@ and some n € [N. But for any point p € In+1\In

there is in PQ a neighborhood U not intersecting ClBQ I, VK.
Hence we would have a point q € U for which f(q) =« and f(I )={o}

for some f € C(X), contradicting F(In) < C(BA~NK).

For necessary and sufficient conditions on X which yield CC(X) =

= Cp(X), see § 5.4,
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2,3 ow-admissible vector space topologies on C(X)

Let T be an w~admissible vector space topology on C(X). The
identity map
id ¢ Cp(X) ——> C (X)

is continuous. Hence by theorem 6 we have id(C(X)) = C(BX~K) for some

compact subset K < BX~X. This is possible iff

X < BXNK < uX,

which means that uX is in PBX a neighborhood of X. Clearly if there

is an open set W in BX satisfying
XeWecuX

then the topology on C(X) of compact convergence on W 1is w~admis-~

sible. Thus we have [ Bi et al 1:

Theorem 10

Given a completely regular space X there exists an w~admissible IR~
vector space topology on C(X) iff wuX 1is a neighborhood of X in
BX. In case X 1s realcompact, an w~admissible [R~vector space topo~

logy on C(X) exists iff X 1is locally compact.

It is clear now that there exists no w~admissible IR~vector space

topology on C(Q).

Let us call an ideal J « C(Y), where Y denotes an arbitrarily
given convergence space, fixed if there 1s a non-empty subset A < X
on which every function contained in J vanishes.

For any completely regular topological space Y a maximal ideal

in Cco(Y) is closed iff it is fixed [ Mo,Wu ]. Moreover, assigning
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to any closed maximal ideal the point at which it is fixed, we obtain
a one~to=~one correspondence between the set of all closed maximal ideals
in Cco(Y) and the points of X.

Given an w~admissible [R~vector space topology T on C(X) for
which the closed maximal ideals are just the fixed ones, the continuity
of

ia CT(X) —_— CC(BX\K)

for some compact set K < BX~NX implies that PBX~K = X; hence X is
locally compact. Since for a locally compact space X the topology of

compact convergence on C(X) 1is w-admissible, we have:

Theorem 11

Let X be a completely regular topological space. There exists an -
admissible [R~vector space topology on C(X) for which the closed maxi-

mal ideals are just the fixed ones, iff X is locally compact.

In fact the local compactness of X can be characterized in various
ways, some of them involving the existence of special w-~admissible topo-

logies on C(X):

Theorem 12

For any completely regular topological space X the following are equi-

valent:
(1) X 1is locally compact.
(ii) Among all the w~admissible MR~vector space topologies

on C(X) there 1s one that is coarsest.
(i1ii) Among all the w-~admissible topologies on C(X)

there is one that is coarsest.
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(iv) CC(X) carries the topology of compact convergence.
(v) CI(X) carries the topology of compact convergence.
(vi) CC(X) is topological

(vii) CI(X) is topological

Proof:

We will establish the following sequence of implications: (vi) = (vii)

= (i1) = (1) = (1ii) = (i) = (iv) = (v) = (vi),
(vi) implies by theorem 6 the identity of C,(X) and CI(X).

(vii) = (ii): Since any w-admissible [R~vector space topology on
C(X) 1is (by theorem 6) finer than I, (vii) implies that I is the

coarsest of all w~admissible [R-vector space topologies on C(X).

(i1) =» (i): Let T be the coarsest of all w-admissible [R~vector
space topologies on C(X). Clearly id: CT(X) ————>CC(X) is continuous,
implying, by theorem 6, that C(X) = C(BX~K) for some K € K and that
id : CT(X) _— CC(BX\K) is continuous. Hence CT(X) = CC(BX\K). If
X were strictly contained in PBXNK there would be at least one point
p € BX~X not contained in X, such that CT(X) = CC(BX\(K U {pl)).

The homomorphism sending each f € C(X) into f(p) is continuous on
CC(BX\K) but not on CC(BX\(K U {pl)). Hence X = BX~K, meaning that

X 1is locally compact.

(1) » (iii): In case X is locally compact, the topology of com~
pact convergence on C(X) coincides with the continuous convergence

structure.

(iii) = (i): Let T be the coarsest of the w~admissible topo-
logies on C(X). We will first show that the members of the neighbor-
hood filter WW(o) of the zero function in CT(X) is absorbant. To this
end let f € C(X). On R « f € C(X) we choose the natural vector space

topology. The final topology on C(X) induced by the inclusion map is
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w~admissible. Hence the inclusion map of R « £ into CT(X) is con~
tinuous, implying that neighborhoods of zero absorb f. Since T is

w~admissible we find to each p € X a neighborhood vy in X such that

w(U x Vp) cl -1,1]

for some U € W(o). Hence all functions in U extend continuously to

the interior W of «cl V... Since WM(o) 1is absorbant all functions

p BX 'p
in C(X) extend to J W_. . Thus
peX p
c(x) = c(lLJ W)
peX

For any real number A £ o, we consider the map m sending each
f € C(X) into A + f € C(X). The final topology on C(X) induced by
the map

m : Cp(X) x {A} —> C(X)

i1s w-admissible. Hence m : Cp(X) x {A} —> Cp(X) 1is continuous.
Moreover it is a homeomorphism. Thus for any U € (o) the set A - U
belongs to (o). Therefore for every positive real number €, we have

€ . U€ Y(o), and thus we deduce that
w(le . U x wp) c[ ~e,e 1,
which implies the continuity of

id : c(x) —>»c (LJw)
T c p€eX p

at 0 € CT(X). Proceeding similarly as above, we deduce that for any

f € C(X) different from O, the map

Co(X) x {f} —> Cp(X)
(8,f) —> g + ¢



29
is a homeomorphism. This implies that

id @ Cp(x) —> ¢ (LJ w)
peX p

is continuous. The assumption on T requires that

Cr(x) = c (LJw).
T c peX P

Reasoning as above we obtain the local compactness of X.

(1) = (iv): If X 1is locally compact, then CC(X) carries the

topology of compact convergence.

(iv) = (v): If C,(X) carries the topology of compact convergence
then, because of CC(X) = CI(X), (theorem 6) CI(X) carries that topo-

logy too.

(v) =» (vi): Theorem 6 yields the desired implication.



3. c~EMBEDDED SPACES

The relationship between a given completely regular topological
space X and CT(X), where T denotes an I[R~vector space topology,
depends very ﬁuch on T. At least from the technical point of view T
should (aside from a functorial dependence on X) satisfy the following

three conditions:

(1) T is ow-admissible
(ii) T 1is complete
(iii) T allows only the fixed maximal ideals

to be closed.

As we pointed out in theorem 11 of the previous section, a topo-
logy T satisfying (i) and (iii) exists precisely when X 1is locally
compact. If X 1is locally compact, then the topology of compact conver-

gence on C(X) allows a very close relationship between X and CCO(X).

Because of all this we use a convergence structure on C(X), name-~
ly the continuous convergence structure AC (a natural generalization
of the co~topology), and we show that it satisfies conditions analogous
to (i) to (iii) above, stated for T. Thereby we allow X to be any
convergence space.,

Our next problem will consist of exhibiting a suitable class of
convergence spaces, in which any two objects are homeomorphic iff their
function algebras endowed with the continuous convergence structure are

bicontinuously isomorphic. We call the spaces of this class c-~embedded.

It will turn out that the property of c~embeddedness will be en-
joyed by a large variety of topological spaces, especlally by all com~

pletely regular ones.

Schroder's characterization of c~embedded spaces will make apparent

how these spaces are built up by compact topological spaces.
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We close the chapter by showing that the topology of compact con-~
vergence on C(X), where X 1is c~embedded, is very closely related to

Ac after all.

On this excursion, a technical convenience will be achieved by
continuing investigations on CI(XS) and deriving analoguous results

as for C,(X). The reasons for choosing this method are not only the

continuity of the maps *

id I
Cr(Xg) ™2 C (X)) ——> C(X)

for some convergence space X, but also the fact that CI(XS) is, for
some of the problems we are interested in, much easier to handle than

CC(X) itself.

Why we concentrate on the relationship between a c-embedded con-
vergence sSpace X and CC(X) rather than on the one between X and
CI(X), (this object will be defined in the last section of this chap-
ter too) is primarily because AC is much coarser than I, and hence
allows many more filters to converge, in other words, because more

approximations are possible.

Throughout this chapter let us denote convergence spaces by X,Y,Z

etc.
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3.1 Completeness

We know that on C(X) both convergence structures AC and (in
case X 1is a completely regular topological space) I are w-admis~

sible. In addition both are complete:

In a convergence IR~vector space G, a filter @ 1is said to be
a Cauchy filter if the filter € ~ ©, generated by {T~T'| T, T' € 8},
converges to zero. Completeness of G now means that any Cauchy filter

converges to some element of G.

Completeness of CC(X): Let ® be a Cauchy filter on CC(X)

Since ® -8 —>0 € C.(X), the filter w(® x P) is a Cauchy filter
in R for any point p € X. We denote its 1limit by f(p). Assigning
to each p this limit, we obtain a real-~valued function f. The con~
tinuity of f can be shown as follows:

Since & ~ 8 —™ o€ CC(X), to any point p € X and any filter

® converging to p € X, there are sets T € ® and F € ® with
o((T ~T) xF) ¢ U,

for a given closed neighborhood U of o €R.
For any point q € F we have o(8 x q) —> f(q), which implies
that f(q) is adherent to {t(q) | t € T}. Hence any number of

{t(q) - f(q) | t € T, g € F} is adherent to w((T=T)x F). Therefore
{t(q) ~ f(q)It € T, q € F} c U,

Without loss of generality we may assume that p € F, which yields:

{(t(@) - £(q) ~ (t(p) ~ £f(P)) | t €T, q€F cU ~1U



and therefore

f(p) ~ £f(q) €U - U + {t(p) ~ t(q)}

for any q € F. Let t € T be fixed. The continuity of t allows us

to choose F' € ® such that

(t(p) - t(q) « U for any q € F'.

Hence we have

(f(p) - £(q)) €U ~U + U

for any q € FAAF'. Choosing U such that U~U+U  (~e,e ) for a given

positive real number €, we end up with
If(p) ~ £(q)| < € for each q € FAF!',

which states the continuity of f. The reader is left to show that

8 —>f € C.(X).

Completeness of CI(X):

Let X now be a completely regular topological space. Assume 8
is a Cauchy filter on CI(X). There is a filter ¥ convergent to °
in CC(BX\K) (for some compact subset K < BX~X) with the property
that ¥ 1is a basis for ® ~® in C(X). Thus there is a set M € @
with (M~M) € w. We will show that M itself is in CC(BX\K') for
some compact K' < BX~X. Let g € M, For each f € M we have

(f~g) € M~M and thus (f~g) € C(BX~K). Hence
£71(w) e g7 (=) U K.

Setting g l(e) U K = K' we observe that © has a filter ©' on
C(BXNK') as a basis. Clearly ¥ 1is a basis for ©' -~ 8!'. Since the

inclusion map from CC(BX\K) into CC(BX\K') is continuous, &' ~ 8!
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is a Cauchy filter on CC(BX\K') and hence converges there to some

function t. Thus 8 —>t € cp(X).

This proof can be found in [ Bi,Fe 1 ]. For a general result on

completeness of inductive 1limits see [ Ja ]. To summarize we state:

Theorem 13

Both convergence algebras CC(X) and (in case X 1is a completely

regular topological space) CI(X) are complete.

As a contrast, let us take a look at Cco(x) for a completely
regular topological space X. The completion ECO(X) of CCO(X) con~
sists of the set of all real-~valued functions of X whose restrictions
to all compact subspaces of X are continuous, and carries the topology
of compact convergence. In case the compact sets are formed by finitely
many points only, like in P-spaces ([ G,J 1, p.63), then the comple=~
tion of CCO(X) consists of the collection of all real~valued functions

of X, and carries the topology of pointwise convergence.

To present an example of a non~discrete P-~space X we take a
certain subspace of a space of the type W(a), defined at the end of
§ 1,2. Let o be the smallest ordinal of cardinality i\, . Call it
Wy Now let X be the subspace of W(m2) formed by deleting all non-
isolated points having a countable basis. This space is not discrete and

not realcompact ([G, J], p. 138)

However, for a large class of completely regular topological spaces,
which contains all metric spaces, the associated algebras of all real-~
valued continuous functions endowed with the topology of compact con-~
vergence are complete [ Wa ].

As introduced in 1.1, we have for each subset A of an arbitrari-

ly given convergence space the notion of the adherence A of A,
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We call a set A< Y dence in Y if A = Y,

To conclude the section we prove:

Proposition 14

The IR-algebra CO(X), consisting of all bounded functions of C(X),
is dense in CC(X) and (in case X is a completely regular topologi-

cal space) also in CI(X).

Proof:
Let Y be a completely regular topological space and f € C(Y). We
form the sequence

{(n v ) anl ¢ ™,

of which all elements are bounded. Here n denotes the constant function
assuming the value n €(N. It is an easy exercise to verify that the
Fréchet filter of the above sequence, which is the filter generated by

all the sets of the form

Fs={(nvf)anlin>1i} 1ie€MN,

converges to f in CI(Y). Using the continuity of the maps

id o
Cp(Xy) =2 C (X)) ——> c_(X),
we deduce that CO(X) is dense in CC(X) for any convergence space.
3.2 Closed ideals
We now begin to exhibit a natural class of convergence spaces with

the property that any two objects in it are homeomorphic iff their

function algebras endowed with the continuous convergence structure



are bicontinuously isomorphic.
Obviously any continuous map f from a convergence space X

into a convergence space Y induces a continuous homomorphism

¥ c (¥) —> c (X).

Suppose now Kk : CC(Y) —_— CC(X) is a continuous homomorphism,
How can k induce some map from X into Y? To find out we form the
set Hom CC(X),consisting of all real-valued continuous homomorphisms
of C,(X) and endow this set with the continuous convergence structure,

thereby obtaining HomcCC(X). We observe that for any p € X
iy(p) C.(X) —>R

is continuous and moreover that

i X ———> HamcCC(X)

is continuous too.

Returning to k we can check easily that

*

k : Homccc(x) _— HomcCC(Y),

sending each h € HomcCC(X) into hek, is a continuous map. Hence

we have a continuous map

*.
k o 1

X X ——> Hom C_(Y).

In case Y were (via iY) homeomorphic to HomcCc(Y), we would

have a continuous map f given by

-1
iY o k¥o iy ¢+ X —_—> Y,

for which f* = k.

If in addition X were (via i homeomorphic to HomcCc(X),

x)
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then X and Y would be homeomorphic as soon as CC(X) and CC(Y)
were bicontinuously isomorphic.

How restrictive is the condition that iX is a homeomorphism?
To find out, we are forced to study HomcCC(X). Clearly for any
h € HomcCc(X) the ideal Ker h CC(X) is closed and maximal. We
therefore investigate before our further development the closed ideals
in C.(X).

Looking at the continuous maps
*

id i
Cr(xy) — > C (X)) =2 C_(X)

we observe that for any closed ideal J < CC(X) the ideal (n*)-l(J) c
CI(XS) is closed too. We thus investigate first of all the closed
ideals of CI(X), where X 1is assumed to be a completely regular to-
pological space.

Evidently for every non-empty set S < X the (proper) ideal I(S)
defined as

{fecX £(8) ={ o1} }

is closed in CI(X). What we will establish [ Bi,Fe 1 ] is:

Theorem 15

Let X be a completely regular topological space. For any ideal

J e C(X) let Ny(J) € X be the collection of all points at which
every function in J vanishes. An ideal J < CI(X) is closed iff

J = I(NX(J)). Hence a maximal ideal in CI(X) is closed if it con-

sists of all functions in C(X) that vanish on a single point.

Proof:

Let J < CI(X) be a closed ideal. We call NX(J) c X the null-set of

J in X. Clearly
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NX(J) = N\ (D),
feJ

where Z(f) denotes the zZero~set of f in X. Let J° be the collec~
tion of all bounded elements in J. Since for any function f € J
there is a bounded function g € J° such that Z(f) = z(g), we can
represent Ny(J) as gz}o Zy(g). For this we refer to [ G,J ] 2.4,
p.30. The inclusion map of X into PRX induces a continuous map from
CCO(BX) into CI(X). Hence J° c CCO(BX) is closed, and is therefore
of the form

0]

_ (o]

where NBX(JO) is a closed non-empty subset of PBX. First of all we
will verify that J° contains all bounded functions of I(NX(J)). We
are obviously done as soon as we know that NBX(JO) is the closure in
BX of NX(J).Assume to the contrary that NBX(JO) contains a point g
outside of clBX NX(J). We choose in PBX a closed neighborhood U for q
disjoint from clBXNX(J). There is a function g € C(BX) such that
g£(q) =1 and g vanishes outside of U. We assert that g € JMNC(PX~K)
where K denotes the compact set Uf\NBX (JO) < BX~X. Clearly
Jr\CCO(BX\K) is a closed ideal in CCO(BX\K), and therefore consists

of all functions in C(BX~NK) that vanish on the null set in BX~K

of JNC,,(BXNK). Since the bounded functions in JNC(BX~K) are pre-
cisely the elements of JO, we conclude that NBX(JO)/\(BX\K) is the
null set of JAC(PX~K). The function g vanishes on NBX(JO)/\(BX\K)
and therefore g is an element of JNC(BX~K), as claimed. Thus we
know g € J°. 0On the other hand g 1is not an element of I(NBX(JO)),

which is of course J°. Because of this contradiction, we conclude that
Ngx(9®) = c1,,N.(J). Hence N, (J) # @, and J° consists of all boun-
B BX X . X ’ c

ded functions in I(NX(J)). Let f € I(NX(J)). There is a unit u € C(X)

such that u + f is bounded. Hence u - f € J° and thus f € J. This
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implies that J = I(NX(J)). The proof of the converse is evident.

Because of the complete regularity of X we moreover have:

Corollary 16
Let X be a completely regular topological space. The closed ideals in
CI(X) are in a one~to~one correspondence with the closed non~empty

subsets of X,

Let X now be a convergence space. Let us call an ideal in C(X)
full if it consists of all functions vanishing on a fixed closed non-
empty subset of X. Obviously any full ideal in CC(X) is closed.
Moreover for a full ideal J « C(X) we have J = I(NX(J)).

From theorem 15 and the continuity of the maps

*
id !
Co(X) =™ C (X)) ——>C_(X),

one easily deduces the following two theorems [ Bi 3 ]:

Theorem 17

For any convergence space X an ideal in CC(X) is closed iff it is

full. Hence a maximal ideal in CC(X) is closed iff it is fixed.

This theorem leads us to a very fundamental result of our study:

Corollary 18
For any convergence space X the map iX : X‘————€>Homccc(x) is a

continuous surjection.
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Theorem 19

For any convergence space X the closed ideals in CC(X) are, via the
forming of null sets, in a one~to~one correspondence with the closed
non-empty subsets of the completely regular topological space Xs
associated to X.

In addition the reader may verify that X, and HomC CI(XS) are

homeomorphic via iX
s

Let us refer to [ Bi 3] and [ Bi 2 1 for the study of the ad~

herence of an ideal in CC(X) and another proof of corollary 18.

3.3 c~embeddedness

In this section we will turn our attention to those spaces X for

which iX is a homeomorphism. We call these spaces c~embedded spaces

[ Bi 1], [ Bi 2 ]. A characterization of the c~embedded topological
spaces ensures us that the condition of c~embeddedness is not too re-
strictive. Moreover we will see that the class of all c-embedded spaces
is big enough to reproduce all CC(X), where X runs through all con-
vergence spaces. We close the section by a result which shows that each
c~-embedded convergence space X is determined by CC(X).

We begin by collecting some basic properties of c~embeddedness.
Since CC(Y) is Hausdorff for any Y, any c~embedded space is Haus~
dorff.

Call a convergence space X regular if it is Hausdorff and for
each point p € X and each filter ® convergent to p, the filter 5,

generated by {(F | F € ®} converges to p. It is easy to see that

CC(Y) is regular for any convergence épace Y. Since Homccc(x)
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is a closed subspace of CC(CC(X)), it is regular. Hence every c-~em-
bedded space has to be regular. Note that regularity of a space X is
not a consequence of the injectivity of ix. For the space S intro-
duced in § 1.1 1is not regular; however is is injective.

We leave it to the reader to verify the following permanence pro-

perties:

Proposition 20

Any subspace of a c~embedded space is c~embedded. The cartesian product

of any family of c~embedded spaces is c~embedded.

Basic to our further techniques is the following:

Lemma 21

For any convergence space X the convergence spaces CC(X) and

HamcCc(X) are c~embedded.

These results follow immediately from the diagram

icx)
_
C.(X) Co(C (C (X))

X

C.(X) ,

where ix is regarded as a map from X into CC(CC(X)), and propo-

sition 20.
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To see that not every c-embedded space is topological, choose a
space Y such that CC(Y) is not topological (theorem 12). Let us
start the more detailed studies of c~embedded spaces by investigating
the topological ones:

For any completely regular topological space X the map
ix : X ——————>H0msCC(X) c HomsC(X) is a homeomorphism. Since

id : Hom C_(X) -—————%>HomsCC(X) is continuous we have:

Lemma 22

Any completely regular topological space 1s c-~embedded.

However, completely regular topological spaces are not the only
topological spaces that are c-~embedded. For the formulation of the
characteristic property which c-embedded topological spaces enjoy,
we need the following notion:

Let us call a subset S of a convergence space X weakly closed
if 8 = n‘l(ETESS, where I : X———>X_  denotes the canonical pro-
jection.

Now let us state B. Miller's characterization [ Mi ]

Theorem 23

A topological space X 1is c~embedded iff C(X) separates points and

every neighborhood filter has a basis consisting of weakly closed sets.

Proof:

It is easy to verify that c~embedded topological spaces satisfy the
condition expressed in the proposition. To show the converse, we copy
the corresponding proof from [ Bu, Mi ].

Since C(X) separates points in X, the map
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iy =+ X -——%Hamccc(X)

is a continuous bijection. To show that it is a homeomorphism, we choose
an arbitrarily given filter @ convergent to h € Homccc(x), and

we will demonstrate that i;(l(o) —%i;(l(h) € X.

Instead of i;(l(h) we write p. To any point q € X we choose a
weakly closed neighborhood Uq such that p ¢ Uq whenever p # Q.

The filter ® generated by the collection
{ I(Uq) |l ¢ € X1}

of ideals converges to O in CC(X). Hence we find F € 8 and

Vo€ i;(l(o) such that

F(V) e [ ~1,1 ].

. n .
Clearly F contains 1{‘\_1 I(qu) for some points Qpse--5q, € X.

Let us verify now that

€U UU, U...Uu U_ .
Vel Ui q

Assume q £ (Up V) kn_) Uq ). We find f € C(X), assuming the value 2
i=1 i

n
at q and vanishing on U_ U ) U, . Hence

p

n
femN I(U )ePF,
i=1 a3

and therefore f(V) « [ ~1,1 ]J. Thus q € V, establishing the above

inclusion. Since U is injective, it is the identity on X. Obvious~

-1 n -1
ly iy (®) —>p € X,. Because of p ¢ 1=k{ qu the filter iy (@)

Since Up ulJUu

1 4

s*

n
contains the complement W of {(JU in X
iz1 Y i=

-1
and W are members of iX (®) we conclude from
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that Up € iy (®).
The weakly closed neighborhood Up was arbitrarily choosen. Hence
igl(Q) is finer than the neighborhood filter of p € X. Thus iil(o)

converges to p € X,

In fact every c~embedded topological space X 1is regular but not
necessarily completely regular. On the other hand, a regular topological
space need not be c~embedded.

Let us present two examples, stated in [ Bu,Mi 1, which show that
the notion of c~embeddedness for topological spaces is intermediate
between those of complete regularity and regularity in combination with
the separation of points by real-valued continuous functions. Both exam-~

ples are based on the Tychonoff plank T. This space is defined as

follows. Consider W(w) and W(w;) as introduced in § 1.2 and its
one~-point compactifications W(w + 1) and W(m1 + 1) respectively. Then

T is the space

Wo + 1) x W(oy + 1) N {(w,07)}

v
(The Stone~Cech compactification of T is W(w + 1) X% W(m1 + 1). For
further interesting details on T consult [ G,J ]). For each n €N
set T =T x{n} and form the topological sum £ T . In the ladder

nez
space we identify

(p, W, 2k) with (p, Wy, 2k + 1)

and

(wy g, 2k + 1) with (w, g, 2k + 2),

for all k€ Z, p € Ww) and q € W(ml). We equip the resulting set
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of equivalence classes with the quotient topology and denote it by S.
Let P=SU{t} where t ¢ S. Define a topology on P as follows:
A neighborhood base in P of any point ¢ € 8 is the filter of neigh-

borhoods in S8 of q. A neighborhood base of t in P is given by

C et % Inez)
vgn
where ﬁv is the image in S of Tv' The space P 1is regular and
c~embedded, but not completely regular.
For the next example set Pn =P x{n} for each n €N and

form the topological sum z Pn. To this sum we again adjoin one point,

nez
say T ¢ I Pn. We introduce a topology on
nez
R={t}uv = P
nez
as follows: A neighborhood base in R of any point q € = P
nez
is the filter of neighborhcods in z Pn of q. A neighborhood bzse

nez
of £ in R is given by

[o{grv | ’Tvx{u}InGFN}.

vzn
L 2n

The space R 1s regular and admits point~separating continuous real-

valued functions; however, it is not c~ embedded.

As we demonstrated so far the class of c~embedded convergence
spaces contains a large collection of topological spaces. It will be~
come apparent later that the collection of non~topological c~embedded
convergence spaces is also very big.

To conclude this paragraph we will show that any CC(X) is bicon~-
tinuously isomorphic to Cc(HomcCc(X)) and we will state a precise

statement of the fact that any c~embedded X is determined by CC(X).
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Theorem 24

For any convergence space X the map
*
3 —_—
iy Cc(HomcCc(X)) CC(X)
is a bicontinuous isomorphism whose inverse is

d : C(X) —> C(Hom C (X)),

defined by d(f)(h) = h(f) for any f € C(X) and any h € HomcCc(X).

Proof:
S. '* . . L] to o* s d " . .
ince 1y 1s 1njective and 1X0<d = ldC(X) holds, @ 1s an 1lsomor
phism.
Theorem 25

Any continuous map f : X ——>Y induces a continuous homomorphism
*
£ C(Y) —-———>CC(X). If Y is c~embedded any continuous homomor-

phism k : CC(Y) ————€>CC(X) induces a continuous map

* - * . x

k : Hom C_ (X) ——>Hom C (Y) for which (ino ke iy) = k. In case
both X and Y are c~embedded, k is a bicontinuous isomorphism iff

i-l
Y X

are homeomorphic iff CC(X) and CC(Y) are bicontinuously isomorphic.

* . . .
ok o1 is a homeomorphism. Hence, two c~embedded spaces X and Y

The proof is obvious.

3.4 Compact and locally compact c-embedded spaces

To prepare a general characterization of c-embedded spaces in terms
of certain limits of compact topclogical spaces, we will study first

compact and locally compact convergence spaces.
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We call a convergence space X compact if it is Hausdorff and
every ultrafilter on X converges in X.

Note that not every compact convergence space is topological. In-~
stead of presenting a particular example we refer to [ Ra, Wy ] and
[ Wo ] for the study of completions and compactifications of so~called
Cauchy spaces.

A set F 1in a convergence space X 1is called compact if F is
compact when regarded as a subspace. A convergence space is said to be

locally compact if it is Hausdorff and every convergent filter contains

a compact set. As in topology compactness for convergence spaces can be
characterized in terms of "coverings".
A system ¥ of subsets of a convergence space X 1is called a cove~
ring system if each convergent filter on X contains some element of & .
To complete the notlons which we are going to use in our description
of compact spaces (see [ Sch 1 1). let us introduce: A point p € X 1is
called adherent to a filter ® on X or a point of adherence of @ if
p 1is the limit of a filter ¥ (i.e. ¥ —>p) finer than ©o. Clearly

any 1limit of a filter ® on X is adherent to .

Proposition 26

Let X be a Hausdorff convergence space. The following are equivalent:

(i) X 1is compact.
(i1) Every filter on X has a point of adherence.
(iii) In every covering system there are finitely many

members, of which the union is X.

Proof:

(i) » (ii): By Zorn's lemma, to every filter ® or X there is an

ultrafilter ¥ on X with ¥ 3 ©. Any limit of ¥ is adherent to o.
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(i1) = (iii): Let ¥ be a covering system allowing no finite subcover,
Hence { XS | S €¥} generates a filter, say ®, on X. Every con-
vergent filter in X has a basis in some member of & . Thus @ does

not have an adherent point in X.

(1iii) = (i): Assume that some ultrafilter on X, say ® does not
converge in X. Then ® cannot be finer than any convergent filter ¥.
Since for any subset M <« X either M or X~M belongs to @, we find
in any convergent filter ¥ a member Mw € ¥ for which X\Mw belongs
to ®. The system { Mw | ¥ convergent in X } is a covering system
of X. If finitely many members of this system would cover X, then ¥

would have to contain the empty set.

Let X now be a compact convergence space. Using ultrafilters one
proves, as in general topology, that for any continuous map f from X
into a Hausdorff convergence space Y the image f(X) 1is compact; thus
any continuous real-valued function of X is bounded.

Moreover A, on C(X) 1is nothing but the supremum norm topology.
We obtain a guide for our intuition for the forth~coming problems by

taking a quick look at a compact space X. The isomorphism

o C(Xg) ——>CC(X),

induced by I : x-———ﬁ>xs, is bicontinuous, since both algebras carry
the uniform topology. Hence, if X is c~embedded it is homeomorphic to

X by theorem 25, and thus a Hausdorff topological space.

s?

Proposition 20 yields therefore:

Proposition 27

Any compact subspace of a c~embedded space 1s topological.
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In case X 1is a locally compact space, then CC(X) carries the
initial topology generated by all sup~seminorms, that is by seminorms
of type s

K
C(Xx) ™R
< A\
f ——> suplf(p)l ,
pPEK

where K < X 1s a compact subset of X. Thus CC(X) carries in this
case the topology of compact convergence.

To prepare for the study of locally compact spaces we first focus
on{cE, the dual space :(E of a topological [R~vector space E en-~

dowed with the continuous convergence structure (see [ Sch 1 ]).

Proposition 28

Let E be a topological fR-vector space. For any neighborhood U of
zero the polar U° is a compact topological subspace of :%E; in

fact it carries the topology of pointwise convergence.

Proof:

Let ® be an ultrafilter on U®. Since Ug, the polar U° endowed

with the topology of pointwise convergence, is compact @ converges in
Ug to some functional f., We proceed to show that @ even converges
to f in ;CCE.

For any element e € E and any positive real number ¢ we find a

T € @ with

W(T x {e}) e f(e) + [ - £, 1.

N
oo

Hence for any k € T we have

k(e + 5 -0 e k(e) +§ + k(U) ef(e) + [-5, £1+ [-1,11.

role
L]



But this shows that
(T x (e + g s U)e £ (e) + [ -e,e 1,

0]

as desired. Since d%E is a c-embedded space u° the set U en~

C,
dowed with the continuous convergence structure, is a compact c-embedded
space (Proposition 20). By the above remarks it is thus topological and

hence homeomorphic to Ug.

Corollary 29

For any topological [R~vector space E the c-dual z%E is locally
compact. Each compact set in i;E is topologicalj it carries the
topology of pointwise convergence. Hence, for any topological unitary
R~algebra A the space HomCA, consisting of Hom A, the set of all
real~valued unitary homomorphisms of A, together with the continuous

convergence structure, is locally compact.

Proof:

Since any filter convergent to zero in Z%E contains the polar of a
neighborhood of zero in E, the first part of the corollary follows
immediately. Any compact subspace of zZE is c~embedded and thus is
topological, hence it carries the topology of pointwise convergence.
Evidently Hom A < Z;A is a closed subset and therefore HomCA is

locally compact.

Let us point out that 4%E is not topological unless it is finite

dimensional.

Next suppose A 1is a normed [R~algebra. We may assume that the
norm Il |l of A satisfies |la - bl| < llall « Ilbll for any choice

of a,b € A, and let us suppose in addition that the identity has norm one.
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Note that any homomorphism in Hom A has norm less than or equal to 1,

see [ Ri ], meaning that Hom A is in the polar of the unit ball of A.

This means:

Corollary 30

If A 1is a normed [R~algebra then HomCA is a compact topological

space, which carries the topology of pointwise convergence.

To collect the results on compact c~embedded spaces we state

[ BiI 4 ]:

Theorem 31

For any c~embedded convergence space X the following are equivalent:
(1) X 1is compact.
(ii) X 1is compact and topological.
(iii) CC(X) carries a norm topology.

If CC(X) carries a norm topology, then it is the topology of uniform

convergence,

Proof:

The implication (iii) =» (ii) is a consequence of corollary 30, and

the rest is well known.

If for a c-embedded space X the convergence algebra CC(X) is
topological, then X 1is by corollary 29 a locally compact space. Thus
locally compact c~embedded spaces can be described by their associated

convergence function algebra as expressed by M. Schroder in [ Sch.1 ]:



Theorem 32
For any c~embedded space ¥ the following are equivalent:

(1) X is locally compact.

(ii) CC(X) is topological.

If CC(X) carries a topology, then it is the topology of compact

convergence.

Let us now investigate locally compact spaces from another point
of view. We would like to characterize locally compact c~embedded spaces
by topological properties.

For this purpose we first generalize our notion of an inductive
limit, defined in section 2.2., to general convergence spaces. All we
really need to do is to require that in the introduction of the induc-
tive 1limit of topological vector spaces in section 2.2., the spaces and
the maps appearing there be replaced by convergence spaces and continuous
maps respectively.

Any locally compact space X 1is the inductive limit of the family
K of all compact subspaces of X directed by inclusion. Clearly if X
is in addition c~embedded every member of K is topological (proposition
27). Moreover C(X) separates points of X.

Conversely assume that X 1s the inductive limit of an inclusion-

directed family { K of compact topological subspaces. Assume

o} }a €N
in addition that C(X) separates points of X. Clearly X 1is a local~

ly compact space which we will show is c~embedded. Evidently

i

x X —> Hom C_ (X)

is a continuous bijection.

Hence lleq is a homeomorphism from Kq onto IX(KG) for each
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a € N, We will show now that each compact set H < Homc CC(X) is con-~
tained in iX(Kq) for some o € N. This will imply that ix is a
homeomorphism since HomcCC(X) carries the final convergence structure
induced by the family of all compact subspaces.

Since the { K forms a covering system of X, the topo-

a }a €N

logy of CC(X) is determined by the collection of seminorms

s : CX) ———3> R,

Q
assuming on each f € C(X) the value suplf(p)!, where a varies
PEK
Qa
over N, Since HomcCc(X) is locally compact, the topology of

CC(HomCCC(X)) is determined by all seminorms of the form

syt C(Hom C_(X)) —>R,

sending each g € C(Homccc(x)) into suplg(h)!, taken over a compact

set H«c HomcCC(X).

. ¥ . . . -
Since iy : C_(Hom C (X)) ‘-‘-———i>CC(X) is a bicontinuous iso-

1

Lk~ R R :
morphism, sye° (1X) (called s!) dis a continuous seminorm on CC(X).

H
Hence

for some positive real number r and some a € N. The kernels (the

zero sets) of sﬁ and S, are related by

1
ker(sH) ) ker(sq).
The null sets of these two closed ideals are therefore related by
Nx(ker(sﬁ)) c Nx(ker(sq)),

3 3 — h* - = 3
Since (1;) 1(ker(s}'I)) and (1X) 1(ker(sq)) are closed ideals in

Cc(HomcCc(X)), with H and iX(Kq) as their null sets respectively,



we have H < iX(Kq). Therefore iX is a homeomorphism. Thus wWe have:

Theorem 33

A convergence space X 1s locally compact and c~embedded iff the follo~

wing two conditions hold:

(1) C(X) separates the points of X.
(ii) X 1is the inductive 1limit of a family of
compact topological subspaces directed by

inclusion.

Hence a locally compact convergence space X 1is c-embedded iff C(X)

separates points and in addition every compact subspace is topological.

Our example in § 0,1 of a non~topological convergence space, the
space E, 1is evidently locally compact. It is also c~embedded. Indeed,
since every linear map from E into R is continuous, C(E) separates
the points of E, Using proposition 26, one verifies that every compact
subset of E 1is contained in a finite dimensional subspace of E. The
finite dimensional subspaces of E carry the natural topology. Thus
every compact subset of E is topological. Hence, by the above theorem,

E is c~embedded.

3.5 Characterization of c~embedded spaces

Any completely regular topological space Y is the projective
limit of all locally compact subspaces of BY that contain Y. Ana-
logously we will represent any c~embedded space X as a projective limit
of locally compact c~embedded spaces. We use here an idea of a preprint

[ Sch 2 ] of M. Schroder, to whom this characterization is due.
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To introduce the notion of the projective limit let {Ya}qem be

a family of convergence spaces indexed by a downward directed set M.

We call {Ya}aeM a projective family, if for any a,B € M with a g B

there is a continuous map

.q
ig : Y ——————)YB .

Qa

The projective limit proj Y of a projective family {Yq}qu,

a€M
or in shorter form the projective limit of {YG}GGM’ is a convergence
space L with the following two properties:
(1) To each a € M there is a continuous map
LN L—> Y,

with igo n =1 for each pair a,B € M with a g B.

a <]

(ii) In case there is to each a € M a continuous map jq

from a fixed convergence space F into Y, such that

commutes for any choice of a,B € M with a g B, then

there is a uniqye continuous map jJ : F ——> L with

Mged = g o
Obviously if L exists, then it is determined up to homeomorphism,

To show the existence of the projective limit, let us form ny -
a€M

The subspace of all those elements g € II Yq for which
aeEM
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ig(nq(g)) = HB(g) for any choice of a,B with a £ B, 1is a model of

L, where Ha and HB

If each member of the family is c~embedded, then the projective

denote the canonical projections.

limit is c~embedded (Proposition 20).

‘Let us now state Schroder's description of c-embedded spaces:

Theorem 34
Any c~embedded space X 1is the projective limit of the family {Lq}aeM
of all those locally compact c-embedded spaces for which there are con-

tinous inclusions

v

X —> L BXé.

Proof:

The proof we present here is a simplified version (due to H.P.Butzmann)

of Schroder's original proof. First we show that {Lq} is directed.

a€eM
For any two members Lq and LB we form the intersection of the under-
lying sets and endow it with the initial convergence structure induced
by the inclusions into Lq and L,. The space LY obtained in this

B
way is obviously a locally compact c~embedded space. The inclusions

Yoo Jy
X F g LY /'BXS

are continuos. Hence {L_}

ataem forms a projective system. For any com-

pact subset K < BX_~X  the space BX_~K belongs to {Lq}qu- Thus

the canonical map from X into proj L
a€M &

us identify the underlying sets. The canonical map j from proj La

is a continuous bijection. Let

into Xs is continuous too. To visualize the situation we use the

diagram id 3

X —> proj L ——)xs
aeM ¢
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We immediately deduce that

C(X) = C(proj La)'
QEM

To prove that id is a homeomorphism it is sufficient to verify

the identity of CC(X) and Cc(proj ga). Let therefore ¥ and © be
A€M

filters convergent to p€ proj L, and to zero in CC(X) respectively.
a€M

We will show that to any positive real number € there are sets P € ¥

and T € 8 related via
(T xP ) e l[~,el.

Let € be fixed. In any conveérgent filter ® in X there is a set

Po for which

( To x PQ) c [-e,€]
for some set T° €08, W.1,0.g. we may assume that Po is closed in Xs‘
We form clBX Po and regard it as a subspace of BXg. We turn
s
LJclBX Po into a locally compact c~embedded space L by introducing
s

the final convergence structure. Evidently the inclusions

i J

N
7 BXS

W
=

X

are continuous. The filter i(¥) converges to p in L, and therefore

. 1

contains, say, CU clBXPo for ®. convergent in X.
i=1 i

Since the members in {P°_| i=1,...,n} are closed in X
i

g? the set

C
C-

cl P.YAX
iz1 %1 ;1 PAO

belongs to ¥. Since in addition

n n

o (N Ty, * Pp) < [~e,e]
i=1 Y1 di=1 7i



holds, the proof is complete.

In connection with theorem 33, theorem 34 shows how c~embedded

spaces are built up by compact topological spaces.

3.6 Continuous convergence and compact convergence,

CI(X) for c~embedded X.

Let X be a c~embedded space. Moreover denote the algebra C(X)
equipped with the topology of compact convergence by Cco(x)' How
are C,(X) and Coo(X) related to each other? Obviously
id: CC(X) —_> Cco(x) is continuous. But how much finer is the con~
tinuous convergence structure than the topology of compact convergence?
More precisely: Are there other locally convex vector space topologies
between the continuous convergence structure and the topology of com~
pact convergence? To find out we turn C(X) into an inductive limit
called Ci(X) again, for which id : c1(X) Y C,(X) 1is continuous
and investigate the relationship between CI(X) and Cco(x)' We do
this because CI(X), even in this generality, will be much easier to
handle (with respect to the problem we posed) than CC(X).

The representation of X as proj L. introduced in the last
LEM

section allows us to generalize the convergence structure I defined
on C(X) for a completely regular topological space:

For o € M we consider the locally compact c~embedded convergence
space LL. To any p € X and any filter ® converging to p 1let us
associate a set Fg € .

Since iL(Q) —> p € LL, there is a compact set K' € iL(Q).

Without loss of generality we may assume that Fp © K'. Now we form in

K' the closure ﬁQ of Fg. Let us denote the collection of compact



topological spaces { F°|o ————>p and p € X} by E.

The set L given by ) K, endowed with the final convergence
Kez

structure defined by the family of inclusions from all XK € ¥ into L,
is a locally compact c~embedded space, containing X as a dense subset.
Moreover there is a continuous inclusion ju : L-—————)LL. Thus we can

represent X as the projective 1limit proj L s where M! €« M consists
LEM'

of all those members of M which contain X as a dense subset,

For any o € M' the inclusion iL : X-———)I% induces an injection

* *
iL : C(LL) ——> C(X). Let us identify each g € C(LL) with ib(g).

Hence C(X) = Egﬁ, C(LL). For any LtEM' the continuous convergence

structure on C(LL) is the topology of compact convergence.

The inductive limit of the family { C (L) } is denoted by

LEM!
CI(X), the convergence structure on CI(X) by I. We leave it to the
reader to verify that if X is a completely regular topological
space then CI(X), as just introduced, coincides with CI(X) intro~
duced in section 2.1.

Evidently 1id : CI(X)-—————€>CC(X) is continuous. Since
id : CI(XS) ——————)cI(x) is continuous and since every full ideal in

CI(X) is closed, one has the following:

Theorem 35

Let X be a c-embedded convergence space. For any ideal let NX(J) be
the collection of all points at which every function in J vanishes.
An ideal J c CI(X) is closed iff J = I(NX(J)), the set of all funec-
tions in C(X) vanishing on NX(J). Hence a maximal ideal is closed

iff it consists of all functions in C(X) vanishing on a single point.

Hence for a c-embedded space X the convergence algebras CI(X),

Co(X)y Cr(Xg), Co(Xg), Cuo(X) and thus C, (X)) have all the same



closed ideals.

Remark 36

Let us point out at this stage that the analogues of theorems 6,8,13
corollary 9 and proposition 14 hold for CI(X) in case X 1is a c~em-
bedded convergence space. This can be obtained by modifications of the
corresponding proofs. For any c~embedded convergence space X the con~

vergence algebra CI(X) is topological iff X 1is locally compact.

To g0 back to the initial question let us take the family 1[s1_}1__‘,:N

(where N 1is an index set) of all seminorms continuous on CA(X) for
some convergence structure A. The initial convergence structure on
C(X) induced by this family is a locally convex topology T. We call

T the locally convex topology associated to A.

Our main result of this section reads now as follows:

Theorem 37

For any c~embedded convergence space X the locally convex topology

on C(X) associated with I is the topology of compact convergence.

Proof:

We repeat the arguments of the proof of theorem 3, p.440 in [Bi, Fe 1].
Let s : CI(X)-—————ilR be a continuous seminorm. We construct
a seminorm § on C(X) which majorizes s and is more convenient to

work with. This seminorm is defined by
B(f) = sup{ s(g) | g € c(X) and gl < ITI}.

To demonstrate the continuity of § we consider for each LEM!

the restrictions

- ~
S, = sIC(LL) and sIC(LL).
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The latter function indeed is nothing else but

T . c(L,) — R,

given by

5L(f)= supls(g)lg € C(L,) and IglsIfl),

Since s 1is continuous for each € M' we find a compact subset

K L and a positive real number r_ such that

where s~ assumes on each f € C(Lu) the value sup I[f(p)l|. Evident-
pPEK
1y L

is immediate. Hence

is continuous too.

Next we are going to use the following properties of ¥

T(£) = T(Ifl) for each f € C(X)
F(f) < &(g) for each f, g € C(X) with Ifl < lgl,

which the reader is entitled to verify.
Consider now the kernel P in C(X) of ¥. We contend that P

is an ideal. To prove it consider with f € C(X) the function

((-=n v £) A n),



where n € (N. Now
S - ((-n v f) an)) <8g-n =n. 3@,

and hence

g+« ((-nv f) An) €p if g € P.

The Fréchet-filter of the sequence
{g« (Gnv ) aml}

converges in CI(X). tog . f . Hence g + £ € P provided that g € P.
On the other hand P is an{R~algebra; thus P < CI(X) is a closed
ideal and consists of all functions in C(X) vanishing on the (non-
empty) set Ny(P) @ X (theorem 35).

We will show that NX(P) is compact. Clearly P < C(X) is the
union over € M' of the kernels P < C(L ) of Ef. Hence

Ny (P) = /NN (P),
X LEM! Ly W

Moreover Ny(P) is the projective limit of {NLL(PL)}LGM' .
The set NL (PL) is contained in the null set NL (PL) of the ker-
L L

nel P of 5 is compact. There~

L L

: C(LL)————? R. But NL (PL) = K
L
fore NL (PL) is compact for each (€EM' and hence NX(P) is compact.
L
Next we will show that a constant multiple of the continuous semi-~

norm _
s : C(X) — > R,

defined by S(f) = sup [f(q)! for each f € C(X), majorizes s.
Q€N (P)

Consider g = (~35(f) v £) A 5(f), where f € C(X). We have S(f-g) = o

since f-~g vanishes on NX(P). Furthermore

I8(f) ~ ¥(g)| ¢ §(f~g)



and hence S(f) = g(g). From the inequality lgls £(f) we conclude

s(f) € 8(£) ¢ §(8(£)) = 5(£) - ¥(1),

which completes the proof.

Since id : CC(X) _—> Cco(x) is continuous we have in addi~

tion:

Corollary 38

For any c~embedded convergence space X the locally convex topology
on C(X) associated with the continuous convergence structure is the

topology of compact convergence.

Another proof of corollary 38, based on an integral representation
of continuous linear functionals of CC(X), for a c~embedded space X,
can be found in [ Bu 1 ].

For any convergence R~vector space E we call the lR-vector space
of all continuous real~valued linear functions of E the dual space of E,
and denote it by &E., This space equipped with the continuous conver=~

gence structure, denoted by &%E, is called the ¢~dual space of E.

Corollary 39

For any c~embedded convergence space X the convergence [R-vector spaces

CI(X), CC(X) and Cco(x) have the same dual space.

Let us point out here, that &%CI(X) = &%CC(X) (see [ Do 1). However,
&%cc(x) and &%CCO(X) are different (compare Appendix, theorems 89

and 90},



4 UNIVERSAL REPRESENTATIONS OF CONVERGENCE ALGEBRAS
AND SOME GENERAL REMARKS ON FUNCTION SPACES

In the previous chapter we found a class of convergence spaces,
the class of c-embedded spaces, in which each object X 1is determined
by CC(X). We exhibited this class by associating to each CC(X)

(where X was any convergence space) a certain convergence space, name-
ly HomcCc(X), and in addition by relating X with that space via a
canonical map, namely ix.

In this chapter we study the "dual" correspondance: Let A Dbe a
convergence algebra, that is a unitary,associative,commutative R~algebra
endowed with a convergence structure for which the operations are con-
tinuous, and assume that Hom A, the set of all continuous real~valued
unitary homomorphisms, is not empty. Equipping Hom A with the con-
tinuous convergence structure we obtain Hach. The convergence algebra
A will then be related to Cc(Hoch) via a canonical map (which is a
generalization of the well~known Gelfand map [ Ri ]), called the uni-~
versal representation and denoted by d.

The reason we do this is that much of the structure of C,(X) is
expressed in the structure of the convergence subalgebras of CC(X).

We expect to turn properties of a convergence subalgebra A of CC(X)
into "topological" statements on Hoch and relate them with X.

On the other hand both correspondences = the one between X and
CC(X), and the one between A and Hoch - relate to each other and
yield a satisfactory theory in connection with the continuous convergence
structure on function spaces. This happens even though as yet no neces-~
sary and sufficient conditions on a subalgebra A c CC(X) to be dense
are known.

Let us briefly outline the material we present in this chapter:

After the introduction of the universal representation and some

general remarks on it, we study this representation of certain topologica
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algebras. Here we are able to describe the structure of those topolo-
gical algebras which allow d to be a bicontinuous isomorphism.

Looking at the universal representation of more general conver-
gence algebras we restrict our attention to subalgebras of CC(X).

We prepare the investigation of A < CC(X) by a study on Hom A
in relation with X.

A Stone~Weierstrass~type of theorem, which we will also use later,
will then allow us to describe some aspects of the relation of a con-~
vergence subalgebra A c CC(X) with CC(X) itself.

Concluding remarks concern the relation of CC(X) with general

function spaces.

Let us agree on the following conventions:

In this chapter when we refer to an algebra A and to a homomorphism,
we mean always an associative, commutative unitary ([R-algebra, and a
unitary [R~algebra homomorphism, respectively. Any subalgebra A < CC(X)
is thought to be also a subspace of CC(X), which in addition is

supposed to contain the constant functions.

b3 Universal representation of a convergence algebra

Let A be a convergence algebra. We assume Hom A # @. We call
the space Hoch the carrier space of A, It will allow us to consider
the elements of A 1in a certain sense as real-valued functions defined
on Hoch:

Consider the homomorphism

d : A —> Cc(Hoch)

defined by d(a)(h) = h(a) for any a € A and any h € Hoch. Ob~

viously d 1is continuous.
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Before we study questions like what conditions on A have to be
imposed such that d is injective, bijective, bicontinuous etc., let
us state some general properties of d and Hoch themselves.

Any ‘homomorphism

u: A —>C,(Y)
induces a continuous map
*
u :HomcCc(Y)——)Hoch,

assuming on each k € Homccc(Y) the value kou,

Hence there is a continuous map

ut 1 Yy ——> Hoch

given by u' = u e i, , This map has the property that d followed by
*
(u') : Cc(Hoch) e CC(Y)

is nothing else but u., On the other hand u' is characterized by the

s * .
condition (u') e d u. To prove this let g : Y —> Hoch be a

. *
map for which goed

u. Then passing over to carrier spaces we have

* * *k * *%
u =dog =do(u') .

*
The map d : HomcCc(Hoch)-—————> Hoch is nothing else but the

homeomorphism i1 . Hence it turns out that
Hom A
e
*x *x
g = (u)y .
Since the diagram o**
N
Homccc(Y) rd Hamccc(Hoch)

iy 171
Hoch
F
Y

> Hom A
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where f stands either for g or u', is commutative, we deduce the
identity of g and u'.

Let us summarize this as follows:

Theorem 40

Let A be a convergence [R~algebra for which Hom A 1is not empty. To
any continuous homomorphism u from A into Cc(Y)’ for any conver-

gence space Y, there is a uniquely determined continuous map.

u' Yy ———> Hoch,

such that
u
A —> C,(¥)
d
wey”

Cc(Hoch)

is commutative,

The next theorem affirms that Hoch is in fact the only space
(up to homeomorphism) having the universal property stated in theorem

38:

Theorem 41

Let X be a convergence space and

d:a——>
d: A C, (X)
a continuous homomorphism,
To any continuous homomorphism u from A 1into CC(Y), for any
convergence space Y, assume that there is a uniquely determined con-

tinuous map u" : Y —» X with



* -
(u"Ye d = u.
Then X 1s homeomorphic to Hoch.

Proof:

The uniqueness of the maps u' (in theorem 40) and u" (in theorem

41} 1leads to the commutative diagrams

an (@)’
Hach —> X X

W

Hoch
- and
(d) d"
id id

Hoch X

out of which the assertion follows immediately.

Because of the universal property expressed in theorem 40 we call,

as in [ Bi,2 ], the homomorphism d the universal representation.

We remind the reader of theorem 24, which describes the universal

representation of CC(X), where X 1is an arbitrary convergence space.

Let us now turn our attention to topological algebras. This we do
because in the case of a topological algebra the universal representation
is much easier to treat than in case of general convergence algebras,

In addition we observe how our theory fits into the framework of topo-
logical algebras., These preliminary investigations, however, will pre-

pare us to recognize some key problems in the general case.



4,2 Universal representaticns of topological algebras

We deal in this section with a topological (R~algebra A (with a
non-empty carrier space).

Corollary 29 tells us that Hoch is a locally compact space in
which every compact set is topological. Since d(A) c C(Hach) sepa-
rates points in Hoch and contains the constants, we conjecture that
d(A) 1is dense in Cc(Hoch).

As a matter of fact we have the following generalization of the

classical Stone-Weierstrass theorem, essentially presented in [ Na ].

Theorem 42

Let X be a c~embedded locally compact space and A < CC(X) a point-

separating subalgebra. Then A < CC(X) is dense.

Proof:
Let f € C(X). We have to show that any neighborhood U of f con~
tains some element a € A. Clearly, it is enough to take U as

{ g€ C(X)IsK(f-g) <€},

where sK

€ 1is a positive real~number. Thus it remains to see that

is a sup-seminorm taken over a compact subset K < X, and

(f~a) (K) € (~e,e)

for some a € A. But this is evident by the classical Stone~Weierstrass

theorem (16.4, [ G,J 1).

Applying theorem 42 to 'd(A) Cc(Hoch). we obtain the most ba-~
sic theorem of the study of the universal representation of ga topolo~

gical ([R~algebra:
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Theorem 43

For any topological algebra A the universal representation
d : A —m > Cc(Hoch)

maps A onto a dense subalgebra,

Call an [R-algebra A real-semisimple (r.s.s.) if the intersection
of the real maximal ideals (an ideal M < A is real iff A/M T R)
contains the zero element only. A topological R~algebra is said to be
e¢~real semisimple (e¢~r.,s.s.) if the intersection of all closed real
maximal ideals contains the zero element only. For such algebras theorem

43 immediately yields:

Corollary il
For any topological algebra 4 the universal representation
d : A —> Cc(Hoch)

maps A 1isomorphically onto a dense subalgebra of Cc(Hoch) iff A

is e-r.s.s.

To conclude this section we will describe the structure of those
topological algebras for which the universal representation is a bi-

continuous isomorphism, Our description reads as follows:



"

Theorem 45

The universal representation of a topological algebra A 1is a bicon~
tinuous isomorphism iff A is bicontinuously isomorphic to the projec-
tive limit of the function algebras Cc(YL) of an inductive family
{YL}LGM of compact topological spaces, If the universal representation
is a bicontinuous isomorphism then the space Hoch is the inductive
limit of {YL}LGM .

Proof:

Let d be a bicontinuous isomorphism. The space Hoch is a locally
compact space (Corollary 29) and each compact subspace K < Hoch is
topological, The system K of all compact subspaces of Hoch forms,

via inclusion, an inductive system. Hence {C(K)} is a projective

KeK
system, of which the limit can be identified with the collection of all
those functions in C(Hoch) whiceh are continuous, provided that re-~
strictions onto all compact subsets are continuous, hence with C(Hoch).
Since Cc(Hoch) carries the topology of compact convergence it is bi-~
continuously isomorphic to the projective 1limit of {Cc(K)}KGK .
Conversely assume that A 1is the projective limit of a family
{Cc(Yq)}aeM s where Y  is compact topological for each a€M. This
identification does not restrict the generality. For any a€M there is
a continuous homomorphism ry : A — Cc(Yq)‘ Moreover, for any
choice of a,B € M with a g B, there is a continuous homomorphism

Qa

rg CC(YB)-—————€>CC(YG) with

Clearly iY : Yq—————4>HomcCc(Yq) is bicontinuous. Hence
a

{HamcCc(Yq)}q€M forms an inductive family, where

*
(Pg) : HOMCCC(YG)"““'4>H0mcCC(YB) is continuous for each pair
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a,B € M with o g B. We assert that Hoch is the inductive 1limit of

the family {Homccc(Yq)} To this end let us first show that

aeEM*

kzﬁ r:(HomcC(Yq)) = Hom A.
The non-trivial inclusion can be verified as follows: Since A carries
the initial topology induced by {rq}qu there is to any h € Hom A
an index a and homomorphism ka € Hom rq(A) with h = ko @ L There~
by rq(A) is regarded as subspace of Cc(Yq). Now, ka extends con-~
tinuously to the Banach algebra ;;K. By theorem 43 the homomorphism
d: ;K;-————%? Cc(Homc ;;K) is a bicontinuous isomorphism. The inclusion
i ;‘AﬁCC(Yq) induces, by theorem 40, the continuous map
it o YQ“_>H0mc @. Using theorem 42 one easily shows that i
is surjective. Hence k, has an extension h € HomcCC(Yq). Thus
h =hoe r,» and the above equation is established.

We now endow Hom A with the final convergence structure induced

. *
by the family {rq} and obtain a locally compact convergence space

a€EM
(Hom A)lc which has the universal property (with respect to the fami~
ly (r:)qu) of an inductive limit, For any a€A the function d(a)

is therefore continuous on this space. Thus (Hom A)lc satisfies the

criterion of c~embeddedness in theorem 33. The reader verifies easily

that d : A ~—mm> Cc(Hom A)lc) is a bicontinuous homomorphism onto

d(A) regarded as a subspace of Cc((Hom A)lc). Since the product

o A, is complete for any family (A ) ey ©f complete algebras, the
Q€N a’a

projective 1limit of such a family is, as a closed subspace, complete too
Hence d(A) < Cc((Hom A)lc) is a complete subalgebra. By theorem 42

we have d(A) = C(Hom A){,). Since (Hom A);, 1is c~embedded we con-
clude

Hach = (Hom A)1c .
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4,3 Hom A for a subalgebra A < C(X)

The investigation of C(X) where X is a convergence space re-
quires, to a certain extent, the study of subalgebras of C(X). A tool
needed in this context includes the universal representations of those
algebras. We prepare these studies by taking a brief look at Hom A,
where A 1is a subalgebra of CC(X).

Consider the map

iA X —>Hom A

X

defined by iﬁ(p) (f) = f(p), for each p € X and each f € A. Our

. . . . . LA . . .
first observation on Hom A 1is that in certain cases 1 is surjective.

X
To formulate a criterion let us introduce A°, the algebra of all

functions in A which are bounded on X, and the notion of a lattice
subalgebra A < C(X), meaning that with any f,g € A, the pointwise~

defined infimum f A g and supremum f v g are members of the algebra

A.

Proposition U6

Let X be a convergence space and A < CC(X) a subalgebra for which

A° ¢ A 1is dense. Then

A _
1X(X) = Hom A.

Proof:

Here we follow the proof of the corresponding proposition in [Bi,Kul.
The uniform closure Ko of A° is a lattice subalgebra of C(X) and
since h € Hom A® is uniformly continuous on A°, we may extend it
(continuously) on KO, on whiech h is a lattice homomorphism ([G,J],

)
§ 1.6.,p.13). Assume now that iﬁ(p) # h for each p € X. This
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o~
amounts to the existence of a function, say fp € A°, with
= da f =
h(fp) 0 an p(p) 1

for each p € X,
Given f € Kb, there is to any positive real number & a function
g € A° such that
I1f~gll = suplf(q) ~ g(a)l < 6.
q€X
On the other hand, the continuity of fp yields a neighborhood

U of p on which

pP»&
sup pr(q) ~ fp(p)l < &/2.

(21)
d p,6

Choose now gpe A° with Ilfp-gpll < %. Thus we know that

sup Igp(q) ~ 1| g 6.

(1)
d P

Moreover,
= - - . - ff -
Ih(gp)l Ih(gp fp) + h(fp)l < Ih(gp fp)l < lIhll Ilfp gpll < Il P gpll
<)
<y

For each choice of a positive real number & with o < & < %

and p € X 1let us form the (non-empty) set

1
Dy, : = {glg € A°, sup lg(a)~1l < &, h(g) < F}.
b €U
4 pP,5

The system & : = {D6 pIO < & < %, p € X} has the finite intersection
>

property as the following argument shows: Let D6 be

ese D
~ 1,p1’ * 6n,pn
members of @ . The function £ € A° defined by

has the followilng properties:
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54 .
a) sup If(q)~1l < —= 1 = 1,...,n0.
q€U6_ 2
i,Pi
b) h(f) = o.
To & = min {6ili=1,...,n} there is a g € A° with lf-gll € %‘ which,

moreover, satisfies both

sup lg(a)~1l ¢ &5 i=1,...5n
q€U6
isPj
and
h(g) < % .
Hence ;H
D .
i=1 61,pi is not empty.

The filter ® on A® generated by J converges in A° to 1.
Since h 1is continuous h(®) converges in R to 1. However,
h(g)s 1/4 for each g belonging to one of the sets in 9D . Thus
h(®) can not converge to 1. This contradiction requires nia® to
be a point-evaluation that means to be of the form iﬁ?p) for some
p € X, Since A° 1is dense in A and hIA°=i§o(p) we coneclude

h = iﬁ(p). This completes the proof.

Since the above result is known in case X 1is a locally compact
topological space, another way to verify the above proposition is

offered:

Calling two points p,q € X equivalent if f(q)=f(p) for all
f € A, we obtaln an equivalence relation whose set of classes is de-
noted by X,. For the canonical projection from X onto X, we use

the symbol HA. Any f € A 1induces a function on XA assigning to
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HA(p) the value f(p) for each p € X. We denote this function on

XA by fA and turn X into a completely regular topological space

A
by equipping it with the initial topology defined by {fA}f € A*
Now take the preimage of A under the continuous injection
*
HA : CI(XA) _ > CC(X) and proceed similarly as in the proof of

theorem 15, For details see [ Bi 7 ].

For any convergence space X the above proposition tells us that
Hom CO(X)=Hom C_(X). Since in addition Homccg(x) = Hom,C,(X) we de-
duce that the range of the universal representation of C:(X) can be
identified with CC(X).

A necessary and sufficient condition on A < C(X) forcing
i%(x) = Hom A 1is not known yet. However, for a lattice subalgebra

A = C(X), we have the following general result:

Corollary 47

Let X be a convergence space and A < CC(X) a lattice subalgebra,

Then if((X) = Hom A.

Proof:

The sequence (-n v ) a E)nEN in A° converges in A to f, for
any £ € A, Thus A° € A is dense, Proposition 46 yields then the

corollary.

The next proposition shows, that the collection of lattice sub-
algebras of C(X) 1s huge. In addition it yields a method of construc~

ting examples of lattice subalgebras of C(X).
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Proof:

We copy a proof of [ Fe l. It is evident that the adherence of A
in CC(X) is a subalgebra. To prove that ac(A) is a lattice, it suffi-
ces to show that Ifl belongs to a,(A) whenever f 1is in a, (A).

This is because of the equation

1
fvegs=s 5 (f + g+ |f~gl).

Let f € ac(A), and let ® be a filter convergent to ‘f in
CC(X) with a base iIn A. We denote the collection of all convergent
filters on X by ¥ . Now for each ® € ¥, say ®——>p, and

each € > 0, there exists an Ny € @ and a T € 8 such that
s€ ®,e

O(Ty o x Ny ) = (£(p) = 2, £() + D).

Define

Dg e={g€A : g(NQ,e) < (If1(p) ~ e,Ifl(p) + €).

L]

We will show that Do. e is not empty. Indeed, we will demonstrate
3

that for finitely many o; € 7  and €; > O, where 1 €{1,2,..,n},

the set

D.,E-.
i*~i

n
/N\D
i=1

(>3

n
is not void. Let t be a fixed element in f\'T° NA.
i=1 Ti071

Obviously,

ei Ei
t(NQ’ei) < (f(pi) "-2 s f(pi) +—2"),

where ®; ———>p; for each i €{1,2,...,n}, In particular, there

exists an integer k such that

n
t(LJIN Yy e [ ~k,k 1.
iz1 Y1081
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Thus there exists a polynomlial P with the property that for all

s €[ ~1,11

1/2 e!
| (1-s ~ P(s < ==
( ) (s)1 o
where
€' = min{el,e2,...,en}.

This means that
HE1 (o) -P(;—(§>2>(p>l=

- —(1-¢Ey2 1/2_po1-¢5y2 E_
= {1~(1 (k) Y (p)} P(1 (k) Y(p)I < "

n
for every p € (N Furthermore, for each i € {1,2..,n},

171 ®10€5
we have

HEI(py) ~ k(=D ()1 <

< HIfI(pg) = 18l(P)I + ||t|(p)‘kP(l-(%)2)(p)|< €5,

n
for every p € No _+ Hence, kP(l—(%)2) is an element of {T} DQi,ei.

is€4

Now the collection of sets D for @ € ¥ and € >» o, generates

o,e ?
a filter convergent to |fl in CC(X) with a basis in A, and thus

Ifl € ac(A), which completes the proof.

In connection with proposition 48 let us state the following tech-~
nically very valuable proposition which is due to W,A.Feldman, from

whom we copy the proof also:
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Proposition 49

Let X be a convergence space, For a subset S < CO(X),

I

ac(s) = ac(s) >

o .
where S denotes the uniform closure of S,

Proof:

Clearly ac(g) =) ac(S). To prove the other inclusion, assume f € ac(§3.
This means there exists a filter 6 in CC(X) such that 8 —=> ¢
and ©® has a basis in g. Denote the collection of all convergent
filters on X by 5J . Now for each € > o and each ® € ¥ s say

® —>p, there exists an Ng €0 and a T, c€ @ such that
' >

N>
@(Ty o X Ng ) € [£(0) = 5 ,£(p) + 5] .

Let
Do,e = {g es: g(Ny o) = [£(p)~€,f(p) + el},

and consider the collection

2 ={D

o,e ®€J and & > o}.

D ,€

We will show that for a finite number of elements D €D, where
is®i

i€ {1,2,...,n},

n
/D R
i=1 Qi,ei

n
First choose a funetion t € f\'TQ e. * Without loss of generality
i=1 Ti**1

1

-~
we can assume t € S and of course

€. €
) € [£(py)- =5 » £(pg) + =51,

t(N 5

d.,E-
1°71
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where wi——————> p; - Since t € §2 there exists a g € S such that

€4

g -~ tll &g -5 for every i € {1,2,...,n}, Now for each

i€ {1,2...,n}, we have

lg(p) - £(p;) !l < lg(p) ~ t(p)I + 1t(p) ~ £(p;)| < €5,

for every p € NQ. €.

n
. Thus g € r\ D° .
> 5 -
171 1=1

« 4 €«
1271

It is easy to vVerify that the filter generated by 9] converges to

f and has a basis in S. Hence f € ac(S), as desired.

The discussion of Hom A for more general types of subalgebras
of C(X) 1is based on the following result, which expresses the nature

of the elements of Hom A:

Proposition 50

Let X be a completely regular topological space and A < CC(X) a
subalgebra of C(X). For any homomorphism h € Hom A there is a non-
empty compact subset Hh < BX such that each point p € Hh satis~
fies the equation

h(f) = f(p), for each f € A,

where f(p) denotes the value at p of the extension of f:X—>R U{w}

onto BX.

Proof:

For any compact subset K < BX~X we define A to be the algebra

K
AN C(BX~K) endowed with the topology of compact convergence on BX~K.
The identity map

id : ind A A,
KEK
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where K denotes the collection of all compact subsets of PBX~NX, 1is

continuous. Hence h : ind AK——-> R and thus hy : AK—-—-—) R,

KeK
which denotes the restriction of h onto Ag, 1is continuous for any
K € K. Since hK is a uniformly continuous map it has a continuous
extension hK onto AK, the closure of AK in CCO(BX\K). By pro-

position 46 there is at least one point q € BX~K such that

he(f) = £(q) for all f € Ag.
The set Hﬁ of all those points q in PBX for which
£(qQ) = hy(f) for all f €A,

1]
is compact. For K and K' € K with K o K' we have HE:H}I;(. Thus

fed

abbreviated by Hh’ is a non~empty compact subset of PBX.

Of course any point p € Hh satisfies
f(p) = h(f)

for all f € A,

For any completely regular topological space X and any unitary

subalgebra A c CC(X) the set H,= UJ H regarded as a subspace

A hefom a h?
of BX, contains X as a dense subspace. By the above proposition
the map

IIA : HA————> HomsA,
defined as I'IA(p) (£)=f(p) for each p € HA and each f € A, is a
continuous surjection, and hence maps X onto a dense subspace. Let us

point out here that by theorem 10.13 p.1i47 in [G,J] the map I'IA is

closed. Hence a function f : HomsA ——>»{R 1is continuous iff
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f o II

4 is continuous. Thus X ¥ Hom A (via iﬁ) iff H, = X and A

separates the points in X,

Given now an arbitrary convergence space X and a subalgebra

Ac CC(X). The canonical projection I ; X —> Xs induces a map

n*: Hom A —> Homs(H*)-l(A)

. . * L .
sending each h € HomsA into hell |(m ) 1(A), which is a homeomor-

phism onto a subspace. Here n*-l(A) is a subspace of CC(X). Since

I
TN S Byt
B ' _a
x ™) e
Hom n ——L5—> wom_(n")"T(a)

commutes we end up with a sort of an estimate of Hom A from below, in
contrast with proposition 50, which states a sort of an estimate from

above:

Corollary 51
For any convergence space X and any subalgebra A c CC(X) the map

LA

: —_—_—
iy X HamsA

maps onto a dense subspace,

Some of the algebraic structure of A is of course expressed in
the topology of HomsA, and for that reason the space HomsA is of

some interest. It seems worthwhile to us to acquaint the reader with
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an additional space (in connection with A and HomsA), which some-~
times may help to visualize, by topological means, how A < C(X) is
related with X. For simplicity we assume X to be a completely re-~
gular topological space. In case A=C(X), the topology of Homscc(x)
is fully determined by the compact space HomsCO(X). Let us put this
in contrast to the relations between HomsA and ﬁBmSAO, the space
whose underlying set is the collection of all unitary, real~valued ho-
momorphisms of Ao, continuous in the uniform norm topology and whose
topology is the one of pointwise convergence, The lemma just below in-
dicates why we use ﬁomSAo rather than HomSAo (the inclusion may be
proper). The faect that A° may coincide with just the constant func-
tions in A 1limits the use of ﬁbmsAo for an arbitrary subalgebra

A c C(X). For simplicity we identify each f € A° with its extension

to BX.

Lemma 52
A necessary and sufficient condition for h € Hom A° +to satisfy

h(f) = f(p),

for some fixed point p € BX and all f € A°, is the continuity of

h in the uniform norm topology.

Proof:

The non~trivial direction is immediate by proposition 50.

Let Kb be the uniform closure of A®, Since KO, endowed with
the uniform norm topology, is a Banach algebra any homomorphism is
continuous and the restriction map from Hom Xo into fom A° is a
bijection., Moreover, the spaces Homs:l:o and ﬁbmsAo are homeomorphic.

~;
To see how X, HomsA, and HomSAo, are related we use the canonical



projection (given by lemma 52)
~ ~ (]
nAo : B —m——> HomsA

and obtain a commutative diagram

X c HA c BX
LA ~
1 Mm,o
X o A
3 .
HomsA > HomsA s

where j 1is the restriction map., We immediately conclude from lemma 52:

Proposition 53

Let X Dbe a completely regular topological space. For any unitary sub~
~ . s
algebra A the space HomsAo is compact and contains Jj(Hom A) and

j(iﬁ(x)) as dense subsets.

Clearly Jj 1is in general not even injective. In fact i% may
be a homeomorphism onto a subspace of Hom A and J be a constant
map. For an example of such a situation choose X =R and A the
polynomials (over R), If, however, enough bounded functions are avai-
lable in A, as in case of a lattice subalgebra A = C(X), then J
is a homeomorphism onto a subspace. However, the relations between X

"
and HomsAo may even be involved in this case.

When A = A® the next proposition [Fe,1] expresses under what

. ~ . . .
conditions on HAO the space X 1is homeomorphically embeddable into
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” . - Iy
HomsAo, via je iﬁ. Aside from this, the result will provide us with

the base for a technique to prove a Stone~Weierstrass type of theorem,

Proposition 54

Let X be a completely regular topological space and A < CO(X) a

point~separating subalgebra., Then

T, (px~x) = Hom ANj (ig (X))

iff m, : X L————)XA is a homeomorphism,

This proposition is a simple consequence of 10.13 p. 147 in [G.J].

4.ou A Stone-Welerstrass type of theorem

The main theorem in this section, theorem 56, is a generalization
of the well-known Stone~Weierstrass theorem concerning the density of
certain subalgebras in CC(X), where X 1s a compact topologlcal space.
The version we present here improves theorem 5 in [Bi,5] and is due to
W.A.Feldman.

Before stating the theorem, let us collect some technical material,
Let X be a completely regular topological space. For convenience, we
again denote the extension of any f € C(X) (thought of as an R U {w}~
valued funetion) onto BX by f.

Given a unitary subalgebra A < C°(X), a closed set S < BX is
said to be A~closed if (ﬁk)-l(ﬁ;(S)) = 8 holds. Since Homsx and
ﬁomsA are, via the restriction map, homeomorphic, the terms A - and

K—closed mean the same,
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Let X be a completely regular topologlcal space. For any unitary sub-

algebra A c C°(X) the map
* ~
ﬁA : C(HomA) —————» C(BX)

is an isomorphism onto A&, Hence for any two functions g1:8,> € A,

there is a function g € i such that

gIS1 = g1IS1 and gIS2 = g2ls2

for any two disjoint A-closed sets 84,8, < BX.

Proof:
= ~ - - N* . - k3 3
Since HA 1s a surjection HA 1s an injection, The algebra

* o ~ . .

(ﬁA) 1(A) < C,(Hom A) contains the constants and separates the points.
n ~s, ~

Hence it is dense in Cc(HomsA) and thus HX maps onto A. The rest

of the assertion follows from an exXtension theorem concerning continuous

functions on a compact set in 3.,1i.c in [G,J].

If Ac CO(X) generates the topology of X, meaning that

My, : X ——>X, 1is a homeomorphism, then ffA maps PBX~NX onto

~

HomsA\j(iﬁ(X)) as stated in proposition 54, This fact is basiec for our
technique in the forthcoming proof because it allows us to choose for
any p € X and any f € C(X) an A~closed neighborhood in PBX on

which f stays real-valued.

Theorem 56
Let X be a completely regular topological space and A  C(X) a sub-
algebra, If A°, the algebra of all functions in A which are boun-

ded on X, 1is topology generating, then A is dense in CC(X).
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Proof:

The proof is based on the technique used in the proof of theorem 5 in
[Bi 5] and can be found in [Fe 1], In view of proposition 48, it is
~

sufficient to show that ac(A°)=C(X). Let f be an arbitrary element
in C(X). We will construct a filter © on C(X) that converges to

. . . ~NO . ~o
f in C,(X) and has a basis in A”. For a point p € X, let g, €A
be the constant function, assuming the value f(p).
Define

Vo, esly € BX 5 15(y) - £(o)I < €},

for € > O, Now Vp ¢ 1s an open neighborhood of p in PBX, This
>

neighborhood contains an A%~closed neighborhood of p, say wp

N
Set

.

€

T = {g €B° : lgly) - £(y)|l <& for every y € W
p,€ D

Consider the collection f of all sets Tp e for all p € X and
>

€ > 0, Clearly each element T € J is not empty, since it contains

P,€
at least the function gpe We will show that for a finite number of ele-

ments

Tpi’ei €Y , i€ {1,2...,n},

We have

n
ST 70
1=1 pi,ei

For convenlence we can assume €1 S Ey € oo S E Since we know

n
is non-empty, we assume e:eT @ for m€ {2,3,...,n},
Pys€g i=1 Pis€j
and prove that T # 0. Let L = W . We might as well
{:} Pis€y iz1 Pi2%3
assume W N\L # @, for otherwise our proof would be complete. Since

pm’em

the union of a finite number of A®-closed sets is Ao-closed, L 1is
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-1, . e s e
an A° - closed set. Thus i g(n o(y)) is an A% - closed set disjoint
A

from L for every y € W NL. Let Q be the collection of all sets

Pms€n

L\ (y)) for y €W N\L. For the following calculation we will
A©C AC pmgem

denote the elements in @ by Greek letters.

First, we choose

m~1
g, € NT and g, €T
1 i=1 pi,ei 2

pm’em.
Now for each o and E in Q, 1lemma 55 allows us to pick a funection

-
g € A° which extends both gllL and g2lo U E . Let

G,E
m
M = W
i=1 Pis€3
(i.eey, M =L UW ). Choose an integer k such that
pm’em
k > €, * IIglll + |Ig2ll s
and set

f' = ((f A k1) v(- k1)).
Clearly f'IM = fIM, and thus the set

US = (v € BX 1 g, p(¥) < £1(¥) + e)

is an open neighborhood of o U E U L. For a fixed E , the collection

E
{Uo}o €Q

exists a finite subset £, of @ such that {Ug}

is an open covering of the compact set M. Hence there

covers M .
o € 21

The function

g = 6231 €2 E

is an element of A° and has the property that
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gell = gL, gel€ = g,1E ,

and
ge(y) < £'(y) + ey

for every y € M. Now for each E € Q, let

UE = {y € BX : gg(y) > £ (y) - em}.

UE is an open neighborhood of E U L, and thus {UE}EGQ is an open
covering of M. Again, there exists a finite subcovering, {UE}EGE N

2
for I, a finite subset Q. The function

g= V &g
g€z,

~s,
is an element of A° and enjoys the property that

glL = gllL and lg(y) - £'(y)I < €n

m . .

for every y € M., Hence g € MT as desired. It is straight
i=1 Pis€i

forward to verify that ¢ generates a filter that converges to f in

CC(X) and has a basis in A°.

Using proposition 48 we obtain the following two results:

Corollary 57
Let X be a completely regular topological space and A < @) a
subalgebra which generates the topology of X. Then the adherence of A

in cc(x) is dense.



Corollary 58

Let X be a completely regular topological space and A < CC(X) a

closed subalgebra which generates the topology of X. Then A = C(X).

. L3
Since for any convergence space X the map 1 : CC(XS)-——>CC(X)

is a continuous isomorphism, theorem 56 yields:

Corollary 59

Let X be a convergence space and A < CC(X) a subalgebra. If A°

generates the topology of XS, then A c CC(X) is dense.

As we see, corollaries 57 and 58 generalize in a similar manner
to general convergence spaces. Theorem 56 is obviously a generalization
of the classical Stone-Welerstrass-theorem on point-separating algebras
of continuous functions on a compact space.

In this connection let us point out that in theorem 56 "topology
generating" can not be weakend to "point-separating". The same is of
course true of corollaries 57-59 as the following example in [Bu 3]

shows: Let X be the subspace
([-1,0 1 n ®@))HU(L 0,11 n @)

of [ -1,1 ], Choose A to be the algebra of all the restrictions
onto X of functions f € C([ -1,1 1), for which f(q) = f(-q) for
any q € [ 0,1 1. Clearly A separates the points of X and contains
the constants. However, C(X) 1is not the adherence of A. We refer

to [Bu 3] and [Sch 1 1 for further studies of these approxi-

mation problems.
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4.5 Universal representations of subalgebras of C(X)

The symbols X and A c CC(X) denote an arbitrarily given con-
vergence space and a subalgebra, respectively. We characterize first

those subalgebras of CC(X) for which

d : A —m> Cc(Hoch)

is a bicontinuous isomorphism. If d, which is by assumption injective,
is a bicontinuous bijection, then A has to be complete.

Let us suppose therefore that A 1is complete. The commutative

diagram

[
v

Cy (X)

(where i denotes the inclusion map) shows that the algebra A 1is
bicontinuously isomorphic to d(A). The completeness of A does not
matter here! If d 1is an isomorphism then d(A) generates the topo-
logy of (Hoch)S that is (Hoch)s = HomSA. On the other hand if

(Hach)S = HomSA, then d has to be an isomorphism (corollary 59).

Thus we have:

Theorem 60
Let X be a convergence space and A < CC(X) a subalgebra. Then
d: A ———> C_(Hom A)
is a homeomorphism onto d(A). If A is complete then d 1is an iso-

morphism iff (Hom A) = Hom_A.
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To show how Cc(Hoch) and CC(X) are related in case of more

arbitrary subalgebras of CC(X) we state:

Theorem 61
Let X be a convergence space and A < CC(X) a subalgebra in which

A° is dense (a complete subalgebra, e.g.). Then

LA ¥
(iy) = C (Hom A) ——>C (X)
is a continuous injection.
The proof is immediate by proposition 46.

%

For an arbitrary subalgebra A of C,(X), the map (iﬁ) is an
injection iff iﬁ(x) c (Hoch)S is dense. Internal conditions on A
necessary and sufficient to allow iX(X) c (Hoch)s to be dense are

not known. What we may say, however, is:

Theorem 62

Let X Dbe a convergence space and A < CC(X) a subalgebra, Then

AL ¥

X)
ALk

complete, then (1X) maps onto A .

(i : C(HamSA) ——3> c(X) is injective. If in addition A is

Proof:

Corollary 51 yields the first part of the theorem. The second one

follows from the continuity of

CAVE
(1X) : Cc(H""'sA) ——)cc(X)

and corollary 58.
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In conclusion of this section we characterize those [R-algebras
which are isomorphic to "C(X)".
For any real-semi-simple (r.s.s.) unitary MR-algebra A, meaning

that the intersection of all real maximal ideals contains o only,

d : A —mm> Cc(HomSA)

is injective. Moreover d(&) Cc(HomsA) generates the topology of
HomSA. By equipping A with the initial convergence structure in-
duced by d, we obviously obtain a convergence algebra. We call this
convergence structure, depending on the algebra A only, the extremal

continuous convergence structure, abbreviated by e.c.c.s.
Basic to our further development is:

Lemma 63

Let A be an r.s.s.-algebra. The space HomSA is realcompact., Hence

if A 1is equipped with e.c.c.s. then Hom A = Hoch.

Proof:

We have the commutative diagram

lHomSA R
HomSA > HomSC(HomSA)

Hom A
s
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where d @ A—————)C(HomSA) is defined in the obvious way. Since iHom A
3
maps onto a dense subspace and since the above commutativity implies

that iHom p(HomgA) is closed, the first assertion made in the lemma
8

is valued. The second one is obvious.

The following theorem characterizes those [R-algebras which "are"

function algebras:

Theorem 64

Let A be a unitary [R-algebra. A 1is isomorphic to a function al-

gebra iff

(i) A is r.s.s.

(ii) A 1is complete in the e.c.c.s.
Proof:

Assume u : A——>C(X) 1is an isomorphism. Then
E3
u HomsC(X) _ HomSA

is a homeomorphism, for which

% %

u : C(HomSA) ———————%>C(HomSC(X))

is an isomorphism. Now equip A with the e.c.c.s.

The following diagram

u
A > C(X)
d dl
u**
C (Hom_A) > C(Homg C(X))

commutes, where d,(£)(h) = h(f) for each f € C(X) and each
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** s . .
h € Hom C(X). Since u,d; and u are isomorphisms, d itself is
an isomorphism. Thus A 1is r.s.s. and complete in the e.c.c.s. If A

satisfies (i) and (ii) then by lemma 63 and theorem 60

d : A ————)C(HomSA)

is an isomorphism, For further discussions see [Bi 5].

The rest of this chapter is devoted to some aspects of function
spaces which exhibit additional properties of the general behaviour of
the continuous convergence structure and bring more light to CC(X)
itself, Let us refer to [Bi,Ke] and [Bi 2] for papers on related

topices.

4.6 Some remarks on function spaces

Let us denote by ./ the category of convergence spaces (objects:
convergence spaces, morphisms: continuous maps). The full subcategory

consisting of all c-embedded convergence spaces is called J:.

If we assign to each X in X the convergence algebra CC(X), be-
longing to the category X of convergence [R-algebras (objects:convergence
algebras, morphisms: continuous homomorphisms), and if we assign to each
continuous map f : X — > Y the continuous homomorphism f*, for
which we choose alternatively the symbol Cc(f), we then obtain a con-

travariant functor

C, + LTl

Restricting C, onto the category Jfé we obtain an isomorphism

onto the category Lﬂb of all convergence function algebras (objects:

. s . . .
CC(X) where X varies over « , morphisms: continuous homomorphisms).



The morphism set C(Y,X), where Y,Xe€d , 1is often called a func-

tion space. These function spaces, endowed with the continuous conver-
gence structure, are thus objects of o , and are studied in various
papers on various purposes, e.g. [Bal, [Bi,Kel, [Pol, [C,F], etc.

The purpose of this section is to illustrate how the concept of c-em-
beddedness is related to the behaviour of Cc on function spaces. Some
of these properties are closely related to the c-embeddedness of CC(X,Y)
and will thus be obtained when we derive criterions for the c-embedded-
ness of function spaces, The theory of universal representations will

provide us with the appropriate tools.

Let any two convergence spaces X and Y be given. By theorem 25
we know that any continuous homomorphism h : CC(X) _—> Cc(Y) is
induced by a continuous map, as soon as X is c-embedded. This property,

in fact, is characteristic for the c-embeddedness of X:

Theorem 65

A convergence space X 1is c-embedded iff

Co # C(Y,X) ———> Hom(C,(X), C (Y))

is bijective for any convergence space Y.

Proof:

Let X ©be c-embedded. For any two maps f,g : ¥ ——> X we consider
%*
.8 ¢ Cc,(X) —>cC (Y)

and the commutative diagram
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%% %%
£, 8 .
HamcCc(Y) > HomcCC(X)
i 177
p X
Y > X
f,zg

. * * . * ¥ ¥ % e s o e
Since f = g dmplies f = g we conclude the injectivity of Cc'
The surjectivity of Co is expressed in theorem 25. Conversely, for a

fixed X assume that C, is bijective for any Y. The bijectivity of

c_ : C(Hamccc(x), X) ——> Ham(Cc(X), Cc(HomcCc(X)))

implies that d :CC(X)——————> cc(Hamccc(x))) is induced by some con-

tinuous map g : HomcCc(X)-————%>X. Thus

3 * 3
(g o 1X) = ldCc(X).

The injectivity of
C. : C(X,X) ——————f>Hom(Cc(X), Co (X))

Hence gei, = id where-

requlires that ldCc(X) be induced by 1dx. X X

upon we deduce the c-embeddedness of X.

Let us now determine conditions which guarantee the c-embeddedness

of CC(Y,X). For this purpose we introduce the map

Ho: Homc(cc(x), C (V) —m> C, (Y, Hom,C, (X)),

assigning to each u € Homc(Cc(X), CC(Y)) the map

w Y —> HomcCC(X),
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* 0
defined as in section (4.1), namely as u o i

Y.
The relation between Cc and H 1is visualised by the following
commutative diagram:
Cc
LN
C,(¥,X) > Hom (C (X), C,(Y))

@) Uil

CC(Y,Homccc(X))

where (ix)* sends each g € C(Y,X) 1into ixo g, All the maps in
this diagram are continuous.

We proceed with the solution of our problem by constructing a
natural embedding of Homc(Cc(X), CC(Y)) into CC(CC(X) x Y), in order
to deduce the c-embeddedness of Homc(Cc(X), Cc(Y)) for any pair X,Y.

Consider Cc(Y x X,Z) and CC(Y,CC(X,Z)) for an arbitrarily given

convergence space 2.

Any f € C(Y x X,Z) restricted to {q} x X, where q € Y, de-

fines a continuous map

£, X —> 1,

assigning to each p € X the value fq(p) = f(q,p). Hence, f defines

a continuous map

i

Y ————> CC(X,Z)

which sends q € Y into fq.

Let us use the symbol

a: C, (Y xX,z) —)CC(Y,CC(X,Z))

to denote the map which assigns to each f € C (Y x X,Z) the map .
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We refer to [Bi,Ke] for the proof of the following theorem:

Theorem 66

For any triple X,Y,Z the map
@ i C (¥ x X,2) ——>C_(Y,C,(X,2))

is a homeomorphism.

Now Hom (C,(X), C,(¥)) 1is a subspace of C_(C, (X), C,(¥)).
By the above theorem C_(C,(X), C,(Y)) is, via a-l, homeomorphic to
Cc(Cc(X) x Y). Hence Homc(Cc(X), Cc(Y)) is homeomorphically em-

beddable in Cc(Cc(X) x Y). Thus by propositions 20 and 21 we have:

Lemma 67

For any choice of X,Y € [ the space Hom (C_(X), C,(Y)) is c-embedded.

Next we prave:

Theorem 68
For any pair of convergence spaces X,Y the map

i Hom (C,(X), C (Y)) ———>C (¥,Hom,C (X))

is a homeomorphism.
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Proof:

The continuity of H is based on the following diagram:

H x idY X idcc(x)
Hom,(C, (X), C,(Y)) x ¥ x C_(X) —> ¢ (¥, Hom Co (X)) x ¥ x C (X)
t
A
Hom (C,(X), C,(Y)) x C (X) x Y g X ldcc(x)
v v
CC(Y) x Y HamCCC(X) X CC(X)
W, J’mu
v 1d
R —> R

where t interchanges components (thus is a homeomorphism) and
w; for 1 = 1,2,3,4 are evaluation maps. By the universal properties
of continuous convergence together with the commutativity, the con-
tinuity of H is easily verified, To proceed further in this proof
the reader is supposed to check the following:

Co (¥)

(Hom (d) e Cc)° H = idHomc(Cc(X), Cc(Y))’

where CC:CC(Y,HomcCc(X)) _— Homc(cc(HomcCc(X), Cc(Y)))
Cq (¥)
and where Hom (4) : Hamc(Cc (HamcCc(X)),CC(Y))—>Hamc(cc(x),_cc(Y‘))

c (Y)
(3
is defined as Hom (d) (h) = hed, for any h 1in the domain of
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Cc(Y)
Hom (d). The homomorphism

d & C,(X) —_— Cc(HomcCc(X))

denotes as usual the universal representation. The map
Cc(Y)
Hom (d)

is evidently continuous. So far we have established that H dis an

Co (1)

injective continuous map. To check that Hom (d) e C, 1is injective

is routine. Hence CC(Y)

™1 - Hom (@) e C, »

and therefore the continuity of #™1 is obvious.

For detailed studies of related areas we refer to [ Bi 1 ].
Finally we point out that in the diagram (4) on page 98, the map(ix)*
is a homeomorphism iff iX is a homeomorphism, Using the diagram (4),

lemma 67, and theorem 68, we obtain the desired characterization:

Theorem 69
Let X and Y be convergence spaces., The following are equivalent

(1) X is c-embedded

(i1) CC(Y,X) is c-embedded

(iii) €, & C,(¥,X)

c Hamc(Cc(X), CC(X)) is a homeo-

morphism,

We conclude this section by relating Cc(Y x X), which is by
theorem 66 homeomorphic to Cc(Y’Cc(X))’ with CC(X) and Cc(Y)’ in
case X and Y are completely regular topological spaces ([Fel). The

relation is based on the notion of the tensor product of CC(X) and
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and CcY) in the category U‘c, consisting of the image of
C, L —2F.

To start let us consider C(X)® C(Y), the tensor product of
C(X) and C(Y) over R in the category of all {R-algebras (objects:
fR-algebras, morphisms: homomorphisms). We will show now that
C(X) ® C(Y) can canonically be identified with a subalgebra of

C(X ¥ Y), To this end let us consider the homomorphism

i, 0@ —>cX)®@c()

i, 1 C(Y) ——2¢c(X) ®C(),

defined by i,(f) = f® 1 and i2(q) = 1® g,
for each f € C(X) and each g € C(Y).

We will relate them with the canonical projections

m X x Y——>X

and

m, : Xx Yy —>vY,

By the universal property of the tensor product C(X) ® C(Y), we

have a uniquely determined homomorphism

i:c()®c() — > Cc(X x Y)
for which the diagram

C(X) c(Y)




commutes,

The homomorphism i maps each generator of the form

g€ C(X)®C(Y) into W (f) » My(s).

It is easy to check that i is a monomorphism., For simplicity we now
identify each element in C(X) ® C(Y) with its image under i, and
regard C(X) ® C(Y) as a subspace of Co (X x Y),

Since CO(X) and C°(Y) generate the topology of X and Y respec-
tively the R-algebra A° of all bounded functions in C(X) ® C(Y)

generates the topology of X x Y, Hence, by theorem 56 we have:

Theorem 70

For any two completely regular topological spaces X and Y the

[R-algebra C(X) ® C(Y) is dense in Co (X x Y),

By theorem 56 the algebra A° is dense in C(X) ® C(Y) and thus we

conclude from proposition 46 and theorem 70 that

T Hom,C, (X x Y)=———>3 Hom (C(X) ® cx)

is a continuous bijection, We obtain further information by investigating
the universal representation of C(X) ®@ c(Y).

The above diagram "dualized by taking Homc" yields:

Homccc(x) Homccc(Y)

HomcCc(X X Y)
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The space Homccc(X x Y) carries the initial convergence structure
. * % * ¥ L 3 . N N
induced by H1 and H2 . Thus 1 is continuous and so i 1s

a homeomorphism. We reformulate these results in:

Theorem 71

Let X and Y be completely regular topological spaces. Then

1% 1 Hom Cy(X x ¥) —————> Hom (C(X) @ C(V))

is a homeomorphism and hence
d : C(X) ®@c(Y) ———> C(Hom,(C(X) ® c(Y)))

maps onto a dense subspace.

Next we turn our attention to the tensor product of CC(X) and
Co(Y) within the category (X,, the image of £ under C, -

The tensor product of CC(X) and CC(Y) (for any two objects in

X,Y on {Z ) 1in the category wc is defined as an objeect T to-
gether with two continuous homomorphisms hy CC(X)-———————> T and
hy, :C,(Y) ——> T such that for any C,(2) and any two continuous

P (Y) —> ¢ (2)

2

homomorphisms k1 : CC(X)'——————> Cc(Z) and k2

there is a unique homomorphism
: —_—
u T Cc(Z)
for which the diagram

CC(X) CC(Y)

lu

C.(2)
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commutes.,
Using theorem 71 it is easy to verify that CC(X x ¥) is (in 0(;
the tensor product of CC(X) and Cc(Y)‘ Thus we have another rela-

tion between CC(X) and CC(Y):

Theorem 72
For any two completely regular topological spaces X and Y the

tensor product of CC(X) and Cc(Y) in M% is CC(X x Y).



5. FUNCTIONAL ANALYTIC DESCRIPTION OF SOME TYPES
OF CONVERGENCE SPACES

In this chapter some types of convergence spaces will be charac-
terized by means of functional analytic properties of their associated

convergence function algebras.

5.1 Normal topological spaces

Throughout this seection X denotes a completely regular topo-
logical space.

The description of normal spaces we have in mind is based on the
fact that a completely regular topological space is normal iff every
closed subset is C-embedded [G,J], p.48, meaning that any continuous
real-valued function on each closed set has a {continuous) extension
to the whole space.

Evidently S € X is C-embedded iff the restriction map

r: C(X) —> C(8)

sending each f € C(X) into fIlA 1is surjective.

This version of C-embeddedness will now be reformulated in terms
of completeness of some residue class algebras of CC(X).

Let S @« X be a closed non-empty subspace and I(S) the ideal
in C(X) of all functions vanishing on S. The restriction map r
allows a unique factorization over I : C(X) — > C(X)/I(S), the
canonical projection., This factorization r : C(X)/I(S) — > C(S)
is injective. We now endow C(X)/I(S) with the final convergence
structure induced by M, obtaining a convergence algebra, denoted by

Co(X)/I(8). Thus all maps in the diagram
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r
C, (X) > C,(8)
A
il P
Co (X)/1(8)

are continuous., The following proposition shows how closely CC(X) and

CC(S) are related to each other.

Proposition 73

Let X be a completely regular topological space and S € X a closed

non-empty subspace of X, The monomorphism

ros _ >
r : C,(X)/I(8) C.(8)
is a homeomorphism onto a dense subspace.

Proof:

By theorem 56 we conclude that r(Cc(X)) c CC(S) is dense. What is
left to show is that a filter & on C(X)/I(S) for which r(8) con-
verges to zero in CC(S) also converges to zero in CC(X)/I(S). That
is, we must construct a filter © on CC(X) converging to zero with
the property that 1(®) is coarser than &. Let & be a filter on
C(X)/I(8) with ©r(8) convergent to zero in CC(S). Hence, for each
p € S and each positive real number €, there is a neighborhood

U of p in X and an F! € r(8) contained in r(C(X)) with
Ps€ P»€

If'(a)l < €

for all f'e Fé e and all q € Up e/"\S. Without loss of generality
>

L]

we can assume that each Up e is a cozero=-set in X. To facilitate
]
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the construction of our filter we choose inside of each Up g @& zero-
]

set neighborhood ﬁp e in X of p, Furthermore, to each q 1in X~S,
>
there exists, disjoint from S, a cozero-set neighborhood Vq of q
v R
in X inside of which we fix a zero-set neighborhood Vq of q in

We intend to show that all the sets of the form

~
= . ' -
{recm :rIser) ., @ ) el-2¢,2e]

F
P,qd,€ €

and f(gq) = {0}}, (*)

for p € S, g € XN\S and € a positive real number, generate the de-

sired filter, We first demonstrate that

n
r( N\ F ) =2 /N F! (%)

i=z1 Pisdi,€4 i=1 Pis®i »

where p;,q; and e; are as above, To this end let

n
fte N\
iz1 Pis8§

and J be a fixed integer between 1 and n. We now choose an ele-
ment f € C(X) for which r(f) = f' and associate to this function
the sets

~
P. = € H . .
3 {a Upj’ej If(Q)l 2 2 eJ}, and

{qd € X: If(Q)] g ej} U (X\Upj,ej)'

[

It is clear that Qj > 8 and, furthermore, that Pj and Qj are dis-

joint zero-sets in X, Hence there is a funetion hj € C(X) separating

Pj and Qj3 that is,

O for all q € Pj N and

1 for all q € Qy »

hj(Q)
hj(Q)
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Without loss of generality we may assume that hj(X) c[-1,1]. Simi-

larly, we pick a funetion kj € C(X) with the property that

kj(q) O for all q € g R and

kj(q) 1 for all q € X\Vy. .

J

n

and kj(X) c [-1,1]. The funetion g = f « hy * oo ¢ hy « kjoos » kg

n
is an element of /\ F and extends f', Now the filter ©
iz1 PisQis€4

on C(X) generated by all the sets of the form (*) obviously con-
verges to zero in CC(X). Because (**) is satisfied, M(®) is coar-

ser than € , and thus the proof is complete.

At this stage let us take a brief look at the universal represen-
tation of CC(X)/I(S). First we intend to establish a relation between

Homc(Cc(X)/I(S)) and S. To do so we consider the map

i7lo ¥ . Hom (C,(X)/I(8)) —> X.

lon™) (n) for all

Any function f € I(S) vanishes on (i;
h € Hom(C,(X)/I(8)). Since S X is closed it contains (i;jbn)*(h).
Conversely let p € S. Since ix(p) annihilates I(S), it

factors into

ix(p) : C(X)/I(8) —m—/ RR.

Since ix(p) °© I = iy(p), the homomorphism iy(p) is continuous and

3 0 * . 0
its image under 1 is 1X(p). Thus

iyom : Hom, (C (X)/I(8)) ———> 8

is a continuous bijection,
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Proposition 74

Let X be a completely regular topological space and S « X a non-

empty closed subspace, The map

izto mt ¢ Hom (C (X)/I(8)) ——8

is a homeomorphism. Hence Cc(s) is bicontinuously isomorphic to the

universal representation of CC(X)/I(S).

Proof:
. . .~1 * -1 . .
The continuity of the map (1X oIl ) is clear since
.-1 ¥ -] - ko,
(1X oIl ) =(r) o ige

The rest of the proposition is obvious.

The C~embeddedness of a closed subset S < X can now be re-

phrased as follows:

Theorem 75

Let X be a completely regular topological space and S <« X a closed

subspace. The set S 1s C-embedded iff CC(X)/I(S) is complete.

Proof:

If S 1is c-embedded then CC(X)/I(S) is bicontinuously isomorphic
to CC(S) and hence is complete, The converse is an immediate con-

sequence of proposition 73.

As a simple consequence of proposition T4 we obtain a characteri-

zation of compact subsets of X.
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Proposition 76

Let X be a completely regular topological space., A closed non-empty
subspace S « X 1is compact iff CC(X)/I(S) is normable. If CC(X)/I(S)

is normable, then it is complete.

Proof:

If S 1is compact then it is C-embedded ([G,J], 3.11.c, p.43) and
thus r 1is a bicontinuous isomorphism. Since Cc(S) carries the uni-
form norm topology, CC(X)/I(S) is normable, Conversely, if CC(X)/I(S)
is normable, then by corollary 30 the space Homc(Cc(X)/I(S)) is compact,

Hence S is compact. The rest is obvious.

The formulation of normality of a completely regular topological
space given at the beginning of this section, combined with theorems 19

and 75, yields the desired description of normal spaces:

Theorem 77

A completely regular topological space X 1is normal iff CC(X)/J is

complete for any closed ideal J < CC(X).

5.2 Separable metric spaces

It is well known that a compact topological space X 1is metrizable
iff CC(X) is separable, By separable we mean that there is a dense
countable subset. This characterization of a compact metric space X
will now be extended to ja description of an arbitrarily given separable

metric space X 1in terms of CC(X). Hereby we follow [Fel}.



112

Theorem 78

For a completely regular topological space the following are equivalent:

(1) X 1is metrizable and separable

(ii) C(X) contains a countable topology generating subset.

(iii) CC(X) contains a countable dense topology generating

subset,

Proof:

(1) = (ii): Since X allows a metric, say d, there is a map
j i Xx—>cX)

assigning to each point p € X the map dp : X——>R which sends
each q € X into d(p,q). The image under j of any dense subset of

X generates the topology which is easily verified.

(ii) » (iii) :+ Let D be a countable topology generating subset of
C(X). W.l.o.g. we can assume D < C°(X). The subalgebra A < c%(X)
generated by D generates the topology too. By theorem 56 the algebra
A 1is dense in Co(X). We consider 5 consisting of all functions of
the form P(fl""fn)’ where fi €D and P runs through all poly-
nomials with rational coefficients. Clearly 5 is still countable. We
will show now that 5 c CC(X) is dense. Let us verify first that

D e A 1is dense with respect to the uniform norm topology. Let

m.

n 1
gg;ai T—T}ik L

for ai €M and fi €DV {l}, be an arbitrarily given element in A.
k
For a positive real number € there are rationals rl,...,rn such
ms n
nza Trf - Zr TTe, lI< (Z ORI TTf <e

i=17 k=1 'k i=1 k=1 *x

that



113

-~

Thus the uniform closure of D contains A. By proposition 49 the set D
is therefore dense in CC(X). Evidently D generates the topology
of X.

(iii) = (i): Since there is a countable, topology generating subset
in CC(X), the space X has a countable basis of open sets and is

therefore metrizable.

We may obtain another characterization by comparing a basis of
open sets of a separable metric space X with a basis of CC(X).

By a basis JF of a convergence space Y we mean a collection of sub-
sets of Y with the following property:

Any filter @ —> p € Y admits a coarser filter &', still
convergent to p, with a filter basis consisting of members of ¥ .
The notion of a basis of a convergence space, as just defined, gene-
ralizes the well-known notion of a basis of a topological space. A

convergence space is called second countable if it admits a countable

basis. W.A. Feldman characterized in [Fel a separable metric space
X by CC(X) in terms of the existence of a countable basis via the

following general theorem:

Theorem 79

A c-embedded space ¥ 1is second countable iff CC(X) is second coun-

table.

Proof:

Let X be second countable and ¥ ={Ui|i € IN} be a collection of
subsets of X forming a basis. Given two natural numbers, m,n and

a rational, r € Q, we form the set L - defined as
LRbE |



114

{t € OOt elr - &, r + 21},
n n

The collection of all finite intersections of subsets of C(X) of

the form M is denoted by M. The cardinality of M is still

SN,
countable. Let us show that it forms a basis of Co(X). Let & be

a filter convergent to f € Cc(x). Assume that any member of © con-
tains f, Let be @® a filter convergent to, say, p € X. For a
given natural number n there are sets T € € and Uj € ® belonging
to & such that

o(T x Us) « £(p) + [~ 1 R 1 1.
J 2n- 2n

We find a rational r such that

[£f(p) - rl s-l- .
2n

Thus f € Mj,n,r « Moreover, for any g € Mj,n,r and any q € U.

the inequality

lg(@) - £(p)| ¢ lg(a) - rl + Ir - £(p)] < 2
is valid.
For any g € T and any q € Uj we therefore have

lg(@) - rl ¢ lg(@) - £(p)I + I£(p) - rl € =,

saying that g € M.

Jsn,r’
Thus Mj,n,r > T and
-2 2
m(Mj,n,r x UJ) c f(p) + [ T n 1.

We conclude therefore that a subcollection of M generates a
filter @' on CC(X) which converges to f € C(X) and which is

coarser than ©. Clearly 8' has a basis consisting of sets in M.
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Conversely, assume that CC(X) is second countable., Any subspace
of a second countable space is second countable. By the above, X it-
self, as a space homeomorphic to a subspace of Cc(Cc(X)), has to be

second countable.

Any separable metric space is second countable, On the other hand
any regular, second countable Tl-topological space is separable and
metric ([K], p.125). In conclusion we deduce from theorem 79 a slight

improvement of Feldman's description of separable metric spaces:

Theorem 80

A c-embedded topological space X is separable and metric iff C,(X)

is second countable,
Using theorem 72 we immediately deduce:

Corollary 81

Let X be a c-embedded topological space, CC(X) is a separable metric

space iff X 1is a separable metric, locally compact space.

5.3 Lindeldf spaces

The notion of a Lindel8f convergence space X 1is based on the
notion of a basic subcovering of a covering system J of X.

A basic subcovering of a covering system ¥ is a subfamily ¥’

of ¢ such that to every convergent filter ® in X there is a finite
number of elements in J', say S;,...,8 such that {2&31 € ®. Accor-
ding to W.A. Feldman we call a convergence space Lindeldf if every

covering system has a countable basic subcovering. The reader can veri-

fy that a topological space is Lindel8f in the sense of Feldman pre-

cisely if every open covering allows a countable refinement.
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For the characterization we intend to present let us introduce in

addition the notion of first countability.A convergence space Y is

first countable if every convergent filter ® allows a coarser fil-

ter ®' which has a countable basis and which is convergent to the

same points as @ 1is.

Theorem 82

A c-embedded convergence space X 1is Lindeldf iff CC(X) is first

countable.

Proof:

Assume X 1is Lindeldf. Let us denote by ¥ the collection of all con-
vergent filters in X. We fix an arbitrary filter 6 convergent to

o € CC(X). For any n €N and any @ € ¥ there are T € 8 and

n,o

Mn,o € ® such that

1 1
m(Tn,Q % Mn,Q) cl- n*n 1.
For every fixed n €N the collection

o~
{Mn,QIQ € ¥}

is a covering system which admits a countable basic subcovering ¥

whose sets are M. where i=1,.,. Let T, be the element in &
i,n i,n
corresponding to Mi n @as above, Thus we have
L
1 1
Q)(Ti,n X Mi,n) =4 [" H » H ]o

The system {T;  li,n=1,...} generates on C(X) a filter &' coar-
]
ser than © and in addition has a countable basis. It remains to prove

that ©'——>o0 € C_(X)., Let n €N and a filter © € ¥ ve given.



117

There are sets, say M. €¥, i=1,...,k, such that their union be-

i,n

longs to @. For the corresponding sets Tl,n""’Tk,n we have

k k
) 1 1
® /\'T‘ x M- - = =

(i:1 i,n i=1 l,n)C[ n’n 1,

which proves 8'——>» o0 € CC(X).

To prove the converse let us suppose that CC(X) is first coun-
table. Given a covering system &’ whose sets are denoted by Sq,
where a runs through an index set M, we will prove that Y  admits
a countable basic subcovering. Without loss of generality Sa may
assumed to be closed in XS for each a € M,

For each S € & the collection T, defined as

Tq = {f € C(X)If(Sq) = {o}}
generates a filter which obviously converges to o € C(X). By assump-
tion there exists a coarser filter ©' with a countable basis I
which converges to o . Let us denote the elements in 2 by Dl,D2,..
For any point p € X and a filter ® convergent to p, there are
sets Ly € ® and D € D with

a)(Dn X LQ) c[-1,1].
For each n € N we form the union R, of all those Lg which corres-
pond to Dn by the above inclusion. The collection {Rnln € N} forms
a covering system for X, as it is easy to see., For a given n €N
there is a finite subset M, <IN such that

D, > M\ T, .

aeMn
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We assert that Rn < \J sq. Assume to the contrary that there is a
aeMn

point q € R~ s . since (J S, is closed in X_ there exists
a a S
GEMn aeMn

a function f € C(X) with f(q)=2 and f({J s )={o}. Clearly
o131
n

£fem Ty but f €D . This contradicts D, > N\ T, Thus
aeMn aeMn

{S,le € M, and n € N} forms a countable basic subcovering of ¥ .

Next we demonstrate that not every LindelSf convergence space is
topological. To do so we choose a non-locally compact second countable
completely regular topological space X. Then CC(X) is a non-topo-
logical second countable space. Combining theorems 79 and 82 we de-

duce that CC(X) is a Lindelsf space.
We will conclude this section by describing topological Lindeldf
spaces, The proposition preparing a functional analytic reformulation

of the Lindeldf property reads as follows:

Proposition 83

A completely regular topological space X is Lindelsf iff every com-

pact set in PX~X 1is contained in a zero-set (of BX) in BXX.

Proof:

Assume that X is Lindeldf. Take a compact set K < BX~X. For any
p € X we choose in BX a cozero-set neighborhood Up not meeting K.
Since a countable number of these neighborhoods cover X, the set
K 1is contained in an intersection of countably many zero-sets and
hence in a zero-set Z of PBZ. By construction 2 does not meet X.

Conversely, suppose that any compact set K < BX~X is contained
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in some zero-set Z of BX not meeting X. In addition let ¢ be an
open covering of X, For each S € ¥ there is an open set S' in BX
such that S8 = 3'n X, The union of the elements of {S'I|S € ¥} con-
stitutes an open subset of BX containing X. Let Z be a zero-set

in PBX which contains /) (BX~S') and does not meet X. Clearly
Se¥

BX~Z 1is a o-compact space, thus a Lindeldf space. Since the members
of {S'IS €S}l cover PBX~NZ, a countable number of them cover PX~Z

and thus cover X, Hence & has a countable refinement.

In analogy with I on C(X) (defined in §2.1) we form I',
introduced in [Bi,Fe 1]: Instead of choosing the family of all compact
subsets of PBX~X, we choose the family Z of those zero-sets of gX

which are contained in BX~X, clearly / ) (BX~Z) = uX, the real-compac-
Z€eZ

tification of X. Moreover we have

Jcpx~z) = c(X).
7€

We endow for every Z € Z the algebra C(BXNZ) with the topology of
compact convergence., The inductive limit of the family {CC(BX\Z)IZ € 7}
is the set C(X) equipped with a convergence structure called I',
Evidently I' = I iff every compact set K < BX~X is contained in a
zero-set of PBX not meeting X.

Thus by proposition 83 we have Kutzler's description of topolo-

gical Lindeldf spaces [Ku 11]:

Theorem 84

A completely regular topological space X 1is Lindeldf iff

CI(X) = CI'(X)'
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For further discussion of I' and the original proof of theorem 84
we refer to [Ku 1]. As a concluding remark on I' 1let us point out
that I' is topological iff uX is locally compact and o-compact

(i.e. a countable union of compact sets) [Bi,Fe 1].

5.4 CC(X) as inductive 1limit of topological

R~vector spaces

The next classes of spaces we are going to describe with functio~
nal analytic methods consist of completely regular topological spaces X,
which require certain types of convergence structures on c(X) to coin-~

cide,

For this purpose let us introduce the convergence structure of

local uniform convergence on C(X), A filter @ converges locally

uniformly in C(X) if any point p € X admits a neighborhood Up on
which @ converges uniformly. The algebra C(X) endowed with the con-
vergence structure of local uniform convergence is denoted by Clu(X).
An easy verification ensures the reader that Clu(X) is a convergence

fR~algebra and that CI(X) —21d Clu(X)———gl———§Cc(X) are continuous

We now proceed to exhibit characteristic conditions on X for
CI(X) = Clu(X) and for Clu(X) = CC(X). First we characterize those
spaces X for which CI(X) = Clu(X). To do so we turn our attention
to f, the collection of all those points in X which allow no com-~
pact neighborhood within vuX.

Assume X is compact and that @ is an arbitrarily given filter
on C(X) which converges to o in Clu(X). To any point p € X

there is an open neighborhood Up in PBX on which © converges uni-

~
formly. We may suppose that clBXUp c vX for any p € X~X. For any
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p € X there is a set, say Fp € 8, for which

m(Fp x Up) c[~-1,1].

Finitely many of the above specified neighborhoods, say
~N
U_ . 3.4.,U0 s cover X and satisfy
Py 1
n n
o( MF X LJUp_) cl[~1,1].

i=1 Pi iz1 Pi

n
Since (J U . e uvX we know that all functions in NF are
pex~¥ P iz1 P3

n
real-valued on (JU_ v WU and that © has a basis which is
iz1 P3 pex~x P

. n
a filter convergent to o € C,( \UJ v UJ U,

i=1 Pi p€X\§ p

Hence the compactness of i yields CI(X) = Cq,..(X). Let us show now

1u
that this implication is reversible. Call the set of all points in uX
that admit compact neighborhoods (within uX) by (uX)l. Assume that
there is a family {Uq : qéf} with the property that each Uq is a
closed neighborhood in BX of q and that no finite subfamily co~
vers f_ For each point ¢q € X\i we choose in PBX a closed neighbor-

hood Uq of q contained in (uX)l. Now for each point q € X, 1let

Fq = {f € Cc(X) : f(Uq) = {0}}.

Clearly the family of all Fq for q € X generates a filter @
convergent to zero in Clu(X). We claim that © does not converge
in CI(X). Assume the contrary. That means there are points Qqse-eqy

in X and a compact set K < BX~K with

n
MF_ < C(BX~K).
\Fq, (BX~K)
By construction there is no finite subcollection of (U, : q € X}

q
~ N
covering %; and hence we can find a point p 1in the set X~ L,’Uq
i=1 =i
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Furthermore, we pick in PBX a closed neighborhood V of p disjoint

n
from K U LJU

. Since p ¢ (UX)I, we know that
1i=1

a3

VN (BX~uX) ¢ @,

and hence there is a function

whose extension onto PBX is not real-valued on PBX~K, (see [G,J],p.116)

Thus f does not belong to C(BX~K).

Next let us focus on those spaces X for which CC(X) = Clu(X).
Here the characteristic condition on X 1is the countable intersection
property of the neighborhood filter U{(X) in BX of X. This pro-
perty states that any countable intersection of neighborhoods of X is
a neighborhood of X. We assume that CC(X) = Clu(X) and that WO (X)
does not have the countable intersection property. Let U; € U(x)
where 1 €N bpe a collection of neighborhoods whose intersection fails
to be a neighborhood. Without loss of generality we can assume that
vn € [N, For any p € X choose in PBX a closed neighbor-

Un > Un+1’

hood Up,n of p, contained in U,» and put

1
n

_ 1
F = {f € C(BX)If(Up,n) cl-=, 1}.

Pyn

The collection of all Fp for p € X and n €N, generates a fil~

sn?
ter © convergent to o € CC(X). Our assumption requires € to con-

- -]
verge locally uniformly: Since /"\Un is not a neighborhood of X
n=1

(- -]
there has to be a point, say p € X, for which /F\Un is not a
n=1

neighborhood. Thus there is in PBX a neighborhood W on which ©

converges uniformly, but which is not contained in say U,+ Choose
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i ~U_ ., t R O 8, for
some point q € WU There are sets, say Fplﬁnl’ N Dpol €9,
which

A
. 1 1
«_F c[~ : :
1=1_pi,ni(q) [ T ot 1
We can assume that
Ny 2 N5 3 e0s 2N, 30 30,9 2 00 2 N
r 1
Clearly q £ Uvu n.* Hence there is a funetion f with |Ifl| g o
iz1 Pisfy
assuming the value 1 on q and vanishing on Up n for 1 g1igr.
n 11
This functi bel t kF but f()i[-l i
is function belongs to {:} pyany u q 57T » 5rT 10

contradicting the above inclusion,
w(x)
8—>o0 € C (X),

Finally assume that has

ty. Given a filter

there is an open neighborhood Up n
L]

such that

w(F

x U c [~
pPyn p,n) [

For each n €IN we define Un

N\ U, 1is a neighborhood of X.
n €N

Wwe /N Un a compact neighborhood
n €N

real number € we choose n €N
k
Hence W e (U and thus
i=1 Pi»f
k
o( NF
i=1 Pi»

showing that @

to be

Let

such that

the countable intersection proper-

for any p € X and any n €N

of p in PBX and say Fp,n €8

Sl
-

Sl
—

Uuvu, .

p€X p,n
p € X be an arbitrary point and

By assumption

(in BX) of p. For any positive

€ > l. Then W < U_.
n n

1
x W) e[~ % s 7 1,

converges uniformly on W.
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Collecting the characterizations made in this section, we obtain
the following improvement (due to H.P.Butzmann) of a similar theorem

of [Bi,et all.

Theorem 85

For any completely regular topological space X the following hold:

~
(1) C (X) Ciu(X¥) iff X 1is compact.

(ii) C, (X) €,y (X) iff the neighborhood filter in BX

of X has the countable intersection property.
For another proof of these results one may consult [Ku 2],

The above theorem allows us to give precise conditions on X
such that CC(X) be an inductive limit of topological R~vector spaces,
In fact the following two results of [Bi, et all and [Fe] are

easily deducible from corollary 9 and theorem 85:

Theorem 86

For a completely regular topological space X the convergence R~algebra
CC(X) is an inductive 1limit of topological [R~vector spaces iff
CC(X) = C;(X), that is iff X is compact and the neighborhood filter

in BX of X has the countable intersection property.

Corollary 87
For a first countable completely regular topological space X (e.g. a
metric space) the convergence algebras CC(X) and CI(X) coincide iff

X 1s locally compact,
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Proof:

We repeat a proof given in [Bi, et all. If X is locally compact,
then CC(X) = CI(X). To prove the converse assume that p € X does
not admit a compact neighborhood. Since X is first countable there

is a sequence (p:): of points in PBX~X converging to p. Evi-
1’1 €N

[--J
dently () {BX~{p;}} 1is, in BX, not a neighborhood of X. Hence
i=1

Co(X) # CI(X).

The reader quickly realizes that CC(Q), Clu(Q) and CI(Q) are

all different.

To see that CC(X) = CI(X) does not imply the local compactness
of X, we construct a space X as follows:

Choose an uncountable set X, For any point p € X except for
one, say q € X, let the neighborhood filter be p. We assume the
neighborhood filter of q to be generated by all sets containing q
and having a countable complement, Clearly X is not locally compact,
however, the conditions in theorem 86 yielding CC(X)=CI(X) are satis~

fied [Bi, et all.



APPENDIX. SOME FUNCTIONAL ANALYTIC ASPECTS OF CC(X)

We will be concerned with two "dualities" of CC(X), the linear dua-
lity and the Pontryagin's duality. Both indicate the very special
character of the continuous convergence structure A, in this part of

funetional analysis.

1. The c-Reflexivity of CC(X)

For any convergence space X and any subset S 1let us denote
by VS the linear space spanned by iX(S) = &%CC(X). The man theo-~
rem, proved in [Bu 2], via an integral representation of positive

linear functionals, is the following:

Theorem 88

For any convergence space X the linear space VX is dense in

&.c,(x).

Proof:

First let us verify the assertion in case X 1is a compact topological
space. The space ¢%CC(X) is locally compact, by the assumption just
made. In fact the unit~ball U of !bc(x) is compact and carries the
topology of pointwise convergence (proposition 28). Hence U is the
closed convex hull of ig(X) v (-iX(X)) (see [Du,Schl, V 8.6).

Since U is absorbant, VX c xécc(x) has to be dense.

Next let X be c-embedded. Choose u € Z%CC(X) By corollary 38
the seminorm lul can be majorized by a real multiple of a sup~semi-

norm taken over some compact set K = X. Since the restriction map
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r : C,(X) _— C,(K) induces a continuous injection
ro £.C.(K)—> &£ (X) and since u factors over r, it is in
the closure of VK. Thus VX < SCCC(X) is dense.

Finally let X be an arbitrary convergence space. The surjective

map i, : X —> Hamccc(x) induces a bicontinuous isomorphism bet-

X
ween Cc(HomcCc(X)) and CC(X) and hence between éﬂcCC(X) and

%ccc(Homccc(x)). Therefore VX c &C_(X) is dense.

A convergence {[R~vector space E 1is called c~-reflexive if the
canonical mapping

gt E——> ¥ XL E,

defined by jE(t)(u) = u(t) for all t € E and for all u € xcE,

is a bicontinuous isomorphism.

Let us consider jc (X) for an arbitrary convergence space X.
c

The map iX : X—),"ZCCC(X) induces a map
Y
iy = £ L.C (X)) —> c (X)),

defined by 'i'x(k) = keiy for each k € % ¥.C (X), which obviously

is continuous, Moreover

~

T, 0 j = id .
X Cc (x) CC(X)
Thus by theorem 88 we obtain the c~reflexivity of CC(X) (see [Bu 2]):

Theorem 89

For any convergence space X the convergence [R~algebra CC(X) is

c~reflexive,
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This result allows us to treat questions on the c~reflexivity of topo-
logical [R~vector spaces.

Let E be a topological R~vector space. Since h%E is locally
compact, :4::CCE is a locally convex topological [R~vector space. Thus
E can be c~reflexive only if E is locally convex. Let us assume that
this is satisfied.

Any locally convex topological IR~vector space can be embedded in
a C,(X) for some locally compact space X, (see [K&], § 20, p.107).
Call the embedding e,

Use the universal property of the continuous convergence and the

Hahn~Banach theorem to verify that
%
et dc (X)——KE

(sending each u into uee) is a surjection, and that

% %

et LHLEE—> ¥ 4.C.(X)

is a bicontinuous isomorphism onto a subspace.

The commutative diagram

=

> C (%)

: ja
Ip ¢, X)

* %
e
&, L.E ? xc'gccc(X)
yields, together with theorem 3%, that JE is a homeomorphism onto a
subspace.,
Let us show that jE maps onto a dense subspace. To this end

consider &%EL Clearly 2; 2%E is a subspace of the locally convex
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topological space C,( zcE) and the restriction map
r: &C, (xcE) —> ‘{c Z, L E

is surjective (Hahn~Banach). Now roi = j . Thus r(V(£E))
&E LE ()
is mapped onto a dense subspace of ¥, %, ¥.E (theorem 88), which
moreover has to be chE (ZCE).
. t* » - » ‘*
Since JEoro'chE = ldéﬂcE » where Jp maps each u €%, ¥ X

into u ¢ jE’ we deduce that (ZCE) is closed. Hence it is the

chE
whole space Zc ¥, ¥.E.

This demonstrates that JCCE is c~reflexive. Thus E and
.ﬂc JCCE have bicontinuously isomorphic dual spaces, which is only

possible if Jn(E) %c £ E is dense. In conclusion let us state:

Theorem 90

For any locally convex topological [R~vector space E the map

gt E——>% L F

is a homeomorphism onto a dense image. Hence a topological R~vector

space E 1is c-reflexive iff E is locally convex and complete,

The c¢~duals of topological R~vector spaces are characteriZed as
those locally compact convergence [R~vector spaces in which any compact
subspace is topological and which possess point-separating continuous
functionals,

For papers related to the c~duality we refer to [Bu 2] and
[Bi,Bu,Kul. The relation of theorem 90 to the classical results con-
cerning the completion of locally convex [R~vector spaces can be made

via an Ascoli~Arzeld theorem in [C,FI.



130

2. On_the Pontryagin reflexivity of certain con-

vergence [R~vector spaces

Let E be a Hausdorff [R~vector space and T be the group (with

the ususal topology) of all complex numbers of modulus one,.

The collection of all group homomorphisms of E into T forms
a group GE and if endowed with the continuous convergence structure
a convergence group GcE’ then it is called the character group of E.
Introducing the character group GchE of GcE’ we see that the cano-
nical map
A
jE E——> GchE’
defined by fﬁ(e)(h) = h(e) for all e € E and all h € GcE’ is con~
tinuous.
We now proceed to determine for which type of convergence [R~vector
space E the map SE is a bicontinuous isomorphism; that is to say

which space E is Pontryagin reflexive. The methods we use here are

based on the fact that IR 1is a (the universal) covering of T. The
covering projection K : JR—> T sends each r €M into e?Tir,
For every Hausdorff convergence R~vector space E, the conver-
gence structure induces on any finite dimensional subspace the natural
topology [Ku 3]. Now let h € G,E. The restriction of h to any
finite dimensional subspace H 1lifts to a unique, continuous linear

funetional u of H. Thus h 1lifts uniquely to a linear functional u

H
of E. To prove the continuity of u let us suppose that E 1is
balanced, i.e. that with any filter ® convergent to o € E, the fil-
ter [-1,1]1+® converges too. Since [-1,1]1:® has a basis of path
connected sets (defined in the obvious way), the convergence of

u(f[~1,1]+*®) to zero is obvious., Hence u 1is continuous. For any

u € LE the map Keu 1is a character of E.
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Hence

KE: £E — > GE,

sending each u into Kowu, is a group isomorphism. Since K 1is a
local homeomorphism and &%E is path connected, KE is biecontinuous
if both spaces are equipped with the continuous convergence structure.
By making explicit use of the theory of coverings, we have just
obtained a short proof (and seen a variety of possible generalizations)

of the following theorem (see [ K& 1 p.313 and [ Bu 1 ]).

Theorem 91

For every balanced Hausdorff convergence (R~vector space E the

covering map K ;: R —————=> T induces a bicontinuous group isomorphism

: _
KE : g‘CcE GCE.

Considering the following commutative diagram

~
IE

E rd GCGCE

K*

Jg E

v Ke k \L

c

AN > G SGE

E3
where KE(k) = k °KE for each k € G,G,E, we immediately deduce
[Bu 1]:
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Corollary 92

For every balanced Hausdorff convergence R-vector space E the map
: _—>
b l%é%E GchE’

*~ . . . . . . .
where b=KE % ﬁxE, is a bicontinuous isomorphism. Thus E 1s Pontryagin

reflexive iff it is c~reflexive.

With the results of the last section applied to CC(X), the follo-

wing corollary [Bu 1] 1is immediate:

Corollary 93

For any convergence space X the convergence [R~algebra CC(X) is
Pontryagin reflexive. The character group GCCC(X) is the closure of
Let us add to these results the general description of those topo-

logical [R-vector spaces which are Pontryagin reflexive (see [ Bi 6 1).

Theorem 94

A topological [R~vector space E 1is Pontryagin reflexive iff E 1is a

complete locally convex space.
The proof is easily made by combining theorem 90 and corollary 92.

The general correspondence between complete subspaces of complete
locally convex spaces and the whole character groups modulo annihilators,
characteristic for Pontryagin's duality theory, are valid and are easy

to verify,
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