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Preface

I use the term logical and relational learning to refer to the subfield of artificial
intelligence, machine learning and data mining that is concerned with learning
in expressive logical or relational representations. It is the union of inductive
logic programming, (statistical) relational learning and multi-relational data
mining, which all have contributed techniques for learning from data in rela-
tional form. Even though some early contributions to logical and relational
learning are about forty years old now, it was only with the advent of in-
ductive logic programming in the early 1990s that the field became popular.
Whereas initial work was often concerned with logical (or logic programming)
issues, the focus has rapidly changed to the discovery of new and interpretable
knowledge from structured data, often in the form of rules, and soon impor-
tant successes in applications in domains such as bio- and chemo-informatics
and computational linguistics were realized. Today, the challenges and oppor-
tunities of dealing with structured data and knowledge have been taken up by
the artificial intelligence community at large and form the motivation for a lot
of ongoing research. Indeed, graph, network and multi-relational data mining
are now popular themes in data mining, and statistical relational learning is
receiving a lot of attention in the machine learning and uncertainty in artifi-
cial intelligence communities. In addition, the range of tasks for which logical
and relational techniques have been developed now covers almost all machine
learning and data mining tasks. On the one hand these developments have re-
sulted in a new role and novel views on logical and relational learning, but on
the other hand have also made it increasingly difficult to obtain an overview
of the field as a whole.

This book wants to address these needs by providing a new synthesis of
logical and relational learning. It constitutes an attempt to summarize some
of the key results about logical and relational learning, it covers a wide range
of topics and techniques, and it describes them in a uniform and accessible
manner. While the author has tried to select a representative set of topics
and techniques from the field of logical and relational learning, he also real-
izes that he is probably biased by his own research interests and views on the
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field. Furthermore, rather than providing detailed accounts of the many spe-
cific systems and techniques, the book focuses on the underlying principles,
which should enable the reader to easily get access to and understand the
relevant literature on logical and relational learning. Actually, at the end of
each chapter, suggestions for further reading are provided.

The book is intended for graduate students and researchers in artificial
intelligence and computer science, especially those in machine learning, data
mining, uncertainty in artificial intelligence, and computational logic, with an
interest in learning from relational data. The book is the first textbook on
logical and relational learning and is suitable for use in graduate courses,
though it can also be used for self-study and as a reference. It contains
many different examples and exercises. Teaching material will become avail-
able from the author’s website. The author would also appreciate receiving
feedback, suggestions for improvement and needed corrections by email to
luc.deraedt@cs.kuleuven.be.

The book starts with an introductory chapter clarifying the nature, mo-
tivations and history of logical and relational learning. Chapter 2 provides
a gentle introduction to logic and logic programming, which will be used
throughout the book as the representation language. Chapter 3 introduces
the idea of learning as search and provides a detailed account of some funda-
mental machine learning algorithms that will play an important role in later
chapters. In Chapter 4, a detailed study of a hierarchy of different represen-
tations that are used in machine learning and data mining is given, and two
techniques (propositionalization and aggregation) for transforming expressive
representations into simpler ones are introduced. Chapter 5 is concerned with
the theoretical basis of the field. It studies the generality relation in logic, the
relation between induction and deduction, and introduces the most important
framework and operators for generality. In Chapter 6, a methodology for de-
veloping logical and relational learning systems is presented and illustrated
using a number of well-known case studies that learn relational rules, decision
trees and frequent queries. The methodology starts from existing learning ap-
proaches and upgrades them towards the use of rich representations. Whereas
the first six chapters are concerned with the foundations of logical and rela-
tional learning, the chapters that follow introduce more advanced techniques.
Chapter 7 focuses on learning the definition of multiple relations, that is,
on learning theories. This chapter covers abductive reasoning, using integrity
constraints, program synthesis, and the use of an oracle. Chapter 8 covers
statistical relational learning, which combines probabilistic models with log-
ical and relational learning. The chapter starts with a gentle introduction to
graphical models before turning towards probabilistic logics. The use of ker-
nels and distances for logical and relational learning is addressed in Chapter 9,
and in Chapter 10 computational issues such as efficiency considerations and
learnability results are discussed. Finally, Chapter 11 summarizes the most
important lessons learned about logical and relational learning. The author
suggests to read it early on, possibly even directly after Chapter 1.
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An introductory course to logical and relational learning covers most of the
materials in Chapters 1 to 4, Sects. 5.1 – 5.4, 5.9, and Chapters 6 and 11. The
other chapters do not depend on one another, and, hence, further chapters can
be selected according to the interests and the preferences of the reader. Given
the interests in statistical relational learning, the author certainly recommends
Chapter 8. Advanced sections and exercises are marked with a * or even with
**. They are more challenging, but can be skipped without loss of continuity.

This book could not have been written without the help and encourage-
ment of many persons. The author is indebted to a number of co-workers who
contributed ideas, techniques, surveys and views that have found their way
into this book, including: Maurice Bruynooghe for influencing the use of logic
in this book and numerous suggestions for improvement; Hendrik Blockeel,
Luc Dehaspe and Wim Van Laer for contributions to the upgrading method-
ology described in Chapter 6, Kristian Kersting for joint work on statistical
relational learning presented in Chapter 8, and Jan Ramon for his work on
distances in Chapter 9. This book has also taken inspiration from a number
of joint overview papers and tutorials that the author delivered in collabora-
tion with Hendrik Blockeel, Sašo Džeroski, Kristian Kersting, Nada Lavrač
and Stephen Muggleton. The author would also like to thank the editor at
Springer, Ronan Nugent, for his patience, help, and support during all phases
of this book-writing project.

The author is grateful for the feedback and encouragement on the many
earlier versions of this book he received. He would like to thank especially:
the reading clubs at the University of Bristol (headed by Peter Flach, and in-
volving Kerstin Eder, Robert Egginton, Steve Gregory, Susanne Hoche, Simon
Price, Simon Rawles and Ksenia Shalonova) and at the Katholieke Univer-
siteit Leuven (Hendrik Blockeel, Björn Bringmann, Maurice Bruynooghe, Fab-
rizio Costa, Tom Croonenborghs, Anton Dries, Kurt Driessens, Daan Fierens,
Christophe Costa Florencio, Elisa Fromont, Robby Goetschalkx, Bernd Gut-
mann, Angelika Kimmig, Niels Landwehr, Wannes Meert, Siegfried Nijssen,
Stefan Raeymaekers, Leander Schietgat, Jan Struyf, Ingo Thon, Anneleen
van Assche, Joaquin Vanschoren, Celine Vens, and Albrecht Zimmermann),
several colleagues who gave feedback or discussed ideas in this book (James
Cussens, Paolo Frasconi, Thomas Gaertner, Tamas Horvath, Manfred Jaeger,
Martijn van Otterlo), and the students in Freiburg who used several previous
versions of this book.

Last but not least I would like to thank my wife, Lieve, and my children,
Soetkin and Maarten, for their patience and love during the many years it
took to write this book. I dedicate this book to them.

Destelbergen, May 2008 Luc De Raedt
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1

Introduction

The field of logical and relational learning, which is introduced in this chap-
ter, is motivated by the limitations of traditional symbolic machine learning
and data mining systems that largely work with propositional representations.
These limitations are clarified using three case studies: predicting the activity
of chemical compounds from their structure; link mining, where properties of
websites are discovered; and learning a simple natural language interface for a
database. After sketching how logical and relational learning works, the chap-
ter ends with a short sketch of the history of this subfield of machine learning
and data mining as well as a brief overview of the rest of this book.

1.1 What Is Logical and Relational Learning?

Artificial intelligence has many different subfields. Logical and relational learn-
ing combines principles and ideas of two of the most important subfields of
artificial intelligence: machine learning and knowledge representation. Ma-
chine learning is the study of systems that improve their behavior over time
with experience. In many cases, especially in a data mining context, the ex-
perience consists of a set of observations or examples in which one searches
for patterns, regularities or classification rules that provide valuable new in-
sights into the data and that should ideally be readily interpretable by the
user. The learning process then typically involves a search through various
generalizations of the examples.

In the past fifty years, a wide variety of machine learning techniques have
been developed (see Mitchell [1997] or Langley [1996] for an overview). How-
ever, most of the early techniques were severely limited from a knowledge rep-
resentation perspective. Indeed, most of the early techniques (such as decision
trees [Quinlan, 1986], Bayesian networks [Pearl, 1988], perceptrons [Nilsson,
1990], or association rules [Agrawal et al., 1993]) could only handle data and
generalizations in a limited representation language, which was essentially
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propositional. Propositional representations (based on boolean or proposi-
tional logic) cannot elegantly represent domains involving multiple entities
as well as the relationships amongst them. One such domain is that of so-
cial networks where the persons are the entities and their social interactions
are characterized by their relationships. The representational limitations of
the early machine learning systems carried over to the resulting learning and
data mining techniques, which were in turn severely limited in their applica-
tion domain. Various machine learning researchers, such as Ryszard Michalski
[1983] and Gordon Plotkin [1970], soon realized these limitations and started
to employ more expressive knowledge representation frameworks for learning.
Research focused on using frameworks that were able to represent a variable
number of entities as well as the relationships that hold amongst them. Such
representations are called relational. When they are grounded in or derived
from first-order logic they are called logical representations. The interest in
learning using these expressive representation formalisms soon resulted in the
emergence of a new subfield of artificial intelligence that I now describe as
logical and relational learning.

Logical and relational learning is thus viewed in this book as the study of
machine learning and data mining within expressive knowledge representation
formalisms encompassing relational or first-order logic. It specifically targets
learning problems involving multiple entities and the relationships amongst
them. Throughout the book we shall mostly be using logic as a representation
language for describing data and generalizations, because logic is inherently
relational, it is expressive, understandable, and interpretable, and it is well
understood. It provides solid theoretical foundations for many developments
within artificial intelligence and knowledge representation. At the same time,
it enables one to specify and employ background knowledge about the domain,
which is often also a key factor determining success in many applications of
artificial intelligence.

1.2 Why Is Logical and Relational Learning Important?

To answer this question, let us look at three important applications of logical
and relational learning. The first is concerned with learning to classify a set
of compounds as active or inactive [Srinivasan et al., 1996], the second with
analyzing a website [Craven and Slattery, 2001], and the third with learning
a simple natural language interface to a database system [Mooney, 2000]. In
these applications there are typically a variable number of entities as well as
relationships amongst them. This makes it very hard, if not impossible, to
use more traditional machine learning methods that work with fixed feature
vectors or attribute-value representations. Using relational or logical repre-
sentations, these problems can be alleviated, as we will show throughout the
rest of this book.
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1.2.1 Structure Activity Relationship Prediction

Consider the compounds shown in Fig. 1.1. Two of the molecules are active
and two are inactive. The learning task now is to find a pattern that dis-
criminates the actives from the inactives. This type of task is an important
task in computational chemistry. It is often called structure activity relation-
ship prediction (SAR), and it forms an essential step in understanding various
processes related to drug design and discovery [Srinivasan and King, 1999b],
toxicology [Helma, 2005], and so on. The figure also shows a so-called struc-
tural alert, which allows one to distinguish the actives from the inactives be-
cause the structural alert is a substructure (subgraph) that matches both of
the actives but none of the inactives. At the same time, the structural alert is
readily interpretable and provides useful insights into the factors determining
the activity.

O CH=N-NH-C-NH 2O=N

O - O

nitrofurazone

N   O

O

+

-

4-nitropenta[cd]pyrene

N

O O-

6-nitro-7,8,9,10-tetrahydrobenzo[a]pyrene

NH

N

O      O
-

+

4-nitroindole

Y=Z

Active

Inactive

Structural alert:

Fig. 1.1. Predicting mutagenicity. Reprinted from [Srinivasan et al., 1996], page
288, c©1996, with permission from Elsevier

Traditional machine learning methods employ the single-tuple single-table
assumption, which assumes that the data can be represented using attribute-
value pairs. Within this representation, each example (or compound) corre-
sponds to a single row or tuple in a table, and each feature or attribute to a
single column; cf. Table 1.1. For each example and attribute, the cells of the
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table specify the value of the attribute for the specific example, for instance,
whether or not a benzene ring is present. We shall call representations that
can easily be mapped into the single-tuple single-table format propositional.

Table 1.1. A table-based representation

Compound Attribute1 Attribute2 Attribute3 Class

1 true false true active
2 true true true active
3 false false true inactive
4 true false true inactive

From a user perspective, the difficulty with this type of representation is
the mismatch between the graphical and structured two-dimensional repre-
sentation in the molecules and the flat representation in the table. In order
to use the flat representation, the user must first determine the features or
attributes of interest. In structure activity relationship prediction, these are
sometimes called fingerprints. Finding these features is in itself a non-trivial
task as there exist a vast number of potentially interesting features. Further-
more, the result of the learning process will critically depend on the quality of
the employed features. Even though there exist a number of specialized tools
to tackle this kind of task (involving the use of libraries of fingerprints), the
question arises as to whether there exist general-purpose machine learning
systems able to cope with such structured representations directly. The an-
swer to this question is affirmative, as logical and relational learners directly
deal with structured data.

Example 1.1. The graphical structure of one of the compounds can be repre-
sented by means of the following tuples, which we call facts:

active(f1) ← bond(f1, f11, f12, 7) ←
logmutag(f1, 0.64) ← bond(f1, f12, f13, 7) ←
lumo(f1,−1.785) ← bond(f1, f13, f14, 7) ←
logp(f1, 1.01) ← bond(f1, f14, f15, 7) ←
atom(f1, f11, c, 21, 0.187) ← bond(f1, f18, f19, 2) ←
atom(f1, f12, c, 21,−0.143) ← bond(f1, f18, f110, 2) ←
atom(f1, f13, c, 21,−0.143) ← bond(f1, f11, f111, 1) ←
atom(f1, f14, c, 21,−0.013) ← bond(f1, f111, f112, 2) ←
atom(f1, f15, o, 52,−0.043) ← bond(f1, f111, f113, 1) ←
. . .

In this encoding, each entity is given a name and the relationships among
the entities are captured. For instance, in the above example, the compound
is named f1 and its atoms f11, f12, .... Furthermore, the relation atom/5 of
arity 5 states properties of the atoms: the molecule they occur in (e.g., f1),
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the element (e.g., c denoting a carbon) and the type (e.g., 21) as well as the
charge (e.g., 0.187). The relationships amongst the atoms are then captured
by the relation bond/3, which represents the bindings amongst the atoms.
Finally, there are also overall properties or attributes of the molecule, such
as their logp and lumo values. Further properties of the compounds could be
mentioned, such as the functional groups or ring structures they contain:

ring size 5(f1, [f15, f11, f12, f13, f14]) ←
hetero aromatic 5 ring(f1, [f15, f11, f12, f13, f14]) ←
...

The first tuple states that there is a ring of size 5 in the compound f1 that
involves the atoms f15, f11, f12, f13 and f14 in molecule f1; the second one states
that this is a heteroaromatic ring.

Using this representation it is possible to describe the structural alert in
the form of a rule

active(M) ← ring size 5(M,R), element(A1,R), bond(M,A1,A2, 2)

which actually reads as1:

Molecule M is active IF it contains a ring of size 5 called R and atoms
A1 and A2 that are connected by a double (2) bond such that A1 also
belongs to the ring R.

The previous example illustrates the use of logical representations for data
mining. It is actually based on the well-known mutagenicity application of re-
lational learning due to Srinivasan et al. [1996], where the structural alert
was discovered using the inductive logic programming system Progol [Mug-
gleton, 1995] and the representation employed above. The importance of this
type of application is clear when considering that the results were published
in the scientific literature in the application domain [King and Srinivasan,
1996], that they were obtained using a general-purpose inductive logic pro-
gramming algorithm and were transparent to the experts in the domain. The
combination of these factors has seldom been achieved in artificial intelligence.

1.2.2 A Web Mining Example

While structure activity relationship prediction involves the mining of a (po-
tentially large) set of small graphs, link mining and discovery is concerned
with the analysis of a single large graph or network [Getoor, 2003, Getoor and
Dielh, 2005]. To illustrate link mining, we consider the best known example
of a network, that is, the Internet, even though link mining is applicable in
1 This form of description is sometimes called ‘Sternberg’ English in inductive logic

programming, after the computational biologist Michael Sternberg, who has been
involved in several pioneering scientific applications of logical learning.
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other contexts as well, for instance, in social networks, protein networks, and
bibliographic databases. The following example is inspired by the influential
WebKB example of Craven and Slattery [2001].

Example 1.2. Consider the website of a typical university. It contains several
web pages that each describe a wide variety of entities. These entities belong
to a wide variety of classes, such as student, faculty, staff, department, course,
project, and publication. Let us assume that for each such web page, there is
a corresponding tuple in our relational database. Consider, for instance, the
following facts (where the urls denote particular URLs):

faculty(url1, stephen) ← faculty(url2, john) ←
course(url3, logic for learning) ← project(url4, april2) ←
department(url5, computer science) ← student(url6, hiroaki) ←
. . .

In addition, there are relationships among these entities. For instance, various
pages that refer to one another, such as the link from url6 to url1, denote a par-
ticular relationship, in this case the relationship between the student hiroaki
and his adviser stephen. This can again be modeled as facts in a relational
database:

adviser(stephen, hiroaki) ←
teaches(john, logic for learning) ←
belongsTo(stephen, computer science) ←
follows(hiroaki, logic for learning) ←
. . .

Again, the structure of the problem can elegantly be represented using a
relational database. This representation can easily be extended with additional
background knowledge in the form of rules:

studentOf(Lect,Stud) ← teaches(Lect,Course), follows(Stud,Course)

which expresses that

Stud is a studentOf Lect IF Lect teaches a Course and Stud follows the
Course.

Further information could be contained in the data set, such as extracts of the
text appearing on the different links or pages. There are several interesting
link mining tasks in this domain. It is for instance possible to learn to predict
the classes of web pages or the nature of the relationships encoded by links
between web pages; cf. [Getoor, 2003, Craven and Slattery, 2001, Chakrabarti,
2002, Baldi et al., 2003]. To address such tasks using logical or relational
learning, one has to start from a set of examples of relations that are known to
hold. For instance, the fact that stephen is the adviser of hiroaki is a (positive)
example stating that the link from hiroaki to stephen belongs to the relation
adviser. If for a given university website, say the University of Freiburg, all
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hyperlinks would be labeled (by hand) with the corresponding relationships,
one could then learn general rules using logical and relational learning that
would allow one to predict the labels of unseen hyperlinks. These rules could
then be applied to determine the labels of the hyperlinks at another university
website, say that of the University of Leuven. An example of a rule that might
be discovered in this context is

adviser(Prof,Stud) ←
webpage(Stud,Url), student(Url),
contains(Url, advisor), contains(Url,Prof)

which expresses that

Prof is an adviser of Stud IF Stud has a webpage with Url of type
student that contains the words adviser and Prof.

To tackle such problems, one often combines logical and relational learning
with probabilistic models. This topic will be introduced in Chapter 8.

Link mining problems in general, and the above example in particular,
cannot easily be represented using the single-tuple single-table assumption
(as in Table 1.1) without losing information.

Exercise 1.3. Try to represent the link mining example within the single-
tuple single-table assumption and identify the problems with this approach.

Exercise 1.4. Sketch other application domains that cannot be modeled un-
der this assumption.

1.2.3 A Language Learning Example

A third illustration of an application domain that requires dealing with knowl-
edge as well as structured data is natural language processing. Empirical
natural language processing is now a major trend within the computational
linguistics community [Manning and Schütze, 1999], and several logical and
relational learning scientists have contributed interesting techniques and ap-
plications; cf. [Cussens and Džeroski, 2000, Mooney, 2000]. As an illustration
of this line of work, let us look at one of the applications of Raymond Mooney’s
group, which pioneered the use of logical and relational learning techniques for
language learning. More specifically, we sketch how to learn to parse database
queries in natural language, closely following Zelle and Mooney [1996].2 The
induced semantic parser is the central component of a question-answering
system.

Example 1.5. Assume you are given a relational database containing informa-
tion about geography. The database contains information about various basic
2 For ease of exposition, we use a slightly simplified notation.
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entities such as countries, cities, states, rivers and places. In addition, it con-
tains facts about the relationships among them, for instance, capital(C,Y),
which specifies that C is the capital of Y, loc(X,Y), which states that X is lo-
cated in Y, nextTo(X,Y), which states that X is located next to Y, and many
other relationships.

The task could then be to translate queries formulated in natural language
to database queries that can be executed by the underlying database system.
For instance, the query in natural language

What are the major cities in Kansas?

could be translated to the database query

answer(C, (major(C), city(C), loc(C,S), equal(S, kansas)))

This last query can then be passed on to the database system and executed.
The database system then generates all entities C that are major, a city, and
located in kansas.

Zelle and Mooney’s learning system [1996] starts from examples, which
consist of queries in natural language and in database format, from an ele-
mentary shift-reduce parser, and from some background knowledge about the
domain. The task is then to learn control knowledge for the parser. Essentially,
the parser has to learn the conditions under which to apply the different op-
erators in the shift-reduce parser. The control knowledge is represented using
a set of clauses (IF rules) as in the previous two case studies. The control
rules need to take into account knowledge about the stack used by the parser,
the structure of the database, and the semantics of the language. This is
again hard (if not impossible) to represent under the single-tuple single-table
assumption.

1.3 How Does Relational and Logical Learning Work?

Symbolic machine learning and data mining techniques essentially search a
space of possible patterns, models or regularities. Depending on the task,
different search algorithms and principles apply. For instance, consider the
structure activity relationship prediction task and assume that one is searching
for all structural alerts that occur in at least 20% of the actives and at most
2% of the inactives. In this case, a complete search strategy is applicable.
On the other hand, if one is looking for a structural alert that separates the
actives from the inactives and could be used for classification, a heuristic
search method such as hill climbing is more appropriate.

Data mining is often viewed as the process of computing the set of patterns
Th(Q,D,L) [Mannila and Toivonen, 1997], which can be defined as follows (cf.
also Chapter 3). The search space consists of all patterns expressible within a
language of patterns L. For logical and relational learning this will typically
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be a set of rules or clauses of the type we encountered in the case studies of
the previous section; the data set D consists of the examples that need to
be generalized; and, finally, the constraint Q specifies which patterns are of
interest. The constraint typically depends on the data mining task tackled, for
instance, finding a single structural alert in a classification setting, or finding
all alerts satisfying particular frequency thresholds. So, the set Th(Q,D,L)
can be defined as the set of all patterns h ∈ L that satisfy the constraint
Q(h,D) with respect to the data set D.

A slightly different perspective is given by the machine learning view,
which is often formulated as that of finding a particular function h (again
belonging to a language of possible functions L) that minimizes a loss function
l(h,D) on the data. Using this view, the natural language application of the
previous subsection can be modeled more easily, as the goal is to learn a
function mapping statements in natural language to database queries. An
adequate loss function is the accuracy of the function, that is, the fraction of
database queries that is correctly predicted. The machine learning and data
mining views can be reconciled, for instance, by requiring that the constraint
Q(h,D) succeeds only when l(h,D) is minimal; cf. Chapter 3.

Central in the definition of the constraint Q(h,D) or the loss function
l(h,D) is the covers relation between the data and the rules. It specifies
when a rule covers an example, or, equivalently, when an example satisfies
a particular rule. There are various possible ways to represent examples and
rules and these result in different possible choices for the covers relation (cf.
Chapter 4). The most popular choice is that of learning from entailment. It
is also the setting employed in the case studies above.

Example 1.6. To illustrate the notion of coverage, let us reconsider Ex. 1.1
and let us also simplify it a bit. An example could now be represented by the
rule:

active(m1) ←
atom(m1,m11, c), . . . , atom(m1,m1n, c),
bond(m1,m11,m12, 2), . . . , bond(m1,m11,m13, 1),
ring size 5(m1, [m15,m11,m12,m13,m14]), . . .

Consider now the rule

active(M) ← ring size 5(M,R), atom(M,M1, c)

which actually states that

Molecule M is active IF it contains a ring of size 5 called R and an
atom M1 that is a carbon (c).

The rule covers the example because the conditions in the rule are satis-
fied by the example when setting M = m1, R = [m15,m11,m12,m13,m14] and
M1 = m11. The reader familiar with logic (see also Chapter 2) will recognize
that the example e is a logical consequence of the rule r, which is sometimes
written as r |= e.
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Now that we know what to compute, we can look at how this can be
realized. The computation of the solutions proceeds typically by searching
the space of possible patterns or hypotheses L. One way of realizing this is to
employ a generate-and-test algorithm, though this is too naive to be efficient.
Therefore symbolic machine learning and data mining techniques typically
structure the space L according to generality. One pattern or hypothesis
is more general than another if all examples that are covered by the latter
pattern are also covered by the former.

Example 1.7. For instance, the rule

active(M) ← ring size 5(M,R), element(A1,R), bond(M,A1,A2, 2)

is more general than the rule

active(M) ←
ring size 5(M,R), element(A1,R),
bond(M,A1,A2, 2), atom(M,A2, o, 52,C)

which reads as

Molecule M is active IF it contains a ring of size 5 called R and atoms
A1 and A2 that are connected by a double (2) bond such that A1 also
belongs to the ring R and atom A2 is an oxygen of type 52.

The former rule is more general (or, equivalently, the latter one is more
specific) because the latter one requires also that the atom connected to the
ring of size 5 be an oxygen of atom-type 52. Therefore, all molecules satisfying
the latter rule will also satisfy the former one.

The generality relation is quite central during the search for solutions. The
reason is that the generality relation can often be used 1) to prune the search
space, and 2) to guide the search towards the more promising parts of the
space. The generality relation is employed by the large majority of logical
and relational learning systems, which often search the space in a general-to-
specific fashion. This type of system starts from the most general rule (the
unconditional rule, which states that all molecules are active in our running
example), and then repeatedly specializes it using a so-called refinement oper-
ator. Refinement operators map rules onto a set of specializations; cf. Chapters
3 and 5.

Example 1.8. Consider the rule

active(Mol) ← atom(Mol,Atom, c,Type,Charge),

which states that a molecule is active if it contains a carbon atom. Refinements
of this rule include:



1.4 A Brief History 11

active(Mol) ← atom(Mol,Atom, c, 21,Charge)
active(Mol) ← atom(Mol,Atom, c,T,Charge), atom(Mol,Atom2, h,T2,Charge2)
active(Mol) ← atom(Mol,Atom, c,T,Charge), ring size 5(Mol,Ring)
. . .
The first refinement states that the carbon atom must be of type 21, the second
one requires that there be carbon as well as hydrogen atoms, and the third one
that there be a carbon atom and a ring of size 5. Many more specializations
are possible, and, in general, the operator depends on the description language
and generality relation used.

The generality relation can be used to prune the search. Indeed, assume that
we are looking for rules that cover at least 20% of the active molecules and at
most 1% of the inactive ones. If our current rule (say the second one in Ex.
1.7) only covers 18% of the actives, then we can prune away all specializations
of that rule because specialization can only decrease the number of covered
examples. Conversely, if our current rule covers 2% of the inactives, then all
generalizations of the rule cover at least as many inactives (as generaliza-
tion can only increase the number of covered examples), and therefore these
generalizations can safely be pruned away; cf. Chapter 3 for more details.

Using logical description languages for learning provides us not only with a
very expressive representation, but also with an excellent theoretical founda-
tion for the field. This becomes clear when looking at the generality relation.
It turns out that the generality relation coincides with logical entailment. In-
deed, the above examples of the generality relation clearly show that the more
general rule logically entails the more specific one.3 So, the more specific rule
is a logical consequence of the more general one, or, formulated differently, the
more general rule logically entails the more specific one. Consider the simpler
example: flies(X) ← bird(X) (if X is a bird, then X flies), which logically entails
and which is clearly more general than the rule flies(X) ← bird(X), normal(X)
(only normal birds fly). This property of the generalization relation provides
us with an excellent formal basis for studying inference operators for learning.
Indeed, because one rule is more general than another if the former entails the
latter, deduction is closely related to specialization as deductive operators can
be used as specialization operators. At the same time, as we will see in detail
in Chapter 5, one can obtain generalization (or inductive inference) operators
by inverting deductive inference operators.

1.4 A Brief History

Logical and relational learning typically employ a form of reasoning known as
inductive inference. This form of reasoning generalizes specific facts into gen-
3 This property holds when learning from entailment. In other settings, such as

learning from interpretations, this property is reversed; cf. Chapter 5. The more
specific hypothesis then entails the more general one.
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eral laws. It is commonly applied within the natural sciences, and therefore
has been studied in the philosophy of science by several philosophers since
Aristotle. For instance, Francis Bacon investigated an inductive methodology
for scientific inquiry. The idea is that knowledge can be obtained by care-
ful experimenting, observing, generalizing and testing of hypotheses. This is
also known as empiricism, and various aspects have been studied by many
other philosophers including Hume, Mill, Peirce, Popper and Carnap. Induc-
tive reasoning is fundamentally different from deductive reasoning in that the
conclusions of inductive reasoning do not follow logically from their premises
(the observations) but are always cogent; that is, they can only be true with
a certain probability. The reader may notice that this method is actually very
close in spirit to that of logical and relational learning today. The key differ-
ence seems to be that logical and relational learning investigates computational
approaches to inductive reasoning.

Computational models of inductive reasoning and scientific discovery have
been investigated since the very beginning of artificial intelligence. Several
cognitive scientists, such as a team involving the Nobel prize winner Her-
bert A. Simon (see [Langley et al., 1987] for an overview), developed several
models that explain how specific scientific theories could be obtained. Around
the same time, other scientists (including Bruce Buchanan, Nobel prize win-
ner Joshua Lederberg, Ed Feigenbaum, and Tom Mitchell [Buchanan and
Mitchell, 1978]) started to develop learning systems that could assist scien-
tists in discovering new scientific laws. Their system Meta-Dendral pro-
duced some new results in chemistry and were amongst the first scientific
discoveries made by an artificial intelligence system that were published in
the scientific literature of the application domain. These two lines of research
have actually motivated many developments in logical and relational learning
albeit there is also a crucial difference between them. Whereas the mentioned
approaches were domain-specific, the goal of logical and relational learning is
to develop general-purpose inductive reasoning systems that can be applied
across different application domains. The example concerning structure activ-
ity relationship is a perfect illustration of the results of these developments
in logical and relational learning. An interesting philosophical account of the
relationship between these developments is given by Gillies [1996].

Supporting the scientific discovery process across different domains re-
quires a solution to two important computational problems. First, as scien-
tific theories are complex by their very nature, an expressive formalism is
needed to represent them. Second, the inductive reasoning process should be
able to employ the available background knowledge to obtain meaningful hy-
potheses. These two problems can to a large extent be solved by using logical
representations for learning.

The insight that various types of logical and relational representations can
be useful for inductive reasoning and machine learning can be considered as
an outgrowth of two parallel developments in computer science and artifi-
cial intelligence. First, and most importantly, since the mid-1960s a number
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of researchers proposed to use (variants of) predicate logic as a formalism
for studying machine learning problems. This was motivated by severe lim-
itations of the early machine learning systems that essentially worked with
propositional representations. Ranan Banerji [1964] was amongst the earliest
advocates of the use of logic for machine learning. The logic he proposed was
motivated by a pattern recognition task. Banerji’s work on logical descriptions
provided inspiration for developing logical learning systems such as Confu-

cius [Cohen and Sammut, 1982] and Marvin [Sammut and Banerji, 1986],
which already incorporated the first inverse resolution operators; cf. Chapter
5. These systems learned incrementally and were able to employ the already
learned concepts during further learning tasks.

Around the same time, Ryszard Michalski [1983] developed his influential
AQ and Induce systems that address the traditional classification task that
made machine learning so successful. Michalski’s work stressed the importance
of both learning readable descriptions and using background knowledge. He
developed his own variant of a logical description language, the Variable Val-
ued Logic, which is able to deal with structured data and relations. At the
same time, within VVL, he suggested that induction be viewed as the in-
verse of deduction and proposed several inference rules for realizing this. This
view can be traced back in the philosophy of science [Jevons, 1874] and still
forms the basis for much of the theory of generalization, which is extensively
discussed in Chapter 5.

Theoretical properties of generalization and specialization were also stud-
ied by researchers such as Plotkin [1970], Reynolds [1970], Vere [1975] and
Buntine [1988]. Especially, Plotkin’s Ph.D. work on θ-subsumption and rela-
tive subsumption, two generalization relations for clausal logic, has been very
influential and still constitutes the main framework for generalization in logi-
cal learning. It will be extensively studied in Chapter 5. Second, there is the
work on automatic programming [Biermann et al., 1984] that was concerned
with synthesizing programs from examples of their input-output behavior,
where researchers such as Biermann and Feldman [1972], Summers [1977] and
Shapiro [1983] contributed very influential systems and approaches. Whereas
Alan Biermann’s work was concerned with synthesizing Turing machines, Phil
Summers studied functional programs (LISP) and Ehud Shapiro studied the
induction of logic programs and hence contributed an inductive logic program-
ming system avant la lettre. Shapiro’s Model Inference System is still one
of the most powerful program synthesis and inductive inference systems today.
It will be studied in Chapter 7.

In the mid-1980s, various researchers including Bergadano et al. [1988],
Emde et al. [1983], Morik et al. [1993], Buntine [1987] and Ganascia and
Kodratoff [1986] contributed inductive learning systems that used relational
or logical description languages. Claude Sammut [1993] gives an interesting
account of this period in logical and relational learning.

A breakthrough occurred when researchers started to realize that both
problems (in automatic programming and machine learning) could be stud-
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ied simultaneously within the framework of computational logic. It was the
contribution of Stephen Muggleton [1991] to define the new research field of
inductive logic programming (ILP) [Muggleton and De Raedt, 1994, Lavrač
and Džeroski, 1994] as the intersection of inductive concept learning and logic
programming and to bring together researchers in these areas in the inductive
logic programming workshops [Muggleton, 1992b] that have been organized
annually since 1991. A new subfield of machine learning was born and at-
tracted many scientists, especially in Japan, Australia and Europe (where
two European projects on inductive logic programming were quite influen-
tial [De Raedt, 1996]). Characteristic for the early 1990s was that inductive
logic programming was developing firm theoretical foundations, built on logic
programming concepts, for logical learning. In parallel, various well-known
inductive logic programming systems were developed, including Foil [Quin-
lan, 1990], Golem [Muggleton and Feng, 1992], Progol [Muggleton, 1995],
Claudien [De Raedt and Dehaspe, 1997], Mobal [Morik et al., 1993], Linus

[Lavrač and Džeroski, 1994]. Also, the first successes in real-life applications of
inductive logic programming were realized by Ross King, Stephen Muggleton,
Ashwin Srinivasan, and Michael Sternberg [King et al., 1992, King and Srini-
vasan, 1996, King et al., 1995, Muggleton et al., 1992]; see [Džeroski, 2001] for
an overview. Due to the success of these applications and the difficulties in
true progress in program synthesis, the field soon focused on machine learn-
ing and data mining rather than on automatic programming. A wide variety
of systems and techniques were being developed that upgraded traditional
machine learning systems towards the use of logic; cf. Chapter 6.

During the mid-1990s, both the data mining and the uncertainty in artifi-
cial intelligence communities started to realize the limitations of the key repre-
sentation formalism they were using. Within the data mining community, the
item-sets representation employed in association rules [Agrawal et al., 1993]
corresponds essentially to a boolean or propositional logic, and the Bayesian
network formalism [Pearl, 1988] defines a probability distribution over propo-
sitional worlds. These limitations motivated researchers to look again at more
expressive representations derived from relational or first-order logic. Indeed,
within the data mining community, the work on Warmr [Dehaspe et al.,
1998], which discovers frequent queries and relational association rules from
a relational database, was quite influential. It was successfully applied on
a structure activity relationship prediction task, and motivated several re-
searchers to look into graph mining [Washio et al., 2005, Inokuchi et al.,
2003, Washio and Motoda, 2003]. Researchers in data mining soon started to
talk about (multi-)relational data mining (MRDM) (cf. [Džeroski and Lavrač,
2001]), and an annual series of workshops on multi-relational data mining was
initiated [Džeroski et al., 2002, 2003, Džeroski and Blockeel, 2004, 2005].

A similar development took place in the uncertainty in artificial intelli-
gence community. Researchers started to develop expressive probabilistic log-
ics [Poole, 1993a, Breese et al., 1994, Haddawy, 1994, Muggleton, 1996], and
started to study learning [Sato, 1995, Friedman et al., 1999] in these frame-
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works soon afterward. In the past few years, these researchers have gathered in
the statistical relational learning (SRL) workshops [Getoor and Jensen, 2003,
2000, De Raedt et al., 2005, 2007a]. A detailed overview and introduction to
this area is contained in Chapter 8 and two recent volumes in this area in-
clude [Getoor and Taskar, 2007, De Raedt et al., 2008]. Statistical relational
learning is one of the most exciting and promising areas for relational and
logical learning today.

To conclude, the field of logical and relational learning has a long history
and is now being studied under different names: inductive logic program-
ming, multi-relational data mining and (statistical) relational learning. The
approach taken in this book is to stress the similarities between these trends
rather than the differences because the problems studied are essentially the
same even though the formalisms employed may be different. The author
hopes that this may contribute to a better understanding of this exciting
field.
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2

An Introduction to Logic

The data mining and machine learning approaches discussed in this book em-
ploy relational or logical representations. This chapter introduces relational
database representations and their formalization in logic. Logic is employed
because it is an expressive, well-understood and elegant formalism for repre-
senting knowledge. We focus on definite clause logic, which forms the basis of
computational logic and logic programming. The chapter introduces the syntax
as well as the model-theoretic and proof-theoretic semantics of definite clause
logic. Throughout this book an attempt is made to introduce all the necessary
concepts and terminology in an intuitive and yet precise manner, without re-
sorting to unnecessary formal proof or theory. The reader interested in a more
detailed theoretical account of clausal logic may want to consult [Lloyd, 1987,
Genesereth and Nilsson, 1987, Flach, 1994, Hogger, 1990, Kowalski, 1979],
and for a more detailed introduction to the programming language Prolog we
refer him to [Flach, 1994, Bratko, 1990, Sterling and Shapiro, 1986].

2.1 A Relational Database Example

This book is concerned with mining relational data. The data to be mined
will typically reside in a relational database. An example relational database,
written in the logical notation employed throughout this book, is given in the
following example.

Example 2.1. The database contains information about publications, authors
and citations. The entry authorOf(lloyd, logic for learning) ← for the relation
authorOf/2 represents the fact that lloyd is the author of the publication
logic for learning. Similarly, reference(logic for learning, foundations of lp) ← is
a fact stating that foundations of lp is in the bibliography of logic for learning.
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reference(logic for learning, foundations of lp) ←
reference(logic for learning, learning logical definitions from relations) ←
reference(logic for learning, ai a modern approach) ←
reference(ai a modern approach, foundations of lp) ←
reference(ai a modern approach, ilp theory and methods) ←
reference(ilp theory and methods, learning logical definitions from relations) ←
reference(ilp theory and methods, foundations of lp) ←

authorOf(quinlan, learning logical definitions from relations) ←
authorOf(lloyd, foundations of lp) ←
authorOf(lloyd, logic for learning) ←
authorOf(russell, ai a modern approach) ←
authorOf(norvig, ai a modern approach) ←
authorOf(muggleton, ilp theory and methods) ←
authorOf(deraedt, ilp theory and methods) ←

Even though the database contains only a small extract of a real database,
it will be used to introduce some of the key concepts of the knowledge repre-
sentation formalism employed in this book. The formalism employed is that
of clausal logic because it is an expressive representation formalism, it is well-
understood and it provides us with the necessary theory and tools for rela-
tional learning. At the same time, it is closely related to relational database
formalisms. This is illustrated by the bibliographic database just introduced
and will become more apparent throughout this section (and Sect. 4.4).

In logic, a relation is called a predicate p/n (e.g., authorOf/2) where p de-
notes the name of the predicate (authorOf) and n the arity (2), which indicates
the number of arguments the predicate takes. The arguments of predicates are
terms. Constants are a particular type of term that start with a lowercase char-
acter, for instance, quinlan and logic for learning. They refer to a particular ob-
ject in the domain of discourse, such as the book “Logic for Learning” [Lloyd,
2003] or the author “J.R. Quinlan”. All entries in Ex. 2.1 are facts, which are
expressions of the form p(t1, · · · , tn) ←, where p/n is a predicate and the ti are
terms. Facts correspond to tuples in a relational database. They express un-
conditional truths. For instance, the fact authorOf(lloyd, logic for learning) ←
expresses that lloyd is the author of the publication logic for learning. As in
relational databases it is possible to query for information that resides in the
database.

Example 2.2. The query ← authorOf(lloyd, logic for learning) asks whether
lloyd is the author of logic for learning. A theorem prover (such as Prolog)
would return the answer yes, implying that the fact is true, that is, that it
logically follows from the specified database.

The query ← authorOf(lloyd,Pub) asks whether there is a publication
authored by lloyd. The term Pub is called a variable, and by convention,
variables start with an uppercase character. The theorem prover would an-
swer yes and would also return the substitutions {Pub/logic for learning} and
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{Pub/foundations of lp}, which state the conditions under which the origi-
nal query is true. For those readers familiar with SQL, a popular database
language, we also specify the corresponding query in SQL1:

SELECT Pub FROM authorOf WHERE Author = lloyd

The query

← authorOf(Author, logic for learning), authorOf(Author, foundations of lp)

asks whether there is an author who wrote logic for learning as well as
foundations of lp. The single substitution that would be returned for this query
is {Author/lloyd}. In SQL, this query is written as:

SELECT Author
FROM authorOf t1, authorOf t2
WHERE t1.Author = t2.Author AND t1.Pub = logic for learning

and t2.Pub = foundations of lp

So, the “,” between the two atoms in the query corresponds to and, and two
occurrences of the same variable must be instantiated to the same constant
in the substitution, which corresponds to a “join” in relational databases.

Suppose now that instead of being interested in knowing which publi-
cations refer to which other publications, we are interested in knowing the
authors who cite one another. They can be listed using the following query:

← authorOf(A,P), reference(P,Q), authorOf(B,Q)

Many answers would be generated for this query, including:

{A/lloyd, P/logic for learning, Q/foundations of lp, B/lloyd}
{A/lloyd, P/logic for learning, Q/ai a modern appraoch, B/russell}
. . .

If the query is posed a number of times, it is useful to define a new predicate
cites/2 using the clause:

cites(A,B) ← authorOf(A,P), reference(P,Q), authorOf(B,Q)

This clause states that A cites B if A is the authorOf P, P references Q, and B is
the authorOf Q. This clause corresponds to the definition of a view or an inten-
sional relation in relational database terminology, which can be implemented
by the following statement in SQL.

CREATE VIEW cites
AS SELECT a1.Author, a2.Author
FROM authorOf a1, authorOf a2, reference r
WHERE a1.Pub = r.Pub1 AND a2.Pub = r.Pub2

1 The reader unfamiliar with SQL can safely skip the SQL queries.
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The effect is that the predicate cites can now be queried as if it contained the
following facts:

cites(lloyd, lloyd) ← cites(lloyd, quinlan) ←
cites(lloyd, russell) ← cites(lloyd, norvig) ←
cites(russell, lloyd) ← cites(norvig, lloyd) ←
cites(russell,muggleton) ← cites(norvig,muggleton) ←
cites(russell, deraedt) ← cites(norvig, deraedt) ←
cites(muggleton, quinlan) ← cites(deraedt, quinlan) ←
cites(muggleton, lloyd) ← cites(deraedt, lloyd) ←

Exercise 2.3. Pose a query to identify authors who cite themselves. Use
both the original database (consisting of reference/2 and authorOf/2) and the
one where the cites predicate has been defined. Define also a new predicate
self citation/1 that succeeds for those authors who cite themselves.

2.2 The Syntax of Clausal Logic

Whereas the previous section introduced some logical concepts in a rather
informal manner, the present section will introduce them in a more formal
and precise manner.

A term t is a constant, a variable or a compound term f(t1, ..., tn) com-
posed of a function symbol f/n (where f is the name of the function and n is
its arity) and n terms ti. Simple terms are, for instance, logic for learning (a
constant) and Pub (a variable). We will use the convention that constants and
function symbols start with a lowercase character and variables start with an
uppercase character.

Compound terms were so far not introduced as they do not belong to the
relational subset of clausal logic. They are used to represent structured ob-
jects. Examples of compound terms include card(j, hearts), where card/2 is a
function symbol, and j and hearts are constants. It can be used to denote the
Jack of Hearts card. Compound terms can also be nested. For instance, one
can denote the father of John using the term fatherOf(john). The grandfa-
ther of John would then be denoted as fatherOf(fatherOf(john)), that is, as
the father of the father of John. This notation is also used to represent the
natural numbers using logic: the number 0 would be represented by 0, the
number 1 by succ(0), the successor of 0, the number 2 by succ(succ(0)), etc.
Lists are represented using the functor cons/2 (in Prolog the functor is often
represented as ·/2). The first argument of cons/2 denotes the first element of
the list, the second argument denotes the rest of the list, and the constant nil
is used to denote the empty list. For instance, the list [1, 2] is represented as
cons(1, cons(2, nil)).2

2 The list functor cons/2 is usually written in Prolog in infix notation. Using this
notation cons(A, B) is written as [A | B], and cons(A, cons(B, C)) as [A | [B | C]] or
[A, B | C] for short.
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An atom is a formula of the form p(t1, .., tn), where p/n is a predicate
symbol and the ti are terms. For instance, authorOf(lloyd, logic for learning),
largerRank(ace,X), faceCard(j, hearts), and pair(card(j, hearts), card(j, diamonds))
are atoms. Although terms and atoms possess a similar syntax, their meaning
is quite different. These differences are clearest when looking at ground terms
and atoms: ground terms represent objects in the domain of discourse, whereas
ground atoms represent a particular relationship among the objects denoted
by the terms appearing in the atom. Therefore, ground atoms possess a truth-
value, that is, they are either true or false, whereas ground terms (and objects)
do not posses truth-values. Indeed, it does not make sense to talk about the
truth-value of the constant green, the persons “Mary Ann’ or fatherOf(john),
or the list con(a, cons(b, nil)). However, the atom parent(fatherOf(john), john)
(for the predicate parent/2) would typically be true.

By now, we are able to define clauses, which are the key constructs in
clausal logic. Clausal logic is a subset of first-order logic that forms the basis
of logic programming and the programming language Prolog. It is frequently
employed within artificial intelligence due to its uniform and simple represen-
tation, and the existence of efficient inference engines or theorem provers for
clausal logic.

Definition 2.4. A clause is an expression of the form h1; · · · ;hn ← b1, · · · , bm

where the hi and bj are logical atoms.

The symbol “,” stands for conjunction (and), the symbol “;” for disjunction
(or), and “←” for implication (if). Furthermore, all variables are universally
quantified (though this is not explicitly written). So, the clause

female(X);male(X) ← human(X)

specifies that for all X, when X is human, X is also male or female. h1; · · · ;hn

is referred to as the conclusion part of the clause, or the head of the clause,
b1, · · · , bm as the condition part or the body of the clause. It will often be

convenient to employ the notation body(c) for {b1, · · · , bm} and head(c) for
{h1, · · · , hn}, where c is the clause h1; · · · ;hn ← b1, · · · , bm. This set notation
can be extended to the overall clause. For instance, the above clause c is
represented by the set {h1, · · · , hn,¬b1, · · · ,¬bm} of the literals it contains,
where a literal is either a logical atom a or a negated atom ¬a. The set notation
for clauses reflects also that a clause is a disjunction h1∨· · ·∨hn∨¬b1∨· · ·∨¬bm

of literals.
There exist several special types of clauses:

• facts, where n = 1 and m = 0,
• definite clauses, where n = 1,
• Horn clauses, where n = 1 or n = 0, and
• denials, where n = 0.
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The clauses that are most often employed in logical and relational learning are
facts and definite clauses, which we already encountered in the previous sec-
tion. Denials represent negative information, for instance, ← human(dracula)
specifies that dracula is not human, that is, that human(dracula) is false. De-
nials are used as queries or goals. The reasons for this will become clear soon.

Typically, the database consists of a set of clauses. A set of clauses
{c1, · · · , cn} specifies that all clauses in the set are true, that is, the set de-
notes a conjunction c1, · · · , cn of the clauses ci. We will sometimes refer to
such sets of clauses as (clausal) theories, databases, or knowledge bases.

A substitution θ = {V1/t1, · · · , Vn/tn} is an assignment of terms t1, ..., tn to
variables V1, ..., Vn, for instance, {A/lloyd,Pub/logic for learning}. The instan-
tiated formula Fθ ,where F is a term, atom, or clause and θ = {V1/t1, · · · , Vn/tn}
a substitution, is the formula obtained by simultaneously replacing all vari-
ables V1, ..., Vn in F by the terms t1, ..., tn. For instance, the formula card(X,Y)θ,
where θ = { X/j,Y/diamonds}, denotes card(j, diamonds).

2.3 The Semantics of Clausal Logic — Model Theory

Now that the syntax of clausal logic has been defined, its semantics can be
introduced.

The semantics of logic are based on the concept of an interpretation. Inter-
pretations are defined using the notion of a domain, which contains the set of
objects that exist (in the interpretation). Roughly speaking, an interpretation
of a set of clauses is an assignment that maps

• constants onto objects in the domain,
• function symbols f/n onto n-ary functions defined on the domain; these

functions map an n-tuple of objects onto an object in the domain,
• predicates p/n onto n-ary relations defined on the domain; these relations

represent a set of n-tuples of objects.

For instance, consider the constant john. It could represent a particular person
named John Doe Jr. The function symbol fatherOf/1 could then represent the
function that maps every person to his or her father. It could map John Doe
Jr. onto John Doe Sr. The predicate parent/2 could then map to the parent
relationship. These mappings then define the truth-values of atoms in the
interpretation. For instance, the atom parent(fatherOf(john), john) would map
to true, because John Doe Sr. (fatherOf(john)) is a parent of John Doe Jr.
(john) in our interpretation, assuming that the tuple (John Doe Sr., John Doe
Jr.) is in the relation denoted by parent.

Because it is inconvenient and complicated to work with general interpre-
tations, and because when working with clausal logic, this is not really needed,
we will restrict our attention to a special class of interpretations named after
the French logician Jacques Herbrand. A Herbrand interpretation uses the
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Herbrand domain as its domain. The Herbrand domain is defined as the set
of all ground terms that can be constructed using the constants and function
symbols that occur in the set of clauses considered.

Example 2.5. The Herbrand universe in the bibliographic database of Ex. 2.1
consists of all constants appearing in the facts, i.e.,

{quinlan, lloyd,muggleton, . . . , logic for learning, . . . , ilp theory and methods}.

Example 2.6. Now consider the clauses defining the natural numbers:

nat(0) ←
nat(succ(X)) ← nat(X)

The first clause states that 0 is a natural number; the second one that succ(X)
is a natural number if X is one. The Herbrand universe in this case is the
infinite set {0, succ(0), succ(succ(0)), . . .}.

A Herbrand interpretation now maps each ground term to itself. So each
ground term refers to itself; for instance, john now refers to the object john
instead of to some person such as John Doe. In a similar manner, predicates
are mapped onto relations over the Herbrand universe. The result is that a
Herbrand interpretation can be viewed as the set of ground atoms that are true
in the interpretation. This is the view that we will be employing throughout
this book when talking about interpretations.

Definition 2.7. A Herbrand interpretation of a set of clauses is a set of
ground atoms (over the constant, function and predicate symbols occurring
in the set of clauses).

All ground atoms in the interpretation are assumed to be true, and all others
are assumed to be false.

Example 2.8. One possible Herbrand interpretation I1 over the bibliographic
database of Ex. 2.1 is:

{authorOf(russell, logic for learning), authorOf(russell, quinlan)}

The interpretation I2 consists of all the ground atoms occurring in the bibli-
ographic database.

Example 2.9. Similarly, for the above specified natural numbers, I3, I4, and
I5 defined below are Herbrand interpretations.

I3 = {}
I4 = {nat(0), nat(succ(0))}
I5 = {nat(0), nat(succ(0)), nat(succ(succ(0))), . . .}.
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Some interpretations do not really reflect the properties of the clauses that
we have written down. For instance, the first interpretations in both the bib-
liographic database and the definition of the natural numbers are intuitively
impossible given the clauses that we have written down. This motivates the
following definition.

Definition 2.10. A Herbrand interpretation I is a Herbrand model for a set
of clauses C if and only if for all clauses h1; · · · ;hn ← b1, · · · , bm ∈ C and
for all ground substitutions θ: {b1θ, · · · , bmθ} ⊆ I → {h1θ, · · · , hnθ} ∩ I �= ∅.

So, a Herbrand interpretation I is a model for a clause c if for all sub-
stitutions θ for which body(c)θ is true in I, head(c)θ is also true in I. If an
interpretation is a model for a clause (or set of clauses), the interpretation
satisfies the clause (or set of clauses); otherwise, the interpretation violates
the clause (or set of clauses). Clausal theories that possess a Herbrand model
are called satisifable; those that do not possess one are called unsatisfiable.

When the context is clear, we will talk about interpretations and models
rather than Herbrand interpretations and Herbrand models.

Example 2.11. Reconsider our bibliographic database and the interpretation
I1. I1 is not a model for the database because there exists a clause f

authorOf(russell, ai a modern approach) ←

such that body(f) = {} ⊆ I1 but

head(f) = {authorOf(russell, ai a modern approach))} ∩ I1 = ∅.

At the same time, it is easy to see that I2 is a model for the bibliographic
database.

Example 2.12. For the natural numbers, I3 is not a model, because of the fact
nat(0) ←. Neither is I4, because of the recursive clause c for which there exists
a substitution θ ={X/succ(0)} for which body(c)θ = {nat(succ(0))}⊆ I4 but
head(c)θ ={nat(succ(succ(0)))}∩I4 = ∅. Finally, I5 is a model for the two
clauses defining nat/1.

Model theory is the basis for reasoning about the declarative semantics
of logical formulae, which relies on the notion of logical entailment. Logical
entailment defines when one formula is a consequence of, or follows from,
another one.

Definition 2.13. Let C be a set of clauses and c be a clause. C logically
entails c, notation C |= c, if and only if all models of C are also models of c.

In this definition, not only the Herbrand interpretations (and models) but all
interpretations and models are considered. The following theorems, however,
allow us to focus our attention on Herbrand interpretations and models to
reason about the satisfiability of a particular formula.
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Theorem 2.14. (Proposition 3.30 from [Nienhuys-Cheng and de Wolf, 1997])
Let T be a set of clauses. Then T has a model if and only if T has a Herbrand
model.

To generalize the applicability of this result to entailment between two for-
mulae C and c, the theorem below can be used.

Theorem 2.15. (This follows from Proposition 3.31 [Nienhuys-Cheng and
de Wolf, 1997]) Let C be a set of clauses and c be a clause. Then C |= c if
and only if C ∧ ¬c is unsatisfiable, that is, if C ∧ ¬c |= �.

The empty clause ←, sometimes written as �, is the clause whose head and
body are both empty. This clause is unsatisfiable because its body is always
true and its head is never true, regardless of the interpretation.

Example 2.16. Reconsider our bibliographic database B consisting of all facts
listed in Ex. 2.1. Then

B |= authorOf(lloyd, logic for learning) ←
because

B ∧ ¬ authorOf(lloyd, logic for learning)

is unsatisfiable as authorOf(lloyd, logic for learning) and its negation are con-
tradictory.

Example 2.17. Similarly, let N consist of the two clauses defining nat/1. Then
N |= nat(0) and also N |= nat(succ(0)).

An algorithm to generate a (Herbrand) model of a set of clauses is listed in
Algo. 2.1. It assumes that all clauses are range-restricted, i.e., that all variables
appearing in the head of a clause also appear in its body. Range-restrictedness
implies that all facts are ground.

Algorithm 2.1 Generating a model of a set of clauses
M := ∅
while M is not a model of C do

if there is a denial ← b1, · · · , bm in C that is violated by M then
backtrack

end if
select h1; · · · , hn ← b1, · · · , bm from C and θ (choice point) such that

{b1θ, · · · , bmθ} ⊆ M , and
{h1θ, · · · , hnθ} ∩ M = ∅

add one of the hiθ to M (choice point)
end while

The algorithm starts with the empty model and repeatedly expands it by
non-deterministically adding facts belonging to the head of a violated clause.
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This process continues until M either becomes a model of the theory, or until
a denial is violated. When a denial is violated, the model cannot be expanded
by adding facts, which explains why the algorithm then backtracks to earlier
choice points. Observe that the algorithm can fail when no model exists, and
also that it can loop infinitely while attempting to construct an infinite model.
There exists also a very elegant and short implementation of this algorithm in
Prolog. It is called Satchmo and was published by Manthey and Bry [1987];
it is described in detail in [Flach, 1994].

Example 2.18. Consider the following clausal theory:

human(X) ← male(X)
human(X) ← female(X)
female(X);male(X) ← human(X)
human(john) ←

One possible trace of Algo. 2.1 generates the following sequence of interpre-
tations:

{}
{human(john)} using the last clause.
{human(john), female(john)} using the third clause.

Another model for this example is {human(john),male(john)}.

Example 2.19. Reconsider the bibliographic database together with the clause
defining the predicate cites/2. Algo. 2.1 would generate the interpretation con-
sisting of all ground facts for the predicates reference/2, cites/2 and authorOf/2
that were listed in the earlier examples.

Example 2.20. Reconsider the definition of the natural numbers using the
predicate nat/1. For these clauses, the algorithm does not terminate, because
it attempts to generate the infinite model I5 defined above.

Exercise 2.21. Does the following clausal theory have a model? If so, gener-
ate one.

← student(X), vampire(X)
← student(X), professor(X)
← female(X),male(X)
being(dracula) ←
clever(X); student(X) ← being(X)
female(X);male(X); vampire(X) ← being(X)
student(X); professor(X); vampire(X) ← being(X)

Exercise 2.22. Use the theorem prover Satchmo implemented in Prolog
(cf. [Manthey and Bry, 1987] or [Flach, 1994]) to generate more models of the
theory in the previous example. (This exercise requires that you have access
to a Prolog implementation. Some excellent Prolog implementations, such as
SWI-Prolog and YAP-Prolog, are available from the public domain.)
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Some theories (sets of clauses) have multiple models. Furthermore, one
model can be a subset of another model, which motivates the notion of a
minimal model. A Herbrand model is minimal if and only if none of its subsets
is a model.

Example 2.23. Reconsider the theory listed in Ex. 2.18. The two models listed
there are minimal. However, the model {human(john),male(john), female(john)}
is not minimal and this interpretation would not be a model if the clause
← female(X),male(X) belonged to the theory.

When restricting one’s attention to definite clauses, which is the subset of
clausal logic most often applied in logic programming, the minimal model is
unique, which explains why it is called the least Herbrand model. The least
Herbrand model of a set of clauses C will be denoted as M(C). The least
Herbrand model is an important concept because it captures the semantics of
the set of clauses. It consists of all ground atoms that are logically entailed
by the definite clause theory. This can be formally specified as:

Property 2.24. Let C be a set of definite clauses and f be a ground fact. Then
C |= f if and only if f ∈ M(C).

The least Herbrand model also captures the intuitive meaning of the the-
ory. This is best illustrated by the bibliographic database, where the least
Herbrand model is that sketched in Ex. 2.19, which indeed contains exactly
those facts which would be generated using the SQL statement, and which
one would intuitively expect.

When applied to (range-restricted) definite clause theories, Algo. 2.1 will
indeed generate the least Herbrand model of the theory. However, in this case
one can also use the simplified version sketched in Algo. 2.2.

Algorithm 2.2 Computing the least Herbrand model of a definite clause
theory

M0 := ∅
M1 := {f |f ← is a fact in C}
i := 1
while Mi �= Mi−1 do

Mi+1 := ∅
for all h ← b1, · · · , bn ∈ C do

for all θ such that {b1θ, · · · , bnθ} ⊆ Mi do
add hθ to Mi+1

end for
end for
Mi+1 := Mi ∪ Mi+1

i := i + 1
end while
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The key difference between this algorithm and the previous one is that it
processes all violated clauses in parallel to generate the next model. It can
be optimized by adding {b1θ, · · · , bnθ} ∩ (Mi − Mi−1) �= ∅ as an additional
constraint in the inner for loop. This way the same conclusions hθ will not be
regenerated in every iteration, which will remove some redundant computa-
tions.

Example 2.25. Suppose the definite clause theory is:

ancestor(X,Y) ← parent(X,Y)
ancestor(X,Y) ← parent(X,Z), ancestor(Z,Y)

parent(rose, luc) ←
parent(leo, rose) ←

The algorithm then computes the following sequence of models:

M0 = ∅
M1 = {parent(rose, luc), parent(leo, rose)}
M2 = M1 ∪ {ancestor(rose, luc), ancestor(leo, rose)}
M3 = M2 ∪ {ancestor(leo, luc)}
M4 = M3

Exercise 2.26. Specify the least Herbrand model of the following theory:

plus(0,X,X) ← nat(X)
plus(succ(X),Y, succ(Z)) ← plus(X,Y,Z)

nat(0) ←
nat(succ(X)) ← nat(X)

2.4 Inference with Clausal Logic — Proof Theory

Now that the semantics of clausal logic has been defined, we discuss how
to perform inference in clausal logic. Deductive inference is concerned with
deciding whether one formula F logically entails another one G, that is, de-
ciding whether F |= G. When working with clausal logic, the typical inference
procedure is based on the deductive inference rule known as resolution. The
resolution principle was introduced by Robinson [1965]. It is employed by
the large majority of theorem provers for first-order logic. Even though many
variants of the resolution principle exist, we will restrict our attention to res-
olution for Horn clauses and SLD-resolution, because this form of resolution
underlies the programming language Prolog on which the vast majority of
logical learning approaches is based.

Let us start by introducing resolution for propositional logic. In propo-
sitional logic, all predicates have arity 0, which implies that there are no
constants, variables or structured terms that need to be taken into account.
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Given the clauses

l ← b1, · · · , bn and h ← c1, · · · , ci−1, l, ci, · · · , cm

the propositional resolution operator infers the resolvent

h ← c1, · · · , ci−1, b1, · · · , bn, ci, · · · , cm (2.1)

The rule is sometimes displayed as

l ← b1, · · · , bn and h ← c1, · · · , ci−1, l, ci, · · · , cm

h ← c1, · · · , ci−1, b1, · · · , bn, ci, · · · , cm
(2.2)

which indicates that if the clauses above the line are presented, the ones below
the line may be inferred. We sometimes use the notation

l ← b1, · · · , bn and h ← c1, · · · , ci−1, l, ci, · · · , cm

�res

h ← c1, · · · , ci−1, b1, · · · , bn, ci, · · · , cm (2.3)

to denote a particular resolution step.
This inference step is graphically illustrated in Fig. 2.1, where the operator

takes the typical V form. Notice that this rule also holds when h = {}, that
is, when working with a denial instead of a definite clause.

h ← c1, · · · , ci−1, b1, ..., bn, ci, · · · , cm

l ← b1, ..., bn h ← c1, · · · , ci−1, l, ci, · · · , cm

Fig. 2.1. The propositional resolution operator

Example 2.27.

mammal ← rabbit
animal ← mammal

�res

animal ← rabbit
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The resolution operator is sound, which means that whenever c1 ∧ c2 �res c
holds, c1 ∧ c2 |= c holds as well.

When more than one resolution step is performed, one talks about res-
olution derivations or proofs. A resolution proof of a clause c from a theory
T = {c1, ..., cn}, notation T � c, is a sequence of resolution steps c1,1∧c1,2 �res

c1, · · · , ck,1∧ck,2 �res ck where ck = c and ci,j ∈ T∪{c1, · · · , ci−1}. Resolution
proofs can be graphically represented as trees; see Fig. 2.2 for an example.

foursided ← rectanglepos ← foursided, red

pos ← square, red

pos ← rectangle, red rectangle ← square

Fig. 2.2. A resolution derivation

Example 2.28. A resolution proof of the clause pos ← square, red (red squares
are positive) is shown in Fig. 2.2. It assumes the following theory T is given:

foursided ← rectangle
rectangle ← square
pos ← foursided, red

A popular technique in mathematics when proving theorems is to assume
that a theorem is false and to prove that this leads to a contradiction. This
technique also applies to logical inference and theorem proving, where it is
known as proving by refutation. The idea of refutation was already formulated
in Theorem 2.15, where it was stated that C |= c if and only if C ∧ ¬c |= �.
A proof by refutation is now a resolution derivation that ends in the empty
clause � or ←, which is unsatisfiable.

Resolution is not a complete operator for definite clause logic (even in the
propositional case). Completeness would require that whenever C |= c there
also exists a resolution derivation of c from C.

Example 2.29. Indeed,

mammal ← rabbit |= mammal ← rabbit, brown
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but it is impossible to derive the second clause by resolution from the first
one.

Fortunately, resolution is refutation complete, as indicated in the following
property.

Property 2.30. (Refutation completeness; cf. Theorem 5.18 of [Nienhuys-Cheng
and de Wolf, 1997]) Let C be a set of clauses. Then C is unsatisfiable, that is,
C |= �, if and only if there exists a resolution derivation of the empty clause
� starting from C.

Due to the soundness and refutation completeness of resolution (for propo-
sitional Horn clauses) we now have an effective procedure for deciding logical
entailment. Deciding whether a set of Horn clauses logically entails a Horn
clause, that is whether C |= h ← b1, · · · , bn, can be realized as follows:

• negate the clause h ← b1, · · · , bn, which yields the clauses T = { ← h,
b1 ←, · · · , bn ←}

• try to derive the empty clause � from C ∧ T , that is, decide whether
C ∧ T � �.

Example 2.31. Reconsider the clauses in Ex. 2.28. We now prove by refutation
that T |=pos ← square, red. To this end, we first negate the clause, which yields
the clauses:

square ← and red ← and ← pos

Figure 2.3 shows how to derive � from these clauses and T .

So far, we have introduced resolution for propositional logic, but resolution
becomes more interesting when clauses contain terms. The key difference is
that unification must be used in this case. Unification is needed to make a
literal in one clause match a literal in the other clause. For instance, when
trying to resolve

father(X,Y) ← parent(X,Y),male(X)

with

← father(luc,maarten)

it is necessary to unify the literals father(X,Y) and father(luc,maarten) using
the substitution {X/luc,Y/maarten} to yield the clause

← parent(luc,maarten),male(luc).

Unification was already implicitly used in Algos. 2.1 and 2.2. Formally, a
unifier of two expressions f1 and f2 (terms or atoms) is a substitution such
that f1θ = f2θ.
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square ←

pos ← foursided, red ← pos

← rectangle, red rectangle ← square

← red

← square, red

← foursided, red foursided ← rectangle

�

red ←

Fig. 2.3. A proof by refutation

Example 2.32. For instance, to unify father(luc,X) and father(Y, soetkin) one
can use the substitution {Y/luc,X/soetkin}, and to unify the atoms
plus(succ(succ(0)), succ(X), succ(Y)) and plus(A,B, succ(succ(C))) one can use

θ1 = {A/succ(succ(0)),B/succ(X),Y/succ(C)}, or
θ2 = {A/succ(succ(0)),B/succ(0),X/0,Y/succ(C)}.

As another example consider the atoms plus(0,X,X) and plus(Y, succ(Y),Z).
One possible unifier is {Y/0,X/succ(0),Z/succ(0)}, which illustrates how bind-
ings over one occurrence of a variable are propagated to other occurrences.
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Notice also that unifiers do not always exist; for instance, the atoms
father(john, frank) and father(X, paul) do not unify. In addition, as Ex. 2.32
illustrates, unifiers are not necessarily unique. To guarantee the refutation
completeness of resolution when working with definite clauses in first-order
logic it is necessary to work with a special type of unifier, which one calls most
general unifiers.

Definition 2.33. The most general unifier θ of two formulae F1 and F2 is a
unifier such that for every other unifier σ of F1 and F2, there exists a non-
trivial substitution ρ such that σ = θρ. A trivial substitution is one that maps
each variable onto itself.

The substitution θρ denotes the substitution that first applies θ and then
ρ. The resulting set of equalities can be obtained by first applying ρ to the
right-hand side terms in θ and then adding the other equalities in ρ (for
variables not yet occurring in θ) to θ.

Example 2.34. According to this definition, the substitution θ2 for the plus
atoms in Ex. 2.32 is not a most general unifier as fiθ2 can be written as
(fiθ1)ρ where ρ = {X/0}. Similarly, σ ={Z/f(h(W)),X/h(W),Y/g(a)} is not
a most general unifier of p(f(f(X)), g(Y)) and p(f(Z), g(g(a)) as the Fiσ can
be written as (Fiθ)ρ where θ = {Z/f(X),Y/g(a)} and ρ = {X/h(W)}. Observe
that σ = θρ.

Even though the reader by now has probably already obtained an intu-
itive understanding of how to compute the most general unifier, we sketch a
unification algorithm in Algo. 2.3.

Algorithm 2.3 Computing the mgu(t1, t2) of two terms t1 and t2; after Lloyd
[1987]

θ := ∅
while t1θ �= t2θ do

find the disagreement set D of t1θ and t2θ
if there exist a variable v and term t in D and v does not occur in t then

θ := θ{v = t}
else

output t1 and t2 are not unifiable
end if

end while

The disagreement set of two terms t1 and t2 is found by locating the
leftmost positions in the terms at which t1 and t2 are different and extracting
from each position the corresponding sub-term. Unification and disagreement
sets are illustrated in the following example.
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Example 2.35. Reconsider computing the mgu of the atoms plus(0,X,X) and
plus(Y, succ(Y),Z) using Algo. 2.3. The disagreement sets and substitutions
evolve as follows through the different iterations of the algorithm:

1. θ = ∅ and plus(0,X,X), plus(Y, succ(Y),Z). Hence, D = {Y, 0}
2. θ = {Y/0} and plus(0,X,X), plus(0, succ(0),Z). Hence, D = {X, succ(0)}
3. θ = {Y/0,X/succ(0)} and plus(0, succ(0), succ(0)), plus(0, succ(0),Z). Hence,

D = {succ(0),Z}
4. θ = {Y/0,X/succ(0), succ(0)/Z} and t1θ = t2θ = plus(0, succ(0), succ(0))

implying that θ is the mgu.

Now we can define the general resolution rule. Given the clauses l ←
b1, · · · , bn and h ← c1, · · · , ci−1, l

′, ci+1, · · · , cm the resolution operator infers
the resolvent hθ ← b1θ, · · · , bnθ, c1θ, · · · , cmθ, where θ = mgu(l, l′). In formal
form, this yields:

l ← b1, · · · , bn and h ← c1, · · · , ci−1, l
′, ci+1, · · · , cm and θ = mgu(l, l′)

hθ ← b1θ, · · · , bnθ, c1θ, · · · , cmθ

(2.4)

Again, this is written as

l ← b1, · · · , bn and h ← c1, · · · , ci−1, l
′, ci+1, · · · , cm

�res

hθ ← b1θ, · · · , bnθ, c1θ, · · · , cmθ (2.5)

Example 2.36.

cites(X,Y) ← authorOf(X,A), authorOf(Y,B), reference(A,B)
authorOf(lloyd, logic for learning) ←

�res

cites(lloyd,Y) ← authorOf(Y,B), reference(logic for learning,B)

The properties and definitions of resolution proofs, and trees, refutation
proofs, soundness and refutation completeness for propositional logic carry
over to the first-order case. Only one point changes: the method to prove
C |= h ← b1, · · · , bn by refutation. More specifically, the step where the
clause is negated needs to take into account the quantifiers and the variables
occurring in the clause. As the negation of a universally quantified formula
is an existentially quantified negated formula, the refutation proof uses ←
hθ, b1θ ←, ... , bnθ ←, where θ is a so-called skolem substitution. Skolem
substitutions replace all variables in h ← b1, ..., bn by distinct constants not
appearing anywhere else in the theory or clause.

Example 2.37. To prove by refutation that
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flies(X) ← bird(X) |= flies(Y) ← bird(Y), normal(Y),

we need to negate the clause. The negated clause is represented by the follow-
ing clauses:

bird(sk) ← and normal(sk) ← and ← flies(sk)

It is left as an exercise for the reader to show that there indeed exists a
resolution derivation of the empty clause � starting from the resulting theory.

From a computational perspective, it is important to know also that in
propositional logic, logical entailment is decidable, whereas in first-order logic
it is only semi-decidable. So, there exist algorithms for propositional logic that
will correctly answer C |= c in finite time. Semi-decidability, however, means
that there only exist algorithms that will terminate when C |= c but may not
terminate when C �|= c. Notice also that when working with relational definite
clause logic — that is, definite clause logic with only constant symbols and
no function symbols — queries can again be decided in finite time. One way
to answer queries for relational definite clause logic in finite time is to first
compute the least Herbrand model of the database and then to answer the
queries against the least Herbrand model using the SLD-resolution procedure
listed below. Other, more effective ways for realizing this also exist, but are
beyond the scope of this chapter.

2.5 Prolog and SLD-resolution

First-order logic forms the basis of the programming language Prolog. It is
employed by many logical and relational learning approaches, which moti-
vates the present section, in which Prolog’s query-answering procedure is
investigated. All the logical concepts underlying pure Prolog have already
been introduced in the previous section. A pure Prolog program is a set of
definite clauses and its semantics is given by the least Herbrand model. Sev-
eral examples of such programs were already given, in particular in Sect.
2.1, where relational databases were represented by a set of definite clauses,
and where queries (or goals) in the form of denials were employed. Re-
call that a denial is a Horn clause of the form ← q1, · · · , qn. An example
query is, for instance, ← reference(X, foundations of lp), authorOf(russell,X),
which asks whether there exists an X that references foundations of lp and
that is written by russell. If one makes the quantifier explicitly, one ob-
tains ∃X : reference(X, foundations of lp) ∧ authorOf(russell,X). To answer such
queries, Prolog employs again the idea of refutation. So, it would negate the
expression

∃X : reference(X, foundations of lp) ∧ authorOf(russell,X)

yielding
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∀X : ¬(reference(X, foundations of lp) ∧ authorOf(russell,X))

which is written in clausal logic as the denial

← reference(X, foundations of lp), authorOf(russell,X).

Prolog will then attempt to derive the empty clause � from such denials and
return the substitutions θ computed in these derivations as answers.

There are in general many possible derivations and so, a systematic way
is needed to explore these in order to obtain all possible answers to a query.
Prolog employs a particular form of resolution, called SLD-resolution, to re-
alize this. The SLD-resolution operator is the special case of the resolution
operator �res introduced earlier in which the literal selected is always the
leftmost one in the query. Formally, this yields:

l ← b1, · · · , bn and ← l′, c1, · · · , cm and θ = mgu(l, l′)
← b1θ, · · · , bnθ, c1θ, · · · , cmθ

(2.6)

An SLD-derivation of a query qn from a set of definite clauses T and a
query q0, notation T �SLD q, is a sequence of resolution steps c0 ∧ q0 �res

q1, c1∧q1 �res q2, · · · , cn−1∧qn−1 �res qn where ci ∈ T for all i. Note also that
each time a clause of T is selected to resolve with, its variables are renamed
in such a way that the renamed variables have not been used before.

SLD-derivations from a particular theory T can be graphically displayed
as a sequence of queries q0, · · · , qn if one assumes that all the clauses c used
in the derivation belong to T .

Example 2.38. Reconsider the theory defining the ancestor/2 predicate in Ex.
2.25. The refutation proof and the SLD-derivation for the query or goal ←
ancestor(leo, luc) are shown in Figs. 2.4 and 2.5, respectively.

For a particular query q and theory T , there are often several possible
SLD-derivations. Some of these will be successful, that is, end in �; others
will fail and result in dead ends from which no further SLD-resolution steps
are possible w.r.t. the theory T . The set of all possible SLD-derivations for
a particular query and theory is summarized in the so-called SLD-tree; an
example for the anc/2 predicate defined earlier is shown in Fig. 2.6.

The possible resolvents of a node in the SLD-tree are ordered (from left
to right) according to the order in which the clauses are written in the theory
(from top to bottom). When trying to answer a query, Prolog will traverse the
SLD-tree depth-first and left-to-right. This is actually an incomplete search
strategy because Prolog could get stuck in an infinite branch as illustrated in
Fig. 2.7 for the nat/1 predicate. A breadth-first strategy for exploring the SLD-
tree yields a complete search strategy, but it is not used by Prolog because
the memory requirements imposed by breadth-first search are computationally
too expensive.

Exercise 2.39. Can you find a query for the anc/2 program for which the
SLD-tree is infinite?
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�

← parent(leo,Z), ancestor(Z, luc) parent(leo, rose) ←

← ancestor(rose, luc) ancestor(U,V) ← parent(U,V)

← parent(rose, luc) parent(rose, luc) ←

← ancestor(leo, luc) ancestor(X,Y) ← parent(X,Z), ancestor(Z,Y)

Fig. 2.4. A proof by refutation

← ancestor(rose, luc)

← parent(rose, luc)

← ancestor(leo, luc)

← parent(leo,Z), ancestor(Z, luc)

�

Fig. 2.5. An SLD-refutation and derivation.
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�

← anc(leo, rose)

← anc(rose, rose)

← parent(rose, rose) ← parent(rose,Z2), anc(Z2, rose)

← parent(leo, rose) ← parent(leo,Z1), anc(Z1, rose)

← parent(luc,Z3), anc(Z3, rose)← parent(luc, rose)

← anc(luc, rose)

Fig. 2.6. The SLD-tree for ← anc(leo, rose)

· · ·

← nat(X0)

� ← nat(X1)

� ← nat(X2)

�

Fig. 2.7. Part of the infinite SLD-tree for ← nat(X0)
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2.6 Historical and Bibliographic Remarks

This chapter has briefly reviewed the essentials of computational logic and
logic programming needed throughout the rest of this book. The central ideas
underlying computational logic and logic programming were introduced by
Robinson [1965] and Kowalski [1979]. They formed the basis of the program-
ming language Prolog, which was first implemented by the team of Alain
Colmerauer around 1972. These seminal works inspired many further devel-
opments in computational logic, and today computational logic is a mature
subfield of computer science. Technical contributions to computational logic
are contained in the former Journal of Logic Programming and the more recent
Theory and Practice of Logic Programming journal. There exist also several
good textbooks on various aspects of logic programming, which the reader
may want to consult. A gentle and brief introduction to logic programming
and Prolog is given by Flach [1994]. The first three chapters are an especially
useful addition to the present chapter. Three outstanding books, which are
more oriented towards Prolog programming, are [Bratko, 1990, Sterling and
Shapiro, 1986, O’Keefe, 1990]. The role of logic for artificial intelligence is
discussed in [Russell and Norvig, 2004, Genesereth and Nilsson, 1987]. The
formal foundations of logic programming and inductive logic programming
are presented in [Lloyd, 1987, Nienhuys-Cheng and de Wolf, 1997]. Logic has
also been used as a representation for databases; cf. [Gallaire et al., 1984,
Bancilhon and Ramakrishnan, 1986].
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3

An Introduction to Learning and Search

In this chapter, we introduce machine learning and data mining problems, and
argue that they can be viewed as search problems. Within this view, the goal is
to find those hypotheses in the search space that satisfy a given quality criterion
or minimize a loss function. Several quality criteria and loss functions, such as
consistency (as in concept learning) and frequency (in association rule mining)
are presented, and we investigate desirable properties of these criteria, such as
monotonicity and anti-monotonicity. These properties are defined w.r.t. the
is more general than relation and allow one to prune the search for solutions.
We also outline several algorithms that exploit these properties.

3.1 Representing Hypotheses and Instances

In Chapter 1, we presented several showcase applications of logical and re-
lational learning. We also used these cases to introduce the tasks addressed
by machine learning and data mining in an informal though general way. Re-
call that data mining was viewed as the task of finding all patterns express-
ible within a language of hypotheses satisfying a particular quality criterion.
On the other hand, machine learning was viewed as the problem of finding
that function within a language of hypotheses that minimizes a loss func-
tion. Within this view, machine learning becomes the problem of function
approximation. Inspecting these views reveals that they are fairly close to one
another, and that there are many common issues when looking at symbolic
machine learning and data mining.

One of these issues is concerned with knowledge representation. How
should patterns, functions, hypotheses and data be represented? It will be
useful to distinguish different representation languages for data (instances or
examples) and hypotheses (functions, concepts or patterns). Therefore, we
assume there is

• a language of examples Le, whose elements are descriptions of instances,
observations or data, and
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• a language of hypotheses Lh, whose elements describe hypotheses (func-
tions or patterns) about the instances, observations or data.

In many situations, it is helpful to employ background knowledge in the min-
ing and learning process. However, for ease of exposition, we postpone the
discussion of background knowledge to Section 4.9.

The goal of data mining and machine learning is then to discover hy-
potheses that provide information about the instances. This implies that the
relationship between the language of examples Le and of hypotheses Lh must
be known. This relationship can be modeled elegantly by viewing hypotheses
h ∈ Lh as functions h : Le → Y to some domain Y. The learning task is then
to approximate an unknown target function f well. This view is illustrated
in Fig. 3.1. Different domains are natural for different learning and mining
tasks. For instance, in regression, the task is to learn a function from Le to
Y = R, that is, to learn a real-valued function. As an illustration, consider
that we want to learn to assign (real-valued) activities to a set of molecules.
On the other hand, when learning definitions of concepts or mining for local
patterns, Y = {0, 1} or, equivalently, Y = {true, false}. In concept learning,
the task could be to learn a description that matches all and only the active
molecules. The resulting description is then the concept description.

Y Le

h1

e

h2(e)

h1(e)
h2

Fig. 3.1. Hypotheses viewed as functions

When the domain of the hypotheses is binary, that is, when Y = {0, 1}, it
is useful to distinguish the instances that are covered by a hypothesis, that is,
mapped to 1, from those that are not. This motivates the following definition:

Definition 3.1. The covers relation c is a relation over Lh×Le, and c(h, e)=
true if and only if h(e) = 1.

Thus the covers relation corresponds to a kind of matching relation. We will
sometimes write c(h) to denote the set of examples in Le covered by the
hypothesis h ∈ Lh. Furthermore, the set of examples from D ⊆ Lh covered
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by a hypothesis h will sometimes be denoted as c(h,D). So, c(h) = co(h,Le).
This relation is graphically illustrated in Figure 3.2.

Le

c(h)

h

Lh

Fig. 3.2. The covers relation

Different notions of coverage as well as choices for Le and Lh can be made.
For logical and relational learning, this will be extensively discussed in the
next chapter. For the present chapter, however, we will focus on using simple
boolean or item-set representations that are so popular in machine learning
and data mining. Because these representations are so simple they are ideal
for introducing machine learning and data mining problems and algorithms.

3.2 Boolean Data

Due to their simplicity, boolean representations are quite popular within com-
putational learning theory and data mining, where they are better known un-
der the name item-sets. In boolean learning, an example is an interpretation
over propositional predicates. Recall that this is an assignment of the truth-
values {true, false} to a set of propositional variables. In the terminology of
boolean logic, Herbrand interpretations are often called variable assignments.

One of the most popular data mining tasks involving boolean data is that
of basket analysis.

Example 3.2. In basket analysis, the aim is to analyze the purchases of clients
in, for instance, a supermarket. There is one propositional variable for each
of the products available in the supermarket. Assume we have the following
set of products I = {sausage, beer,wine,mustard}.

Consider then that the client buys sausage, beer and mustard. This corre-
sponds to the interpretation or item-set {sausage, beer,mustard}. In this case,
the language of examples is

Le = {I|I ⊆ {sausage, beer,mustard,wine}}
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For boolean data, various types of hypotheses languages have been em-
ployed. Perhaps, the most popular one is that of conjunctive expressions of
the form p1∧ . . .∧pn where the pi are propositional atoms. In the data mining
literature, these expressions are also called item-sets and usually represented
as {p1, · · · , pn}; in the literature on computational learning theory [Kearns
and Vazirani, 1994] they are known as monomials. So, in this case: Lh = Le,
which is sometimes called the single-representation trick. Using clausal logic,
item-sets can be represented by the set of facts {p1 ←, . . . , pn ←}, though
this notation is less convenient because it is too lengthy. It will be convenient
to use the notation LI to denote all item-sets or conjunctive expressions over
I, the set of all items. More formally,

LI = {I|I ⊆ I} (3.1)

Continuing the basket analysis example above, the hypothesis that some-
one buys mustard and beer could be represented using mustard ← and beer ←,
or more compactly as {mustard, beer}. It is easily verified that this hy-
pothesis covers the example {sausage, beer,mustard}. The clause mustard ←
sausage, beer describes an association rule, that is, a particular kind of pattern.
It states than if a client buys beer and sausage she also buys mustard. When
the coverage relation is chosen to coincide with the notion of satisfiability, the
example is covered by the clause.

When using purely logical descriptions, the function represented by a hy-
pothesis is typically boolean. However, for the domain of item-sets it is also
possible to specify real-valued functions. Consider, for instance, the function

h(e) = sausage + 2 × beer + 4 × wine + mustard

that computes the price of the basket e.

3.3 Machine Learning

The fundamental problem studied in machine learning is that of function ap-
proximation. In this setting, it is assumed that there is an unknown target
function f : Le → Y, which maps instances in Le to values in Y. In addition,
a set of examples E of the input-output behavior of f is given. The task is
then to find a hypothesis h ∈ Lh that approximates f well as measured by a
so-called loss function.

Given

• a language of examples Le;
• a language of hypotheses Lh;
• an unknown target function f : Le → Y;
• a set of examples E = {(e1, f(e1)), · · · , (en, f(en))} where each ei ∈ Le;
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• a loss function loss(h,E) that measures the quality of hypotheses h ∈ Lh

w.r.t. the data E;

Find the hypothesis h ∈ Lh that minimizes the loss function, that is, for
which

h = arg min loss(h,E) (3.2)

As already indicated, various machine learning tasks can be obtained by
varying Y. In the simplest case of binary classification or concept learning,
Y = {1, 0}, and the task is to learn how to discriminate positive from nega-
tive examples. When working with item-sets, this could be baskets that are
profitable or not. A natural loss function for this task minimizes the empirical
risk :

losser(E, h) =
1
|E|

∑

i

|f(ei) − h(ei)| (3.3)

So, minimizing the empirical risk corresponds to minimizing the number
of errors made on the training data E. Note, however, that minimizing the
empirical risk does not guarantee that the hypothesis will also have a high
accuracy on unseen data. This view on classification can easily be generalized
to take into account more than two classes.

A regression setting is obtained by choosing Y = R. The task is then
to learn to predict real values for the examples. As an example of such a
function, consider learning a function that predicts the profit the shop makes
on a basket. The most popular loss function for regression minimizes the sum
of the squared errors, the so-called least mean squares loss function:

losslms(E, h) =
∑

i

(f(ei) − h(ei))2 (3.4)

Finally, in a probabilistic setting, the function to be approximated can be
replaced by a probability distribution or density. A popular criterion in this
case is to maximize the (log) likelihood of the data; cf. Chapter 8.

This view of machine learning as function approximation will be useful
especially in later chapters, such as Chapter 8 on probabilistic logic learning
and Chapter 9 on distance and kernel-based learning.

3.4 Data Mining

The purpose of most common data mining tasks is to find hypotheses (express-
ible within Lh) that satisfy a given quality criterion Q. The quality criterion
Q is then typically expressed in terms of the coverage relation c and the data
set D. This can be formalized in the following definition:
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Given

• a language of examples Le;
• a language of hypotheses (or patterns) Lh;
• a data set D ⊆ Le; and
• a quality criterion Q(h,D) that specifies whether the hypothesis h ∈ Lh

is acceptable w.r.t. the data set D;

Find the set of hypotheses

Th(Q,D,Lh) = {h ∈ Lh | Q(h,D) is true} (3.5)

When the context is clear, we will often abbreviate Th(Q,D,Lh) as Th.
This definition has various special cases and variants. First, the data mining
task can be to find all elements, k elements or just one element that satisfies
the quality criterion Q. Second, a large variety of different quality criteria are
in use. These can be distinguished on the basis of their global, local or heuristic
nature. Local quality criteria are predicates whose truth-value is a function of
the hypothesis h, the covers relation c and the data set D only. On the other
hand, a global quality criterion is not only a function of the hypothesis h, the
covers relation c and the data set D, but also of the other hypotheses in Lh.

One function that is commonly used in data mining is that of frequency.
The frequency freq(h,D) of a hypothesis h w.r.t. a data set D is the cardi-
nality of the set c(h,D):

freq(h,D) =| c(h,D) | (3.6)

In this definition, the absolute frequency is expressed in absolute terms, that
is, the frequency is a natural number. Sometimes, frequency is also expressed
relatively to the size of the data set D. Thus the relative frequency is

rfreq(h,D) =
freq(h,D)

| D | (3.7)

An example of a local quality criterion is now a minimum frequency con-
straint. Such a constraint states that the frequency of a hypothesis h on
the data set D should exceed a threshold, that is, Q(h,D) is of the form
freq(h,D) > x where x is a natural number or rfreq(h,D) > y where y is a
real number between 0 and 1. These criteria are local because one can verify
whether they hold by accessing the hypothesis h and D only. There is no need
to know the frequency of the other hypotheses in Lh.

An example of a global quality criterion is to require that the accuracy of
a hypothesis h w.r.t. a set of positive P and negative example N is maximal.
The accuracy acc(h, P,N) is then defined as

acc(h, P,N) =
freq(h, P )

freq(h, P ) + freq(h,N)
. (3.8)

The maximal accuracy constraint now states
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Q(h, P,N) =
(
h = arg max

h∈Lh

acc(h, P,N)
)

(3.9)

This constraint closely corresponds to minimizing the empirical loss in a func-
tion approximation setting.

Because the machine learning and data mining views are quite close to
one another, at least when working with symbolic representations, we shall
in the present chapter largely employ the data mining perspective. When
shifting our attention to take into account more numerical issues, in Chapter
8 on probabilistic logic learning and Chapter 9 on distance and kernel-based
learning, the machine learning perspective will be more natural. The reader
must keep in mind though, that in most cases the same principles apply and
are, to some extent, a matter of background or perspective.

3.5 A Generate-and-Test Algorithm

Depending on the type and nature of the quality criterion considered, different
algorithms can be employed to compute Th(Q,D,Lh). For a given quality
criterion and hypotheses space, one can view mining or learning as a search
process. By exploiting this view, a (trivial) algorithm based on the well-known
generate-and-test technique in artificial intelligence can be derived. This so-
called enumeration algorithm is shown in Algo. 3.1.

Algorithm 3.1 The enumeration algorithm
for all h ∈ Lh do

if Q(h, D) = true then
output h

end if
end for

Although the algorithm is naive, it has some interesting properties: when-
ever a solution exists, the enumeration algorithm will find it. The algorithm
can only be applied if the hypotheses language Lh is enumerable, which means
that it must be possible to generate all its elements. As the algorithm searches
the whole space, it is inefficient. This is a well-known property of generate-
and-test approaches. Therefore, it is advantageous to structure the search
space in machine learning, which will allow for its pruning. Before discussing
how the search space can be structured, let us illustrate the enumeration al-
gorithm. This illustration, as well as most other illustrations and examples in
this chapter, employs the representations of boolean logic.

Example 3.3. Reconsider the problem of basket analysis sketched in Ex. 3.2. In
basket analysis, there is a set of propositional variables (usually called items)
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I = {s = sausage, m = mustard, b = beer, c = cheese}. Furthermore, every ex-
ample is an interpretation (or item-set) and the hypotheses are, as argued in
Ex. 3.2, members of LI . Consider also the data set

D = {{s,m, b, c}, {s,m, b}, {s,m, c}, {s,m}}
and the quality criterion Q(h,D) = (freq(h,D) � 3). One way of enumerating
all item-sets in LI for our example is given in Fig. 3.3. Furthermore, the item-
sets satisfying the constraint are underlined.

{c, b}

{c} {b}

{s, c} {s, b} {m, c} {m, b}

{s, c, b}{s, m, b}{s, m, c}

{s, m, c, b}

{}

{m}{s}

{s, m}

Fig. 3.3. Enumerating and testing monomials or item-sets

3.6 Structuring the Search Space

One natural way to structure the search space is to employ the generality
relation.

Definition 3.4. Let h1, h2 ∈ Lh. Hypothesis h1 is more general than hypoth-
esis h2, notation h1 � h2, if and only if all examples covered by h2 are also
covered by h1, that is, c(h2) ⊆ c(h1).

We also say that h2 is a specialization of h1, h1 is a generalization of h1 or h2

is more general than h1.1 This notion is illustrated in Fig. 3.4. Furthermore,
1 It would be more precise to state that h2 is at least as general than h1. Never-

theless, we shall use the standard terminology, and say that h1 is more general
than h2.
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when h1 � h2 but h1 covers examples not covered by h2 we say that h1 is a
proper generalization of h2, and we write h1 ≺ h2.

c(g)

Lh

g

s

Le

c(s)

Fig. 3.4. Hypothesis g is more general than hypothesis s

Notice that the generality relation is transitive and reflexive. Hence, it is
a quasi-order. Unfortunately, it is not always anti-symmetric since there may
exist several hypotheses that cover exactly the same set of examples. Such
hypotheses are called syntactic variants. Syntactic variants are undesirable
because they introduce redundancies in the search space. In theory, one can
obtain a partial order by introducing equivalence classes and working with a
canonical form as a representative of the equivalence class. In practice, this is
not always easy, as will be explained in the next chapter.

Example 3.5. Consider the task of basket analysis used in Ex. 3.3. The con-
junction sausage ∧ beer is more general than sausage ∧ beer ∧ cheese, or when
using set notation {sausage, beer} is more general than {sausage, beer, cheese}
because the former is a subset of the latter.

Furthermore, if we would possess background knowledge in the form of a
taxonomy stating, for instance, that alcohol ← beer; food ← cheese ; food ←
sausage; and food ← mustard, then the conjunction food ∧ beer together with
the background theory would be more general than sausage ∧ beer. Using the
taxonomy, specific baskets such as {sausage, beer} can be completed under the
background theory, by computing the least Herbrand model of the item-set
and the background theory, yielding in our example {sausage, beer, food, alcohol}.
This is the learning from interpretations setting, that we shall discuss exten-
sively in the next chapter. Whenever an example contains sausage in this
setting the resulting completed example will contain food as well.

Continuing the illustration, if we assume that the examples only contain
the items from I and are then completed using the clauses listed above, then
the conjunctions alcohol ∧ cheese and beer ∧ cheese are syntactic variants, be-
cause there is only one type of item belonging to the category alcohol.
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When the language Lh does not possess syntactic variants, which will be
assumed throughout the rest of this chapter, the generality relation imposes
a partial order on the search space and can be graphically depicted using a
so called Hasse diagram. This is illustrated in Fig. 3.5.

{m, b}{s, m}

{s, m, c, b}

{m, c, b}{s, c, b}{s, m, b}{s, m, c}

{s, c} {s, b} {m, c} {c, b}

{b}{c}{m}{s}

{}

Fig. 3.5. The partial order over the item-sets

It is often convenient to work with a special notation for the maximally
general top element � and the maximally specific bottom element ⊥ such that
c(�) = Le and c(⊥) = ∅. Furthermore, when the elements � and ⊥ do not
exist in Lh they are often added to the language. For item-sets, � = ∅ and
⊥ = I.

3.7 Monotonicity

The generality relation imposes a useful structure on the search space provided
that the quality criterion involves monotonicity or anti-monotonicity.

A quality criterion Q is monotonic if and only if

∀s, g ∈ Lh,∀ D ⊆ Le : (g � s) ∧Q(g,D) → Q(s,D) (3.10)
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It is anti-monotonic2 if and only if

∀s, g ∈ Lh,∀ D ⊆ Le : (g � s) ∧Q(s,D) → Q(g,D) (3.11)

To illustrate this definition, observe that a minimum frequency constraint
freq(h,D) � x is anti-monotonic and a maximum frequency constraint
freq(h,D) � x is monotonic. Similarly, the criterion that requires that a
given example be covered (that is, e ∈ c(h)) is anti-monotonic and the one
that requires that a given example is not covered (that is, e �∈ c(h)) is mono-
tonic. On the other hand, the criterion acc(h, P,N) � x is neither monotonic
nor anti-monotonic.

Exercise 3.6. Let A1(h,D) and A2(h,D) be two anti-monotonic criteria, and
M1(h,D) and M2(h,D) be two monotonic ones. Are the criteria ¬A1(h,D);
A1(h,D)∨A2(h,D); A1(h,D)∧A2(h,D); their duals ¬M1(h,D); M1(h,D)∨
M2(h,D); M1(h,D) ∧ M2(h,D); and the combinations A1(h,D) ∧ M1(h,D)
and A1(h,D) ∨ M1(h,D) monotonic and/or anti-monotonic? Argue why.

Exercise 3.7. Show that the criterion acc(h, P,N) � x is neither monotonic
nor anti-monotonic.

Exercise 3.8. * Consider the primitives free(m) for item-sets, which is true
if and only if none of the subsets of m have the same frequency as m, and
closed(m), which is true if and only if none of the super-sets of m have the
same frequency as m. Do freeness and closedness satisfy the anti-monotonicity
or monotonicity property? Argue why.

When the quality criterion is monotonic or anti-monotonic it is a good idea
to employ the generality relation on the search space and to use specialization
or generalization as the basic operations to move through the search space.
The reason for this is given by the following two properties, which allow us to
prune the search.

Property 3.9. (Prune generalizations) If a hypothesis h does not satisfy a
monotonic quality criterion then none of its generalizations will.

Property 3.10. (Prune specializations) If a hypothesis h does not satisfy an
anti-monotonic quality criterion then none of its specializations will.

These properties directly follow from the definitions of monotonicity and anti-
monotonicity in Eqs. 3.10 and 3.11.

Example 3.11. Reconsider Ex. 3.3 and the anti-monotonic minimum frequency
criterion. Because sausage ∧ beer does not satisfy the minimum frequency con-
straint, none of its specializations do. They can therefore be pruned away, as
illustrated in Fig. 3.7.

2 In the literature, the definitions of the concepts of monotonicity and anti-
monotonicity are sometimes reversed.
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{s, m}

{s, m, c, b}

{m, c, b}{s, c, b}{s, m, b}{s, m, c}

{s, c} {s, b} {m, c} {c, b}

{b}{c}{m}{s}

{}

{m, b}

Fig. 3.6. Pruning specializations

{s, m}

{s, m, c, b}

{m, c, b}{s, c, b}{s, m, b}{s, m, c}

{s, c} {s, b} {m, c} {c, b}

{b}{c}{m}{s}

{}

{m, b}

Fig. 3.7. Pruning generalizations
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Example 3.12. Reconsider Ex. 3.3 and the monotonic constraint that requires
that the example {m, b, c} not be covered. Because mustard ∧ beer ∧ cheese
covers this example, all its generalizations can be pruned away as illustrated
in Fig. 3.7.

3.8 Borders

When monotonic and/or anti-monotonic criteria are used, the solution space
has so-called borders. Before introducing borders, let us introduce the max(T )
and min(T ) primitives:

max(T ) = {h ∈ T | ¬∃t ∈ T : h ≺ t} (3.12)

min(T ) = {h ∈ T | ¬∃t ∈ T : t ≺ h} (3.13)

Intuitively, the maximal elements are the most specific ones. These are also
the largest ones when interpreting the symbol ≺ as smaller than or equal to.
Furthermore, more specific hypotheses are typically also longer.

Example 3.13. Let T = {true, s, m, s ∧ m}. Then max(T ) = {s ∧ m} and
min(T ) = {true}.

Observe that when the hypothesis space Lh is finite, max(T ) and min(T )
always exist. When Lh is infinite, this need not be the case. We illustrate this
using string patterns.

Example 3.14. * Many data sets can be conveniently represented using strings
over some alphabet Σ; cf. also Chapter 4. An alphabet Σ is a finite set of
symbols. A string s1s2...sn is then a sequence of symbols si ∈ Σ. For instance,
the string over the alphabet Σ = {a, c, g, t}

atgcccaagctgaatagcgtagaggggttttcatcatttgaggacgatgtataa

might represent a sequence of DNA. When working with strings to represent
patterns and examples, a natural coverage relation is provided by the notion
of substring. A string S = s1s2...sn is a substring of a string T = t1t2...tk,
if and only if s1...sn occur at consecutive positions in t1...tk, that is, there
exists a j for which s1 = tj , s2 = tj+1, ..., and sn = tj+n. For instance, the
string atgc is a substring of aatgccccc with j = 2. For the language of all
strings over the alphabet Σ, that is, Σ∗, max(Σ∗) does not exist. To avoid
such complications in this chapter, we assume that Lh is finite.

For finite languages and monotonic and anti-monotonic quality criteria Q,
the solution space Th(Q,D,Lh) has boundary sets that are sometimes called
borders. More formally, the S-border of maximally specific solutions w.r.t. a
constraint Q is
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S
(
Th(Q,D,Lh)

)
= max

(
Th(Q,D,Lh)

)
(3.14)

Dually, the G-border of maximally general solutions is

G
(
Th(Q,D,Lh)

)
= min

(
Th(Q,D,Lh)

)
(3.15)

Example 3.15. Reconsider Ex. 3.13. The set T is the set of solutions to the
mining problem of Ex. 3.3, that is, T = Th((freq(h,D) � 3),D,Lm); S(T ) =
max(T ) = {s ∧ m} and G(T ) = min(T ) = {true}.

The S and G sets are called borders because of the following properties.

Property 3.16. If Q is an anti-monotonic predicate, then

Th(Q,D,Lh) = {h ∈ Lh | ∃s ∈ S
(
Th(Q,D,Lh)

)
: h � s}

Property 3.17. If Q is a monotonic predicate, then

Th(Q,D,Lh) = {h ∈ Lh | ∃g ∈ G
(
Th(Q,D,Lh)

)
: g � h}

Thus the borders of a monotonic or an anti-monotonic predicate com-
pletely characterize the set of all solutions. At this point the reader may want
to verify that the S set in the previous example fully characterizes the set
T of solutions to an anti-monotonic query as it contains all monomials more
general than the element s ∧ m of S(T ).

Furthermore, when Q is the conjunction of a monotonic and an anti-
monotonic predicate M∧A (and the language Lh is finite), then the resulting
solution set is a version space. A set T is a version space if and only if

T = {h ∈ Lh | ∃s ∈ S(T ), g ∈ G(T ) : g � h � s} (3.16)

For version spaces, the S and G set together form a condensed representation
for the version space. Indeed, in many (but not all) cases the border sets
will be smaller than the original solution set, while characterizing the same
information (as it is possible to recompute the solution set from the border
sets).

Example 3.18. Consider the constraint Q = (freq(h,D) � 2)∧ (freq(h,D) �
3) with D defined as in Ex. 3.3:

D = {{s,m, b, c}, {s,m, b}, {s,m, c}, {s,m}}

Then S(Th) ={s ∧ m ∧ c, s ∧ m ∧ b}, and G(Th) = {b, c} as shown in Fig. 3.8.

Exercise 3.19. Give an example of a quality criterion Q of the form M∨A,
with M a monotonic predicate and A an anti-monotonic one, a data set D
and a language Lh, such that Th(Q,D,Lh) is not a version space.
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G

{s, m}

{s, m, c, b}

{m, c, b}{s, c, b}{s, m, b}{s, m, c}

{s, c} {s, b} {m, c} {c, b}

{b}{c}{m}{s}

{}

{m, b}

S

Fig. 3.8. A version space

In concept learning, one is given sets of positive and negative examples P and
N . The goal of learning (in an idealized situation where no noise arises), is
then to find those hypotheses h that cover all positive and none of the negative
examples. Thus concept learning tasks employ the constraint

(rfreq(h, P ) � 100%) ∧ (rfreq(h,N) � 0%) (3.17)

This is the conjunction of an anti-monotonic and a monotonic predicate. Thus,
the solution set to an idealized concept learning task is a version space (ac-
cording to Eq. 3.16).

Exercise 3.20. Find the S and G sets corresponding to the criterion of Eq.
3.17 when P = {{s,m, b}, {s, c, b}} and N = {{b}, {b, c}}.

The S and G sets w.r.t. a version space Th are the so-called positive borders
because they contain elements that belong to Th. In data mining, one some-
times also works with the negative borders. The negative borders contain the
elements that lie just outside Th. The negative borders S− and G− can be
defined as follows:

S−(Th) = min
(
Lh − {h ∈ Lh | ∃s ∈ S(Th) : h � s}

)
(3.18)

G−(Th) = max(Lh − {h ∈ Lh | ∃g ∈ G(Th) : g � h}) (3.19)

Example 3.21. Reconsider the version space Th of Ex. 3.18. For this version
space, S−(Th) = {c ∧ b} and G−(Th) = {s ∧ m}.
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Finally, note that the size of the border sets can grow very large. Indeed,
for certain hypothesis languages (such as item-sets), the size of the G set can
grow exponentially large in the number of negative examples for a concept-
learning task. Nevertheless, it should be clear that the size of any positive
border set can never be larger than that of the overall solution set.

3.9 Refinement Operators

In the previous two sections, it was argued that the generality relation is
useful when working with monotonic and/or anti-monotonic quality criteria.
The present section introduces refinement operators for traversing the search
space Lh. The large majority of operators employed in data mining or ma-
chine learning algorithms are generalization or specialization operators. They
generate a set of specializations (or generalizations) of a given hypothesis.
More formally,

A generalization operator ρg : Lh → 2Lh is a function such that

∀h ∈ Lh : ρg(h) ⊆ {c ∈ Lh | c � h} (3.20)

Dually, a specialization operator ρs : Lh → 2Lh is a function such that

∀h ∈ Lh : ρs(h) ⊆ {c ∈ Lh | h � c} (3.21)

Sometimes, the operators will be applied repeatedly. This motivates the in-
troduction of the level n refinement operator ρn:

ρn(h) =

⎧
⎨

⎩

ρ(h) if n = 1,⋃

h′∈ρn−1(h)

ρ(h′) if n > 1 (3.22)

Furthermore, ρ∗(h) denotes ρ∞(h).
Many different types of generalization and specialization operators exist

and they are useful in different types of algorithms. Two classes of operators
are especially important. They are the so-called ideal and optimal operators,
which are defined below for specialization operators (the corresponding def-
initions can easily be obtained for generalization operators). ρ is an ideal
operator for Lh if and only if

∀h ∈ Lh : ρ(h) = min({h′ ∈ Lh | h ≺ h′}) (3.23)

So, an ideal specialization operator returns all children for a node in the Hasse
diagram. Furthermore, these children are proper refinements, that is, they are
not a syntactic variant of the original hypothesis. Ideal operators are used in
heuristic search algorithms.

ρ is an optimal operator for Lh if and only if for all h ∈ Lh there exists
exactly one sequence of hypotheses � = h0, h1, ..., hn = h ∈ Lh such that
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hi ∈ ρ(hi−1) for all i. Optimal refinement operators are used in complete
search algorithms. They have the property that, when starting from �, no
hypothesis will be generated more than once.

An operator for which there exists at least one sequence from � to any
h ∈ Lh is called complete, and one for which there exists at most one such
sequence is nonredundant.

Example 3.22. We define two specialization operators ρo and ρi for the item-
sets over I = {s, m, b, c} using the lexicographic � order over I
s � m � c � b:

ρi(M) = M ∪ {j} with j ∈ (I − M) (3.24)
ρo(M) = M ∪ {j} with ∀l ∈ M : l � j (3.25)

By repeatedly applying ρi to �, one obtains the Hasse diagram in Fig. 3.5,
where an edge between two nodes means that the child node is one of the
refinements according to ρi of the parent node. On the other hand, when
applying ρo to �, one obtains the tree structure depicted in Fig. 3.3. Both
ρ∗o and ρ∗i generate all hypotheses in Lh from �, but there is only a single
path from � to any particular hypothesis using ρo. Remark also that using ρo

amounts to working with a canonical form, where m1∧ ...∧mk is in canonical
form if and only if m1 << ... << mk. Repeatedly applying ρo on � only
yields hypotheses in canonical form.

Two other operations that are useful in learning and mining algorithms
are the minimally general generalization mgg and the maximally general spe-
cialization mgs:

mgg(h1, h2) = min{h ∈ Lh | h � h1 ∧ h � h2} (3.26)
mgs(h1, h2) = max{h ∈ Lh | h1 � h ∧ h2 � h} (3.27)

If the mgg (or mgs) operator always returns a unique generalization (or
specialization), the operator is called the least general generalization lgg or
least upper bound lub (or the greatest lower bound glb). If the lgg and glb
exist for any two hypotheses h1, h2 ∈ Lh, the partially ordered set (Lh,�) is
called a lattice. For instance, the language of item-sets LI is a lattice, as the
following example shows.

Example 3.23. Continuing the previous example, the operators compute

mgg(M1,M2) = M1 ∩ M2 (3.28)
mgs(M1,M2) = M1 ∪ M2 (3.29)

For instance, mgg(s ∧ m ∧ b, s ∧ b ∧ c) = lgg(s ∧ m ∧ b, s ∧ b ∧ c) = {s ∧ b}.
The mgg and lgg operations are used by specific-to-general algorithms. They
repeatedly generalize the current hypothesis with examples. The dual opera-
tions, the mgs and the glb, are sometimes used in algorithms that work from
general-to-specific.
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Exercise 3.24. Define an ideal and an optimal generalization operator for
item-sets.

Exercise 3.25. * Define an ideal and an optimal specialization operator for
the hypothesis language of strings Σ∗, where g � s if and only if g is a
substring of s; cf. Ex. 3.14. Discuss also the operations mgg and mgs.

3.10 A Generic Algorithm for Mining and Learning

Now everything is in place to adapt the enumeration algorithm of Algo. 3.1
to employ the refinement operators just introduced. The resulting algorithm
is shown in Algo. 3.10. It is a straightforward application of general search
principles using the notions of generality.

Algorithm 3.2 A generic algorithm
Queue := Init ;
Th := ∅;
while not Stop do

Delete h from Queue
if Q(h,D) = true then

add h to Th
Queue := Queue ∪ρ(h)

end if
Queue := Prune(Queue)

end while
return Th

The algorithm employs a Queue of candidate hypotheses and a set Th of
solutions. It proceeds by repeatedly deleting a hypothesis h from Queue and
verifying whether it satisfies the quality criterion Q. If it does, h is added to
Th; otherwise, all refinements ρ(h) of h are added to the Queue. This process
continues until the Stop criterion is satisfied. Observe that there are many
generic parameters (shown in italics) in this algorithm. Depending on the
particular choice of parameter, the algorithm behaves differently. The Init
function determines the starting point of the search algorithm. The initializa-
tion may yield one or more initial hypotheses. Most algorithms start either at
� and only specialize (the so-called general-to-specific systems), or at ⊥ and
only generalize (the specific-to-general systems). The function Delete deter-
mines the actual search strategy: when Delete is first-in-first-out, one obtains
a breadth-first algorithm, when it is last-in-first-out, one obtains a depth-
first algorithm, and when it deletes the best hypothesis (according to some
criterion or heuristic), one obtains a best-first algorithm. The operator ρ de-
termines the size and nature of the refinement steps taken through the search
space. The function Stop determines when the algorithm halts. As argued at
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the start of this chapter, some algorithms compute all elements, k elements or
an approximation of an element satisfying Q. If all elements are desired, Stop
equals Queue=∅; when k elements are sought, it is | Th |= k. Finally, some
algorithms Prune candidate hypotheses from the Queue. Two basic types of
pruning exist: heuristic pruning, which prunes away those parts of the search
space that appear to be uninteresting, and sound pruning, which prunes away
those parts of the search space that cannot contain solutions.

As with other search algorithms in artificial intelligence, one can distin-
guish complete algorithms from heuristic ones. Complete algorithms compute
all elements of Th(Q,D,Lh) in a systematic manner. On the other hand,
heuristic algorithms aim at computing one or a few hypotheses that score
best w.r.t. a given heuristic function. This type of algorithm does not guar-
antee that the best hypotheses are found.

In the next few subsections, we present a number of instantiations of our
generic algorithm. This includes: a complete general-to-specific algorithm in
Sect. 3.11, a heuristic general-to-specific algorithm in Sect. 3.12, a branch-
and-bound algorithm for finding the top k hypotheses in Sect. 3.13, and a
specific-to-general algorithm in Sect. 3.14. Afterward, a further (advanced)
section on working with borders is included, before concluding this chapter.

3.11 A Complete General-to-Specific Algorithm

We now outline a basic one-directional complete algorithm that proceeds from
general to specific. It discovers all hypotheses that satisfy an anti-monotonic
quality criterion Q. It can be considered an instantiation of the generic algo-
rithm, where

• Init= {�};
• Prune(Queue)= {h ∈ Queue | Q(h,D) = false},
• Stop=(Queue= ∅), and
• ρ is an optimal refinement operator.

Furthermore, various instantiations of Delete are possible.

Example 3.26. Reconsider Ex. 3.3 and assume Algo. 3.3 employs a breadth-
first search strategy (obtained by setting Delete to first-in-first-out). Then the
algorithm traverses the search tree shown in Fig. 3.9 in the order indicated.

Observe that for anti-monotonic quality criteria, Algo. 3.3 only prunes
hypotheses that cannot be a solution, and whose children cannot be a solution
either. Observe also that the use of an optimal refinement operator is, strictly
speaking, not necessary for the correctness of the algorithm but is essential
for its efficiency. Indeed, if an ideal operator would be employed instead, the
same hypotheses would be generated over and over again.

There exists also a dual algorithm, that searches from specific to general
and applies generalization rather than specialization.
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Algorithm 3.3 A complete general-to-specific algorithm
Queue := {
};
Th := ∅;
while not Queue = ∅ do

Delete h from Queue
if Q(h,D) = true then

add h to Th
Queue := Queue ∪ρo(h)

end if
end while
return Th

3:{m} 4:{c} 5:{b}

7:{s, c} 8:{s, b}

12:{s, m, b}11:{s, m, c}

9:{m, c} 10:{m, b}6:{s, m}

1:{}

2:{s}

Fig. 3.9. Illustrating complete search w.r.t. an anti-monotonic predicate

Exercise 3.27. Describe the dual algorithm and illustrate it at work on
the same data set and hypothesis language, but now use the constraint
(freq(h,D) � 2).

3.12 A Heuristic General-to-Specific Algorithm

The complete algorithm works well provided that the quality criterion is anti-
monotonic or monotonic. However, there exist many interesting mining and
learning tasks for which the quality criterion is neither monotonic nor anti-
monotonic. Furthermore, one might not be interested in all solutions but per-
haps in a single best solution or an approximation thereof. In such cases, it
is too inefficient to perform a complete search because the pruning properties
no longer hold. Therefore, the only resort is to employ a heuristic function f
in a greedy algorithm. Such an algorithm is shown in Algo. 3.4.

The algorithm again works from general to specific and keeps track of a
Queue of candidate solutions. It repeatedly selects the best hypothesis h from
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Queue (according to its heuristic) and tests whether it satisfies Q. If it does,
the algorithm terminates and outputs its solution; otherwise, it continues by
adding all refinements (using an ideal operator) to the Queue. The Queue is
typically also Pruned.

Again, the algorithm can be viewed as an instantiation of Algo. 3.10. The
following choices have been made:

• Delete selects the best hypothesis,
• Stop=| Th |= 1,
• an ideal refinement operator is employed,
• Prune depends on the particular instantiation. Very often Prune retains

only the best k hypotheses, realizing a beam search.

Note that – because of the use of a heuristic and a greedy search strategy
– it is essential that an ideal operator is being used. Greedy algorithms focus
on the currently most interesting nodes and prune away the others. Should
an optimal refinement operator be used instead of an ideal one, the direct
neighborhoods of the nodes of interest would not be fully explored.

Algorithm 3.4 A heuristic general-to-specific algorithm
Queue := {
};
Th := ∅;
while Th = ∅ do

Delete the best h from Queue
if Q(h,D) = true then

add h to Th
else

Queue := Queue ∪ρi(h)
end if
Queue := Prune(Queue)

end while
return Th

Example 3.28. Let P = {{s, m, b}, {s, b, c}} and N = {{s, m}, {b, c}} be
the data sets; assume that the heuristic function used is m(h, P,N) and that
the quality criterion is true if m(h, P,N) > m(h′, P,N) for all h′ ∈ ρi(h). The
m(h, P,N) function is a variant of the accuracy defined in Eq. 3.8:

m(h, P,N) =
freq(h, P ) + 0.5

freq(h, P ) + freq(h,N) + 1
(3.30)

The m function is used instead of acc to ensure that when two patterns have
equal accuracy, the one with the higher coverage is preferred. Assume also
that a beam search with k = 1, that is, hill climbing, is used. This results in
the search tree illustrated in Fig. 3.12. The nodes are expanded in the order
indicated.
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5:{b}(0.625)

9:{s, m, b}(0.75) 10:{s, c, b}(0.75)

2:{s} (0.625) 4:{c}(0.5)3:{m}(0.5)

8:{s, b}(0.83)
7:{s, c}(0.5)

6:{s, m}(0.5)

1:{}(0.5)

Fig. 3.10. Illustrating heuristic search

3.13 A Branch-and-Bound Algorithm

For some types of problem, a combination of the previous two algorithms
– branch-and-bound – can be used. A branch-and-bound algorithm aims at
finding the best hypothesis (or, best k hypotheses) w.r.t. a given function f ,
that is,

Q(h,D,Lh) =
(
h = arg max

h′∈Lh

f(h′)
)

(3.31)

Furthermore, branch-and-bound algorithms assume that, when working from
general to specific, there is a bound b(h) such that

∀h′ ∈ Lh : h � h′ → b(h) � f(h′) (3.32)

Given the current best value (or current k best values) v of the hypotheses
investigated so far, one can safely prune all refinements of h provided that
v � b(h).

The branch-and-bound algorithm essentially combines the previous two
algorithms: it performs a complete search but selects the hypotheses greedily
(according to their f values) and prunes on the basis of the bounds. Further-
more, it computes a single best hypothesis (or k best hypotheses) as in the
heuristic algorithm.

Example 3.29. Consider the function f(h) = freq(h, P ) − freq(h,N). The
quality criterion aims at finding patterns for which the difference between
the frequency in P and in N is maximal. For this function f(h), the bound
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b(h) = freq(h, P ) satisfies the requirement in Eq. 3.32 because specializing a
hypothesis can only decrease the frequencies freq(h, P ) and freq(h,N). Thus
the maximum is obtained when freq(h, P ) remains unchanged and freq(h,N)
becomes 0.

The resulting search tree, applied to P and N of Ex. 3.20, is shown in
Fig. 3.13. The values for the hypotheses (b(h); f(h)) are shown for each node.
The order in which the nodes are visited is indicated. Nodes 3, 4 and 6 are
pruned directly after generation and node 7 is pruned after node 8 has been
generated. Finally, since node 5 cannot be further expanded, node 8 contains
the optimal solution.

Let us also stress that branch-and-bound algorithms are used with statis-
tical functions such as entropy and chi-square; cf. [Morishita and Sese, 2000].

8:{s, b}(2;2)

1:{}(2;0)

2:{s} (2;1) 3:{m}(1;0) 4:{c}(1;0) 5:{b}(2;1)

6:{s, m}(1;0)
7:{s, c}(1;1)

Fig. 3.11. Illustrating a branch-and-bound algorithm

Exercise 3.30. Specify the branch-and-bound algorithm formally.

3.14 A Specific-to-General Algorithm

To illustrate a specific-to-general algorithm, we consider an algorithm that
implements a cautious approach to generalization in this section. Assume
that the goal is to find the minimal generalizations of a set of hypotheses (or
positive examples). The quality criterion can be specified as

Q(h,D) =
(
h ∈ max({h ∈ Lh | ∀d ∈ D : h � d}

)
(3.33)

One possible algorithm to compute Th(Q,D,Lh) is shown in Algo. 3.5. It
starts from ⊥ and repeatedly generalizes the present hypotheses until all ex-
amples or hypotheses in D are covered. Observe that the algorithm is an
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instance of the generic algorithm Algo. 3.10 (it is left as an exercise to the
reader to verify this), and also that the efficiency of the algorithm can be
improved by, for instance, incrementally processing the examples in D. This
would eliminate our having to test the overall criterion Q over and over again.

Algorithm 3.5 A cautious specific-to-general algorithm
Queue := {⊥};
Th := ∅;
while Queue �= ∅ do

Delete a hypothesis h from Queue
if Q(h,D) = true then

add h to Th
else

select a hypothesis d ∈ D such that ¬(h � d)
Queue := Queue ∪ mgg(h, d)

end if
end while
return Th

Example 3.31. Consider the data set D = { s ∧ m ∧ c, s ∧ m ∧ b, s ∧ m ∧ c ∧ b}.
When the examples are processed from right to left, the following hypotheses
are generated: ⊥ = false, s ∧ m ∧ c ∧ b, s ∧ m ∧ b, and s ∧ m.

Exercise 3.32. Design a data set in the domain of the strings where the S
set (returned by Algo. 3.5) is not a singleton.

3.15 Working with Borders*

Algo. 3.5 can also be regarded as computing the S set w.r.t. the anti-monotonic
constraint rfreq(h,D) � 1, which raises the question of how to compute,
exploit and reason with border sets. This will be addressed in the present
section.

3.15.1 Computing a Single Border

First, observe that a single border (either the S or G set w.r.t. an anti-
monotonic or a monotonic constraint) can be computed in two dual ways:
general-to-specific or specific-to-general using a simple adaptation of Algo.
3.3. To illustrate this point, assume that the goal is to find the G set w.r.t. a
monotonic criterion Q and that we work from general to specific. Two modi-
fications are needed to Algo. 3.3 for addressing this task (shown in Algo. 3.6):
1) refine only those hypotheses that do not satisfy the quality criterion Q,
and 2) move only those elements to Th that effectively belong to G. W.r.t.
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1), note that if a hypothesis is a member of the G set, then all of its (proper)
specializations satisfy Q even though they cannot be maximally general and
therefore do not belong to G. W.r.t. 2), note that it is possible to test whether
a hypothesis h that satisfies Q is maximally general by computing ρ′i(h) and
testing whether elements of ρ′i(h) satisfy Q. Only if none of them satisfies Qcan
one conclude that h ∈ G. Here, ρ′i denotes an ideal generalization operator,
even though the general direction of the search is from general to specific.

Algorithm 3.6 Computing the G border general-to-specific.
Queue := {
};
Th := ∅;
while not Queue = ∅ do

Delete h from Queue
if Q(h,D) = true and h ∈ G then

add h to Th
else if Q(h,D) = false then

Queue := Queue ∪ρo(h)
end if

end while
return Th

The dual algorithm for computing G from specific to general can be ob-
tained by starting from ⊥ and by generalizing only those hypotheses h that
satisfy Q (and do not belong to G). Even though the two algorithms compute
the same result, the efficiency with which they do so may vary significantly.
The direction that is to be preferred typically depends on the application.

By exploiting the dualities, one can devise algorithms for computing S as
well as the negative borders.

Exercise 3.33. Compute the S set for the problem of Ex. 3.3 using the
general-to-specific algorithm.

3.15.2 Computing Two Borders

Second, consider computing the borders of a version space as illustrated in Fig.
3.8. This could be the result of a quality criterion Q that is the conjunction of
an anti-monotonic and a monotonic predicate. To compute these borders, we
can proceed in several ways. One of these first computes one border (say the
S set) using the techniques sketched above and then uses that set to constrain
the computation of the other border (say the G set). When searching from
general to specific for the G set and with the S set already given, hen all
hypotheses h that are not more general than an element in the S set can
safely be pruned in Algo. 3.6. By exploiting the various dualities, further
algorithms can be obtained.
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Example 3.34. Suppose S={s ∧ m ∧ c}. When computing G from general to
specific, b and all its refinements can be pruned because ¬(b � s ∧ m ∧ c).

3.15.3 Computing Two Borders Incrementally

Third, suppose that one is given already a version space (characterized by its S
and G sets) and the task is to update it in the light of an extra constraint. This
is the setting for which the original theory of version spaces was developed
by Tom Mitchell. He considered concept-learning, which is concerned with
finding all hypotheses satisfying rfreq(h, P ) = 1∧ rfreq(h,N) = 0 w.r.t. sets
of positive and negative examples P and N . This criterion can be rewritten
as:

p1 ∈ c(h) ∧ . . . ∧ pk ∈ c(h) ∧ n1 �∈ c(h) ∧ ... ∧ nl �∈ c(h) (3.34)

where the pi and the nj are the members of P and N , respectively. Mitchell’s
candidate elimination algorithm processed the examples incrementally, that
is, one by one, by updating S and G to accommodate the new evidence. His
algorithm is shown in Algo. 3.7.

Algorithm 3.7 Mitchell’s candidate elimination algorithm
S := {⊥} ; G := {
}
for all examples e do

if e ∈ N then
S := {s ∈ S | e ∈ c(s)}
for all g ∈ G : e ∈ c(g) do

ρg := {g′ ∈ ms(g, e) | ∃s ∈ S : g′ � s}
G := G ∪ ρg

end for
G := min(G)

else if e ∈ P then
G := {g ∈ G | e �∈ c(g)}
for all s ∈ S : e �∈ c(s) do

ρs := {s′ ∈ mgg(s, e) | ∃g ∈ G : g � s′}
S := S ∪ ρs

end for
S := max(S)

end if
end for

The algorithm employs a new operation ms(g, e), the minimal specializa-
tion w.r.t. e:

ms(g, e) = min({g′ ∈ Lh | g � g′ ∧ e �∈ c(g′)}) (3.35)

Example 3.35. Applied to item-sets over I, this yields
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ms(M1,M2) =
{
{M1} if ¬(M1 � M2)
{M1 ∪ {i} | i ∈ I − (M1 ∪ M2)} otherwise (3.36)

For instance, ms(s, s ∧ m) = {s ∧ c, s ∧ b} and ms(s, s ∧ m ∧ b) = {s ∧ s}.
The candidate elimination algorithm works as follows. It starts by initializ-

ing the S and G sets to the ⊥ and � elements, respectively. It then repeatedly
updates these sets whenever the next example is not handled correctly by all
the elements of S and G. Let us now sketch the different steps for a positive
example (the ones for a negative one are dual). Whenever an element g of
G does not cover the positive example e, the element g is too specific and is
pruned away. This is because in order to cover e, the hypothesis g should be
generalized, but this is not allowed since it would yield hypotheses that lie
outside the current version space. Secondly, whenever an element s of S does
not cover the positive example e, the mgg operator is applied on the elements
g and e, yielding a set mgg(e, g) of minimally general generalizations. From
this set, only those elements are retained that lie within the version space,
that is, those that are more specific than an element of G. Finally, only the
maximal elements of S are retained in order to obtain a proper border and to
remove redundancies. Without this step, the algorithm still works correctly
in the sense that all elements of the version space will lie between an element
of S and G. It may only be that some elements are redundant and do not lie
at the proper border.

Example 3.36. Let us now employ the candidate elimination algorithm to the
sets of examples P = {{s,m, b}, {s, c, b}} and N = {{b}, {b, c}}. So, the re-
sulting S and G form the answer to Exer. 3.20. When first processing the
positive examples and then the negative ones, the following sequence of S and
G sets is obtained:

S={⊥} G={�}
S={s ∧ m ∧ b} G={�}
S={s ∧ b} G={�}
S={s ∧ b} G={s}

Exercise 3.37. What happens to S and G when the examples are processed
in a different order? Process the negative examples before the positive ones.

The use of version space representations for concept learning has some
interesting properties. When the S and G sets become identical and contain
a single hypothesis, one has converged upon a single solution, and when S
or G becomes empty, no solution exists. Finally, the intermediate borders
obtained using an incremental algorithm (such as the candidate elimination
algorithm) can be used to determine whether a hypothesis h can still belong
to the solution space. Furthermore, when learning concepts, the intermediate
borders can be used to determine which examples contain new information.
Indeed, under the assumption that a solution to the concept learning task
exists within Lh, any example covered by all elements in S must be positive,
and any example covered by no element in G must be negative.
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Exercise 3.38. * When Lh= Le, the constraint e ∈ c(h) can often be rewrit-
ten as h � e, and the dual one, e �∈ c(h), as ¬(h � e), where h is the target
hypothesis and e a specific positive or negative example. Consider now the
dual constraints e � h and ¬(e � h). Are these constraints monotonic or
anti-monotonic? Also, can you illustrate the use of these constraints and com-
pute the corresponding version space? Finally, can you extend the candidate
elimination algorithm to work with these constraints?

Exercise 3.39. Try to learn the father/2 predicate (in a relational learning
setting) in the following context. Let the background theory B be the set of
facts

male(luc) ← parent(luc, soetkin) ←
female(lieve) ← parent(lieve, soetkin) ←
female(soetkin) ←

the hypothesis language Lh consist of single clauses, Lh= {father(X,Y)←
body | body ⊆ {parent(X,Y), parent(Y,X),male(X), female(X), female(Y)}},
and let P = {father(luc, soetkin)}, and N = {father(lieve, soetkin), father(luc,
luc)}

The candidate elimination algorithm illustrates how the borders of a ver-
sion space can be computed incrementally. The candidate elimination algo-
rithm works with constraints in the form of positive and negative examples.
One remaining question is whether one can also devise algorithms that incre-
mentally process a sequence of other types of monotonic and anti-monotonic
constraints. One way of realizing this adapts Algo. 3.6. We discuss how to
process an extra monotonic constraint Q w.r.t. to an already existing version
space characterized by G and S.

The adaptation works as follows. First, the elements of S that do not
satisfy Q are discarded. Second, the approach of Algo. 3.6 is taken but 1) all
hypotheses that are not more general than an element of S are pruned, and 2)
only those hypotheses that are more specific than an element of the original
G set are tested w.r.t. Q.

3.15.4 Operations on Borders

Another approach to incrementally process a conjunction of monotonic and
anti-monotonic constraints intersects version spaces. Version space intersec-
tion employs the following operations:

ints(S1, S2) = max
(
{s | s ∈ mgg(s1, s2) with s1 ∈ S1 ∧ s2 ∈ S2}

)
(3.37)

intg(G1, G2) = min
(
{g | g ∈ mgs(g1, g2) with g1 ∈ G1 ∧ g2 ∈ G2}

)
(3.38)

The following property, due to Hirsh [1990], holds



3.17 Bibliographical Notes 69

Property 3.40. Let V S1 and V S2 be two version spaces with border sets S1, G2

and S2, G2, respectively. Then V S = V S1 ∩ V S2 has border sets ints(S1, S2)
and intg(G1, G2) respectively.

Version space intersection can now be used for learning concepts. To realize
this, compute the version spaces that correspond to each of the single examples
and incrementally intersect them.

Exercise 3.41. Solve the concept learning task in Exer. 3.20 by applying
version space intersection.

3.16 Conclusions

This chapter started by formalizing data mining and machine learning tasks
in a general way. It then focused on mechanisms for computing the set of
solutions Th(Q,D,Lh). The search space Lh was structured using the im-
portant generality relation. Various quality criteria were proposed and their
properties, most notably monotonicity and anti-monotonicity, were discussed.
It was shown that these properties impose borders on the set of solutions
Th(Q,D,Lh), and the notion of a version space was introduced. To compute
Th(Q,D,Lh) various algorithms were presented. They employ refinement op-
erators which are used to traverse the search space. Ideal operators are es-
pecially useful for performing heuristic search and optimal ones for complete
search. Some of the algorithms work from general to specific, other ones from
specific to general. Finally, some algorithms work with the borders and there
are algorithms (such as candidate elimination) that are bidirectional.
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4

Representations for Mining and Learning

Choosing the right representation to model the problem is essential in artificial
intelligence, and machine learning and data mining are not different in this
respect. Since the early days of machine learning, researchers such as Gor-
don Plotkin, Stephen Vere, and Ryszard Michalski have considered the use of
expressive representations to model complex learning problems. In this chap-
ter, we introduce a hierarchy of representations used to represent machine
learning and data mining problems. The hierarchy includes boolean, attribute-
value, multi-instance, multi-relational and program representations. The var-
ious representations are formulated using the Prolog programming language
and illustrated using various applications. We also show how sequences, trees
and graphs can be formulated within the sketched relational and logical repre-
sentations. Because the relations amongst and the need for the various repre-
sentations are essential for understanding logical and relational learning, we
present an integrated framework addressing these issues. This framework also
leads us to advanced issues such as propositionalization and aggregation, the
subjects of the last sections of this chapter.

4.1 Representing Data and Hypotheses

In the previous chapter, we employed two representation languages to model
machine learning and data mining problems,

• a language of examples Le, whose elements are descriptions of examples,
observations or data,

• a language of hypotheses Lh, whose elements describe hypotheses about
(or regularities within) the examples, observations or data,

and the covers relation c : Lh × Le to determine whether a hypothesis matches
an example.

This book employs logical representations for representing examples, hy-
potheses and the covers relation, and studies the implications for machine
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learning and data mining. However, there exist different possible ways for
choosing Lh, Le and c in logic, and they result in different settings for learn-
ing. The most popular settings are learning from entailment and learning
from interpretations. Learning from entailment was used in Chapter 1, in
the structure-activity relationship prediction problem, whereas learning from
interpretations was the setting used throughout the previous chapter, when
introducing machine learning and data mining principles. We now introduce
these two settings formally.

In learning from entailment, the languages Le, Lh are logical formulae,
typically subsets of clausal logic, and the covers relation c corresponds to
logical entailment. More formally:

Definition 4.1. When learning from entailment, Le and Le are logical for-
mulae and c(H, e) = true if and only if H |= e.

When working in clausal logic, examples typically correspond to single clauses
and hypotheses to sets of clauses. Hence, Le is a set of clauses, and Lh is a
set of theories, that is, a set of sets of clauses. We write H using uppercase
characters because it corresponds to a set of clauses, and e in lowercase because
it denotes a single clause.

Example 4.2. Let us consider the domain of animals and assume that we have
a blackbird that flies. This bird could be represented using the following clause
e:

flies ← black, bird, hasFeathers, hasWings, normal, laysEggs

Let H now be the theory:

flies ← bird, normal
flies ← insect, hasWings, normal

Because H |= e, the hypothesis H covers the example e.

An alternative inductive logic programming setting that is frequently em-
ployed in data mining, and in computational learning theory as well, is that of
learning from interpretations. When learning from interpretations, Lh is a set
of logical formulae, most often subsets of clausal logic, and Le a set of inter-
pretations (or possible worlds). Furthermore, the covers relation corresponds
to satisfiability. More formally:

Definition 4.3. When learning from interpretations, Le is a set of interpre-
tations, Lh is a set of logical formulae, and c(H, e) = true if and only if e is
a model of H.

For practical reasons, Le is typically restricted to Herbrand interpretations,
which is also what we will assume from now on.

Example 4.4. The previous example can be represented using the interpreta-
tion e′:
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{flies, black, bird, hasFeathers, hasWings, normal, laysEggs}
It is easily verified that this interpretation is a model for the theory H shown
in the previous example. Thus the hypothesis H covers the example e′ when
learning from interpretations.

Although these two ways of representing the information about the bird
are both natural, there is a subtle difference in meaning between the two rep-
resentations. By representing the bird using an interpretation, it is assumed
that all propositions not in the interpretation are false. Thus, in the example,
the interpretation implies that the proposition insect is known to be false.
This assumption is not made using the clausal representation of the bird. A
further difference is that in the clausal representation, there is a distinguished
predicate, the predicate flies, that is entailed by the set of conditions. In con-
trast, using interpretations, all predicates are treated uniformly. The former
representation can be more natural when learning a specific concept as a pred-
icate definition, such as the concept of flying things; the latter representation
is more natural to describe a set of characteristics of the examples, such as
the baskets bought in the supermarket.

The choice of which setting to employ in a specific application is often
a matter of taste and tradition. There also exist other settings and variants
of learning from entailment and from interpretations. Therefore, we employ,
throughout this book, different representations and settings in a rather loose
manner with the purpose of familiarizing the reader with the various options
and conventions that are described in the literature.

In the remainder of this chapter, we investigate different types of data and
their corresponding representation languages Le and Lh. Some of these data
types, such as strings, trees and graphs, are among the best studied ones in
computer science. Correspondingly, they possess several natural representa-
tions. Nevertheless, in order to enable a uniform and general treatment, we
introduce adequate logical representations for these data types.

Many different types of representations are employed by contemporary
machine learning and data mining systems. These include: boolean represen-
tations, attribute-value representations, multi-instance representations, rela-
tional representations, term-structured representations and programs. We now
introduce these representations within the common framework of logical and
relational learning. While doing so, for ease of explanation, we assume that no
background theory is used and also that the hypotheses are (sets of) definite
clauses. These restrictions will be lifted later. Because boolean representations
were already introduced in Sect. 3.2, we start by introducing attribute-value
learning.

4.2 Attribute-Value Learning

By far the most popular class of representation languages for data analysis
is that of attribute-value representations. This type of language is employed
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within data mining, machine learning, neural networks, statistics, etc. Its pop-
ularity is to a large extent due to its simplicity and the fact that it can be
represented in tabular form. This implies that data mining tools working with
these representations can elegantly be coupled to other table-based software
such as relational databases and spreadsheets.

Consider Table 4.1, which is due to Quinlan [1986]. It contains information
about situations in which the weather is good (positive), or bad (negative)
for playing tennis. In this table, each row corresponds to an example, and
each column corresponds to an attribute. Furthermore, the examples have
exactly one value specified for each of the attributes. In database terminology,
this means that examples are tuples in a table (or relation). Therefore, the
attribute-value representation makes the single-table single-tuple assumption.
Each attribute A also has a domain d(A), which specifies the set of values
the attribute can take. In this book, we shall consider the following types of
domains:

nominal : the domain consists of a finite set of discrete values,
ordinal : the values of the domain are enumerable and totally ordered,
continuous: the domain is the set of real numbers.

Table 4.1. Quinlan’s playtennis example

Outlook Temperature Humidity Windy Class

sunny hot high no negative
sunny hot high yes negative

overcast hot high no positive
rain mild high no positive
rain cool normal no positive
rain cool normal yes negative

overcast cool normal yes positive
sunny mild high no negative
sunny cool normal no positive
rain mild normal no positive

sunny mild normal yes positive
overcast mild high yes positive
overcast hot normal no positive

rain mild high yes negative

It is easy to represent attribute-value problems using logic. Indeed, let
us assume that the name of the table is r, the attributes are A1, . . . , An

and their corresponding domains are d(A1), . . . , d(An). Then each example
corresponds to an interpretation of the form {r(v1, . . . , vn)} where the vi are
values belonging to the domain d(Ai) of attribute Ai. Alternatively, when
learning from entailment, clauses of the form class(vn) ← r(v1, . . . , vn−1) can
be used as examples. In the playtennis example, the last row corresponds to
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{playtennis(rain,mild, high, yes, negative)}
and

class(neg) ← playtennis(rain,mild, high, yes).

For the playtennis example, the clause

class(pos) ← playtennis(overcast,Temp,Hum,Wind)

is a conjunctive concept, a single rule. Disjunctive hypotheses consist of a set
of rules.

Alternatively, when learning from interpretations, one could employ clauses
such as

Class = positive ← playtennis(overcast,Temp,Hum,Wind,Class)

as constraint. This clause covers all examples in Table 4.1, because all exam-
ples in Table 4.1 are models of this clause. The clause thus describes a genuine
property of the playtennis illustration. Many data mining and machine learn-
ing systems also allow the formulation of simple constraints on attributes. A
simple constraint is a condition on a specific attribute. It can, for instance,
state that the ith attribute may not be identical to value v, which can be
stated as follows:

class(Class) ← r(t1, . . . , ti−1, Ti, ti+1, . . . , tn), Ti �= v

In a similar fashion, simple constraints can specify that the value of an
ordinal attribute should be larger than or smaller than a specified value. In
this context, consider the rule

adult ← person(Age,Sex,Profession),Age � 18

which states that all persons aged over 18 are adults.

Example 4.5. The following disjunctive hypothesis covers all positive and none
of the negative examples in the playtennis example:

class(pos) ← playtennis(overcast,Temp,Hum,Wind)
class(pos) ← playtennis(rain,Temp,Hum, no)
class(pos) ← playtennis(sunny,Temp, normal,Wind)

An alternative and simpler representation of Table 4.1 is possible when
learning from entailment. In this representation, each example would be rep-
resented as a fact. An example is then covered by a hypothesis if the example
is entailed by the hypothesis. Furthermore, the hypotheses could also be rep-
resented as facts containing variables.

Example 4.6. Using this representation, the first example could be represented
using the fact playtennis(sunny, hot, high, no) ←, and a hypothesis that covers
all positive and no negative example would be
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playtennis(overcast,Temp,Hum,Wind) ←
playtennis(rain,Temp,Hum, no) ←
playtennis(sunny,Temp, normal,Wind) ←

While this representation is probably simpler and more intuitive for the
playtennis example, it is harder to extend to the more general settings (such
as multi-instance learning, the topic of the next section). This explains why
we will focus on the other representations when learning from entailment
throughout the rest of this chapter.

When employing attribute-value representations, it is often implicitly as-
sumed that each example has exactly one value for each attribute. This as-
sumption can be formalized using the following constraints for each attribute
Ai with d(Ai) = {v1, . . . , vm}:

Xi = Yi ← r(X1, . . . , Xi, . . . , Xn), r(Y1, . . . , Yi, . . . , Yn) (4.1)
Xi = v1 ∨ . . . ∨ Xi = vm ← r(X1, . . . , Xi, . . . , Xn) (4.2)

The first constraint states that an example can only have one value for each
attribute Ai; the second one that this value belongs to the domain d(Ai). The
reader may want to write down the constraints for the playtennis example.

Boolean and attribute-value representations are collectively referred to as
propositional representations.

Exercise 4.7. How can one represent a boolean learning problem using
attribute-value representations? Can one also represent attribute-value learn-
ing problems using boolean representations? If so, are the two representations
equivalent? Or, is there something that is lost?

4.3 Multiple-Instance Learning: Dealing With Sets

An important extension of attribute-value learning is multi-instance learning.
The multi-instance representation is important because it lies at the border
of multi-relational learning and propositional learning.

Example 4.8. Assume you are a medical doctor investigating a particular ge-
netic disease and your goal is to identify the genes that regulate this disease.
Ultimately, you want to learn a decision rule that will allow you to predict
whether a given person will eventually suffer from the disease or not. There
is plenty of data available about the disease as many persons have undergone
a series of genetic tests. The outcome of these tests for each person has been
recorded in attribute-value format. However, the data is imperfect because
it is not known exactly which persons may actually suffer from the disease
(as this can only be determined for sure by means of expensive and elaborate
tests, which have not been carried out on the persons in your investigation).
All that is known is that certain families are carriers of the disease and others



4.3 Multiple-Instance Learning: Dealing With Sets 77

are not. Furthermore, persons belonging to a carrier family may, but need
not necessarily suffer from the disease. Being aware of this problem, the data
collectors have collected the data at the family level. There are two classes
of families. The first is the carrier type family, where the disease has already
occurred in the past, and the second, is the one where the disease has not yet
occurred. For each person of the carrier families there is experimental data.

Thinking about the problem you realize that there is an asymmetry in it.
Indeed, it is safe to assume that none of the persons belonging to non-carrier
families suffers from the disease, whereas for the carrier families it is reasonable
to assume that there exists at least one person who suffers from the disease.
At this point, you decide it is better to analyze the data at the family level
and to classify a person as being at risk with regard to the genetic disease if
he or she belongs to a family that is classified as a carrier. The representation
you propose describes each person using an attribute-value representation and
each family as a set or bag of such persons, and classifies families according
to whether they are carriers or not.

The question now is how to represent this type of problem. The main point
is that the examples now consist of a set of tuples in a table. In Table 4.2,
the examples are families, each of which corresponds to a set of persons, and
each person is described by a feature vector. So, a multi-instance example can
be represented using a single clause. For instance, the first example would
correspond to the clause

class(neg) ← person(aa, aa, aa, bb), person(aa, aa, aa, aa)

or, alternatively, using the interpretation,

{person(aa, aa, aa, bb), person(aa, aa, aa, aa)}.
Notice that the number of atoms in the examples for the predicate person
does not have to be equal to 1, and also that it may differ according to the
example. Thus, multi-instance learning examples are essentially sets of tuples.
This corresponds to the single-table multiple-tuple assumption.

To represent hypotheses, various approaches can be taken. The simplest
one is to employ the hypotheses language for attribute-value learning. Contin-
uing Ex. 4.8, a family is classified as carrier if there exists one person (that is,
one tuple) in the family for which the query succeeds. Under this assumption,
all positive and no negative examples (represented as clauses) in Table 4.2 are
covered by

class(pos) ← person(ab, bb,G3,G4).

This is the traditional multi-instance learning setting, where examples are
classified as positive if one of its instances satisfies some specified conditions.
This results in clauses having exactly one literal in their condition part.

Alternatively, more expressive hypothesis languages can be employed. Con-
sider clauses involving two conditions
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class(Class) ← r(t1, ..., tn), r(u1, ..., un)

in which no variable is shared by both literals. Such clauses cover an example
if there exist two tuples in the example satisfying the two literals (or one tuple
that satisfies both literals). Furthermore, the tuples are independent of one
another as no variables are shared amongst the literals. Problems involving
hypotheses languages involving two or more of such literals are sometimes
called multi-tuple learning problems. One might also allow for variables to
be shared among the literals in the hypotheses, and hence have tuples that
depend on one another. In such cases, one talks about multi-join learning.

Finally, let us remark that the multi-instance representation arises quite
naturally in some practical situations. Dietterich et al. [1997], who introduced
the term multi-instance learning, were motivated by a practical problem in
drug discovery. They describe an application where a candidate drug can be in
one of a number of conformations and where each conformation is described by
an attribute-value tuple. Furthermore, a candidate drug can be either active or
inactive. As it can be active on the basis of a single conformation, its natural
representation is multi-instance-based. Even though Dietterich et al. [1997] did
not employ a relational representation for modeling multi-instance learning
problems, the above exposition shows that this can easily be accomplished.

Table 4.2. A multi-instance example

Gene1 Gene2 Gene3 Gene4 Class

aa aa aa bb negative
aa aa aa aa

bb aa aa bb positive
ab bb aa bb
ab ab bb bb
ab ab bb aa

bb ab bb aa negative
aa bb aa bb
aa ab bb bb

ab bb bb bb positive
aa bb bb aa
bb bb aa aa
bb aa bb bb

Exercise 4.9. Assume that the maximum number of tuples within a multi-
instance example is lower than k. Can one then represent a multi-instance
learning problem using attribute-value representation? What are the problems
associated with this? (The solution to this exercise will be discussed in Sect.
4.11.)
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4.4 Relational Learning

From multi-instance learning, it is only a small step to relational learning.
Indeed, the only difference is that now multiple tables or relations can occur
in both examples and hypotheses. Such representations also form the basis
of relational databases. This is important from a practical perspective as the
data for many applications resides in relational databases. The database view
is also important from a more theoretical perspective as it indicates the key
advantage of using this type of representation: using relational representations
one can elegantly represent complex objects (sometimes called entities) as well
as relationships among the objects (as in the well-known Entity-Relationship
model in databases).

Example 4.10. Consider the participant, subscription, course and company re-
lations in Figs. 4.1 and 4.3. They contain information about different entities
(participants, courses, and companies) involved in a summer school. Indeed,
for each of the entities different attributes are contained in the database. For
instance, for participants, this includes the job type, the name and whether or
not the participant attends the party or not. In addition, two relationships are
modeled: the subscription relationship, which indicates which participant takes
which course, and the worksfor relationship, which indicates which participant
works for which company. Because the former relation is of type (n:m), it is
modeled by a separate relation. The subscription relation is of type (n:m)
because one participant can take multiple (m) courses, and vice versa, one
course can be taken by multiple (n) participants. In contrast, the worksfor re-
lation is of type (n:1) because a person can, in our restricted model, work for
only one company, but a company can have multiple employees. In such situ-
ations, it is usual to model this type of relationship using an extra attribute
in table participant.

The presence of (n:m) relations makes it very hard to model this type
of data using multi-instance or attribute-value representations. Multiple rela-
tions are needed to elegantly and compactly represent the information con-
tained in this problem. This is the so-called multi-table multi-tuple setting.
Examples can again be modeled in various possible ways. Furthermore, this
will typically depend on the entities of interest. In the summer school ex-
ample, is one interested in participants, in courses, in companies, or in the
summer school as a whole? In the last case, it is convenient to use a single
interpretation (consisting of all tuples in the tables of the database). One can
then look for clauses that represent genuine properties of the summer school
database. Consider, for example, the clause

P = no ← participant(N, J,C,P), subscription(N,C′), course(C′, L, advanced).

As the interpretation just described is a model for the clause, the clause reflects
a genuine property of the data.

Alternatively, if one is more interested in properties of the individuals or
the entities, one could employ clauses of the form
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attendsParty(adams) ←
participant(adams, researcher, scuf),
subscription(adams, erm),
subscription(adams, so2),
...

Observe that in this type of representation the target attribute Party of
participant is projected away as it is now represented by the target predi-
cate attendsParty. Without projecting away the attribute Party, learning the
relation attendsParty would be trivial. So, we are actually using the relations
in Fig. 4.2.

It is not straightforward how to construct clauses of the above type. For
completeness, all facts in the database should be included in the condition
part of the clause. This is usually not done because it is impractical. There
are two possible alternatives. First, syntactic restrictions on the clauses can be
imposed such that only the information relevant to the example is included.
This corresponds to imposing a syntactic bias on the examples. In the summer
school illustration, the following clause for blake could be employed:

attendsParty(blake) ←
participant(blake, president, jvt),
subscription(blake, erm),
subscription(blake, cso),
course(cso, 2, introductory),
course(erm, 3, introductory),
company(jvt, commercial).

This clause includes only those tuples that are directly concerned with
the participant blake, her company, the subscriptions she takes and the cor-
responding courses. Secondly, the globally relevant facts (such as those con-
cerning the courses and the companies) could be assembled in the background
knowledge, as will be explained in more detail in Sect. 4.9. One clause cov-
ering the example blake is attendsParty(N) ← participant(N, president,C). So,
typically, examples as well as hypotheses in multi-relational representations
consist of both multiple relations and multiple tuples (or atoms).

Example 4.11. Consider the Bongard problem listed in Fig. 4.4. Bongard prob-
lems contain six positive and six negative examples, and the task is to find
a description of the underlying concept. Can you guess what the concept is
in Fig. 4.4? The different scenes in the Bongard problem can be represented
using a relational representation. Indeed, two of the leftmost scenes can be
represented using the following clauses:

pos ← circle(c), triangle(t), in(t, c)
pos ← circle(c1), triangle(t1), in(t1, c1), triangle(t2)

So, the idea is to name the objects by constants and to explicitly represent
the relations that hold among them. Furthermore, a hypothesis that covers
all positive examples and no negative example is
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Name Job Company Party

adams researcher scuf no
blake president jvt yes
king manager pharmadm no
miller manager jvt yes
scott researcher scuf yes
turner researcher pharmadm no

(a) participant

Name Course

adams erm
adams so2
adams srw
blake cso
blake erm
king cso
king erm
king so2
king srw
miller so2
scott erm
scott srw
turner so2
turner srw

(b) subscription

Course Length Type

cso 2 introductory
erm 3 introductory
so2 4 introductory
srw 3 advanced

(c) course

Company Type

jvt commercial
scuf university

pharmadm university

(d) company

Fig. 4.1. The summer school database (adapted from [De Raedt et al., 2001])



82 4 Representations for Mining and Learning

Name Job Company

adams researcher scuf
blake president jvt
king manager pharmadm
miller manager jvt
scott researcher scuf
turner researcher pharmadm

(a) person

Name

blake
miller
scott

(b) attendsParty

Fig. 4.2. A variant of the summer school database

participant companycourse sub wfn                   m                                    n                    1

Fig. 4.3. The Entity-Relationship model for the summer school database

Fig. 4.4. A Bongard problem after [Bongard, 1970]. Reprinted with permission from
[Van Laer and De Raedt, 2001]

pos ← circle(C), triangle(T), in(T,C).

Finally, let us remark that even though Bongard problems are essentially
toy problems, they share many characteristics with real-life problems, for in-
stance, for analyzing molecules; cf. Ex. 4.22.

Exercise 4.12. Represent the famous train problem sketched in Fig. 4.5 using
a relational representation.
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Fig. 4.5. The train problem of Stepp and Michalski [1986]. Reprinted from [Stepp
and Michalski, 1986], page 53, c©1986, with permission from Elsevier
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4.5 Logic Programs

Since the early days of computer science, programmers have dreamed of in-
telligent computers that would not have to be programmed by hand but that
somehow could be automatically programmed. This question has been stud-
ied within the field of automatic programming. One approach pioneered by
researchers such as Alan Bierman, Philip Summers and Ehud Shapiro has
studied program synthesis from examples. Here, the program synthesizer or
learning system is given examples of the input-output behavior of the target
program and has to define the target program. If one chooses the logic pro-
gramming language Prolog as the representation language for examples and
programs, then inductive logic programming can be regarded as an approach
to program synthesis from examples. In the early 1990s, this setting received
quite some attention within the field of inductive logic programming.

Example 4.13. Consider the facts sort([1, 3, 4], [1, 3, 4]) ←, sort([3, 5, 4], [3, 4, 5]) ←
and sort([5, 4], [4, 5]) ← as positive examples in the learning from entailment
setting. A program (implementing insertion sort) in the form of a set of defi-
nite clauses that covers all these examples is:

insertsort(List,Sorted) ← isort(List, [],Sorted)
isort([],Acc,Acc) ←
isort([H|T],Acc,Sorted) ← insert(H,Acc,NAcc), isort(T,NAcc,Sorted)

insert(X, [], [X]) ←
insert(X, [Y|T], [Y|NT]) ← X > Y, insert(X,T,NT)
insert(X, [Y|T], [X,Y|T]) ← X =< Y.

This illustration shows that, in principle, the learning from entailment
setting can be used for synthesizing programs from examples. Positive exam-
ples then describe the desired input-output behavior of the unknown target
program, and negative ones specify a wrong output for a given input. As a
consequence of this view, many of the techniques developed in this book are
relevant for program synthesis, despite the fact that the dream of automated
programming has, so far, not become a reality. One reason why program syn-
thesis from examples is hard is that the typical program consists of a number
of subroutines. For instance, the program insertsort employs a number of aux-
iliary predicates such as insert and isort. To learn the top-level program, one
must also learn the subroutines, and at the same time, in a real-life setting,
one cannot expect examples for these intermediate predicates or routines to
be provided. Another reason for the difficulty of synthesizing programs from
examples is that the space of possible programs is enormous. At the same
time, the number of examples the user needs to provide in any realistic set-
ting must be small. These are contradictory requirements. Issues related to
program synthesis from examples will be explored further in Chapter 7 that
addresses theory revision, which is also concerned with learning auxiliary and
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intermediate predicates. The Model Inference System, developed in the early
1980s by Ehud Shapiro, will be employed there. It should be regarded as an
inductive logic programming system avant la lettre.

Another point to stress is that the key difference between the relational
representation used in the previous section and the logic program represen-
tation used for synthesizing programs is that the latter allows for the use
of functors and structured terms. This difference is akin to that between a
database and a programming perspective. Without functors and structured
terms, one would not have the expressive power of a programming language
(or Turing machine). At the same time, using functors and structured terms
in an unrestricted fashion is problematic for most inductive logic program-
ming techniques for a variety of reasons. One is that there is a combinatorial
explosion in the search space; another is concerned with the undecidability
of coverage tests. Even though theoretical aspects of functors and structured
terms are relatively well understood, one often has to restrict their use for
pragmatic reasons.

In the following three sections, we provide illustrations of specific situations
where functors and structured terms can be helpful. At the same time, these
three sections are concerned with traditional data structures and types, in
particular, strings and sequences, trees and graphs and networks. For these
three cases, we shall show how logic-programming-based representations can
be used to elegantly capture these data structures.

4.6 Sequences, Lists, and Grammars

Many observations can be naturally represented as strings or sequences. This
is particularly true in computational biology databases, where proteins, genes,
and DNA are typically represented using strings. Also, natural language and
streams of data (for instance, alarms that arise in a network) are strings of
symbols. As already stated in Chapter 3, a string s1s2...sn is a sequence of
symbols si taken from an alphabet Σ. A language L is then a set of strings
over an alphabet Σ. For instance, the string 10101000 over the alphabet Σ =
{0, 1} represents a number in binary notation.

Because of their simplicity and applicability, strings and sequences have
been widely studied in computer science and many results are known. The
most frequently used representation to define and manipulate formal lan-
guages, that is, sets of strings, is that of grammars. Various types of grammars
are known, and in this book, we concentrate on two of them: the context-free
and the definite clause grammars. Roughly speaking, grammars employ two
disjoint sets of symbols: the set of terminal symbols Σ (that is, the alpha-
bet of the formal language the grammar defines), and the set of non-terminal
symbols N . Furthermore, one non-terminal symbol is the so-called starting
symbol. These symbols are then used to define rules. For context-free gram-
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mars, the rules are of the form n → s where n is a non-terminal and s is a
string over N ∪ Σ.

Example 4.14. The following grammar G uses the terminals Σ ={the, dog, bites}
and the non-terminals N ={S,NP,VP,Verb,Art,Noun}:

S → NP VP Art → the
VP → Verb Noun → dog
NP → Art Noun Verb → bites

The language that this grammar accepts contains the single string the dog bites.

Note that grammar rules are very similar to clauses. The two differences are
that the symbol “→” is used instead of “←” and that the order of the symbols
on the righthand side of the rules is important. The similarity between clauses
and grammar rules is also useful for reasoning with grammars. Indeed, deriving
strings (such as the dog bites) from a grammar can be done using a resolution-
like mechanism.

Example 4.15. Starting from the grammar G, one can derive the following
sequence of rules:

S → NP VP
S → Art Noun VP
S → the Noun VP
S → the dog VP
S → the dog Verb
S → the dog bites

Given that S is the starting symbol, one can conclude that the string
the dog bites is accepted by the grammar G. Furthermore, this is the only
string that is accepted by our simple grammar.

The next rule n → b1 . . . bi−1a1 . . . anbi+1 . . . bm in the above sequence of rules
is obtained from the rules n → b1 . . . bm and bi → a1 . . . an where bi is the
rightmost non-terminal symbol in b1 . . . bm. This closely mirrors the resolution
inference rule. Abusing logical notation, we shall write

n → b1 . . . bm ∧ bi → a1 . . . an |= n → b1 . . . bi−1a1 . . . anbi+1 . . . bm (4.3)

This analogy between clausal logic and grammars can now be exploited for
data mining purposes. Assume we are given examples such as S → the dog bites
and S → the cat runs; then the grammar G together with the two rules
Verb → runs and Noun → cat covers the examples. So, a setting that is very
close to learning from entailment is obtained for working with sequences and
strings. This implies that the principles underlying the mining of sequences
are similar to those of relational data mining.

An alternative for employing grammars to represent formal languages is
to employ relational or logical notations. This is illustrated in the following
example.
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Example 4.16. Reconsider the grammar G introduced in Ex. 4.14. This gram-
mar can be represented in relational form as follows:

art(P1, P2, the) ← succ(P2, P1) s(P1, P2) ← np(P1, P3), vp(P3, P2)

noun(P1, P2, dog) ← succ(P2, P1) np(P1, P2) ← art(P1, P3, Art), noun(P3, P2, Noun)

verb(P1, P2, bites) ← succ(P2, P1) vp(P1, P2) ← verb(P1, P2, Verb)

where the variables starting with a P denote positions, and atoms such as
vp(P1,P2) succeed when the part of the sentence from position P1 to P2 is a
verb phrase (vp). The clause

s(0, 3) ←
art(0, 1, the), noun(1, 2, dog), verb(2, 3, bites),
succ(1, 0), succ(2, 1), succ(3, 2).

is covered by the grammar and it represents the sentence the dog bites. Instead
of using a relational formalism, the programming language Prolog can be
employed, yielding the following clauses:

art([the|X],X) ← s(P1,P2) ← np(P1,P3), vp(P3,P2)
noun([dog|X],X) ← np(P1,P2) ← art(P1,P3), noun(P3,P2)
verb([bites|X],X) ← vp(P1,P2) ← verb(P1,P2)

Because of the direct correspondence between this program and the context-
free grammar G of Ex. 4.14, this type of logic program is sometimes called
a definite clause grammar. The example sentence would now be represented
as s([the, dog, bites], []) ←. At this point, the reader familiar with Prolog may
want to verify that this example is entailed by the program.

To summarize, it is possible to represent sequential data and hypotheses using
relational or first-order logic. Furthermore, even the more traditional grammar
representations employ rules which are very close to clausal notation. This
implies that techniques and principles for learning relational representations
also apply to mining sequential data.

4.7 Trees and Terms

Several applications in domains such as web and document mining as well as
bioinformatics involve complex objects as examples. One of the most tradi-
tional data structures for representing such examples are trees. The natural
representation of trees is as logical terms because there is a one-to-one map-
ping from trees to terms.

Example 4.17. Natural language corpora often involve examples in the form
of parse trees. Some examples are listed in Fig. 4.6. They can be represented
using the following clauses or facts for the predicate parsetree:

parsetree(s(np(art(the), noun(dog)), vp(verb(eats), np(article(the), noun(rabbit))) ←
parsetree(s(np(art(the), noun(cat)), vp(verb(bites))) ←
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The following hypothesis covers the first example but does not cover the sec-
ond one. It is illustrated in Fig. 4.7.

parsetree(s(np(art(A), noun(N1)), vp(verb(V), np(art(A), noun(N2))) ←

s

vp

art noun verb np

art noun

the dog eats the rabbit

np

verbart noun

the cat

np

s

bites

vp

Fig. 4.6. Parse trees as examples

A

vp

art noun verb np

art noun

np

s

A N1 N2V

Fig. 4.7. A generalized parse tree

The above example clearly shows that tree-structured examples can natu-
rally be represented using logical terms. One of the advantages of using logical
terms for representing trees is that unification can be employed for pattern
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matching, which allows one to impose restrictions requiring that two subtrees
be identical. For example, the hypothesis in Ex. 4.17 only covers examples in
which the two articles are identical. One disadvantage of the use of standard
logical terms for representing trees is that unification imposes conditions from
the root towards the leaves of the trees, which makes it harder to express con-
ditions such as “there exists a subtree noun(dog)” in the tree. Because definite
clause logic can be used as a programming language, such hypotheses can still
be represented. Indeed, the clause parsetree(P) ← occursin(noun(dog),P) to-
gether with an appropriate definition of the predicate occursin/2 covers all
parse trees in which noun(dog) occurs. Typically, such additional predicates
have to be defined by the user and are part of the background knowledge; cf.
Sect. 4.9. Obviously, sequences can be represented using terms as well. This
is realized using lists.

Exercise 4.18. Implement the predicate occursin/2 in Prolog.

Exercise 4.19. Represent the example sequences and hypothesis from Ex.
4.14 using terms.

Exercise 4.20. Suppose you have data about sequences of events. How can
you represent a sequence as a logical term? Can you represent, using a query
of the above type, the concept of sequences in which a certain event e occurs?

Exercise 4.21. Can one represent trees using a relational representation, that
is, without using terms? (The solution to this exercise is discussed in Sect.
4.11.)

4.8 Graphs

Another powerful data structure that belongs to the folklore of computer
science is that of graphs. Formally, a graph (V,E) consists of a set V of vertices
and a set E of edges, where E is a relation over V × V . Several variants exist
that take into account labels of edges and vertices. Data in the form of graphs
arises in two quite different and yet natural settings. The first setting is where
each data point corresponds to a graph, and this setting is typically known
as graph mining. One quite popular application of graph mining is that of
mining sets of molecules. The second setting is where the data set itself is one
large graph. As an illustration, consider the world wide web. Each document
is a node in the graph and there are links among these nodes. The terms
link analysis and link discovery have recently become popular to describe
(aspects of) the second setting [Getoor, 2003]. Because of the importance of
and current interest in graph data, let us discuss these settings in more detail
and illustrate them using real examples.
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Example 4.22. Suppose you are a chemist faced with the problem of predicting
which compounds (or molecules) have a certain toxic effect (for instance, car-
cinogenicity, that is, causing cancer). The structure of the compounds under
consideration is diverse but crucial in causing the effect. The two-dimensional
structure of a simple molecule, named methane (CH4), is depicted in Fig. 4.8
on the left. This two-dimensional structure is essentially a graph. If one names
the vertices, that is, the atoms, in the graph, a relational representation can
be used to represent the graph (cf. the right of Fig. 4.8). For our example
molecule, we obtain the following description

atom(a1, c) bond(a1, a2, s)
atom(a2, h) bond(a1, a3, s)
atom(a3, h) bond(a1, a4, s)
atom(a4, h) bond(a1, a5, s)
atom(a5, h)

for representing the atoms and bonds. The s indicates that there is a single
bond among the atoms. Substructures can easily be represented by clauses.
For instance, the following substructure requires that there be two atoms of
the same type that are bonded to a carbon (c) atom:

substructure ←
atom(X, c), bond(X,Y,T),
atom(Y,T), bond(X,Z,W),
atom(Z,T), Y �= Z.

a5H a3

H

H

CH a1

a4

a2

Fig. 4.8. A molecule as a graph

Once the graphs are represented using relations, they can be treated as
any other multi-relational data set. Nevertheless, for some purposes, it may
still be useful to work with alternative representations for graphs, such as
adjacency matrices, directly. Such alternative representations may allow one
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to perform certain optimizations which may not be available for relational
representations.

Extracting information from the web and from documents is becoming
quite popular. To illustrate the domain of link analysis and discovery, let us
consider the task of analyzing a web site.

Example 4.23. Consider a university web site. It has pages on departments,
courses, lecturers, students, projects, etc. These pages can be represented as
labeled nodes in a graph. Furthermore, there are hyperlinks between these
pages, which correspond to the edges in the graph. In the literature on link
analysis and link discovery, one distinguishes several interesting mining tasks.
First, there is the task of classifying the nodes in the graph, that is, of finding
the labels of the nodes. In our university web site example, the classes would be
of type department, course, etc. Second, one can try to predict whether there
exists a link (or edge) between two nodes in the graph, and if so, the nature of
the underlying relationship. For the university web site, one can distinguish
several types of relationships. This includes faculty supervises student, lecturer
teaches course, department offers course, etc. Third, one can try to find the
authorities and hubs in the network. Hub pages typically contain a lot of links
to other pages; they correspond to guides and resource lists. Authorities are
important pages that are pointed at by hubs (and other pages). The data and
hypotheses for this type of link mining can again easily be represented using
relations. The university web site could include relations such as department/1,
course/1, lecturer/1, student/1, project/1, supervises/2, teaches/2, offers/2, ...

In addition to web mining, there exist other challenging and important ap-
plication areas for link discovery. Indeed, consider the task of analyzing a
database of scientific papers and authors such as Citeseer or Google Scholar,
customers and products at Internet-based companies such as Amazon, and
regulatory or protein networks in computational biology. Many of these tasks
can again be represented and addressed using relational representations.

Exercise 4.24. Discuss how to represent a database of scientific papers and
authors using a relational representation. Identify also interesting link discov-
ery tasks. (Some answers to this question are delivered by Getoor [2003].)

4.9 Background Knowledge

So far, two simplifying assumptions have been made. The first assumption is
that the data is available as a set of clauses or interpretations. The second
one is that the hypothesis has to be constructed from scratch, that is, that no
further knowledge is available to the mining or learning system. Both assump-
tions are often unrealistic and unpractical. The first assumption only holds
after the data have been preprocessed. Typically, however, one starts from a
given database such as the summerschool database specified in Fig. 4.1. To
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overcome the need to preprocess these examples in clauses or interpretations,
the typical approach in multi-relational data mining and inductive logic pro-
gramming uses a different notion of coverage and example. It employs a covers
relation that takes into account a body of background knowledge B specified
in a language Lb. In the presence of background knowledge, this leads to the
following definitions.

Definition 4.25. When learning from entailment in the presence of back-
ground knowledge, Le is a set of clauses, Lh and Lb are sets of logical formulae,
and c(H,B, e) = true if and only if H ∧ B |= e.

As before, logical theories (sets of clauses) are used as formulae.

Example 4.26. Reconsider the summer school example from Figs. 4.1 and 4.2
and represent the tuples that belong to these relations as facts. For instance,
the first tuple of the relation course becomes course(cso, 2, introductory) ←.
Now refer to the ensemble of facts corresponding to the summer school
database as B. The observation that blake attends the party can now be
represented by the fact attendsParty(blake) ←. This example is covered by
the clause attendsParty(P) ← participant(P, president,C) in the presence of the
database B specified in Fig. 4.2 and Fig. 4.1, where we employ the participant
table of Fig. 4.2.

Example 4.27. As another example, reconsider the Bongard problem of Ex.
4.11. To represent the data corresponding to these Bongard problems in a re-
lational database, we apply an identifier or name to each of the example scenes.
Instead of using the clause pos ← circle(c1), triangle(t1), in(t1, c1), triangle(t2),
we can then employ a database B containing the facts circle(e2, c1) ←,
triangle(e2, t1) ←, in(e2, t1, c1) ←, and triangle(e2, t2) ←, and the fact pos(e2) ←
as the example clause. Here, e2 is the identifier for the second leftmost scene
in the Bongard problem. The reader may want to verify that pos(e2) ← is
indeed covered by pos(E) ← circle(E,C), triangle(E,T), in(E,C,T).

The key advantage of using the database to store global information about
all the examples is that this is often easier if one starts from a given rela-
tional database. The key disadvantage is, however, that deciding whether a
given hypothesis covers an example is computationally more expensive. To see
why this is the case, consider that the summer school database contains in-
formation about a million participants. To check coverage with respect to one
example, one must access the whole database (which also contains information
about 999,999 uninteresting examples). This is likely to be computationally
more expensive than working with the more local representation that was dis-
cussed earlier. Using the earlier clausal representation of examples, one can
simply retrieve the example and check coverage. Given that the size of this
example is much smaller than that of the whole database, this is bound to
be more efficient. This type of local approach to representing the examples
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is also sometimes called an individual-centered representation [Flach et al.,
1998]. Note also that for some types of problems, such as the Bongard prob-
lems and the mining of molecules, the local representations are quite natural.
On the other hand, for some applications, such as those concerning link mining
and the summer school database, the global representations are more natural
as it is unclear how to turn the initial global representation into a local one.

The second assumption that was made implicitly is that the user pos-
sesses no background knowledge about the domain of interest. This assump-
tion violates one of the first lessons of artificial intelligence, which states that
knowledge is central to intelligence and learning. Therefore, knowledge must
be used whenever possible. It is often argued that one of the main advantages
of relational representations is that background knowledge is supported in a
natural way in the learning or mining process.

True background knowledge, as opposed to the database mentioned above,
then takes the form of clauses or rules that define additional predicates or
relations. In database terminology, background knowledge closely corresponds
to the intensional part of the database, and the facts concerning the examples
correspond to the extensional part.1 So, one can also consider background
predicates as view predicates. The idea is that these predicates can then be
used as any other predicate in the mining or learning process. This is possible
within both learning from entailment and learning from interpretations. This
time, however, we illustrate it on the latter setting.

Definition 4.28. When learning from interpretations in the presence of back-
ground knowledge, Le, Lb and Lh are sets of sets of clauses and c(H,B, e) =
true if and only if the minimal Herbrand model M(e ∧ B) is a model of H.

Example 4.29. Many variants have been developed of the item-set represen-
tation presented in Ex. 3.2. One of them concerns the use of a taxonomy to
make an abstraction of specific items or brands. Part of such a taxonomy is
shown in Fig. 4.9. It can easily be encoded as a set of clauses. For instance,
the leftmost branch of the taxonomy corresponds to the clauses:

product ← food food ← drink
drink ← softdrink softdrink ← coke
coke ← pepsi . . .

These clauses can now be used to complete examples. For example, the item-
set {hoegaarden, duvel, camembert}, the actual basket containing two famous
Belgian beers and French cheese, can now be completed by

{cheese, drink, alcohol, beer, food, product}

in the minimal Herbrand of the item-set. Using the completed examples en-
ables the discovery of association rules at various levels of abstraction, such as
beer ← cheese. Note that the taxonomy employed need not be tree-structured.
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softdrink ... ... camembert

product

nonfoodfood

drinks

coke

pepsi

...

cheese ... ...

cocacola

Fig. 4.9. A taxonomy of products in a supermarket

This example also illustrates one of the main points of the use of expres-
sive representation languages and background knowledge. It becomes possible
to emulate and represent many of the special cases and variants of existing
approaches that have been developed. In this context, the example illustrates
that a general relational association rule miner would be able to emulate the
traditional association rule mining setting with taxonomies. Of course, the
more general learner may pay a (computational) price for this generality; cf.
Chapter 6.

Example 4.30. Reconsider the Bongard problem or Ex. 4.11. There one could
employ clauses such as
1 Some of the early inductive logic programming systems were called extensional

because they were not able to employ intensional clauses.
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polygon(P) ← triangle(P)
polygon(P) ← square(P)
. . .
inside(O1,O2) ← in(O1,O2)
inside(O1,O2) ← in(O1,O3), inside(O3,O2).

Using these clauses, the example

{circle(c1), triangle(t1), in(t1, c1), triangle(t2), in(t2, t1)}

could be completed with the following facts

{inside(t1, c1), inside(t2, t1), inside(t2, c1), polygon(t1), polygon(t2)}.

Example 4.31. In molecular applications, such as the one presented in Ex. 4.22,
researchers have applied complex predicate definitions to define functional
groups and ring structures. One (slightly simplified) example of such a rule
defines a nitro group used in the mutagenicity application [Srinivasan et al.,
1996]:

nitro(Molecule,Atom0,Atom1,Atom2,Atom3) ←
atom(Molecule,Atom1, n, 38),
bond(Molecule,Atom0,Atom1, 1),
bond(Molecule,Atom1,Atom2, 2),
atom(Molecule,Atom2, o, 40),
bond(Molecule,Atom1,Atom3, 2),
atom(Molecule,Atom3, o, 40).

The last arguments of the relations bond and atom specify the bond and atom
type, respectively.

4.10 Designing It Yourself

Despite the several different types of representation introduced above, it might
still be hard to fit a given data set into one of these formats. In such cases, it
may be worthwhile to develop your own representation using the principles of
relational logic. This section presents a case study using relational sequences.
It shows that variants of the standard relational representations grounded
in the same methodology may well be beneficial for specific types of data
and applications. At the same time, it shows that the specific representations
employed within relational data mining are less important than the underlying
methodology.

Assume that you are interested in modeling users of computer systems.
Two types of data are of interest. On the one hand, there are sequences of
Unix commands that you want to analyze, and on the other hand, there are
sequences of web pages that specific users visit during a single session. The
raw data for these sequences appear as:
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emacs chapter2.tex, latex chapter2.tex, bibtex chapter2.tex,
xdvi chapter2.dvi, dvips chapter2.dvi, lpr chapter2.ps, ...

and

www.uni-freiburg.de,
www.informatik.uni-freiburg.de,
www.informatik.uni-freiburg.de/ml/,
www.informatik.uni-freiburg.de/kersting.htm,
www.machine-learning.org,...

At this point, there are various possibilities for representing these sequences.
There are also several levels of abstraction that can be used. At the lowest
level of abstraction, one might use the commands and web addresses as atomic
descriptions directly. This is, however, problematic because there are very
many of these atoms, and more importantly because the relations among the
different components of various commands or web pages get lost. For the
command sequences, the names of the files are important and are common
across different commands in the sequence, and for the web pages, the same
can be said about the domains. The next two alternatives are at a higher level
of abstraction.

The first is to directly encode the sequences in a relational format. For
instance, the command sequence could be encoded as facts:

emacs(1,chapter2,tex)←, latex(2,chapter2,tex)←, bibtex(3,chapter2,tex)←,
xdvi(4,chapter2,dvi)←, dvips(5,chapter2,dvi)←, lpr(6,chapter2,ps)←, ...

Here, the sequential aspect is captured by the first argument of the predicates,
containing the number of the command in the sequence. Working with this
relational representation requires the use of relations, such as the successor
succ/2 predicate, in the background knowledge to work with these numbers.
Within this representation, the pattern of an emacs command followed by
a latex command for the same file would be represented by a clause such
as pattern(F) ← emacs(N,F, tex), latex(M,F, tex), succ(M,N). Although inter-
esting patterns can be represented, the sequential nature of the data is only
represented implicitly and is rather complex to handle. Instead of the expected
two conditions in the pattern, one for emacs and one for latex, there are three:
one additional one for taking care of the sequential aspect.

The third option is to represent the sequences using lists in Prolog:

seq([emacs(chapter2, tex), latex(chapter2, tex), bibtex(chapter2, tex),
xdvi(chapter2, dvi), dvips(chapter2, dvi), lpr(chapter2, ps), ...])

Whereas this is again possible and alleviates the need to employ numbers, it
also complicates the description of natural patterns. For instance, the above
pattern would be represented using the following set of clauses:

pattern(F, [emacs(F, tex), latex(F, tex)|Rest]) ←
pattern(F, [Head|Tail]) ← pat(F,Tail).
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This definition is not only recursive, it is also quite complex, which implies
that it will be hard to generate using an inductive logic programming system.

So, why not employ a slightly different representation for sequences and
hypotheses? Let us use the notation

emacs(chapter2, tex) latex(chapter2, tex) bibtex(chapter2, tex)
xdvi(chapter2, dvi) dvips(chapter2, dvi) lpr(chapter2, ps)...

to denote sequences, and

← emacs(F, tex) latex(F, tex)

to denote a pattern. Furthermore, a pattern p1 . . . pn covers a sequence
s1 . . . sm if and only if there exists a substitution θ and a number i ∈
{1, . . . , m} such that p1θ = si ∧ . . . ∧ pnθ = si+n−1. This setting will be
referred to as that of logical sequences. Note that the above pattern covers
the above sequence of commands with i = 1 and θ = {F ← chapter2}. Employ-
ing the logical sequence representation is not only much simpler and natural
than the ones previously discussed, it is also much more efficient. It can be
shown that one can decide whether a sequential pattern covers a sequence of
atoms in polynomial time.

Exercise 4.32. * Design the equivalent of clauses to encode background
knowledge in the logical sequence setting. (Hint: use a representation based
on grammar rules.)

4.11 A Hierarchy of Representations*

In the first few sections of this chapter, various representation formalisms
have been introduced. The most important ones were: boolean representa-
tions (BL), attribute-value representations (AV ), multi-instance representa-
tions (MI), relational representations (RR) and, finally, logic programs (LP ).
In this section, we investigate the representational power of these formalisms,
and show that they form a hierarchy in the sense that any data set (and corre-
sponding hypothesis) that can be represented using attribute-value represen-
tations, can also be represented in multi-instance format, and correspondingly
for the other representations.

To investigate the relationships among these representations in more de-
tail, we assume that learning tasks are characterized by their set of examples
E, that the learning from interpretation settings is being used and that the
hypotheses in Lh are sets of clauses of the form:

h ← l1, . . . , ln (4.4)

Further requirements on Lh and Le are imposed by the different representa-
tional languages:
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• Boolean representations (BL) require that all predicates be of arity 0.2

• Attribute-value representations (AV ) require that n = 1, that no functors
be used, and that each example contain exactly one fact.

• Multi-instance representations (MI) require that n = 1 and that no func-
tors be used. For multi-tuple and multi-join problems, n can be larger than
1.

• Relational representations (RL) require that no functors be used and that
the number of constants (the domain) be finite.

• Logic programs (LP ) do allow for functors and structured terms.

In addition, for BL, AV L, MI and RL, clauses will typically contain atoms
of the form class(value) whereas for LP they will typically take arguments as
well. We shall treat the former case by referring to the binary case, that is,
by employing the atom positive in the conclusion part.

We say that a learning problem, characterized by the set of positive and
negative examples E ⊆ LeR

, is representable using the representation R if
there exists a hypothesis h ∈ LhR

that covers all positive examples of E
and none of its negative examples. For instance, the playtennis illustration
of Ex. 4.5 is representable using AV and the carrier example of Ex. 4.2 is
representable using MI. It is now easy to see that the playtennis example
is also representable using MI (because LeAV

⊆ LeMI
and LhAV

⊆ LhMI
).

However, because we are also interested in investigating the other direction,
it is worthwhile to introduce the notion of a reduction. Reductions are used
in the theory of computer science for investigating the relationships amongst
various representations and computational problems.

Given two representations X and Y , we say that X is reducible to Y ,
notation X � Y , if and only if there exist two functions fe : LeX

→ LeY
and

fh : LhX
→ LhY

such that h covers e if and only if fh(h) covers fe(e). Thus
the function fe maps examples from representation X to Y , and the function
fh does the same for hypotheses. The two functions fe and fh are together
called a reduction. The definition actually implies the following property:

Property 4.33. If a learning problem E is representable using X, and X is
reducible to Y , then fe(E) is representable using Y , where fe(E) = {fe(e)|e ∈
E}.

This property is important because it allows one to solve a learning problem
in X using a learning algorithm for Y . This involves transforming the set of
examples E into fe(E) and generating a solution hY ∈ LhY

. The hypothesis
hY will then cover all positive examples in fe(E) and none of the negative
examples. It can also be used to predict whether unseen examples e (in LeX

)
are covered by the unknown target concept by testing whether hy covers fe(e).
Notice that this notion of reducibility does not require fh to be a bijection. If
2 In boolean representations, it is also typical to allow for negative literals, that is,

negated conditions, in clauses.



4.11 A Hierarchy of Representations* 99

fh were a bijection, it would be possible to map the found solution hY back
to a hypothesis f−1

h (hY ) represented in X.
As one trivial example of a reduction, consider the reducibility from MI

to RL by using the identity functions for fe and fh. As similar reductions
exist for the other representations in the hierarchy:

Property 4.34. BL � AV � MI � RR � LP.

Because reductions � are transitive, Proposition 4.34 implies that any
boolean mining problem can be solved using an inductive logic programming
system. This confirms the intuition that one can indeed use an algorithm
with a richer representation than required to solve a given learning problem.
However, in practice, this is not always a good idea. The reason for this
is one of the basic lessons from computer science: expressiveness comes at a
computational cost. Indeed, there is a trade-off between the two. It states that
more expressive formalisms are typically computationally more expensive as
well. This is to be expected because simpler representations can usually be
better optimized. Therefore, it is often more effective and efficient to work
within the original representations if possible. Nevertheless, the reader should
keep in mind that systems working within the richer representations can often
serve as benchmarks.

Defining a hierarchy of representations is useful. However, it is also useful
to know whether the hierarchy is proper, that is, whether there exist repre-
sentations X and Y in our hierarchy that X not only reduces to Y but Y
also reduces to X. This issue has received quite some attention (and even
controversy) in the machine learning community for AV and RL. The rea-
son for this is that if RL were reducible to AV then there would be no need
to develop learning and mining systems that directly work with relational
representations. Then one could still formulate relational problems and solve
them using traditional algorithms. Let us therefore try to shed some light
on the answers to these questions using the notion of reducibility just intro-
duced. In doing so, we do not resort to formal proofs and definitions, but
rather try to illustrate the key issues, arguments and transformations by ex-
ample. The reductions introduced also form the basis for many of the popular
and practical approaches to propositionalization. Propositionalization is the
process of generating a number of useful attributes or features starting from
relational representations and then using traditional propositional algorithms
for learning and mining. So, propositionalization techniques employ a kind of
incomplete reduction. They are discussed in more detail in the next section.

4.11.1 From AV to BL

First, there is the question of whether AV � BL; cf. Ex. 4.7. Provided that
all the attributes are discrete, this is indeed the case as indicated in the next
example, which also explains why both AV and BL are commonly referred to
as propositional representations.
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Example 4.35. Reconsider the playtennis example of Table 4.1. Each attribute
Att with its corresponding domain d(Att) can be mapped onto a set of boolean
variables that indicate whether Att = value. For instance, the first example
in Table 4.1 corresponds to the interpretation

{′outlook = sunny′, ′temp = hot′, ′humid = high′, ′windy = no′}.

where ′outlook = sunny′ denotes the propositional variable yielding the value
true when the attribute outlook has the value sunny, and false otherwise. All
other propositional variables in this example do not occur in the interpre-
tation, and hence are false. In a similar vein, one can transform rules from
attribute-value format to boolean format.

It is easy to see that the two mappings just introduced form a reduc-
tion from AV to BL. When applying the reductions in a practical setting,
one must realize that the constraints shown in Eqs. 4.1 and 4.2 are no
longer automatically satisfied, and hence are lost in the reduction. These
constraints specified that for each attribute and example there is exactly
one value. When looking at, for instance, the attribute outlook with do-
main {sunny, rainy, overcast}, the boolean representation no longer guaran-
tees that when the proposition ′outlook = sunny′ is true the propositions
′outlook = overcast′ and ′outlook = rainy′ must be false.

4.11.2 From MI to AV

Secondly, let us consider how to reduce a multi-instance problem to an
attribute-value representation, that is, how MI � AV . A reduction for this
case must map every multi-instance example onto a single tuple in a single
table.

The first naive approach to reducing MI to AV imposes an upper bound
on the number of possible instances in an example.

Example 4.36. Consider the multi-instance example

{object(red, triangle), object(blue, circle)}

The number of instances for this example is 2 and assume that this is also an
upper bound. At this point, one might map this example onto

{obj2(red, triangle, blue, circle)}

The reduced example has twice the number of attributes as the original one.

There are several problems with this approach. First, the reduced example
is not unique. Indeed, in the above example, it was implicitly assumed that
the red triangle was the first instance and the blue circle the second one.
Multi-instance examples are, however, unordered, and therefore an equivalent
reduced example would be
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{obj2(blue, circle, red, triangle)}
In general, the number of such equivalent representations will be exponential
in the number of possible instances. Furthermore, this effect will carry over to
the level of hypotheses, for example, the clauses pos ← obj2(blue,X,Y,Z) and
pos ← obj2(X,Y, blue,Z). Secondly, if the number of instances in an example
varies, then one needs to introduce null values for some of the attributes. A
null value indicates that the value of the attribute is not defined. For instance,
the example containing a single object, a red square, could be represented as
{obj2(red, square, nil, nil)}. These problems show why the naive approach is
problematic in practice.

The second idea always applies provided that the hypothesis space is
known and finite. In this case, the idea is to explicitly enumerate all the
rules in the hypothesis space and to test whether they cover the example or
not. This implies that for each rule one introduces a boolean variable, which
is true if the rule covers the example, and false otherwise.

Example 4.37. Reconsider the multi-instance example

{object(red, triangle), object(blue, circle)}
Depending on the domain of the attributes of the relation object, propositional
features corresponding to the following queries are possible:

← object(X,Y) ← object(red, triangle)
← object(red,X) ← object(red, circle)
← object(blue,X) ← object(blue, triangle)
← object(Y, circle) ← object(blue, circle)
← object(Y, triangle)

These can now be employed to describe the original example. Indeed, each
of these attributes has the value true or false. Hence, one can describe the
example using the following propositional interpretation:

{′object(X,Y)′, ′object(red,X)′, ′object(blue,X)′,
′object(Y, circle)′, ′object(red, triangle)′, ′object(blue, circle)′}

where ′object(X,Y)′ denotes the propositional variable corresponding to the
query ← object(X,Y).

Observe also that every multi-instance rule can now be represented as a rule
of the form class ← query where query is one of the generated features. Rules
with conjunctive conditions actually correspond to multi-tuple hypotheses.

So, the above example illustrates a true reduction. On the other hand, it
is clear that the reduction is computationally expensive and the size of the
resulting table explodes. Therefore the reduction is not efficient and is to be
avoided in practice. Nevertheless, some propositionalization approaches exist
that heuristically generate a useful (but limited) set of queries in this way; cf.
the next section. A further significant problem with this reduction is that the
structure on the hypothesis space – the is more general than relation, used by
most mining and learning systems is lost; cf. Chapter 5.
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Exercise 4.38. In Ex. 4.37, if one only employs the leftmost queries, does
one still have a reduction?

4.11.3 From RL to MI

The next question to address is whether relational learning problems can
be transformed into multi-instance learning problems. The main difference
between these two types of representations, is that relational representations
allow − as their name indicates − for multiple relations. So how can one then
reduce these multiple tables to a single table? The theory of databases has
introduced the notion of the universal relation for this purpose. The universal
relation consists of the Cartesian product of the underlying relations. This
concept can directly be applied for obtaining a reduction.

Example 4.39. Let us illustrate this concept on a reduced version of the
summer school database, in which there is only one participant, scott, two
courses, erm and srw, and two companies, scuf and pharmadm. Let us as-
sume that all tuples involving any other course, company or participant have
been deleted from Fig. 4.1. The resulting relations as well as the universal
relation over these relations are shown in Fig. 4.10. The relational example
participant(scott, researcher, scuf) is now turned into 1× 2× 2× 2 = 8 tuples
for a single relation. Also, any clause over the relations in the original database
can be expanded into a clause over the universal relation. For instance, the
clause

attendsParty(P) ←
participant(P, researcher,C),
subscription(P,C′),
course(C′, L, advanced)

corresponds to

attendsParty(P) ← ur(P, researcher,C,P,C′,C′, L, advanced).

Reducing clauses involving more than one occurrence of a predicate may re-
quire a multi-tuple hypothesis rather than a multi-instance one.

The previous example can easily be generalized from the summer school
database context. It shows that in general it is possible to reduce a relational
learning problem to multi-instance (or multi-tuple) learning one. Nevertheless,
it should also be clear (from database theory as well as the above example)
that this reduction is combinatorially explosive and therefore not to be used
in practice. For instance, for applications in computational chemistry, such
as that illustrated in Ex. 4.22, small molecules have 40 atoms and 80 bonds.
Whereas the original relational representation would involve about 120 tuples,
the Cartesian product would already contain 3,200. This is computationally
prohibitive. Nevertheless, the above reduction is sometimes adapted for propo-
sitionalization, as will be explained in the next section.

Notice that because RL � MI and MI � AV , RL can also be reduced to
AV by applying the two reductions in sequence.



4.11 A Hierarchy of Representations* 103

Name Job Company

scott researcher scuf

(a) participant

Name Course

scott erm
scott srw

(b) subscription

Course Length Type

erm 3 introductory
srw 3 advanced

(c) course

Company Type

scuf university
pharmadm university

(d) company

Name Job Company Name Course Course Length Type Company Type

scott res. scuf scott erm erm 3 intro. scuf univ.
scott res. scuf scott srw erm 3 intro. scuf univ.
scott res. scuf scott erm srw 3 adv. scuf univ.
scott res. scuf scott srw srw 3 adv. scuf univ.
scott res. scuf scott erm erm 3 intro. pdm univ.
scott res. scuf scott srw erm 3 intro. pdm univ.
scott res. scuf scott erm srw 3 adv. pdm univ.
scott res. scuf scott srw srw 3 adv. pdm univ.

(e) the universal relation

Fig. 4.10. The short summer school database

4.11.4 From LP to RL

The remaining question concerning our hierarchy is whether LP � RL. Upon
a first investigation, this seems implausible, because LP is a programming
language and RL is not. Nevertheless, there exists a useful transformation
from LP to RL that is, however, not a proper reduction. It is the so-called
flattening operation introduced by Rouveirol [1994].

There are basically two important differences between logic programs and
relational expressions. First, logic programs may contain recursive definitions,
such as the successor, ancestor, member or append relations. As there also
exist extensions of relational databases, such as Datalog, that support re-
cursion, we will not further deal with this aspect of the representation here.
Dealing with recursive clauses in an inductive logic programming setting will
be discussed in Chapter 7. Secondly, logic programs may contain structured
terms that represent the underlying data structures such as lists and trees; cf.
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Sect. 4.7. The flattening transformation takes as input a single clause involv-
ing structured terms and generates a flattened clause (without functors) and
a number of facts. To flatten a clause involving structured terms, introduce
for each functor f of arity n a new predicate pf of arity n + 1. The predicate
pf is then defined by the fact pf (X1, ...,Xn, f(X1, ...,Xn)) ←. This type of
predicate will be called a functor predicate. More formally:

Definition 4.40. Let c be a clause; then flat(c) =

if c contains a structured term f(t1, ..., tn), then return flat(c′) where c′ is c
with all occurrences of f(t1, ..., tn) replaced by V and with pf (t1, ..., tn, V )
added to the condition part of c;
return also the fact pf (X1, ...,Xn, f(X1, ...,Xn)) ←;

otherwise return c.

Example 4.41. Flattening the member program, that is, the two clauses

member(X, cons(X,Y)) ←
member(X, cons(Y,Z)) ← member(X,Z).

(where we use cons(X,Y) to denote the list [X|Y]) yields

member(X,V) ← pcons(X,Y,V).
member(X,V) ← pcons(Y,Z,V), member(X,Z).
pcons(X,Y, cons(X,Y)) ←

The inverse operation is called unflattening and is defined as follows:

Definition 4.42. Let c be a clause, then unflat(c) =

if c contains a literal referring to a functor predicate pf , then return unflat(c′)
where c′ is the resolvent of the fact pf (X1, ...,Xn, f(X1, ...,Xn)) ← with
the clause c;

otherwise, return c.

Unflattening a flattened clause yields the original clause again:

Property 4.43. If c is a clause then unflat(flat(c)) = c, provided that the
functor predicates are known.

Flattening also preserves entailment:

Property 4.44. When P is a definite clause program, c a clause, and c and P
do not contain any functor predicates, then P |= c if and only if flat(P ) |=
flat(c).

Despite these properties, the flattening clauses do not yield theories in rela-
tional form. The reason is that the flattening removes functors from clauses
only to add them back through the definition of the functor predicates. Thus,
flattening is only useful to manipulate single clauses; it does not really help
at the program level. In order to be able to transform full programs into re-
lational form, many practitioners of inductive logic programming have often
employed a variant of the flattening operation that works on sets of ground
facts or interpretations.
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Definition 4.45. Let q(t1, ..., tn) be a ground fact. The flattened interpreta-
tion flati(I) of an interpretation I is

flati(I) =
⋃

q(t1,...,tn)∈I

({q(ct1 , ..., ctn
)} ∪

{fp(cu1 , ..., cum
, cf(u1,...,um))|f(u1, ..., um)is a sub-term of some ti})

where each ct denotes a unique constant.

Example 4.46. Flattening the interpretation I

{append([1], [2], [1, 2]); partition(2, [1], [1], []); sort([], []);
sort([1], [1]); sort([2, 1]), [1, 2])}

yields flati(I):

{append(c[1], c[2], c[1,2]), partition(c2, c[1], c[1], c[]), sort(c[], c[]),
sort(c[1], c[1]), sort(c[2,1], c[1,2]) consp(c1, c[2], c[1,2]),
consp(c1, c[], c[1]), consp(c2, c[1], c[2,1]), consp(c2, c[], c[2])}.

This operation has been used in many attempts to synthesize programs
from examples using systems that employ relational representations only.
These systems started by flattening the examples, such as sort([2, 3, 1], [1, 2, 3]),
and then adding the resulting interpretation to the relational database. When
applying this transformation, the reader should keep in mind that it is not a
proper reduction and also that the transformation is combinatorially explo-
sive. The reason for this is that the converse of the following property does
not hold, as illustrated in the example below.

Property 4.47. If I is an interpretation that is a model for the clause c a clause,
then flati(I) is a model of flat(c).

Example 4.48. The reader may first want to verify that the property holds for
the interpretation specified in Ex. 4.46 and the clause

sort([A|B],S) ←
partition(A,B,C,D), sort(C,E),
sort(D,F), append(E, [B,F],S).

Example 4.49. Consider the clause nat(s(X)) ← nat(X), stating that the suc-
cessor of X is a natural number if X is a natural number. Although the inter-
pretation {nat(s(0)), nat(0)} is not a model for the clause, it is easily verified
that the flattened interpretation {nat(cs(0)), nat(c0), sp(c0, cs(0))} is a model
of the flattened clause nat(Y) ← sp(X,Y), nat(X).
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4.12 Propositionalization

The previous section introduced a hierarchy of representations and studied the
relationships among the various representational formalisms. It was shown
that some representational formalisms can be reduced to one another. For
instance, RL problems can be reduced to MI form, and MI problems can
be reduced to AV format. On the other hand, it was also argued that these
reductions cannot be applied on real data sets because of the enormous com-
putational costs and combinatorics involved. At this point, the question arises
as to whether it might be possible to control the combinatorial explosion in
some way. When it is impossible to compute the reduced data set, one might
still attempt to approximate it. An approximation to a complete reduction in
AV form is called a propositionalization. It might be an approximation in the
sense that the functions fe and fh are not a reduction in the formal sense, that
is, for some examples e and hypotheses h, c(h, e) �= c(fh(h), fe(e)); in other
words, the coverage of h w.r.t. e might be different than that for fh(h) and
fe(e), which would imply that some information is lost in the transformation.
If such inconsistencies occur only very rarely, the transformation might still
be useful, because the propositionalized problem might still capture many es-
sential features of the problem, and a traditional propositional learner may
be applied successfully to the propositionalized problem.

One advantage of such propositionalization is that the whole set of tra-
ditional learning algorithms, including neural networks, statistics, support
vector machines and so on, can be applied to the propositionalized problem.
The disadvantage is that the propositionalized problem might be incomplete
and that some information might get lost in the propositionalization process.
In the past few years, many approaches to propositionalization have been de-
veloped. The majority of these directly transform a relational description into
an attribute-value one, though some also consider the intermediate level of
multi-instance descriptions; cf. [Zucker and Ganascia, 1998]. In line with the
philosophy of the book, we sketch in the remainder of this section two different
types of propositionalization and discuss some general issues, rather than pro-
vide a detailed survey of the many specific approaches to propositionalization
that have been developed over the past few years.

4.12.1 A Table-Based Approach

The first approach to propositionalization builds an approximation of the uni-
versal relation sketched in Sect. 4.11.3. It typically employs the learning from
entailment setting, and starts from a set of positive and negative examples
(in the form of ground facts) as well as from a clause h ← b1, . . . , bm defin-
ing the unknown target predicate. It then computes all substitutions θ that
ground the clause and for which hθ is an example and all the biθ are true.
The resulting substitutions are then listed in a table together with the class
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of the example hθ. Let us demonstrate this technique on the summer school
database.

Example 4.50. Consider the attendsParty predicate of Fig. 4.2. The resulting
table for the clause

attendsParty(P) ← participant(P, J,C), company(C,T)

is shown in Table 4.3. Each example (person in this case) is represented by a
single row in that table. Furthermore, the class of the example corresponds to
the Party attribute. This table can directly serve as input for an attribute-value
learner. The only further preprocessing still needed is that the argument of the
attendsParty predicate, that is, the attribute Name (the column for the variable
P), be dropped. An attribute-value rule learner might then come up with a
rule such as ′Party = yes′ ← ′Job = researcher′ which could be transformed
backwards into the clause

attendsParty(P) ← participant(P, researcher,C), company(C,T).

P J C T Party

adams researcher scuf university no
blake president jvt commercial yes
king manager pharmadm university no
miller manager jvt commercial yes
scott researcher scuf university yes
turner researcher pharmadm university no

Table 4.3. A propositionalized version of the summer school database

One refinement of the table-based approach is concerned with removing
identifiers. In the previous examples, the attribute Name has been removed
because it corresponds to an identifier that is specific to the example and
that is of no further interest. However, there may be further relations in
the database that contain such identifiers, for instance, the novel relation
isMarriedTo/2, which could motivate the use of the clause

attendsParty(P) ← participant(P, J,C), company(C,T), isMarriedTo(P,W).

As one is typically not interested in the names of the persons, but only in
whether the person in question is married or not, instead of adding an at-
tribute Wife one might add the attribute IsMarried, which is true if the query
← isMarried(P,W) succeeds. Notice that the dimensions (and therefore its

complexity) of the table are controlled by the clause one starts from. The
clause thus constitutes a syntactic bias as it restricts the syntax of the hy-
potheses that can be generated.
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The table-based approach as sketched so far only works when the obtained
table satisfies the single-tuple assumption: every example should be mapped
onto a single tuple. In general, this will not be the case. For example, if the
clause

attendsParty(P) ← participant(P, J,C), company(C,T), subscribes(P,C′)

is used, there are multiple tuples for some of the participants in the table. So,
a multi-instance problem would be obtained rather than an attribute-value
one, and therefore, a multi-instance learning algorithm could be applied. As
far as the author knows, the use of multi-instance learners in propositional-
ization has not yet been investigated systematically. If on the other hand,
an attribute-value representation is targeted, then one should only follow re-
lations of type (n:1) and (1,1) when starting from the target relation. This
concept has been formalized in the inductive logic programming literature un-
der the term determinacy ; cf. Muggleton and Feng [1992], which guarantees
that the resulting problem is in attribute-value format (cf. also Sect. 10.2).

Exercise 4.51. Assume that the target relation in the summer school database
is subscription. Specify a feasible clause that results in an attribute-value repre-
sentation, and specify one that yields a proper multi-instance representation.

4.12.2 A Query-Based Approach

The second approach has already been demonstrated in Ex. 4.37 when dis-
cussing the reduction from multi-instance to attribute-value learning. The idea
there can be generalized. Essentially, one starts from a language of queries Lq

which specifies the set of possible queries. A complete transformation then
employs all queries expressible in this language. Whereas the language in Ex.
4.37 allowed for a single occurrence of the predicate object, in a general re-
lational setting, one will typically employ more complex relational queries
involving multiple literals. For instance, in the Bongard problem illustrated
in Ex. 4.11, one might employ, for instance, the following queries:

← triangle(T)
← circle(C)
← triangle(T), in(T,C)
← triangle(T), in(C,T)

The naive approach to query-based propositionalization generates all
queries that are expressible within the language Lq. To keep the number of
such queries within reasonable limits, the user must either carefully engineer
the language Lq or else filter the features so that only the most interesting
ones are retained. Even though there is a wide range of query-based proposi-
tionalization techniques available, the underlying principles often remain the
same.

To illustrate engineering the language Lq, consider the choices made in
the first propositionalization system, Linus, by Lavrač et al. [1991]. If the
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goal is to learn a target predicate p/n, Linus learns clauses of the form
p(V1, . . . , Vn) ← b1, . . . , bm where the variables Vi are the only possible ar-
guments of the atoms bi. The queries in the language Lq then correspond
to all the atoms bi that can be constructed in this way. For instance, when
learning the predicate daughter(X,Y) in terms of parent, male and female, the
language Lq contains queries corresponding to the following atoms (where we
have abbreviated the predicate names):

p(X,X), p(Y,Y), p(X,Y), p(Y,X),m(X),m(Y), f(X), f(Y).

Two approaches exist to filtering the features. One approach imposes hard
constraints on the features of interest. A popular constraint is to require that
the query succeeds for at least x instances, where x is a user-set threshold. This
corresponds to imposing a minimum frequency threshold in frequent pattern
mining; cf. Sects. 3.4 and 6.5. The other approach heuristically searches the
space of possible queries and evaluates each query according to some measure
of interestingness. This search process resembles that of rule learning (cf.
Sect. 6.3) and indeed heuristic query-based approaches are often variants of
rule learners, or they post-process rules generated by a multi-relational rule
learner; cf. [Srinivasan and King, 1999a].

The existing approaches to propositionalization fall into two categories.
The static ones first propositionalize and then run the attribute-value learner.
The dynamic ones intervene the propositionalization and mining processes.
They incrementally generate a number of features and use these for learning.
If the quality of the learned hypothesis is not satisfactory, new features are gen-
erated and this process is repeated until there is no more improvement. Most
of the present propositionalization approaches are static, but see [Landwehr
et al., 2007, Popescul and Ungar, 2007] for two dynamic propositionalization
approaches.

4.13 Aggregation

When querying a database, the specific tuples that belong to a certain table
may be less interesting than the aggregated information over the whole ta-
ble. Aggregation is related to propositionalization because it also reduces the
available information, and presents it in a more compact form, most often re-
sulting in a loss of information. Aggregated attributes are typically functions
of either all tuples in a table or of a specific attribute in the table. Example
aggregate functions include:

• COUNT, which counts the number of tuples in the table, or the number
of values for an attribute,

• SUM, which computes the sum of the values for a specific attribute,
• AVG, which computes the average of the values for a specific attribute,
• MIN and MAX, which compute the minimum and maximum values for a

specific attribute.
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Aggregate functions can easily be integrated into our logical framework.
The syntax and the formalization used is based on the work of Vens et al.
[2006] though slightly modified for our purposes. We gradually introduce it
by example.

Example 4.52. Consider the summer school database listed in Fig. 4.1. The
expression

COUNT{Course|subscription(adams,Course)}

first constructs the table listing all answer substitutions for the variables
Course in the query subscription(adams,Course), resulting in Fig. 4.11a. It then
applies the aggregate Count to the tuples in this relation. As adams subscribes
to three courses, the value of the expression is 3.

In Prolog, it is common to write queries such as ← M is 5 + 3, where the
expression is denotes that the first argument (M) unifies with the result of
evaluating the second expression, which is the result 5 + 3, that is, the value
8. When working with aggregates, we also allow the second argument to be
expressions involving aggregates. The results can then be used as any other
expression in Prolog. In this way, it is possible to simulate a kind of group-by
statement, as in the relational database language SQL.

Example 4.53. Consider the clause

result(Part,C) ← C is COUNT{Course|subscription(Part,Course)}

which corresponds to the SQL statement

SELECT Part, COUNT(Course) FROM subscription GROUP BY Part

Because there are multiple participants, the aggregate COUNT first computes
the table of answer substitutions for the query ← subscription(Part,Course)
in Fig. 4.12a, and then applies the function COUNT to each of the different
answer substitutions grouped by Part. In this way, the number of courses per
participant are counted. The resulting predicate is shown in extensional form
in Fig. 4.12b. We shall employ the convention that the answer substitutions
are grouped by those variables that appear also outside the query in the set.
In our example, Part also appears in the conclusion part of the clause defining
the result predicate.3

The aggregated predicate definitions can now be used like any other pred-
icate. For example, the clause

attendsParty(Part) ← COUNT{Course|subscription(Part,Course)} � 2

3 This convention is similar to the semantics of the well-known bagof/3 and setof/3
predicates in Prolog.
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Course

erm
so2
srw

(a)

COUNT

3

(b)

Fig. 4.11. Computing COUNT{Course|subscription(adams, Course)}

Part Course

adams erm
adams so2
adams srw
blake cso
blake erm
king cso
king erm
king so2
king srw
miller so2
scott erm
scott srw
turner so2
turner srw

(a) Answers.

Part C

adams 3
blake 2
king 4
miller 1
scott 2
turner 2

(b) Result.

Fig. 4.12. Computing result(Part, C)

states that participants will attend the party if they take at most two courses.
Aggregates are popular in relational data mining because they can be used

to reduce a multi-instance learning problem to an attribute-value learning
problem, and in this way form an important tool for propositionalization.

Example 4.54. Consider the table-based propositionalization approach with
regard to the query

attendsParty(P) ← participant(P, J,C), subscribes(P,C′)

This results in the table listed in Fig. 4.13a, which corresponds to a multi-
instance learning problem. When using the clause

attendsParty(P) ← participant(P, J,C),V is COUNT{C′|subscription(P,C′)}

one obtains the attribute-value learning problem in Fig. 4.13b.

Exercise 4.55. Can you provide an example that illustrates the use of ag-
gregation and that does not involve a reduction to an attribute-value learning
problem?
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P J C C’

adams researcher scuf erm
adams researcher scuf so2
adams researcher scuf srw
blake president jvt cso
blake president jvt erm
king manager pharmadm cso
king manager pharmadm erm
king manager pharmadm so2
king manager pharmadm srw
miller manager jvt so2
scott researcher scuf erm
scott researcher scuf srw
turner researcher pharmadm so2
turner researcher pharmadm srw

(a) Multiple instances

P J C V

adams researcher scuf 3
blake president jvt 3
king manager pharmadm 4
miller manager jvt 1
scott researcher scuf 2
turner researcher pharmadm 2

(b) Aggregated instances

Fig. 4.13. Multiple and aggregated instances

As the example illustrates, aggregation is a very useful operation in order
to reduce sets of tuples to single tuples. In this way, aggregation attempts to
summarize the information in the table. It is, however, important to realize
that summarization always results in a loss of information. Depending on the
application this can be harmless or problematic.

The other point to keep in mind is that the search space rapidly explodes
when aggregation is allowed because one has to search for the right aggregation
functions to apply to the right queries, and for a single query there are various
ways in which aggregation can be applied. Furthermore, as we will see in
Chapter 5, a further complication is that the generality relation becomes quite
involved.

4.14 Conclusions

This chapter started by introducing two alternative logical settings for learn-
ing: learning from entailment and learning from interpretations.

We then presented a hierarchy of representations that are used in data
mining and machine learning. The key representations are: boolean, attribute-
value, multi-instance, relational and logic program representations. Other rep-
resentations that are quite popular in data mining and computer science are
sequences, trees and graphs. It was also shown that these traditional data
structures can be elegantly represented using relational representations or
logic programs.

We then investigated the relationship among these different representa-
tions; more specifically we have shown that functors can be eliminated from
logic programs, that (bounded) relational representations can be reduced to
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multi-instance and attribute-value learning problems. One important insight
concerns the identification of multi-instance learning as one of the central
issues in relational learning. It is central because it is relatively easy to re-
duce relational learning to multi-instance learning, but much harder to re-
duce multi-instance learning to attribute-value learning. Even though the re-
ductions presented show that the richer representations are, under certain
assumptions, not needed, the sketched transformations are computationally
too expensive to be applied in practice, except perhaps in specific circum-
stances. Therefore, it is advantageous to stay as close as possible to the gen-
uine representation required by the problem at hand. When using simpler
representations, one either confronts computational difficulties or loses some
information; when using rich representations, computationally more expen-
sive learning engines must be employed. An intermediate solution is based on
heuristic propositionalization and aggregation approaches.

4.15 Historical and Bibliographical Remarks

The learning from entailment setting is due to Plotkin [1970] and is the most
popular and prominent setting within inductive logic programming [Muggle-
ton and De Raedt, 1994, Muggleton et al., 1992]. The learning from interpre-
tations is due to De Raedt and Džeroski [1994], which in turn was strongly
influenced by Helft [1989] and the boolean representations used in compu-
tational learning theory [Valiant, 1984, Kearns and Vazirani, 1994]. The re-
lation among these and other logical settings for learning were investigated
by De Raedt [1997]. The description of the hierarchy of representations and
reductions is based on De Raedt [1998]. The flattening operation for clauses
was introduced by Rouveirol [1994], and that for interpretations by De Raedt
and Džeroski [1994], which in turn formalized common practice in various
publications such as [Quinlan, 1993b].

Multi-instance learning was introduced by Dietterich et al. [1997] and was
motivated by the musk problem in drug discovery. More information on the
relation between logic and grammars and a deeper introduction to definite
clause grammars can be found in any textbook on the Prolog programming
language; cf. [Flach, 1994, Sterling and Shapiro, 1986, Bratko, 1990]. The case
study with logical sequences follows Lee and De Raedt [2004] and is motivated
by an application in user modeling due to Jacobs and Blockeel [2001].

Propositionalization has been the topic of many investigations in the past
few years, and many different techniques have been developed [Kramer et al.,
2001]. Nevertheless, the underlying principles are the table-based or query-
based methods, possibly enhanced with aggregation, that we presented. The
table-based approach described the work on the Linus and Dinus systems by
Lavrač and Džeroski [1994], and the query-based approach follows Srinivasan
and King [1999a]. Aggregation has been used for quite a while in machine
learning [Michalski, 1983], but has only recently become quite popular within
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relational learning [Geibel and Wysotzki, 1997, Knobbe et al., 2001, Per-
lich and Provost, 2003, Vens et al., 2006] and probabilistic relational models
[Getoor et al., 2001a].



5

Generality and Logical Entailment

In this chapter, we study the generality relation from a logical perspective. A
central property in the theory of logical learning is that the generality rela-
tion coincides with logical entailment. This property results in an operational
framework for studying and defining operators for generalization and special-
ization. Each of these operators originates from a deductive framework. We
study several of the most important frameworks for generality, including θ-
subsumption (and some of its variants) and inverse resolution, and then dis-
cuss some advanced issues such as the influence of background knowledge and
aggregation.

5.1 Generality and Logical Entailment Coincide

Recall from Sect. 3.6 Def. 3.4 that a hypothesis g is more general than a
hypothesis s, notation g � s, if and only if, c(s) ⊆ c(g), that is, all examples
covered by s are also covered by g. Analyzing this definition using the learning
from entailment setting leads to the following property (where we add the
subscript e to the symbol � to denote that we are learning from entailment):

Property 5.1. When learning from entailment, g �e s if and only if g |= s.

Proof. * We prove the claim when no background knowledge is employed. It
can easily be adapted to account for background knowledge. We also assume
that all clauses can be used both as examples and as parts of hypotheses.

=⇒ if g �e s then it follows that for all e ∈ Le : e ∈ c(s) → e ∈ c(g). This
is equivalent to

∀e : (s |= e) → (g |= e) (5.1)

Since s is a conjunction of clauses s1∧ . . .∧sn and s |= si, Eq. 5.1 and si ∈ Le

(because all clauses can be used as examples) imply that ∀i : g |= si, which
in turn implies that g |= s.
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⇐= if g |= s, then, for all examples e, whenever s |= e (that is, s covers
e), g |= e because of the transitivity of logical entailment. Thus g �e s. ��

The property can be generalized to take into account a background theory
B. We then say that g is more general than s relative to the background theory
B, notation g �e,B s, if and only if B ∧ g |= s.

Property 5.2. When learning from interpretations, g �i s if and only if s |= g.

Proof. This is a direct consequence of the definition of logical entailment,
which states that s |= g if and only if all models of s are a model of g. ��

When learning from interpretations relative to a background theory B, we
write that g is more general than s relative to B, notation g �i,B s, if and
only if B ∧ s |= g.

Example 5.3. Consider the hypotheses h1

grandparent(GP,GC) ← father(GP,C), parent(C,GC)
father(F,C) ← male(F), parent(F,C)

and h2

grandparent(GP,GC) ← male(GP), parent(GP,C), parent(C,GC)

for which h1 |= h2. One can easily check that h1 ∧¬h2 is inconsistent (or that
h2 is the resolvent of the two clauses in h2), hence h1 |= h2. Note that the
reverse does not hold because, for instance,

{father(jef, paul), parent(paul, an)}

is a model of h2, but not of h1. By Property 5.1 this means that h1 is (strictly)
more general than h2 when learning from entailment (h1 �e h2). Thus there
exist examples, such as

grandparent(leo, luc) ← father(leo, rose), parent(rose, luc)

that are covered by h1 but not by h2. On the other hand, when learning from
interpretations, the generality relation reverses. According to Property 5.2 h2

is strictly more general than h1 (h2 �i h1). The above interpretation involving
jef and paul is an example that is covered by h2 but not by h1.

Because the learning from entailment setting is more popular than that of
learning from interpretations within traditional inductive logic programming,
it is also the default setting, which explains why, traditionally, a hypothesis
g is said to be more general than s if and only if g |= s. From now on, when
the context is clear, we will also follow this convention.

The above two properties lie at the heart of the theory of inductive logic
programming and generalization because they directly relate the central no-
tions of logic with those of machine learning [Muggleton and De Raedt, 1994].
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They are also extremely useful because they allow us to directly transfer re-
sults from logic to machine learning.

This can be illustrated using traditional deductive inference rules, which
start from a set of formulae and derive a formula that is entailed by the orig-
inal set. For instance, consider the resolution inference rule for propositional
definite clauses:

h ← g, a1, . . . , an and g ← b1, . . . , bm

h ← b1, . . . , bm, a1, . . . , an
(5.2)

As discussed in Chapter 2, this inference rule starts from the two rules above
the line and derives the so-called resolvent below the line. This rule can be
used to infer, for instance,

flies ← blackbird, normal

from

flies ← bird, normal
blackbird ← normal

An alternative deductive inference rule adds a condition to a rule:

h ← a1, . . . , an

h ← a, a1, . . . , an
(5.3)

This rule can be used to infer that

flies ← blackbird

is more general than

flies ← blackbird, normal

In general, a deductive inference rule can be written as

g

s
(5.4)

If s can be inferred from g and the operator is sound, then g |= s. Thus
applying a deductive inference rule realizes specialization, and hence deduc-
tive inference rules can be used as specialization operators. A specialization
operator maps a hypothesis onto a set of its specializations; cf. Chapter 3.
Because specialization is the inverse of generalization, generalization opera-
tors — which map a hypothesis onto a set of its generalizations — can be
obtained by inverting deductive inference rules. The inverse of a deductive
inference rule written in the format of Eq. 5.4 works from bottom to top, that
is from s to g. Such an inverted deductive inference rule is called an inductive
inference rule. This leads to the view of induction as the inverse of deduction.
This view is operational as it implies that each deductive inference rule can
be inverted into an inductive one, and that each inference rule provides an
alternative framework for generalization.
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An example generalization operator is obtained by inverting the adding
condition rule in Eq. 5.3. It corresponds to the well-known dropping condition
rule. As we will see soon, it is also possible to invert the resolution principle
of Eq. 5.2.

Before deploying inference rules, it is necessary to determine their proper-
ties. Two desirable properties are soundness and completeness. These proper-
ties are based on the repeated application of inference rules in a proof proce-
dure. Therefore, as in Chapter 2, we write g �r s when there exists a sequence
of hypotheses h1, · · · , hn such that

g

h1
,
h1

h2
, · · · ,

hn

s
using r (5.5)

A proof procedure with a set of inference rules r is then sound whenever
g �r s implies g |= s, and complete whenever g |= s implies g �r s. In practice,
soundness is always enforced while completeness is an ideal that is not always
achievable in deduction. Fortunately, it is not required in a machine learning
setting. When working with incomplete proof procedure, one should realize
that the generality relation �r is weaker than the logical one |=.

The formula g |= s can now be studied under various assumptions. These
assumptions are concerned with the class of hypotheses under consideration
and the operator �r chosen to implement the semantic notion |=. The hy-
potheses can be single clauses, sets of clauses (that is, clausal theories), or full
first-order and even higher-order theories. Deductive operators that have been
studied include θ-subsumption (and its variants such as OI-subsumption)
among single clauses, implication among single clauses and resolution among
clausal theories. Each of these deductive notions results in a different frame-
work for specialization and generalization. The most important such frame-
works are presented below, including θ-subsumption (and some of its vari-
ants), inverse implication, and inverse resolution. Due to its relative simplic-
ity, θ-subsumption is by far the most popular framework. As we shall see in
the following chapters, the large majority of contemporary logical and rela-
tional learning systems employ operators under θ-subsumption in one form
or another. We will therefore provide an in-depth presentation of this frame-
work and provide shorter discussions of alternative frameworks. In addition,
θ-subsumption will be gradually introduced. We first consider propositional
(or boolean) clauses only, then investigate the structure on logical atoms,
and finally, combine these two notions in order to obtain the full-fledged θ-
subsumption framework.

5.2 Propositional Subsumption

When performing operations on clauses, it is often convenient to represent
the clauses by the sets of literals they contain. For instance, the clause flies ←
bird, normal can be represented as {flies,¬bird,¬normal}. This implies that we
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are now using the same notation for both clauses, which are disjunctions,
and for item-sets, which are conjunctions. Therefore, this should only be done
when the context is clear. The reason for overloading the set notation will
become clear soon.

Using this notion for two propositional clauses c1 and c2,

c1 subsumes c2 if and only if c1 ⊆ c2 (5.6)

Example 5.4. The clause flies ← bird, normal subsumes the clause flies ←
bird, normal, pigeon.

Observe that propositional subsumption is sound, which means that when-
ever c1 subsumes c2, it is the case that c1 |= c2, and complete, which means
that whenever c1 |= c2, c1 also subsumes c2.

The resulting search space is shown in Fig. 5.1. At this point, the reader
may observe that this search space coincides with that used for monomials in
Fig. 3.5 of Chapter 3. Whereas this may be surprising at first sight because
monomials are conjunctions and clauses are literals, there is a simple explana-
tion. When working with clauses, a clause c is said to cover an example when
c |= e, that is, when c ⊆ e. On the other hand, when working with item-sets
and learning from interpretations, an item-set m covers an interpretation e
when m ⊆ e. Therefore, when using sets to represent clauses and item-sets,
the generality relation coincides. Therefore, for both item-sets and clauses,
we have that hypothesis h1 is more general than hypothesis h2 if and only
if h1 ⊆ h2. This also explains why we employ set notation for both clauses
and monomials. The reader should keep in mind though that, at the logical
level, item-sets and clauses are dual to one another, because conjunction is
complementary to disjunction. Combined with the duality of the generality
relation between learning from entailment (used for clauses) and learning from
interpretations (used for item-sets), the generality relation coincides in both
cases with the subset relation.

Because the generality relation for clauses and item-sets coincides when the
set notation is used, the operators defined for item-sets are the same as those
for clauses. This implies for instance that the lgg of flies ← blackbird, normal
and flies ← pigeon, normal is flies ← normal. Observe also that the space of
propositional clauses forms a lattice and possesses optimal as well as ideal op-
erators, which makes them easy to use. Recall that ideal operators generate
all children (or parents) of a hypothesis in a Hasse diagram, whereas optimal
operators ensure that there is exactly one path from the most general hy-
pothesis to any specific hypothesis through the refinement graph; cf. Chapter
3.

5.3 Subsumption in Logical Atoms

When working with atoms a1 and a2,
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{f,¬b,¬n,¬h,¬l}

{f}

{f,¬b} {f,¬n} {f,¬h} {f,¬l}

{f,¬b,¬n,¬h} {f,¬b,¬n,¬l} {f,¬b,¬h,¬l} {f,¬n,¬h,¬l}

{f,¬b,¬h} {f,¬b,¬l} {f,¬n,¬h}{f,¬b,¬n} {f,¬h,¬l}{f,¬n,¬l}

Fig. 5.1. The lattice of propositional definite clauses with head atom f. We
use the following abbreviations: f = flies, b = bird, n = normal, h = hasWings and
l = laysEggs

a1 subsumes a2, if and only if,∃ substitution θ : a1θ = a2 (5.7)

Example 5.5. p(X,Y, a) subsumes p(a, b, a) (with substitution θ ={X/a,Y/b}
but does not subsume p(a,Y,Z).

The resulting structure on the space of atoms is depicted in Fig. 5.3. It
still has very nice properties. Nevertheless, compared to propositional sub-
sumption, two complications arise. First, as illustrated in the figure, when
using functors, infinite chains occur in the subsumption lattice. Indeed, con-
sider p(X), p(f(X1)), p(f(f(X2)), .... Second, there exist syntactic variants. Re-
call that two hypotheses are syntactic variants when they are syntactically
different but cover the same set of instances. For example, p(X) and p(Y) are
syntactic variants because there exist substitutions θ1={X/Y} and θ2={Y/X}
such that p(X)θ1 = p(Y) and p(Y)θ2 = p(X). Therefore, p(X) and p(Y) are
equivalent with regard to subsumption, and hence the set of instances covered
by p(X) and p(Y) is the same. Fortunately, one can show that two atoms can
be syntactic variants only if they are a variable renaming of one another. An
expression e is a variable renaming of e′ if and only if there exist substitutions
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θ = {V1/W1, ..., Vn/Wn} and θ′ = {W1/V1, ...,Wn/Vn} where the Vi and Wi

are different variables appearing in e and e′, such that eθ = e′ and e′θ′ = e.
It can be shown that the resulting structure on the search space is again a
lattice up to variable renaming (when adding a bottom ⊥ element).

Let us now introduce the different operators for working with atoms.

5.3.1 Specialization Operators

An Ideal Specialization Operator

p(X, c)

p(X,Y)

p(X,X) p(a,Y) p(b,Y) p(X, d)

p(a, c) p(a, d) p(b, c) p(b, d)p(a, a)

Fig. 5.2. Part of the lattice on atoms

p(f(f(B)),Y)

p(f(f(f(C))),Y)

p(X,Y)

p(X, g(A,B))

p(f(A), g(C,D))

p(f(A),Y)

Fig. 5.3. Part of the lattice on atoms

Let A be an atom. Then

ρs,a,i(A) = {Aθ | θ is an elementary substitution} (5.8)

where an elementary substitution θ is of the form
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θ =

⎧
⎪⎪⎨

⎪⎪⎩

{X/f(X1, ...,Xn)} with f a functor of arity n and
the Xi variables not occurring in A

{X/c} with c a constant
{X/Y } with X and Y variables occurring in A

(5.9)

The subscript s in the operator stands for specialization, a for atoms, and i for
ideal. It is relatively easy to see that ρs,a,i is an ideal specialization operator
for atoms.

An Optimal Specialization Operator*

Obtaining an optimal operator for atoms is a little bit harder. The reason for
this is illustrated in Figs. 5.4, 5.5 and 5.6. As one can see, even if one naively
applies one type of elementary substitution there exist many different ways of
generating one particular atom. These redundancies can be avoided by further
restricting the elementary substitutions.

The operator ρs,a,o is an optimal specialization operator for atoms A,
defined as follows:

ρs,a,o(A) = {Aθ | θ is an optimal elementary substitution} (5.10)

where an elementary substitution θ is an optimal elementary substitution for
an atom A if and only if it is of the form

θ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{X/f(X1, ...,Xn)} with f a functor of arity n and
the Xi variables not occurring in A
and all terms occurring to the right of
the leftmost occurrence of X
variables or constants

{X/c} with c a constant and no term
to the right of the leftmost occurrence of X
containing constants

{X/Y } with X and Y variables occurring in A
X occurring once, Y occurring left of X
and all variables to the right of X
occurring only once in A

(5.11)
At this point the reader may want to verify that these optimal elementary

substitutions avoid the problems sketched in the figures. However, one more
problem exists. If any sequence of elementary substitutions is allowed, further
redundancies exist.

Example 5.6. Consider the atom p(X,Y). Now, one can apply the substitutions
θ1 ={X/Y} and θ2={Y/a} ← resulting in p(a, a). On the other hand, one could
also apply the substitutions θ′1={X/a} and θ′2={Y/a}, which give the same
result.
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This problem disappears when requiring that all optimal elementary sub-
stitutions of type {X/f(X1, ...,Xn)} be applied before those of type {X/c},
which be applied before those of type {X/Y }.

Exercise 5.7. * If one orders the optimal elementary substitutions differently,
is the resulting operator still optimal?

a(f(X), g(Y, Z))

a(U, V)

a(f(X), V)) a(U, g(Y, Z))

{V/g(Y, Z)}{U/f(X)}

{V/g(Y, Z)} {U/f(X)}

Fig. 5.4. Example of duplicate avoidance for substitutions of type
{X/f(X1, . . . , Xn)} (adapted from [Lee, 2006])

f(a, b, c)

f(a, B, C) f(A, b, C) f(A, B, c)

f(a, b, C) f(a, B, c) f(A, b, c)

f(A, B, C)

Fig. 5.5. Example of duplicate avoidance for substitutions of type {X/c} from [Lee,
2006]

5.3.2 Generalization Operators*

In order to be able to introduce a generalization operator, we need the impor-
tant notion of an inverse substitution θ−1. As the term suggests, an inverse
substitution inverts a substitution. This is in line with the previously intro-
duced view of induction as the inverse of deduction. Applying a substitution
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f(X, X, Y, Y′) f(X, X′, Y, X′)f(X, X′, Y, X)

f(X, X, Y, X) f(X, Y, X, X) f(X, X′, X, X′)

f(X, X, X, Y′) f(X, X, Y, Y) f(X, X′, X′, X′) f(X, X′, X′, X)

f(X, X′, X, Y′) f(X, X′, X′, Y′) f(X, X′, Y, Y)

f(X, X′, Y, Y′)

f(X, X, X, X)

Fig. 5.6. Example of duplicate avoidance for substitutions of type {X/Y } (adapted
from [Lee, 2006])

is a deductive operation; applying an inverse substitution is an inductive op-
eration.

An inverse substitution θ−1 (corresponding to the substitution θ) satisfies

Aθθ−1 = A (5.12)

Whereas regular substitutions substitute terms for variables, inverse substitu-
tions substitute variables for terms. However, because a term can occur more
than once in an atom (or a logical expression), we need to distinguish the dif-
ferent occurrences of a term. To this end, one employs positions (sometimes
also called places). With each occurrence of a term t in an atom p(t1, ..., tn),
a position is associated as follows:

< i > if t = ti
< i, i1, ..., im > if t is a sub-term of ti at position < i1, ..., im >

(5.13)

Example 5.8. Consider p(f(a), a, a). The term a occurs at positions < 1, 1 >,
< 2 > and < 3 > in the atom.

An inverse substitution θ−1 now substitutes terms at specified positions
with variables. Thus, formally speaking, an inverse substitution is of the form

{p1/V1, ....pk/Vk} with positions pi and variables Vi (5.14)

Example 5.9. Let A =p(f(a), a, a). Applying inverse substitution

θ−1 = {< 1, 1 > /X, < 3 > / Y}

to A yields Aθ−1 =p(f(X), a,Y).
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By now we are able to introduce the ideal generalization operator ρg,a,i

that inverts the previously introduced ρs,a,i for logical atoms.
Let A be an atom. Then

ρg,a,i(A) = {Aθ−1 | θ−1 is an elementary inverse substitution} (5.15)

where an elementary inverse substitution θ−1 is of the form {p1/Y, ..., pn/Y }
where Y is a variable not occurring in A and the term t occurring at positions
p1, ..., pn in A is of the following form:

t =

⎧
⎪⎪⎨

⎪⎪⎩

f(Y1, ..., Ym) where Y1, ..., Ym are distinct variables only occurring
in t and t occurring exactly n times in A;

c where c is a constant
X where X is variable occurring at least n + 1 times in A;

(5.16)

Example 5.10. Applying the elementary inverse substitutions to p(a, f(b))
yields p(X, f(b)) with {< 1 > /X} and p(a, f(X)) with {< 2, 1 > /X}.

Exercise 5.11. * Assume you are given an atom A and a substitution θ. How
can one, in general, obtain the inverse substitutions Aθ−1?

The operators ρg,a,i and ρs,a,i are ideal for the class of atoms (up to variable
renaming). The dual of the operator ρs,a,o, that is, the operator ρg,a,o, is not
presented because such operators are not commonly applied.

5.3.3 Computing the lgg and the glb

We claimed above that subsumption at the level of atoms induces a complete
lattice (up to variable renaming) on the search space. By definition, a complete
lattice has a unique least upper bound and a unique greatest lower bound for
any two elements. The greatest lower bound glb(a1, a2) of two atoms a1 and
a2 starting with the same predicate symbol p is

glb(a1, a2) = a1θ = a2θ where θ = mgu(a1, a2) (5.17)

So, the glb corresponds to unification, the operation introduced in Sect. 2.4
The dual operation is the least general generalization (lgg) operation. It

is sometimes referred to as anti-unification. The least general generalization
lgg(a1, a2) of two atoms a1 and a2 starting with the same predicate symbol p
is a generalization a of a1 and a2 such that for all other generalizations b of
a1 and a2 there exists a substitution θ such that bθ = a and bθ and a are not
variable renamings.

It is well known that the set of all atoms, partially ordered by the subsump-
tion relation (and extended by special � and ⊥ elements), forms a complete
lattice as the lgg and the glb exist and are unique for all pairs of atoms. The
special elements � and ⊥ are used for those cases where the glb or lgg of two
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atoms are not defined, that is, ⊥ is the result of the glb operator when the
two atoms are not unifiable, and � is the result of the lgg operator when the
two atoms do not start with the same predicate symbol.

Example 5.12. Consider the atoms p(a, b, f(a)) and p(c, b, f(c)). The atom
p(X, b, f(X)) is the least general generalization of these two terms, as it is
a generalization of the first atom (with substitution {X/b}) and of the second
atom (with substitution {X/c}), and furthermore, for all other generaliza-
tions, for instance, p(U, b, f(W)), there exists a substitution θ = {U/X,W/X}
for which p(U, b, f(W))θ = p(X, b, f(X)).

The computation of the least general generalization bears some similari-
ties with the unification algorithm shown in Algo. 2.3. The anti-unification
algorithm is depicted in Algo. 5.1.

Algorithm 5.1 Computing the lgg(a1, a2) of two atoms a1 and a2 following
[Nienhuys-Cheng and de Wolf, 1997]

θ1 := ∅; θ2 := ∅;
while a1 �= a2 do

find the leftmost position p where a1 and a2 differ
let s and t be the terms at position p in a1 and a2

if {V/s} occurs in θ1 and {V/t} occurs in θ2 then
replace the terms s and t at position p in a1 and a2 by V

else
replace the terms s and t at position p in a1 and a2 by a new variable W
θ1 := θ1{W/s}; θ2 := θ2{W/t}

end if
end while
return a1

The algorithm repeatedly finds the position p where the two atoms a1 and
a2 disagree, and replaces the terms s and t at the corresponding positions by
a variable. If the terms s and t were already encountered before and replaced
by a variable V , the same variable is used; otherwise a new variable W not
yet occurring in the atoms is used.

Example 5.13. To illustrate the operation of the algorithm, consider the terms
p(a, b, f(a), c) and p(c, b, f(c), d). Then the variables at the end of each iteration
obtain the following values:

1. θ1 = ∅, θ2 = ∅, a1 = p(a, b, f(a), c), and a2 = p(c, b, f(c), d);
2. p = < 1 >, s = a, t = b, and hence a1 = p(V, b, f(a), c), a2 =

p(V, b, f(c), d), θ1 = {V/a} and θ2 = {V/b};
3. p = < 1, 3 >, s = a, t = b, and hence a1 = p(V, b, f(V), c), a2 =

p(V, b, f(V), d), θ1 = {V/a} and θ2 = {V/b};
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4. p = < 4 >, s = c, t = d, and hence a1 = p(V, b, f(V),W), a2 =
p(V, b, f(V),W), θ1 = {V/a,W/c} and θ2 = {V/b,W/d};

5. at this point a1 = a2, and hence the algorithm terminates and outputs
p(V, b, f(V),W).

5.4 Θ-Subsumption

Θ-subsumption is the most important framework for generalization and spe-
cialization in inductive logic programming. Almost all inductive logic pro-
gramming systems use it in one form or another.

Θ-subsumption combines propositional subsumption with subsumption at
the level of logical atoms. It is defined as follows. Clause c1 θ-subsumes clause
c2 if and only if

∃ substitution θ : c1θ ⊆ c2 (5.18)

Example 5.14. The clause

father(X, john) ← male(X),male(john), parent(X, john)

is θ-subsumed (with substitution {Y/X,Z/john}) by

father(Y,Z) ← male(Y), parent(Y,Z))

The clause

nat(s(X)) ← nat(X)

θ-subsumes (with substitution) {X/s(0)}
nat(s(s(0))) ← nat(s(0))

and

p(X,Y,X) ← q(Y)

θ-subsumes (with substitution {X/U,Y/U})
p(U,U,U) ← q(U), r(a)

Finally, the clause

q(X) ← p(X,Y), p(Y,X)

θ-subsumes (with substitution {X/A,Y/A})
q(A) ← p(A,A).

The last example is surprising in that the clause q(X) ← p(X,Y), p(Y,X) is
both more general and longer than the clause q(A) ← p(A,A). In machine
learning, it is typical that longer clauses are more specific. When working
with θ-subsumption, this is not always the case.

There are various interesting properties of θ-subsumption, which we will
now discuss.
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5.4.1 Soundness and Completeness

Proposition 5.1 stated that a hypothesis g is more general than a hypothesis
s (when learning from entailment) when g |= s. Θ-subsumption considers
hypotheses that consist of single clauses. A natural question that arises in
this context is to what extent is θ-subsumption sound and complete w.r.t.
logical entailment among single clauses. First, θ-subsumption is sound w.r.t.
logical entailment, that is,

∀c1, c2 : (c1θ-subsumes c2) → (c1 |= c2) (5.19)

The reverse property, that is, completeness, does not hold. Indeed, as shown
in the example below, θ-subsumption is incomplete. Fortunately, it is only
incomplete for self-recursive clauses. These are clauses which resolve with
themselves.

Example 5.15. Consider c1: nat(s(Y)) ← nat(Y) and c2: nat(s(s(X))) ← nat(X).
Then c1 |= c2 but c1 does not θ-subsume c2. Indeed, c1 |= c2 can be proved
by resolution; cf. Fig. 5.7. Furthermore, there is no substitution that makes c1

θ-subsume c2. The first literal indicates that Y should be substituted by s(X)
but the second literal requires Y to be substituted by X. These constraints are
unsatisfiable.

nat(s(s(X)) ← nat(X)

nat(s(X)) ← nat(X)nat(s(Y)) ← nat(Y)

Fig. 5.7. Proving c1 |= c2 using resolution with substitution {Y/s(X)}

5.4.2 Deciding Θ-Subsumption

To decide whether a clause c1 θ-subsumes c2, Algo. 5.2 can be be employed.
The algorithm1 works as follows: if c1 is the empty clause, it clearly subsumes
c2, and hence returns success; otherwise, it first skolemizes the clause c2; that
is, it replaces all variables in c2 by constants not occurring in c2 (and c1);
1 Algo. 5.2 has a short, though tricky implementation in Prolog, where the clauses

are represented as lists.
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and then tries to eliminate a literal l1 from c1 that subsumes a literal in c2; if
this is possible it recursively calls the function again; otherwise, it backtracks
to earlier choice points. This process continues until either the empty clause
is generated (meaning that all literals from the initial clause c1 have been
matched with literals from c2) and success is returned, or all choice points
have been considered and failure is returned.

Example 5.16. To test whether clause c1

p(X,Y,X) ← q(X)

θ-subsumes the clause c2

p(X, a,X) ← q(X)

the algorithm first skolemizes c2, yielding c2σ

p(sk, a, sk) ← q(sk).

It then tests whether the literal q(X) ∈ c1 subsumes a literal in c2σ. Since
it does (with substitution θ={X/sk}), the procedure is called recursively;
now with the clause p(sk,Y, sk) ← . The algorithm then considers the literal
p(sk,Y, sk) and tests whether it subsumes a literal in c2σ. Since it does (with
substitution {Y/a}), the resulting clause is empty, and hence the algorithm
concludes that c1 θ-subsumes c2.

Due to the backtracking step in Algo. 5.2, testing for θ-subsumption is
computationally expensive. Indeed, θ-subsumption is an NP-complete prob-
lem [Garey and Johnson, 1979]. A related result that is often overlooked, and
that can be considered an immediate consequence of the NP-completeness
of θ-subsumption, is that coverage testing in relational data mining is also
computationally expensive. Indeed, the problem of deciding whether a (non-
recursive) clause p ← q1, . . . , qn covers a particular example, say the fact pθ, in
an extensional relational database consisting of the facts f1, . . . , fm only, can
be reduced to deciding whether pθ ← q1θ, ..., qnθ θ-subsumes pθ ← f1, . . . , fm.
Vice versa, the problem of deciding whether the clause p1 ← q1, . . . , qn θ-
subsumes the clause p ← f1, . . . , fm can be reduced to the problem of de-
ciding whether the clause p1 ← q1, . . . , qn covers the example pθ in the ex-
tensional database f1θ, . . . , fmθ, where θ is a substitution skolemizing the
clause p ← f1, . . . , fm. This provides an alternative to Algo. 5.2 for deciding
θ-subsumption.

thetasubsumes(Clause1, Clause2) ←
not not (numbervars(Clause2, 999, N), subsetof(Clause1, Clause2)).

The double negation is employed in order to avoid binding the variables in the
clauses; numbervars is a built-in predicate that performs the skolemization, num-
bering the variables from 0 to 999, and subsetof succeeds when all elements of
Clause1 occur in Clause2.
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Algorithm 5.2 The function θ-subsumes(c1, c2: clauses), which decides
whether c1 θ-subsumes c2

if c1 = ∅ then
return success

else
skolemize c2

let l1 be the first literal in c1

for each literal l2 in c2 that is an instance of l1 (choice point) do
let θ be the substitution such that l1θ = l2
if θ-subsumes(c1θ − {l1θ}, c2) succeeds then

return success (c1 θ-subsumes c2)
else

backtrack to the last choice point
end if

end for
return failure (c1 does not θ-subsume c2)

end if

Example 5.17. Let us illustrate this on a simple example. Consider testing
whether the example pos(e1) ← is covered by the clause

pos(E) ← triangle(E,T), circle(E,C), in(E,T,C)

given the extensional background theory containing the following facts:

triangle(e1, t1) ← triangle(e1, t2) ←
circle(e1, c1) ← square(e1, s1) ←
in(e1, t2, c1) ← . . .

The example pos(e1) is covered by the clause if and only if the clause

pos(e1) ← triangle(e1,T), circle(e1,C), in(e1,T,C)

θ-subsumes

pos(e1) ←
triangle(e1, t1), triangle(e1, t2), circle(e1, c1),
square(e1, s1), in(e1, t2, c1), . . .

Vice versa, testing whether

pos(E) ← triangle(E,T), circle(E,C), in(E,T,C)

θ-subsumes

pos(E) ← triangle(E, t1), circle(E,C), in(E, t1,C), square(E,S)

can be realized by testing whether the example pos(ske) is covered by the
clause

pos(E) ← triangle(E,T), circle(E,C), in(E,T,C)
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given the background theory

triangle(ske, t1) ← circle(ske, skc) ←
in(ske, t1, skc) ← square(ske, sks) ←

The above discussion shows that θ-subsumption and extensional cover-
age testing are intimately related and belong to the same complexity class.
Because θ-subsumption is NP-complete, so is extensional coverage testing.2

Because the two problems are closely related, the number of such tests car-
ried out by a logical or relational learning system can be used as a measure
of the efficiency of the learning system. It should be clear that the number of
such tests should be as small as possible. At the same time, it is important
that the implementations of such tests be optimized where possible. Various
techniques for realizing this are presented in Chapter 10.

5.4.3 Equivalence Classes

When analyzing the properties of θ-subsumption, it is quite easy to see that
θ-subsumption is both reflexive (take the empty substitution) and transitive
(compose the substitutions). Unfortunately, it is not anti-symmetric because
there exist syntactic variants, which are not restricted to variable renamings.

Example 5.18. The following clauses, syntactically different, are equivalent un-
der θ-subsumption, and are therefore syntactic variants.

parent(X,Y) ← mother(X,Y)
parent(X,Y) ← mother(X,Y),mother(X,Z1)
parent(X,Y) ← mother(X,Y),mother(X,Z1),mother(X,Z2)

All these clauses are equivalent under θ-subsumption and therefore (due
to the soundness of θ-subsumption) also logically equivalent. This can be
quite problematic when defining operators. Some of the early inductive logic
programming systems get into infinite loops because of this problem. They
start from the first clause, refine it into the second, the third, and so on, and
might never recover.

Because θ-subsumption is reflexive and transitive, but not anti-symmetric,
it is a quasi-order. The standard mathematical approach to turn a quasi-order
into a partial one is to define equivalence classes and study the quotient set.
This is also what Gordon Plotkin did for θ-subsumption. Let us denote by
[c] the set of clauses equivalent to c under θ-subsumption. The quotient set
is then the set of all equivalence classes [c]. The θ-subsumption relation
induced a relation on the quotient set, and this quotient relation has various
interesting properties. The first such property concerns the existence of a
2 Furthermore, given that the typical size of the relations in a database is much

larger than that of the typical clause, testing coverage is typically more expensive
than testing generality under θ-subsumption.
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unique representative (up to variable renaming) of each equivalence class.
This representative is termed the reduced clause. The reduced clause r of a
clause c is defined as the shortest clause r ⊆ c that is equivalent to c. It is
unique up to variable renaming. Algo. 5.3 starts from a given clause c and
computes the reduced clause of the equivalence class [c].

Algorithm 5.3 Reducing a clause under θ-subsumption
r := c
for all literals l ∈ r do

if r θ-subsumes r − {l} then
r := r − {l}

end if
end for
return r

Example 5.19. Assume the algorithm is called with the clause

parent(X,Y) ← mother(X,Y),mother(X,Z1),mother(X,Z2)

and assume the literals are processed from right to left. Then the algorithm
will first delete the literal mother(X,Z2) and then the literal mother(X,Z1),
after which no further literals can be deleted while staying within the same
equivalence class.

A second property of the resulting quotient relation (as well as of the
original relation) is that there exist infinite ascending and descending chains
in the partial order.

Example 5.20. The following clauses form an ascending chain (where n � 2);
cf. [Nienhuys-Cheng and de Wolf, 1997]:

cn = {¬p(Xi,Xj) | i �= j and 1 � i, j � n} (5.20)

For instance,

c2 = ← p(X1,X2), p(X2,X1)
c3 = ← p(X1,X2), p(X2,X1), p(X1,X3), p(X3,X1), p(X2,X3), p(X3,X2)
...

One can prove that ci ≺ ci+1 (that is, ci θ-subsumes ci+1 and ci+1 does not
θ-subsume ci) for all i � 2; cf. [Nienhuys-Cheng and de Wolf, 1997]. This
means that the ci belong to different equivalence classes. Furthermore, each
ci θ-subsumes c = ← p(X,X). So, we have an infinite ascending chain in the
partial order because c2 ≺ c3 ≺ . . . c∞ ≺ c.
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There also exist infinite descending chains in the partial order though
the corresponding series are even more complicated. For this direction, one
can construct, for instance, an infinite descending chain starting at d = ←
p(X1,X2), p(X2,X1); cf. [Nienhuys-Cheng and de Wolf, 1997].

The third property is a consequence of the second. Due to the existence of
these infinite ascending and descending chains which are bounded from below
or from above, there exist neither ideal nor optimal refinement operators for
θ-subsumption. The problem is due to clauses such as c and d above. For
example, consider that one wants to minimally generalize c. Given the infinite
chain, one of the minimal generalizations of c would be c∞. Now, c∞ is not a
clause because it has an infinite number of literals. Even if it were a clause, it
could not be computed by an algorithm. As a consequence there exist neither
computable ideal nor optimal refinement operators for θ-subsumption.

In order to deal with this problem, one somehow has to relax the conditions
imposed on ideal and optimal refinement operators. One can either work with
a finite hypothesis language (as this excludes the existence of such infinite
chains) or relax the condition that the refinements ρ(c) of a clause c must be
proper, minimal or complete.

Most logical and relational learning systems address this problem in a more
pragmatic manner (see also Sect. 5.5.1 on object identity). Simple refinement
operators are then used, for example:

ρs,i,θ(c) =
{

cθ with θ an elementary substitution
c ∪ {l} with l an elementary literal (5.21)

A literal l is elementary w.r.t. c if and only if it is of the form

p(X1, ...,Xn) with the Xi different variables not occurring in c (5.22)

There exist many variants of such operators. Most of them take into account
certain syntactic restrictions, that is, a syntactic bias, on the form of the
clauses to be obtained. Syntactic biases are discussed in depth in Sect. 6.6. In
Fig. 5.8, we show part of the refinement graph obtained using a refinement
operator that only considers linked clauses (these are clauses where each literal
in the clause contains at least one variable already introduced earlier in the
clause).

One can now also invert the operator ρs,i,θ, in order to obtain a general-
ization operator. We leave this as an exercise to the reader.

Exercise 5.21. Invert the pragmatic specialization operator.

The fourth property of the quotient relation is that it forms a complete
lattice. Its structure is summarized in Fig. 5.9. Because the quotient set is a
lattice, there exist for any two equivalence classes [c1] and [c2] a unique lgg
and glb in the quotient set. A representative of lgg([c1], [c2]) and glb([c1], [c2])
can be computed starting from the clauses c1 and c2 themselves. These op-
erations are the notions of lgg and glb typically found in the inductive logic
programming literature.
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d(X,Y) ← f(X), p(X,Y)

d(X,Y) ←

d(X,X) ← d(X,Y) ← f(X) d(X,Y) ← p(X,Y)

d(X,Y) ← f(X),m(Y)d(a, a) ←

Fig. 5.8. Applying a pragmatic refinement operator under θ-subsumption

lgg(c1, c2) = {lgg(l1, l2) | l1 ∈ c1 ∧ l2 ∈ c2 ∧ lgg(l1, l2) �= �} (5.23)

This definition implicitly assumes that if two terms s and t are to be replaced
by a variable V at position p in literals l1 and l2, and if they occur at position
p′ in literals l′1 and l′2, then they will be replaced by the same variable V
throughout; cf. Algo. 5.1.

Example 5.22. Let c1 and c2 be

father(jef, ann) ← parent(jef, ann), female(ann),male(jef)
father(jef, tom) ← parent(jef, tom),male(jef),male(tom)

Then lgg(c1, c2) is

father(jef,AT) ← parent(jef,AT),male(jef),male(JT)

This clause can be further reduced to yield

father(jef,AT) ← parent(jef,AT),male(jef)

From the definition of the lgg it follows that, in the worst case, the number
of literals in the lgg can be O(n×m) where n and m are the size of the original
clauses. When computing the lgg with regard to k examples of size n the lgg
can be of size O(nk), which is exponential in the number of examples, and
therefore problematic from a computational point of view. Another problem
is that the lgg of two clauses, as computed above, is itself a clause, which
may not be reduced. Therefore, after each computation of the lgg, one may
want to reduce the result with regard to θ-subsumption. However, as we have
mentioned earlier, this is again computationally expensive due to the need to
carry out a number of θ-subsumption tests.

The operation that is dual to the lgg is the glb. The glb of two clauses c1

and c2 (which do not share any variables) is defined as:

glb(c1, c2) = c1 ∪ c2 (5.24)

It is mainly important for theoretical reasons and not so much used in prac-
tice. One of the reasons for not using it in practice is that the glb of two
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glb([c1], [c2])

[c1]

lgg([c1], [c2])

← m(X, Y), m(X, Z), r(X), s(Y)

← m(X, Y), s(X), r(X)

← m(X, Y), m(X, Z), s(X)

← m(X, Y), s(X)

← m(X, Y), m(X, Z), m(W, Y)

← m(X, Y), m(X, Z)

← m(X, Y)

← m(X, Y), m(X, Z), r(X)

← m(X, Y), r(X)

[c2]

Fig. 5.9. The θ-subsumption lattice on clauses.

definite clauses (these are clauses with exactly one literal in the head) may be
non-Horn (with more than one literal in the head), even after reduction.

Given the importance of the θ-subsumption framework, it is no surprise
that several variants have been introduced. We study two such variants in the
next section, which can be skipped without loss of continuity. These variants
address particular shortcomings of θ-subsumption. First, OI-subsumption
eliminates syntactic variants from the search space and possesses optimal and
ideal refinement operators. Second, the framework of (inverse) implication ad-
dresses the incompleteness of θ-subsumption with regard to logical entailment.

5.5 Variants of Θ-Subsumption*

5.5.1 Object Identity*

A recent and promising variant of θ-subsumption that solves some of the
problems with θ-subsumption is given by the object identity framework. One
of the difficulties with θ-subsumption is that a longer clause c1 can θ-subsume
a shorter one c2. This may occur when there exist substitutions θ for which
several literals in c1 collapse into one; see Ex. 5.14 for an example. Object
identity prevents this because it requires that all terms in a clause be different.



136 5 Generality and Logical Entailment

Let us now introduce OI-subsumption formally. For simplicity, we define it for
functor-free clauses only. When working under OI-subsumption, each clause
c is completed to the clause com(c),

com(c) = c ∪ {ti �= tj | ti and tj are two distinct terms in c} (5.25)

Example 5.23. The completion of the clause

p(X,X) ← q(X,X), r(Y, a)

is

p(X,X) ← q(X,X), r(Y, a),X �= Y,X �= a,Y �= a

Given two clauses g and s, g OI-subsumes s if and only if there exists a
substitution θ such that

com(g)θ ⊆ com(s) (5.26)

We list some interesting properties of OI-subsumption.

∀g, s : g OI-subsumes s → gθ-subsumes s (5.27)

This property states that OI-subsumption is a weaker form of subsumption
than θ-subsumption. It is actually strictly weaker, as illustrated by the next
example.

Example 5.24. Consider the clauses

c1 =p(X,X) ← q(X,X), r(Y, a)
c2 =p(X,X) ← q(X,X), r(Y, a), t(V)

Clearly c1 subsumes c2 with regard to both OI-subsumption and θ-subsumption.
However, the clause

c3 =p(X,X) ← q(X,T), q(T,X)

θ-subsumes c1 but does not OI-subsume it (due to the constraint X �= T in
com(c3)).

The second property states that two clauses g and s are equivalent under
OI-subsumption if and only if g and s are variable renamings. This prop-
erty actually implies that the only syntactic variants are variable renamings.
This eliminates the need for reducing clauses, which is an expensive process
under θ-subsumption. At the same time, it enables one to define ideal and
optimal refinement operators under OI-subsumption. The operator ρs,i,OI is
ideal under OI-subsumption when working with functor-free Datalog clauses:

ρs,i,OI(c) =

⎧
⎪⎪⎨

⎪⎪⎩

cθ with θ a substitution of the form {X/a},
X a variable in c, and
a a constant not occurring in c

c ∪ {l} with l �∈ c a negated atom

(5.28)
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So, the only operators allowed substitute a variable with a constant or add an
atom to the body of the clause. Unifying two variables is not allowed as this
violates the object identity the assumption. From this operator, various other
operators under OI-subsumption can be derived, including an optimal one.

Whereas the key advantage of OI-subsumption is that the structure on the
search space is simpler, there are also some complications that arise. First,
OI-subsumption is weaker than θ-subsumption, and is therefore also a weaker
approximation of logical implication. Second, evaluating whether a certain
hypothesis covers an example will typically be more expensive because the
process of computing the completion com(c) of a clause c introduces further
constraints that must be satisfied. As the efficiency of coverage tests depends
on the length of the clauses, working with OI-subsumption may lead to less
efficient covers tests. For example, consider the clause p(X) ← q(X), r(Y).
Under θ-subsumption, the literals q(X) and r(Y) can be handled independently
of one another, whereas under OI-subsumption, the clause not only becomes
longer, but also introduces the extra dependency Y �= X. Finally, the lgg of
two clauses may no longer be unique, as shown in the next example.

Example 5.25. Consider the two clauses

pos ← circle(a), blue(a), small(a)
pos ← circle(b), blue(b), large(a), circle(c), green(c), small(c)

The lgg under θ-subsumption is

pos ← circle(X), blue(X), circle(Y), small(Y)

but this clause does not OI-subsume the first clause. Instead, there are now
two minimal general generalizations of the two clauses:

pos ← circle(X), blue(X)
pos ← circle(X), small(X)

This situation is akin to the older work on structural matching [Ganascia and
Kodratoff, 1986, Hayes-Roth and McDermott, 1978, De Raedt et al., 1997].

5.5.2 Inverse Implication*

The incompleteness of θ-subsumption with respect to logical entailment has
been addressed under the framework of inverse implication. Rather than in-
verting θ-subsumption this framework attempts to invert the implication rela-
tion among clauses. A clause c1 implies a clause c2 if c1 |= c2. The implication
framework differs from θ-subsumption only for recursive clauses. The compu-
tational properties of the framework are worse than those of θ-subsumption
because testing whether one Horn clause logically implies another one is only
semi-decidable [Marcinkowski and Pacholski, 1992].

Research within inverse implication has focused around the lgg operation.
We illustrate this operation on an example.
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Example 5.26. Consider

nat(s(s(s(a))) ← nat(a)
nat(s(s(b)) ← nat(b)

If one requires the lgg to be a Horn clause, then the lgg is not necessarily
unique. The minimally general generalizations in the form of Horn clauses
are:

nat(s(s(X))) ← nat(Y)
nat(s(X)) ← nat(X)

Both of these clauses entail the example clauses. Neither of these generaliza-
tions entails the other generalization.

If one lifts the requirement that the lgg is a Horn clause, then the following
lgg is obtained:

nat(s(X)); nat(s(s(Y))) ← nat(X)

Because of these difficulties, the framework of inverse entailment is seldom
used in practice. Furthermore, given the completeness of θ-subsumption for
non-recursive clauses, it is only relevant for applications requiring recursion,
such as program synthesis or grammar induction; cf. Chapter 7.

5.6 Using Background Knowledge

The frameworks for generality introduced so far are concerned with the re-
lationship among single clauses. More formally, they define a clause g to be
more general than a clause s, notation g �o s, (w.r.t. a partial or quasi-order
o) if and only if

g �o s (5.29)

where the generality relationship is induced by a deductive inference operator
�o; cf. the discussion in Sect. 5.1. Various relationships that take into account
single clauses s and g have been studied above, but they do not employ any
further knowledge that might be available to the learner. Researchers since
Plotkin [1970] have realized the limitations of this approach and have con-
sidered generality orders in which background knowledge can be taken into
account. In these models, a clause g is more general than a clause s relative
to the background theory B, notation g �o,B s, if and only if

g ∧ B �o s (5.30)

This definition complements the semantic notion of generality, which stated
that g ∧ B |= s; cf. Sect. 5.1.

Example 5.27. Let
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s = pos(X) ← red(X), triangle(X);
g = pos(Y) ← red(Y), polygon(X), and
B = { polygon(X) ← triangle(X)}.

Then g is more general than s (w.r.t. B) because s can be derived from g and
B using SLD-resolution.

Again various frameworks have been developed: relative subsumption
[Plotkin, 1971], relative implication [Nienhuys-Cheng and de Wolf, 1997] and
generalized subsumption [Buntine, 1988]. These differ mainly in the form of
inference rule and derivation that is allowed starting from g and B. Rather
than focusing on the differences,3 which are rather technical, we will focus on
the similarities among these frameworks. Furthermore, for simplicity, we will
assume that all clauses in the background theory and hypotheses space are
definite range-restricted clauses (that is, each variable occurring in the head
of a clause also occurs in the body of the clause).

Because these frameworks generalize θ-subsumption or implication, many
of the problems for these simpler frameworks carry over to the relative notions
of generality, such as the existence of syntactic variants, of infinite descending
and ascending chains, of the non-existence of ideal refinement operators, etc.
Rather than discussing the complex structures imposed on the search space
by the various frameworks of relative generalization, we shall in the remainder
of this section focus on alternative uses of relative generalization.

There are three concepts that have received quite some attention with
regard to relative generalization: 1) the saturation of clauses w.r.t. the back-
ground theory, 2) the least general generalization operator relative to the
background theory, the so-called relative lgg, and 3) the design of special-
ization operators that avoid the generation of redundant clauses. We discuss
each of these topics in turn in the next three subsections.

5.6.1 Saturation and Bottom Clauses

The first approach, incorporated in techniques such as saturation or bottom
clauses, attempts to find the most specific clause (within the hypothesis space
L) that covers an example with regard to the background theory. This clause
is then called the bottom or starting clause.
3 More specifically, Plotkin’s relative subsumption allows the clause g to be used

at most once in a deduction whereas relative implication does not impose such
a restriction. Thus the differences between relative subsumption and relative im-
plication are akin to those among the subsumption and implication order. Fur-
thermore, Buntine’s generalized subsumption requires that g and s have the same
predicate symbol in the head and allows only SLD-derivations in which g is used
once and in which all other clauses employed in the derivation belong to B. The
interested reader is referred to [Nienhuys-Cheng and de Wolf, 1997] for an excel-
lent and extensive overview of these frameworks.
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More formally, the bottom clause ⊥(c) with regard to a clause c and a
background theory B is the most specific clause such that

B ∪ ⊥(c) �o c (5.31)

The bottom clause is of interest because it bounds the search for a clause
covering the example c as any single clause hypothesis h covering c with regard
to B must be more general than ⊥(c).

Example 5.28. Let B consist of

polygon(X) ← rectangle(X)
rectangle(X) ← square(X)

and let c be as follows:

pos(X) ← red(X), square(X)

Then

⊥(c) : pos(X) ← red(X), square(X), rectangle(X), polygon(X)

Any clause that is not more general than the bottom clause cannot cover the
example c and can therefore be safely pruned away, for instance, pos(X) ←
green(X). Bottom clauses are thus similar to the S set in version spaces as
the (positive) example c determines the set S = {⊥(c)}. Thus the bottom
clause captures all information that is relevant to the example and the back-
ground theory. In the example, even though the predicates green and circle
might appear in the background theory, they are irrelevant to the specific
example, and hence do not appear in the bottom clause. Given the bottom
clause with regard to a positive example, inductive logic programming sys-
tems only consider the elements in the corresponding version space. This can
be realized by searching the space from general to specific starting from �
using a refinement operator that considers only generalizations of the bottom
clause ⊥(c). Although refinement operators working under relative generality
could, in principle, be used, it is more convenient to employ the standard θ-
subsumption operators. This is the strategy in the well-known inductive logic
programming system Progol of Muggleton [1995].

So far we have not given any details as to how bottom clauses are com-
puted. In general this will depend on the notion of relative generality consid-
ered. Below, we present the computation in its most general form, that is, for
inverse entailment, the semantic notion of relative generality.

We are looking for the most specific clause ⊥(c) such that

B ∪ ⊥(c) |= c (5.32)

This is logically equivalent to

B ∪ ¬c |= ¬⊥(c) (5.33)
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If c is a clause containing variables, then ¬c is a set of facts obtained by
applying a skolemization substitution θ. For instance, for the above example,
θ = {X ← sk} and

¬cθ = {¬pos(sk), red(sk), square(sk)} (5.34)

How do we then obtain ⊥(c) ? Well, we first compute ¬c, which consists of
one false ground fact (¬head(c)θ) as c is a definite clause, and a set of positive
ground facts (corresponding to the atoms in the skolemized ¬body(c)θ). Then
we compute the set of all ground facts entailed by B ∪ ¬c, which is given by
the least Herbrand model of B and the skolemized atoms of ¬body(c)θ. These
atoms, together with the fact ¬head(c)θ, are the atoms of ¬body(cθ). The
computation of the least Herbrand model can be realized using Algo. 2.2 of
Chapter 2. In the example, this corresponds to

¬⊥(c)θ = ¬cθ ∪ {rectangle(sk), polygon(sk)} (5.35)

We then compute θ−1 (replacing each different skolimization constant by a
different variable), apply it to ¬⊥(c), and negate the result to obtain ⊥(c):

⊥(c) : pos(X) ← red(X), square(X), rectangle(X), polygon(X) (5.36)

The different steps in computing the bottom clause are summarized in Algo.
5.4.

Algorithm 5.4 Computing the bottom clause ⊥(c)
Find a skolemization substitution θ for c (w.r.t. B and c)
Compute the least Herbrand model M of B ∪ ¬body(c)θ
Deskolemize the clause head(cθ) ← M and return the result.

Various theoretical properties of bottom clauses under various restrictions
have been investigated. One finding is that the resulting bottom clause may be
infinite when functors are used, a problem that can be dealt with by imposing
a syntactic bias that restricts the form of atoms to be included in ⊥(c).

5.6.2 Relative Least General Generalization*

Another question that has received quite some attention concerns the exis-
tence and the computation of least general generalizations relative to a back-
ground theory. For convenience, we shall study this problem only when c1

and c2 have the same predicate in the head, and all clauses in the background
theory B are definite clauses and range-restricted. For this case, Buntine has
shown that that rlggB(c1, c2) (with respect to generalized subsumption) can
be computed using Algo. 5.5.
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Algorithm 5.5 Computing the rlggB(c1, c2)
Compute ⊥(c1) with regard to B
Compute ⊥(c2) with regard to B
Compute and return lgg(⊥(c1),⊥(c2))

Let us illustrate this notion using two examples. The first concerns a special
case of the rlggB , already studied by Plotkin, where B∪{c1, c2} are all ground
facts. The rlggB of two such examples is illustrated in the example below and
forms the basis of the inductive logic programming system Golem [Muggleton
and Feng, 1992].

Example 5.29. Let

B = {p(t, a),m(t), f(a), p(j, p),m(j),m(p)}
c1 = fa(t, a) ← and c2 = fa(j, p) ←

where p stands for parent, f for female, m for male, and fa for father. Then

rlggB(c1, c2) = lgg

(
fa(t, a) ← p(t, a),m(t), f(a), p(j, p),m(j),m(p)
fa(j, p) ← p(t, a),m(t), f(a), p(j, p),m(j),m(p)

)

=

⎧
⎨

⎩

fa(Vtj,Vap) ← p(t, a),m(t), f(a), p(j, p),m(j),m(p),
p(Vtj,Vap),m(Vtj),m(Vtp), p(Vjt,Vpa),
m(Vjt),m(Vjp),m(Vpt),m(Vpj)

(5.37)
where the variables have been named with the constants they originate from.
For instance, Vtj denotes the variable generalizing t in the first clause and j
in the second one.

The resulting clause would not be used in this particular form. The reason
is clear from the example. All the literals present in the background theory
reappear in the rlgg. Since the rlgg is to be used in conjunction with the
background theory these literals are logically redundant and are removed.
This process can be called reduction w.r.t. the background theory. Afterward,
the clause can be further simplified by reducing it under θ-subsumption; cf.
Algo. 5.3. This yields

fa(Vtj,Vap) ← p(Vtj,Vap),m(Vtj)

Together with B, this clause entails the clauses c1 and c2.
As another example of the use of relative least generalization, consider

the following example, in which the clauses and the background theory are
non-factual.

Example 5.30. Let B consist of the following clauses

polygon(X) ← triangle(X)
polygon(X) ← square(X)
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Then consider the two clauses

pos ← triangle(X), circle(Y), smaller(X,Y)
pos ← square(X), circle(Y), smaller(X,Y)

Computing the bottom clauses leads to

pos ← triangle(X), circle(Y), polygon(X), smaller(X,Y)
pos ← square(X), circle(Y), polygon(X), smaller(X,Y)

So, the relative least general generalization is

pos ← circle(Y), polygon(X), smaller(X,Y)

It should be clear that the rlgg operation inherits many of the properties of
the lgg operation, in particular the complexity problems. Therefore, it is often
used in conjunction with severe bias restrictions on the syntax and possibly
semantics of the clauses to be induced; cf. Sect. 6.6.

5.6.3 Semantic Refinement*

Most inductive logic programming algorithms proceed from general to specific
while applying a refinement operator. When working under θ-subsumption,
care has to be taken that refinements of clauses are proper, that is, that the
refinements are not equivalent to the original clause; cf. Sect. 5.4.3. This prob-
lem becomes even more apparent when refining clauses under a background
theory or when the predicates are symmetric or transitive, as illustrated in
the following example.

Example 5.31. Suppose that we are learning predicates about natural num-
bers, and that we are given the predicates equal/2 and lessThan/2 in the
background theory, with the usual interpretation. Consider now refining the
clause:

c1=positive(X,Y) ← lessThan(X, 5), equal(X,Y)

Refinements under θ-subsumption of this clause include:

c2=positive(X,Y) ← lessThan(X, 5), equal(X,Y), equal(Y,X)
c3=positive(X,Y) ← lessThan(X, 5), equal(X,Y), lessThan(Y, 5)
c4=positive(X,Y) ← lessThan(X, 5), equal(X,Y), equal(X, 5)

The first two refinements are equivalent to the original clause in the light of
common knowledge about natural numbers, which could be formalized in a
background theory B:

equal(X,Y) ← equal(Y,X)
equal(X,Y) ← equal(X,Z), equal(Z,Y)
lessThan(X,Y) ← equal(X,Z), lessThan(Z,Y)
lessThan(X,Y) ← lessThan(X,Z), lessThan(Z,Y)
false ← lessThan(X,Y), equal(X,Y)
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The above-specified background theory is unusual in the sense that it merely
lists properties of the involved predicates rather than defining the predicates
themselves. The properties listed include the symmetry and transitivity of
equal, as well as the transitivity and anti-symmetry of lessThan. Nevertheless,
it should be clear that B ∧ c2 |= c1 and B ∧ c3 |= c1. To see this, the reader
might want to resolve one of the clauses of B with c2 (or c3) to yield c1. At the
same time, because c2 and c3 are refinements of c1, B∧c1 |= c2 and B∧c1 |= c3.
Therefore, c2 and c3 are equivalent to c1 with regard to the background theory
B. Furthermore, clause c4 cannot cover any instance, because the condition
part of c4 always fails due to the contradictory conditions lessThan(X, 5) and
equal(X, 5) according to the last clause of the background theory.

At this point, the question arises as to whether it is possible to avoid such
redundant or contradictory clauses in the search process. The answer to this
question is positive, and we shall develop a general approach for realizing this.
While doing so, we assume, as in the example, that a background theory B
in the form of a set of range-restricted Horn clauses is given and a clause c is
to be specialized.

Refinements c′ of c that satisfy B ∧ c′ |= c are redundant, and therefore
should not be considered during the search process. When applying a refine-
ment operator under θ-subsumption, this amounts to requiring that c′ not
θ-subsume ⊥(c).

Example 5.32. The bottom clause ⊥(c1) with regard to the background theory
of the previous example is

positive(X,Y) ←
lessThan(X, 5), equal(X,Y), equal(Y,X), lessThan(Y, 5)

The clauses c2 and c3 θ-subsume ⊥(c1), and hence are redundant.

Similarly, if for a refined clause c, ⊥(c) includes the predicate false, it is
contradictory. For instance, the bottom clause ⊥(c4) contains the literal false
in its condition part, and hence c4 is contradictory.

These examples suggest the following method of dealing with this prob-
lem. After computing refinements under θ-subsumption, check whether the
refined clauses are contradictory or redundant, and if so, prune them away.
For testing this, the concept of a bottom clause can be employed, though the
bottom clauses need not be computed explicitly to carry out these tests as
optimizations are possible. At the same time, it is advised to employ syntac-
tic restrictions (such as requiring that all clauses in the background theory be
range-restricted and that the bottom clause neither introduce new variables
nor new terms in the clause). The above discussion also suggests that it may
be convenient to employ a special separate background theory, such as that in
Ex. 5.31, to specify properties about the predicates in the domain. This type
of background theory is special in that it specifies properties or constraints
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on these predicates rather than defining them. It is typically also much sim-
pler, shorter, and therefore more efficient to use than the typical background
theories found in applications of inductive logic programming.4

5.7 Aggregation*

Several studies have shown that the ability to use aggregation inside logical
and relational learning can be essential for the success of an application, cf.
[Perlich and Provost, 2003, Vens et al., 2006, Knobbe et al., 2001, Krogel and
Wrobel, 2001]. The question thus arises as to how aggregated literals can be
used in the learning process. In this section, we focus on aggregated conditions
of the type introduced in Sect. 4.13. Until recently, it was unclear how such
aggregated literals could be could be refined. We shall employ the general
framework of Vens et al. [2006], who study refinement of literals involving
aggregation along three dimensions. We illustrate this using the clause

passes(Student) ← AVG{Mark|markFor(Student,Course,Mark)} � 10

which states that a student passes if the average mark she gets is at least 10.
We employ the same notation as in Sect. 4.13. There are three elements in
this condition:

1. the aggregation function (here: AVG),
2. the membership interval (here: [10,∞[) used in the condition, and
3. the set used as the argument of the aggregation function (here: the set of

Marks for the Student); for convenience, we shall not explicitly distinguish
the query from the set of substitutions for which it succeeds.

The observation made by Vens et al. [2006] is that one can refine along three
dimensions, which correspond to the three elements indicated above.

Example 5.33. The following two operations will generalize the clause:

• generalize AVG to MAX, or
• generalize 10 to 8.

On the other hand, neither generalizing nor specializing the query

markFor(Student,Course,Mark)

is guaranteed to yield generalizations or specializations. The reason, as we
shall see soon, is that the aggregate function AVG is neither monotonic nor
anti-monotonic. On the other hand, if we would have started from the clause
4 On a technical note, this way of computing the refinements amounts to working

with semantically free clauses, whereas the bottom clause is a kind of semantically
closed clause; cf. [De Raedt and Ramon, 2004]. These notions are the relational
equivalents of free and closed item-sets; cf. Exercise 3.8.
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passes(Student) ← MIN{Mark|markFor(Student,Course,Mark)} � 10

we could have generalized the clause by refining the query to

markFor(Student,Course,Mark),mathematics(Course).

The three dimensions together determine a cube along which one can gener-
alize and specialize. The cube is defined by three partial orders.

Along the aggregate function dimension, we have:

MIN �a AVG �a MAX �a SUM

and

COUNT − DISTINCT �a COUNT

where the relation A �a B holds if and only if for all sets S: A(S) � B(S). Note
that MAX �a SUM only holds for sets of positive numbers. Along the query
dimension, we employ the usual θ-subsumption relation, that is, we write
Q1 �θ Q2 when Q1 θ-subsumes Q2. Finally, for the membership intervals, we
employ the usual subset relation, that is, an interval I1 subsumes an interval
I2 if and only if I2 ⊆ I1.

Whether a particular refinement is a generalization or a specialization
is determined by whether the aggregate condition is monotonic or anti-
monotonic. This is defined in a similar way as for quality criteria; cf. Eq.
3.10. More formally, we say that an aggregate condition of the form A(Q) � t
with aggregate function A, query Q and threshold t is monotonic if and only
if

∀ queries G �θ S,∀t : A(G) � t → A(S) � t (5.38)

The notion of anti-monotonicity is defined dually. For instance, the condi-
tion MIN(Q) � 5 is monotonic, whereas MAX(Q) � 5 is anti-monotonic, and
AVG(Q) � 5 is neither monotonic nor anti-monotonic no matter what query
Q is used.

Conditions of the form A(Q) � t can now be generalized by:

• generalizing A, that is, replacing A by a function G such that A �a G,
yielding G(Q) � t;

• generalizing the interval, that is, replacing the threshold t by a threshold
g such that g � t, yielding A(Q) � g.

These two operations will produce generalizations regardless of whether the
condition is monotonic or anti-monotonic. However, if the condition A(Q) �
t being refined is monotonic, one can also apply a third operation, which
generalizes Q, that is, replaces Q by a query G for which G �θ Q, yielding
A(G) � t. The monotonicity requirement is only necessary to guarantee that
the result of applying the final operation is a generalization. If on the other
hand the condition A(Q) � t being refined is anti-monotonic, this operation
realizes a specialization.

Finally, let us remark that the following dualities hold.
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• Applying the inverse of the first two operations realizes specialization for
conditions of the form A(Q) � t.

• Applying the first two operations on conditions of the form A(Q) < t
realizes specialization.

• Applying the inverse of the third operation on a monotonic condition
A(Q) � t realizes specialization.

Exercise 5.34. Show some generalizations and specializations of the clause

fails(Student) ← MIN{Mark|markFor(Student, logic,Mark)} � 10

along all possible dimensions.

5.8 Inverse Resolution

Perhaps the most ambitious and intuitively appealing framework for general-
ization is that of inverse resolution. The underlying idea is simple. It is based
on the observation that John Alan Robinson’s resolution principle [1965] un-
derlies most deductive inference operators used in theorem-proving systems.
This observation, together with the general principles concerning the notion
of generality g |= s, led Stephen Muggleton [1987] to propose the inversion of
the resolution principle.

The inverse resolution idea can be formalized as follows. Given are two
sets of two clauses g and s. If s follows from g by resolution, notation g �res s,
then g is more general than s. Resolution is then the operation by which s
can be computed from g and inverse resolution should allow the computation
of g starting from s.

Example 5.35. Consider the clauses c1, c2 and c3:

c1: grandparent(GP,GC) ← father(GP,C), parent(C,GC)
c2: father(F,C) ← male(F), parent(F,C)
c3: grandparent(GP,GC) ← male(GP), parent(GP,C), parent(C,GC)

For these clauses, c1 ∧ c2 �res c3 and, of course, we can also write c1 ∧ c2 �res

c1∧ c3 and c1∧ c2 �res c2∧ c3 if we replace one of the clauses by the resolvent.
Therefore, c1 ∧ c2 is more general than c1 ∧ c3 and c2 ∧ c3. Whereas special-
izations such as c3 can be obtained by resolution, the idea is now to define
operators that allow us to infer c1 ∧ c2 from c1 ∧ c3 and from c2 ∧ c3.

Various types of inverse resolution operators have been distinguished. Let
us start by considering the resolution principle for propositional clauses. In
its general form, we can derive c from c1 ∧ c2, that is, c1 ∧ c2 �res when the
clauses are defined as in the following scheme:

c1 = {l, l1, . . . , ln} and c2 = {¬l, l′1, . . . , l
′
m}

c = {l1, . . . , ln, l′1, . . . , l
′
m} (5.39)
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c1 = {l1, ..., lk, l} c2 = {l′1, ..., l′m,¬l}

c = {l1, ..., lk, l′1, ..., l
′
m}

Fig. 5.10. The V -operators

This application of resolution is graphically illustrated in Fig. 5.10 in the
typical V form. The inverse resolution V -operators now induce c1 from c2 and
c, or c2 from c1 and c, such that c1∧c2 �res c. If the involved clauses are Horn
clauses, it is convenient to distinguish two different types of V -operator.

The absorption operator proceeds according to the following scheme:

p ← q, k1, . . . , km and q ← l1, . . . , ln
p ← l1, . . . , ln, k1, . . . , km and q ← l1, . . . , ln

(5.40)

In this scheme, the leftmost clause below the line is the resolvent of the two
clauses above the line and the rightmost clause below is a copy of the right-
most clause above the line. Thus the specialization operator deductively infers
the clauses below the line from those above the line, whereas the absorption
operator inductively infers the clauses above the line from those below it.

Similarly, by changing the position of the copied clause, we obtain the
identification operator:

p ← q, k1, . . . , km and q ← l1, . . . , ln
p ← l1, . . . , ln, k1, . . . , km and p ← q, k1, . . . , km

(5.41)

Example 5.36. An illustration of the use of inverse resolution is given in Fig.
5.11. It assumes that the clauses

foursided ← rectangle
rectangle ← square

are part of the background theory. Applying resolution, one proceeds from
top to bottom to infer the example

pos ← square, red

from the hypothesis



5.8 Inverse Resolution 149

foursided ← rectanglepos ← foursided, red

pos ← square, red

pos ← rectangle, red rectangle ← square

Fig. 5.11. An inverse resolution derivation

pos ← foursided, red

and the background theory. When applying inverse resolution one proceeds
from bottom to top to inductively infer the hypothesis from the example
and the background theory. This involves two applications of the absorption
operator.

One of the difficulties with inverse resolution is that there are various
ways to generalize. Consider, for example, the last clause in the previous
example and assume that the clause symmetric ← square also belongs to the
background theory. Then there are two alternative routes for generalization.
In addition to the one shown in Fig. 5.11, one can infer pos ← symmetric, red.
The difficulty is now that using the operators as they are defined above, it
is impossible to obtain the clause pos ← foursided, red, symmetric given the
background knowledge, which complicates systematically searching through
the space of possible clauses.

So far, we discussed only propositional inverse resolution. What changes if
we consider resolution for first-order logic? Well, the key difference is that the
substitutions must be inverted as well. Recall that for first-order resolution
two clauses, c1 = {l, l1, ..., ln} and c2 = {¬l′, l′1, ..., l

′
m}, resolve to form c =

(l1 ∨ ...∨ ln ∨ l′1 ∨ ...∨ l′m)θ where θ is the most general unifier of l and l′, that
is, lθ = l′θ. If we want to compute c1 from c and c2 we have to invert θ as well.
In general, the inverse substitution θ−1 need not be unique, as illustrated in
Fig. 5.12 and 5.13.

Exercise 5.37. Can you specify a (non-deterministic) algorithm to compute
the inverse resolvent in the absorption operator?
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father(jef, paul) ← male(jef)

parent(jef, paul) ←father(jef, paul) ← male(jef), parent(jef, paul)

Fig. 5.12. Inverse resolution example

father(jef, paul) ← male(jef)

father(X,Y) ← male(X), parent(X,Y) parent(jef, paul) ←

Fig. 5.13. Inverse resolution example

The different possible choices to invert the substitution introduce further
choice points and non-determinism in the search, which complicates the search
strategy further.

There are also two so-called W -operators, which invert two resolution steps
in parallel. We define them in the context of Horn clauses. The general scheme
for these operators is specified in Figs. 5.14 and 5.15.

p ← k1, ..., kn, l1, ..., lk p ← k1, ..., kn, l′1, ..., l
′
m

q ← l1, ..., lk p ← k1, ..., kn, q q ← l′1, ..., l
′
m

Fig. 5.14. The intra-construction operator

The W -operators link two V -operators in such a way that one of the clauses
is shared. In Figs. 5.14 and 5.15, the two clauses at the bottom of the figure
are derived by resolution; and vice versa, the three clauses at the top of the
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p ← r, l1, ..., lk q ← r, l′1, ..., l
′
m

p ← k1, ..., kn, l1, ..., lk q ← k1, ..., kn, l′1, ..., l
′
m

r ← k1, ..., kn

Fig. 5.15. The inter-construction operator

pos ← square, red

foursided ← rectangle

rectangle ← square

pos ← foursided, red, square, rectangle

pos ← rectangle, red, square

Fig. 5.16. Inverse resolution and bottom clauses

figure are derived by inverse resolution from the two clauses at the bottom.
Using the notation for inference operators, we obtain the following schemes
for intra-construction and inter-construction, respectively.

q ← l1, . . . , lk and p ← k1, . . . , kn, q and q ← l′1, . . . , l
′
m

p ← k1, . . . , kn, l1, . . . , lk and p ← k1, . . . , kn, l′1, . . . , l
′
m

(5.42)

p ← r, l1, . . . , lk and r ← k1, . . . , kn and q ← r, l′1, . . . , l
′
m

p ← k1, . . . , kn, l1, . . . , lk and q ← k1, . . . , kn, l′1, . . . , l
′
m

(5.43)

Example 5.38. Applying the intra construction operator to the clauses

grandparent(X,Y) ← father(X,Z), father(Z,Y)
grandparent(X,Y) ← father(X,Z),mother(Z,Y)

yields the clauses:
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grandparent(X,Y) ← father(X,Z), newp(Z,Y)
newp(Z,Y) ← father(Z,Y)
newp(Z,Y) ← mother(Z,Y)

The W -operators are of special interest because they introduce new predi-
cates into the language For the intra-construction operator of Eq. 5.42, the
predicate q does not appear below the line, and hence when using this scheme
inductively, a new predicate will be introduced. For the inter-construction
operator of Eq. 5.43, the predicate r is new. The automatic introduction of
new terms or predicates in the description language is called predicate inven-
tion. Inventing relevant new predicates is one of the hardest tasks in inductive
logic programming, because there are so many possible ways to introduce such
predicates and because it is hard to judge the quality of such predicates. In
the few attempts to invent new predicates, compression measures have been
employed as a quality criterion. The different inverse resolution operators and
predicate invention will be illustrated in Sect. 7.4.2, where the propositional
theory revision system Duce [Muggleton, 1987] will be discussed.

The above-sketched complications with the search process explain why
inverse resolution operators are not very popular in practice. Nevertheless, in-
verse resolution is extremely useful as a general framework for reasoning about
generality. It can serve as a general framework in which the other frameworks
can be reformulated. Various theoretical results exist in this respect. As an
illustration, let us look at the generation of the bottom clause under inverse
entailment.

Example 5.39. Reconsider the bottom clause example of Ex. 5.28. Observe
that B ∪ ⊥(c) �res c. Therefore we should be able to obtain ⊥(c) by inverse
resolution from c. This is indeed possible as shown in Fig. 5.12, where a literal
is added to the condition part of a clause by applying a single inverse resolution
step and using the empty inverse substitution. By repeating this process until
no further conditions can be added, the bottom clause would be obtained.

5.9 A Note on Graphs, Trees, and Sequences

In Chapter 4, we provided an almost exhaustive list of different data structures
and representations used within symbolic machine learning and data mining.
The present chapter has provided an overview of techniques and frameworks
for reasoning about the generality of logical descriptions only. One important
question, that, so far, has not been answered yet, is how these logical frame-
works relate to and can be used for simpler data structures such as graphs,
trees, and sequences.

The answer to this question is interesting because it shows a key advantage
of working with an expressive representation such as logic. Because graphs,
trees and sequences can easily be represented using Horn logic, the frame-
works for generality introduced in this chapter can be specialized to work
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with graphs, trees or sequences. This is an example of downgrading results
for more expressive representations to those that are less expressive. To re-
alize this one must encode the less expressive representation using the more
expressive one, and then apply the results of the more general framework.

To illustrate this point, let us investigate how this works for graphs. Recall
from Sect. 4.8 that a graph (V,E) consists of a set of nodes or vertices V and
a set of edges E ⊆ V × V . Let us also assume that the graphs are directed,
that is, that the edges (x, y) and (y, x) are different. Such graphs can be
encoded by introducing for each vertex v, an atom node(v), and for each edge
(x, y) an atom edge(x, y). For instance, the graph (V,E) with V = {a, b, c}
and E = {(a, a), (a, b), (b, c), (c, c)} can be represented by the following Horn
clause:

← node(A), node(B), node(C), edge(A,A), edge(A,B), edge(B,C), edge(C,C)

where we have replaced the identifiers of the vertices with different variables in
the logical notation. Notice that this type of clausal representation of graphs
imposes some syntactic restrictions on the form of the resulting clause:

• there is an empty conclusion part
• every variable that occurs in the Horn clause must also occur in an atom

for the predicate node/1
• all terms are variables.

This is an example of a particular syntactic bias; cf. Sect. 6.6.
The reason for encoding graphs using clausal logic is that the standard

frameworks for generality, that is, θ-subsumption and OI-subsumption, can
now be used for a variety of purposes. First, they can be used as both coverage
and generality relations. Selecting θ-subsumption with the above encoding of
graphs corresponds to using subgraph homeomorphism for matching, whereas
OI-subsumption results in subgraph isomorphism. Using the latter notion
every node in the subgraph must be matched with a unique node in the more
specific graph, whereas θ-subsumption allows for one node to match with
multiple nodes in the more specific graph; cf. Sect. 9.4.6. Second, the operators
for these subsumption relations can be used to specialize and generalize the
graph-based representations, though they may need to be slightly adapted to
respect the syntactic bias imposed by the encodings of graphs. For instance,
applying a refinement operator that adds literals to the condition part of the
clause, one obtains encodings of more specific graphs. For instance, adding
the literal edge(A,C) or node(D) yields a graph that is extended with an
edge or a node. These are the two typical elementary operations in graph
refinement. Other operations that are relevant include the minimally or least
general generalizations, which correspond to finding the maximally common
subgraphs; cf. also Sect. 9.4.6.

Finally, let us mention that it is possible, and often easy, to modify this
scheme for other types of graphs, trees or sequences. For labeled graphs, the
edge/2 predicate needs to be replaced by a label/3 predicate for each of the
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possible labels. Representing undirected graphs is a bit more tricky because
in logic the predicate arguments in an atom are ordered from left to right, and
hence directed. To represent undirected graphs we need to employ a symmetric
predicate. This is possible using the semantic refinement techniques of Sect.
5.6.3. One then needs to add the clause

edge(A,B) ← edge(B,A)

to the background theory to specify the symmetry of the edge/2 predicate
and then consider generalization relative to this background theory. For trees
and sequences, the same encoding as for graphs can be employed, although
further syntactic constraints will have to be imposed on the resulting Horn
clauses.

5.10 Conclusions

This chapter has discussed the generality relation within logic, and it has
been shown that the generality relation coincides with logical entailment. This
important property has allowed us to devise inductive inference operators by
inverting deductive ones. By imposing different restrictions on the form of
the hypotheses and on the allowed deductive inference operators, different
frameworks for generality were obtained. The most important frameworks
include θ- and OI-subsumption, and various forms of subsumption relative
to a background theory and inverse resolution. For these frameworks, the
most important operators, that is, inductive inference rules, were derived and
their properties studied. Towards the end of the chapter, we discussed several
advanced topics, such as semantic refinement, aggregation and the application
of these logical frameworks for generality to graphs, trees and sequences.
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6

The Upgrading Story

Whereas previous chapters have introduced the foundations of multi-relational
data mining and inductive logic programming, this chapter discusses the de-
velopment of logical and relational learning systems. Rather than providing a
detailed and exhaustive overview of the many systems that exist, we present
and illustrate a methodology for developing such systems using three well-
known case studies: Foil [Quinlan, 1990], Tilde [Blockeel and De Raedt,
1998] and Warmr [Dehaspe and Toivonen, 2001]. The methodology is one
of the key lessons learned from the development of numerous logical and rela-
tional learning systems over the past two decades. The methodology states that
in order to develop a novel logical or relational learning system, it is advanta-
geous to start from a well-known effective propositional learner and to upgrade
it by extending its representations and operators. This is advantageous because
it allows one to maximally profit from the research on propositional learners
(and inherit their efficiency and effectiveness), and also because there will be
a clear relationship between the new logical or relational learning system and
its propositional counterpart. This should not only allow the new system to
emulate its propositional counterpart but also make the new system easier to
use and understand. From a pragmatic perspective, it is often necessary to
impose certain (semantic or syntactic) restrictions on the induced hypotheses
or to guide the search using certain types of preferences. Such restrictions and
preferences are known as biases and are studied in the last section of this
chapter.

6.1 Motivation for a Methodology

When tackling a particular application, the data mining analyst has to decide
1) how to formulate the data mining task, and 2) which data mining algorithm
to employ to solve the application. In this process, the need to develop a novel
logical or relational learning system may arise because of the limitations of the
available (propositional) tools. In the first phase, the analyst must typically
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identify the mining task from the many available ones, such as classification,
regression, probabilistic modeling, clustering, and association rules discovery.
At the same time, he must determine a suitable representation, and, for rea-
sons outlined in Chapter 4, the chosen representation may well need to be a
relational one. The task and nature of the representation then determine the
choice of the data mining algorithm or system to be employed.

Unfortunately, when dealing with relational problems, there may not be a
readily available system that is suitable for the problem at hand. In such situ-
ations, the analyst may want to consider devising a novel logical or relational
learning system. Furthermore, if the mining task has already been identified
and an effective propositional learner exists for tackling a propositional ver-
sion of the problem, it is a good idea to upgrade the propositional learner,
which means to adapt the existing learner so that it can cope with more ex-
pressive representations. This adaptation has to be performed by the machine
learning or data mining expert, and typically involves the implementation of a
new upgraded system. Upgrading the propositional learner typically consists
of the following steps:

• changing the representation of the examples to deal with relations;
• changing the representation of hypotheses to deal with relations;
• adapting the algorithm as little as possible to deal with the upgraded

representations; this step often involves the modification of the operators
to traverse the search space;

• adding new features, for instance, to deal with background knowledge,
where desired;

• implementing and evaluating the system.

Whereas the first few steps are more concerned with the design of the algo-
rithm, the last few are concerned with its implementation. During the up-
grading process, one should take care that the propositional system remains
a special case of its upgrade so that the propositional system can still be
emulated.

This upgrading methodology is an effective means for obtaining novel log-
ical and relational learning systems. Evidence for this claim will be pre-
sented by showing in the next sections that three well-known systems, Foil

[Quinlan, 1990], Tilde [Blockeel and De Raedt, 1998] and Warmr [Dehaspe
and Toivonen, 2001], were designed using this methodology. Even though not
all developers of these systems may have explicitly followed this methodology,
the discussion still provides insight and case studies into how to develop novel
logical and relational learning tools. At the same time, three popular such
systems will be encountered.

There are many reasons why following the methodology is advantageous.
First, as argued above, the need to develop an upgrade of a particular propo-
sitional learner may occur naturally when tackling a specific application.
Second, by upgrading a learner that is already effective for propositional rep-
resentations, one can benefit from the experiences and results obtained in the
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propositional setting. In many cases, such as, for instance, decision trees, this
implies that one can rely on well-established methods and findings, which are
the outcomes of several decades of machine learning research. It will be hard
to do better starting from scratch. Third, upgrading an existing learner is
also easier than starting from scratch as many of the components (such as
heuristics, search strategy, etc.) can be recycled. It is therefore also econom-
ical in terms of person power. Fourth, the upgraded system will be able to
simulate the propositional one, which provides guarantees that the output hy-
potheses will perform well on propositional problems even though it is likely
that the upgraded system will be computationally more expensive to use than
its propositional counterpart. Finally, it may be possible to incorporate new
features in the learner by following the methodology. One feature, which is
often absent from propositional learners and may be easy to incorporate, is
the use of a background theory. Finally, the author wishes to stress that the
methodology – like any other methodology – has limitations and does not
always apply. Indeed, an obvious limitation occurs when there does not exist
a propositional learner for a given task.

6.2 Methodological Issues

The upgrading methodology, described above, mentions a number of different
steps, which we will now investigate in more detail.

6.2.1 Representing the Examples

The first step to take is to upgrade the representation of the examples in order
to deal with relations. An important decision to be made in this context is
concerned with the choice of the learning setting. Should one employ learning
from interpretations or from entailment? Often, the answer to this question
is already given in the propositional learner that one starts from. If it involves
examples in the form of propositional clauses, it will be convenient to em-
ploy learning from entailment; if, on the other hand, examples correspond to
boolean variable assignments or interpretations, it will be better to employ
interpretations as examples. In some other cases, both choices will be possible
and the choice made will be a matter of personal preference.

To illustrate this point, consider the task of basket analysis, where one
wants to compute all frequent item-sets in transactional data. This task was
already illustrated in Ex. 3.2 and 3.5. Because the standard formulation of
frequent item-set mining already employs the learning from interpretations
setting, it is appropriate to employ this setting when upgrading frequent item-
set mining (cf. also Sect. 6.5) towards relational representations. On the other
hand, when considering a rule learning setting, as in the playtennis example of
Ex. 4.5, it is more natural to employ clauses or facts to describe the examples.
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Another point to stress is that the application under consideration may
not require a full upgrade towards the logical or relational representations
introduced in Chapter 4. As stated there, there is an important trade-off be-
tween expressive power and efficiency. Therefore, depending on the priorities
and requirements of a particular application, it may be wise to use one of the
intermediate representations discussed in Chapter 4. Nevertheless, for such in-
termediate representations, a similar choice between learning from entailment
and from interpretations may also be necessary.

6.2.2 Representing the Hypotheses

A similar question arises for representing the hypotheses or patterns. How
should one upgrade the representation of the hypotheses? If the propositional
representation of hypotheses closely corresponds to a concept in logic (such as
clause, term, or query) it will be most convenient to employ the corresponding
logical representation. Otherwise, a novel relational or logical representation
may have to be designed.

To illustrate this point, consider upgrading the representations employed
by typical rule learning systems. These systems learn rules of the form

IF a1 = v1 and...and an = vn THEN class = c

where the ai are different attributes and the vi are values the ai can take, and
the attribute class is the class attribute (with value c). These rules directly
correspond to clauses of the form

class = c ← a1 = v1, . . . , an = vn

If only rules for one class are learned, they can directly be employed as the
definition of the “predicate” class = c. However, most rule learners compute
rules for different classes. These rules are then combined in order to make
predictions. There are various ways for realizing this. First, the rule learner
may derive a so-called decision list, which is nothing else than an ordered set
of rules. An example is then classified as belonging to the class of the first
rule that fires (that is, covers) the example. This can be realized in Prolog by
adding the built-in predicate cut (“!”) to the end of each rule. The desired
effect – that only the first rule whose conditions are satisfied, will fire – is then
realized; cf. [Mooney and Califf, 1995] and also Sect. 6.4, where we provide
a detailed example. Second, the rules may be unordered but weighted. To
classify an example, the weights of the rules of a particular class that cover
the example are aggregated (for instance, summed) to compute scores for all of
the classes. The example is then classified into the class with the best score.
This effect can be realized by incorporating the weights in the clauses and
then implementing the scoring method (for example, using a meta-predicate
in Prolog).

The illustration points out one of the most important lessons of the upgrad-
ing methodology: there is nothing sacred about the standard logical concepts
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and there may be good reasons for introducing new relational representations
that upgrade some procedural propositional hypothesis language. Of course,
this should be exercised with care and only when the traditional logical con-
cepts cannot easily capture the propositional representation.

6.2.3 Adapting the Algorithm

A propositional learner that searches the space of possible hypotheses can
often be upgraded by only modifying the operators to traverse the search space
to cope with the upgraded hypotheses space; and of course, the coverage test
will need to be upgraded too. As the vast majority of propositional operators
are a special case of θ-subsumption or OI-subsumption, it will often suffice to
consider these two frameworks for generalization. The particular choice will
then depend on the properties of the operators that the propositional learning
system relies on.

For instance, when the search space is searched completely and an opti-
mal refinement operator (cf. Chapter 3) is needed, one should consider OI-
subsumption. On the other hand, if the propositional system relies on the
existence of a least general generalization, θ-subsumption is to be preferred.

Apart from upgrading the operators and the covers test, one should make
as few changes to the original algorithm as possible (especially w.r.t. heuris-
tics and search strategy). This will allow one to maximally profit from the
knowledge the propositional learner is based on and at the same time avoid
having to go through the same tuning that the designers of the original system
had to go through. It also guarantees that the upgraded system can emulate
the original one.

6.2.4 Adding Features

Finally, it may be desirable to add some new and typical relational learning
features. One feature to incorporate that immediately comes to mind and that
is worth considering is background knowledge in the problem setting. Indeed,
it is often useful to allow the user to specify new predicates and relations in
the background theory, which can then be employed to complete the example
descriptions, as extensively discussed in Chapter 4. This extension is often
easy to realize as one, in principle, only needs to change the coverage test.

Now that we have introduced the methodology, we discuss three case stud-
ies in the next few sections.

6.3 Case Study 1: Rule Learning and Foil

As a first case study, we consider the system Foil [Quinlan, 1990], one of the
earliest and still most popular relational learning systems. It upgrades propo-
sitional rule learners to the relational setting. We now argue that Foil, as a
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prototypical relational rule learner, could have been developed by following
the above sketched methodology.

6.3.1 Foil’s Problem Setting

So, we now consider the problem of developing a relational rule learning sys-
tem. Traditional rule learning systems typically start from an attribute-value
representation as in the playtennis example in Sect. 4.2 and aim at find-
ing rules that accurately predict the class of the examples. In Sect. 4.2, we
have already discussed several possibilities for representing such attribute-
value learning tasks in a relational setting. Because the target is to derive
IF-THEN rules that predict the class, it is natural to employ the learning
from entailment setting. Furthermore, let us assume that we work with two
classes of examples: positive and negative. Then, the representation employed
in Ex. 4.6 motivates the following choices:

• examples are ground facts; positive examples are true, and negative ones
are false;

• a hypothesis corresponds to a set of definite clauses, and a definite clause
represents a rule.

In addition, given the limited form of examples employed, it is useful to
employ a background theory that contains further predicates and information
about the examples. This background theory can again be represented as a
set of definite clauses.

This leads to the following problem specification, which forms the basis of
the inductive logic programming system Foil [Quinlan, 1990] and many of
its variants (such as mFoil [Lavrač and Džeroski, 1994]):

Given

• a set of true ground facts P , the set of positive examples,
• a set of false ground facts N , the set of negative examples,
• a background theory B, consisting of a set of definite clauses

Find: a set of definite clauses H such that ∀p ∈ P : B ∪ H |= p and
∀n ∈ N : B ∪ H �|= n.

One illustration of this setting was given in Ex. 4.6 where the background
theory B was empty. Nevertheless, we provide another illustration.

Example 6.1. Assume that the background theory consists of the relations
subscription, course, company and person in the summerschool database of
Sect. 4.4 (cf. Figs. 4.1 and 4.2). If the positive examples are

attendsParty(blake) ←
attendsParty(miller) ←
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and the negative one is

attendsParty(adams) ←

then the single clause

attendsParty(P) ← person(P, J,C), company(C, commercial)

is a solution as it covers the two positive examples and does not cover the
negative example.

It should be mentioned that the setting originally introduced by Quinlan
in Foil is more restricted than the one specified above:

• it restricts the background knowledge to contain ground unit clauses (that
is, ground facts) only, yielding an extensional background theory, and

• it does not allow for functors

At the same time, rather using an intensional coverage test, which would
merely test whether a hypothesis h covers an example e by checking whether
B ∧ h |= e, it employs an extensional coverage test. Deciding whether a
hypothesis h extensionally covers an example e with regard to an extensional
background theory B involves identifying a clause c ← b1, ..., bn that belongs
to the hypothesis h such that there exists a substitution θ for which cθ = e
and the biθ ⊆ B.

Example 6.2. Applying the extensional coverage test to attendsParty(blake)
and the clause mentioned in the previous illustration amounts to verifying
whether there exists a substitution θ such that

{person(blake, J,C), company(blake, commercial)}θ ⊆ B

The effect of the choices made in Foil is that a simple setting (avoiding
many complications such as functors) is obtained, which allows for a very fast
implementation of some essential components of the learning algorithm. Foil

is still one of the most efficient relational learners that exists today, despite
the facts that it was developed around 1990. On the other hand, the use of an
extensional background theory and coverage testing is more restricted than
the full learning from entailment setting.

Because these restrictions are not essential to the problem setting itself,
and are not imposed by some of Foil’s variants, we will largely ignore them
throughout the remainder of the section. A more detailed discussion of exten-
sional coverage testing and its efficiency is contained in Sect. 10.1.

Exercise 6.3. Discuss why the extensional coverage test can be implemented
efficiently and also sketch situations in which the extensional coverage test
causes problems (that is, where extensional and intensional coverage testing
may produce different results).
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6.3.2 Foil’s Algorithm

Now that the problem has been specified, it is time to design an algorithm
for solving it. Due to the closeness of the propositional problem setting to
rule learners such as CN2 [Clark and Niblett, 1989, Clark and Boswell, 1991]
and AQ [Michalski, 1983], it is convenient to employ a separate-and-conquer
algorithm [Fürnkranz, 1999]. At the heart of CN2 and AQ is the famous
covering algorithm sketched in Algo. 6.1. This algorithm repeatedly finds a
single rule that is considered best (that is, maximizes the number of positive
examples covered while keeping the number of negative examples covered as
low as possible). The best rule is then added to the hypothesis H and all
examples of P that are covered by the rule are removed from P . This process
terminates when it is impossible to find a good rule or when all positive
examples have been covered. Good rules compress the examples according to
the minimum description length principle, which states that the encoding of
the examples using the rules should be shorter than the original encoding of
the examples. This criterion is used to avoid over-fitting; cf. below.

Algorithm 6.1 The covering algorithm
H := ∅
repeat

b := call bestrule(P ,N)
if b is a rule then

remove from P all examples covered by b
add b to H

end if
until b = “not found” or P = ∅
output H

To find the best rule, systems such as Foil, CN2 and AQ perform a
heuristic general-to-specific beam search procedure along the lines of Algo.
3.4 sketched in Chapter 3. One instantiation (using beam search with beam-
size equal to 1, that is, hill climbing) describing Foil is shown in Algo. 6.2.

To find the best rule, Foil searches through the space of rules. The struc-
ture of this search space is given by the θ-subsumption lattice, and a special-
ization operator ρ is employed. Due to the non-existence of an ideal specializa-
tion operator under θ-subsumption, Foil (like most other relational learners)
employs a pragmatic operator, which systematically adds literals to a given
clause. The search process starts at the most general clause �, which for any
given predicate p/n corresponds to the fact p(X1, ...,Xn), where the Xi are
different variables. The hill climbing Algo. 6.2 then repeatedly replaces the
current clause by the one that scores best among its refinements. This process
continues until either no negative example is covered, or the current clause no
longer compresses the examples.
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Algorithm 6.2 The function bestrule(P ,N)
c := 
;
while c covers examples from N and c compresses the examples do

c := the best refinement in ρ(c)
end while
if c compresses the examples then

return c
else

return “not found”
end if

To decide which refinement c′ of a clause c scores best, Foil uses a variant
of the weighted information gain heuristic:

wig(c, c′) =
n(c′, P )
n(c, P )

×
(
log2

n(c′, P )
n(c′, P ∪ N)

− log2
n(c, P )

n(c, P ∪ N)

)
(6.1)

where n(c, E) denotes the number of examples in E that c covers.
The term log2

n(c,P )
n(c,P∪N) is an estimate of the amount of information needed

to specify that an example covered by the clause is positive. The difference
between the two terms is the information gain. The information gain is then
weighted by the fraction of positive examples that remain covered after spe-
cialization. The weighted information gain balances information gain with
coverage.

Weighted information gain is a variant of the heuristic employed by the
earlier CN2 system, which Foil generalizes. It is also a simplification of the
one actually employed in Foil as the Foil heuristic would rather count the
number of answer substitutions than the number of covered examples.

A substitution θ is an answer substitution for an example e by a clause
h ← b1, ..., bm if and only if θ grounds the clause, hθ = e and the query
← b1θ, ..., bmθ succeeds in the database.

Usually, it is not a good idea to count substitutions instead of examples
because in some applications the number of substitutions for different exam-
ples can vary a lot, leading to potentially improper balancing of the different
examples. For instance, in the musk application [Dietterich et al., 1997], a
multi-instance learning problem, there is one example having more than 6,000
instances, whereas most examples only have a couple of instances. When sub-
stitutions are counted instead of examples, this particular example becomes
almost as important as all other examples taken together!

Example 6.4. Reconsider Ex. 6.1 and consider the following sequence of re-
finements:

attendsparty(P) ←
attendsparty(P) ← person(P, J,C)
attendsparty(P) ← person(P, J,C), company(C, commercial)
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The weighted information gain from the first clause to the second one is

2
3
×

(
log2

2
3
− log2

2
3

)
= 0 bits

and from the second one to the third is:

2
2
×

(
log2

2
2
− log2

2
3

)
= 0.58 bits

Exercise 6.5. Provide a concrete illustration that shows that counting sub-
stitutions may yield different results than counting examples.

Foil also employs a criterion, based on the minimal description length
principle, to decide when to stop refining a rule. According to this criterion,
Foil will stop refining the current hypothesis, when the encoding length of the
clause will become longer than the encoding length of the covered examples.

It should be stressed that other heuristics than those presented here could
be (and actually have been) employed in relational learners such as Foil.
As in Foil, two types of heuristic can be distinguished: one that guides the
search towards the more promising clauses, for instance, information gain,
and one that is meant to cope with noisy data and to avoid over-fitting, for
instance, minimum description length. More details on the particular heuris-
tics employed in Foil can be found in [Quinlan, 1990] and an overview of
alternatives can be found in [Lavrač and Džeroski, 1994].

Rather than discussing the use of different heuristics, which are quite sim-
ilar to those in the propositional setting, we now focus on some new problems
that arise in a relational context.

First, as extensively discussed in Chapter 5, there are some serious prob-
lems with specialization operators under θ-subsumption, in particular, the
non-existence of ideal operators, which implies that one has to resort to the
use of a pragmatic operator. Such pragmatic operators proceed by adding
literals to clauses. As a consequence, care must be taken that the generated
clauses are proper specializations and do not belong to the same equivalence
class. For example, the sequence of clauses

p(X) ← m(X,Y1)
p(X) ← m(X,Y1),m(X,Y2)
p(X) ← m(X,Y1),m(X,Y2),m(X,Y3)
. . .

can be generated by a pragmatic operator, even though all clauses in this
sequence are equivalent under θ-subsumption. This problem can be alleviated
by resorting to another type of subsumption (such as OI-subsumption); see
Chapter 5 for more details.

Secondly, and somewhat related, there is the problem of determinate liter-
als. These are literals that when added to a clause, change neither the covered
examples nor the covered substitutions. More formally, a literal l is deter-
minate with regard to a clause h ← b1, ..., bn and background theory B if
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and only if for all substitutions θ that ground the clause such that the query
← b1θ, ..., bnθ succeeds in B there is exactly one substitution σ such that
(h ← b1, ..., bn, l)θσ is ground and the query ← b1θσ, ..., bnθσ, lθσ succeeds in
B.

Example 6.6. Continuing the attendsParty illustration, the literal person(P,C, J)
is determinate with regard to the clauses

attendsParty(P) ←
attendsParty(P) ← subscribes(P, erm)

but the literal person(P, president, J) is not.

Determinate literals cause problems for heuristic methods because they do
not result in any improvement of the score; cf. Ex. 6.4. Yet, they are often
essential because they introduce new variables in the clauses on which further
conditions can be specified (such as the job type and the company name when
learning attendsParty). Therefore, determinate literals often receive a special
treatment. In the literature on inductive logic programming, the following
solutions have been considered:

• systematically adding all determinate literals to the current clause, and
pruning them away when the clause has been completed (cf. [Quinlan,
1993a]); and

• considering macro-operators, or looking ahead during the search; these
solutions consider adding multiple literals during one refinement step, and
are especially useful if the first literal added is determinate [Blockeel and
De Raedt, 1997]. Related to the use of macro-operators is the use of a
resolution step that replaces one literal by a set of literals [Bergadano and
Giordana, 1990].

The complex structure on the search space imposed by the subsumption
lattice (or other generality relations) is the cause of many problems in rela-
tional learning and inductive logic programming. These problems occur not
only in a rule learning setting but are quite typical for relational learning in
general. One approach to simplifying the search space employs the notion of
a language or syntactic bias. The language bias restricts the search space by
requiring that all clauses (or hypotheses) satisfy certain syntactic or seman-
tic restrictions. Because language bias is an important concept for relational
learning in general, we devote Sect. 6.6 to it.

Many extensions and variants of the basic Foil algorithm and systems
have been developed and are described in the literature. An overview of some
of the most important developments is provided at the end of this chapter.

Exercise 6.7. Discuss how to upgrade the cautious specific-to-general Algo.
3.5 to work with examples in the form of definite clauses for a particular
predicate. (The solution to this exercise is the basis for the inductive logic
programming system Golem [Muggleton and Feng, 1992].)
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6.4 Case Study 2: Decision Tree Learning and Tilde

As a second case, we study one of the best known family of learning algorithms,
known under the name top-down induction of decision trees, and argue that
systems such as Tilde [Blockeel and De Raedt, 1998], which induces logical
decision trees from examples, have been derived according to the methodology.

6.4.1 The Problem Setting

An algorithm for top-down induction of a decision tree addresses either a
classification task, where the target attribute to be predicted is discrete, or, a
regression task, where the target attribute is continuous. Decision trees owe
their popularity to their simplicity as well as the efficiency with which they
can be induced. The efficiency is due to the divide-and-conquer algorithm that
efficiently partitions the space of examples into coherent regions with regard
to the target attribute.

One example decision tree, for predicting the class attribute party in the
relation participant (in Table 6.1 below), is shown in Fig. 6.1. The internal
nodes of a decision tree contain boolean tests and the leaves contain the
value for the class attribute that is predicted (for the party attribute in the
example).1 To classify an example, one starts at the leaf and performs the
test on the example. If the outcome of the test is positive or true, the left
branch is followed; if it is false, the right one is taken. The resulting node
either is a leaf node containing the predicted class value or an internal node,
in which case the procedure is recursively applied. For instance, the example
adams is classified in the rightmost leaf yielding the class Party = no. Observe
also that there is a close correspondence between a decision tree and a set of
rules. Indeed, the tree in Fig. 6.1 can be represented using the following set
of rules:

IF Seniority = senior THEN Party = yes
IF Seniority �= senior and Company = jvt THEN Party = yes
IF Seniority �= senior and Company �= jvt THEN Party = no

Alternatively, when employing boolean tests, it may be more convenient to
employ a decision list:

IF Seniority = senior THEN Party = yes
ELSIF Company = jvt THEN Party = yes
ELSE Party = no

Given the popularity and effectiveness of this class of algorithms, one may
wonder how to upgrade to a relational learning setting. To focus our attention
on a relational learning problem, let us reconsider the Bongard problems, one
of which is illustrated in Fig. 6.2.
1 Traditional decision trees also allow for non-boolean tests with multiple outcomes.

For simplicity, we will not deal with such tests explicitly in this book, though this
is, of course, possible.
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Table 6.1. The participant relation

Name Job Seniority Company Party

adams researcher junior scuf no
blake president junior jvt yes
king manager junior pharmadm no
miller manager senior jvt yes
scott researcher senior scuf yes
turner researcher junior pharmadm no

seniority = senior

company = jvtyes

yes no

Fig. 6.1. A decision tree for the party attribute (adapted from [De Raedt et al.,
2001])

Fig. 6.2. A larger Bongard problem. Reprinted with permission from [De Raedt
et al., 2001]
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Two immediate questions arise.

• How should the examples be represented?
• What is a relational decision tree?

There are several possible answers to the first question. On the one hand,
for the Bongard problems, it is quite natural to employ interpretations that
completely describe a particular scene. The interpretations are then also la-
beled with the class value. For instance, the rightmost top example can be
represented as

{square(s1), square(s2), in(s1, s2)}
Another possibility is to employ one relational database to model the examples
as sketched in Ex. 4.27. In both cases, a background theory can be used to
complete the interpretations (as discussed in Chapter 4).

The next design decision to make concerns the definition of a relational
decision tree. To design a proper definition in relational logic, it is helpful to
carefully analyze the propositional decision tree, and to draw some correspon-
dences. Formulated in logic, a test corresponds to an atom or a query. So,
what happens if we replace the nodes by queries? To classify an example, one
runs the query on the example and takes the corresponding branch in the tree.
This seems like a reasonable choice although there is one complication related
to the use of variables. If multiple nodes refer to the same logical variables,
should they be considered as the same variable or not? For instance, in the
example relational decision tree shown in Fig. 6.3, when querying in(T1,T2)
should T1 be restricted to triangles because the root query requires T1 to be
a triangle?

Because classifying an example in a relational setting often requires one
to employ long chains of literals connected through variables, it seems best
to define the semantics of relational decision trees so that multiple occur-
rences of a variable, along a succeeding branch of the decision tree, denote the
same variable. Using this view, an equivalent representation of the relational
decision tree in Fig. 6.3 reads as follows:

IF triangle(T1), in(T1,T2), triangle(T2) THEN Class = yes
ELSIF triangle(T1), in(T1,T2) THEN Class = no
ELSIF triangle(T1) THEN Class = no
ELSIF circle(C) THEN Class = no
ELSE Class = yes

Thus, the decision tree corresponds to a decision list, where the leaves of the
decision tree are traversed from left to right and where each leaf contributes
one rule to the list. Furthermore, whereas the variable bindings and atoms
are propagated along the succeeding branches of the decision tree, this is not
done for the failing branches. For example, the literals (and bindings) for the
leftmost leaf produces the condition triangle(T1), in(T1,T2), triangle(T2) but
for the left leaf under circle(C), the parent literal triangle(T1) does not occur
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in the condition of the rule for this leaf because it is already known to have
failed (if triangle(T1) would have succeeded, one of the first three rules must
have succeeded as well).

Let us also mention that this particular use of an if-then-else construct
would be modeled using Prolog’s cut (“!”). So, the above decision list or logical
decision tree can be represented by the following Prolog program. The effect
of “!” in this program is that the first rule for class that succeeds determines
the class.

class(yes) ← triangle(T1), in(T1,T2), triangle(T2), !.
class(no) ← triangle(T1), in(T1,T2), !.
class(no) ← triangle(T1), !.
class(no) ← circle(C), !.
class(yes) ←

Using this representation, it is easy to check how an example e is classified
by a logical decision tree t. One merely needs to compute the Prolog program
pt corresponding to the tree t, assert both pt and e in a Prolog database and
pose the query ← class(C). If a background theory B is employed, B should
be asserted in the database as well before posing the query.

in(T1,T2)

no no yes

yes no

triangle(T1)

circle(C)

triangle(T2)

Fig. 6.3. A logical decision tree for a Bongard problem

By now, we are able to formally define the problem setting tackled by a
logical decision tree induction system such as Tilde [Blockeel and De Raedt,
1998]:

Given

• a set of labeled examples E in the form of interpretations,
• (possibly) a background theory B in the form of a definite clause theory,

which can be used to complete the examples,
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Find: a logical decision tree that correctly classifies the examples in E.

6.4.2 Inducing Logical Decision Trees

The logical decision tree learning algorithm is summarized in Algo. 6.3. It
starts with the tree containing a single node, all examples and the empty query,
and then recursively completes the nodes in the tree. To complete a node,
the algorithm first tests whether the example set in the node is sufficiently
homogeneous. If it is, it is turned into a leaf; if it is not, all possible tests
for the node are computed and scored using a heuristic. The best test is then
selected and incorporated into the node and two new nodes are added to the
tree: the left one contains those examples for which the test succeeds, the right
one those for which the test fails. The procedure is then called recursively for
the two sub-nodes.

The only point where the algorithm differs from traditional decision tree
learners is in the generation of the tests to be incorporated in the nodes. To
this aim, the algorithm employs a refinement operator ρ that works under θ-
subsumption. For convenience, we have assumed that the refinement operator
specializes a query Q (a set of literals) by adding literals l to the query yielding
Q, l. For example, for the query ← in(X,Y), the refinement operator may
compute refinements such as

← in(X,Y), triangle(X)
← in(X,Y), circle(X)

Related to the use of the refinement operator is the need to propagate the
query along the succeeding branches of the decision tree. This propagation
is necessary to realize the variable bindings among the different tests. Let us
illustrate this using the decision tree in Fig. 6.3. If one does not propagate the
query ← triangle(T1) along the leftmost branch, the node for ← triangle(T2)
would contain the examples for which the query ← triangle(T1), in(T,T2)
succeeds rather than the intended ← triangle(T1), in(T1,T2).

The only point that we have not addressed yet concerns the heuristic func-
tions used to determine the best tests and to decide when to turn nodes into
leaves. At this point, it is important to realize that these problems are essen-
tially the same as for traditional decision tree learners, and that, therefore,
the same solutions apply. The first-order decision tree learner Tilde [Block-
eel and De Raedt, 1998] employs exactly the same heuristics as the famous
decision tree learner C4.5 [Quinlan, 1993a]. A popular heuristic is based on
information gain, which tries to measure the amount of information that is
gained by performing a particular test. The entropy (or information) I(P,N)
needed to classify an example in one of two classes P and N (with E = P ∪N)
is defined as

I(P,N) = −n(P )
n(E)

× log2
n(P )
n(E)

− n(N)
n(E)

× log2
n(N)
n(E)

(6.2)
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Algorithm 6.3 Inducing decision trees dt(T : tree, E: examples, Q: query)
if E is sufficiently homogeneous then

T := leaf(C) where C is the majority class in E
else

for all queries (Q, l) ∈ ρ(Q) do
compute score(Q, l,E)

end for
let (Q, l) be the best refinement with regard to score
T.test := l
El := {e | (Q, l) succeeds in B ∪ e}
Er := E − El

call dt(T.left,El,(Q, l))
call dt(T.right,Er,Q)

end if

where P and N are the sets of positive and negative examples, respectively,
and n(X) denotes the number of examples in the set X. Furthermore, if we
split the sets of examples E = P ∪ N into the sets El = Pl ∪ Nl and
Er = Pr ∪ Nr with regard to the test t then the information gain can be
expressed as

IG(E,El, Er) = I(P,N) − n(El)
n(E)

× I(Pl, Nl) −
n(Er)
n(E)

× I(Pr, Nr) (6.3)

This expression measures how much information is gained by performing the
test t. Decision tree learning algorithms then select the test that results in the
maximal information gain.

Example 6.8. Assume that E contains nine positive and five negative exam-
ples. Then

I(P,N) = − 9
14

× log2
9
14

− 5
14

log2
5
14

= .940 bits

Assume furthermore that there is a test t that splits the examples into El

with three positive and four negative examples, and into Er with six positive
and one negative examples, then

IG(E,El, Er) = .940 − 7
14

× .985 − 7
14

× .592 = .151 bits

These calculations inform us that if we know the outcome of the test t then
we have gained .151 bits of information.

Typical decision tree learners also include heuristics to decide when to stop
refining a certain node. A simple heuristic that can still be very effective is to
stop expanding nodes when the number of examples in the nodes falls below
a certain (user-defined) threshold.
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Further heuristics and optimizations may be targeted at avoiding over-
fitting the data and dealing with noise. This includes algorithms for post-
pruning decision trees and turning them into rules. There exist also decision
tree learners that predict real valued attributes rather than discrete classes.
They are known under the name of regression trees. A full discussion of these
techniques is outside the scope of this book but can be found in [Breiman
et al., 1984, Quinlan, 1993a, 1986, Mitchell, 1997].

6.5 Case Study 3: Frequent Item-Set Mining and Warmr

Since the seminal paper by Agrawal et al. [1993] on discovering association
rules, the data mining community has devoted a lot of attention to the local
pattern mining paradigm, and a vast number of different approaches and tech-
niques have been developed to efficiently discover such patterns in a variety of
different data sets. The large majority of the early approaches were, however,
initially limited to flat representations. A natural question that arose in this
context was whether the local pattern mining framework could be upgraded
for use in relational databases. Below we show how this has been realized using
the methodology sketched earlier for logical and relational learning. At this
point, the reader may want to revisit the problem of frequent item-set mining
and association rule mining in boolean or transactional data introduced in
Ex. 3.3. Recall that the goal was to find all item-sets that frequently occur in
the transactional data set.

6.5.1 Relational Association Rules and Local Patterns

According to the upgrading methodology, the first two questions to address
are concerned with the logical representations of the examples and the pat-
terns. Applied to frequent item-set mining, we are looking for the relational
equivalent of item-sets used as transactions or patterns. As transactions in
the form of item-sets are boolean interpretations, a natural choice is to use
(Herbrand) interpretations as transactions. At the same time, patterns in the
form of item-sets can be considered conjunctive queries, and therefore we can
use logical queries as local patterns.

Example 6.9. Reconsider the basket analysis problem of Ex. 3.3 and the trans-
action {s,m, b, c}. A local pattern containing the item-set {m, b} could be
represented by the query ← m, b. This query covers the transaction, because
the query succeeds in the database containing this single transaction.

Whereas this choice of representation is theoretically appealing, is elegant and
has been used for local pattern mining, it is not so practical. The reason is that
relational databases are usually not partitioned into interpretations and par-
titioning large relational databases may well be computationally expensive.
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Therefore, there is also an alternative formulation of relational frequent pat-
tern mining that circumvents the partitioning process. It is this formulation
that will be used throughout this section.

To focus our attention, we shall use the summerschool database of Fig.
4.1 as a typical relational database. When mining for local patterns in the
summerschool database, one must first determine the entity of interest. Are
we looking for patterns about participants, job types, companies, courses, or a
combination of these entities? The entity of interest determines what is being
counted, and will determine the type of pattern searched for. As patterns can
be represented as definite clauses, the entity of interest also determines the
type of clause searched for.

Example 6.10. The following clauses serve as patterns about different entities
of interest.

key(P) ← participant(P, J,C,Pa), company(C, commercial)
key(J) ← participant(P, J,C,Pa), company(C, commercial)
key(C) ← participant(P, J,C,Pa), company(C, commercial)
key(Co) ← course(Co, L,T), subscription(adams,Co)
key(C, J) ← participant(P, J,C,Pa), company(C, commercial)

The first three patterns make statements about participants, job types, and
companies, respectively. In the fourth query the entity of interest is the course,
and in the last query, it is the relationship between companies and job types.
The first clause is a statement about participants. It covers all participants
who work for a commercial company, that is, blake and miller. Thus the fre-
quency of the first clause is 2.

We can now formalize the frequent query mining task in relational databases
as follows:

Given

• a relational database D
• the entity of interest determining the key
• a frequency threshold t
• a language L of logical clauses of the form key ← b1, ..., bn defining key.

Find: all clauses c ∈ L for which freq(c,D) � t, where

freq(c,D) = |{θ | D ∪ c |= keyθ}| (6.4)

Notice that the substitutions θ only substitute variables that appear in the
conclusion part of the clause. For instance, the frequency of the pattern about
companies is 1 as jvt is the only commercial company.

In addition to frequent item-sets, the data mining community also employs
association rules. Simple association rules in the boolean case are rules of the
form
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IF itemset THEN item

An example rule is IF m and b THEN s. It denotes that transactions involv-
ing m(ustard) and b(eer) typically also contain s(ausage). Traditionally, two
measures are associated with these rules:

support(IF set THEN i, D) =
freq(set ∪ {i},D)

freq({},D)
(6.5)

confidence(IF set THEN i, D) =
freq(set ∪ {i},D)

freq(set,D)
(6.6)

Association rule mining is then concerned with finding all association rules
that have a minimum support and a minimum confidence in a given database.
As we will see soon, frequent pattern mining is often an intermediate step in
finding all association rules of interest.

Thus a further question about local pattern mining is what a relational
association rule is. Because local patterns are now clauses of the form key ←
query, it is tempting to define association rules as

IF query THEN literal

However, it is unclear how to interpret this expression as it is not a clause.

Example 6.11. Consider the relational rule

IF participant(K, J,C,P) THEN subscription(K,C)

This rule denotes that participants typically subscribe to some course because
when the clause

key(K) ← participant(K, J,C,P)

covers some participant θ, the clause

key(K) ← participant(K, J,C,P), subscription(K,C)

typically also covers θ. Thus the meaning is different from the clause

subscription(K,C) ← participant(K, J,P,C)

which denotes that participants take all courses as all variables are universally
quantified. So, new variables introduced in the conclusion part of a relational
association rule are existentially quantified, which explains also why we stick
to the IF − THEN notation. Also, the support and confidence of this rule are
both 100%.

By now it is easy to define the problem of relational association rule min-
ing:

Given

• a relational database D,
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• the entity of interest determining the key,
• a support threshold s,
• a confidence threshold c,
• a language L of clauses of the form key ← b1, ..., bn.

Find: all relational association rules r of the form IF q THEN l, where (key ←
q) and (key ← q, l) ∈ L, such that support(r) � s and confidence(r) � c.

It is well-known in the field of data mining that when all frequent item-sets
are known, it is easy to derive the corresponding association rules. This idea
can also be applied to the relational case. Indeed, for every frequent pattern
key ← l1, ..., ln (with relative frequency r) consider the association rules

IF l1, ..., li−1, li+1, ..., ln THEN li

This association rule will have a support of r. The confidence can be derived
from r and the support of rules involving key ← l1, ..., li−1, li+1, ..., ln. There-
fore, most association rule miners start by first computing all frequent item-
sets and then using them to compute the corresponding association rules.
As this second step does not involve accessing the database, it is less time
consuming than the first one, which also explains why most research in local
pattern mining is concerned with finding the frequent patterns. This is not
different in the relational case.

6.5.2 Computing Frequent Queries

Algorithms for computing the set of frequent patterns are based on the anti-
monotonicity of the frequency constraint, as discussed in Sect. 3.7. As ex-
pected, the frequency constraint is also anti-monotonic in the relational case.
The reader may want to verify that for all clauses c1, c2 for which c1 θ-
subsumes (or OI-subsumes) c2, for all databases D, and thresholds t

freq(c2,D) � t → freq(c1,D) � t (6.7)

Therefore, one can directly apply Algo. 3.3 which finds all hypotheses that
satisfy an anti-monotonic constraint using general-to-specific search. Most in-
stantiations of this algorithm for frequent pattern mining, however, perform
some optimizations. An important optimization, introduced in Apriori by
Agrawal and Srikant [1994], is shown in Algo. 6.4. Because the database may
be very large, it is desirable to minimize the number of passes through the
database. Therefore, Algo. 6.4 computes the frequent patterns level-wise, that
is, at each level i, it first computes the candidate clauses Cani and then com-
putes the frequencies of all clauses in Cani by scanning the database once.
Thus Algo. 6.4 is an instantiation of Algo. 3.3, where the two for loops have
been inverted and where the search proceeds in a level-wise fashion.

This algorithm applies directly to the relational case though there are a
number of subtleties. First, the level-wise scanning of the database works only
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Algorithm 6.4 Computing frequent clauses
Can0 := {(
, 0)}
i := 0
while not Cani = ∅ do

for all d ∈ D do
for all (h, f) ∈ Cani do

if h covers d then
increment f

end if
end for

end for
Thi := {h | (h, f) ∈ Cani and f � t}
Cani+1 := {ρo(h) | h ∈ Cani ∩ Thi}

end while
return ∪iThi

if one can load the examples one by one. Although this is easy when working
with interpretations, it is harder using the full database approach that we
have adopted. One might of course load all possible entities of interest (say all
participants) as atoms for the key, but using standard database techniques
there may be more efficient ways to compute the number of covered entities of
interest. Second, Algo. 6.4 employs an optimal specialization operator. When
working under θ-subsumption such operators do not exist. Therefore, it is
better to work under OI-subsumption. However, when working under OI-
subsumption, the implementation of an optimal refinement operator is also
both complex and computationally expensive; cf. [Nijssen and Kok, 2003].

Early versions of relational pattern mining systems, such as Dehaspe’s
Warmr system [1997, 2001], introduced the problem of relational associa-
tion rule discovery, and employed θ-subsumption and non-optimal refinement
operators generating many duplicate queries that had to be filtered using ex-
pensive θ-subsumption tests, which explains why these early versions were
rather inefficient. One improvement studied in the item-set mining case con-
cerns the use of the Apriori join to generate the candidate set at the next
level. This join operation basically computes

Cani+1 ← {l ∪ k | l, k ∈ Cani and | l ∩ k |= i − 1} (6.8)

This join operation is responsible for much of the efficiency of Apriori. In
principle, it can be upgraded using the glb operation under θ-subsumption
or OI-subsumption though this has, as far as the author is aware, not yet
been introduced in relational pattern miners. Other possible improvements
are concerned with the clever use of data structures and database techniques
to store the elements in the search space and to compute the frequencies.

Let us conclude this section by providing an example run of the frequent
clause mining algorithm.
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Example 6.12. Reconsider the Bongard problem illustrated in Fig. 4.4. As-
sume the entities of interest are the different scenes, and that the available
predicates are in(K,O1,O2), stating that in scene K, object O1 is inside O2,
circle(K,C) and triangle(K,T), and assume that the language L specifies that
no constants be used. Assuming the frequency threshold on the positive scenes
is 6, the algorithm may start as follows (under OI-subsumption):

• Th0 contains key(K) ←
• Can1 contains

– key(K) ← triangle(K,T) which is frequent
– key(K) ← circle(K,C) which is frequent
– key(K) ← in(K,O1,O2) which is frequent

• Can2 contains
– key(K) ← triangle(K,T1), triangle(K,T2) which is frequent
– key(K) ← circle(K,C), triangle(K,T) which is frequent
– key(K) ← circle(K,C1), circle(K,C2) which is not frequent as not all

scenes contain two circles
– key(K) ← in(K,O1,O2), circle(K,O1) which is not frequent (as there is

no circle inside another object)
– key(K) ← in(K,O1,O2), circle(K,O2) which is frequent
– key(K) ← in(K,O1,O2), triangle(K,O1) which is frequent
– key(K) ← in(K,O1,O2), triangle(K,O2) which is infrequent as there is

no triangle containing another object
• ...

Exercise 6.13. * Define the problem of frequent tree or graph mining and
outline an algorithm for solving it. Discuss the key challenges from an algo-
rithmic point of view

6.6 Language Bias

Logical and relational learning systems often employ a so-called declarative
bias to constrain the search through the vast space of hypotheses. Bias is
typically defined as anything other than the training instances that influences
the results of the learner. Bias should ideally be declarative, that is, explicit,
transparent and understandable to the user so that the user is given the
opportunity to specify and tune the bias towards her own needs. Various forms
of bias are typically distinguished: language bias, which imposes syntactic or
semantic restrictions on the hypotheses to be induced, preference bias, which
specifies the conditions under which to prefer one hypothesis over another one,
and search bias, which is concerned with the heuristics and search strategy
employed by the learner.

In this section, we will focus on language bias. Search bias has, to some
extent, already been discussed in the previous sections. Search bias is also a
special case of preference bias, and other forms of preference bias have not
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yet received much attention in the literature. At a general level, two forms of
declarative language bias can be distinguished: syntactic and semantic bias.
Syntactic bias, as the name indicates, merely restricts the syntax of the allowed
hypotheses. Semantic bias, on the other hand, restricts the behavior of the
hypotheses with regard to the examples and possibly the background theory.
Both forms of bias restrict the hypotheses spaces Lh.

6.6.1 Syntactic Bias

Formally speaking, syntactic bias is concerned with defining the syntax of the
hypotheses in Lh. From a general computer science perspective, one can regard
syntactic bias as defining the well-formed elements in the formal language Lh,
a task for which one typically employs some type of grammar. A great variety
of mechanisms and formalisms to specify such grammars has been developed
in the inductive logic programming literature; see Nédellec et al. [1996] for an
overview. Even though these formalisms often reflect the personal preferences
or needs of their developers, there exist a few principles that underlie virtually
all syntactic biases employed. These include the use of predicate, type and mode
declarations.

Types and Modes

The predicate declarations specify the predicates to be used, and the type
declarations the corresponding types of the predicates. Such declarations are
often written as type(pred(type1, ..., typen)), where pred denotes the name of
the predicate and the typei denote the names of the types. In addition, there
can (but need not) be type definitions, which contain a specification of the
domain of the different types. For instance, if the type corresponds to an at-
tribute, one might specify the domain of the attribute using a declaration of
the form type = [v1, ..., vn], where the vi are the different values the attribute
or type can take, or, if it is continuous, one might specify the range. Further-
more, if the type allows for structured terms, the allowed function symbols
can be specified. For example, to specify a type allowing for the set of terms
F = {f(g(f(g(...f(0)...))))} the following declarations

nul = 0; G = g(F); F = f(G) or f(nul)

recursively define the set of terms F. Type declarations are important because
they allow the refinement operators to generate only hypotheses that are type-
conform. A hypothesis is type-conform if it satisfies the type restrictions.

Example 6.14. For instance, given the type declarations

type(p(F))
type(lives(person, location))
type(in(location, city))
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the clauses
p(f(f(f(0))))
← lives(X,Y), in(X,C)

are not type-conform, but the clauses

p(f(g(f(0))))
← lives(X,Y), in(Y,C)

are.

In addition to types, there are also modes, which specify restrictions on the
order of literals in clauses. The way that literals are ordered in a clauses may
determine whether the clause is potentially relevant (and may contribute to
distinguishing positive from negative examples), the efficiency of testing the
clause, and, when working with functors (as in program synthesis), whether
calls to the corresponding predicate terminate. A mode declaration is an
expression of the form mode(pred(m1, ...,mn)), where the mi are different
modes. Typically, three modes are distinguished: input (denoted by “+”),
output (denoted by “-”) and ground (denoted by “#”). The input mode spec-
ifies that at the time of calling the predicate the corresponding argument must
be instantiated, the output mode specifies that the argument will be instan-
tiated after a successful call to the predicate, and the constant mode specifies
that the argument must be ground (and possibly belong to a specified type).
A clause h ← b1, ..., bn is now mode-conform if and only if

1. any input variable in a literal bi appears as an output variable in a literal
bj (with j < i) or as an input variable in the literal h,

2. any output variable in h appears as an output variable in some bi,
3. any arguments of predicates required to be ground are ground.

Example 6.15. Consider the following declarations:

mode(molecule(−)). mode(atom(+,−,#,#)). mode(bond(+,+,−,#)).
type(molecule(m)). type(atom(m, a, at, r)). type(bond(m, a, a, bt)).

Then the clauses
molecule(M) ← atom(B,A, c, 3)
molecule(M) ← atom(M,A,D, 3), bond(M,B,A,C)

are not mode-conform because the variable B does not satisfy the input mode
and C is not ground. The following clauses, however, satisfy the modes:

molecule(M) ← atom(M,A, c, 3)
molecule(M) ← atom(M,A, c, 3), bond(M,A,B, double)

Very often, inductive logic programming systems integrate the notation for
modes and types, summarizing the above declarations as

mode(molecule(−m)).
mode(atom(+m − a,#at,#r)).
mode(bond(+m,+a,−a,#bt)).
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Other Syntactic Restrictions

Many possibilities exist to enforce other syntactic restrictions on the language
of hypotheses Lh. First, there exist parametrized biases. These are syntactic
biases in which the language Lh is defined as a function of a set of parameters.
For instance, one can restrict the number of literals, variables or simply the size
of clauses in Lh. Second, there exist clause-schemata. Schemata are essentially
second-order clauses, where the predicate names are replaced by predicate
variables, for example, the clause

P(X) ← Q(X,Y),R(X)

with predicate variables P, Q, and R. A schemata can be instantiated by
replacing the predicate variables by predicate names to yield a proper clause.
For instance, the above schema could be instantiated to the clause

mother(X) ← parent(X,Y), female(X)

A set of schemata then represents the language consisting of all clauses that
are an instance of a schema.

Third, and perhaps most elegantly, William Cohen [1994a] has proposed
to use a variant of definite clause grammars to directly represent the set of
clauses allowed in the hypotheses (cf. Sect. 4.6 for a discussion of grammars).

Example 6.16. * Consider the following grammar (inspired on Cohen’s Gren-
del system, but simplified for readability)

S → [illegal(A,B,C,D,E,F) ←],Body
Body → []
Body → literal, Body
literal → [A]pred[C]
literal → [A]pred[E]
literal → [E]pred[C]
literal → [B]pred[D]
literal → [D]pred[F]
literal → [B]pred[F]
pred → [=]
pred → [�=]
pred → [<]
pred → [>]

This grammar defines various possibilities for the illegal predicate, which suc-
ceeds when the chessboard with the white king at A,B, the black king at C,D
and the black rook at E,F is an illegal chess position. The terminal symbols
are written between square brackets. As the reader may want to verify, the
clause

illegal(A,B,C,D,E,F) ← A = C,B < D

is within the language of the definite clause grammar, but the clause
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illegal(A,B,C,D,E,F) ← A = B

is not.

Regardless of the formalism employed, the designer of the logical or relational
learning system must ensure that the bias mechanism can be incorporated in
the search strategy. Often this is realized by defining a special-purpose refine-
ment operator that only generates clauses within the language of hypotheses.

Exercise 6.17. Define a generality relationship for rule schemata and discuss
its properties. How would you use it for structuring the search space? (The
solution to this exercise forms the basis for the system Mobal [Morik et al.,
1993].)

Exercise 6.18. Outline a specialization operator employing the definite clause
grammar bias. (Hint: a sequence of derivation steps in the grammar corre-
sponds to a specialization under θ-subsumption.)

6.6.2 Semantic Bias

In addition to syntactic restrictions, it can be desirable to constrain the be-
havior of the target predicate by imposing semantic restrictions on the clauses
in the hypotheses.

At least two such restrictions have been employed in the literature. The
first restriction is that to determinate clauses, which we encountered in Sect.
4.12.1 when talking about propositionalization. A clause h ← b1, ..., bn is
determinate if and only if for all substitutions θ that ground h, and all i,
there exists at most one substitution σ such that

b1θσ, ..., bnθσ succeeds in B (6.9)

Example 6.19. Under the usual semantics of family relationships, the clause

isafather(F) ← parent(F,C),male(F)

is not determinate, because F may have multiple children C. However, the
clause

father(F,C) ← parent(F,C),male(F)

is determinate.

Another form of semantic bias is concerned with learning functional pred-
icates. A predicate p/n is functional if and only if if satisfies the constraint

X = Y ← p(X1, ...,Xn,X), p(X1, ...,Xn, Y ) (6.10)

where we have, for convenience, written the functional argument as the last
one.
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Example 6.20. Consider the predicates multiply(X,Y,P) and father(F,C) under
the usual definitions. multiply is functional because for any given pairs of
numbers X,Y there is exactly one product. father is functional because any
child C has exactly one father.

Functional predicates arise in many situations and there exist special-
ized inductive logic programming systems for inducing them, such as FFoil

[Quinlan, 1996]. One can enforce that a functional predicate is induced by
checking that the generated hypotheses satisfy the constraint. If they do not,
the predicate definition for p/n must be overly general, and hence it must
be specialized. Indeed, assume that the constraint for the father predicate
is violated. Then there must be somebody with two fathers, and one of the
corresponding facts is covered but must be false. Therefore the definition of
father is overly general. A more general technique for dealing with constraints
is presented in Sect. 7.2.2.

Exercise 6.21. Discuss the differences and similarities between the use of
constraints to specify a semantic bias and the use of constraints for semantic
refinement; cf. Sect. 5.6.3.

6.7 Conclusions

This chapter introduced a methodology for developing logical and relational
learning algorithms and systems. The methodology starts by identifying a
propositional learning or mining system of interest, and then first upgrades the
problem setting by changing the representation language of hypotheses and
examples and the covers relation, and then upgrades the propositional learning
algorithm in a systematic manner by modifying its operators. The method-
ology is effective and it was shown at work on three case studies from the
literature of inductive logic programming: the Foil system for rule-learning,
the Tilde system for logical decision tree induction, and Warmr for relational
association rule induction. The resulting systems also have the desirable prop-
erties that the original propositional system is a special case of the upgraded
one. Finally, we also discussed various ways to restrict the search space of
logical and relational learning systems by means of a declarative language
bias. This is often necessary to make the search more tractable even though
it imposes an additional burden on the user.

6.8 Bibliographic Notes

This chapter borrows many ideas and principles of Van Laer and De Raedt
[2001], De Raedt et al. [2001].

Many inductive logic programming systems can be regarded as an ex-
tension of the Foil system of Quinlan [1990]. Some of the most important
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developments include: mFoil [Lavrač and Džeroski, 1994], which aims at han-
dling noise and whose Prolog source code is available in the public domain,
FFoil [Quinlan, 1996], which learns a functional predicate p(t1, ..., tn) imple-
menting the function pf(t1, ..., tn−1) = tn, Focl [Pazzani and Kibler, 1992],
which employs resolution steps to obtain additional refinements, and Foidl

[Mooney and Califf, 1995], which learns decision lists rather than unordered
rule sets. Other systems, such as Muggleton’s prominent Progol system
[Muggleton, 1995] and Srinivasan’s Aleph system [Srinivasan, 2007], possess
some similarities with Foil, even though Aleph and Progol were developed
from a richer logical perspective. Aleph and Progol apply inverse entail-
ment (cf. Sect. 5.6.1) on a positive example and then heuristically search
the θ-subsumption lattice more generally than the resulting bottom clause.
Furthermore, rather than employing a beam search, Progol is based on an
A∗-like search mechanism. Another early inductive logic programming system
is Golem [Muggleton and Feng, 1992]. It combines the cautious specific-to-
general Algo. 3.5 with the covering algorithm. It provides an answer to Ex.
6.7.

Several relational or logical decision tree learners have been developed.
These include the early work of Watanabe and Rendell [1991], the regression
tree learner S-Cart [Kramer, 1996], the system Tilde by [Blockeel and De
Raedt, 1998], who also studied the expressive power of logical decision trees
as compared to relational learners that induce rules or decision lists, and the
more recent relational probability trees by Neville et al. [2003], which contain
probability estimates in the leaves of the tree. A related approach by Boström
and Idestam-Almquist [1999] discusses a divide-and-conquer approach based
on performing resolution steps (that is, unfolding) on an overly general logic
program. A more recent approach computes aggregates of relational decision
trees in the form of relational random forests [Van Assche et al., 2006].

Frequent queries and relational association rules were introduced by De-
haspe and De Raedt [1997], Weber [1997], but became popular in data mining
with an application in predictive toxicology [Dehaspe et al., 1998, Dehaspe
and Toivonen, 2001]. Since then they have received quite some attention;
especially their efficient computation was studied by Nijssen and Kok [2001,
2003]. Recently, condensed representations (such as closed queries; cf. Ex. 3.8)
for relational queries have been developed [De Raedt and Ramon, 2004, Gar-
riga et al., 2007]. Furthermore, the work on relational frequent query mining
and its applications has inspired much of the work on frequent graph mining,
which has been very popular over the past few years [Inokuchi et al., 2003,
Kuramochi and Karypis, 2001, Yan and Han, 2002, Nijssen and Kok, 2004].

Many different forms of declarative bias have been studied in the literature.
Modes and types were already introduced in the Model Inference System

of Shapiro [1983] and they have become standard since their incorporation in
the Progol system by Muggleton [1995]. Parametrized language restrictions
were employed by the Clint system of De Raedt [1992], who also studied ways
to shift the bias when the language was too restricted. Clause schemata were
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introduced in Blip [Emde et al., 1983] and used in Mobal [Morik et al., 1993].
The definite clause grammar bias was first used in Grendel [Cohen, 1994a].
Determinacy restrictions were employed in Linus [Lavrač and Džeroski, 1994]
and Golem [Muggleton and Feng, 1992]. An overview of declarative bias is
contained in [Nédellec et al., 1996].
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Inducing Theories

Whereas the previous chapter focussed on learning the definition of a single
predicate in a classification and discovering properties of the entities of inter-
est in the form of frequent patterns, the present chapter investigates the com-
plications that arise when learning multiple, possibly interrelated predicates.
This chapter is thus concerned with the induction and revision of logical theo-
ries from examples. In its most general form, logical theories are pure Prolog
programs (that is, sets of definite clauses) and examples provide information
about the input and output behavior of the intended target program and theory
induction corresponds to program synthesis from examples, an old dream of
any programmer. In a more modest and realistic scenario, the logical theory
represents a knowledge base in an expert system, and the user provides exam-
ples of correct and incorrect inferences. In both cases, the purpose is to learn
a theory that is correct with regard to the evidence.

Because the problem of theory induction is a very general one, different
settings have been studied, including incremental learning, active learning and
the use of an oracle, and revision of an existing theory rather than learning
one from scratch. At the same time, a wide variety of different techniques are
useful in a theory induction setting, which explains why the chapter is divided
into five different sections. Sect. 7.1 introduces the problems of theory revision
and induction. Section 7.2 focuses on abductive reasoning, a form of reason-
ing that is studied in the field of abductive logic programming and that aims at
inferring missing facts for specific observations. Abduction is complementary
to induction, which focuses on inferring general rules explaining different ob-
servations. Abduction plays an important role in theory revision, as it can be
used to relate observations for different predicates to one another. It will also
be shown how integrity constraints can be used to constrain the search space
in abductive reasoning and theory revision.

Section 7.3 addresses the theory revision problem, where we especially fo-
cus on the influential Model Inference System of Shapiro [1983], which
will be used as a showcase system throughout this chapter. The Model In-

ference System can not only induce theories in the form of knowledge bases
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but can also synthesize programs from examples. Because theory revision in
first-order logic as incorporated in the Model Inference System is quite
involved, it is worthwhile to study also some simpler settings that illustrate
alternative views on theory revision. Therefore, Sect. 7.4 introduces two fa-
mous propositional theory revision systems, the Horn algorithm by Angluin
et al. [1992] and the Duce system by Muggleton [1987]. Finally, we end this
chapter by investigating in Sect. 7.5 how a set of integrity constraints can be
induced from a theory. This complements the use sketched above of integrity
constraints to constrain the search space, and it is quite useful in a database
setting.

7.1 Introduction to Theory Revision

In this section, we introduce the problem of theory induction and revision,
relate it to the important notion of model inference, and present a simple
though general algorithm for tackling theory revision problems.

7.1.1 Theories and Model Inference

In this book, the term theory refers to a pure Prolog (or definite clause) pro-
gram. The basic theory induction setting is as follows:

Given

• a set of positive and negative examples E
• a language of clauses L
• a covers relation c
• possibly a background theory B (a set of definite clauses)

Find a set of clauses T ⊆ L such that T (possibly together with B) covers
all positive and no negative examples.

Typically, when learning theories, the covers relation corresponds to en-
tailment though it is also possible to learn theories from entailment. Further-
more, as the semantics of a definite clause program P is given by its least
Herbrand model M(P ) (cf. Chapter 2), it is convenient to view a theory as a
model. It is this perspective that Ehud Shapiro [1983] adopted in his influen-
tial Model Inference System and that is now standard within inductive
logic programming. The problem of learning a theory is then that of inferring
the right model (represented using a logical theory). In reasoning about in-
ferring theories, it is often assumed that there is an unknown target model,
the so-called intended interpretation, that captures the semantics of the un-
known target theory. Positive examples then take the form of ground facts
that belong to the intended interpretation, and negatives are ground facts not
belonging to the intended interpretation. This view is equivalent to learning
from entailment when the theory contains definite clauses (without negation).
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Example 7.1. Consider the following target theory

rank(7) ← rank(8) ←
rank(9) ← rank(10) ←
rank(a) ← rank(k) ←
rank(q) ← rank(b) ←
red(h) ← red(d) ←
black(s) ← black(c) ←
pair(c(X,Y1), c(X,Y2)) ←
suit(X) ← black(X)
suit(X) ← red(X)
card(c(X,Y)) ← rank(X), suit(Y)

triple(C1,C2,C3) ← pair(C1,C2), pair(C2,C3)
fullhouse(C1,C2,C3,C4,C5) ← pair(C1,C2), triple(C3,C4,C5)

Starting from the definitions of card, pair (and the predicates rank, suit, red
and black), and some positive examples such as triple(c(7, h), c(7, d), c(7, s))
and fullhouse(c(a, s), c(a, d), c(7, h), c(7, d), c(7, s)), the task could be to induce
the definitions triple and fullhouse.

Example 7.2. * Consider the program

append([],X,X) ←
append([X|XR],Y, [X|ZR]) ← append(XR,Y,ZR)

This program can be learned from examples such as append([], [a, b], [a, b]) and
append([a, b], [c, d], [a, b, c, d]).

The first example illustrates a multiple predicate learning problem, be-
cause one learns the definitions of multiple predicates; the second example
illustrates a program synthesis setting. In both types of problems, the clauses
in the target theory are interdependent. In the cards example, the definition
of learn fullhouse depends on that of pair and triple. Changing the definition of
pair also affects the coverage of fullhouse. Similarly, in the program synthesis
illustration, the semantics of the recursive clause depends on the presence of
the base case. In order to develop algorithms for inferring theories, we need to
cope with these interdependencies. Interdependencies also introduce ordering
effects that need to be taken into account. In the cards example, it is easier
to learn fullhouse when pair and triple are known; in the program synthesis
example, one cannot learn the recursive case without taking into account the
base case.

Exercise 7.3. Consider learning the predicates aunt and sister that represent
family relationships. Assume the predicates male, female and parent are given.
Discuss the interdependencies and ordering effects when learning aunt and
sister.
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7.1.2 Theory Revision

Very often it will be easier to revise a given theory than to learn one from
scratch. This is the problem of theory revision that can be specified as follows:

Given

• a set of positive and negative examples E
• a language of clauses L
• an initial theory T
• a covers relation c
• possibly a background theory B (a set of definite clauses)

Find a set of clauses T ′ ⊆ L such that T ′ (possibly together with B) covers
all positive and no negative examples and is as close to T as possible.

Of course, there are various measures of closeness between theories that
can be applied. Most approaches to theory revision, however, define these
notions only implicitly, for instance, by trying to minimize the number of
steps through the search space.

In this chapter, we will focus on theory revision instead of theory induction.
Furthermore, we will study theory revision in an incremental and possibly
interactive setting. Incremental learners process their examples one by one
and interactive learners are allowed to pose queries to the user. Interactive
learning is sometimes called active learning or learning from queries, and
the user is sometimes referred to as the oracle. Various types of queries are
possible; cf. also Sect. 7.3.1. The reader should, however, keep in mind that
most of the principles underlying such learning systems also apply to theory
induction and non-incremental learners; the key differences typically lie in the
heuristics and search strategy employed.

Algorithm 7.1 A theory revision algorithm
while T is not (complete and consistent) do

if T covers negative examples then
choose a specialization in γs(T )

end if
if T does not cover all positive examples then

choose a generalization in γg(T )
end if

end while

A general way of dealing with theory revision problems is illustrated in
Algo. 7.1. It starts from an initial theory T and refines it whenever it is
inconsistent with a given example. As in Chapter 3, it specializes the given
theory whenever the theory covers a negative example, and generalizes it
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whenever it does not cover a positive example. The key difference with the
techniques seen so far is that a refinement operator γ at the theory level is
now employed.

Operators at the theory level start from theories, that is, sets of clauses,
and have to specialize or generalize these. In Chapter 5, we have already seen
operators that work on sets of clauses when dealing with (inverse) resolution.
However, one can also refine a theory by refining one of its clauses. These the-
ory refinement operators γ typically employ an underlying clausal refinement
operator ρ. Two typical theory refinement operators work as follows.

The theory generalization operator γρ,g employing the clausal generaliza-
tion refinement operator ρg is defined as

γρ,g(T ) = {T − {c} ∪ {c′} | c′ ∈ ρg(c) with c ∈ T} ∪ {T ∪ {c} | c ∈ Lh} (7.1)

The theory specialization operator γρ,s employing the clausal specialization
refinement operator ρs is defined as follows:

γρ,s(T ) = {T − {c} ∪ {c′} | c′ ∈ ρs(c) with c ∈ T} ∪ {T − {c} | c ∈ T} (7.2)

The generalization operator γρ,g either generalizes one of the clauses in the
theory or adds a new clause. The specialization operator γρ,s either specializes
one of the clauses or deletes an entire clause.

Example 7.4. Consider the theory consisting of the following clauses:

flies(X) ← bird(X) ostrich(oliver) ←
bird(X) ← ostrich(X) bird(X) ← blackbird(X)
normal(X) ← blackbird(X)

and the negative example flies(oliver) that is covered by this theory. Various
refinements correctly account for this example, for instance:

1. retract flies(X) ← bird(X)
2. retract bird(X) ← ostrich(X)
3. retract ostrich(oliver) ←
4. specialize flies(X) ← bird(X) into flies(X) ← bird(X), normal(X)

Assume that we select the fourth option, and then encounter an uncovered
positive example flies(tweety) ←. To deal with this example, there are again
various options, such as:

1. assert flies(tweety) ←
2. assert bird(tweety) ← and normal(tweety) ←
3. assert blackbird(tweety) ←

The last operation appears to be the most desirable one from a user perspec-
tive.
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The example illustrates various important issues when revising theories.
First, there are a vast number of possible refinements that can be performed.
Whereas in the example, single-step refinements typically suffice, in general
multiple-step refinements may be necessary. The key problem in theory revi-
sion will thus be to control the combinatorial explosion. Second, the example
illustrates the use of abduction to effectively deal with the uncovered posi-
tive example. Whereas inductive reasoning aims at generalizing specific facts
into general rules, abductive reasoning infers missing facts in order to explain
specific observations. Abductive reasoning is dealt with in the next section.
Third, the example also illustrates the order effects and dependencies in theory
revision. In particular, the predicate flies/1 is changed by modifying the un-
derlying predicates bird/1 and normal/1. Furthermore, the order of processing
the examples matters.

Exercise 7.5. Describe what changes when processing the examples in Ex.
7.4 in the reverse order.

7.1.3 Overview of the Rest of This Chapter

The remainder of this chapter discusses different aspects of theory revision in
four different sections. Section 7.2 introduces abductive logic programming,
which combines abductive reasoning with logic programming. Abductive logic
programming, where the operators are only allowed to add or delete facts,
can be considered a special case of theory revision. To introduce abductive
logic programming, Sect. 7.2.1 will discuss abductive operators and reasoning
in more detail, Sect. 7.2.2 will show how powerful constraints that specify
restrictions on the intended interpretations can be employed, and then Sect.
7.2.3 will study abduction under constraints, the usual setting for abductive
logic programming. Once the principles of abduction have been explained, we
shall turn our attention to the original problem of theory revision. In Sect.
7.3, we focus on the seminal Model Inference System by Shapiro [1983],
which is, after so many years, still one of the most elegant and powerful theory
revision and program synthesis systems. As the Model Inference System

is interactive, the influence of the use of queries that can be posed by the
learner will be studied in Sect. 7.3.1 before our presenting the actual Model

Inference System in Sect. 7.3.2. While the Model Inference System

works with very expressive representations — that of definite clause logic as
in Prolog — other theory revision systems have studied simpler settings using
different principles.

Two famous propositional theory revision systems will be the topic of
Sect. 7.4, in which we shall first introduce the Horn algorithm by Angluin
et al. [1992] in Sect. 7.4.1 and then the Duce system by Muggleton [1987] in
Sect. 7.4.2. Horn is an algorithm that induces propositional Horn theories in
polynomial time using particular types of queries to an oracle, whereas Duce

is a heuristic propositional theory revision system based on inverse resolution.
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Finally, in Sect. 7.5, we shall show how integrity constraints in the form of
full clausal theories can be inferred from data. This is, as we shall argue, a
kind of inverse theory revision problem.

7.2 Towards Abductive Logic Programming

This section introduces the principles of abductive logic programming, the
study of abductive reasoning within the representations offered by logic pro-
gramming. The first subsection explains what abductive reasoning is and de-
fines the abductive inference operator. The second subsection then shows how
integrity constraints can be used to constrain the solutions returned in theory
revision and abductive logic programming. Finally, in the last subsection we
present a simple abductive logic programming algorithm.

7.2.1 Abduction

Abduction, as it is commonly used in computational logic, is a procedure to
infer missing facts from a theory. The basic abductive inference operator can
be derived by inverting the following deductive inference rule:

p ← q1, ..., qn and q1θ ∧ ... ∧ qnθ

p ← q1, ..., qn and pθ
(7.3)

That is, abduction starts from a clause p ← q1 ∧ ... ∧ qn and a fact pθ and
infers that q1θ ∧ ... ∧ qnθ must be true. This also implies that, abduction like
induction, can be regarded as a form of inverted deduction; cf. Sect. 5.1.

Example 7.6. Consider the clause flies(X) ← bird(X), normal(X) and the fact
flies(tweety). Abduction infers that bird(tweety) and normal(tweety) are both
true.

When the clause used by the abductive operator has variables in its body
that do not appear in its head, the abduced facts may not be ground. In
such situations, one typically applies a skolem substitution (which replaces
the variables in body(c)θ with new constants) or consults the user.

The abductive operator can be used to address the dependency problem
in theory revision. Indeed, examples for one predicate can be reduced to those
for other predicates. By revising the theory to correctly handle these other
examples, the original theory revision problem can be solved. The following
scheme based on the abductive operator defined in Eq. 7.3 can be used for
this purpose.

• If pθ is a positive example and the clause p ← q1, ..., qn belongs to the
theory, then infer that the q1θ and ... and qnθ are positive examples.

• If pθ is a negative example and the clause p ← q1, ..., qn belongs to the
theory, then infer that q1θ or ... or qnθ must be a negative example.
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The first case is a direct application of the abductive inference operator. The
second case corresponds to its contra-position. It is especially useful when the
clause is used in a proof of pθ from the theory. Indeed, the proof will no longer
hold if one of the qiθ no longer follows from the theory.

Example 7.7. Reconsider Ex. 7.4. If flies(tweety) is a positive example, it will
be covered if the two examples bird(tweety) and normal(tweety) are covered. If
on the other hand it is a negative example that is covered and the clause for
flies/1 is needed to prove normal(tweety), then flies(tweety) will no longer be
covered when either bird(tweety) or normal(tweety) is no longer covered.

One way of incorporating the abductive operators into a theory revision
algorithm, is to work with a procedure tr(E) that takes the current set of
examples E as a parameter. When the abductive operator is applied on a pos-
itive example, the procedure is called recursively using tr(E ∪ {q1θ, ..., qnθ});
when it is applied on a negative example, one can use the following calls:
tr(E ∪ {q1θ}), ..., tr(E ∪ {qnθ}). If one of these calls succeeds, then return
success.

7.2.2 Integrity Constraints

The use of integrity constraints in theory revision has been motivated by
its use in abductive logic programming and belief revision, where integrity
constraints provide a powerful means to constrain the abduced theories in a
declarative manner. Integrity constraints play an important role as in tradi-
tional databases, where they impose restrictions on the state (or extension) the
database can be in. In a theory revision context, they constrain the theories
that can be generated. In this chapter, we shall view an integrity constraint
as a (general) clause that is true in the intended interpretation. Furthermore,
a theory satisfies an integrity constraint if and only if the constraint is true
in the least Herbrand model of the theory. If a theory does not satisfy a
constraint, it violates the constraint.

The theory revision problem can now be modified to allow the user to
specify integrity constraints and to require that the generated theory satisfy
all constraints.

Example 7.8. Consider the theory shown in Ex. 7.4. The constraint

vampire(X); normal(X) ← flies(X),

which states that only normal animals and vampires fly, is violated for
X = oliver.

Observe that facts that are true or false in the intended interpretation,
that is, positive and negative examples, can be represented as integrity con-
straints. Indeed, a positive example p corresponds to a constraint of the form
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p ←; a negative example n corresponds to a constraint ← n. Thus, integrity
constraints are more expressive than examples.

The reason for employing integrity constraints in theory revision and ab-
ductive logic programming is that they provide the user with a very powerful
means to specify necessary properties of the target theory. Furthermore, they
are not restricted to definite clauses like the target theory. Also, even for con-
straints in the form of definite clauses, adding these constraints directly to
the theory is not an option as this leads to complicated theories with many
redundancies; this in turn complicates and slows down the theorem-proving
process. Finally, certain constraints should never be used as inference rules.
Think, for example, about the rule

Y < 150 ← human(X), age(X,Y),

which should not be used as part of a definition of the predicate <. This
reveals that integrity constraints allow the user to make the theory revision
process very knowledge intensive.

The general principle for using constraints for theory revision is in a way
similar to abductive reasoning. When a constraint q1; ...; qm ← p1, ..., pk is
violated by theory T for a substitution θ we have that:

• either the definition of one of the predicates pi in the body of the constraint
is too general (that is, T covers piθ but should not), or

• the definition of one of the predicates qj in the head of the constraint is
too specific (that is, T does not cover qjθ but should).

This observation reveals that violated constraints can be used to generate
examples that are not satisfied by the theory. When there is only one literal
in a constraint, it is clear that the violated instance of the literal itself is an
example that is not satisfied by the theory. However, if there is more than one
literal in a violated constraint, the responsible examples have to be identified
by performing credit assignment on a violated instance of the constraint.

If the system has access to a user that is willing to answer questions,
that is, an oracle (cf. Sect. 7.3.1), the credit assignment procedure may query
it for the truth-value in the intended interpretation of the instances of the
literals in the violated constraint. Continuing our earlier example, the system
could query the oracle for the truth-values of flies(oliver), normal(oliver) and
possibly vampire(oliver) to detect the reason for the violation. This process
would result in an example that is handled differently by the current theory
and the intended interpretation. This example could then be passed on to the
theory revision system for further processing.

When the theory revision system does not have access to an oracle, one can
hypothesize the truth-value in the intended interpretation of specific examples
in the same way as we handled the abduced examples in Sect. 7.2.1.

When reducing violated integrity constraints to examples, the theory revi-
sion system must, however, carefully interleave the processing of the examples
and the constraints. When an example for a predicate p is incorrect in the
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current theory, one cannot expect the constraints mentioning the predicate
p to be satisfied. Also, the predicates (and the constraints) that depend on
the predicate p may be affected. A predicate p depends on a predicate q with
regard to a given theory if and only if there is a clause in the definition of
p that mentions q, or there is a clause in the definition of p that mentions a
predicate r that depends on q. Therefore, one should postpone checking con-
straints that depend on predicates for which there are still incorrectly handled
examples.

Example 7.9. Reconsider the constraint

vampire(X); normal(X) ← flies(X).

If there are still incorrectly handled examples for vampire — say vampire(dracula)
is a positive but uncovered example — one cannot expect the constraint to
be satisfied and should therefore postpone the verification of the constraint
until the positive example is satisfied.

Exercise 7.10. Can you relax the conditions for postponing the examples in
situations where a predicate has either only uncovered positive examples or
only covered negative examples?

7.2.3 Abductive Logic Programming

The special case of theory revision that employs integrity constraints but only
allows us to add or delete missing facts is known as abductive logic program-
ming. It has received a lot of attention in the computational logic community
and can be defined as follows:

Given

• a definite clause theory T 1,
• a ground fact f ,
• a set of abducible predicates A,
• a set of integrity constraints I,

Find a set of facts F for predicates in A such that T ∪ F |= f and T ∪ F is
consistent with the integrity constraints I.

Abductive logic programming distinguishes predicates that are abducible
from those that are not. For abducible predicates there can be missing facts
that need to be abduced. All other predicates are assumed to be correct and
complete; so for these predicates no missing facts need to be inferred.

In many cases, it is desirable to consider only minimal solutions, that is,
minimal sets of facts that form a solution to the abductive logic programming
1 The computational logic community has also devoted a lot of attention to dealing

in a more sound manner with normal programs, which employ negation as failure
[Kakas et al., 1992, Denecker and De Schreye, 1992, Flach, 1994].
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problem. Throughout this section, it will be assumed, for reasons of sim-
plicity, that the integrity constraints are denials, that is, clauses of the form
← q1, ..., qn. This simplifies the credit assignment problem in that theories
that violate a denial must be overly general.

Example 7.11. Consider the theory

bird(X) ← ostrich(X) flies(X) ← bird(X), normal(X)
bird(X) ← blackbird(X)

the integrity constraint

← ostrich(X), normal(X)

and the fact flies(tweety). Assume furthermore that ostrich, blackbird and
normal are the only abducibles. Then one (minimal) solution to the abductive
logic programming problem is F ={blackbird(tweety), normal(tweety)}.

The example shows that abduction is a process that infers missing facts
needed to explain a single observation (such as flies(tweety)). This contrasts
with inductive inference, which aims at inferring general laws from several
observations. Even though the technical differences between induction and
abduction in computational logic can be explained in this way, there is an
ongoing debate on the differences between abduction and induction in the
artificial intelligence and philosophy of science literature; cf. [Flach and Kakas,
2000].

A simplified abductive procedure is shown in Algo. 7.2. The procedure
is called using abduce(← p; ∅), where p is the fact to be derived using
abduction. It is a simple extension of the traditional SLD-resolution procedure
presented in Chapter 2. Upon entry, it checks whether the goal is empty; if
it is, the current set of abduced facts is output. Otherwise, if the atom q1

contains an abducible predicate, it is skolemized to q1σ. It is then tested
whether adding this atom to F still satisfies the integrity constraints. If it
does, the abductive procedure is called recursively on the remaining part of
the goal. If the atom q1, on the other hand, does not contain an abducible
predicate, the usual SLD-resolution operator is applied to yield the next goal.

Example 7.12. Reconsider the theory of Ex. 7.11, the goal flies(tweety) and the
constraint ← normal(X), ostrich(X). The resulting SLD-tree is shown in Fig.
7.1. In the leftmost branch, the fact ostrich(tweety) ← is first abduced; after-
wards, one also tries to abduce normal(tweety) ←. This fails, however, because
the resulting set of facts violates the integrity constraint. The search there-
fore proceeds in the rightmost branch, where the facts blackbird(tweety) ←
and normal(tweety) ← are abduced and returned by the procedure.

At this point, the reader may observe that Algo. 7.2 only works well when
the integrity constraints are denials. If a denial is violated, it is valid to con-
clude that the theory is too general, and needs to be specialized. As the only
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Algorithm 7.2 The abductive function abduce(← q1, ..., qn; F )
if n = 0 then

return F
else if the predicate in q1 is abducible then

compute a skolem substitution σ such that q1σ is ground
if F ∪ T ∪ {q1σ} satisfies I then

call abduce(← q2σ, ..., qnσ; I; F ∪ {q1σ})
else

fail
end if

else if possible then
select the next clause q ← r1, ..., rm in T for which mgu(q, q1) = θ
call abduce(← r1θ, ..., rmθ, q2θ, ..., qnθ; F )

else
fail

end if

�

← flies(tweety)

← ostrich(tweety), normal(tweety)

← bird(tweety), normal(tweety)

← blackbird(tweety), normal(tweety)

← normal(tweety)← normal(tweety)

Fig. 7.1. Illustrating abduction

available operation to the abductive procedure is to add a fact, it is correct
to prune away sets of facts F that violate a denial. For constraints that are
general clauses, pruning may not be justified, as illustrated below.

Example 7.13. Reconsider the previous example but assume also that the ad-
ditional constraint normal(X) ← blackbird(X) is available. Then the procedure
would proceed as before except that directly after abducing blackbird(tweety) ←
the novel constraint would be violated, and therefore the procedure would fail.

A partial solution is to test the integrity theory only at the end, that is,
just before returning the solution set.

Exercise 7.14. Why is this a partial solution only? (Hint: reconsider the
previous example but replace the clause flies(X) ← bird(X), normal(X) with
flies(X) ← bird(X).)
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Algo. 7.2 can be adapted to find a minimal set of facts by using a breadth-
first strategy (where the depth would be defined in terms of the size of F )
instead of a depth-first one. In Chapter 8, we shall extend the algorithm
to work in a probabilistic context, which allows one to associate probabilities
with the different solutions, and to prefer the one with the highest probability.

Abductive logic programming is a rich research field that has successfully
addressed such problems under many different settings (including the use of
negation). A detailed overview of these is outside the scope of this book, but
can be found in [Kakas et al., 1992].

Abductive logic programming also has interesting applications, including:

• diagnosis, where the abduced components correspond to errors in devices;
• planning and scheduling (in the event calculus), where the abduced facts

denote actions, and together form the plan or schedule;
• view updating in deductive or relational databases, where the abducible

predicates correspond to the extensional facts, and the non-abducible ones
to the intensional or view predicates, and where the user can specify desired
updates at the level of view predicates, and the abductive solver then
proposes possible realizations at the level of the extensional predicates.
This setting has actually been illustrated in the examples, though one
could also imagine retractions of facts at the level of view predicates.

Finally, let us still stress that the abductive logic programming setting
dealt with in this section forms a special type of theory revision problem.
Furthermore, Algo. 7.2 is closely related to the Model Inference System,
in which the only generalization operator is the one that adds specific facts,
and in which the oracle always answers positively (and the Model Inference

System’s eager strategy is used); cf. Sect. 7.3 below.

7.3 Shapiro’s Theory Revision System

Having introduced abduction, we now focus on the Model Inference Sys-

tem for theory revision and program synthesis. We first discuss how learners
can interact with the user (the so-called oracle), and then provide a more
detailed presentation of the Model Inference System.

7.3.1 Interaction

Abductive reasoning provides us with a very useful tool to deal with the
dependencies among the different predicates when revising theories. However,
given the vast number of possible applications of the operators, we need a
way to guide the search. In principle, one could perform a heuristic search
through the space of possibilities but it has turned out to be quite hard to
come up with powerful heuristics to search through this enormous space. An
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easier approach, taken by interactive systems, is to guide the search by means
of an oracle. The oracle is nothing else than the user, who is supposed to
answer queries about the truth and falsity of specific logical formulae in the
intended interpretation. More formally, one distinguishes:

• membership queries, which query the oracle for the truth-value of a specific
ground fact in the intended interpretation,

• existential queries, which query the oracle for all substitutions θ that make
an atom a ground and aθ true in the intended interpretation; e.g. when
presented with the query father(X, soetkin), the oracle may answer X = luc;

• subset queries, which query the oracle about whether a certain clause is
true in the intended interpretation;

• equivalence queries, which ask the oracle whether a particular hypothesis
is equivalent to the target theory; the oracle answers yes if that is the case,
and presents a counter-example otherwise.

The Model Inference System relies on an oracle for two different tasks.
First, its key specialization operation is to remove an incorrect clause from the
current theory. This is accomplished by the backtracing algorithm sketched in
the next subsection. Second, it uses an oracle to decide whether a candidate
clause to be added to the theory covers a positive example.

The Backtracing Algorithm

The first way that the Model Inference System employs an oracle is by
identifying incorrect clauses in the current theory, where a clause is incorrect
if and only if it is false in the intended interpretation.

In Shapiro’s Model Inference System, this property is used in the
backtracing algorithm, Algo. 7.3, which starts from a covered negative example
n and identifies an incorrect clause in the present theory. The algorithm first
computes the SLD-tree and then analyzes the successful branches of the tree.
Each such branch is then analyzed in a bottom-up manner. The algorithm
starts by considering the deepest literal that was resolved and consults the
oracle to decide whether the literal is true in the interpretation or not. If it
is, the search continues with the parent literals. Otherwise, the clause used to
resolve q is incorrect and output.

Example 7.15. Consider the theory

normal(X) ← ostrich(X) flies(X) ← bird(X), normal(X)
bird(X) ← ostrich(X) ostrich(oliver) ←

and the false negative flies(oliver). The SLD-tree is shown in Fig. 7.2. Assum-
ing that the first clause is incorrect, the backtracing algorithm would ask the
oracle for the truth-values of ostrich(oliver) (true) and normal(oliver) (false)
and return the incorrect clause normal(X) ← ostrich(X) which was used to
resolve normal(oliver).
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Algorithm 7.3 The backtracing algorithm
compute the SLD-tree for n
for all successful branches of the tree do

initialize q to the last literal resolved upon
repeat

if q is true in the intended interpretation then
q := parent literal of q in branch

else
output clause used to resolve q

end if
until found

end for

Exercise 7.16. The backtracing algorithm will in the worst case query the
oracle for the truth-value of all literals employed in a successful branch. This
corresponds to a linear search through the proof. Can you sketch the outline of
Shapiro’s divide-and-conquer approach? Rather than selecting the next atom
on the path from the bottom to the top of the proof, the divide-and-conquer
approach focuses on the atom in the middle of the tree.

�

← flies(oliver)

← bird(oliver), normal(oliver)

← ostrich(oliver), normal(oliver)

← normal(oliver)

← ostrich(oliver)

Fig. 7.2. Illustrating backtracing.

The backtracing algorithm, to some extent, employs a form of abduc-
tive reasoning. Indeed, in the above example, from the negative example
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flies(oliver) the system abduces that some of the atoms used in the proof may
be negative as well, and therefore queries the oracle for their truth-values.
This process is continued until enough evidence is accumulated to identify an
incorrect clause.

Discovering Missing Clauses

A second reason for employing an oracle in a theory revision system is to guide
the search when processing an uncovered positive example. When processing
such an example, one must decide whether there are missing clauses for the
predicate in the example or whether perhaps some of the underlying predicates
are incomplete. To this end, Shapiro’s Model Inference System employs
three different strategies, one of which heavily relies on the use of an oracle.
To explain the differences, we need to define when a clause covers an example
with regard to a model.

More formally, a clause p ← q1, ..., qn covers an example q in the model M
if and only if

mgu(p, q) = θ and ∃σ : (q1θ, ..., qnθ)σ is true in M (7.4)

While learning, the system cannot directly access the intended interpreta-
tion, but can consult it indirectly by posing queries to the oracle and using the
examples it already knows. This is why covers testing is performed not with
regard to the intended intepretation but rather through the use of a different
model M . Shapiro distinguishes three different possibilities:

• In the lazy strategy, the model M contains only the example set E, and
an atom is considered true if it is a known positive example, false if it is a
known negative example, and unknown otherwise.

• In the eager strategy, the model M corresponds to the intended inter-
pretation. To decide on the truth-value of an atom, the eager strategy
first verifies whether it already knows the truth-value of the atom in the
example set E, and if it does not, it queries the oracle for the truth-value.

• In the adaptive strategy, the model M corresponds to the least Herbrand
model of P ∪ {c} ∪ T , where P is the set of positive examples, T is the
current theory and c is the clause whose coverage is evaluated.

At this point, one can also imagine a fourth possibility, a variant of the adap-
tive strategy, which employs the least Herbrand model of P ∪ T .

Example 7.17. Suppose one has to decide whether the clause

flies(X) ← normal(X), bird(X)

covers the example flies(tweety). Using the lazy strategy, the example is not
covered by the clause unless the facts normal(tweety) and bird(tweety) have
already been provided as positive examples. Using the eager strategy, the
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oracle will be queried for the truth-values of normal(tweety) and bird(tweety)
if they are still unknown. When the adaptive strategy is applied, these queries
are answered by relying on a theorem prover (such as Prolog) that contains
the current theory, the positive examples and the above-listed clause.

Notice the close correspondence between abduction and these forms of cov-
erage testing. Also, for non-recursive theories, the third and fourth strategies
always produce the same answers. The use of the clause itself is meant for
recursive theories.

Example 7.18. Consider the example anc(jef, john) in the light of the clause

anc(X,Y) ← anc(X,Z), anc(Z,Y)

and the positive examples anc(jef, an), anc(an,mary) and anc(mary, john). The
example is not covered under the fourth strategy, but it is covered under the
adaptive strategy.

These different settings are also used by modern inductive logic program-
ming systems. Indeed, the use of an extensional background theory by Foil

corresponds to the lazy strategy whereas an intensional setting corresponds
to the adaptive strategy or its variant.

7.3.2 The Model Inference System

Now we are able to sketch Shapiro’s seminal Model Inference System. It
combines the backtracing algorithm with general-to-specific search for clauses
covering the examples, as indicated in Algo. 7.4. The backtracing algorithm
is used to locate an incorrect clause c whenever a negative example is covered
by the current theory. Incorrect clauses are retracted from the theory and
also marked, so that the Model Inference System will not generate them
again.2 This implies that the theory specialization operator only retracts incor-
rect clauses. When a positive example is not covered, the Model Inference

System performs a complete general-to-specific search for a clause covering
the positive example. During this search, the system never considers marked
clauses again. Furthermore, during this search process the system needs to
test whether a candidate clause covers the example in the model M , which
is defined by the employed strategy (as discussed in the previous section).
Observe that, given the complete search, an optimal refinement operator at
the level of clauses should be used. Note also that the theory generalization
operator merely adds clauses to the current theory.

Example 7.19. We illustrate the Model Inference System using a sim-
ple session to induce the definition of the member/2 predicate (reproduced

2 At this point, one can easily imagine more efficient ways of realizing this than
marking all clauses.
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Algorithm 7.4 The Model Inference System
T := ∅ (the theory)
repeat

read in the next example e
repeat

while T covers a negative example n do
identify an incorrect clause c ∈ T

(using the contradiction backtracing algorithm)
retract c from T
mark c

end while
while T does not cover a positive example p do

find an unmarked clause c that covers p in M
assert c in T

end while
until T is complete and consistent with all known examples

until satisfied

and adapted from [Shapiro, 1983], excerpt from pages 104–109, c©1983 Mas-
sachusetts Institute of Technology, by permission of The MIT Press);3 the
eager strategy is employed and the language bias specifies that the first argu-
ment of member is an element and the second is a list.

?-mis.
Next fact? member(a, [b, a]) is true.
Checking facts . . .member(a, [b, a]) is not entailed.
MIS discovers that the reason for this is that there is no clause covering the
example (according to Eq. 7.4) and decides to search for one.
Searching for a clause that covers member(a, [b, a]) ←. . .
Checking member(X, [Y|Z]) ←
Found clause member(X, [Y|Z]) ←
Checking facts . . . no error found
Next fact? member(a, [b, c]) is false.
Fact member(a, [b, c]) is entailed . . . locating an incorrect clause
Clause member(X, [Y|Z]) ← is incorrect and retracted
Checking facts . . .member(a, [b, a]) is not entailed.
Searching for a clause that covers member(a, [b, a]) ←. . .
Checking member(X, [Y|Z]) ← . . . refuted
Checking member(X, [Y,Z|U]) ← . . . refuted
Checking member(X, [Y|Z]) ← member(Y,Z)
Query: is member(b, [a]) true? no.
If the answer were yes, the original example would be covered by the clause.
Checking member(X, [Y|Z]) ← member(X,Z)
3 For understandability, the order of the queries and candidate clauses has been

slightly modified.
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Query: is member(a, [a]) true? yes.
Found clause member(X, [Y|Z]) ← member(X,Z)
Checking facts . . .member(a, [b, a]) is not entailed.
Query: is member(a, []) true? no.
This query is asked to verify whether member(a, [a]) is covered by the clause
already found.
Searching for a clause covering member(a, [a]). . .
Checking member(X, [X|Z]) ← . . .
Found clause member(X, [X|Z]) ←
Current definition of member/2:

member(X, [X|Z]) ←
member(X, [Y|Z]) ← member(X,Z)

Checking facts . . . no error found

The next, much more involved session of synthesizing the definition of in-
sertion sort (isort/2, reproduced and adapted from [Shapiro, 1983], excerpt
from pages 166–173, c©1983 Massachusetts Institute of Technology, by per-
mission of The MIT Press), using the Model Inference System is included
in this book because it very well illustrates the difficulties and combinatorics
encountered when synthesizing programs from examples. Even though, ac-
cording to the typical Prolog programmer, programming insertion sort is
extremely easy (not to say trivial), many clauses are considered and many
queries have to be posed to the oracle before converging on a solution. Again,
the eager search strategy is employed. The example can be skipped without
loss of continuity.

Example 7.20. * In the intended interpretation, isort/2 succeeds when the sec-
ond argument is the sorted list corresponding to the first argument. The target
program is:

isort([], []) ←
isort([X|Y],Z) ← isort(Y,V), insert(X,V,Z)

insert(X, [], [X]) ←
insert(X, [Y|Z], [X,Y|Z]) ← X � Y
insert(X, [Y|Z], [Y|V]) ← X > Y, insert(X,Z,V)

The predicate insert/3 has three arguments: the first is an element, and
the other two are (sorted) lists. The predicate succeeds when the third argu-
ment is the second argument expanded by inserting the first argument in the
appropriate position.

The Model Inference System employs a strong bias. We will assume
that it knows the types of the predicates, the modes (the first argument of
isort/2 is the input argument, the second is the output argument; the first two
arguments of insert/3 are input arguments, the third is an output argument),
that isort/2 and insert/3 are functional (that is, the output arguments are a
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function of the input arguments, which implies that for each input argument,
there is exactly one output argument for which the predicate succeeds; cf. also
Sect. 6.6.2), and that isort/2 employs the (unknown) predicate insert/3, which
in turn employs �.

?-mis.
Next fact? isort([2, 3, 1], [1, 2, 3]) is true.
Checking facts . . . isort([2, 3, 1], [1, 2, 3]) is not entailed.
MIS discovers that the reason for this is that there is no clause covering the
example (according to Eq. 7.4) and decides to search for one.
Searching for a clause that covers isort([2, 3, 1], [1, 2, 3]) ←. . .
Query: is isort([3, 1], [1, 2, 3]) true? no.
Query: is insert(2, [3, 1], [1, 2, 3]) true? no.
Query: is isort([1], [1, 2, 3]) true? no.
Query: is insert(2, [1], [1, 2, 3]) true? no.
Query: is insert(3, [1], [1, 2, 3]) true? no.
Query: for which values of X is isort([3, 1],X) true? X = [1,3].
Query: is insert(2, [1, 3], [1, 2, 3]) true? yes.
Found clause isort([X|Y],Z) ← isort(Y,V), insert(X,V,Z)
Checking facts . . . isort([2, 3, 1], [1, 2, 3]) is not entailed.
Query: for which values of X is isort([1],X) true? X =[1].
Query: for which values of X is isort([],X) true? X =[].
Searching for a clause that covers isort([], []). . .
Found clause isort([], []) ←. . .
Current hypothesis for isort/2:

isort([], []) ←
isort([X|Y],Z) ← isort(Y,V), insert(X,V,Z)

Checking facts . . . isort([2, 3, 1], [1, 2, 3]) is not entailed.
Query: is insert(1, [], [1]) true? yes.
Searching for a clause that covers insert(1, [], [1]) . . .
Found clause insert(X,Y, [X|Y]) ← (an incorrect clause consistent with the
current facts)
Checking facts . . . isort([2, 3, 1], [1, 2, 3]) is not entailed.
Query: is insert(3, [1], [1, 3]) true? yes.
Searching for a clause that covers insert(3, [1], [1, 3]). . .
Query: is insert(3, [], [1, 3]) true? no.
Query: is insert(1, [], [1, 3]) true? no.
Found clause insert(X, [Y|Z], [Y,X|Z]) ←
Current hypothesis for insert/3:

insert(X,Y, [X|Y]) ←
insert(X, [Y|Z], [Y,X|Z]) ←

Checking facts . . . no error found
At this point, all examples known to MIS are handled correctly. The user,
however, discovers a mistake and enters it.
Next fact? isort([2, 3, 1], [2, 3, 1]) is false.
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Fact isort([2, 3, 1], [2, 3, 1]) is entailed . . . locating an incorrect clause
Query: is insert(3, [1], [3, 1]) true? no.
Clause insert(X,Y, [X|Y]) ← is incorrect and retracted
Current hypothesis for insert/3:

insert(X, [Y|Z], [Y,X|Z]) ←
Checking facts . . . isort([2, 3, 1], [1, 2, 3]) is not entailed.
Searching for a clause that covers insert(1, [], [1]). . .
Found clause insert(X, [], [X]) ←.
Checking facts . . . no error found
Next fact? isort([2, 1, 3], [3, 2, 1]) is false.
Fact isort([2, 1, 3], [3, 2, 1]) is entailed . . . locating an incorrect clause
Query: is isort([3], [3]) true? yes.
Query: is isort([1, 3], [3, 1]) true? no.
Query: is insert(1, [3], [3, 1]) true? no.
Clause insert(X, [Y|Z], [Y,X|Z]) ← is incorrect and retracted
Current hypothesis for insert/3:

insert(X, [], [X]) ←.
Checking facts . . . isort([2, 3, 1], [1, 2, 3]) is not entailed
Searching for a clause covering insert(3, [1], [1, 3]). . .
Query: is insert(3, [], [3]) true? yes.
Query: is insert(1, [], [3]) true? no.
Found clause insert(X, [Y|Z], [Y,X|Z]) ← Y � X
Current hypothesis for insert/3:

insert(X, [], [X]) ←.
insert(X, [Y|Z], [Y,X|Z]) ← Y � X

Checking facts . . . no error found.
Next fact? isort([2, 1, 3], [1, 2, 3]) is true.
Checking facts . . . isort([2, 1, 3], [3, 2, 1]) is not entailed.
Query: for which values of X is isort([1, 3],X) true ? X =[1,3].
Query: for which values of X is isort([3],X) true ? X =[3].
Query: is insert(1, [3], [1, 3]) true ? yes.
Searching for a clause covering insert(1, [3], [1, 3])
Found clause insert(X, [Y|Z], [X,Y|Z]) ← X � Y
Current hypothesis for insert/3:

insert(X, [], [X]) ←
insert(X, [Y|Z], [Y,X|Z]) ← Y � X
insert(X, [Y|Z], [X,Y|Z]) ← X � Y

Checking facts . . . no error found
Next fact? isort([3, 2, 1], [1, 3, 2]) is false.
Fact isort([3, 2, 1], [1, 3, 2]) is entailed . . . locating an incorrect clause
Query: is isort([2, 1], [1, 2]) true? yes.
Query: is insert(3, [1, 2], [1, 3, 2]) true? no.
Clause insert(X, [Y|Z], [Y,X|Z]) ← Y � X is incorrect and retracted
Current hypothesis for insert/3:

insert(X, [], [X]) ←
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insert(X, [Y|Z], [X,Y|Z]) ← X � Y
Checking facts . . . isort([2, 3, 1], [1, 2, 3]) is not entailed.
Searching for a clause that covers insert(3, [1], [1, 3]). . .
Query: is insert(3, [], []) true? no.
Query: is insert(1, [], []) true? no.
Found clause insert(X, [Y|Z], [Y|V]) ← insert(X,Z,V),Y � X
Current hypothesis for insert/3:

insert(X, [], [X]) ←
insert(X, [Y|Z], [X,Y|Z]) ← X � Y
insert(X, [Y|Z], [Y|V]) ← insert(X,Z,V),Y � X

At this point the program is correct in the intended interpretation and the
session terminates.

Shapiro has proven that, under certain conditions (for certain strategies),
the Model Inference System identifies the target interpretation in the
limit. Systems that identify an interpretation I in the limit are presented with
a potentially infinite sequence of examples e1, ..., en, ... (with regard to I) and
have to output a sequence T1, ..., Tn, ... of theories such that Ti is consistent
with the first i examples e1, ..., ei. A system identifies interpretations in the
limit if and only if for all possible interpretations I and all possible sequences
of examples (with regard to I, in which each example eventually occurs), there
is a number i such that M(Ti) = I and ∀j > i : Tj = Ti. So, systems that
identify interpretations in the limit converge in a finite number of steps upon
a theory that is correct. Identification in the limit forms one framework for
studying the convergence properties of logical learning systems. It is further
discussed in Chapter 10 on computational learning theory.

7.4 Two Propositional Theory Revision Systems*

The previous section introduced the seminal Model Inference System that
is able to infer arbitrary logic programs from examples of their input-output
behavior and queries to the user. Generality and expressiveness, however,
come at a computational price. As the example sessions illustrated, many
questions had to be answered by the user before the system would converge
upon the correct theory. Therefore, the present section introduces two simpler
alternative systems for revising propositional theories from examples.

7.4.1 Learning a Propositional Horn Theory Efficiently

We first introduce the Horn algorithm by Angluin et al. [1992], which is ef-
ficient in that it runs in polynomial time, and hence poses only a polynomial
number of questions to the user.4 At the same time, it learns from inter-
4 More precisely, let m be the number of clauses in the target theory, and n be the

number of predicates. Then Algo. 7.5 learns a Horn theory that is logically equiva-
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pretations rather than from entailment and uses a specific-to-general search
strategy rather than a general-to-specific one.

The algorithm poses two types of queries. Equivalence queries ask the
oracle whether a given Horn theory is correct or not. The oracle answers yes
if it is, and provides a counter-example in the form of an interpretation if it
is not. Membership queries simply ask whether a particular interpretation is
a positive example or a negative one.

Algorithm 7.5 The Horn algorithm of Angluin et al. [1992]
S := ∅ (a sequence of negative examples)
H := ∅
while query equivalent(H) does not return yes do

Let x be the counter-example returned by the equivalence query
if x violates at least a clause c ∈ H then

(x is a positive example)
remove all such clauses from H

else
(x is a negative example)
for each si ∈ S such that body(si ∩ x) �= body(si) do

query member(si ∩ x)
end for
if any of these queries is answered negatively then

i := min{j|member(sj ∩ x) = no}
si := si ∩ x

else
add x as the last element in the sequence S

end if
H := ∪s∈Sclauses(s) where

clauses(s) = {t ← s|t is a predicate or false and t �∈ s}
remove from H all clauses that violate a positive example.

end if
end while

The algorithm is summarized in Algo. 7.5. One observation that is ex-
ploited by Horn is that a negative example x must violate one of the clauses
in clauses(s).

Example 7.21. Assume that the theory involves the propositional predicates
flies, bird and normal, and that {bird, normal} is a negative example. Then the
example violates at least one of the clauses({bird, normal}), that is,

flies ← bird, normal
false ← bird, normal

lent to the unknown target theory in polynomial time using O(m2n2) equivalence
queries and O(m2n) membership queries.
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or their generalizations.

Given that Horn searches from specific to general, it starts to search this
space of possibilities at the most specific of these, that is, at clauses(s). During
the learning process, Horn keeps track of an ordered sequence of negative
examples S. Each new negative example x is used to refine the theory. There
are two ways of realizing this. First, Horn attempts to generalize a negative
example using one of the examples s already in S. For each such generalization
x ∩ s, Horn queries the user to find out whether the generalized example is
negative or not. If it is negative, the example can safely be generalized (and
replaced in S). If it is positive, generalization is not allowed as otherwise
a positive example (x ∩ s) would become violated. Second, if the previous
attempts to generalize x fail, the new example is added to the end of S. Finally,
after processing a negative example, the clauses on H must be recomputed
from S. Positive examples are only used to elmininate clauses from H that are
incorrect. These are clauses that violate one of the positive examples already
encountered.

Observe that the idea of generalization by intersection corresponds to com-
puting a kind of least general generalization of two negative examples. This
idea in combination with the removal of clauses (and candidates) that violate
the dual examples (the positives) resembles the inductive logic programming
system Golem [Muggleton and Feng, 1992]. However, whereas Golem com-
putes the least general generalization of positives and removes the clauses
covering negatives, Horn takes the converse approach.

Exercise 7.22. Explain why Golem and Horn perform dual operations.

A session with Horn is shown in the next example.

Example 7.23. Let the target theory be

flies ← bird, normal
normal ← bird, strongwings

?-Horn.
Query: is ∅ equivalent to the target theory?
No. Counter-example: {bird, strongwings, normal} (negative).
This is a negative example, covered by the current theory H = ∅, but violated
by the first clause of the target theory.
At this point becomes S = [{bird, strongwings, normal}]
Query: is

false ← bird, strongwings, normal
flies ← bird, strongwings, normal

equivalent to the target theory?
No. Counter-example: {bird, strongwings, normal, flies} (positive).
Retracting false ← bird, strongwings, normal
Query: is
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flies ← bird, strongwings, normal
equivalent to the target theory?
No. Counter-example: {bird, strongwings, flies} (negative).
Query: is {bird, strongwings} positive? No.
At this point S = [{bird, strongwings}]
Query: is

flies ← bird, strongwings
normal ← bird, strongwings

equivalent to the target theory?
(The clause false ← bird, strongwings is eliminated because it violates the
positive example.)
No. Counter-example: {bird, normal} (negative).
Query: is {bird} positive? Yes.
At this point S = [{bird, strongwings}, {bird, normal}]
Query: is

flies ← bird, strongwings
normal ← bird, strongwings
flies ← bird, normal
strongwings ← bird, normal

equivalent to the target theory?
No. Counter-example: {bird, normal, flies} (positive).
Retracting strongwings ← bird, normal
Query: is

flies ← bird, strongwings
normal ← bird, strongwings
flies ← bird, normal

equivalent to the target theory? Yes.

Exercise 7.24. * Show that Horn asks at most O(m2n2) equivalence queries
and O(m2n) membership queries.

Exercise 7.25. **(hard) Angluin et al. [1992] also describe a more efficient
variant of their algorithm. Instead of keeping track of S and H, they keep
track of so-called meta-clauses. For instance, in the above example, instead of
having two clauses for the negative example {bird, strongwings} they employ
the notation flies, normal ← bird, strongwings and perform operations on these
meta-clauses directly. Can you define this variant of this algorithm?

Angluin et al. [1992] have also shown that one needs equivalence as well
as membership queries to obtain a polynomial-time algorithm, and in later
work, Frazier and Pitt [1993] have developed a variant of Horn that learns
from entailment.

Exercise 7.26. **(very hard) Can you derive a variant of Horn that learns
from entailment?
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7.4.2 Heuristic Search in Theory Revision

So far, this chapter has focused on theory revision algorithms, such as the
Model Inference System, that perform a complete search through the
space of possible solutions. In most realistic situations, this will be infeasible.
Therefore, many theory revision systems resort to heuristics for guiding the
search and also employ incomplete operators.

Rather than providing a detailed survey of such methods, let us illustrate
this type of theory revision system using the Duce algorithm of Muggleton
[1987].5 Even though Duce is a propositional system, it illustrates many im-
portant issues such as inverse resolution, predicate invention and compression,
another reason for presenting it.

Duce starts from a theory T in the form of propositional definite clauses,
and revises it in a theory T ′ such that T ′ compresses T as much as possible.
During the search it has access to an oracle that can answer subset queries
and name newly invented predicates.

The operators employed by Duce are essentially the propositional versions
of the inverse resolution operators introduced in Sect. 5.8, that is, absorption,
identification, and intra- and inter-construction. In addition, a propositional
variant of the lgg operator called truncation (as well as an operator to deal
with negation) are employed. This results in a vast number of possible op-
erations on any given theory. These operators are scored using the resulting
compression in the size of the theory. The size of a propositional theory is
simply the number of atoms that occur in it. So, the search process carried
out by Duce attempts to determine the operation that results in the largest
reduction in size of the theory.

For each of the operators employed by Duce, the result in compression
can be computed using a formula in R and I, where R ⊂ T is the set of clauses
to which the operator is applied and I is the common subset of the atoms in
the bodies of the rules in R. For instance, for the absorption operator, the
resulting reduction in size is (| R | −1) × (| I | −1).

Example 7.27. Consider the theory (equal to R)

primate ← twoLegs, noWings
man ← twoLegs, noWings, notHairy, noTail
gorilla ← twoLegs, noWings, hairy, noTail, black

of size 14. Applying absorption yields

primate ← twoLegs, noWings
man ← primate, notHairy, noTail
gorilla ← primate, hairy, noTail, black

As the reader may want to verify, this results in a reduction of 2.
5 A first-order upgrade of Duce is the system Cigol [Muggleton and Buntine,

1988].
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Exercise 7.28. Provide the formulae for the other operators.

Duce employs a best-first search through the space of possible operator
applications guided by compression. To reduce the search space, Duce only
applies an operator on a rule set R and I when the operator yields a local
maximum. Furthermore, the new clauses that result from the application of an
operator are presented to the oracle before the operator is applied. A session
with Duce (adapted from [Muggleton, 1987]) is shown in Ex. 7.29.

Example 7.29. Assume that Duce starts from the theory

blackbird ← beak, black, twoLegs, tail,wings
chimp ← brown, hairy, twoLegs, tail, noWings
eagle ← beak, golden, twoLegs, tail,wings
elephant ← grey, fourLegs, big, tail, trunk, noWings
elephant ← grey, fourLegs, small, tail, trunk, noWings
falcon ← beak, brown, twoLegs, big, tail,wings
gorilla ← black, hairy, twoLegs, noTail, noWings
lemur ← grey, twoLegs, tail, noWings
man ← brown, notHairy, twoLegs, big, noTail, noWings
man ← pink, notHairy, twoLegs, small, noTail, noWings
sparrow ← beak, brown, twoLegs, small, tail,wings

Duce thens proceed as follows:

!-induce
Is elephant ← fourLegs valid (truncation [12])? no.
Is elephant ← fourLegs, noWings valid (truncation [11])? no.
Is elephant ← fourLegs, trunk valid (truncation [11))? yes.
Is man ← notHairy, twoLegs, noTail, noWings valid (truncation [9])? yes.
What shall I call p where p ← twoLegs, noWings (inter-con [1])? primate.
What shall I call q where q ← beak, twoLegs, tail,wings (inter-con [7])? bird.
No further transformations possible.

Exercise 7.30. What is the theory resulting from the operations in the pre-
vious example?

7.5 Inducing Constraints

Constraints are not only useful to constrain the search for theories. They
are also interesting statements about the domain of discourse that may be
useful for other purposes. For instance, when designing databases, integrity
constraints may be specified to guarantee the integrity of the database. The
database management system should then take care that the database never
enter a state that violates the integrity constraints. A natural question that
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arises in this context is whether one can also induce such integrity constraints?
This question has received quite some attention in the data mining literature,
and various algorithms have been developed for inducing a rich variety of
integrity constraints from databases. In this section, we show how integrity
constraints in the form of general clauses can be induced from a database (in
the form of an interpretation). Furthermore, it will be shown how this general
framework can be instantiated to infer other forms of integrity constraints
such as functional, inclusion and multi-valued dependencies.

7.5.1 Problem Specification

The problem of inducing integrity constraints can be specified as follows.

Given:

• an interpretation D (representing the database)
• a finite language of range-restricted clauses L
Find: a complete set of clauses I ⊆ L that cover the interpretation D.

Recall that a clause is range-restricted whenever all variables appearing in
its head also appear in its body. A set of clauses is complete with regard to L
and D if and only if there is no clause c ∈ L such that

covers(c,D) and I �|= c (7.5)

Thus integrity constraints are clauses, and the database satisfies a clause
if the interpretation (representing the database) is a model for the clause;
otherwise, the databases violates the clause. Furthermore, one is looking for
a complete set of clauses, that is, all clauses that cover the database must be
either in I or entailed by I.

Example 7.31. Let the language L contain all clauses containing one variable
and no constants over the predicates human/1, male1/1 and female/1, and let
the database D be the interpretation

{male(luc), female(lieve), human(lieve), human(luc)}.

Then the following set of clauses constitutes a complete solution to the in-
tegrity constraint induction problem:

← female(X),male(X) human(X) ← male(X)
female(X);male(X) ← human(X) human(X) ← female(X)

Even though other clauses in L are satisfied by the database, the theory is
complete because all other clauses (such as ← female(X),male(X), human(X))
are entailed by the theory.
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The integrity theory induced in the above example is minimal. An integrity
theory I is minimal if and only if

∀c ∈ I : I − {c} �|= c (7.6)

Minimal theories are often desired because they do not contain redundant
clauses. Observe also that it is important that L be finite. Otherwise, the
induced theory might be infinite as well.

7.5.2 An Algorithm for Inducing Integrity Constraints

The key insight that leads to an algorithm is that when a clause p1; ...; pm ←
q1, ..., qn is violated by a database there must be a substitution θ for which
q1θ, ..., qnθ holds in D but p1θ; ...; pmθ does not hold. Such a substitution can
be computed by answering the query ← q1, ..., qn, not(p1; ...; pm) using Prolog
on the database D. (This procedure is only sound for range-restricted clauses.)

Example 7.32. Consider the database

{human(luc), human(lieve), bat(dracula),
male(luc), male(dracula), female(lieve)}.

Then the clause

human(X) ← male(X)

is violated for the substitution θ = {X/dracula}.

If a clause c violates a database for a substitution θ, one can refine it by
either modifying body(c) so that it no longer succeeds for θ or by modifying
head(c) so that it no longer fails for θ. Thus the clause can be refined by either
specializing the body or generalizing the head, for instance, by adding literals
to the head or the body. Instead of realizing this using two different operations,
it is convenient to merely apply a refinement operator under θ-subsumption
to the clause c.

Example 7.33. Some of the refinements of the violated clause

← male(X)

include

human(X) ← male(X) bat(X) ← male(X)
female(X) ← male(X) ← male(X), female(X)
← male(X), bat(X) ← male(X), human(X).

So, from a θ-subsumption perspective, a specialization operator is applied
on the clause. However, recall that the view of θ-subsumption discussed in
Chapter 5 was based on learning from entailment. Since we are working with
interpretations here, the specialization operator of θ-subsumption effectively
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generalizes the clause. This is also what is needed because the clause is overly
specific as it does not cover the positive interpretation and, hence, must be
generalized.

Given that our aim is to find a complete theory, we can easily adapt the
generic algorithm (Algo. 3.10) presented earlier. This algorithm closely corre-
sponds to the clausal discovery engine presented by De Raedt and Bruynooghe
[1993].

Algorithm 7.6 Discovering integrity constraints
Queue := {�};
I := ∅;
while Queue �= ∅ do

Delete c from Queue;
if c covers D then

add c to I
else

Queue := Queue ∪ρo(c)
end if

end while
return I

The algorithm starts from the most specific element (the empty clause
� when learning from interpretations) and repeatedly generalizes it using an
optimal refinement operator under θ-subsumption for the language L. When-
ever it encounters a clause that is satisfied by the database, it is added to the
integrity theory I. Those clauses that are not satisfied are further refined.

Observe also that various search strategies are possible in the clausal dis-
covery algorithm presented. Two natural ones include breadth-first and iter-
ative deepening [De Raedt and Bruynooghe, 1993].

It is easy to see that the clausal discovery algorithm finds a complete in-
tegrity theory. However, it is not necessarily a minimal one. Some redundant
clauses can be eliminated by verifying whether I |= c before adding the clause
c to the integrity theory. This requires however the use of a first-order theo-
rem prover (such as Satchmo [Manthey and Bry, 1988] or PTTP [Stickel,
1988]). Furthermore, this by itself does not suffice to guarantee that a minimal
integrity theory is found.

Exercise 7.34. Can you provide an example that shows that non-minimal
theories may be found even when using the above procedure to eliminate
redundant clauses ? (Hint: this depends on the order in which the clauses are
considered by the algorithm).

To guarantee a minimal theory, one must include a post-processing phase
in which the clauses have to be processed in the order in which they were
found. For each such clause, one can then check whether it is redundant with
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regard to the discovered theory. If it is, it can be deleted before going to the
next clause.

A further optimization is possible when the language L is anti-monotonic
[De Raedt and Bruynooghe, 1993]. A language is anti-monotonic if and only
if

∀c ∈ L : (s θ-subsumes c) → s ∈ L (7.7)

Anti-monotonicity in this context requires that all generalizations of all clauses
in L also belong to L. For anti-monotonic languages, one can safely prune
away refinements that are not reduced w.r.t. the data while still retaining a
complete solution.

A refinement c∪{l} of a clause c is not reduced with regard to the data D
if and only if vars(l) ⊆ vars(c) and

∀θ : cθ is violated if and only if c ∪ {l} is violated in D (7.8)

Example 7.35. Consider the database of Ex. 7.31. The refinement

← male(X), human(X)

of

← male(X)

is not reduced because the substitutions (X = luc) that violate the first query
also violate the second clause. Therefore, the two clauses are equivalent w.r.t.
the database D. Formulated otherwise, the two clauses are equivalent because

human(X) ← male(X)

covers the database. Because the language is anti-monotonic, it is safe to prune
away the clause

← male(X), human(X)

because for all refinements of this clause, for instance,

tall(X) ← male(X), human(X),

there will be an equivalent clause in L that does not contain the redundant
literal human(X) (in our example: tall(X) ← male(X)). Therefore, when the
language is anti-monotonic it is safe to prune non-reduced refinements.

The algorithm equipped with a breadth-first search strategy and the prun-
ing for redundant clauses is illustrated in the next example and Fig. 7.3.

Example 7.36. Let us now illustrate the clausal discovery algorithm of Algo.
7.5.2 at work on Ex. 7.31. We assume that the algorithm performs a breadth-
first search. The algorithm starts at the clause ← , discovers that it does not
cover the database and refines it by applying an optimal refinement operator.
This leads to the clauses
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← m ← f ← h

(we abbreviate atoms such as male(X) to m), which in turn cover the example
and are therefore refined as well. Of the resulting clauses, the clauses

← m, f h ← m h ← f

cover the example and are output; the clauses

← m, h ← f, h m ← f f ← m

are not reduced. The only clauses that remain for refinement are

f ← h m ← h.

Given that we work with an optimal refinement operator, the only remaining
refinement is

m; f ← h

which forms a solution as well.

f ← h

←

← m

f ← m m ← h

m; f ← h

← m, h h ← m
← f, h

m ← f

← f ← h

← m, f h ← f

Fig. 7.3. Illustrating clausal discovery

The algorithm can easily be adapted to obtain some popular forms of
integrity constraints in relational databases such as inclusion, functional and
multi-valued dependencies. They play an important role in database design
and normalization [Elmasri and Navathe, 1989].

Let us start by showing how functional dependencies can be induced on
an example due to Flach [1993].

Functional dependencies are clauses of the form

Y = Z ← r(X,Y ,W1), r(X,Z,W2) (7.9)

where r denotes a relation and X,Y and Z denote vectors of variables.
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Example 7.37. Consider the database for the relation train(From,Hour,Min,To)
that denotes that there is a train from From to To at time Hour,Min:

train(utrecht, 8, 8, denbosch) ← train(tilburg, 8, 10, tilburg) ←
train(maastricht, 8, 10,weert) ← train(utrecht, 8, 25, denbosch) ←
train(utrecht, 9, 8, denbosch) ← train(tilburg, 9, 10, tilburg) ←
train(maastricht, 9, 10,weert) ← train(utrecht, 9, 25, denbosch) ←
train(utrecht, 8, 13, eindhoven) ← train(tilburg, 8, 17, eindhoven) ←
train(utrecht, 8, 43, eindhoven) ← train(tilburg, 8, 47, eindhoven) ←
train(utrecht, 9, 13, eindhoven) ← train(tilburg, 9, 17, eindhoven) ←
train(utrecht, 9, 43, eindhoven) ← train(tilburg, 9, 47, eindhoven) ←

Then the clause

From1 = From2 ← train(From1,Hour1,Min,To), train(From2,Hour2,Min,To)

is a satisfied functional dependency. Using the vector notation, X represents
[To,Min], Y represents From1, Z represents From2, W1 represents Hour1, and
W2 represents Hour2. A further clause that is satisfied by this database is:

To1 = To2 ← train(From,Hour1,Min,To1), train(From,Hour2,Min,To2)

Exercise 7.38. Are there any other constraints satisfied by the train database?

Functional dependencies can be discovered using the clausal discovery al-
gorithm outlined above. One only needs to adapt the language L and the
refinement operator to generate clauses that correspond to functional depen-
dencies. However, instead of using the rather complex clausal notation to
denote functional dependencies, it is much more convenient to work on the
traditional database notation. In this notation, the first dependency would be
represented as: Min,To → From. Also, when inducing functional dependencies,
complete and minimal integrity theories are preferred.

For completeness, we also define multi-valued and inclusion dependencies.
They can be discovered in a similar fashion. Multi-valued dependencies are
clauses of the form

r(X,Y1, Z2) ← r(X,Y1, Z1), r(X,Y2, Z2) (7.10)

where r denotes a relation and we again work with vectors of variables. Again,
one can simplify the notation and write this as X � Y where X and Y represent
the attributes used in the relation.

Inclusion dependencies are clauses of the form r.X ⊆ s.Y where r.X and
s.Y represent the attributes used in the relations r and s. They basically state
that every value that appears in r.X must also appear in s.Y.
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7.6 Conclusions

In this chapter we have investigated the complications that arise when learning
or revising theories. Different types of theories and settings have been consid-
ered. First, we have looked into abductive logic programming, where possible
revisions are restricted to the addition of facts. We have also seen that in-
tegrity constraints in the form of general clauses provide us with a powerful
and declarative means to incorporate additional background knowledge into
the induction process and to restrict the space of possible solutions. Second,
we have considered the problem of inferring a theory or model by interact-
ing with an oracle. The same types of techniques are applicable to program
synthesis from examples. Third, we have also used two propositional learners,
that is, Horn [Angluin et al., 1992] and Duce [Muggleton, 1987], to illustrate
computational complexity issues in both theory revision and heuristic search.
Finally, we have concluded the chapter by investigating how integrity theories
can be induced from data.

Throughout the chapter, several new principles for logical and relational
learning have been introduced. These include the use of abductive reasoning
for inferring missing facts that explain particular examples, the use of opera-
tors at the level of theories, the use of an oracle to support interaction, and
the use and the induction of integrity constraints.
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Probabilistic Logic Learning

So far, this book has focused on logical aspects of learning and on learning
in logic. Logic has, however, severe limitations for representing and reasoning
about uncertainty. Therefore, this chapter adds another dimension to logic and
learning: probability. Probability theory provides us with an elegant and formal
basis for reasoning about uncertainty. In the past few decades, several proba-
bilistic knowledge representation formalisms have been developed to cope with
uncertainty, and many of these formalisms can be learned from data. Unfor-
tunately, most such formalisms are propositional, and hence they suffer from
the same limitations as traditional propositional learning systems. This chap-
ter studies how to alleviate these problems by introducing probabilistic logic
learning, sometimes also called probabilistic inductive logic programming or
statistical relational learning. This is a newly emerging area in artificial in-
telligence lying at the intersection of reasoning about uncertainty, machine
learning and knowledge representation. Our presentation of probabilistic logic
learning starts from an inductive logic programming perspective and extends
logical learning with probabilistic methods. In this regard, it follows the up-
grading approach of Chapter 6. The chapter will also show how the frame-
works of learning from interpretations and learning from entailment can be
upgraded to a probabilistic context, yielding representational formalisms such
as stochastic logic programs (SLPs) [Eisele, 1994, Muggleton, 1996, Cussens,
2000], PRISM [Sato, 1995] and ICL [Poole, 1993b], Markov logic networks
[Richardson and Domingos, 2006], and Bayesian logic programs [Kersting and
De Raedt, 2007].

While the chapter provides a brief review of probabilistic models, it does not
contain an elaborate overview of probabilistic methods in artificial intelligence,
as this by itself is an important topic of study. Such overviews can be found,
for instance, in [Russell and Norvig, 2004, Jensen, 2001, Cowell et al., 1999,
Baldi et al., 2003]. At the same time, the chapter is not intended as a complete
survey of statistical relational learning (see [De Raedt and Kersting, 2003,
Getoor and Taskar, 2007, De Raedt et al., 2008]), but rather focuses on the
principles that underlie this new and exciting subfield of artificial intelligence.
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8.1 Probability Theory Review

This section briefly reviews some key concepts from probability theory that
are used within artificial intelligence. The reader not familiar with this topic
is encouraged to consult [Russell and Norvig, 2004] for an excellent overview
from an artificial intelligence perspective. Our notation closely corresponds to
that of Russell and Norvig [2004], and the introduction to Bayesian networks
in Sect. 8.2.1 summarizes that by Russell and Norvig [2004].

Let X be a random variable over a domain D(X). Because we will combine
probability theory with logic, we will focus on logical random variables in this
book; these variables have as domain {true, false}. The notation P(X) will
be used to denote the probability distribution of the random variable, and
P (X = x) or P (x) to denote the probability that the random variable X
takes the value x. For instance, P(fever) denotes the probability distribution
over the random variable (or proposition) fever, and P (fever = false) (or, in
shorthand notation, P (¬fever)) denotes the probability that fever = false.

We also need to define the joint probability distribution P(X1, · · · ,Xn)
over a set of random variables {X1, · · · ,Xn}. This allows one to represent the
joint probability that fever = true and headache = true at the same time.
Generalizing the above notation, we will use the notations P(fever, headache)
and P (fever = true, headache = true), respectively.

Some useful definitions and properties of probability theory can now be
listed:

• Conditional probability :

P(X|Y ) =
P(X,Y )
P(Y )

(8.1)

The use of P in equalities is a shorthand notation that denotes that the
equality is valid for all possible values of the involved random variables. In-
deed, if X and Y are logical random variables, the above equality actually
denotes:

P (X|Y ) =
P (X,Y )
P (Y )

(8.2)

P (X|¬Y ) =
P (X,¬Y )
P (¬Y )

(8.3)

P (¬X|¬Y ) =
P (¬X,¬Y )

P (¬Y )
(8.4)

P (¬X|Y ) =
P (¬X,Y )

P (Y )
(8.5)

Observe that, due to the division, it is required that P(Y ) �= 0, that is,
∀y ∈ dom(Y ) : P (y) �= 0.
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• The chain rule: :

P(X1, · · · ,Xn) = P(X1)
n∏

i=2

P(Xi|Xi−1, · · · ,X1) (8.6)

• The law of Bayes (assuming P(Y ) �= 0):

P(X|Y ) =
P(Y |X) P(X)

P(Y )
(8.7)

• Marginalization:

P(X) =
∑

y∈dom(Y )

P(X, y) (8.8)

or, alternatively, conditioning (combining marginalization and the chain
rule):

P(X) =
∑

y∈dom(Y )

P(X|y) P(y) (8.9)

• Conditional independence: the (sets of) variables X and Y are condition-
ally independendent given Z (assuming P(Y ) �= 0) if and only if

P(X,Y |Z) = P(X|Z) P(Y |Z) (8.10)

or equivalently, if and only if

P(X|Y,Z) = P(X|Z). (8.11)

This is sometimes denoted as (X⊥Y |Z). Intuitively, Eq. 8.11 states that
when X and Y are conditionally independent given Z, knowing the value
of Y does not influence (that is provide any information about) the value
of X, provided one already knows the value of Z.
If the conditional independency property holds without needing to con-
dition on Z, we say that X and Y are marginally independent, notation
(X⊥Y ). Obviously, when X and Y are conditionally independent given
Z, then Y and X are also conditionally independent given Z, more for-
mally (X⊥Y |Z) ↔ (Y ⊥X|Z). Thus the conditional independence relation
is symmetric.

8.2 Probabilistic Logics

Within logic, two types of semantics can be distinguished: a model-theoretic
one and a proof-theoretic one. A similar distinction is made when learning
logical representations, where learning from interpretations corresponds to
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the model-theoretic perspective, and learning from entailment corresponds
to a proof-theoretic one. This distinction also applies to probabilistic knowl-
edge representation formalisms. Indeed, Bayesian networks essentially define
a probability distribution over interpretations or possible worlds, and stochas-
tic grammars define a distribution over proofs, derivations or traces. We will
therefore study these two basic frameworks (as well as some variants) as they
form the basis for contemparary statistical relational learning.

A key distinction between logical learning and statistical learning is the
form of coverage relation employed. The covers relation between the language
of examples and of hypotheses in a logical framework was introduced in Chap-
ter 4. It states when an example is covered by a hypothesis and it yields the
value either true or false. On the other hand, when working with probabilistic
models, the coverage relation becomes a probabilistic one. Rather than stating
in absolute terms whether the example is covered or not, a probability will
be assigned to the example being covered. This corresponds to a probabilistic
coverage relation. The logical coverage relation can be re-expressed as a prob-
abilistic one by stating that the probability is 1 or 0 of being covered. This
distinction will be further elaborated on.

The terminology employed is also different. In particular, when working
with probaiblistic representations, the term model is used to refer to a partic-
ular hypothesis. This is not to be confused with models referring to interpre-
tations or possible worlds in a logical sense.

8.2.1 Probabilities on Interpretations

In this section, we first introduce Bayesian networks, while closely following
Russell and Norvig [2004], and then study a well-known variant of this frame-
work: Markov networks.

Bayesian Networks

The most popular formalism for defining probabilities on possible worlds is
that of Bayesian networks. As an example of a Bayesian network, consider
the network that is graphically illustrated in Figure 8.1 (similar to the famous
alarm network of Pearl [1988] used by Russell and Norvig [2004]). Formally
speaking, a Bayesian network is

• an augmented, directed acyclic graph,
• where each node corresponds to a random variable Xi,
• where each edge indicates a direct influence among the random variables,

and
• where there is a conditional probability distribution (CPD) associated with

each node.

The conditional probability distribution cpd(X) associated with the node X
is defined in terms of the parents of the node X, which we denote by Pa(X).
It specifies cpd(X) = P(X | Pa(X)).
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rushHour

jeffLate

badWeather

annLate

trafficJam

Fig. 8.1. A Bayesian network

P(badWeather)

(0.10, 0.90)

P(rushHour)

(0.25, 0.75)

badWeather rushHour P(trafficJam)
true true (0.95, 0.05)
true false (0.70, 0.30)
false true (0.40, 0.60)
false false (0.05, 0.95)

trafficJam P(jeffLate)
true (0.60, 0.40)
false (0.05, 0.95)

trafficJam P(annLate)
true (0.70, 0.30)
false (0.01, 0.99)

Table 8.1. The conditional probability distributions associated with the nodes in
the traffic network; cf. Figure 8.1. The distributions are specified over {true, false}

Example 8.1. Consider the Bayesian network in Fig. 8.1. It contains the ran-
dom variables rushHour, badWeather, annLate, jeffLate and trafficJam. The
CPDs associated with each of the nodes are specified in Table 8.1. They in-
clude the CPDs P(trafficJam | badWeather, rushHour), P(badWeather), etc.

The Bayesian network thus has two components: a qualitative one, the di-
rected acyclic graph, and a quantitative one, the conditional probability distri-
butions. Together they specify the joint probability distribution P(X1, ...,Xn)
over a fixed and finite set of random variables {X1, . . . , Xn}. For simplicity,



228 8 Probabilistic Logic Learning

we assume that all random variables have the domain {true, false}; this actu-
ally amounts to specifying a probability distribution on the set of all possible
interpretations. Indeed, in our traffic example, the Bayesian network defines
a probability distribution over truth assignments to {trafficJam, rushHour,
annLate, jeffLate, badWeather}.

Intuitively, an arc from node X to node Y in the directed acyclic graph
indicates that X influences Y . In the traffic example, having bad weather or
during rush hour the probability that there is a traffic jam increases. Also,
if there is a traffic jam, Jeff and Ann are likely to be late. More formally,
the qualitative component of a Bayesian network specifies the following set
of conditional independence assumptions (sometimes called the local Markov
assumptions):

Assumption 1 (cf. Russell and Norvig [2004]) Each node Xi in the graph is
conditionally independent of any subset A of nodes that are non-descendants
of Xi given a joint state of Pa(Xi), that is, P(Xi |A,Pa(Xi))=P(Xi |Pa(Xi)).

For example, annLate is conditionally independent of badWeather given
its parent trafficJam, notation (annLate⊥badWeather|trafficJam). Intuitively,
it states that knowledge of the value of badWeather is not influencing, that
is, not providing more information about the value of annLate if one already
knows the value of trafficJam. Because of the local Markov assumptions, we
can write down the joint probability density as

P(X1, . . . , Xn) =
n∏

i=1

P(Xi | Pa(Xi)) (8.12)

by applying the independency assumption and the chain rule to the joint
probability distribution. Let us illustrate this derivation on our example:

P(B,R, T, J,A) = P(A|B,R, T, J) P(B,R, T, J)
= P(A|T ) P(B,R, T, J) (Assumption 1)
= P(A|T ) P(J |B,R, T ) P(B,R, T )
= P(A|T ) P(J |T ) P(T |B,R) P(B,R)
= P(A|T ) P(J |T ) P(T |B,R) P(B|R) P(R)
= P(A|T ) P(J |T ) P(T |B,R) P(B) P(R) (8.13)

In this type of derivation, we have to topologically sort the nodes, that
is, to find an order of the nodes such that the index i of all nodes is strictly
larger than that of all of its parent nodes. So, we start from the deepest nodes
of the directed acyclic graphs and work backwards towards those nodes that
do not posses any parents.

To capture the intuitions behind the conditional independence relations
that hold in a Bayesian network, it is useful to consider the following special
cases, depicted in Fig. 8.2:
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• In a serial connection X → Z → Y , one can prove that (X⊥Y |Z) because
the node Z blocks the flow of information from X to Y ;

• In a diverging connection X ← Z → Y , one can also prove that (X⊥Y |Z)
and again Z blocks the flow from X to Z.

• A converging connection X → Z ← Y for which (X⊥Y ) holds but
(X⊥Y |Z) does not hold. This is called explaining away. This is illustrated
in the example below. In a converging connection the flow of informa-
tion from X to Y is only blocked if Z is not known. Visually this can be
interpreted as the information flowing away in the “sink” Z.

Example 8.2. Suppose we know trafficJam = true, then knowing that rushHour
= true makes it less likely that badWeather is also true. Therefore, badWeather
and rushHour are not conditionally independent given trafficJam. However, if
the value of trafficJam (and its descendants) are not known then badWeather
and rushHour are marginally independent. Notice that the explaining away
argument also holds for descendents of Z (cf. Fig. 8.2d), for instance, in the
traffic example, when annLate = true.

YZX

(a) serial connection

YZX

(b) diverging connection

YZX

(c) converging connection

W

Z YX

(d) converging with descendant

Fig. 8.2. Various types of connections in a Bayesian network

These findings are also valid when taking into account intermediate nodes.
For instance, replacing X → Z → Y with X → U1 → ... → Uk → Z → V1 →
... → Vm → Y still yields a serial connection with the same properties. In the
literature on Bayesian networks, these notions are used in the definition of d-
separation. Two sets of nodes X and Y are d-separated given evidence nodes
Z provided that there is no connection from a node in X to one in Y along
which information can flow. So, all connections from nodes in X to nodes in
Y should be blocked by nodes in Z. The notion of d-separation coincides with
that of conditional independence.

Bayesian networks are a popular knowledge representation formalism be-
cause they allow one to explicitly encode conditional independency assump-
tions, which result in a compact representation of the joint probability distri-
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bution. This is much more efficient than directly encoding the joint probability
distribution in a table, as the traffic network example illustrates.

Exercise 8.3. How many probability values are required to explicitly list the
probability of each interpretation for the traffic problem? How many are re-
quired when the Bayesian network is used?

So, Bayesian networks define a probability distribution on the possible
worlds, that is, the interpretations. To compute the probability of the inter-
pretation {t, a, b}, observe that ¬r and ¬j hold. Therefore, the probability of
this interpretation is

P (b,¬r, t,¬j, a) = P (a|t)P (¬j|t)P (t|b,¬r)P (b)P (¬r) (8.14)
= 0.7 × 0.4 × 0.7 × 0.1 × 0.75 (8.15)
= 0.0147 (8.16)

The resulting probability distribution on possible worlds induces a probability
distribution on the propositions and propositional formulae. The probability
of a logical formula f is the sum of the probabilities of all interpretations i
that are a model of the formula f :

P (f) =
∑

i|=f

P (i). (8.17)

This definition is often applied to marginalize variables away. For instance,
consider

P (t ∧ a) =
∑

i|=t∧a

P (i) (8.18)

=
∑

B∈{t,f}

∑

R∈{t,f}

∑

J∈{t,f}
P (B,R, t, J, a) (8.19)

where we have abbreviated the variables and states appropriately.
Bayesian networks are typically used to compute a posterior probability of

some random variables V given that one knows values for some of the other
variables, the so-called evidence. For instance, in the traffic example, one might
wonder what the posterior probability P (a|b) is that annLate= true given
that there is badWeather. The naive way of computing such probabilities is to
apply the definition of posterior probability and then to apply the methods
illustrated above. There exist, however, more efficient methods to compute
these probabilities, even though Bayesian network inference is, in general, NP-
complete. For a more detailed introduction on Bayesian networks, we refer the
reader to Russell and Norvig [2004].

The most important points to remember are 1) that Bayesian networks en-
code a probability distribution over the interpretations of the variables in the
network, 2) that this encoding is more efficient than explicitly representing the
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joint probability distribution, and 3) that the encoding is based on conditional
independence assumptions. From a logical perspective, the key limitation of
Bayesian networks is that a probability distribution is defined only on propo-
sitional interpretations. Using Bayesian networks, it is impossible to model
relational or logical worlds. This problem is similar to that with traditional
propositional mining and learning systems, and it will be alleviated in Sect.
8.4.1, when introducing Bayesian Logic Programs.

Exercise 8.4. Compute P (t∨ a) for the traffic network. Compute also P (t∨
a|r).

Exercise 8.5. List the conditional independence statements for the traffic
network.

Markov Networks*

Whereas Bayesian networks represent the joint probability distribution and
a set of conditional independency assumptions using directed acyclic graphs,
Markov networks (sometimes also called Markov random fields) employ undi-
rected graphs. As in Bayesian networks, the nodes in the graphs represent the
random variables and the missing edges encode independencies between the
corresponding random variables.

The qualitative component specifies a set of a conditional independence
assumptions. More formally, in Markov networks, the following conditional
independency assumption is made:

Assumption 2 Each node Xi in the graph is conditionally independent of
any subset A of nodes that are not neighbours of Xi given a joint state
of Ne(Xi), that is, P(Xi | A,Ne(Xi)) = P(Xi | Ne(Xi)). The expression
Ne(Xi) refers to the set of all neighbours of Xi.

It is the equivalent of the local Markov assumptions for Bayesian networks.
A further modification w.r.t. Bayesian networks is that Markov networks

associate potential functions to cliques in the graphs. A clique c is a maximal
subgraph that is fully connected, that is, has an edge between any two nodes
in the subgraph. The set of random variables in the clique c will be denoted by
{Xc1, · · · ,Xckc

}. A potential function f(X1, · · · ,Xm) on the random vari-
ables X1, · · · ,Xm is a mapping from the set of states over X1, · · · ,Xm to
the nonnegative real numbers. The key difference between a probability and
a potential function is that potentials need not sum to 1. However, higher
values of potentials still yield more likely states. Like probability densities,
f(X1, · · · ,Xn) denotes the potential, and f(X1 = x1, · · · ,Xn = xn) denotes
its value for a specific state (x1, · · · , xn).

The joint probability distribution P(X1, · · · ,Xn) defined by a Markov
network factorizes as
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P(X1, · · · ,Xn) =
1
Z

∏

c:clique

fc(Xc1, · · · ,Xckc
) (8.20)

where Z is a normalization constant needed to obtain a probability distribu-
tion (summing to 1). It is defined by

Z =
∑

x1,··· ,xn

∏

c:clique

fc(Xc1 = xc1, · · ·,Xckc
= xckc

) (8.21)

Using marginalization and conditioning, one can then compute conditional
probability distributions.

Example 8.6. An example Markov network is shown in Fig. 8.3. Its cliques
are: {trafficJam, rushHour, badWeather}, {trafficJam, annLate}, and {trafficJam,
jeffLate}. So, the joint probability distribution factorizes as

P(B,R, T, J,A) =
1
Z

fT,R,B(T,R,B) fJ,T (J, T ) fA,T (A, T ) (8.22)

It is often convenient to use functionals that are exponentiated weighted sums
of features of the variables, that is, use functions of the form

fc(Xc1, · · · ,Xckc
) = ewiFi(Xc1,··· ,Xckc ) (8.23)

where the Fi denote features of the state of the Xc1, · · · ,Xckc
and the wi

are weights. This results in a so-called log-linear model because taking the
logarithm of Eq. 8.20 then yields a weighted sum of features, which is easier
to handle than a product.

The graphs of Bayesian and Markov nets encode a set of (conditional)
independency assumptions. A natural question that arises in this context is
whether Markov and Bayesian nets can encode the same set of conditional
independency assumptions. The answer to this question is, however, negative.
Indeed, the assumptions encoded by the Bayesian net depicted in Fig. 8.2c,
the converging connection, cannot be encoded using a Markov net.

We now turn our attention to probabilistic representations that define
probability distributions on sequences; they are often used in the natural
language processing community [Manning and Schütze, 1999].

8.2.2 Probabilities on Proofs

In this section, we first introduce probabilistic context-free grammars, and
then study a closely related framework: Markov models.

Probabilistic Context-Free Grammars

Probabilistic grammars, which have been employed successfully in bioinfor-
matics [Durbin et al., 1998] and natural language processing [Manning and
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jeffLate

trafficJam

badWeatherrushHour

annLate

Fig. 8.3. A Markov network

Schütze, 1999], define a probability distribution on proofs. Because there is
a close correspondence between derivations in a (context-free) grammar and
resolution proofs (cf. Sect. 4.6), probabilistic grammars can provide ideas for
probabilistic resolution proofs.

Probabilistic context-free grammars are context-free grammars (cf. Sect.
4.6) where the rules possess a probability label. More formally, whereas the
usual rules in a context-free grammar have the form n → s (where n is a non-
terminal symbol in N and s is a string over N ∪Σ), the rules in a probabilistic
context-free grammars are of the form p : n → s, where p is a probability value.
Furthermore, it is required that

∀n ∈ N :
∑

p:n→si

p = 1 (8.24)

that is, the sum of the probabilities associated with rules for each non-terminal
symbol n must be equal to 1.

Example 8.7. Consider the following probabilistic context-free grammar,
adapted from Allen [1987], where N= {S,NP,VP,N,PP,V,P} and {rice, flies,
like, sand, ...} ⊆ Σ, and where we have omitted many of the terminal symbols
for brevity.
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1.0 : S → NP,VP. 0.01 : N→ rice.
0.2 : NP→ N,N. 0.01 : N→ flies.
0.8 : NP→ N. . . .
0.6 : VP→ V,NP. 0.02 : V→ like.
0.4 : VP→ V,PP. 0.02 : V→ flies.
1.0 : PP→ P,NP. . . .

0.05 : P→ like.
. . .

Observe, for instance, that the sum of the probabilities for the non-terminal
VP = 0.4 + 0.6 = 1.

We can now employ the rules to define the probability of a derivation (or
proof) and the probability of a sentence. The probability P (d) of a derivation
d, in which the rules r1, ..., rn with associated probability labels p1, ..., pn are
used m1, ...,mn times, is

P (d) =
∏

i

pmi
i (8.25)

Example 8.8. Consider the following derivation of the sentence “Rice flies like
sand” with the above-mentioned stochastic grammar. The associated proba-
bilities are listed on the right.

S → NP VP. 1.0
S → N N VP. 0.2
S → Rice N VP. 0.2 × 0.01
S → Rice flies VP. 0.2 × 0.01 × 0.01
S → Rice flies V NP. 0.2 × 0.01 × 0.01 × 0.6
S → Rice flies like NP. 0.2 × 0.01 × 0.01 × 0.6 × 0.02
S → Rice flies like N. 0.2 × 0.01 × 0.01 × 0.6 × 0.02 × 0.8
S → Rice flies like sand. 0.2 × 0.01 × 0.01 × 0.6 × 0.02 × 0.8 × 0.1

Each time a rule is applied in a proof, the probability of the rule is multiplied
with the overall probability. This induces a probability distribution over all
derivations for the same non-terminal symbol.1 The probabilities on deriva-
tions can be aggregated to obtain a probability distribution over all sentences
s ∈ Σ∗ that can be derived from a non-terminal symbol n. More formally,

P (n → s) =
∑

d(n→s)

P (d(n → s)) (8.26)

1 There exist some context-free grammars for which the sum of the probabilities
over all the derivations is not equal to 1; see [Prescher, 2003] for more details and
a way to repair this.
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where d(n → s) denotes a derivation of n → s.
Indeed, consider again the sentence “Rice flies like sand” for which there

are two derivations, one with probability p1 (as illustrated above) and another
one with probability p2. The sum of these probabilities specifies the probability
that a random sentence generated by the non-terminal symbol S is indeed
”Rice flies like sand”. These distributions can be used for a wide variety of
purposes.

For instance, in a natural language processing context, the following prob-
lems are typically addressed (cf. [Manning and Schütze, 1999]):

• Decoding : computing the probability P (s) of a sentence s.
• Most likely parse tree: computing the most likely derivation d(S → s) of a

particular sentence s:

MLD(d) = arg max
d(S→s)

P (d(S → s)) (8.27)

The most likely derivation is useful for disambiguation. For instance, the
sentence “Rice flies like sand” possesses two parse trees. A natural lan-
guage understanding system must choose among these different parse trees,
and the natural choice is the most likely one.

• Sampling: generating a representative sample of sentences at random from
the grammar. Sample sentences can be generated by generating derivations
at random. Sampling a derivation proceeds by probabilistically selecting
at each choice point during the derivation the derivation step according to
the probabilities of the rules in the grammar.

• Learning the structure or the parameters of the probabilistic-context free
grammar, cf. Sect. 8.3.

Exercise 8.9. Formalize the algorithm for sampling derivations from a stochas-
tic context-free grammar and show how it works on an example.

Exercise 8.10. Design an algorithm to find the most likely parse tree of a
sentence. Finding a naive algorithm is not so hard (and the purpose of the
exercise). However, there exists also a polynomial time algorithm based on
dynamic programming; cf. [Manning and Schütze, 1999].

For stochastic context-free grammars there exist efficient (polynomial) al-
gorithms for the key problems (decoding, most likely parse tree, and learning
the parameters); cf. [Manning and Schütze, 1999]. However, their key limi-
tation is their expressive power. On the one hand, they only deal with flat
sequences, that is, sequences of unstructured symbols. On the other hand,
context-free grammars (and therefore stochastic context-free grammars) are
not Turing equivalent, that is, they cannot be used as a programming language
as definite clause logic can, as in Prolog. Therefore, it is useful to upgrade the
underlying grammar representation to that of a (definite) logic program, a
Turing-equivalent language; cf. [Muggleton, 1996].
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Markov Models*

Markov models have numerous applications, most notably in speech recog-
nition [Rabiner, 1989] and bioinformatics [Baldi and Brunak, 1998], where
(hidden) Markov models are used, for instance, to determine how likely it is
that a given protein belongs to some fold [Durbin et al., 1998]. Markov models
can be regarded as a kind of stochastic regular grammar. A stochastic regu-
lar grammar is a special case of a stochastic context-free grammar in which
all rules have exactly one symbol on the right-hand side. A key difference
between Markov models and stochastic regular grammars, however, is that
hidden Markov models define a probability distribution over sentences of the
same length, whereas in stochastic grammars the distribution is over sentences
of variable length. Markov models are also a special type of Bayesian network,
which is convenient for introducing them. In a visible Markov model, there is
a sequence of n variables X0, · · · ,Xn, where the domain of each variable Xi

is the same, that is, the set of values they can take are identical. Furthermore,
it is assumed that

∀i, j � 1 : P(Xi|Xi−1) = P(Xj |Xj−1) (8.28)
∀i, j � 1 : P(Xi|Xi−1,Xi−2, · · · ,X0) = P(Xi|Xi−1). (8.29)

These assumptions imply that one only needs two sets of parameters, one that
models the prior P(X0) and one that models the state-transition probabilities
P(Xi|Xi−1). Because the transition probababilities are the same for all i,
Markov models employ parameter tying (see below). A Markov model thus
corresponds to the type of Bayesian network shown in Fig. 8.4 and the Markov
model factorizes as

P(X0, · · · ,Xn) = P(X0)
∏

i>0

P(Xi|Xi−1)

(8.30)

Xn−1X0 X1 . . . Xn

Fig. 8.4. Visible Markov model structure

In a hidden Markov model, there are additional variables Y0, · · · , Yn that
depend only on the Xi. Furthermore, it is assumed that

∀i, j � 0 : P(Yi|Xi) = P(Yj |Xj) (8.31)

and that the model has the structure indicated in Fig. 8.5. Thus the hidden
Markov model factorizes as
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P(Y0, · · · , Yn,X0, · · · ,Xn) = P(X0)P(Y0|X0)
n∏

i>0

P(Yi|Xi)P(Xi|Xi−1)

(8.32)

In hidden Markov models, the Xi denote the hidden states and are typically
not observed, the Yi correspond to the observations.

Yn

X0 X1 . . . Xn−1 Xn

Y0 Y1 Yn−1

Fig. 8.5. Hidden Markov model structure

Hidden Markov models are extremely popular in many application do-
mains such as bioinformatics and natural language processing. One of the
reasons is that efficient inference procedures (based on dynamic programming)
exist for the following central tasks:

• Decoding: computing the probability P(Y0 = y0, · · · , Yn = yn) of a partic-
ular observation sequence.

• Most likely state sequence: computing the most likely hidden state se-
quence corresponding to a particular observation sequence, that is,

arg max
x0,··· ,xn

P (X0 = x0, · · · ,Xn = xn|Y0 = yo, · · · , Yn = yn) (8.33)

This is realized using the well-known Viterbi algorithm; cf. Rabiner [1989].
• State prediction: computing the most likely state based on a particular

observation sequence, that is,

arg max
xt

P (Xt = xt, · · · ,Xn = xn|Y0 = yo, · · · , Yn = yn) (8.34)

If t < n, this is called smoothing ; if t = n, it is called filtering, and if t > n,
it is called prediction (of the future states based on the past).

• Parameter estimation, a form of learning which will be dealt with in Sect.
8.3.1.

There also exist many variants of hidden Markov models, such as input-
output HMMs [Bengio and Frasconi, 1994] and conditional random fields
[Lafferty et al., 2001].
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8.3 Probabilistic Learning

In this section, we briefly review some important probabilistic learning prin-
ciples. While doing so, we concentrate on the representation of Bayesian net-
works. Nevertheless, these principles and techniques also apply to the other
representations introduced in the previous section. Such adaptations will be
discussed extensively when dealing with probabilistic logic learning techniques
in Sect. 8.5.

One typically distinguishes two problems within the statistical learning
community. First, there is the problem of parameter estimation, where the
goal is to estimate appropriate values for the parameters of a model, whose
structure is fixed, and second, there is the problem of structure learning, where
the learner must infer both the structure and the parameters of the model from
data.

8.3.1 Parameter Estimation

The problem of parameter estimation can be formalized as follows:

Given

• a set of examples E,
• a probabilistic model M = (S, λ) with structure S and parameters λ,
• a probabilistic coverage relation P (e|M) that computes the probabilty of

observing the example e given the model M ,
• a scoring function score(E,M) that employs the probabilistic coverage

relation P (e|M)

Find the parameters λ∗ that maximize score(E,M), that is,

λ∗ = arg max
λ

score(E, (S, λ)) (8.35)

This problem specification abstract the specific class of models considered,
and actually can be instantiated w.r.t. the different representations introduced
above. However, rather than going into the details of specific representations
(and corresponding algorithmic optimizations), we will focus on the underly-
ing principles of parameter estimation. The problem specification shows that
parameter estimation is essentially an optimization problem that depends on
the scoring function and type of model employed.

The standard scoring function is the probability of the model or hypothesis
given the data. This yields the maximum a posteriori hypothesis HMAP

HMAP = arg max
H

P (H|E) = arg max
H

P (E|H) × P (H)
P (E)

(8.36)

It can be simplified into the maximum likelihood hypothesis HML by applying
Bayes’ law and assuming that all hypotheses H are, a priori, equally likely,
yielding:
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HML = arg max
H

P (E|H) (8.37)

The likelihood function shown in Eq. 8.37 will be employed throughout the rest
of the chapter. The reason is that the maximum aposteriori approach is more
complicated as a prior on the hypotheses must be specified and be taken into
account during the learning. This corresponds to the bayesian approach where
the prior is viewed as a kind of background knowledge. For an introduction
to this type of approach, the reader may want to consult [Russell and Norvig,
2004, Bishop, 2006].

It is typically assumed that the examples are independently and identically
distributed (i.i.d.), which allows one to rewrite the expression in the following
form (where the ei correspond to the different examples):

HML = arg max
H

∏

ei∈E

P (ei|H) (8.38)

Notice that at this point, the probabilistic coverage relation P (e|H) is em-
ployed. It indicates the likelihood of observing e given the hypothesis H.

Typically, the goal is to learn a generative model, that is, a model that
could have generated the data. As an example of such a model, consider a
stochastic context-free grammar. To learn such a grammar, one employs pos-
sible examples e, for which P (e|H) > 0, that is, sentences with non-zero
probability. Examples that are impossible, that is, for which P (e|H) = 0, are
typically not used. This contrasts with the traditional inductive logic program-
ming setting, which is discriminative. The positive examples in the traditional
inductive logic programming setting have a strictly positive probabilistic cov-
erage, the negative ones have a 0 probabilistic coverage. This observation
implies that

P (e|H) > 0 if and only if c(e,H) = 1 (8.39)

showing that logical coverage can be a prerequisite for probabilistic coverage.
For instance, in a stochastic context-free grammar, the sentences must be
logically covered by (or provable from) the context-free grammar in order to
have a non-zero probability. On the other hand, in Bayesian networks, this is
not the case.

Nevertheless, within probabilistic learning, discriminative learning has
been studied and a wide variety of techniques is available. Within the above
problem specification discriminative learning can be modeled by choosing an
alternative scoring function. One popular scoring function for discriminative
learning maximizes the conditional likelihood function

HCL = arg max
H

∏

ei∈E

P (class(ei)|des(ei),H) (8.40)

where the examples ei are split up into the class of interest class(ei) and the
description of the example des(ei). Throughout the rest of this chapter, we
will concentrate on the generative case.
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In the remainder of the section, we study how to address the parameter
estimation problem under different assumptions, depending on the type of
data and model under consideration. The exposition in the next subsection
closely corresponds to that of Russell and Norvig [2004].

Learning from Fully Observable Data

The first case to consider is that where the data are fully observable, that
is, where the value of all random variables in the example are completely
known. This case is also the easiest one, because, under common assumptions,
parameter estimation is reduced to frequency counting. Let us illustrate this
on the simple Bayesian network that consists of only the nodes trafficJam and
annLate, shown in Fig. 8.6 and Table 8.2. Fully observable for this example
means that the example takes the form of a table in attribute-value format as
indicated in Table 8.3.

trafficJam

annLate

Fig. 8.6. A simple Bayesian network. P (t) = λ0; P (a|t) = λ1; P (a|¬t) = λ2

P(trafficJam)

(λ0, 1 − λ0)
trafficJam P(annLate)

true (λ1, 1 − λ1)
false (λ2, 1 − λ2)

Table 8.2. The conditional probability distributions associated with the nodes
in the simple traffic network; cf. Figure 8.6. The distributions are specified over
{true, false}

Notice that the likelihood for one example satisfying trafficJam = true and
annLate = false is

P (t,¬a) = λ0(1 − λ1)
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trafficJam annLate

e1 true true
e2 true true
e3 false false
e4 false true
. . .

Table 8.3. A completely observed data set

Therefore, under the i.i.d. assumption, for n examples, the likelihood of the
data can be written as (where we use |x| to denote the number of examples
satisfying the logical condition x)

P (E|M) =
n∏

i

P (ei|M)

= λ
|t|
0 (1 − λ0)|¬t| λ

|t∧a|
1 (1 − λ1)|t∧¬a| λ

|¬t∧a|
2 (1 − λ2)|¬t∧¬a|

This function can be maximized by maximizing the logarithm of the function
instead, which is easier as well as justified because the logarithm is a mono-
tonic function. The log likelihood can then be maximized by computing the
derivatives, setting them to 0, and solving for the λi, yielding the following
steps:

L = log P (E|M) = |t| log λ0 + |¬t| log(1 − λ0) +
|t ∧ a| log λ1 + |t ∧ ¬a| log(1 − λ1) +
|¬t ∧ a| log λ2 + |¬t ∧ ¬a| log(1 − λ2) (8.41)

The derivatives are:

∂L

∂λ0
=

|t|
λ0

− |¬t|
1 − λ0

(8.42)

∂L

∂λ1
=

|t ∧ a|
λ1

− |t ∧ ¬a|
1 − λ1

(8.43)

∂L

∂λ2
=

|¬t ∧ a|
λ2

− |¬t ∧ ¬a|
1 − λ2

(8.44)

Setting these equal to 0 and solving for the λi yields

λ0 =
|t|

|t| + |¬t| (8.45)

λ1 =
|t ∧ a|

|t ∧ a| + |t ∧ ¬a| (8.46)

λ2 =
|¬t ∧ a|

|¬t ∧ a| + |¬t ∧ ¬a| (8.47)
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which shows that maximum likelihood estimation corresponds to counting,
that is, to computing the relative frequencies in the data set.

Although the example has been given in the context of a (simple) Bayesian
network, the results are similar for other representational frameworks such as
Markov models and probabilistic context-free grammars.

trafficJam annLate

e1 true true
e2 true ?
e3 false false
e4 ? true

Table 8.4. A data set with missing values

Expectation Maximization

The Expectation Maximisation (EM) algorithm deals with the case where the
data are not fully observable, but only partially observable. To continue our
illustration, this corresponds to the type of example illustrated in Table 8.4. If
values for some variables are occasionally unobserved, there is missing data.
If values for some variables are always unobserved, the variables are called
latent.

We would like to maximize the (log-)likelihood of the data. The log-
likelihood is, as before, a function of the parameters λ of the model. Let
us call this function Q(λ). The difficulty now is that the function Q(λ) de-
pends on the unobserved values. A natural way of dealing with these values
is to compute the expected likelihood function Q(λ), where the expectation is
taken over the missing values of the examples. Let the examples ei = xi ∪ yi

be composed of an observed part xi and an unobserved part yi. In the ex-
pectation step, the expected values of the yi will be computed. To do this,
we need a model. Therefore, the expectation maximization algorithm assumes
that there is a current model M(λj) and uses it to compute the expected val-
ues of the yi, which are then used to compute Q(λ). More formally, this yields
(where E stands for the expectation taken with regard to the current model
M(λj) and the missing data yi, and L(λ) for the likelihood as a function of
the parameters λ as indicated in Eq. 8.41):
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Q(λ) = E[L(λ)]
= E[log P (E|M(λ)]

= E
( ∑

ei∈E

log P (ei|M(λ))
)

= E
( ∑

ei∈E

log P (xi, yi|M(λ))]
)

=
∑

ei∈E

P (yi|xi,M(λj)) log P (xi, yi|M(λ)) (8.48)

To compute the expected likelihood Q(λ), one first needs to compute the
P (yi|xi,M(λj)). These values are typically computed using the normal infer-
ence procedures of the underlying probabilistic model. Doing so corresponds
to estimating the likelihood that the examples xi are completed with the yi

given the current model M(λj) – the estimation step. Once these estimates
are known, the expected likelihood of the data, Q(λ) can be computed. Q(λ)
is then used, in the maximization step, to determine the maximum likelihood
estimators. This step is analogous to that for fully observable data discussed
earlier. Thus, the general expectation maximization (EM) algorithm can be
summarized as follows:

E-Step: On the basis of the observed data and the present parameters of
the model, compute a distribution over all possible completions of each
partially observed data case.

M-Step: Using each completion as a fully observed data case weighted by
its probability, compute the updated parameter values using (weighted)
frequency counting.

The frequencies over the completions are called the expected counts. The al-
gorithm is sketched more formally in Algo. 8.1.

Algorithm 8.1 The EM algorithm
j := 0
initialize λj

repeat
Compute the P (yi|xi, M(λj)) for all i
λj+1 := arg maxλ Q(λ) = arg maxλ

∑
i P (yi|xi, M(λj)).log P (xi|M(λ))

j := j + 1
until convergence

It can be shown that an EM re-estimation step never decreases the likeli-
hood function, and hence that the EM algorithm must converge to a stationary
point of the likelihood function. If this function has a single maximum, the
EM algorithm will converge to a global maximum; otherwise it will converge
to a local maximum or a saddle point.
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Example 8.11. On the example data set shown in Table 8.2, the EM algorithm
first completes the data set. The result is that the example e2 (or e4) is split
into two fractional examples e2,1 and e2,2. The first has the value true for
a and receives a probability (weight) of P (a|t) and the second has the value
false and probability P (¬a|t). These fractional examples can then be used to
compute the expected counts and perform the maximization step. For instance,
the parameter λ0 can be re-estimated as

λ0 =
ec(t)

ec(t) + ec(¬t)
(8.49)

where ecλ(t), the expected count of the number of occurrences of t given the
current set of parameters λ = (λ0, λ1, λ2), now replaces |t| in Eq. 8.45; that is

ecλ(t) =
∑

i∈{1,...,4}
P (t|ei) = 2 + P (t|e4) (8.50)

where P (t|e4) has to be estimated using λ; that is,

P (t|e4) = P (t|a)

=
P (t ∧ a)

P (a)

=
λ0λ1

λ0λ1 + (1 − λ0)λ2
(8.51)

It must be mentioned that there also exist alternative techniques to cope
with missing data. Most notably, there are gradient-based methods that can
also be used to optimize the likelihood in the presence of missing values; see
[Mitchell, 1997, Russell and Norvig, 2004].

Parameter Tying

One technique that is often applied in probabilistic models is parameter tying.
The idea is that various parameters of a probabilistic model are tied together,
that is, are made identical. We already saw one example of parameter tying.
Indeed, when introducing the Markov models, we assumed that the state
transition probability distribution was shared amongst all different states over
time.

Example 8.12. As an illustration, consider a variant of the traffic network,
shown in Fig. 8.7, where we now assume that both Jeff and Ann can be late.
Assume also that for this Bayesian network there are additional parameters
λ3 and λ4 to model P(jeffLate|trafficJam), which implies that the likelihood
of the examples is

P (E|M) = λ
|t|
0 (1 − λ0)|¬t|λ

|t∧a|
1 (1 − λ1)|t∧¬a|λ

|¬t∧a|
2 (1 − λ2)|¬t∧¬a|

λ
|t∧j|
3 (1 − λ3)|t∧¬j|λ

|¬t∧j|
4 (1 − λ4)|¬t∧¬j|
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Parameter tying can be applied to this network, for instance, by setting
λ1 = λ3 and λ2 = λ4. This corresponds to the assumption that the be-
havior of Ann and Jeff, and hence the underlying probability distributions
P(J |T ) = P(A|T ), are the same. Under this assumption the likelihood of the
data simplifies to

P (E|M) = λ
|t|
0 (1 − λ0)|¬t|λ

|t∧a|+|t∧j|
1 (1 − λ1)|t∧¬a|+|t∧¬j|

λ
|¬t∧a|+|¬t∧j|
2 (1 − λ2)|¬t∧¬a|+|¬t∧¬j|

The advantage of parameter tying is that the number of parameters is
reduced and the probability distribution is simplified, which in turn makes
inference and learning more efficient. Parameter tying is a central concept
within statistical relational learning, where one typically has templates (in the
form of rules or clauses) that are instantiated in different ways. The idea is
then to tie all parameters of all instantiations (of one rule) together. Parameter
tying is also a key concept in the procedural probabilistic language Plates

[Buntine, 1994], in which its possible to specify a template (such as person
coming late) as well as the number of times it occurs. In this way, Plates

can model any number of persons.

trafficJam

annLate jeffLate

Fig. 8.7. A Bayesian network. P (t) = λ0; P (a|t) = λ1; P (a|¬t) = λ2

Exercise 8.13. Show that computing the maximum likelihood estimators for
the Bayesian network involving Jeff and Ann essentially corresponds to fre-
quency counting.

Other methods to reduce the number of parameters of a probabilistic
model exist as well. One of them involves representing large conditional prob-
ability tables in a more compact manner. This can, for instance, be realized
by employing a decision tree to encode conditional probability distributions.
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8.3.2 Structure Learning

So far, we have addressed only the parameter estimation problem, and have
assumed that the structure of the probabilistic model is given and fixed. This
assumption is not always satisfied, and indeed in various applications it is often
hard to come up with a reasonable structure for the model. Therefore, various
techniques have been developed to also learn the structure of the model from
data. The structure learning problem can be defined as follows:

Given

• a set of examples E
• a language LM of possible models of the form M = (S, λ) with structure

S and parameters λ
• a probabilistic coverage relation P (e|M) that computes the probability of

observering the example e given the model M ,
• a scoring function score(E,M) that employs the probabilistic coverage

relation P (e|M)

Find the model M∗ = (S, λ) that maximizes score(E,M), that is,

M∗ = arg max
M

score(E,M) (8.52)

This problem is – like most other problems in artificial intelligence and
machine learning – essentially a search problem. There is a space of possible
models to be considered, defined by LM , and the goal is to find the best one
according to the scoring function. So solution techniques traverse the space
of possible models in LM . By analogy with the learning techniques seen in
Chapter 3, one can now devise operators for traversing the space, and also
determine extreme points in the search space. For instance, in the case of
Bayesian networks, the extreme points could be fully connected Bayesian net-
works (where there is an edge between any pair of random variables) and one
that contains no links at all. At the same time, possible operators include the
addition (or deletion) of an edge as well as the reversal thereof. So, the gener-
ation and search process closely corresponds to those employed in tradtional
relational and logical learning, especially to those in a theory revision setting.

To evaluate a candidate structure S, the parameters λ are first estimated
(using the methods developed earlier), and then the scoring function is used to
determine the overall score of the resulting model. The problem with the scor-
ing function employed so far, the maximum likelihood, is that it always prefers
a fully connected network. Indeed, it can be shown that adding a dependency
to a network can never decrease the likelihood. Therefore, the scoring function
is typically corrected to penalize for complexity of the network. This can also
be justified in Bayesian terms. Indeed, recall from Eq. 8.36 that the goal is to
find the model or hypothesis HMAP with the maximum posterior probability:
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HMAP = arg max
H

P (H|E)

= arg max
H

P (E|H)P (H)
P (E)

= arg max
H

P (E|H)P (H)

= arg max
H

log P (E|H) + log P (H) (8.53)

If the prior probability is higher for simpler models, then the term log P (H)
actually penalizes more complex models.

The state-of-the-art structure learning algorithm is the structural EM
(SEM) algorithm [Friedman, 1998]. It adapts the standard EM algorithm for
structure learning. The key idea is that the expected counts are not computed
anew for every structure that is proposed, but only after several iterations,
which yields only an approximation but improves the efficiency.

For completeness, let us mention that there are also other structure learn-
ing techniques for graphical models; they often rely on conditional indepen-
dency tests between the random variables. These tests are then used to con-
strain the structure of the model.

8.4 First-Order Probabilistic Logics

In this section, we upgrade the earlier propositional probabilistic logics for
the use of relational and first-order logics. While doing so, we concentrate on
those frameworks that are grounded in (computational) logic and that build
upon the frameworks introduced earlier. In order to upgrade logic programs
to a probabilistic logic, two changes are necessary:

1. clauses are annotated with probability values, and
2. the covers relation becomes a probabilistic one.

Various choices can be made for realizing this; they have resulted in the wide
variety of probabilistic logics that are available today and that are described
in two recent textbooks [Getoor and Taskar, 2007, De Raedt et al., 2008].
We will introduce Bayesian logic programs [Kersting and De Raedt, 2007],
Markov logic networks [Richardson and Domingos, 2006], stochastic logic pro-
grams [Eisele, 1994, Muggleton, 1996, Cussens, 2000], Prism [Sato, 1995] and
ICL [Poole, 1993b]. Bayesian logic programs and Markov logic networks de-
fine probability distributions over possible worlds or interpretations, whereas
stochastic logic programs, Prism and ICL define them over derivations or
proofs. The former are introduced in Sect. 8.4.1, the latter in Sect. 8.4.2.
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8.4.1 Probabilistic Interpretations

Bayesian Logic Programs

In order to integrate probabilities into the learning from interpretation set-
ting, we need to find a way to assign probabilities to interpretations covered
by an annotated logic program. In the past few years, this question has re-
ceived a lot of attention, and various approaches, such as [Pfeffer, 2000], have
been developed . In this book, we choose Bayesian logic programs [Kersting
and De Raedt, 2001] as the probabilistic logic programming system because
Bayesian logic programs combine Bayesian networks [Pearl, 1988], which rep-
resent probability distributions over propositional interpretations, with def-
inite clause logic. Furthermore, Bayesian logic programs have already been
employed for learning.

The idea underlying Bayesian logic programs is to view ground atoms
as random variables that are defined by the underlying definite clause pro-
grams. Furthermore, two types of predicates are distinguished: determin-
istic and probabilistic. The former are called logical, the latter Bayesian.
Likewise, we will also speak of Bayesian and logical atoms. A Bayesian
logic program now consists of a set of of Bayesian (definite) clauses, which
are expressions of the form A | A1, . . . , An where A is a Bayesian atom,
A1, . . . , An, n � 0, are Bayesian and logical atoms and all variables are (im-
plicitly) universally quantified. To quantify probabilistic dependencies, each
Bayesian clause c is annotated with its conditional probability distribution
cpd(c) = P(A | A1, . . . , An), which quantifies as a macro the probabilistic
dependency among ground instances of the clause.

Let us illustrate Bayesian logic programs using the stud farm example
of Jensen [2001], which describes the processes underlying a life-threatening
hereditary disease.

Example 8.14. (from [De Raedt and Kersting, 2004]) Consider the following
Bayesian clauses:

carrier(X) | founder(X).
carrier(X) | mother(M,X), carrier(M), father(F,X), carrier(F).
suffers(X) | carrier(X).

They specify the probabilistic dependencies governing the inheritance process.
For instance, the second clause states that the probability of a horse being a
carrier of the disease depends on whether or not its parents are carriers.

In this example, mother, father, and founder are logical predicates, whereas
the other predicates, such as carrier and suffers, are Bayesian. The logical predi-
cates are then defined using a classical definite clause program that constitutes
the background theory for this example. It is listed in Ex. 8.15.

Example 8.15. The background theory B is:
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father(henry, bill) ← father(alan, betsy) ←
father(alan, benny) ← father(brian, bonnie) ←
father(bill, carl) ← father(benny, cecily) ←
father(carl, dennis) ← mother(ann, bill) ←
mother(ann, betsy) ← mother(ann, bonnie) ←
mother(alice, benny) ← mother(betsy, carl) ←
mother(bonnie, cecily) ← mother(cecily, dennis) ←
founder(henry) ← founder(alan) ←
founder(an) ← founder(brian) ←
founder(alice). ←

The conditional probability distributions for the Bayesian clause are

P (carrier(X) = true)

0.6

carrier(X) P (suffers(X) = true)

true 0.7
false 0.01

carrier(M) carrier(F) P (carrier(X) = true)

true true 0.6
true false 0.5
false true 0.5
false false 0.0

Observe that logical atoms, such as mother(M,X), do not affect the distri-
bution of Bayesian atoms, such as carrier(X), and are therefore not considered
in the conditional probability distribution. They only provide variable bind-
ings, for instance, between carrier(X) and carrier(M).

The semantics (and hence, the covers relations) of Bayesian logic programs
are defined through a process called knowledge-based model construction. In
this process, a propositional Bayesian net is constructed by grounding the
Bayesian clauses. The resulting net then defines the probability distribution.
Often, the knowledge-based model construction process takes into account a
particular query to the network, and generates only that grounded part that
is needed to answer the query, though we shall ignore such optimizations in
the exposition below. For Bayesian logic programs, the random variables A
of the constructed Bayesian network are Bayesian ground atoms in the least
Herbrand model I of the annotated logic program. A Bayesian ground atom
b, say carrier(alan), directly influences another Bayesian ground atom h, say
carrier(betsy), if and only if there exists a Bayesian clause c such that

b ∈ body(c)θ ⊆ I and h = head(c)θ ∈ I (8.54)

The Bayesian network constructed from the Baysian logic program for the
stud farm problem is depicted in Fig. 8.8. The nodes are the ground Bayesian
atoms in the least Herbrand model of the program, and the direct influence is
derived using Eq. 8.54. For instance, in the example, carrier(alan) is a parent
node of carrier(betsy) in the constructed model, as it is an instance of the
second clause in Ex. 8.14.
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Example 8.16. As another example to illustrate Eq. 8.54, consider the carrier
Bayesian logic program from Ex. 8.14 together with background theory
founder(adam) ← . According to the Eq. 8.54, the least Herbrand model is

{founder(adam), carrier(adam), suffers(adam)}

and hence founder(adam) is the only parent of carrier(adam), which in turn
the only parent of suffers(adam).

Note that in Bayesian logic programs it is required that the induced network
be acyclic and have a finite branching factor. The reason is that Bayesian
networks must be directed acyclic graphs.

c(henry)

s(henry) c(bill)

c(alan)

s(alan)c(betsy) c(benny)

s(betsy)c(carl) s(benny)c(cecily)

c(brian)

s(brian)c(bonnie)

s(bonnie)s(bill)

s(carl) c(dennis) s(cecily)

s(dennis)

c(ann)

s(ann)

c(alice)

s(alice)

Fig. 8.8. The Bayesian network induced by the stud farm. Reprinted with permis-
sion from [De Raedt and Kersting, 2004]

To complete the network, we still need to associate conditional probabil-
ity distributions with the nodes of the network. Nodes head(c)θ constructed
using Eq. 8.54 are assigned cpd(cθ) as their associated conditional probability
distribution. However, when there exist multiple ground instances in I with
the same head, a complication arises with these assignments.

Example 8.17. Consider the Bayesian logic program (adapted from [De Raedt
and Kersting, 2003]), defining fever:

fever | cold cold.
fever | flu flu.
fever | malaria malaria.

All three clauses apply, and hence we obtain three conditional probability dis-
tributions: P(fever|cold), P(fever|flu) and P(fever|malaria). However, as cold,
flu and malaria are parents of fever we need to have a conditional proba-
bility distribution defining P(fever|cold, flu,malaria). Notice that the problem
also occurs when there is only one Bayesian clause (with multiple ground
instances in I satisfying the conditions of Eq. 8.54 for a particular ground
Bayesian atom).
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There are two approaches to dealing with this problem. The first solution is
adopted in Bayesian logic programs and employs combining rules. The second
one, aggregation, is used in Probablistic Relational Models [Getoor et al.,
2001a], which we briefly discuss below.

A combining rule is a function that maps finite sets of conditional proba-
bility distributions onto one (combined) conditional probability distribution.
Examples of combining rules are noisy-or and noisy-and; cf. [Jensen, 2001].

Noisy-or is used in graphical models to reduce the number of parameters.
To introduce noisy-or, let us assume that there is a node X in a Bayesian
network with a large number (say k) of parents Yi. As the node has many
parents, the CPD associated with the node X becomes very large, and hence
hard to specify or learn. If the parents are independent causes for the vari-
able X, the noisy-or rule applies. The noisy-or rule defines the conditional
probability distribution as

P (X = true|Y1, ..., Yk) = 1 −
∏

Yi=true

(1 − P (X = true|Yi = true)) (8.55)

The advantage is that one only needs to specify the probability values
P (X = true|Yi = true). This is linear in k instead of exponential. The noisy-or
combining rule can also be understood as a more complex network, involving
a logical or.

Example 8.18. The fever example can be rewritten as a Bayesian network in-
volving a logical or :

fever ← cold′ cold′|cold
fever ← flu′ flu′|flu
fever ← malaria′ malaria′|malaria
cold. flu.
malaria

So, fever is defined in a logical manner, and the intermediate Bayesian predi-
cates cold′, flu′, and malaria′ are introduced.

Exercise 8.19. Verify that Ex. 8.18 correctly represents the noisy-or combin-
ing rule as applied to the earlier fever network.

The noisy-or rule can directly be applied to solve the problem with
Bayesian logic programs sketched in Ex. 8.17. That network consists of
Bayesian clauses of the form X|Yi. There are then k clauses with body literals
Yi that influence X. Using noisy-or, the conditional probability distribution
of X can be defined.

An alternative to combining rules is to employ aggregate functions as in
probabilistic relational models [Koller, 1999, Pfeffer, 2000]. Aggregate func-
tions are well-known from the database literature, and were already discussed
in Sect. 4.13. Example aggregate functions include MIN, MAX, SUM, AVG, etc.
To illustrate their use in the present context, consider the Bayesian clause
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influential(Paper) | iscitedby(Paper,Author)

and assume that paper jmlr55 is cited by mary and john. Then there are mul-
tiple ground rules satisfying Eq. 8.54 for the Bayesian atom influential(jmlr5r).
For this type of rule, the particular Author citing the paper is less impor-
tant than the number of authors citing it. Therefore, the aggregate function
COUNT could be applied to obtain the number of authors citing a partic-
ular paper. The conditional probability distribution of the Bayesian clause
defining influential could then be defined in terms of the aggregate value, for
instance, if the count is larger than 100, the probability could be 0.80, and
otherwise 0.15. As this examples illustrates, aggregation reduces information
in a natural way. This is often advantageous but it may also result in a loss
of information; cf. [Jensen and Neville, 2002] and Sect. 4.13.

The influential paper example also points to what is still largely an open
research question: lifted probabilistic inference [Poole, 2003, de Salvo Braz
et al., 2007]. The problem with the knowledge-based model construction ap-
proach is that it requires us to generate all instances of the influential clause
in order to determine the probability of influential(jmlr55). That corresponds
to grounding almost a complete program. It sharply contrasts with inference
procedures for clausal logic, such as those based on resolution, which avoids
grounding whenever possible. Approaches to realizing this type of inference
are discussed by Poole [2003] and de Salvo Braz et al. [2007]. The idea is that
groundings are avoided where possible. This is, however, much more com-
plex than resolution. One reason is that the probabilities often depend on the
number of possible instances.

Example 8.20. Assuming that there are n authors for which iscitedby(jmlr55,X)
is true, that these atoms are marginally independent of one another, and true
with probability p, and that a paper is influential (with probability 1) if it is
cited once; then

P (influential(jmlr55)) = 1 − (1 − p)n (8.56)

To compute this probability in this example, the complete model need not
be constructed, as long as one knows the number of possible authors and the
independency assumptions hold.

The probability distribution induced by the Bayesian logic program on the
possible world is:

P(I|H) =
∏

Bayesian atom A∈I

P(A|Pa(A)) (8.57)

where the Pa(A) are constructed using Eq. 8.54 and, where necessary, the
P(A|Pa(A)) are constructed using combining rules or aggregation functions.

Example 8.21. For instance, in the stud farm, using the above definition, the
probability of the interpretation
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{carrier(henry) = false, suffers(henry) = false, carrier(ann) = true,
suffers(ann) = false, carrier(brian) = false, suffers(brian) = false,
carrier(alan) = false, suffers(alan) = false, carrier(alice) = false,
suffers(alice) = false, . . .}

can be computed using a standard Bayesian network inference engine on the
constructed model. Thus, Eq. 8.57 defines a probabilistic coverage relation. In
addition, various types of inference would be possible. One might, for instance,
ask for the probability P (suffers(henry)|carrier(henry) = true), which can be
computed using a standard Bayesian network inference engine.

Probabilistic Relational Models*

Probabilistic relational models [Getoor et al., 2001a] are a relational exten-
sion of Bayesian networks. Because they are quite popular, we briefly describe
their relationship to Bayesian logic programs. Probabilistic relational models
do not use definite clause logic as the underlying representational framework,
but rather the entity-relationship model presented in Sect. 4.4. In Probabilis-
tic relational models, the information about one entity type is stored in one
relation. For instance, in the carrier illustration, persons can be represented
using the relation person(Person,Carrier,Suffers), where Person is the key of the
relation and Carrier and Suffers the attributes. So, each ground atom or tuple
stores information about multiple attributes and the dependencies are defined
at the level of these attributes. Two types of dependencies are allowed: direct
dependencies from other attributes or dependencies via so-called slot chains.
As an example of a direct dependency, the attribute Suffers may depend on
the attribute Carrier). This can be written as

person(Person).Suffers | person(Person).Carrier

Slot chains are binary relations (or binary projections of other relations) that
relate the attributes of one entity to those of others. For instance, in the
carrier illustration, the Carrier attribute of a Person depends on the Carrier
attribute of its mother and father through the relations (that is, slot chains
in probabilistic relational models) mother and father. This can be represented
using the notation

person(Person).Carrier | mother(Person,Mother), person(Mother).Carrier,
father(Person,Father), person(Father).Carrier

In the basic probabilistic relational model setting such slot-chains are as-
sumed to be deterministic and given (cf. [Getoor et al., 2001a]), which implies
that it is impossible to specify that the probability is 0.70 that Jef is the
father of Mary, though some partial solutions for dealing with probabilistic
relations have been developed; cf. [Getoor et al., 2001b, Getoor, 2001]. The
carrier example shows that, at the logical level, probabilistic relational models
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essentially define via single clauses probabilistic dependencies between the at-
tributes of various entities. There exists also an appealing graphical notation
for probabilistic relational models.

Probabilistic relational models are closely related to the Clp(bn) formal-
ism of Costa et al. [2003a], which employs the same ideas in the context of a
(constraint) logic programming language.

Markov Logic*

Markov logic combines first-order logic with Markov networks. The idea is to
view logical formulae as soft constraints on the set of possible worlds, that
is, on the interpretations. If an interpretation does not satisfy a logical for-
mula, it becomes less probable, but not necessarily impossible as in traditional
logic. Hence, the more formulae an interpretation satisfies, the more likely it
becomes. In a Markov logic network, this is realized by associating a weight
with each formula that reflects how strong the constraint is. More precisely, a
Markov logic network consists of a set of weighted clauses H = {c1, · · · , cn}.2
The weights wi of the clauses then specify the strength of the clausal con-
straint.

Example 8.22. Consider the following example (adopted from [Richardson and
Domingos, 2006]). Friends & Smokers is a small Markov logic network that
computes the probability of a person having lung cancer on the basis of her
friends smoking. This can be encoded using the following weighted clauses:

1.5 : cancer(P) ← smoking(P)
1.1 : smoking(X) ← friends(X,Y), smoking(Y)
1.1 : smoking(Y) ← friends(X,Y), smoking(X)

The first clause states the soft constraint that smoking causes cancer. So,
interpretations in which persons that smoke have cancer are more likely than
those where they do not (under the assumptions that other properties remain
constant). The second and third clauses state that the friends of smokers are
also smokers.

A Markov logic network together with a Herbrand domain (in the form of a set
of constants {d1, · · · , dk}) then induces a grounded Markov network, which
defines a probability distribution over the possible Herbrand interpretations.

The nodes, that is, the random variables in the grounded network, are
the atoms in the Herbrand base. Furthermore, for every substitution θ that
grounds a clause ci in H, there will be an edge between any pair of atoms
aθ, bθ that occurs in ciθ. The Markov network obtained for the constants
anna and bob is shown in Fig. 8.9. To obtain a probability distribution over the
Herbrand intepretations, we still need to define the potentials. The probability
distribution over intepretations I is
2 Markov logic networks, in principle, also allow one to use arbitrary logical for-

mulae, not just clauses. However, for reasons of simplicity, we will only employ
clauses throughout this section, and make some further simplifications.
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can(a)

smok(a)fr(a, a) smok(b) fr(b, b)

fr(a, b)

fr(b, a)
can(b)

Fig. 8.9. The Markov network for the constants ann and bob. Adapted from
[Richardson and Domingos, 2006]

P(I) =
1
Z

∏

c:clause

fc(I) (8.58)

where the fc are defined as

fc(I) = enc(I)wc (8.59)

and nc(I) denotes the number of substitutions θ for which cθ is satisfied by
I, and Z is a normalization constant. The definition of a potential as an
exponential function of a weighted feature of a clique is common in Markov
networks. The reason is that the resulting probability distribution is easier to
manipulate.

Note that for different (Herbrand) domains, different Markov networks
will be produced. Therefore, one can view Markov logic networks as a kind
of template for generating Markov networks, and hence Markov logic is based
on knowledge-based model construction. Notice also that like Bayesian logic
programs, Markov logic networks define a probability distribution over inter-
pretations, and nicely separate the qualitative from the quantitive component.

Exercise 8.23. Specify the probability of the Herbrand interpretation

{smokes(ann), smokes(bob), friends(ann, bob), cancer(ann)}
according to the Markov logic network.

8.4.2 Probabilistic Proofs

Many probabilistic logic programming formalisms do not explicitly encode a
set of conditional independency assumptions, as in Bayesian or Markov net-
works, but rather extend proof procedures with probabilistic choices. Stochas-
tic logic programs [Muggleton, 1996, Cussens, 2001] directly upgrade stochas-
tic context-free grammars towards definite clause logic, whereas Prism [Sato,
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1995], Probabilistic Horn Abduction [Poole, 1993b] and the more recent Inde-
pendent Choice Logic (ICL) [Poole, 1997] specify probabilities on facts from
which further knowledge can be deduced. We discuss these two types of frame-
work in turn.

Stochastic Logic Programs

Stochastic logic programs combine principles from computational logic with
those of stochastic or probabilistic context-free grammars. A stochastic logic
program is a definite clause program, where each of the clauses is labeled with
a probability value. Furthermore, as in context-free grammars, it is required
that the sum of the probability values for all clauses defining a particular
predicate be equal to 1 (though less restricted versions have been considered
as well).

Example 8.24. The stochastic logic program below defines a probability dis-
tribution on a card deck with 32 cards. The suits are d(iamonds), h(earts),
s(pades), and c(lubs). The ranks are a(ce), 7, 8, 9, 10, and f(armer), q(ueen),
and k(ing).

1 : card(X,Y) ← rank(X), suit(Y)
0.25 : suit(d) ← 0.25 : suit(c) ←
0.25 : suit(h) ← 0.25 : suit(s) ←
0.125 : rank(a) ← 0.125 : rank(10) ←
0.125 : rank(7) ← 0.125 : rank(k) ←
0.125 : rank(8) ← 0.125 : rank(q) ←
0.125 : rank(9) ← 0.125 : rank(f) ←

Although the present program defines the uniform probability distribution
over the 32 cards, it is easy to bias it towards specific ranks or suits by changing
the corresponding probability labels. We can also model the predicate

1.0 : sameSuit(S1,S2) ← suit(S1), suit(S2),S1 = S2.

which succeeds for pairs of cards of equal rank.

Example 8.25. Consider the following definite clause grammar (see Chapter 4
for an introduction to definite clause grammars).

1 : sentence(A,B) ← nounPhrase(C,A,D), verbPhrase(C,D,B).
1 : noun − phrase(A,B,C) ← article(A,B,D), noun(A,D,C).
1 : verb − phrase(A,B,C) ← intransitiveVerb(A,B,C).
1
3 : article(singular,A,B) ← terminal(A, a,B).
1
3 : article(singular,A,B) ← terminal(A, the,B).
1
3 : article(plural,A,B) ← terminal(A, the,B).
1
2 : noun(singular,A,B) ← terminal(A, turtle, B).
1
2 : noun(plural,A,B) ← terminal(A, turtles,B).
1
2 : intransitiveVerb(singular,A,B) ← terminal(A, sleeps,B).
1
2 : intransitiveVerb(plural,A,B) ← terminal(A, sleep,B).
1 : terminal([A|B],A,B) ←
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It covers the proof tree shown in Fig. 8.10.

a(pl, [the, turtles, sleep], [turtles, sleep])

s([the, turtles, sleep], [])

np(pl, [the, turtles, sleep], [sleep])

t([the, turtles, sleep], the, [turtles, sleep])

t([turtles, sleep], turtles, [sleep])

n(pl, [turtles, sleep], [sleep])

t([sleep], sleep, [])

iv(pl, [sleep], [])

vp(pl, [sleep], [])

Fig. 8.10. A proof tree

As probabilistic context-free grammars, stochastic logic programs define
probability distributions over derivations and atoms. However, there is one
crucial difference between context-free grammars and logic programs. Res-
olution derivations for logic programs can fail, whereas derivations in a
context-free grammar never fail. Indeed, if an intermediate rule of the form
S → t1, ..., tk, n1, ..., nm is derived in a grammar, where the ti are terminal
symbols and the nj are non-terminal ones, it is always possible to “resolve”
a non-terminals nj away using any rule defining nj . In contrast, in a logic
program, this is not always possible because the two literals may not unify.

Example 8.26. Consider the SLD-tree for the goal sameSuit(X,Y) in the card
example. Even though there are 4 × 4 = 16 leaves of the SLD-tree, only four
of them succeed due to unification.

We now define three different probability distributions; we will, for simplic-
ity, assume that all SLD-trees are finite; cf. Cussens [2001] for a more general
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treatment. First, let us define the distribution over SLD-derivations of an
atom a of the form p(X1, ...,Xn) where all the arguments are different logi-
cal variables. The derivations correspond to success or failure branches in the
SLD-trees. Such derivations are similar to those encountered in probabilistic
context-free grammars, and hence we can define the probability PD(d(a)) of a
derivation d(a) for the atom a, in which the clauses c1, ..., cn with associated
probability labels p1, ..., pn are used m1, ...,mn times, as

PD(d(a)) =
∏

i

pmi
i (8.60)

Observe that the probability distribution PD also assigns a non-zero proba-
bility to failed derivations. Usually, we are interested in successful derivations,
that is, refutations ending in �. The probability distribution PR(r(a)), defined
on refutations r(a) for an atom a and induced by PD and the logic program,
can be obtained by normalizing PD:

PR(r(a)) =
PD(r(a))∑

r(g) PD(r(g))
(8.61)

where the sum ranges over all SLD-refutations r(g) of the goal g.

Example 8.27. Continuing the poker example shows that all derivations d for
the sameSuit(X,Y) predicate have probability PD(d) = 0.25 × 0.25. Because
only four of them are also refutations, the probability of a refutation r is

PR(r) =
0.25 × 0.25

4 × 0.25 × 0.25
= 0.25 (8.62)

The probability distribution PR is analoguous to that defined on parse
trees in stochastic context free grammars. Therefore, it can be used to define
the probability PA(aθ) of a ground atom aθ:

PA(aθ) =
∑

ri(aθ)

PR(ri(aθ)) (8.63)

where ri ranges over all possible refutations for aθ. This is the equivalent of
the statement that the probability of a sentence in a stochastic grammar is
the sum of the probabilities of its parse trees.

Example 8.28. The value PD of the proof tree u in Fig. 8.10 is vu = 1
3×

1
2×

1
2 =

1
12 . The only other ground proofs s1, s2 of atoms over the predicate sentence
are those of sentence([a, turtle, sleeps], []) and sentence([the, turtle, sleeps], []).
Both get value = 1

12 . Because there is only one proof for each of the sentences,
PA(sentence([the, turtles, sleep], [])) = 1

3 , and this is also the probability PR of
the corresponding refutations.

Like Markov models and stochastic context-free grammars, stochastic logic
programs can be employed for:
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• Decoding : computing the probability PA(a) of an atom a.
• Most likely proof tree: computing the most likely proof tree for a given

query or atom a, that is, arg maxr(a) PR(r(a)).
• Sampling instances from a predicate according to the PA distribution.
• Learning the parameters or the structure of a stochastic logic program

from data; cf. Sect. 8.5.

Probabilities on Proofs Using Facts

Stochastic logic programs directly upgrade stochastic context-free grammars,
and therefore define a probability distribution PA for each predicate. This
distribution defines how likely it is to sample particular atoms, and can also
be used to find the most likely proof tree or explanation for a query, but
somehow does not naturally specify the probability that a fact or a possible
world holds. Therefore, there is also another approach to defining probabilities
over proofs.

This approach, which is incorporated in probabilistic logics such as Prism

[Sato and Kameya, 2001, Sato, 1995, Sato and Kameya, 1997], Probabilis-
tic Horn Abduction [Poole, 1993b], Independent Choice Logic [Poole, 1997],
Lpads [Vennekens et al., 2004] and ProbLog [De Raedt et al., 2007b], as-
signs probabilities to facts. During the exposition of this approach we shall,
as usual, focus on the underlying principles (rather than the available imple-
mentations) and simplify them where useful. The key idea underlying these
approaches is that some facts f for probabilistic predicates are annotated with
a probability value. This value indicates the degree of belief, that is the prob-
ability, that any ground instance fθ of f is true. It is also assumed that the
fθ are marginally independent. The probabilistic facts are then augmented
with a set of definite clauses defining further predicates (which should be dis-
joint from the probabilistic ones). An example adapted from [De Raedt et al.,
2007b] is given below.

Example 8.29. Consider the facts

0.9 : edge(a, c) ← 0.7 : edge(c, b) ←
0.6 : edge(d, c) ← 0.9 : edge(d, b) ←

which specify that with probability 0.9 there is an edge from a to c. Consider
also the following (simplified) definition of path/2.

path(X,Y) ← edge(X,Y)
path(X,Y) ← edge(X,Z), path(Z,Y)

One can now define a probability distribution on (ground) proofs. The proba-
bility of a ground proof is then the product of the probabilities of the (ground)
clauses (here, facts) used in the proof. For instance, the only proof for the
goal ← path(a, b) employs the facts edge(a, c) and edge(c, b); these facts are
marginally independent, and hence the probability of the proof is 0.9 ·0.7. The
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probabilistic facts used in a single proof are sometimes called an explanation.

It is now tempting to define the probability of a ground atom as the sum
of the probabilities of the proofs for that atom. However, this does not work
without additional restrictions, as shown in the following example.

Example 8.30. The fact path(d, b) has two explanations:

• {edge(d, c), edge(c, b)} with probability 0.6 × 0.7 = 0.42, and
• {edge(d, b)} with probability 0.9.

Summing the probabilities of these explanations gives a value of 1.32, which
is clearly impossible.

The reason for this problem is that the different explanations are not mu-
tually exclusive, and therefore their probabilities may not be summed. This
contrasts with stochastic logic programs, where at each choice point during
a proof, only one clause can be selected, and hence the possible choices are
mutually exclusive. The probability P (path(d, b) = true) is, however, equal
to the probability that a proof succeeds, that is

P (path(d, b) = true) = P [(e(d, c) ∧ e(c, b)) ∨ e(d, b)] (8.64)

which shows that computing the probability of a derived ground fact reduces
to computing the probability of a boolean formula in disjunctive normal form
(DNF), where all random variables are marginally independent of one an-
other. Computing the probability of such formulae is an NP-hard problem,
the disjoint-sum problem. The naive approach for realizing it employs the
inclusion-exclusion principle from set theory. This principle, applied to our
problem, states:

P (X1 ∨ ... ∨ Xn) =
n∑

i=1

P (Xi) −
∑

1�i1<i2�n

P (Xi1 ∧ Xi2) (8.65)

+
∑

1�i1<i2<i3�n

P (Xi1 ∧ Xi2 ∧ Xi3) (8.66)

−... + (−1)nP (X1 ∧ ... ∧ Xn) (8.67)

Example 8.31. Applied to our path example, we obtain:

P (path(d, b) = true) = P [(e(d, c) ∧ e(c, b)) ∨ e(d, b)] (8.68)
= P (e(d, c) ∧ e(c, b)) + P (e(d, b)) (8.69)

−P ((e(d, c) ∧ e(c, b)) ∧ e(d, b)) (8.70)
= 0.6 × 0.7 + 0.9 − 0.6 × 0.7 × 0.9 = 0.942 (8.71)

There exist more effective ways to compute the probability of such DNF for-
mulae; cf. [De Raedt et al., 2007b], where binary decision diagrams [Bryant,
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1986] are employed to represent the DNF formula. The ProbLog system has
also been applied to link mining problems in large biological networks.

The above example has shown how the probability of a specific fact is
defined and can be computed. The distribution at the level of individual facts
(or goals) can easily be generalized to a possible world semantics, specifying a
probability distribution on interpretations. It is formalized in the distribution
semantics of Sato [1995], which is defined by starting from the set of all
probabilistic ground facts F for the given program. For simplicity, we shall
assume that this set is finite, though Sato’s results also hold for the infinite
case. The distribution semantics then starts from a probability distribution
PF (S) defined on subsets S ⊆ F :

PF (S) =
∏

f∈S

P (f)
∏

f 	∈S

(1 − P (f)) (8.72)

Each subset S is now interpreted as a set of logical facts and combined with
the definite clause program R that specifies the logical part of the proba-
bilistic logic program. Any such combination S ∪ R possesses a unique least
Herbrand model M(C) (cf. Sect. 2.3), which corresponds to a possible world.
The probability of such a possible world is then the sum of the probabilities
of the subsets S yielding that possible world, that is:

PW (M) =
∑

S⊆F :M(S∪R)=M

PF (S) (8.73)

For instance, in the path example, there are 16 possible worlds, which can
be obtained from the 16 different truth assignments to the facts, and whose
probabilities can be computed using Eq. 8.73. As we have seen when discussing
Bayesian networks (cf. Eq. 8.17), the probability of any logical formulae can
be computed from a possible world semantics (specified here by PW ).

Prism, PHA and ICL

Because computing the probability of a fact or goal under the distribution
semantics is hard, researchers such as Taisuke Sato and David Poole have in-
troduced the probabilistic logics Prism [Sato, 1995, Sato and Kameya, 1997,
2001], Probabilistic Horn Abduction (PHA) [Poole, 1993b] and the Indepen-
dent Choice Logic (ICL) [Poole, 1997] that impose additional restrictions that
can be used to improve the efficiency of the inference procedure.

The key assumption is that the explanations for a goal are mutually exclu-
sive, which overcomes the disjoint-sum problem. If the different explanations
of a fact do not overlap, then its probability is simply the sum of the proba-
bilities of its explanations. This directly follows from the inclusion-exclusion
formulae as under the exclusive-explanation assumption the conjunctions (or
intersections) are empty.
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In addition, PHA, ICL and Prism employ disjoint statements of the form
disjoint(p1 : a1 ; ...; pn : an) ←, where the ai are atoms for a particular predi-
cate, and the pi probability values satisfy

∑
i pi = 1. For instance, the state-

ment

disjoint(0.3 : gene(P, a); 0.15 : gene(P, b); 0.55 : gene(P, o)) ←
states that 1) the probabilities that (an instance) of the corresponding fact
for gene is true, and 2) an atom of the form gene(P,X) instantiates to exactly
one of these options. This corresponds to enforcing the constraints:

false ← gene(P, a), gene(P, b)
false ← gene(P, a), gene(P, c)
false ← gene(P, b), gene(P, c)

The advantage of using disjoint statements is that it becomes much easier to
model random variables over domains other than {true, false}.

Example 8.32. Consider the previous disjoint statement together with the fol-
lowing definite clause program (adapted from Sato and Kameya [1997]). It
states the well-known rules for determining the bloodtype of a person de-
pending on the genes she inherits from her parents. To have bloodtype a, the
genes of both parents should be a, or else a combined with o; the rules are
similar for b, and then bloodtype ab corresponds to a combined with a, and
o corresponds to both genes being o. The clauses defining dominates, pgtype,
gtype and btype define deductive knowledge. The predicate gene, defined in
the above disjoint statement, is a probabilistic predicate. It states the proba-
bilities of the genes a, b and o.

btype(Btype) ← gtype(Gf,Gm), pgtype(Btype, Gf,Gm)
gtype(Gf,Gm) ← gene(mother,Gf), gene(father,Gm)
pgtype(X,X,X) ←
pgtype(X,X,Y) ← dominates(X,Y)
pgtype(X,Y,X) ← dominates(X,Y)
pgtype(ab, a, b) ←
pgtype(ab, b, a) ←
dominates(a, o) ←
dominates(b, o) ←

A labeled atom in a disjoint statement states the probability with which
(an instance of) the fact is true. This induces a probability distribution
at the level of the proofs. Indeed, using the disjoint statement, the facts
gene(mother, a) and gene(father, b) are true with probability 0.3 and 0.15 re-
spectively. Therefore, the probability of the proof of bloodtype(ab) that in-
volves these two facts is 0.3 × 0.15 = 0.045.

Using the distribution semantics, the probability distribution for proofs
induces a probability distribution for the atoms of predicates in R, and
hence for possible worlds, or interpretations. Indeed, because there is only
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one possible proof for btype(o), the probability of this atom being true is
0.55× 0.55 = 0.3025. If there are more proofs, then one has to sum the prob-
abilities of the corresponding explanations. This is safe under the exclusive-
explanation assumption.

Example 8.33. For instance, for bloodtype(a), there are three proofs, relying
on

• gene(m, a), gene(f, a) with probability 0.3 × 0.3 = 0.09
• gene(m, a), gene(f, o) with probability 0.3 × 0.55 = 0.165
• gene(m, o), gene(f, a) with probability 0.55 × 0.3 = 0.165

So, the probability of the atom bloodtype(a) = 0.09 + 0.165 + 0.165 = 0.42.

Example 8.34. The probability of the least Herbrand interpretation of the de-
ductive part of the PRISM program with {gene(m, a), gene(f, a)} is 0.09. It
constitutes one possible world and includes the fact btype(a).

Probabilistic Abduction

The representations of PHA, ICL and Prism were originally motivated as a
kind of probabilistic abduction. It is therefore interesting to link these repre-
sentations to the abductive logic programming framework introduced in Sect.
7.2.3. The procedure for generating an abductive explanation of a ground atom
sketched in Algo. 7.2 can be adapted to the representations of PHA, ICL and
Prism, which work with disjoint statements under the exclusive-explanation
assumption. The resulting algorithm is shown in Algo. 8.2; it generates also
the probabilities of the explanations. The theory T is the deductive part of
the program. The integrity constraints I are obtained from the disjoint state-
ments, as indicated above. The function is called with the parameters ← g,
{} and 1.

As the function abduce of Sect. 7.2.3 could be modified to yield only the
minimal explanations (using a breadth-first strategy), prob-abduce can be
extended into a best-first search strategy that will generate the most likely
explanations first; cf. [Poole, 1993a]. This involves selecting the (goal, expla-
nation, probability) tuple with maximal probability first from the queue of
candidates instead of following a last-in-first-out strategy. In addition, one
must verify whether the explanations are minimal.

Notice that their key difference with the Bayesian network approaches is
that the ICL and Prism approaches rely on logical inference methods, whereas
Bayesian networks rely more on probabilistic inference mechanisms.

Exercise 8.35. Simulate prob-abduce on the fact bloodtype(a).

Exercise 8.36. * Represent the Bayesian traffic network as an ICL or a
Prism program?

Exercise 8.37. ** Can a stochastic logic program be represented as an ICL

or a Prism program? Is this always possible?
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Algorithm 8.2 The function prob-abduce(← q1, ..., qn; F ; P ) for proba-
bilistic abduction in a theory T

if n = 0 then
return F , P

else if the predicate in q1 is probabilistic then
compute a ground substitution σ such that q1σ unifies
with a fact f with probability p in a disjoint statement
if F ∪ T ∪ {q1σ} satisfies I then

call prob-abduce(← q2σ, ..., qnσ; I; F ∪ {q1σ}, p × P )
else

fail
end if

else if possible then
select the next clause q ← r1, ..., rm in T for which mgu(q, q1) = θ
call prob-abduce(← r1θ, ..., rmθ, q2θ, ..., qnθ; F ; P )

else
fail

end if

Logical and Relational Markov Models

The frameworks introduced above are all expressive probabilistic models with
logical representations. This, however, comes at a computational cost. Indeed,
as we discussed in Sect. 8.2.2, there exist classes of graphical models, such as
Markov models and hidden Markov models, for which inference and learning
can be realized efficiently, that is, in polynomial time. This contrasts with, for
instance, Bayesian networks, for which inference is NP-complete. Therefore,
several researchers have been interested in upgrading Markov models to use
relations and logic, which has yielded relational Markov models (Rmms) [An-
derson et al., 2002] and logical hidden Markov models (Lohmms) [Kersting
et al., 2006]. Whereas the resulting approaches are typically less expressive
than the ones introduced above, the advantages are that 1) they are closely
related to the underlying representations (and hence define probability distri-
butions over sequences), 2) they are, in principle, more efficient, and 3) the
learning algorithms for the underlying representations can almost directly be
applied.

These approaches can also be conveniently viewed as downgrading one
of the more expressive probabilistic logics presented above. Therefore, rather
than introducing relational or logical Markov models directly, we will show
how (a variant of) logical Markov models can be modelled as a stochastic
logic program. In doing so, we closely follow an example by Anderson et al.
[2002] modeling a web navigation problem. A toy example for web navigation
within a given academic site is illustrated in Figure 8.11. It is a Markov model
displayed as a finite state automaton, with probabilities instead of symbols
from an alphabet associated with each of the edges. Alternatively, it can be
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department

0.7
course

0.1

lecturer
0.2

0.3

0.3

0.3

0.8

0.1
0.1

Fig. 8.11. The graph structure of a Markov model for web navigation (from [De
Raedt and Kersting, 2003])

regarded as a stochastic regular grammar. The model denotes the probabilities
that if one is at a web page of type X the next web page will be of type Y .
For instance, in the automaton listed above, the probability of moving from
department to lecturer is 0.2. It should be clear that this model is too simple
to be useful for web user modelling because the abstraction level is too high.
An alternative is to build a model with one node for each of the web pages.
Such model would, however, be so huge that it would hardly be usable, let
alone learnable. Therefore, a better way, supported by relational and logical
Markov models, is to use proper relational or logical atoms to represent the
state instead of propositional symbols.

Example 8.38. A sequence of possible states could then be, for instance,

dept(cs) → course(cs, dm) → lecturer(cs, pedro) →
course(cs, stats) → . . .

The sequence of pages represented includes the web page of the department of
cs, the dm course, its lecturer pedro and the course stats taught by the same
lecturer. Notice the similarity with the logical sequences designed in Sect.
4.10. This type of logical sequence can be modeled using the following types
of (grammar) rules:



266 8 Probabilistic Logic Learning

(0.7) dept(D) → course(D,C).
(0.2) dept(D) → lecturer(D, L).

. . .
(0.3) course(D,C) → lecturer(D, L).
(0.3) course(D,C) → dept(D).
(0.3) course(D,C) → course(D′,C′).

. . .
(0.1) lecturer(X, L) → course(X,C).

. . .

Now, starting from any ground state, for instance, dept(cs), one can deter-
mine the possible transitions as well as their probabilities. The above logical
Markov model specifies, however, only the probability of a transition to an
abstract state; these are non-ground states, states that contain variables such
as course(cs,C) and lecturer(cs, L) in our example. To determine the corre-
sponding real states, one also needs to know 1) the domains of the various
arguments (in our examples, the set of all lecturers and the set of all courses,
say dom(L) and dom(C)), and 2) a probability distribution on these domains
(that is, PL and PC) that specifies the probability of selecting a particular
instance from these domains; for instance, the probability of selecting pedro
as a lecturer would be given by PL(pedro). Given these domains and their
corresponding distributions, the abstract transitions can be instantiated. For
instance, starting from dept(cs) there is a probability of 0.7·PL(pedro) of going
to lecturer(cs, pedro). This illustrates the key ideas underlying these represen-
tations: proof steps correspond to time steps.

The resulting model can be conveniently represented as the stochastic logic
program sketched in the following example.

Example 8.39. The logical Markov model specified as a stochastic logic pro-
gram:

0.7 : dept(D) ← domcourse(C), course(D,C)
0.2 : dept(D) ← domlect(L), course(D, L)
. . .
0.3 : course(D,C) ← domlect(L), lecturer(D, L)
0.3 : course(D,C) ← dept(D)
0.3 : course(D,C) ← domcourse(C1), domdept(D1), course(D1,C1)
. . .
0.1 : lecturer(X, L) ← domcourse(C), course(X,C).
. . .
0.1 : domlect(pedro) ←
. . .

The probability of the proofs in the stochastic logic program then corresponds
to the probability of the trace through the Markov model. The domain pred-
icates are introduced only to bind those variables that appear in the body of
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clauses but not in the head. In the example, we ignored the starting and the
terminal states of the Markov model. This is left as an exercise to the reader.

Exercise 8.40. Discuss how to deal with starting and terminal states of the
Markov model within the stochastic logic program.

Exercise 8.41. Can you model the Markov model as a Prism or ICL pro-
gram?

8.5 Probabilistic Logic Learning

In this section, we tackle the true topic of this chapter: probabilistic logic
learning. More specifically, we show how the traditional settings for inductive
logic programming carry over to probabilistic logic learning. The resulting
techniques are typically combinations of logical learning with the principles of
probabilistic learning seen at the start of the chapter. Therefore, this section
is rather brief, and does not go into the (often very technical) details of the
different approaches. We first introduce learning from interpretations, then
learning from entailment, and finally learning from proofs and traces.

8.5.1 Learning from Interpretations

Examples

As we argued earlier, many first-order probabilistic logics, including Bayesian
logic programs, Markov logic networks, and probabilistic relational models
[Getoor et al., 2001a], define a probability distribution over possible worlds,
or interpretations. This is not really surprising as they upgrade Bayesian net-
works (or Markov networks), which define such a distribution at the proposi-
tional level. In Sect. 8.3, we showed how such networks can be learned from
interpretations. It is therefore natural to also use interpretations as exam-
ples when learning Bayesian logic programs, probabilistic relational models
or Markov logic. As before, we can distinguish fully observable from partially
observable data. In the fully observable case, one obtains as examples logical
interpretations. Indeed, reconsider the interpretation in the stud farm exam-
ple mentioned in Ex. 8.21 of a Bayesian logic program. In this interpretation,
all values of the random variables are known, and hence this possible world is
a logical interpretation. Similar examples can be provided for learning Markov
logic. In the partially observable case, however, not all values of the random
variables are known, and we obtain a partial interpretation.

Example 8.42. For instance, in the stud farm domain, a partial interpretation
that can be used as an example is
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{carrier(henry) = false, suffers(henry) = false, carrier(ann) = true,
suffers(ann) = false, carrier(brian) = false, suffers(brian) = false,
carrier(alan) =?, suffers(alan) = false, carrier(alice) = false,
suffers(alice) = false, . . .}

where ? denotes an unobserved state or value.

Using the notion of a partial interpretation, we can directly apply the
principles of probabilistic learning discussed in Sect. 8.3 to estimate the pa-
rameters and learn the structure of Bayesian logic programs, Markov logic,
etc.

Parameter Estimation

Because formalisms such as Bayesian logic programs and Markov logic net-
works use knowledge-based model construction, the example interpretations
can be used to construct a grounded propositional network, and hence pa-
rameter estimation techniques for Bayesian and Markov networks directly
apply to a grounded network. However, to upgrade these parameter estima-
tion techniques to first-order probabilistic logics, three subtleties need to be
considered.

First, as the clauses in the first-order probabilistic logics act as a kind
of template, the ground propositional network will typically contain multiple
instantiations of the same clause. Therefore, care has to be taken that the
corresponding parameters of the different instantiations are tied together as
discussed in Sect. 8.3.1.

Second, different logical interpretations typically result in different propo-
sitional networks. Indeed, consider another stud family, in which john, mary
and jef occur. This will result in a different network, and the learner should
exercise care to ensure that correct results are obtained. This problem does
not only occur in first-order logics; it also occurs in Markov models, where
different observation sequences can posses different lengths. The solution in
Markov models is to average over the different example sequences. This solu-
tion also applies to our learning problem: we need to average over the different
propositional networks.

Third, the probabilistic logics may contain combining or aggregation rules,
which the learning algorithm should take into account. Many of these rules
can, however, be eliminated from a network by reformulating the model. Recall
that we were able to remove noisy-or from the fever network by adding auxil-
iary random variables and using a logical or in Ex. 8.18. The usual parameter
estimation procedure can then be applied to the reformulated network, whose
parameters correspond to those of the original network. While estimating the
parameters of the reformulated network, the deterministic nodes (such as the
logical or) are fixed and not modified.

We now sketch how these ideas can be applied to obtain an EM algorithm
for learning Bayesian logic programs. Assume that we are trying to re-estimate
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a parameter p that models the conditional probability P (h = v|b = w) of the
Bayesian clause h|b w.r.t. the current set of parameters λ. Then we obtain the
following formula for the expected counts:

ecλ(h = v ∧ b = w) =
∑

e∈E

∑

θ:hθ∈e∧bθ⊆e

P (hθ = v ∧ bθ = w|e) (8.74)

ecλ(b = w) =
∑

e∈E

∑

θ:hθ∈e∧bθ⊆e

P (bθ = w|e) (8.75)

p =
ecλ(h = ∧b = w)

ecλ(b = w)
(8.76)

The first summation ranges over all possible examples. The second one cap-
tures the parameter tying within a single example. It ranges over all relevant
instantiations of the clause in the example. The relevant probabilities can be
computed using the standard Bayesian logic program inference engine.

Structure Learning*

To learn the structure of a Bayesian or Markov network (cf. Sect. 8.3), one
typically performs a heuristic search through a space of possible structures
constructed using a kind of propositional refinement operator which adds,
deletes or changes arcs in the network. Thus it seems natural to adapt these
algorithms by employing a first-order refinement operator that works at the
theory level, as discussed extensively in Chapter 5. There are, however, two
complications that may arise when learning probabilistic logics.

First, the sets of random variables in each of the example interpretations
should correspond to those of the probabilistic logic. For probabilistic rela-
tional models, it is typically assumed that the domain of discourse, that is,
the relevant constants and deterministic relations, are known. For Bayesian
logic programs, it is required that example interpretations are also a model
for the Bayesian logic program in the logical sense.

Example 8.43. Reconsider the Bayesian logic program defining the stud farm
and the logical facts defining mother, father and founder. Assume that there is
a (logical) fact specifying that founder(jef) is true. Then, because of the (least
Herbrand model) semantics of Bayesian logic programs, there must also be
a random variable carrier(jef). If this random variable is not included in the
example interpretation, the interpretation does not contain all random vari-
ables in the grounded Bayesian network, and hence contains latent variables,
which are extremely difficult to deal with.

Therefore, when learning Bayesian logic programs, it is required that the
ground facts in the interpretation also constitute a model in the logical sense
of the Bayesian logic program. This can be enforced using the techniques seen
in Sect. 7.5.
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Secondly, when learning Bayesian logic programs or probabilistic relational
models, care must be taken to ensure that the propositional Bayesian networks
obtained by grounding a candidate model with an interpetation does not
contain any loops, as Bayesian networks are by definition acyclic. Depending
on the expressiveness of the probabilistic logic model, the acyclicity can be
determined using the structure of the model alone, or by verifying that the
grounded networks do not contain cycles.

8.5.2 Learning from Entailment

Examples

When learning a probabilistic logic from entailment, the examples are, as
in the purely logical setting, ground facts that need to be entailed by
the target program. For instance, to learn the stochastic logic program
modelling the definite clause grammar in Ex. 8.28, a possible example is
sentence([the, turtles, sleep], []), and when learning the Prism or ICL program,
it is btype(ab).

Parameter Estimation

To address the parameter estimation problem, first consider the simpler case
of probablistic context-free grammars. An example in the form of a sentence
generated by the grammar contains the result of the inference process; it does
not encode the proof or parse tree that explains how the sentence was gen-
erated. The proofs or parse trees are therefore essentially unobserved. This
situation is akin to that encountered in Bayesian networks, where certain
variables are unobserved. Therefore, the same solution applies here as well.
The EM algorithm can be applied in order to deal with unobserved variables
by computing the expected counts with which the different rules in the gram-
mar are used to generate the data. For probabilistic context-free grammars,
the EM algorithm is known as the inside-outside algorithm and it runs in
polynomial time, thanks to the use of a dynamic programming technique; cf.
[Manning and Schütze, 1999].

This very same idea can now be applied to learn stochastic logic or Prism

programs. However, the key difference between these logical types of grammars
and the context-free ones needs to be taken into account. This difference
concerns the possibility of having failed derivations due to unification. Cussens
[2001] introduced an extension of the EM algorithm, the so-called failure-
adjusted maximisation algorithm (FAM), to learn the parameters of stochastic
logic programs in this way. It was later adapted by Sato et al. [2005] for use
in PRISM.

In Cussens’s FAM approach, the atoms are treated as an incomplete ex-
ample set derived from a complete example set of derivations (that is, proofs
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and failures), truncated to yield refutations only, and finally grouped to pro-
duce the set of observed atoms. As shown by [Cussens, 2001], this yields the
following formula for computing the expected counts of a clause Ci given E,
the set of examples, for the E-Step:

ecλ(Ci|E) =
∑

e∈E

(
ecλ(Ci|e) + (Z−1 − 1)ecλ(Ci|fail)

)
(8.77)

Here, ecλ(Ci|e) (or ecλ(Ci|fail)) denotes the expected number of times clause
Ci has been used to derive atom e (or to derive a failure), and Z is the
normalization constant

Z =
∑

r(h)

PD(r(h))

where the sum ranges over all proof-trees r(h) of the variabilized head h of
clauses Ci. In the M-Step, FAM computes the improved probability label pi

for each clause Ci as

pi =
ecλ(Ci|E)∑
C′ ecλ(C ′|E)

where the sum ranges over all clauses C ′ with the same predicate in the head
as Ci.

Structure Learning

Learning both the structure and the parameters of a first-order probabilistic
logic from entailment from scratch is extremely hard, if not impossible. The
reason is that this requires a combined solution to the structure learning prob-
lem in both probabilistic models as well as in inductive logic programming.
Both subproblems are very hard and largely unsolved today. For instance, from
an inductive logic programming perspective, a solution to hard problems such
as multiple predicate learning and theory revision would be required. There-
fore, there seems little hope of solving the full problem of structure learning
from entailment in the near future. Nevertheless, for some special cases, one
may still be able to develop some interesting techniques. For instance, Muggle-
ton [2003] has extended the single-predicate learning setting of the Progol

system to induce stochastic logic programs.
Because structure learning is so hard when learning from entailment, one

may want to incorporate more information into the learning process. This can
be realized using the learning from proofs setting, as proofs carry much more
information about the target models than facts.

8.5.3 Learning from Proof Trees and Traces

Examples

When learning from proofs, the examples are proof trees or traces. For in-
stance, for the stochastic logic program denoting the grammar, the proof tree
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of Fig. 8.10 could be a valid example. Similarly, when working with Web logs,
as in the logical Markov model, one may actually observe a trace, which can
easily be mapped onto a proof, as argued earlier.

One question that naturally arises with this setting, is to what extent it is
reasonable to require examples in the form of proof trees. Although it seems
clear that in most applications this is unrealistic, it should be emphasized
that there exist specific situations in which proof trees occur quite naturally
or in which the examples can be reformulated as such trees or traces, for
instance, when dealing with logs of users traversing a web-site, logs of smart
phones, or traces of a GPS device or robot. Also, in a bioinformatics setting,
such structured sequences often occur naturally. Finally, within the natural
language processing community, many large and annotated corpora exist that
provide parse trees for a set of sentences, which correspond to proof trees in
a logical setting.

Parameter Estimation

In order to address the parameter estimation problem in the learning from
proofs setting it is again adequate to start with the simpler case of probabilis-
tic context-free grammars. When learning probabilistic context-free grammars
from parse trees, everything is fully observable and, hence, it is straightfor-
ward to estimate the parameters of the probabilistic grammar by frequency
counting.

On the other hand, when considering stochastic logic or PRISM programs,
this need not be the case. There are two cases to consider. First, if one ob-
serves derivations (both successful, that is, refutations, as well as failed), then
all variables are observed and frequency counting will yield a maximum like-
lihood hypothesis. Second, if one only observes refutations, that is, succesful
derivations, then the failed ones are unobserved. Thus, a form of failure ad-
justed maximisation needs to be employed. Actually, it turns out that Eq. 8.77
given for the FAM algorithm can easily be simplified to this case. The key
simplification is that the (successful) proofs are now observed and hence one
can replace the expected counts ecλ(Ci|e) of the number of times the clause
Ci is used in the proof of example e with the actual counts c(Ci|e). This is the
only modification needed to adapt the FAM algorithm to the learning from
proofs setting.

Structure Learning

We can get some inspiration from the work on probabilistic context-free gram-
mars for structure learning. In particular, in natural language processing prob-
abilistic context-free grammars have been successfully learned from large cor-
pora of parse trees. This work is known under the name of tree-bank grammars
[Charniak, 1996]. It turns out that learning the structure of a probabilistic
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context-free grammar is easy. The learner only needs to collect all the rules
used in the given parse trees.

Example 8.44. Reconsider the parse trees shown in Fig. 4.6. The rules em-
ployed in the rightmost parse tree are:

S → NP VP Art → the
VP → Verb Noun → cat
NP → Art Noun Verb → bites

They directly follow from the parse tree.

Once all rules in the tree-bank have been collected, one only needs to apply
the parameter estimation method sketched above to obtain the maximum
likelihood hypothesis.

The question now is what changes when working with stochastic logic
or PRISM programs. When applying the algorithm sketched above to proof
trees obtained for a stochastic logic progam, such as those sketched in Fig.
8.10, one will obtain a set of ground clauses. As variables and unification are
responsible for the expressiveness of stochastic logic programs, a way is needed
to generalize the resulting set of ground clauses. One natural way of realizing
this (cf. [De Raedt et al., 2005]) is to employ the least general generalization
operator presented in Chapter 5. This is akin to techniques in grammatical
inference for computing minimal generalizations of two grammar rules c1 and
c2, and replacing them by their generalization. As usual, there is, however,
a subtlety that needs to be taken into account in order to guarantee correct
results. Indeed, it must be the case that if two rules in the stochastic logic
program are generalized, the original proof trees are still legal proof trees for
the generalized program. This imposes a logical constraint on the rules of the
program, which may be violated by the unrestricted application of the lgg
operator as the following example illustrates.

Example 8.45. Consider the clauses h ← q and h ← r and assume that the
hypothesis H also contains the fact q ←. Then the proof tree for h in H is no
longer a valid proof tree in H ′ consisting of h ← and q ←.

The logical constraint therefore provides us with a powerful means to prune
away uninteresting generalizations. Indeed, whenever a candidate lgg does
not preserve the proof trees, it is overly general and should be pruned. A
naive way of verifying this condition would be to compute the proofs for
the generalized hypothesis H ′. However, this would be computationally very
expensive. Fortunately, it is possible to guarantee this condition much more
efficiently. Indeed, it suffices to verify that

1. ∃ substitutions θ1, θ2 : lgg(c1, c2)θ1 = c1 and lgg(c1, c2)θ2 = c2

2. there is a one-to-one mapping from literals in lgg(c1, c2)θi to literals in ci
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If the first condition is violated, then there are literals in ci that do not occur
in lgg(c1, c2)θi. These literals would be lost from the corresponding proofs
(as sketched in the example), and so the proofs would not be preserved. If
the second condition is violated, a standard theorem prover would derive dif-
ferent proofs (containing more children), and again the proofs would not be
preserved. Furthermore, as is common in inductive logic programming, one
can assume that all clauses in the target (and intermediate) logic programs
are reduced w.r.t. θ-subsumption. The above conditions allow one to verify
whether the proofs are preserved after computing the lgg. However, one needs
to compute and consider only the lgg of two clauses if the multi-set of predi-
cates occurring in these two clauses are identical.

The operation whereby two clauses are replaced by their least general
generalization can now be used to heuristically search through a space of
possible candidate models. They can be scored using, for instance, a maximum
likelihood score penalized for model complexity.

Even though the techniques introduced for learning from proofs were
largely illustrated using stochastic logic programs, it is, in principle, also pos-
sible to apply these ideas to the learning for Prism programs and logical or
relational Markov models. At the time of this writing, structure learning for
Prism programs has not yet been considered.

8.6 Relational Reinforcement Learning*

Having studied how to combine logic, probability and learning, we add, in this
section, another dimension. It is concerned with taking actions to maximize
one’s utility. Learning which actions to take is studied in the area of reinforce-
ment learning [Sutton and Barto, 1998]. This section provides a brief introduc-
tion to relational reinforcement learning, which studies reinforcement learning
using logical and relational representations. We first introduce Markov Deci-
sion Processes and their use for learning before upgrading them to the use
of relational representations. Because (relational) reinforcement learning is an
active field of research with many different approaches and results, we are
only able to define the problem and sketch some of the basic approaches. Fur-
ther information about reinforcement learning can be found in [Sutton and
Barto, 1998, Russell and Norvig, 2004, Mitchell, 1997] and about its relational
upgrade in [van Otterlo, 2008, Sanner and Kersting, 2009, to appear].

8.6.1 Markov Decision Processes

The underlying model used in reinforcement learning is that of Markov Deci-
sion Processes. Formally, a Markov Decision Process consists of

• a set of possible states S,
• a set of actions A,
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• a transition function T : S × A × S → [0, 1] such that T (s, a, ·) is
a probability distribution over S for any s ∈ S and a ∈ A, that is,∑

s′∈S T (s, a, s′) = 1, and
• a reward function R : S × A → R.

In a Markov Decision Process the agent is at every point in time t in a state
st, has to select an action at ∈ A(st), the set of possible actions in st, and
then moves to the next state st+1 with probability T (st, at, st+1) obtaining
the reward rt = R(st, at). To this end, the agent employs a policy π : S → A,
which specifies in each state the action π(s) the agent will execute. Note that,
in general, policies may be stochastic, but for simplicity we shall assume that
they are deterministic in this book.

Example 8.46. To illustrate Markov Decision Processes, let us consider a sim-
ple world in which we have exactly two blocks, named a and b. Thus we have
three possible configurations

a
b

and
b
a

and a b ,

where the order of the stacks does not matter. In the blocks world, one can
move a block if it is clear from one position to another. This means that we
have the following possible actions for the states

A
( a
b

)
= {move a to floor}

A
(b
a

)
= {move b to floor}

A
(
a b

)
= {move a to b;move b to a}.

Assume that the actions succeed with probability 0.9 and fail with probability
0.1, where failure implies that executing the state is left unchanged, and that
the reward function yields 10 only when the action leads to the next state
a
b

and 0 otherwise. This reward function implicitly encodes that the goal is

to enter this state as often as possible. Because encoding the reward func-
tion in terms of the state resulting from the action is quite convenient and
understandable, we shall from now on encode rewards functions in this way.

The goal of the agent is to maximize the expected return, that is, the
expected discounted sum of rewards over time:
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E
[ ∞∑

t=0

γtrt

]
, (8.78)

where rt is the reward received at time t and 0 � γ � 1 is a discount factor,
which implies that immediate rewards are more important than future ones.

The state-value function V π : S → R specifies for each state s the expected
return V π(s) the agent will receive when starting in s and executing policy
π. Formally, V π is defined as

V π(s) = Eπ

[ ∞∑

t=0

γtrt|s0 = s
]
, (8.79)

that is, the expected return when starting in s and selecting actions according
to π. Similarly, the action-value function Qπ : S × A → R specifies for each
state action pair (s, a) the expected return Qπ(s, a) the agent will receive
when starting in state s, executing action a and then following the policy π.
The two value functions of a policy π are related by the equation

V π(s) = max
a

Qπ(s, a), (8.80)

which specifies that the state-value function yields the value of the best action
in that state.

The task of the agent is then to compute an optimal policy π∗. A policy
π∗ is optimal if and only if for all other policies π′ and for all states s ∈ S:

V π∗
(s) � V π′

(s). (8.81)

Following the optimal policy yields the highest expected returns. The Bellman
optimality equations characterize the state-value function V ∗ of an optimal
policy π∗:

V ∗(s) = max
a

[
R(s, a) + γ

∑

s′

T (s, a, s′)V ∗(s′)
]
. (8.82)

A similar equation holds for the action-value function Q∗:

Q∗(s, a) = R(s, a) + γ
∑

s′

T (s, a, s′)max
a′

Q∗(s′, a′). (8.83)

From the optimal value functions, the optimal policy can be derived because

π∗(s) = arg max
a

Q∗(s, a) (8.84)

= arg max
a

[
R(s, a) + γ

∑

s′

T (s, a, s′)V ∗(s′)
]
. (8.85)

This equation shows a clear advantage of the Q∗ function: the transition and
reward functions need not be known to compute the optimal policy.
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Example 8.47. Continuing the blocks world example, the Bellman optimality
equation for the state

a b

states

V ∗( a b ) = max
{

10 + γ
(
0.9V ∗(

a
b
) + 0.1V ∗( a b )

)
;

0 + γ
(
0.9V ∗(

b
a
) + 0.1V ∗( a b )

)}
.

It is possible to improve upon a non-optimal policy π using policy improve-
ment, which computes an improved policy π′s:

π′(s) = maxaQπ(s, a). (8.86)

Because the policy π′ greedily selects actions, it improves upon π, that is, for
all states s ∈ S : V π′

(s) � V π(s); see [Sutton and Barto, 1998] Sect. 4.2 for
a proof. If the policy π was already optimal, then π′ = π and the Bellman
optimality equations hold. Policy improvement is typically used in a process
called generalized policy iteration, in which one starts from a given policy,
computes its value function, uses the value function to improve the policy,
and iterates; see Sutton and Barto [1998].

8.6.2 Solving Markov Decision Processes

Numerous approaches exist for solving Markov Decision Processes. They are
primarily distinguished by whether they are model-based, that is, whether
they use a model or not. A model, in this context, refers to the transition and
reward functions T and R.

Model-based solution techniques for Markov Decision Processes are typi-
cally based on dynamic programming. As one example of this popular class
of techniques, we consider the value iteration algorithm sketched in Algo. 8.3.
This algorithm initializes the Q-function arbitrarily (here, by setting all the
values to 0), and then repeatedly updates the Q-function for all state action
pairs. The update rule that is employed is essentially the Bellman optimality
equation of Eq. 8.83. This process continues until the values converge and
the updates become sufficiently small. The value function Q computed by the
value iteration algorithm will converge in the limit towards the optimal value
function Q∗. Therefore, the Q-function computed by the algorithm can be
used as an encoding of the optimal policy π∗.

In model-free approaches to reinforcement learning, the functions T and
R are unknown to the agent, but the task essentially remains the same: com-
puting (an approximation of) the optimal policy. However, in this case the
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Algorithm 8.3 Value iteration
initialize V (s) := 0 for all s ∈ S
repeat

Δ := 0
for all s ∈ S do

v := V (s)
for each a ∈ A(s) do

Q(s, a) := R(s, a) + γ
∑

s′ T (s, a, s′)V (s′)
end for
V (s) := maxa∈A(s)Q(s, a)
Δ := max(Δ, |v − V (s)|)

end for
until Δ < σ

agent will gather evidence about these functions through interaction with its
environment, which means that the agent will perform actions and learn from
their outcomes. One line of model-free approaches learns a model, that is, an
approximation of the transition and reward functions T and R, from these
interactions. To this end, it keeps track of statistics for each possible transi-
tion T (s, a, t) and reward R(s, a). If all possible state-action pairs are visited
a sufficient number of times, the estimated model will approximate the true
model. Model-based techniques, such as value iteration, can then be applied
to compute the optimal policy.

Another type of model-free approach is based on Monte Carlo methods.
This type of method estimates the value functions directly. This is only possi-
ble when the environment is episodic, that is, sequences of actions are guaran-
teed to reach a terminal state. Episodic environments naturally occur, for in-
stance, in game playing. In other cases, the environment can be made episodic.
For instance, in the blocks world example, if the goal is to reach a particular
state, say a b , this state could be made absorbing, which means that no mat-
ter what action is executed in that state, the agent remains in the state. In
episodic environments, Monte Carlo methods for learning a Qπ function for a
given policy π compute Qπ(s, a) as the average of all returns received when
executing action a in state s and following the policy π afterward.

The final and most interesting class of model-free approaches from a ma-
chine learning perspective is that of temporal difference learning. Character-
istic for temporal difference learning is that it reestimates its current value
function for a particular state (or state-action) using estimates for other states.
This realizes a kind of bootstrapping. One of the most prominent examples
in this category is Q-learning. Q-learning employs the following update rule
to reestimate Q(s, a) after executing action a in state s, receiving the reward
r and observing the next state s′:

Q(s, a) := Q(s, a) + α
(
r + γ max

a′
Q(s′, a′) − Q(s, a)

)
, (8.87)
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where 0 < α < 1 is the learning rate. The higher the learning rate, the
more important the new experience is. Therefore, the value of α is gradually
decreased over time. This leads to the famous Q learning algorithm; see Algo.
8.4. This algorithm will, under certain conditions, converge to the optimal
Q∗ function. While learning, the agent has to select and execute actions.
After each action, it performs an update of the Q-function according to the
above formula. The formulation of Q-learning in Algo. 8.4 assumes an episodic
setting.

Recall that the agent’s goal is to learn how to maximize the expected
future return, and that, while learning, the agent has to take action in its
environement. The strategy for selecting the next action is important in this
regard. There is a typical trade-off between exploration and exploitation in
reinforcement learning. To maximize the expected return, it is tempting to
select the actions greedily, according to the current value functions. This is
called exploitation. However, if the approximations of the value functiions are
still imperfect, greedy action selection might lead to suboptimal behavior.
Therefore, the agent should also explore its environment, that is, ensure that
it visits all parts of the search-space a sufficient number of times so that
good approximations can be learned. Because exploration and exploitation
are conflicting goals, one has to find the right balance between these two ways
of selecting actions. One way of realizing this employs an ε-greedy method to
select the next action to execute. For a given Q-function, this method selects
with probability 1−ε the best action according to Q, that is, arg maxa Q(s, a),
and with probability ε a random action a ∈ A(s).

Algorithm 8.4 Q-learning
initialize Q(s, a) := 0 for all s ∈ S, a ∈ A(s)
for each episode do

let s be the starting state
repeat

choose an action a ∈ A(s) and execute it
observe the new state s′ and reward r
Q(s, a) := α

(
r + γ maxa′ Q(s′, a′) − Q(s, a)

)

s := s′

until s is a terminal state
end for

One problem with the above formulation of Markov Decision Processes
and their solution techniques is that the value functions are represented in
explicit tabular form. For each state or state-action pair, the corresponding
value must be stored in some kind of table. Even in simple worlds, the state
space rapidly becomes prohibitively large, and the number of transitions to
take into account is even larger. Therefore, representing the value functions in
tabular form is impractical. What is needed is a more compact representation
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for the value function, for instance, using the languages of the representa-
tion hierarchy sketched in Chapter 4. The simplest of these is a propositional
logic or attribute-value representation. States then correspond to item-sets or
propositional interpretations. This enables us, in turn, to represent the value
function by a model, such as a decision tree, a linear equation, or a neural
network. To illustrate this idea, consider the Q-learning procedure sketched
in Algo. 8.4 and assume that we are using a neural network to represent the
Q-function. The value of Q(s, a) for state s and action a is then the value
obtained by using the example consisting of the interpretation describing the
state s together with the action a as input for the neural network. The output
of the network is the predicted Q-value. To work with this representation the
Q-learning algorithm needs to be adapted at the point where the Q-function
is updated. Rather than computing the new value for Q(s, a) and storing it
in the table for Q, the algorithm will now generate an example for the neural
network learning algorithm. This example consists of the description (s, a)
together with the desired target value Q(s, a). The neural network will then
update its weights to accommodate this change. Neural networks are often
employed as function approximators because they are incremental although
other paradigms can be used as well. Because the function learned by the
function approximator is only an approximation of the Q-function in tabular
form, the algorithm will be efficient. However, depending on the approximator
used, it may also lose its convergence properties. In practice, it often works
well, as shown by, for instance, the famous TD-gammon player by Tesauro
[1995]. Rather than illustrating this technique using propositional represen-
tations, we will use relational representations. Before doing so, we introduce
the concept of a relational Markov Decision Process.

8.6.3 Relational Markov Decision Processes

Relational Markov Decision Processes are an upgrade aimed at using rela-
tional representations in which states correspond to Herbrand interpretations
like in planning [Russell and Norvig, 2004]. The advantage of relational rep-
resentations is, as usual, that they enable one to work with a variable number
of entities and the relationships amongst them. For instance, while the sim-
ple blocks world example shown above consisted of only two blocks, artificial
intelligence typically studies such worlds with an arbitrary number of blocks
and relations. Our goal is now to adapt relational reinforcement learning to
work with such worlds. This goal is in line with the probabilistic logic learning
approach pursued in this chapter. The key question then is how to represent
such Relational Markov Decision Processes? To address this question, it is
useful to start from existing formalisms employed within the domain of plan-
ning, and to investigate how they can be upgraded using the methodology of
Chapter 6.

To upgrade the definition of Markov Decision Processes to cope with re-
lational states and actions, we need to make the definitions of the transition
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and reward functions relational. It is convenient to start from one of the pop-
ular planning formalisms, Strips by Fikes and Nilsson [1971], to realize this.
In Strips, each action is defined using a precondition and a set of effects,
where the precondition is specified using a conjunction of atoms and the ef-
fects specify which atoms to add and which ones to delete from the state.
More formally, an action is a finite set of actions rules of the form

pi : A :: Hi ← B, (8.88)

where B and the Hi are conjunctions of atoms, the pi satisfy
∑

i pi = 1, and it
is required that all variables occurring in the Hi occur also in B. The actions
define the transition function. If the conjunction B subsumes an interpretation
I with substitution θ, there is a transition with pi to the state [I−Bθ] ∪ Hiθ.
Thus the atoms in Bθ are removed from the state and those in Hiθ added to
the state. This corresponds to the add and delete lists of the Strips formalism.
In what follows, we employ the notion of OI-subsumption to avoid having to
write many inequalities between the variables; cf. Sect. 5.5.1.

For instance, we can specify the action move(X,Y,Z), which moves a block
X to a block Y from a block Z, using

0.9 : move(X,Y,Z) :: on(X,Y), cl(X), cl(Z) ← cl(X), cl(Y), on(X,Z)
0.1 : move(X,Y,Z) :: cl(X), cl(Y), on(X,Z) ← cl(X), cl(Y), on(X,Z)

where the object identity assumption implies that the variables X, Y and Z
have to bind to different constants. Applied to the state

{on(a, c), cl(b), cl(a)}
the action moves(a, b, c) yields with probability 0.9 the state

{on(a, b), cl(c), cl(a)}
To represent the reward function, a logical decision tree or a set of rules can be
applied. For instance, the reward function could be defined using the decision
list

reward(10) ← cl(a), !.
reward(0) ←

which states that the reward received is 10 if in the state just entered block a
is clear, and 0 otherwise.

The semantics of a Relational Markov Decision Process can be defined
following the principles of knowledge-based model construction, which we em-
ployed while analyzing probabilistic logics such as Bayesian Logic Programs
and Markov logic. The Relational Markov Decision Process consists of the
transition rules, the reward function and a set of constants determining the
objects in the domain. The constants and the relations occurring in the transi-
tion rules determine the state space. Each Herbrand interpretation over these
relations and constants is a possible state. The actions, rewards and transi-
tions between the states are defined by the transition rules and the reward
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function, and determine the possible transitions between these “grounded”
states. It can be proved that for any set of constants, a Markov Decision Pro-
cess is constructed in this way; see, for instance, [Kersting and De Raedt,
2003] for more details. By varying the set of constants, different state spaces
and Markov Decision Processes are obtained. Observe also that the Strips

formalism supports parameter tying.

Example 8.48. If we use as constants a and b we obtain the Strips represen-
tation of our initial Markov Decision Process. The states

a
b

and
b
a

and a b

are not directly representable using the relational Markov Decision Process
just defined. The reason is that we do not explicitly take into account the floor
of the blocks. Taking into account a unique floor requires the adaptation of the
transition rules, and the introduction of new transition rules. We use simpler
state descriptions, in which it is assumed that there are a fixed number of
places (like f1 and f2) where blocks can be placed. This is the view where f1
and f2 are treated as floor blocks. It leads to the following possible states for
the blocks a and b and places f1 and f2

{on(a, b), on(b, f1), cl(f2), cl(a)} {on(a, b), on(b, f2), cl(f1), cl(a)}
{on(b, a), on(a, f1), cl(f2), cl(b)} {on(b, a), on(a, f2), cl(f1), cl(b)}
{cl(a), cl(b), on(a, f1), on(b, f2)} {cl(a), cl(b), on(a, f2), on(b, f1)}

Exercise 8.49. Can you adapt the transition rules for the case where there
is a unique floor on which one can place an arbitrary number of stacks? The
transition should support the representation of the blocks world that we in-
troduced first.

8.6.4 Solving Relational Markov Decision Processes

Now that Relational Markov Decision Processes have been defined, we look
into possible approaches for solving them. More specifically, we investigate how
both the value iteration and the Q-learning approaches can be adapted. We
start with the simplest of these two, that is, Q-learning. Then we present one
of its variants, abstract Q-learning, before discussing relational value iteration.

Q-Learning

To adapt Q-learning to work with relational representations, all that is needed
is a relational function approximator to learn the Q-function. This can be
realized by using, for instance, a logical regression tree for representing the Q-
function. The decision list resulting from the tree might, for the blocks world,
look like
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qvalue(10) ← cl(a), !.
qvalue(9.0) ← on(X, a), cl(X), cl(F1),move(X,F1, a), !.
qvalue(8.1) ← on(X,Y), on(Y, a), cl(X), cl(F1), cl(F2),move(X,F1,Y), !.
qvalue(7.2) ←

This definition of the Q-function can be applied to a state and an action
represented as a set of ground facts. It then returns the Q-value.

Although the induction of such regression trees proceeds essentially along
the same lines as for other decision trees, there are some subtle difficulties that
occur in a reinforcement learning setting. First, the algorithm should learn
online, that is, it should process the examples as they occur and incrementally
adapt the current hypothesis. Second, the examples provided to the regression
algorithm might change over time. As the policy improves over time the values
associated to a state action pair may change as well, which implies that later
examples might invalidate former ones, and hence some way of forgetting
is necessary. Further subtleties arise in the relational case. Even though the
logical regression tree will predict a value for each state, the predicted value
will be independent of the number of objects in the state, and this causes
problems. The reason is that Q-values implicitly encode the distance to the
goal. Let us illustrate this using an example.

Example 8.50. Assume the reward function returns 10 when entering a state
where on(a, b) and 0 otherwise, that such states are absorbing, that we have
n blocks, and more than four places. Thus, the goal is to stack a onto b, and,
due to the absorbing states, the task is episodic. The optimal policy for this
case first clears a and b, that is, it repeatedly removes the top blocks from
the stacks to which a and b belong, and then moves a onto b. The state-value
function for this policy is graphically depicted in Fig. 8.12 (for γ = 0.9). The
figure shows clearly that the higher the number of needed actions, the lower
the utility, and hence that the utility is a function of the distance to the goal.
Nevertheless, the optimal strategy can be defined independent of the distance
to the goal. It simply removes the next block from the stack above a or b until
a and b are clear, after which a is moved on top of b.

The example indicates that policies are often easier to encode than value
functions, which explains why some approaches try to learn and represent
policies directly rather than through their value functions [Fern et al., 2007].
It is also possible to learn an explicit policy starting from the Q-function
[Džeroski et al., 2001]. This can be realized by using the Q-function to generate
examples consisting of state-action pairs. Positive examples are those for which
the action associated with the state is optimal; the negative examples contain
the non-optimal actions.

Abstract Q-Learning**

In the Q-learning approach just presented the learner generates the definition
of the Q-function from a set of examples in the form of state-action-value
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Fig. 8.12. Parts of the value function for on(a, b). Reproduced from [Kersting et al.,
2004]. Uppercase characters denote logical variables, and the Fi can bind to blocks
or to positions

tuples, and dynamically partitions the set of possible states. For instance,
the above definition of the qvalue/1 predicate employs four partitions. These
partitions are described by a kind of abstract state, that is, a logical condition,
which matches several real states. For instance, the first rule matches all states
in which cl(a) is true, the second one all states in which cl(a) is not true, but
on(X, a), cl(X) is true, etc. The relational Q-learning approach sketched above
thus needs to solve two tasks: finding the right partition and learning the right
values for the corresponding abstract state-pairs. This is a hard task, and the
question arises as to whether it can be simplified, for instance, by providing
additional knowledge in the form of the partition to the learner. The answer
to this question is affirmative. It is actually easy to devise a variant of the
relational Q-learning approach that learns at an abstract level; cf. [van Otterlo,
2008, Kersting and De Raedt, 2003]. The abstract Q-learning algorithm starts
from a partition of the state space in the form of a decision list of abstract
state-action pairs ((S1, A1), · · · , (Sn, An)), where we assume that all possible
abstract actions are listed for all abstract states. Each abstract state Si is a
conjunctive query, and each abstract action Ai contains a possibly variablized
action. As one example of such an abstract state-action pair consider the
condition of the third rule for qvalue/1 above, that is,

on(X,Y), on(Y, a), cl(X), cl(F1), cl(F2) − move(X,F1,Y)

The abstract state matches any real state where there is a block X on a, X is
clear and so are F1 and F2, and the action moves X from Y to F1.
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The abstract Q-learning algorithm now turns the decision list into the
definition of the qvalue/1 predicate, and then applies Q-learning using the
qvalue/1 predicate as its table of state-action pairs. This means that every
time a concrete state-action pair (s, a) is encountered, a Q-value q is computed
using the current definition of qvalue/1, and then the abstract Q-function,
that is, the definition of qvalue/1 is updated for the abstract state-action pair
to which (s, a) belongs. It can be shown that this algorithm will converge
to the optimal policy at the abstract level. However, the optimal policy at
the abstract level does not necessarily coincide with the optimal policy of
the underlying Relational Markov Decision Process as the following example
shows.

Example 8.51. ** (Due to Robert Givan, closely following [Kersting and De
Raedt, 2003].) Consider the following transition rules

1.0 : a :: q ← p, q
1.0 : a :: ∅ ← p
1.0 : a :: p ←

The resulting Markov Decision process has the states {}, {p}, {q}, and {p, q}
and as only possible action, a, which is deterministic. Let us also assume that
the reward is 1.0 if the action a is executed in state {p} and 0 otherwise.

Let the abstraction level now consist of the decision list
(
(p, a), (q, a), (true, a)

)

This abstraction level results in the following partition of the states

{{p}, {p, q}} and {{q}} and {{}}

The abstract Markov Decision Process will now assign the same probabilities
and rewards to the transitions from the second partition to the first one and
from the third to the first one. Thus the abstract Markov Decision Process
seems to have a non-Markovian nature. As a consequence the values for the
second and third partition in the abstract Markov Decision Process are the
same as the next state is the same, that is, the first partition. This is not the
case for the (grounded) Relational Markov Decision Process, as the reader
may want to verify.

The example shows that learning at the abstract level may result in losing
information about the original problem, resulting in a kind of partially observ-
able Markov Decision Process, which requires more advanced solution tech-
niques. This shows that relational reinforcement learning is a hard problem,
as it is important to get the abstraction level right. The relational Q-learning
approach offers no guarantees in this respect.



286 8 Probabilistic Logic Learning

Value Iteration**

Value iteration is a model-based technique, and therefore the model is avail-
able. The model of the Relational Markov Decision Process consists of the
definitions of the transition and rewards functions. We now want to adapt
the value iteration algorithm for use with relational representations. The key
difficulty lies in the upgrading of the the update rule, based on the Bellman
optimality equation Eq. 8.83. The update rule works backwards, that is, to
update the value of a state it employs the values of the possible predeces-
sor states. While the predecessors are explicitly encoded in a normal Markov
Decision Process, they are now only implicitly available.

Example 8.52. For illustration, consider that we are in the goal state where
on(a, b) is true, and assume that we want to update the value function. Then
we need to update the abstract state, where on(a, b) is true, to identify all
states in which executing the action move(X,Y,Z) leads to on(a, b) being true.
In other words, we need to find the weakest preconditions under which exe-
cuting the action move(X,Y,Z) leads to on(a, b). This is needed because the
Bellman optimality equation defines the value of a state in terms of those of
its predecessors. The problem of computing the weakest preconditions of an
(abstract) state is known as regression in the planning literature; cf. [Russell
and Norvig, 2004]. There are two cases to consider for computing the weakest
preconditions for our example. First, assuming that the move(X,Y,Z) action
caused on(a, b) to be true, implies that in the predecessor state the condition
cl(a), cl(b), on(a,Z) must have been true X = a and Y = b. Second, assuming
that the move action did not cause on(a, b) to become true, the predecessor
state must have satisfied cl(X), cl(Y), on(X,Z), on(a, b). Please note that we
are still using OI-subsumption, which implies that X �= Y, X �= a, etc.

The example shows that a complex logical operation is needed to com-
pute the abstract predecessors of an abstract state, and this makes adapting
the value iteration algorithm quite involved, which explains why we refer to
[Boutilier et al., 2001, Kersting et al., 2004, Wang et al., 2008] for more details.
The idea, however, is that the value iteration algorithm takes as initial value
function the reward function, and then propagates the conditions occurring in
the rules defining the reward function backwards using regression. This pro-
cess is then repeated on the resulting value function. Additional complications
arise because the conditions of the rules defining the value function may be
overlapping, and some rules might be redundant, which explains why some
approaches [Kersting et al., 2004] employ further operations on these rules
sets to compress and simplify the definition of the value function. Figure 8.12
shows the state value function that is the result of performing a 10-step rela-
tional value iteration algorithm. The reader should also realize that, when the
potential number of blocks is unbounded, value iteration will never terminate
as an infinite number of abstract states would be required.
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To summarize, relational reinforcement learning aims at upgrading re-
inforcement learning techniques and principles to use logical and relational
representations. Two main approaches exist: model-based and model-free re-
inforcement learning. The model-based approach is closely related to decision-
theoretic planning, and borrows regression techniques to compute value func-
tions. The model-free approach uses relational function approximators to learn
value functions, or assume that an abstraction level in the form of a partition
of the state space is given. We have also seen that many challenges in rela-
tional reinforcement learning remain open, which explains why it is an active
field of research; see [Driessens et al., 2004, 2005] for two collections of recent
papers on this topic.

8.7 Conclusions

We have provided an overview of the new and exciting area of probabilistic
logic learning in this chapter. It combines principles of probabilistic reasoning,
logical representation and statistical learning into a coherent whole. The tech-
niques of probabilistic logic learning were analyzed starting from a logical and
relational learning perspective. This turned out to be useful for obtaining an
appreciation of the differences and similarities among the various frameworks
and formalisms that have been contributed to date. In particular, the distinc-
tion between a model- and a proof-theoretic view was used for clarifying the
relation among the logical upgrades of Bayesian networks (such as probabilis-
tic relational models, Bayesian logic programs, etc.) and grammars (such as
stochastic logic programs and Prism). This distinction is not only relevant
from a knowledge representation perspective but also from a machine learning
perspective, because one typically learns from interpretations in the model-
theoretic approaches, from entailment in the proof-theoretic ones, and from
traces in the intermediate ones (such as Rmms and Lohmms). Furthermore,
principles of both statistical learning and logical and relational learning can
be employed for learning the parameters and the structure of probabilistic
logics. We have then also shown how important ideas such as knowledge-
based model construction can be applied in a reinforcement learning setting,
and how various techniques from reinforcement learning can be upgraded to
relational representations.

8.8 Bibliographic Notes

This chapter is largely based on the survey papers [De Raedt and Kerst-
ing, 2003, De Raedt and Kersting, 2004], and, for the introduction to the
probabilistic techniques, on the expositions by Russell and Norvig [2004], and
Manning and Schütze [1999]. Two collections of recent research papers on



288 8 Probabilistic Logic Learning

statistical relational learning and probabilistic logic learning provide a de-
tailed account of the state-of-the-art in the field; cf. [Getoor and Taskar, 2007,
De Raedt et al., 2008]. Background material on graphical and probabilistic
models can be found in [Russell and Norvig, 2004, Jensen, 2001].

Probabilistic logics were originally mostly studied from a knowledge rep-
resentation and reasoning perspective. Many different representations and in-
ference algorithms were developed from this perspective in the late 1980s and
1990s; see, for instance, [Nilsson, 1986, Bacchus, 1990, Poole, 1993b, Dantsin,
1992, Haddawy, 1994, Ngo and Haddawy, 1995, Muggleton, 1996, Jaeger, 1997,
Koller and Pfeffer, 1997, Lakshmanan et al., 1997]. The interest in learning
such logics started soon afterwards with work on Prism [Sato, 1995, Sato and
Kameya, 1997] and on probabilistic relational models [Friedman et al., 1999,
Getoor et al., 2001a,b]. Especially the probabilistic relational models received
a lot of attention in the artificial intelligence community, and soon afterwards
the first workshops on statistical relational learning were organized [Getoor
and Jensen, 2003, 2000]. Around that time, many further representations were
conceived, including Bayesian Logic Programs [Kersting and De Raedt, 2007],
CLP(BN) [Costa et al., 2003a], iBAL [Pfeffer, 2007], Markov logic [Richard-
son and Domingos, 2006], and CP-logic [Vennekens et al., 2006], and several
learning techniques were developed, such as [Cussens, 2001, Kok and Domin-
gos, 2005, Jaeger, 2007, Singla and Domingos, 2005, Taskar et al., 2001].
Furthermore, theoretical issues such as expressiveness of the representation
languages Jaeger [2008] and lifted inference were being investigated [Poole,
2003, de Salvo Braz et al., 2007]. Also, some exciting applications of proba-
bilistic logic learning have been contributed; see for instance [Getoor et al.,
2004, Anderson et al., 2002, Bhattacharya et al., 2006, Fern et al., 2002, Liao
et al., 2005, King et al., 2004, Limketkai et al., 2005].

Introductions to reinforcement learning can be found in [Russell and
Norvig, 2004, Sutton and Barto, 1998]. The use of relational representations
was introduced in reinforcement learning by Džeroski et al. [2001], and investi-
gated from a decision theoretic perspective (value iteration) by Boutilier et al.
[2001]. Since then several works have been devoted to these topics, including
[Gärtner et al., 2003, Driessens et al., 2001, Wang et al., 2008, Kersting et al.,
2004, Sanner and Boutilier, 2005]; an extensive overview of these developments
can be found in [van Otterlo, 2008].
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Kernels and Distances for Structured Data

Many contemporary machine learning approaches employ kernels or distance
metrics, and in recent years there has been a significant interest in developing
kernels and distance metrics for structured and relational data. This chapter
provides an introduction to these developments, starting with a brief review of
basic kernel- and distance-based machine learning algorithms, and then provid-
ing an introduction to kernels and distance measures for structured data, such
as vectors, sets, strings, trees, atoms and graphs. While doing so, we focus
on the principles used to develop kernels and distance measures rather than
on the many variants and variations that exist today. At the same time, an
attempt is made to draw parallels between the way kernels and distance mea-
sures for structured data are designed. Convolution and decomposition can be
used to upgrade kernels for simpler data structures to more complex ones; cf.
[Haussler, 1999]. For distances, decomposition is important, as is the relation-
ship between the generality relation and the size of the data; cf. [De Raedt and
Ramon, 2008].

9.1 A Simple Kernel and Distance

Distance- and kernel-based learning is typically addressed in the traditional
function approximation settings of classification and regression introduced in
Sect. 3.3. Both distances and kernels provide information about the similarity
amongst pairs of instances. Indeed, a kernel function can directly be inter-
preted as measuring some kind of similarity, and the distance amongst two
objects is inversely related to their similarity.

To introduce distances and kernels, we will in this section focus on the
familiar Euclidean space, that is Le = R

d. In this space, the instances cor-
respond to vectors, for which we use the notation x or (x1, · · · , xd), with
components xi.

In the next section, we will then discuss the use of kernels and distances in
machine learning using standard distance- and kernel-based approaches, such
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as the k-nearest neighbor and support vector machine algorithms. Afterwards,
we shall investigate how distances and kernels for structured data can be
constructed, in particular for strings, sets and graph-structured data. While
doing so, we shall focus on the underlying principles rather than on the many
specific distance measures and kernels that exist today.

A natural distance measure for R
d is the Euclidean distance:

de(x,y) =
√∑

i

(xi − yi)2 (9.1)

The simplest kernel for R
n is the inner product :

< x,y >=
∑

i

xiyi (9.2)

The norm ‖x‖ of a vector x denotes its size. It can be computed from the
inner product as follows:

‖x‖ =
√

< x,x > (9.3)

Furthermore, the inner product < x,y > of two vectors in R
d can be written

as

< x,y >= ‖x‖ ‖y‖cos(α) (9.4)

where α is the angle between the two vectors x and y, which allows us to
interpret the inner product in geometric terms. The equation states that when
the two vectors are normalized (that is, have length 1), the inner product
computes the cosine of the angle between the two vectors. It then follows that
when α = 0, < x,y > = 1, and when the two vectors are orthogonal, the inner
product yields the value 0. This indicates that the inner product measures a
kind of similarity.

Even though we will formally introduce kernels and distance measures
later an interesting relationship amongst them can already be stated. Any
(positive definite) kernel K induces a distance metric dK as follows:

dK(x,y) =
√

K(x,x) − 2K(x,y) + K(y,y) (9.5)

It is instructive to verify this statement using the kernel K(x,y) =< x,y >.

Exercise 9.1. Show that the distance de can be obtained from Eq. 9.5 using
the inner product as a kernel, that is:

de(x,y) =
√

< x,x > − 2 < x,y > + < y,y >. (9.6)

A key difference between a kernel and a distance measure is that ker-
nels measure the similarity between instances whereas distances measure the
dissimilarity.
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Example 9.2. Assume that the instances are vectors over {−1,+1}d and that
we are using, as before, the inner product kernel. The maximum value of the
inner product over all possible pairs of instances will be d, and this value will
be obtained only when the two instances are identical. The minimum value will
be −d, which will be obtained when the two vectors contain opposite values
at all positions. So, the maximum is reached when the vectors are identical
and the minimum is reached when they are opposite. It is easy to see that
using a distance measure this is just the other way around. The minimum of
0 will always be reached when the objects are identical.

9.2 Kernel Methods

In this section, we briefly review the key concepts underlying kernel methods
in machine learning. More specifically, we first introduce the max margin
approach, continue with support vector machines, and then conclude with the
definitions of some simple kernels. This section closely follows the introductory
chapter of the book by Schölkopf and Smola [2002]. The next section then
provides an introduction to distance-based methods in machine learning.

9.2.1 The Max Margin Approach

The basic max margin approach tackles the binary classification task, in which
the instances are vectors and the classes are {+1,−1}. The goal is then to
find a hypothesis h in the form of a hyperplane that separates the two classes
of examples. Hyperplanes can conveniently be defined using an inner product
and the equation

< w,x > +b = 0 (9.7)

where w is the weight vector and b is a constant. The hyperplane then consists
of all vectors x that are a solution to this equation. Such a hyperplane h can
then be used to classify an example e as positive or negative by computing

h(e) = sgn(< w, e > +b) where (9.8)

sgn(val) =
{

+1 if val > 0
−1 if val � 0 (9.9)

The idea is not just to compute any hyperplane h that separates the two
classes, but the optimal one, which maximizes the margin. The margin of a
hyperplane h = (w, b) w.r.t. a set of examples E is given by

margin(h,E) = min{‖x − ei‖ | ei ∈ E,< w,x > + b = 0} (9.10)

The margin can be interpreted as the minimum distance between an example
and the hyperplane. The theory of statistical learning shows that maximiz-
ing the margin provides optimal generalization behavior. Thus the maximum



292 9 Kernels and Distances for Structured Data

margin approach computes the optimal hyperplane, that is, the hyperplane
h∗ that maximizes the margin:

h∗ = arg max
h

margin(h,E) (9.11)

9.2.2 Support Vector Machines

Computing the maximum margin hyperplane is an optimization problem that
is usually formalized in the following way. The first requirement is that the
examples (ei, f(ei)) are correctly classified. Mathematically, this results in the
constraints:

∀e ∈ E : f(e)
(

< w, e > + b
)

> 0 (9.12)

Secondly, because any solution (w, b) to this set of equations can be scaled by
multiplying with a constant, the convention is that those examples closest to
the hyperplane satisfy

| < w, e > + b | = 1 (9.13)

This results in the following optimization problem:

minw,b < w,w >

subject to ∀e ∈ E : f(e)
(

< w, e > + b
)

� 1 (9.14)

It can be shown that

margin(h,E) =
1

‖w‖ (9.15)

(see [Schölkopf and Smola, 2002] for the proof). Therefore, minimizing ‖w‖
corresponds to maximizing the margin(h,E). This is illustrated in Fig. 9.1.

The optimization problem is usually not solved in the form listed above.
It is rather turned into the dual problem using the theory of Karush, Kuhn
and Tucker and the Langragian; cf. [Cristianini and Shawe-Taylor, 2000]. This
dual formulation is typically an easier optimization problem to solve:

max(α1,··· ,αn)

∑

i

αi −
1
2

∑

i,j

f(ei)f(ej)αiαj < ei, ej >

subject to ∀i : αi � 0 and
∑

i

f(ei)αi = 0 (9.16)

Several public domain quadratic programming solvers exist that solve this
optimization problem. Using this formulation, the weight vector w is a linear
combination of the data vectors:
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Fig. 9.1. The max margin approach and the support vectors. The positive examples
are marked with a “+” and the negative ones with an “o”. The maximum margin
hyperplane is the middle line. The support vectors lying on the dotted lines, and
the vector normal to the margin is indicated by w

w =
∑

i

αif(ei) ei (9.17)

Typically, many αi will have the value 0. Those vectors ei with non-zero αi

are the so-called support vectors. These are also the vectors that lie on the
margin, that is, those for which

f(ei)
(

< w, ei > + b
)

= 1 (9.18)

These are the only ones that influence the position of the optimal hyperplane.
The constant b can be obtained by substituting two support vectors, one for
each class, in Eq. 9.18 and solving for b. The value h(e) of a new data point
e can then be computed as:

h(e) = sgn
( ∑

i

αif(ei) < ei, e > + b
)

(9.19)

Given that the αi are non-zero only for the support-vectors, only those need
to be taken into account in the above sum.

A central property of the formulation of the dual problem in Eq. 9.16 as
well as the use of the resulting hyperplane for prediction in Eq. 9.19 is that
they are entirely formulated in terms of inner products. To formulate the dual
problem, one only needs access to the data points and to the so-called Gram
matrix, which is the matrix containing the pairwise inner products < ei, ej >
of the examples.
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There are numerous extensions to the basic support vector machine set-
ting. The most important ones include an extension to cope with data sets
that are not linearly separable (by introducing slack variables ξi for each of
the instances) and several loss functions designed for regression.

9.2.3 The Kernel Trick

The support vector machine approach introduced above worked within the
space R

d, used the inner product as the kernel function and worked under
the assumption that the examples were linearly separable. In this subsection,
we will lift these restrictions and introduce a more formal definition of kernel
functions and some of its properties.

Consider the classification problem sketched in Fig. 9.2. Using the max
margin approach with the inner product kernel, there is clearly no solution to
the learning task. One natural and elegant solution to this problem is to first
transform the instances e to some vector Φ(e) in some other feature space
and to then apply the inner product.

Example 9.3. Using the function

Φ : R
2 → R

3 : (x1, y1) → (x2
1,
√

2x1x2, x
2
2)

the examples are separable using a hyperplane in the transformed space R
3.

This motivates the use of the kernel

K(x,y) =< Φ(x), Φ(y) > (9.20)

instead of the inner product in R
2. The interesting point about this kernel K

is that Φ does not have to be computed explicitly at the vectors, because

K(x,y) =< x,y >2 (9.21)

This is called the kernel trick. It often results in enormous computational sav-
ings as the dimension of the transformed space can be much larger than that
of the input space Le. The example also illustrates that kernels are essentially
inner products in some feature space that does not necessarily coincide with
the input space Le.

Formally, functions have to satisfy some conditions for being a kernel and
for the optimization approaches sketched above to work. In particular, one
typically uses so-called Mercer kernels, which are symmetric functions that
are positive definite.1 For convenience, we will continue to talk about kernels
instead of Mercer or positive definite kernels.
1 A symmetric function is positive definite if and only if ∀m ∈ N : ∀x1, · · · ,xm ∈
Le : ∀a1, · · · , am ∈ R :

∑m
i,j=1 aiajK(xi,xj) � 0, or, equivalently, if the eigenval-

ues of the possible Gram matrices are non-negative.
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Many interesting kernels can be constructed using the following properties
and the observation that the inner product in Euclidean space is a kernel.
Basically, if H(x,y) and G(x,y) are kernels on Le × Le then the functions

Ks(x,y) = H(x,y) + G(x,y)
Kp(x,y) = H(x,y)G(x,y)
Kd(x,y) = (H(x,y) + l)d

Kg(x,y) = exp(−γ(H(x,x) − 2H(x,y) + H(y,y)))

Kn(x,y) =
H(x,y)√

H(x,x).H(y,y)
(9.22)

are also kernels,2 where s stands for sum, p for product, d for polynomial, g
for Gaussian and n for normalized.

Exercise 9.4. Show how the kernel Eq. 9.21 can be formulated as a polyno-
mial kernel. Show also that this kernel corresponds to < Φ(x), Φ(y) > with Φ
defined as in Eq. 9.20.

In Sect. 9.4, we shall expand these results to obtain kernels for structured
data. Before doing so, we turn our attention to distance-based learning.

+

+

+

+
+

+

o
o

o
o

+

+

o

o

o

Fig. 9.2. A circular concept. The examples are marked with a “+” and the negative
ones with an “o”. Whereas there is no hyperplane in the original space that separates
the positives from the negatives, there is one in the feature space. Mapping that
hyperplane back to the original space yields the circular concept indicated

2 For the normalized kernel, it is assumed that K(x, x) > 0 for all x.
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9.3 Distance-Based Learning

Two of the most popular distance-based learning algorithms are the k-nearest
neighbor algorithm for classification and regression and the k-means clustering
algorithm. Both types of algorithms employ distance measures or metrics,
which we introduce before presenting these algorithms.

9.3.1 Distance Functions

Distance measures and metrics are mathematically more easy to define than
kernels, but often harder to obtain.

A distance measure is a function d : Le × Le → R that measures the
distance between instances in e. Distance measures must satisfy the following
requirements:

non-negativeness: ∀x, y : d(x, y) � 0 (9.23)
reflexivity: ∀x, y : d(x, x) = 0 (9.24)
strictness: ∀x, y : d(x, y) = 0 only if x = y (9.25)
symmetry: ∀x, y : d(x, y) = d(y, x) (9.26)

If a distance measure also satisfies the triangle inequality

∀x, y, z : d(x, y) + d(y, z) � d(x, z) (9.27)

then the distance measure is called a metric.

Exercise 9.5. Show that de as defined in Eq. 9.1 is a metric.

Using Eq. 9.22 one can define new kernels in terms of existing ones. This
is also possible for distance metrics. For instance, if d1 and d2 are metrics
defined on Le × Le and c, k ∈ R, then

dc(x, y) = cd1(x, y)
d1+2(x, y) = d1(x, y) + d2(x, y)

dk(x, y) = d1(x, y)k with 0 < k � 1

dn(x, y) =
d1(x, y)

d1(x, y) + 1
(9.28)

are metrics, but functions such as

dp(x, y) = d1(x, y) d2(x, y) (9.29)

are not.

Exercise 9.6. Show that dp is not a metric.
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9.3.2 The k-Nearest Neighbor Algorithm

The k-nearest neighbor algorithm applies to both classification and regression
tasks, where one is given a set of examples E = {(e1, f(e1)), · · · , (en, f(en))}
of an unknown target function f , a small positive integer k, and a distance
measure (or metric) d : Le × Le → R. The idea is to simply store all the
examples, to keep the hypothesis h implicit, and to compute the predicted
value h(e) for an instance e by selecting the set of k nearest examples Ek to
e and computing the average value for f on Ek. This prediction process is
sketched in Algo. 9.1.

Algorithm 9.1 The k-nearest neighbor algorithm
Ek := {(x, f(x)) ∈ E|d(e, x) is amongst the k smallest in E}
Predict h(e) := avgx∈Ekf(x)

In this algorithm, the function avg computes the average of the values
of the function f in Ek. In a classification settting, avg corresponds to the
mode, which is the most frequently occurring class in Ek, while in a regression
setting, avg corresponds to the arithmetic average. The k-nearest neighbor
algorithm is very simple to implement; it often also performs well in practice
provided that the different attributes or dimensions are normalized, and that
the attributes are independent of one another and relevant to the prediction
task at hand; cf. standard textbooks on machine learning such as [Mitchell,
1997, Langley, 1996].

Exercise 9.7. Argue why violating one of these assumptions can give prob-
lems with the k-nearest neighbor algorithm.

Many variants of the basic k-nearest neighbor algorithm exist. One involves
using all the available examples x in E but then weighting their influence
in h(e) using the inverse distance 1/d(e, x) to the example e to be classified.
Other approaches compute weights that reflect the importance of the different
dimensions or attributes. Further approaches devise schemes to forget some
of the examples in E [Aha et al., 1991].

9.3.3 The k-Means Algorithm

Clustering is a machine learning task that has, so far, not been discussed
in this book. When clustering, the learner is given a set of unclassified ex-
amples E, and the goal is to partition them into meaningful subsets called
clusters. Examples falling into the same cluster should be similar to one an-
other, whereas those falling into different classes should be dissimilar. This
requirement is sometimes stated using the terms high intra-cluster similar-
ity and low inter-cluster similarity. There are many approaches to clustering,
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but given that this chapter focuses on distances, we only present a simple
clustering algorithm using distance measures.

The k-means algorithm generates k clusters in an iterative way. It starts
initializing these clusters by selecting k examples at random, the initial cen-
troids, and then computing the distance between each example and the k
centroids. The examples are then assigned to that cluster for which the dis-
tance between the example and its centroid is minimal. In the next phase, for
each cluster, the example with minimum distance to the other examples in
the same cluster is taken as the new centroid, and the process iterates until
it converges to a stable assignment, or the number of iterations exceeds a
threshold. The algorithm is summarized in Algo. 9.2.

Algorithm 9.2 The k-means algorithm
Select k centroids ck from E at random
repeat

Initialize all clusters Ck to their centroids {ck}
for all examples e ∈ E − {c1, ..., ck} do

Let j := arg minj d(e, cj)
Add e to Cj

end for
for all clusters Cj do

Let i := arg mini

∑
e∈Cj

d(e, ei)
cj := ei

end for
until convergence, or, max number of iterations reached

Several variants of the k-means algorithm exist. Analogously to the c-
nearest neighbor algorithm there is the c-means algorithm for soft clustering.
In soft clustering, all examples belong to all the clusters to a certain degree.
The degree is, as in the c-nearest neighbor algorithm, inversely related to the
distance to the centroid of the cluster. There is also the k-medoid algorithm,
where the centroids are replaced by medoids, which correspond to the average
of the instances in the cluster.

9.4 Kernels for Structured Data

In this section, we first introduce a general framework for devising kernels for
structured data, the convolution kernels due to Haussler [1999], and we then
show how it can be applied to different types of data: vectors and tuples, sets
and multi-sets, strings, trees and atoms, and graphs. In the next section, we
will take a similar approach for defining distance measures and metrics.
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9.4.1 Convolution and Decomposition

In Haussler’s framework for convolution kernels, Le consists of structured
instances e, and it is assumed that there is a decomposition relation R defined
on Le × E1 × · · · × ED such that the tuple

(e, e1, · · · , eD) ∈ R if and only if e1, · · · , eD are parts of e (9.30)

So, the Ei denote spaces of parts of objects. We shall also write (e1, · · · , eD) ∈
R−1(e).

The type of decomposition relation depends very much on the nature of
the structured instances in Le. For instance, when dealing with sets, it is
natural to define R(e, x) = x ∈ e; when dealing with strings, one can define
R(e, x1, x2) as concatenation, that is, R(e, x1, x2) is true if and only if e is x1

concatened with x2; and when dealing with vectors in R
n, R(e, x1, · · · , xn) is

true if e denotes the vector (x1, · · · , xn). Observe that there may be multiple
ways to decompose an object. For instance, when working with strings of
length n, they can be decomposed in n different ways using the concatenation
relation.

The basic result by Haussler employs kernels Kd : Ed × Ed → R defined at
the part level to obtain kernels at the level of the instances Le using a finite
decomposition relation R. More formally, under the assumption that the Kd

are kernels, Haussler shows that

KR,⊕(x, z) =
∑

(x1,··· ,xD)∈R−1(x)

∑

(z1,··· ,zD)∈R−1(z)

D∑

d=1

Kd(xd, zd) (9.31)

KR,⊗(x, z) =
∑

(x1,··· ,xD)∈R−1(x)

∑

(z1,··· ,zD)∈R−1(z)

D∏

d=1

Kd(xd, zd) (9.32)

are also kernels.
This is a very powerful result that can be applied to obtain kernels for

sets, vectors, strings, trees and graphs, as we will show below.
The idea of defining a function on pairs of structured objects by first

decomposing the objects into parts and then computing an aggregate on the
pairwise parts is also applicable to obtaining distance measures. It is only that
the aggregation function used will often differ, as will become clear throughout
the remainder of this chapter.

9.4.2 Vectors and Tuples

The simplest data type to which decomposition applies is that of vectors and
tuples. They form the basis for attribute-value learning and for the more
complex relational learning settings.
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Let us first reinvestigate the inner product over R
d. Viewing the product

in R as a kernel K×, the inner product in R
d can be viewed as a decomposition

kernel (using Eq. 9.32):

< x,y >=
∑

i

K×(xi, yi) (9.33)

This definition can easily be adapted to define kernels over tuples in attribute-
value form. The key difference is that, generally speaking, not all attributes
will be numeric. To accomodate this difference, one only needs to define a
kernel over a discrete attribute. This could be, for instance,

δ(x, y) =
{

1 if x = y
0 otherwise (9.34)

Example 9.8. Reconsider the playtennis example of Table 4.1. Using δ in com-
bination with the dot product yields:

< (sunny, hot, high, no), (sunny, hot, high, yes)>= 3

9.4.3 Sets and Multi-sets

When using sets, and membership as the decomposition relation, and a kernel
Kel defined on elements, we obtain the convolution kernel KSet:

KSet(X,Y ) =
∑

xi∈X

∑

yj∈Y

Kel(xi, yj) (9.35)

For instance, if Kel(x, y) = δ(x, y) (cf. Eq. 9.34), then

KSet−δ(X,Y ) = |X ∩ Y | (9.36)

Of course, other kernels at the element level can be choosen as well. For sets,
it is also convenient to normalize the kernel. This can be realized using Eq.
9.22, which yields

KSetNorm(X,Y ) =
KSet(X,Y )√

KSet(X,X)KSet(Y, Y )
(9.37)

Using the δ kernel, we obtain

KSetNorm−δ(X,Y ) =
|X ∩ Y |√
|X| |Y |

(9.38)

where it is assumed that the sets are not empty.
The KSet kernel naturally generalizes to multi-sets. The only required

change is that in the summations the membership relation succeed multiple
times for those objects that occur multiple times.

Exercise 9.9. Compute KMultiSet−δ({a, a, b, b, c}, {a, a, b, b, b, d}) using Kel =
δ.
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9.4.4 Strings

Let us now apply convolution kernels to strings. There are two natural ways
of decomposing a string into smaller strings. The first employs the substring
relation, the second the subsequence relation.

A string S : s0 · · · sn is a substring of T : t0 · · · tk if and only if

∃j : s0 = tj ∧ · · · ∧ sn = tj+n (9.39)

that is, all symbols in the string S occur in consecutive positions in the string
T .

On the other hand, a string S : s0 · · · sn is a subsequence of T : t0 · · · tk if
and only if

∃j0 < j1 < · · · < jn : s0 = tj0 ∧ · · · ∧ sn = tjn
(9.40)

that is all symbols in the string S occur in positions in the string T in the
same order, though not necessarily consecutively. jn − j0 + 1 is called the
occurring length of the subsequence. For instance, the string achi is a substring
of machine and a subsequence of Tai-chi of length 5.

These two notions result in alternative relationships R. Let us first consider
the substring case, where the string can be decomposed into its substrings. It
is convenient to consider only substrings from Σn, the set of all strings over
Σ containing exactly n symbols, yielding:

R−1
substring(s) = {t ∈ Σn|t is a substring of s} (9.41)

Note that it is assumed that R−1
substring returns a multi-set. In combination

with a kernel such as δ, it is easy to obtain a substring kernel.

Example 9.10. Consider the strings john and jon. When choosing n = 2:

R−1
substring(john) = {jo, oh, hn}
R−1

substring(jon) = {jo, on}

Therefore, Ksubstring(john, jon) = 1 because there is one common substring
of length 2.

It is also interesting to view this kernel as performing a kind of feature con-
struction or propositionalization. Essentially,

Ksubstring(s, t) =< Ψsubstring(s), Ψsubstring(t) >, (9.42)

which corresponds to the inner product using the feature mappingΨsubstring(s)=
(ψu1(s), · · · , ψuk

(s)) with Σn = {u1, · · · , uk} and ψui
(s) = number of occur-

rences of ui as a substring in s. This kernel is sometimes called the n-gram
kernel.
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An interesting alternative uses the subsequence relation:

R−1
subseq(s) = {t/l|t ∈ Σn, t is a subsequence of s of occurring length l}

(9.43)

Again, it is assumed that a multi-set is returned. The idea of the subsequence
kernel is that subsequences with longer occurring lengths are penalized. This
is realized using the following kernel in the convolution in Eq. 9.32:

Kpen(s/l, t/k) =
{

λl+k if s = t
0 otherwise (9.44)

where 0 < λ < 1 is a decay factor that determines the influence of occurring
length. The larger λ, the less the influence of gaps in the subsequences.

Example 9.11. Reconsider the strings john and jon. When choosing n = 2:

R−1
subseq(john) = {jo/2, jh/3, jn/4, oh/2, on/3, hn/2}
R−1

subseq(jon) = {jo/2, jn/3, on/2}

Hence, Ksubseq,pen(john, jon) = λ2+2 + λ3+2 + λ4+3 for the subsequences
jo, on and jn.

This kernel corresponds to the feature mapping Ψsubseq(s) = (φu1(s), · · · ,
φuk

(s)) where φui
(s) =

∑
ui/l∈R−1

subseq(s) λl.

Exercise 9.12. If one takes into account all strings of length less than or
equal n instead of only those of length n, does one still obtain valid substring
and subsequence kernels? Why? If so, repeat the two previous exercises for
this case.

The two kernels Ksubseq and Ksubstring can be computed efficiently, that
is, in time O(n|s||t|), where |s| denotes the length of the string s; cf. Gärtner
[2003].

9.4.5 Trees and Atoms

As this book is largely concerned with logical representations, which are cen-
tered around terms and atoms, this subsection concentrates on defining kernels
and distances for these structures, in particular, ground atoms. Nevertheless,
due to their intimate relationship to ordered trees, the resulting kernels and
distances can easily be adapted for use with ordered and unordered trees.

Because ground terms are hierachically structured, there is a natural way
of decomposing them. We assume that two ground terms and the type of
each of the arguments are given. One can then inductively define a kernel on
ground terms KTerm(t, s):
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=

⎧
⎪⎪⎨

⎪⎪⎩

kc(t, s) if s and t are constants
kf (g, h) if t = g(t1, · · · , tk) and s = h(s1, · · · , sm)

and g �= h
kf (g, g) +

∑
i KTerm(ti, si) if t = g(t1, · · · , tk) and t = g(s1, · · · , sk)

(9.45)
This definition assumes that kc is a kernel defined on constants and kf a
kernel defined on functor names. The kernel KTerm is an instance of the
convolution kernel defined in Eq. 9.32. It uses the decomposition function
R−1(f(t1, t2, · · · , tn)) = (f, n, t1, · · · , tn).Notice that it is also possible to em-
ploy the product convolution kernel of Eq. 9.32, which can be obtained by
replacing all sums in the recursive case by products; cf. [Menchetti et al.,
2005].

Example 9.13. If kc = kf = δ, then

Kterm(r(a, b, c), r(a, c, c)) = kf (r, r) + [Kterm(a, a) + Kterm(b, c)
+Kterm(c, c)]

= 1 + [δ(a, a) + δ(b, c) + δ(c, c)]
= 1 + [1 + 0 + 1]
= 3

It is clear that Kterm can be computed efficiently, that is, in time linearly in
the size of the two terms.

9.4.6 Graph Kernels*

Throughout this chapter, we shall focus on directed graphs in which the nodes
are labeled and the edges are not, though the reader should keep in mind that
it is often straightforward to adapt the framework to other types of graphs.
Formally, the type of graph G considered is a triple (V,E, l), where V is the set
of vertices, E ⊆ V ×V is the set of edges, and the labeling function l : V → Σ
maps vertices onto their labels from an alphabet Σ. Fig. 9.3 displays two
graphs of this type, where the vertices are numbered and the labels are from
the alphabet Σ = {A,B,C, · · · , Z}. When the context is clear, we may omit
the names of the vertices.

Subgraph Isomorphism

When working with graphs, the generality relation is specified using the notion
of subgraph morphism. For logical formulae, various notions of subsumption
exist that posses different properties, which is also the case for subgraph mor-
phisms. Best known is the subgraph isomorphism, which closely corresponds
to OI-subsumption, introduced in Sect. 5.5.1. In a subgraph ismorphism each
node of the more general graph is mapped onto a different node in the more
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G3
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G2G1

D7
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Fig. 9.3. The graphs G1, G2 and G3

specific one. The nodes in the subgraph, that is, the more general graph, play
the role of logical variables, and, as for OI-subsumption, two different nodes
(or logical variables) must be mapped onto different nodes (or terms) in the
subsumed graph. An alternative is the notion of subgraph homeomorphism,
which is closely related to θ-subsumption, introduced in Sect. 5.4, and does
allow for two nodes in the more general graph being mapped onto the same
node in the more specific graph. For simplicity, we employ in this chapter a
restricted form of subgraph isomorphism called induced subgraph ismorphism.
It is restricted because it employs subgraphs that are induced by the sub-
set relation at the level of vertices.3 More formally, Gs = (Vs, Es, ls) is an
(induced) subgraph of a graph G = (V,E, l) if and only if

Vs ⊆ V,Es = E ∩ (Vs × Vs), and ∀v ∈ Vs : ls(v) = l(v) (9.46)

Because the subgraph Gs is completely determined by Vs and G, we refer to
Gs as the subgraph of G induced by Vs. The reader may want to verify that
in Fig. 9.3 G3 is the subgraph of G2 induced by {5, 7}.

A bijective function f : V1 → V2 is a graph isomorphism from G1 =
(V1, E1, l1) to G2 = (V2, E2, l2) if and only if

∀v1 ∈ V1 : l2(f(v1)) = l1(v1) and (9.47)
∀(v, w) ∈ E1 : (f(v), f(w)) ∈ E2 and, vice versa (9.48)
∀(v, w) ∈ E2 : (f−1(v), f−1(w)) ∈ E1 (9.49)

Graph isomorphisms are important because one typically does not distinguish
two graphs that are isomorphic, a convention that we will follow throughout
this book. The notion is also used in the definition of the generality relation.

An injective function f : V1 → V2 is a subgraph isomorphism from G1 =
(V1, E1, l1) to G2 = (V2, E2, l2) if G1 is an (induced) subgraph of G2 and f is
a graph isomorphism from G1 to G2.
3 The more general notion of subgraph ismorphism takes into account the edges as

well, but this is more complicated.



9.4 Kernels for Structured Data 305

Example 9.14. There exists a subgraph isomorphism from G1 to G2. Consider
the subgraph of G2 induced by {4, 5, 6}. This subgraph is isomorphic to G1

by using the function f(1) = 4, f(2) = 5 and f(3) = 6.

Exercise 9.15. * Represent the graphs of the previous example as sets of
facts. Use this representation to relate the various types of graph isomorphism
to the different notions of subsumption; cf. Sect. 5.9.

Graph Kernels

When developing kernels for graphs or unordered rooted trees, it is tempting
to make an analogy with the string kernels. The analogy suggests decomposing
the graph into its subgraphs because strings were decomposed into substrings
or subsequences.

In terms of a feature mapping, this corresponds to the choice

Ψsubgraph(G) = (ψg1(G), ψg2(G), ψg3(G) · · · ) (9.50)

for a particular (possibly infinite) enumeration of graphs g1, g2, · · · and the
features

ψgi
(G) = λ|edges(gi)| × |{g subgraph of G|g is isomorphic to gi}| (9.51)

where it is assumed that there is a sequence of decay factors λi ∈ R, and
the λi > 0 account for the possibly infinite number of graphs. The result
is a valid kernel (as shown by Gärtner et al. [2003]). However, computing
the kernel is NP-complete, which can be proven using a reduction from the
Hamiltonian path problem, the problem of deciding whether there exists a
path in a directed graph that visits all nodes exactly once; cf. Gärtner et al.
[2003]. The hardness even holds when restricting the considered subgraphs
to paths. Recall that a path in a graph is a sequence of vertices v0, · · · , vn

in the graph such that each pair of consecutive vertices vi, vi+1 is connected
by an edge and no vertex occurs more than once. For instance, in G2 of Fig.
9.3, 4, 6, 5, 7 is a path. It is convenient to denote the paths through the string
of labels l(v0) · · · l(vn) from Σ∗, Σ being the alphabet of labels used in the
graph. For instance, the previous path can be written as ACBD.

Because of the computational problems with the above subgraph kernels,
the kernel community has developed a number of alternative, less expressive
graph kernels. One approach considers only specific types of subgraphs in the
decomposition, for instance, the frequent subgraphs, or all paths up to a fixed
length. A quite elegant and polynomial time computable alternative considers
all (possibly infinite) walks in the graph; cf. Gärtner et al. [2003].

A walk in a graph is a sequence of vertices where each pair of consecutive
vertices is connected but it is not required that each vertex occurs only once.
As a consequence, any (finite) graph contains only a finite number of paths,
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but may contain an infinite number of walks. For instance, in graph G2, the
sequence 4, 6, 5, 4, 6, 5, 7 is a walk (in label notation ACBACBD).

The feature mapping considered by Gärtner et al. [2003] is based on the
features ψs with s ∈ Σ∗:

ψs(G) =
√

λ|s||{w|w is a walk in G encoding s}| (9.52)

where the λk are decay factors as before. The interesting point about the
resulting kernel Kwalk is that it can be computed in polynomial time when
choosing the geometric or the exponential series for the λi. (In the geometric
series, λi = γ−i; in the exponential one, λi = βi

i! ).
The algorithm for computing Kwalk employs product graphs and adjacency

matrices, which we now introduce. Given two labeled graphs G1 = (V1, E1, l1)
and G2 = (V2, E2, l2), the product graph G1×2 = G1 × G2 is defined as

V1×2 = {(v1, v2) ∈ V1 × V2|l1(v1) = l2(v2)}
E1×2 = {((u1, u2), (v1, v2))∈V 2

1×2|(u1, v1) ∈ E1 and (u2, v2)∈E2}
∀(v1, v2) ∈ V1×2 : l1×2((v1, v2)) = l1(v1) (9.53)

The product graph corresonds to a kind of generalization of the two graphs.

Example 9.16. Fig. 9.4 contains the product graph of G1 and G2 of Fig. 9.3.

C3,6

G1×2

A1,4 B2,5

Fig. 9.4. The product graph G1 × G2 of G1 and G2

Graphs can be conveniently represented using their adjacency matrices.
For a particular ordering of the vertices v1, · · · , vn of a graph G = (V,E, l),
define the matrix of dimension n × n where Aij = 1 if (vi, vj) ∈ E, and 0
otherwise. It is well-known that the nth power of the adjacency matrix An

ij

denotes the number of walks of length n from vertex i to vertex j; cf. [Rosen,
2007].

Example 9.17. The product graph G1 × G2 in Fig. 9.4 can be represented by
the matrix (for the order (1, 4), (2, 5), (3, 6)):
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A1×2 =

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠

and the second power of the matrix is

A2
1×2 =

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠

The reader may want to verify that there are indeed only three walks of length
2 through the product graph and that these correspond to (1, 4) to (2, 5), (2, 5)
to (3, 6) and (3, 6) to (1, 4).

Gaertner et al. show that

Kwalk(G1, G2) =
|V1×2|∑

i,j=1

( ∞∑

n

λnAn
1×2

)

ij
(9.54)

where A1×2 denotes the adjacency matrix of G1 × G2. This series can be
computed in cubic time when choosing the exponential and geometric series
for λi.

Devising kernels for structured data types, such as graphs, trees, and se-
quences, is an active research area and several alternative kernels exist.

We now turn our attention to distances and metrics, where we identify
similar principles that can be used to define such measures for structured
data types.

9.5 Distances and Metrics

Although there exists a wide range of possible distance measures and metrics
for structured and unstructured data, there are some common ideas that we
will introduce throughout this section. The first idea is that of decomposition.
Under conditions to be specified, metrics and distances for structured objects
can be defined by decomposing the objects and then aggregating metrics or
distances defined on these components. Various metrics to be presented, such
as the Hausdorff and the matching distances on sets, work in this way. The
second idea, related to generalization, is based on the observation that many
distances try to identify common parts amongst these instances. A recent re-
sult by De Raedt and Ramon [2008], introduced in Sect. 9.5.1, shows that
many distance metrics can be related to the size of the minimally general
generalizations of the two instances. The larger the common part or generali-
ation, the smaller the distance. The distance between the two instances can
be defined as the cost of the operations needed to specialize the minimally
general generalizations to the instances. This is sometimes referred to as an
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edit-distance. The third observation is that some distances do not rely on gen-
eralizations of the two instances but rather on a correspondence, a so-called
match or matching, of the parts of one instance to those of the second one.
Thus, very often, distances are related to generalization and matchings. In
this section, we shall first study the relationship between metrics and general-
ization, and then introduce a wide variety of metrics for vectors, sets, strings,
atoms and graphs.

9.5.1 Generalization and Metrics

We consider partially ordered pattern or hypothesis spaces (Le,�), where we
write, as in Chapter 5, s � g (or s ≺ g) to denote that s is more specific
than (or strictly more specific than) g. Throughout this section, it will be
assumed that the relation � is partially ordered, that is, it is reflexive, anti-
symmetric and transitive. Recall from Chapter 5 that not all generalization
relations satisfy these requirements. We shall also assume

1. that there is a function size | | : Le → R that is anti-monotonic w.r.t. �,
that is,

∀g, s ∈ Le : s � g → |s| � |g| (9.55)

and strictly order preserving

∀g, s ∈ Le : s ≺ g → |s| > |g| (9.56)

2. that the minimally general generalizations and maximally general spe-
cizializations, introduced in Eq. 3.26, of two patterns are defined and
yield at least one element:

mgg(x, y) = min{l ∈ Le|x � l and y � l} (9.57)
mgs(x, y) = min{l ∈ Le|l � x and l � s} (9.58)

We also define:

|mgg(x, y)| = maxm∈mgg(x,y)|m| (9.59)
|mgs(x, y)| = minm∈mgs(x,y)|m| (9.60)

We can then define the generalization distance d(x, y) on elements x, y ∈ Le:

d(x, y) = |x| + |y| − 2|mgg(x, y)| (9.61)

That is, to go from x to y, one should go from x to mgg(x, y) and then to y.
Therefore, the distance d can be interpreted as an edit-distance, measuring
the cost of performing operations on x to turn it into y, or vice versa. The
costs are here interpreted as the difference in size between the mgg(x, y) and
x or y.
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An interesting property, called the diamond inequality, for this type of
distance function states that

∀x, y : d(x, y) � d(x,mgs(x, y)) + d(mgs(x, y), y) (9.62)

or, equivalently,

∀x, y : 2|x| + 2|y| � 2|mgg(x, y)| + 2|mgs(x, y)|. (9.63)

When a distance function satisfies the diamond equation, the distance from
x to y via mgg(x, y) is shorter than that via mgs(x, y). This is illustrated in
Fig. 9.5. De Raedt and Ramon [2008] show that the distance d is a metric if
it satisfies the diamond inequality (and (Le,�) is a partial order and the size
| | satisfies the above stated requirements). Metrics obtained in this way are
called generalization distances.

X Y

mgs(X, Y )

mgg(X, Y )

Fig. 9.5. The diamond inequality. Adapted from [De Raedt and Ramon, 2008]

This is a fairly interesting result, because it connects the key notion from
logical learning (generality) with the key notion of distance-based learning
(metrics). Its use will be illustrated below, when developing metrics for vec-
tors, sets, sequences, trees and graphs.

9.5.2 Vectors and Tuples

There are two ways to obtain a distance metric on vectors or tuples. The first
applies the idea of decomposition. For (symbolic) attribute-value representa-
tions, it is convenient to define

datt(x,y) =
∑

i

di(xi, yi) (9.64)
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The distance datt will be a metric provided all the functions di are metrics as
well. A convenient choice for the function di is δ, the distance corresponding
to the kernel δ from Eq. 9.34:

δ(x, y) =
{

0 if x = y
1 otherwise (9.65)

The second way of obtaining the same distance is to use the natural generaliza-
tion relation on attribute-value representations and then define a generaliza-
tion distance. Using the notation of logical atoms to represent attribute-value
tuples, the subsumption relation on logical atoms studied in Sect. 5.3 as the
generalization relation, and the number of constants in a description as size
yields the same metric datt.

Example 9.18. Consider the examples

playtennis(sunny, hot, high, no)
playtennis(sunny,mild, low, no)

and their generalization

playtennis(sunny,X,Y, no)

Thus the distance according to d is 2 + 2− 2 = 2, which is the same as that
when using the datt with δ.

Exercise 9.19. Prove that datt is a metric when all of the di are metrics.

Exercise 9.20. Show that d satisfies the diamond inequality in this case.

When working with tuples on continuous attributes, it is convenient to
use the natural distance da(x, y) = |x − y| on R. Decomposing the vectors
along the different dimensions and adding the corresponding distances yields
the distance dman, known in the literature as the Manhattan or cityblock
distance:

dman(x,y) =
∑

i

da(xi, yi) (9.66)

9.5.3 Sets

Even though sets are – like vectors – relatively simple data structures, they
are much more challenging from a distance point of view. There actually
exists a wide range of possible distance measures and metrics for sets. It is
instructive to develop a number of key representatives carefully and to relate
them to notions of generalization and matching, which will be useful for more
complex data structures.
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A Simple Metric for Sets

Perhaps the simplest metric for sets is dSet:

dSet(X,Y ) = |X \ Y | + |Y \ X| (9.67)

A normalized version can be obtained by dividing by |X ∪ Y |.
This metric can be reinterpreted as another instance of the generaliza-

tion distance (using the generalization relation for sets, which was extensively
studied in Chapter 3, and the natural size measures on sets). The lgg of two
sets is their intersection, and the glb their union. Therefore,

d(X,Y ) = |X| + |Y | − 2|lgg(X,Y )|
= |X| − |X ∩ Y | + |Y | − |X ∩ Y |
= |X − Y | + |Y − X|
= dSet(X,Y ) (9.68)

The Hausdorff Metric

The distance dSet is to some extent the natural metric analogue to the KSet−δ

kernel (cf. Eq. 9.36). We may now try to express dSet using decomposition
and a metric del defined on elements of the set. The natural candidate for
del is the distance δ corresponding to δ. It is, however, not easy to employ
decomposition as this results in the computation of an aggregate over all pairs
of elements. However, a reformulation that splits up the contribution over the
different sets works for δ, though not in general.

dSet−del
(X,Y ) =

∑

xi∈X

(
min
yj∈Y

del(xi, yj)
)

+
∑

yj∈Y

(
min
xi∈X

del(xi, yj)
)

(9.69)

The expression minyj∈Y del(xi, yj)) captures the idea that the distance d(xi, Y )
from xi to the set Y is given by the distance of xi to the closest point on Y .
This formulation tries to match elements of one set to elements of the other
sets. The reader may want to verify that dSet−δ = dSet, that is, applying de-
composition with the δ distance at the level of elements results in the distance
dSet for sets specified in Eq. 9.67.

Exercise 9.21. Show that, in general, the distance dSet−del
is not a metric

even when del is. Hint: use da(x, y) = |x − y| defined on R as del.

A refinement of the formulation in Eq. 9.69 does work. It is perhaps the
most famous metric for sets, the Hausdorff metric. It follows a similar pattern:

dHD−del
(X,Y ) = max

(
max
xi∈X

(
min
yj∈Y

del(xi, yj)
)
, max
yj∈Y

(
min
xi∈X

del(xi, yj)
))

(9.70)
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The Hausdorff metric is based on the previous idea that the distance d(x, Y )
between an instance x and a set of instances Y is defined as miny∈Y del(x, y).
But then, the distance between two sets X and Y is defined as the maximum
distance of a point in X to the set Y , that is, maxx∈X miny∈Y del(x, y). Un-
fortunately this is not a metric, because the symmetry requirement does not
hold. Symmetry can be restored by taking the maximum of the distance of
X to Y and that of Y to X, and this is exactly what the Hausdorff distance
does. The Hausdorff metric is a metric whenever the underlying distance del

is a metric.

Example 9.22. (from Ramon [2002]) Let Le = R
2 and consider the Manhattan

distance dman. Let
X = {(0, 0), (1, 0), (0, 1)}

and
Y = {(2, 2), (1, 3), (3, 3)}

One can then easily verify that

d((0, 0), Y ) = 3
d((1, 0), Y ) = 2
d((0, 1), Y ) = 2
d((2, 2),X) = 3
d((1, 2),X) = 2
d((3, 3),X) = 5

Therefore,
dHDdman

(X,Y ) = 5

Even though the Hausdorff metric is a metric, it does not capture much in-
formation about the two sets as it is completely determined by the distance
of the most distant elements of the sets to the nearest neighbor in the other
set.

Exercise 9.23. Show that the function

dmin(X,Y ) = min
xi∈X,yj∈Y

del(xi, yj)

defined on sets is not necessarily a metric when del is.

Matching Distances

These drawbacks actually motivate the introduction of a different notion of
matching between two sets. The previous two distances associate elements y
in one set to the closest element in the other set X using minx∈X del(x, y).
This type of approach allows one element in one set to match with multiple
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elements in the other set, which may be undesirable. Many distances therefore
employ matchings, which associate one element in a set to at most one other
element. Formally, a matching m between two sets X and Y is a relation
m ⊆ X ×Y such that every element of X and of Y is associated with at most
one other element of the other set. Furthermore, if |m| = min(|X|, |Y |), then
the matching is called maximal.

Example 9.24. Consider the sets X = {a, b, c} and Y = {d, e}. Then one
matching is {(a, d), (c, e)}. It is also maximal.

Given a matching m, define the distance:

d(m,X, Y ) =
∑

(x,y)∈m

del(x, y) +
|X − m−1(Y )| + |Y − m(X)|

2
× M(9.71)

where M is a large constant, larger than the largest possble distance according
to del between two possible instances. So, M > maxx,y del(x, y).

This can be used to define a matching distance for sets:

dSet−match(X,Y ) = min
m∈matching(X,Y )

d(m,X, Y ) (9.72)

Example 9.25. Consider the sets X = {a, b, c} and Y = {a, e}, the matching
{(a, a), (c, e)}, the distance δ and set M = 4 then

d(m,X, Y ) = δ(a, a) + δ(c, e) +
2 + 0

2
× 4 = 3

The best matching is also m. and therefore dSet−match = 2.

This distance can be related to the generalization distance introduced
before. The key difference is that we now employ a matching, which is iden-
tifying not only common parts but also parts that are close to one another.
The matching distance can be written as:

d(m,X, Y ) = c
(
m(X,Y )

)
+ c

(
m(X,Y ) � X

)
+ c

(
m(X,Y ) � Y

)
(9.73)

where the matching part is denoted as m(X,Y ), a kind of “approximative”
mgg. The function c represents an edit cost, that is the cost c(m(X,Y ))
the matching m needs to turn X into Y , or the cost c(m(X,Y ) � X) for
turning m(X,Y ) into X. The formula for d(m,X, Y ) generalizes that for the
generalization distance of Eq. 9.61, because for the generalization distance, m
would be taken as the maximal size mgg, c(m(X,Y )) = 0, and c(m(X,Y ) �
X) = |X| − |mgg(X,Y )|. Thus a non-zero cost can now be associated with
the “matching” part of X and Y .
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Computing Matching Distances for Sets*

The distance dSet−match can be computed in polynomial time using flow net-
works; cf. Ramon [2002], Ramon and Bruynooghe [2001]. A flow network is
shown in Fig. 9.6. The network is essentially a directed acyclic graph, with a
designated start node s and terminal node t, and, furthermore, the edges in
the network are labeled as a tuple (cap, cost) : flow, where the capacity cap
denotes the possible flow through the edge, and the cost per unit of flow that
needs to be paid for flow through the edge. It is convenient to view a flow net-
work as an abstract model of a pipeline system. The edges then correspond to
the different pipes in the system, and the nodes to points where different pipes
come together. The maximum flow problem through the network models the
problem of transporting as much flow as possible from s to t. The flow flow
is a function from the edges in the network to N or R. The inflow into a node
n is the sum of the flows on the edges leading to that node, and the outflow is
the sum of the flows on edges starting from that node. A flow network satisfies
some natural constraints. One constraint states that the inflow is equal to the
outflow for all nodes (except s and t) in the network. Another one that the
flow on each edge can be at most equal to the capacity.

The maximum flow problem is concerned with finding

maxflow = arg max
f∈Flow

∑

x

f(s, x) (9.74)

= arg max
f∈Flow

∑

y

f(y, t) (9.75)

A simple flow network with corresponding maximum flow is shown in Fig.
9.6. Typically, one is not only interested in the maximum flow, but also in the
maximum flow that has the mimimum cost. This is known as the minimum
cost maximum flow problem. It consists of finding the maximum flow f for
which ∑

(x,y)∈edges

f(x, y) c(x, y)

is minimal, where c(x, y) denotes the cost for flow from x to y. The flow
illustrated in Fig. 9.6 has minimum cost. There are polynomial algorithms for
computing the minimum cost maximum flow [Cormen et al., 2001].

There are now two interesting applications of the maximum flow minimum
cost problem to computing macthing distances between sets; cf. Ramon and
Bruynooghe [2001], Ramon [2002] The first computes the distance dSet−match

above using the flow network specified in Fig. 9.7:

• there is a node xi for each element of the set X, as well as an extra sink
node x− for X,

• there is a node yi for each element of the set Y , as well as an extra sink
node y− for Y ,
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b

a

ts

(5, 2) : 3

(2, 5) : 2

(2, 6) : 2

(4, 1) : 3

(1, 3) : 1

Fig. 9.6. The minimum cost maximum flow problem. The labels (cap, cost) : flow
denote the optimal flow through the edge, the capacity cap of the edge, and the
cost per unit of flow through the edge

• there are edges from s to the xi with label (1, 0),
• there is an edge from s to x− with label (N, 0) where N is a constant such

that N � max(|X|, |Y |),
• there are edges from the y to t with label (1, 0),
• there is an edge from y− to t with label (N, 0),
• there are edges from xi to the yi labeled (1, d(xi, yi)),
• there are edges from the xi to y− and from x− to the yi, with labels

(∞,M/2), where M is the constant defined in Eq. 9.72.

Furthermore, only integers are allowed as flows. The minimum cost maximum
flow then encodes the optimal matching. It essentially matches elements for
which flow(xi, yi) = 1.

Jan Ramon has introduced also a variant of the distance dSet−match. This
is motivated by the fact that dSet−match is often dominated by the sizes of
the sets. Certainly, when the sizes of the two sets are far apart, the largest
contribution will come from the unmatched parts. The variant works with
weighted sets; these are sets S where each element carries a particular weight
wS(x). The idea is that the weight denotes the importance of the element
in the set. The resulting distance measure can be computed using the flow
network depicted in Fig. 9.7, but with the edges from s to xi labeled by
(wX(xi), 0), and those from yi to t by (wY (yi), 0). Furthermore, it is no longer
required that the flow be an integer function. This formulation allows an
element to match with multiple elements in the other set, and the flow will
indicate the importance of the individual matches.

9.5.4 Strings

Some of the ideas for sets carry over to strings. Let us first look at distances
between strings of fixed length (or size) n, that is strings in Σn. Let us denote
the two strings s1 · · · sn and t1 · · · tn. Applying decomposition leads to the
Hamming distance:
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x3

x2

x−

y1

y2

y−

s
t

(1, 0)

(1, 0)

(1, 0)

(N, 0)

(∞, 0)

(N, 0)

(1, 0)

(1, 0)

(∞, M/2)

(1, d(xi, yj))

x1

Fig. 9.7. The minimum cost maximum flow problem. The labels (cap, cost) de-
note the capacities and the costs per flow of the edges. Adapted from [Ramon and
Bruynooghe, 2001]

dHamming(s, t) =
∑

i

δ(si, ti) (9.76)

Applying the generalization distance to strings leads also to a Hamming dis-
tance (up to a factor 2).

Example 9.26. Consider the strings abcdefgh and xbcdyfgh. Their lgg would
be -bcd-fgh of size 6, and hence the generalization distance between these
two strings is 4, whereas the Hamming distance between them is 2.

More popular distances for strings (certainly in the field of bioinformatics)
are edit distances, which also produce alignments. They do not usually require
the strings to be of equal length. The best known example of such a distance
is the Levenshtein distance [1966], which formed the basis for many routinely
applied techniques in bioinformatics applications, such as the famous Blast
algorithm [Altschul et al., 1990]. More formally, the edit distance between
two strings is defined as the minimum number of operations needed to turn
one string into the other. The allowed operations are the insertion, deletion
and substitution of a symbol in Σ.

Example 9.27. For instance, the string artificial (English) can be turned
into artificieel (Dutch) using two operations. Inserting an e and substi-
tuting an a by an e. If one assumes that all operations have unit cost, the
Levenshtein distance dlev(artificieel, artificial) = 2. The parts of the
two strings that match are typically depicted as an alignment. For our exam-
ple, there are two possible alignments:
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artificieel artificieel
|||||||| +| ||||||||+ |
artifici-al artificia-l

From these alignments, artificil is a minimally general generalization,
which is called the least common subsequence in the literature on string match-
ing. The matched part is indicated by the vertical bars. This edit-distance is
a generalization distance, as shown by De Raedt and Ramon [2008]. Like
the Hamming distance, taking the length of the string as size yields an edit
distance with cost 2 for each operation.

The Levenshtein distance can be computed in polynomial time using a
simple application of dynamic programming [Cormen et al., 2001]. For two
strings s1 · · · sn and t1 · · · tm, it employs an (n+1)× (m+1) matrix M ; which
is defined as follows (assuming unit costs for the edit operations):

M(0, 0) = 0
M(i, 0) = i for (n � i � 1)
M(0, j) = j for (m � j � 1)

M(i, j) = min

⎧
⎨

⎩

M(i − 1, j − 1) + δ(si, tj)
M(i − 1, j) + 1 insert for i, j � 1
M(i, j − 1) + 1 delete

(9.77)

An example computation is depicted in Table 9.1.

Table 9.1. Computing the Levenshtein distance

a r t i f i c i a l
0 1 2 3 4 5 6 7 8 9 10

a 1 0 1 2 3 4 5 6 7 8 9
r 2 1 0 1 2 3 4 5 6 7 8
t 3 2 1 0 1 2 3 4 5 6 7
i 4 3 2 1 0 1 2 3 4 5 6
f 5 4 3 2 1 0 1 2 3 4 5
i 6 5 4 3 2 1 0 1 2 3 4
c 7 6 5 4 3 2 1 0 1 2 3
i 8 7 6 5 4 3 2 1 0 1 2
e 9 8 7 6 5 4 3 2 1 1 2
e 10 9 8 7 6 5 4 3 2 2 2
l 11 10 9 8 7 6 5 4 3 3 2

The best aligment can be obtained by storing in each cell M(i, j) of the
matrix a backward pointer to the previous best cell, that is, that points to



318 9 Kernels and Distances for Structured Data

that cell which yielded the minimum value in the recursive case. When the
algorithm terminates, the backwards pointers can be followed from the cell
M(n + 1,m + 1), which contains the minimum edit-distance.

Exercise 9.28. Compute the Levenshtein distance and the least common
subsequence of machine learning and machinelles lernen.

9.5.5 Atoms and Trees

Shan-Hwei Nienhuys-Cheng [1997] introduced the following metric for ground
atoms or terms dterm(t, s)

dterm(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

δ(t, s) if t and s are constants
δ(g, h) if t = g(t1, · · · , tk) and s = h(s1, · · · , sm)

and g �= h
1
2k

∑
i dterm(ti, si) if t = g(t1, · · · , tk) and s = g(s1, · · · , sk)

(9.78)

One can arrive at this distance in various possible ways. First, following the
idea of decomposition, there is a clear analogy with the kernel Kterm in Eq.
9.45. The key difference other than the use of δ instead of δ lies in the factor
1
2k , which is needed to obtain a metric that satisfies the triangle inequality.
Second, the distance can be viewed as a matching or edit-distance, cf. Eq.
9.73, where the cost of the matching is 0 and the edit cost for extending the
common part by inserting arguments in the term depends on the position and
depth of the term as indicated by the factor 1

2k .
From a logical perspective, there is one drawback of the distance dterm

(and also of the kernel Kterm): they take into account neither variables nor
unification.

Example 9.29.

dterm(r(a, b, d), r(a, c, c)) =
2
6

and
dterm(r(a, b, b), r(a, c, c)) =

2
6

This is counterintuive as the similarity between r(a, b, b) and r(a, c, c) is larger
than that between r(a, b, d) and r(a, c, c). This is clear when looking at the
lggs. The lgg of the second pair of terms is more specific than that of the first
one. Therefore one would expect their distance to be smaller.

Various researchers such as Hutchinson [1997] and Ramon [2002] have
investigated distance metrics to alleviate this problem. To the best of the
author’s knowledge this problem has not yet been addressed using kernels.
The approaches of Hutchinson [1997] and Ramon [2002] rely on the use of the
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lgg operation that was introduced in Chapter 5. More specifically, by using as
matching operation the lgg and then applying the matching distance of Eq.
9.73, one obtains:

dlgg(t, s) = c
(
lgg(t, s) � t

)
+ c

(
lgg(t, s) � s

)
(9.79)

So, the distance dlgg measures how far the terms are from their lgg, and
c(lgg(t, s) � t) indicates the cost for specializing the lgg to t. This can be
related to the size of the substitution θ needed so that lgg(t, s)θ = t, as the
following example illustrates.

Example 9.30. Applying this idea to the instances in the previous example
yields

dlgg(r(a, b, d), r(a, c, c)) = c
(
r(a,X, Y ) � sr(a, b, d)

)
+c

(
r(a,X, Y ) � r(a, c, c)

)

and

dlgg(r(a, b, b), r(a, c, c)) = c
(
r(a,X,X) � r(a, b, b)

)
+c

(
r(a,X,X) � r(a, c, c)

)

Under any reasonable definition of the cost c, the latter expression will be
smaller than the former. For instance, Hutchinson uses as c a measure on
the size of the substitutions; more specifically, he assigns a weight to each
functor and constant symbol, and then takes the sum of the symbols occur-
ring on the right-hand side of the substitutions. In the example, this yields
c(r(a,X,X) � r(a, b, b)) = size({X/a}) = wb, and c(r(a,X, Y ) � r(a, b, d)) =
size({X/b, Y/d}) = wb + wc.

The distances studied by Hutchinson [1997] and Ramon [2002] capture some
interesting logical intuitions but still exhibit some problems (for instance, how
to measure the distance between p(X,Y,Z) and p(W,W,W )). Furthermore,
they are also quite involved, especially when applied to clauses rather than
terms or atoms, which explains why we do not discuss them in more detail
here.

9.5.6 Graphs

To develop a metric on graphs, it is useful to look for a notion of mimimally
general generalization, or alignment, and to apply the generalization distance.
For graphs, a natural notion is given by the maximal common subgraph.

Formally, a maximal common subgraph m(G1, G2) of two graphs G1 and
G2 is a graph G such that 1) there exist subgraph isomorphisms from G to G1

and from G to G2 and 2) there exists no graph containing more nodes than
G that satisfies 1). Like kernels, we employ the restricted notion of induced
subgraph ismorphism here. The notion of a maximal common subgraph is
illustrated in Fig. 9.8.
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Fig. 9.8. The maximal common subgraph m(G4, G5) of G4 and G5

The computation of a maximal common subgraph is an NP-complete prob-
lem and the maximal common subgraph of two graphs is not necessarily
unique. Notice that a maximal common subgraph is uniquely characterized
by and can therefore be represented by the (maximal) subgraph isomorphism
f from G1 to G2 that maps vertices in G1 to vertices in G2. Such a maximal
subgraph isomorphism is computed using a backtracking algorithm due to
[McGregor, 1982], of which a variant along the lines of [Bunke et al., 2002] is
summarized in Algo. 9.3.

The algorithm repeatedly adds a pair of nodes (n1, n2) ∈ V1 × V2 to the
function f , and when doing so it ensures that the resulting mapping is a
feasible subgraph isomorphism by testing that the mapping f is injective
and that for any two tuples (n1,m1) and (n2,m2) ∈ f : (n1, n2) ∈ E1 if
and only if (m1,m2) ∈ E2. If the cardinality of the resulting mapping fm

is larger than that of previously considered subgraph ismorphisms, then the
maximal subgraph isomorphism and corresponding size are updated. Finally,
if the function fm can still be expanded because there are still unmatched
and untried vertices in V1, and one cannot prune these refinements (because
the size of fm plus the number of such vertices is larger than maxsize), the
procedure is called recursively.

The maximal common subgraph can be used as a minimally general gen-
eralization. A natural size measure on graphs is the number of vertices they
contain. It is possible to show that the size and generality relation satisfy the
necessary requirements for generalization distances; cf. [De Raedt and Ramon,
2008]. Therefore, the distance

dgraph(G1, G2) = |G1| + |G2| − 2|mcs(G1, G2)| (9.80)

is a metric. Furtheremore, its normalized form

dgraph−nrom(G1, G2) = 1 − |mcs(G1, G2)|
max(|G1|, |G2|)

(9.81)

corresponds to a well-known metric introduced by Bunke and Shearer [1998].
This distance can also be related to some type of edit-distance because the
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dgraph−norm(G1, G2) captures the proportion of common vertices. Bunke and
Shearer argue that edit distances for graphs are – depending on the choice of
cost function – not always metrics.

Example 9.31. Using these notions, dgraph(G4, G5) = 3 + 4 − 2 × 2 = 3 and
dgraph−norm(G4, G5) = 1 − 2

4 = 0.5.

Algorithm 9.3 The function mcs(f) that computes a maximal subgraph
isomorphism fm of two graphs Gi = (Vi, Ei, li) and is called with the empty
relation. It uses the global parameters maxsize, which represents the cardi-
nality of the relation fm and which is initialized to 0, and maxisomorphism,
which represents the maximal subgraph isomorphism and which is initialized
to ∅

while there is a next pair (n1, n2) ∈ (V1 × V2) with l1(v1) = l2(v2) do
if feasible(f ∪ {(n1, n2)}) then

fm := f ∪ {(n1, n2)}
if |fm| > maxsize then

maxsize := size(fm)
maxisomophism := fm

end if
if nopruning(fm) and expansionpossible(fm) then

call mcs(fm)
else

backtrack on fm

end if
end if

end while
return fm

Exercise 9.32. Apply Algo. 9.3 to compute the maximal common subgraph
of G4 and G5 as in Fig. 9.8.

Exercise 9.33. * Discuss the relationship between the concept of maxi-
mal common subgraph and maximally general generalization under OI-
subsumption. (Hint: represent graphs as sets of facts.)

9.6 Relational Kernels and Distances

Whereas kernels and distances have been developed and studied for a wide va-
riety of structured data types, such as vectors, sets, strings, trees and graphs,
kernels and distances that work directly on logical and relational represen-
tations, say, clausal logic, have proven to be more challenging to develop.
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Therefore, several researchers have looked into heuristic approaches to this
problem.

One popular heuristic approach, due to Bisson [1992a,b], and refined by
Emde and Wettschereck [1996] and Kirsten et al. [2001], has been succesfully
used in a series of distance-based learning methods targeting both classifi-
cation and clustering. As in the learning from entailment setting, examples
(ground facts) as well as a background theory are given. The computation of
a distance measure proceeds by computing for each example a tree, and then
applying a distance on trees to the corresponding examples. The resulting
distance is not a metric. The idea is illustrated in Ex. 9.34 due to Kirsten
et al. [2001].

Example 9.34. Let us assume that the instance positive(set1, 125, personal) is
given together with the background theory:

cheese(set1, camembert, 150, france) ←
vineyard(gallo, famous, large, usa) ←
vineyard(mouton, famous, small, france) ←
wine(set1, gallo, 1995, 0.5) ←
wine(set1,mouton, 1988, 0.75) ←

It describes a particular basket from a gourmet shop. The instance can be
turned into a tree, of which it forms the root. Subtrees are then constructed
by following the foreign links on the arguments of the instance. For instance,
the argument set1 occurs in three further facts, and hence these facts can be
turned into children of set1. Furthermore, these facts in turn contain argu-
ments, such as gallo, camembert and mouton, that occur in further facts, and
hence can be used at the next level in the tree. The resulting tree is shown in
Fig. 9.6. The process of following foreign links is typically terminated when
a particular depth is reached. Given two such trees, corresponding to two
instances, standard tree kernels and distance measures based on the idea of
decomposition can be used.

A closely related approach is taken by Passerini et al. [2006], who pro-
vide special visitor predicates in addition to the background theory and the
instances. The visitor predicates are then called on the instances, and the re-
sulting proof trees are computed and passed on to a kernel. In this way, the
visitor predicates encode the features that will be used by the kernel and the
way that the instances will be traversed.

Transforming instances and background theory into trees forms an inter-
esting alternative to traditional propositionalization. Rather than targeting
a purely flat representation, an intermediate representation is generated that
still possesses structure but is less complex than the relational one.
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vineyard(gallo, fam, l, usa)

pos(s1, 125, personal)

cheese(s1, cam, 150, fr) wine(s1,mouton, 88, .75) wine(s1, gallo, 95, .5)

vineyard(mouton, fam, sm, fr)

Fig. 9.9. A tree computed from an instance and the background theory. Reproduced
with permission from [Kirsten et al., 2001]

9.7 Conclusions

In this chapter we have studied how logical and relational representations can
be used together with support vector machines and instance-based learning
techniques. After a short introduction to these classes of machine learning
techniques, we have studied how distance metrics and kernels can be defined.
For kernels, convolution and decomposition can be used to define kernels for
complex data structures in terms of kernels for simple data structures. For
distance metrics, we have investigated the relation of edit-distances to the
generality relation, and we have argued that, under certain conditions, dis-
tances can be generated using a size measure and the minimimally general
generalization operation. Variants of this idea, based on the notion of match-
ing, have also been introduced. These principles have then been applied to
some well known data structures, such as sets, strings, trees and graphs.

9.8 Bibliographical and Historical Notes

Many contempprary machine learning and data mining techniques employ
kernel or distances. Kernels provide a basis for the popular support vector
machines (see [Cristianini and Shawe-Taylor, 2000] for a gentle introduction)
and distances for case-based reasoning [Aamodt and Plaza, 1994].

The introduction to kernels in Sect. 9.2 follows the introductory chapter
of [Schölkopf and Smola, 2002]; and the overview of kernels for structured
data follows the exposition in the overview article of [Gärtner, 2003]. A good
and rather complete overview of distances and metrics for structured data
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is contained in [Ramon, 2002], which also forms the basis for the present
overview, though some new materials and insights from [De Raedt and Ramon,
2008] have been incorporated.

Within logic learning, the first distance measure for relational data was
contributed by Bisson [1992b] for use in clustering, and later employed in the
RIBL system of Emde and Wettschereck [1996]. RIBL is a relational k-nearest
neighbour algorithm. Further contributions to distance-based learning were
made by Kirsten and Wrobel [2000] in the context of clustering (k-means and
k-medoid) and by Horvath et al. [2001] for instance-based learning. However,
the distances employed in this line of work were not metrics. The systems
based on this type of distance performed quite well in practice, but at the
same time they motivated a more theoretical stream of work that focussed
on developing metrics for relational representations, in particular the work of
Ramon [2002] and Nienhuys-Cheng [1997, 1998].

Due to the importance of structured data, there is a lot of interest in
developing kernels for different types of data structures. A seminal contri-
bution in this regard is the notion of a convolution kernel due to Haussler
[1999]. Since then, many kernels have been developed for a variety of data
structures, including multi-instance learning [Gärtner et al., 2002], graphs
[Kashima et al., 2003, Gärtner et al., 2003] and hypergraphs [Wachman and
Khardon, 2007] and terms in higher-order logic [Gärtner et al., 2004]. To the
best of the author’s knowledge, there have only been a few attempts to inte-
grate kernel methods with logic; cf. Muggleton et al. [2005], Passerini et al.
[2006], Landwehr et al. [2006]. Some recent contributions are contained in an
ongoing series of workshops on Mining and Learning with Graphs [Frasconi
et al., 2007].

Various exciting applications of distance and kernels for structured, rela-
tional data exist. Well known are the applications to structure activity rela-
tionship prediction [Ralaivola et al., 2005], analysis of NMR spectra [Džeroski
et al., 1998], and classical music expression analysis [Tobudic and Widmer,
2005].



10

Computational Aspects of Logical and
Relational Learning

Logical and relational learning are known to be computationally more expensive
than traditional propositional approaches. This chapter investigates computa-
tional aspects of logical and relational learning. More specifically, Sect. 10.1
investigates these issues from a pragmatic perspective. It starts by empirically
investigating the computational cost of θ-subsumption, which lies at the heart
of logical and relational learning, as it is the most common coverage relation.
Afterward, implementation and optimization issues of logical and relational
learning systems are discussed. In Sect. 10.2, logical and relational learning
are investigated from a theoretical point of view, and, in particular, various
computational learning theory settings, and positive as well as negative results,
are presented.

10.1 Efficiency of Relational Learning

There is a trade-off in computer science between efficiency and expressiveness.
The more expressive a representation language, the more computationally
expensive it is to use it. This universal wisdom, of course, also applies to
logic and theorem proving, as well as to logical and relational learning. In this
section, we first identify some computational problems encountered by typical
logical or relational learning systems, analyze them, and then present some
typical solutions.

There are a large number of factors that influence the computational re-
sources a relational learning system needs to tackle a learning problem, includ-
ing the data set, the background knowledge, the hypothesis space (determined
by the bias and the alphabet), and the search strategy. In previous chapters,
we have already addressed the effects of bias, heuristics, search strategy and
operators; in the present section, we focus on one of the key steps in any
relational learning problem: the coverage test. Testing whether a hypothe-
sis covers a particular example is one of the key factors responsible for the
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computational complexity of relational learning systems: it is computation-
ally expensive, typically NP-hard or even undecidable in the general case, and
repeated a large number of times in any relational learning system. So, if one
can optimize the coverage test, one can also improve the overall performance
of the relational learning system.

10.1.1 Coverage as θ-Subsumption

In general, when working with definite clause logic (allowing for functors,
recursion and background knowledge), the typical coverage test (B ∪ H |=
e, where H and B are sets of definite clauses and e is a definite clause) is
undecidable. From a practical perspective, it often suffices to consider a purely
relational setting, in which H defines a single predicate and neither are there
functors nor is there recursion. In this case, coverage testing corresponds to
θ-subsumption. Indeed, to see this, consider the Bongard problem in Ex. 4.11
and Fig. 4.4 as a typical illustration of this setting.

Example 10.1. Consider the two basic encodings (corresponding to Ex. 4.11
and 4.27 respectively). Using the first representation, the example e can be
encoded as a clause, for instance, pos ← circle(c), triangle(t), in(t, c) and the hy-
pothesis would consist of clauses such as pos ← circle(X), triangle(T), in(T,C).
Clearly, the hypothesis covers the example if and only if there is a clause
c ∈ H that θ-subsumes e. Using the second representation, identifiers are
added to the facts and the resulting example is encoded as pos(e2) and the
facts in(e2, t1, c1), circle(e2, c1), triangle(e2, t2) are part of the (extensional)
background theory B. To test whether a hypothesis H defining pos/1 cov-
ers the example, consider each clause c ∈ H in turn, and test whether head(c)
unifies with the example (yielding the substitution θ), and if it does, test
whether body(c)θ succeeds in the background theory. For instance, in our ex-
ample, body(c)θ is ← circle(e2,X), triangle(e2,T), in(e2,T,C), and it succeeds
on our background theory. If the background theory is extensional, evaluating
the query corresponds again to performing a θ-subsumption test; cf. also Ex.
5.17.

So, in the simplest relational learning setting, coverage testing corresponds
to θ-subsumption. In more complex relational settings, involving intensional
background knowledge, functors, or recursion, coverage testing even becomes
computationally harder. θ-subsumption is a known NP-complete problem,
which explains why relational learning is computationally much more expen-
sive than learning within propositional representations. At the same time,
because θ-subsumption is central to relational learning, it is worthwhile to
empirically analyze it and to optimize θ-subsumption tests in relational learn-
ing systems.
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10.1.2 θ-Subsumption Empirically

Over the past decade, several NP-complete problems, such as 3-SAT (deter-
mining whether a set of propositional clauses containing at most three literals
is satisfiable), have been empirically investigated. For θ-subsumption, this
work was carried out by Giordana and Saitta [2000], Botta et al. [2003]. In
these empirical investigations, many problem instances are generated at ran-
dom and are characterized along particular dimensions. For θ-subsumption,
one such experiment is summarized in Figs. 10.1 and 10.2. It concerns testing
whether a query q succeeds (or θ-subsumes) an extensional database B of
facts. In the experiment, a number of simplifying assumptions are made: all
predicates are binary and contain N facts, the queries contain each predicate
at most once, the queries are connected (that is, each literal in the query
contains at least one variable that occurs also in another literal1), and there
is only a single type. The following parameters are used to characterize the
different problem instances:

• the number n of variables in q,
• the number m of predicate symbols in q,
• the number L of constants in B, and
• the number N of atoms for predicate symbols in q.

The coverage test employed used a simple variant of backtracking (cf.
[Giordana and Saitta, 2000]). Using more advanced techniques, some of which
will be discussed below, it is sometimes possible to get better runtimes, though
the peaks and the forms of the graphs are still very similar.

In Fig. 10.1 the probability Psol that a random query succeeds in a random
database is plotted as a function of (m,L) for a fixed (n = 10, N = 1, 00) pair,
whereas Fig. 10.2 shows the average running time of a randomly selected
covers test plotted in the same dimensions. The figures exhibit the typical
phase-transition behavior. This means that problem instances fall into three
main categories:

• the under-constrained problems, where Psol is close to 1, where there are
typically many solutions that can be found quickly by a solver,

• the over-constrained problems, where Psol is close to 0, where there are
typically no solutions and solvers rapidly discover this,

• the problems on the phase-transition, where Psol is close to 0.5, where
there is typically either no solution or only a few solutions, and solvers
have to consider many combinations before finding the solution or being
able to conclude that no solution exists.

Even though θ-subsumption is NP-complete, many problems still turn out to
be easy to solve. This is not contradictory, as NP-completeness is a worst-case
result and there do exist problems that are very hard to solve, in particular,
those that lie on the phase-transition.
1 If the query would not be connected, it could easily be optimized; cf. also below.
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Fig. 10.1. (Reprinted with permission from [Giordana and Saitta, 2000], page 223).
The probability Psol that a random query succeeds in a random database, averaged
over 1000 pairs (q, B) for each (m, L) point. Also, n = 10 and N = 100. On the
horizontal plane, the contour plots points corresponding to Psol values in the interval
(0.1,0.9)

10.1.3 Optimizing the Learner for θ-subsumption

Because θ-subsumption and coverage testing are computationally expensive
and have to be performed many times throughout the learning process, it is
essential to optimize these types of tests in logical and relational learners.
From the author’s experience, the time spent by a logical learning system on
such tests accounts typically for about 90% of the overall running time. So,
by optimizing relational learning systems with regard to θ-subsumption and
coverage testing, a lot of time can be saved. There are many ways to realize
this.

First, one can try to minimize the number of coverage tests as much as
possible. One way of realizing this associates with each hypothesis a list of
identifiers of covered examples. When searching from general to specific, the
coverage of a newly generated candidate hypothesis s can be determined by
testing the coverage of the examples associated with the more general hypoth-
esis g that s was generated from. A variant of this scheme can be used when
searching for frequent queries if one is not interested in the exact frequencies
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Fig. 10.2. (Reprinted with permission from [Giordana and Saitta, 2000], page 225.)
The computational cost for a single coverage test with a Monte Carlo method (in
seconds on a Sparc Enterprise 450).

of the queries. Instead of keeping track of all covered examples, it suffices to
keep track of the first m covered examples, where m corresponds to the fre-
quency threshold. Upon refining a query, one first checks the coverage with
regard to the m examples on the list, and only when needed considers further
examples. Alternatively, the number of coverage tests can be reduced using
sampling. The idea is that rather than computing the evaluation functions
used throughout the search exactly, we estimate the number of covered exam-
ples is estimated by sampling from the data set. Various schemes for sampling
have been proposed in the data mining literature, and can be applied in a
relational setting as well; see, for instance, [Toivonen, 1996, Srinivasan, 1999].

Second, one can try to make the coverage and θ-subsumption tests simpler.
Using the experimental setting mentioned above, the computational complex-
ity of θ-subsumption grows as a function of the parameters n,N,m and L. So,
by reducing the size of the queries and background knowledge, we improve the
performance of the learning system. This insight implies that for the Bongard
problem discussed in Ex. 10.1, the first representation is more efficient than
the second one, because in general it is beneficial to encode each example
separately, rather than to merge their facts into a larger database. Separate
encodings of the examples are natural within the learning from interpretations
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settings and within the setting where each example is completely encoded in
a single clause (as in the first representation of Ex. 10.1). A further advantage
of separately encoding the examples is related to memory management. When
working with a huge data set, rather than having to run coverage tests on the
overall database, one can retrieve the example from the database and run the
coverage test on a much smaller database. This possibility is often combined
with the idea of inverting the loops in data mining systems in order to min-
imize the number of passes through the database. Indeed, many traditional
machine learning systems possess a subroutine that operates as follows: for
each candidate refinement h, for each example e, test whether e is covered by
h. Using this scheme, the number of passes through the database is equal to
the number of refinements considered by the subroutine. When inverting the
two loops, one obtains: for each example e, for each hypothesis h, test whether
e is covered by h. As a consequence, one needs only a single pass through the
database, which is much more efficient according to database principles.

Third, one can optimize the θ-subsumption procedure itself. In Chapter
2, the standard SLD-resolution procedure employed in Prolog for executing
queries on a database was introduced. It essentially employs backtracking
to answer queries. Backtracking is not necessarily the most efficient way of
answering queries on a relational database.

Example 10.2. To illustrate this point, consider the (somewhat artificial)
query

← rank(X), suit(Y),X = f,Y = s

and the simple card database shown below:

suit(d) ← suit(c) ←
suit(h) ← suit(s) ←
rank(a) ← rank(10) ←
rank(7) ← rank(k) ←
rank(8) ← rank(q) ←
rank(9) ← rank(f) ←

Using backtracking, the standard Prolog engine will generate 32 substitutions
(that is, all cards) before finding the unique solution. On the other hand, by
simply reordering the literals as in the query

← X = f,Y = s, rank(X), suit(Y)

only a single substitution needs to be generated.

Exercise 10.3. Discuss why Prolog generates all 32 substitutions for the
above example.

The example motivates some worthwhile optimizations to perform before
executing the queries. One such optimization splits the query into maximally
connected sub-queries. Recall that a connected query is one where all literals
share variables with at least one other literal. In our example, there are two
maximally connected sub-queries:
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← rank(X),X = f
← suit(Y),Y = s.

These sub-queries can be executed independently of one another and the re-
sulting answer substitutions can be combined. Using this optimization on the
original query only eight substitutions for X and four for Y are considered.
This optimization can also be performed iteratively. Given a connected query
← l1, · · · , ln, one can first solve l1 yielding substitution θ1, and then an-
swer the remaining query ← l2θ1, · · · , lnθ1. Even though the original query
← l1, · · · , ln may be connected, instantiating l1 may cause the remaining query
← l2θ1, · · · , lnθ1 to be no be longer connected. If this is the case, it may be
worthwhile to divide the remaining query again. Another possible optimiza-
tion concerns the automatic reordering of the literals in the query according
to the growing number of possible answers or tuples. For our example query,
the literal for rank has 8, for suit, 4, and for each occurrence of =, 1 possible
answers. Using this optimization, the original query is rewritten into

← X = f,Y = s, rank(X), suit(Y)

which directly yields a solution without backtracking. The above two opti-
mizations can be combined by first dividing the query into sub-queries and
then reordering the literals in the resulting sub-queries. Optimizations along
this line (and corresponding Prolog code for meta-interpreters) are discussed
extensively by [Costa et al., 2003b]. In the author’s experience, using such
optimizations (by, for instance, incorporating some of the readily available
meta-interpreters by [Costa et al., 2003b]) can yield speedups of the overall
learning system of a factor 5 to 10.

Rather than optimizing the way Prolog executes queries, queries can be
executed in an alternative way. A first alternative employs a relational or
deductive database management system instead of a Prolog implementation
to determine which examples are covered by the hypotheses. In contrast to
typical Prolog engines, database management systems are optimized to deal
with large databases, and hence, when the data set mined is large, the database
system may produce results when Prolog implementations run into problems
due to the size of the database. However, naively coupling a relational learning
system to a traditional database management system that targets data sets
that reside on disk is not necessarily a solution as it may result in a significant
overhead. According to the author’s experience, using a naive coupling with
such a database management system for carrying out coverage tests may slow
down the system by a factor of 20 for molecular databases. One reason for this
is that database systems are optimized to return all answers to a particular
query, whereas a Prolog engine is optimized to return the first few answers
only. To decide whether a hypothesis covers a particular example, only one
answer is needed; cf. also below. At present, the question of how to efficiently
couple a relational learner to a database system remains open. One promising
direction may be to use in-memory databases and another possible approach
is sketched in Yin et al. [2006].
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A second alternative is to view θ-subsumption as a constraint satisfaction
problem:2

Example 10.4. Reconsider the Bongard problems of Ex. 10.1. Consider the
example database

circle(c1), circle(c2), triangle(t1), triangle(t2), in(t1, c2)

and the query

← triangle(X), triangle(Y), in(X,Y).

This query has two variables (X and Y). Their types correspond to the do-
mains, that is, they specify the values they can take. Assume that there is
only one type, dom(X) = {t1, t2, c1, c2} = dom(Y). The unary predicates then
specify constraints on a single variable, whereas the binary predicates specify
constraints on pairs of variables.

The above example demonstrates that θ-subsumption problems can be phrased
within a constraint satisfaction framework, and hence that standard constraint
satisfaction principles and solvers can be applied on θ-subsumption. This view
has been explored by various researchers such as Botta et al. [2003], Maloberti
and Sebag [2004], and both stochastic as well as deterministic constraint sat-
isfaction solvers have been successfully applied to θ-subsumption.

Thirdly, rather than optimizing the way individual θ-subsumption or cov-
erage tests are performed, one can try to optimize the overall mining process.
A key observation in this regard is that many queries and hypotheses that are
generated during the search are closely related to one another.

Example 10.5. Consider the query ← in(X,Y) and some of its refinements:

← in(X,Y), triangle(X)
← in(X,Y), circle(X)
← in(X,Y), triangle(X), red(Y)
← in(X,Y), circle(X), red(Y)

When evaluating these queries independently of one another, a lot of redun-
dant computations are repeated. There are several ways of tackling this prob-
lem. A first possibility is to simply store the intermediate results for later use.
This is for instance done in Quinlan’s Foil [Quinlan, 1990], where all answer
substitutions to the more general query would be stored, and then used as the
starting point for evaluating its refinements. Whereas this approach is possi-
ble for greedy search methods, storing these intermediate results for complete
search methods seems prohibitive because of the memory requirements. A sec-
ond possibility, which forms the basis of the so-called query packs [Blockeel
et al., 2002], is to rewrite the query in such a way that common parts of the
query are shared.
2 The reader unfamiliar with constraint satisfaction problems may want to consult

[Russell and Norvig, 2004] for an excellent introduction.
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Example 10.6. The previous set of queries can be written using a query pack:

← in(X, Y), (true or (triangle(X), (true or red(Y))) or (circle(X), (true or red(Y))))

The or closely corresponds to Prolog’s or but has a slightly different semantics.
Using the query packs, the common parts of the queries are executed less

often than if the queries are executed individually. This is clear when looking,
for instance, at the in(X,Y) atom. This atom is only called once, and the
substitutions for which it succeeds are propagated to the next levels. The
query pack approach is implemented within a special-purpose Prolog engine
called ILProlog [Blockeel et al., 2002], which is optimized to count the
number of examples covered by the different branches in query packs.

A final optimization is relevant when the background knowledge is inten-
sional, that is, contains the definition of view predicates. For instance, when
considering molecular application as illustrated in Ex. 4.22, there may be def-
initions of functional groups, such as ring types. The computation of which
ring structures are present in a particular molecule can be non-trivial (as this
is essentially a test for subgraph isomorphism). Therefore, it often pays off
to precompute, that is, to materialize, such intensional predicates if mem-
ory allows for this. Alternatively, a technique called tabling can be employed.
Tabling does not precompute the predicates, but rather memorizes those com-
putations it has already performed. For instance, in the molecular example,
it might have computed that there is a benzene ring in molecule 225 and
memorized that fact on the fly for later use. Tabling is related to dynamic
programming and is especially important in the context of probabilistic logic
learning; cf. Chapter 8.

As the reader has probably noticed, there are many possible ways for
improving the performance of logical and relational learning systems. Which
approach is to be preferred often depends on the particular type of data set
considered. Relevant questions are whether the data set is purely extensional
or intensional, whether it contains functors, how large it is, etc. Improving
the performance of logical and relational learning systems is bound to remain
an active area of research in the near future as it is one of the key challenges
of working with expressive representations.

10.2 Computational Learning Theory*

Whereas the previous was concerned with an empirical perspective and possi-
ble ways of improving the implementation of relational learning systems, this
section takes a more theoretical perspective. More specifically, computational
learning theory investigates classes of learning problems that are efficiently
learnable. There are two issues here. First, what is the meaning of efficient?
And second, what do we mean by learnable?
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The first question has the standard answer in computer science, where
efficient corresponds to polynomial. Two forms of efficiency are considered in
computational learning theory: sample complexity and computational complex-
ity. The sample complexity expresses the number of examples needed before
a high-quality solution is obtained, whereas the computational complexity
refers to the time and memory requirements of particular learning problems
or algorithms.

The second question is somewhat harder to answer, because there exist
many different notions of learnable within the computational learning theory
literature. They all have to do with a notion of convergence to a desirable
hypothesis given evidence (in the form of examples or answers to particular
queries; cf. Sect. 7.3.2). A full discussion of all possibilities is outside the scope
of this book,3 though we present some key notions in the following subsection.

10.2.1 Notions of Learnability

In Chapter 7, we encountered some notions of convergence. First, there was the
Horn algorithm by Angluin et al. [1992] that exactly identifies theories. Exact
identification requires that the learner halt after processing a finite number of
examples and queries and output a theory that is (logically) equivalent to the
target theory. In the case of Horn, there were further guarantees concerning
the complexity of the algorithm. Indeed, the number of queries as well as the
computation time required were both polynomial in the size parameters of
the target theory.

Second, there is the Model Inference System algorithm by Shapiro
[1983], which identifies theories in the limit. Systems that identify theories
in the limit are presented with a potentially infinite sequence of examples
e1, ..., en, ... of the target theory T ,4 and have to output a sequence T1, ..., Tn, ...
of theories such that Ti is consistent with the first i examples e1, ..., ei. A
system identifies a theory in the limit if and only if, for all possible theories
and all possible sequences of examples (in which each example eventually
occurs), there is a number i such that Ti is equivalent to the target theory T
and ∀j > i : Tj = Ti. So, systems that identify interpretations in the limit
converge in a finite number of steps upon a theory that is correct. The key
difference with exact identification is the system is not required to know when
the point of convergence occurs.

Thirdly, there is the more recent and also more popular PAC-learning
(probably approximately correct learning) setting introduced by Valiant [1984]
on which we will focus in this section. Whereas the Model Inference Sys-

tem and the Horn algorithm employed membership and equivalence queries
3 Actually, computational learning theory is an active research field in itself to

which several textbooks have been devoted; for instance, [Natarajan, 1991, Kearns
and Vazirani, 1994]. The reader may also want to consult [Mitchell, 1997] for a
gentle introduction.

4 In MIS’s case the theory corresponds to an intended interpretation; cf. Sect. 7.3.2.
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on an oracle, the PAC-learning setting models batch learning, in which the
learner is presented a data set and has to output a hypothesis without fur-
ther interaction with a user or oracle. At the same time, it does not require
the learner to converge on a correct theory, but rather on one that is approxi-
mately correct. To this end, it is assumed that there is an unknown probability
distribution D on the examples in Le, and that the examples in the data set
are drawn at random according to this distribution. A hypothesis h is then
approximately correct with regard to a target theory t if and only if

PD({e ∈ Le|c(h, e) �= c(t, e)}) < ε (10.1)

where c(h, e) denotes the coverage relation. To be approximately correct, the
probability that a randomly selected example (according to D) is classified
differently by the learned hypothesis h and the target theory t should be
smaller than a parameter ε.

Informally, a learner is said to learn an approximately correct hypothesis if
it outputs an approximately correct hypothesis h ∈ Lh with high probability,
that is, with probability larger than 1 − δ for a parameter δ, and it outputs
a hypothesis satisfying Eq. 10.1. As it is unreasonable to expect a learner to
output an approximately correct hypothesis regardless of what the data set
and the target theory are, the notion of PAC-learning also takes into account
the complexity of the learning task. More formally, the size nt of the target
theory t ∈ Lh and of the (largest) examples ne in the data set are taken into
account, as are the parameters ε and δ. For Lh to be learnable, there must
exist a polynomial function m(nt, ne, 1/ε, 1/δ) such that the learner outputs
an approximately correct hypothesis with high probability if the data set
(drawn at random according to D) is at least of size m(nt, ne, 1/ε, 1/δ). Thus
the learner is allowed to see more examples as the learning task (as measured
by nt and ne) becomes more complex, or the guarantees it gives (in terms of
ε and δ) become tighter. The final requirement for PAC-learning is that the
resulting algorithm is efficient, that is, it must run in polynomial time in the
parameters nt, ne, 1/ε, 1/δ of the problem.

To summarize, a language of theories Lh is PAC-learnable from examples
in Le if and only if there exists a polynomial algorithm that for all theories
t ∈ Lh, for all probability distributions on Le, and for all 0 < ε < 1/2 and
0 < δ < 1/2 outputs with high probability (1 − δ) a hypothesis h ∈ Lh

that is approximately correct when receiving a data set that contains at least
m(nt, ne, 1/ε, 1/δ) examples.

There exist often interesting relationships among these models of learn-
ability. For instance, [Angluin, 1987] showed that each language that can be
(exactly) identified using equivalence queries is also PAC-learnable. The key
idea is that each equivalence query can be replaced by drawing a set of exam-
ples and checking whether it contains a counter-example.
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10.2.2 Positive Results

Despite the expressiveness of logic, several positive PAC-learning results exist.
A first class of results is obtained using propositionalization. For instance,

the first PAC-learning result for inductive logic programming, due to Džeroski
et al. [1992], concerns the most popular inductive logic programming setting,
learning from entailment, as employed by systems such as Foil [Quinlan,
1990]. Recall that in this setting examples are true and false ground facts
concerning a single target predicate, and the background theory is extensional,
that is, it consists of a set of ground facts. Džeroski et al. [1992] consider the
class of ij-determinate clauses, introduced in the Golem system by Muggleton
and Feng [1992]. The determinacy restriction allows one to propositionalize the
learning problem using the table-based approach sketched in Sect. 4.12.1 and
to guarantee that for each example there is only a single row in the resulting
table. This was realized by allowing the substitutions to only follow (n:1) and
(1:1) relations. More formally, a clause h ← b1, . . . , bn is determinate with
regard to the background theory B if and only if after grounding hθ for all
1 � i � n there is at most one substitution θi such that

B |= b1θθ1, b2θθ1θ2, . . . biθθ1 . . . θi and the expression is ground (10.2)

Example 10.7. For instance, the clause

grandfather(X,Y) ← father(X,Z), father(Z,Y)

is not determinate under the usual interpretation where father(X,Y) is true
if X is the father of Y because one father X can have multiple children Z.
Therefore, depending on the background theory, the requirement does not
hold for the first literal (that is, for i = 1). On the other hand, by reordering
the clause as

grandfather(X,Y) ← father(Z,Y), father(X,Z)

the clause is determinate, because any given person Y has exactly one father,
who in turn has one father.

In addition to the determinacy restriction, Džeroski et al. [1992] (and Mug-
gleton and Feng [1992] in their Golem system) consider two parameters i
and j to bound the depth of the dependencies among terms in the substi-
tutions and the arity of predicates (which in turn determine the size of the
resulting table). More essential than these two complexity parameters are
that the PAC-learning results for ij-determinate clauses then follow from the
PAC-learnability of the problems in the table format. Džeroski et al. [1992]
essentially apply the learnability result for k-DNF (that is, propositional for-
mulae in disjunctive normal form, where each conjunction contains at most
k literals). This can be realized using the notion of a prediction-preserving
reducibility (cf. below).
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The propositionalization approach has also been applied to the learning
from interpretations setting for jk-clausal theories [De Raedt and Džeroski,
1994]. This result directly upgrades the original result by Valiant [1984] for
k-CNF formulae to clausal logic. In Valliant’s approach a specific-to-general
algorithm is applied, which starts from the most specific k-CNF formula (con-
sisting of the conjunction of all propositional clauses involving at most k liter-
als), and which repeatedly generalizes the current hypothesis when a positive
example is encountered that is not a model for the current hypothesis. The
generalization process simply deletes all clauses from the current hypothesis
that violate the positive example. This idea is carried over in jk-clausal theo-
ries, where k again limits the number of literals in a clause and j determines
the maximum size of the atoms. For fixed k and j, one can then evaluate
whether a finite Herbrand interpretation satisfies a jk-clause. The result can
again be viewed as a propositionalization approach, but now in the query-
based setting (cf. Sect. 4.12.2). Indeed, each possible jk-clause corresponds
to a feature and yields the value true for an example if the example satisfies
it, and false otherwise. The parameters j and k allow the table to be con-
structed in polynomial time. The result then follows from a corresponding
PAC-learning result for monomials (or item-sets); see Ex. 10.15.

It has been argued that the learning from interpretations setting may
well yield more positive results than the learning from entailment [Cohen
and Page, 1995, De Raedt, 1997]. The reason is that interpretations contain
more information and are also larger than the facts employed in learning from
entailment. This does not only make the learning task easier but also allows
the learning system more processing time.

Exercise 10.8. Illustrate Valliant’s k-CNF algorithm on a simple example.

Exercise 10.9. Construct a simple example of the propositionalization ap-
proach taken in the learning from interpretations setting.

Second, there exist a number of exciting but unfortunately also rather in-
volved results that do not rely on a propositionalization approach. Several
of these are actually upgrades of the famous Horn algorithm of Angluin
et al. [1992] presented in Sect. 7.4.1, or the variant given by Frazier and Pitt
[1993] for learning from entailment. Some interesting positive results are given
by Reddy and Tadepalli [1997, 1998], Arias and Khardon [2000], Khardon
[1999]. The last approach by Roni Khardon upgrades Horn towards learn-
ing function-free Horn theories from interpretations and was implemented in
the Logan-H system [Khardon, 2000]. Whereas the original version of this
algorithm employs membership and equivalence queries, the batch variant im-
plemented in Logan-H emulates these examples by drawing samples from the
data.
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10.2.3 Negative Results

Most PAC-learning results for relational learning are negative. Cohen and
Page [1995] distinguish essentially three proof techniques for obtaining neg-
ative PAC-learning results. We closely follow the exposition by Cohen and
Page [1995] to explain these.

First, if the problem of finding a consistent hypothesis (that is, a hypoth-
esis that covers all positive examples and no negative example) cannot be
solved in polynomial time, then the problem is not PAC-learnable. Let us
illustrate this using a result due to Kietz [1993], Kietz and Džeroski [1994],
derived from [Haussler, 1989]. Kietz showed that the well-known SAT problem
is polynomially reducible to the consistency problem for the language Lnd

12 . In
this problem, all examples and hypotheses are single clauses, the predicates in
the body are of maximum arity 2, the depth of terms in the clause is at most
15 and the determinacy restriction is not imposed. In addition, the coverage
relation is θ-subsumption. Because SAT is an NP-complete problem, it fol-
lows that the consistency problem is NP-complete as well, and therefore this
language is not PAC-learnable. This reduction is presented in the example
below. It can be skipped (as well as the two exercises following it) without
loss of continuity.

Example 10.10. ** (From Kietz and Džeroski [1994].) The reduction from SAT
to the consistency problem for Lnd

12 can be defined as follows. In SAT, one
is given a set V = {v1, · · · , vn} of boolean variables and a set of clauses
C = {C1, · · · , Cm} over V , and the question is whether there exists a truth
assignment to V that satisfies the clauses in C.

The SAT problem is reduced to the consistency problem as follows. The
positive examples are (for all 1 � i � n) of the form

h(ci) ←
p(ci, ci1), p(ci, ci2),
t1(ci1), · · · , ti−1(ci1), ti+1(ci1), · · · , tn(ci+1), f1(ci1), · · · , fn(ci1),
t1(ci2), · · · , tn(ci2), f1(ci2), · · · fi−1(ci2), fi+1(ci2), · · · , fn(ci2)

and the negative example is

h(d) ←
{p(d, dj), ti(dj)|1 � i � n, 1 � j � m and vi �∈ Cj}∪
{p(d, dj), fi(dj)|1 � i � n, 1 � j � m and ¬vi �∈ Cj}

In this reduction, the predicates ti (or fi) denote the truth-values of the
variables vi.
5 The depth of a term in a clause is defined as the minimum length of its linking

chains. A term in a clause is linked with a linking chain of length 0 if it occurs in
the head of the clause, and with a linking chain of length d + 1 if another term
in the same literal is linked with a linking chain of length d in the clause [Kietz,
1993].
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For instance, for V = {v1, v2} and C = {{v1}, {v2}}, the following positive
examples are constructed:

h(c1) ← p(c1, c11), t2(c11), f1(c11), f2(c11), p(c1, c12), t1(c12), t2(c12), f2(c12)

h(c2) ← p(c2, c21), t1(c21), f1(c21), f2(c21), p(c2, c22), t1(c22), t2(c22), f1(c12)

as well as the negative

h(d) ← p(d, d1), t2(d1), f1(d1), f2(d1), p(d, d2), t1(d2), f1(d2), f2(d2)

A solution for this learning task is now given by

h(X) ← p(X,X1), t1(X1), t2(X1)

which corresponds to the truth assignment v1 = true = v2.

Exercise 10.11. Show how to compute a solution to the learning task of the
previous example by computing the lgg of the positive examples. Show that
it does not subsume the negative. Show also that for C = {{v1}, {¬v1}}, the
resulting learning problem does not have a solution.

Exercise 10.12. ** Show that the reduction sketched in the previous exam-
ple is indeed a polynomial reduction. (The solution to this exercise and the
previous one can be found in [Kietz and Džeroski, 1994].)

The above example shows that a particular inductive logic programming
problem is not PAC-learnable. The weakness of this result (and of that of any
PAC-learning result based on the hardness of the consistency problem) is that
it only provides limited insight into the learning task. Indeed, even though it
was shown that learning a single clause in Lnd

12 is not tractable, it might well
be the case that other, more expressive languages would be PAC-learnable.
As such, the above result does not exclude the possibility that learning sets
of clauses in Lnd

12 is PAC-learnable.
A second proof technique for obtaining negative PAC-learning results relies

on the seminal work by Schapire [1990]. This result essentially states that a
language cannot be PAC-learnable (under certain complexity theory assump-
tions) if there exists a concept in the language for which the covers test cannot
be evaluated in polynomial time. This is sometimes referred to as evaluation
hardness. More formally, it is required that there exist a hypothesis h ∈ L such
that testing whether h covers an example e cannot be performed in time poly-
nomial in e and h. The result by Schapire is quite intuitive. Indeed, learning
systems typically need to (repeatedly) test whether a candidate hypothesis
covers particular examples, and therefore the learning task is expected to be
harder than testing coverage. Even though the result by Schapire is intuitively
clear, its proof is quite involved. Nevertheless, this result together with the
complexity of typical coverage tests (such as θ-subsumption) indicates that
there is little hope of obtaining positive PAC-learning results for large classes
of inductive logic programming problems. The proof technique of evaluation
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hardness is illustrated in the following example, which can be safely skipped
by the casual reader less interested in formal details. It concerns the language
Lnd

13 , the language containing clauses of maximum depth 1, and predicates in
the body of clauses of maximum arity 3.

Example 10.13. ** (From [Cohen, 1995]; cf. also [Cohen and Page, 1995]).
To show evaluation hardness for Lnd

13 , a reduction from 3-SAT is used. More
precisely, it is shown that a 3-CNF formula C = {C1, · · · , Cn} with the Ci =
{li1, li2, li3} over the variables {x1, · · · , xn} can be encoded as an example e
and that there exists a hypothesis h ∈ Lnd

13 that covers e exactly when C is
satisfiable. The example e is obtained from C as (where mij = k if lij = xk,
mij = −k if lij = ¬xk):

satisfiable(m11,m12,m13, · · · ,mn1,mn2,mn3) ←
sat(1, 0, 0), sat(0, 1, 0), sat(0, 0, 1),
sat(1, 1, 0), sat(0, 1, 1), sat(1, 0, 1),
sat(1, 1, 1), bool(0), bool(1),
∪{linkk(M,V,X) | with M ∈ {−n, · · · ,−1, 1, · · · , n},

V ∈ {0, 1},X ∈ {0, 1} and
(M = k ∧ X = V ) or (M = −k ∧ X = ¬V ) or (M �= k ∧ M �= −k)}

Additionally, the clause against which to test coverage (using θ-subsump-
tion) is specified as:

satisfiable(M11,M12,M13,M21,M22,M23, · · · ,Mn1,Mn2,Mn3) ←
∧n

k=1boolean(Xk)
∧n

i=1 ∧3
j=1 boolean(Vij)

∧n
i=1 ∧3

j=1 ∧n
k=1linkk(Mij , Vij ,Xk)

∧n
i=1sat(Vi1, Vi2, Vi3)

The idea is that the Xi and Vij non-deterministically represent boolean vari-
ables. The Xi represent the values for xi and the Vij those of the corresponding
literals lij . Furthermore, the literals for linkk ensure that the Vij have values
that are consistent with the values of Xi; more specifically, if lij = xk then
Vij = Xk, and when lij = ¬xk, Vij and Xk should have complementary values.
The sat predicate then determines when a clause evaluates to true (that is,
when one of its literals is true).

Exercise 10.14. * Show how the 3-CNF

{{¬x1,¬x2,¬x3}, {¬x1,¬x2, x3}, {¬x1, x2,¬x3}}

is represented by this reduction.

This result seems, at first sight, similar to the one concerning the con-
sistency problem. However, evaluation hardness provides a much more useful
result. The reason is that any superset of the language Lnd

13 will necessarily
also contain a concept that is hard to evaluate, and therefore any superset of
this language cannot be PAC-learnable either.
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A third proof technique for obtaining PAC-learning results, called prediction-
preserving reducibility, directly reduces one PAC-learning problem to another.
The idea is very similar to that of other reductions employed within theoreti-
cal computer science, such as reductions from one NP-complete problem (for
instance, SAT) to another (for instance, the consistency problem for Lnd

12 ).
This proof technique employs a slight variant of PAC-learnability, the so-
called PAC-predictability. The key difference between PAC-predictability and
PAC-learnability of a language L is that in the case of PAC-predictability it is
not required that the output hypothesis belong to the language L of hypothe-
ses. Instead, it is required that the output hypothesis evaluate in polynomial
time (in the size of its input).

Consider the two hypotheses languages Lh1 over Le1 and Lh2 over Le2,
and suppose that there exist two functions fe : Le1 → Le2 and fh : Lh1 → Lh2

with the following properties:

e ∈ H if and only if fe(e) ∈ fh(H)
size(fh(H)) is polynomial in size(H)
fe(e) can be computed in polynomial time (10.3)

Then we say that predicting Lh1 reduces to predicting Lh2, notation Lh1 �
Lh2 [Pitt and Warmuth, 1990]. The first condition states that membership
be preserved, the second that the size of hypotheses be preserved within a
polynomial factor, and the last that the instance mapping fe run in polynomial
time.

If Lh1 � Lh2, one can use a learning algorithm for Lh2 to learn concepts
in Lh1 by first mapping the data set E1 (represented in Le1) to the data set
E2 = {fe(e)|e ∈ E1} (represented in Le2), and then employing the learning
algorithm for Lh2 to learn a hypothesis H2. The hypothesis H2 can then be
used for predicting the class of (unseen) examples e ∈ Le1 by testing whether
fe(e) is covered by H2. Pitt and Warmuth [1990] have shown that if Lh1 �
Lh2 and Lh2 is PAC-predictable, then Lh1 is PAC-predictable. Prediction-
preserving reducibilities can now be used in two directions. First, to show
that Lh1 is PAC-predictable, it suffices to find a PAC-predictable language
Lh2 and a prediction-preserving reduction such that Lh1 � Lh2. By taking the
contra-position of the theorem by Pitt and Warmuth [1990], one can also show
that a language Lh1 is not PAC-predictable (and therefore not PAC-learnable)
if it reduces to a language Lh2 that is not PAC-predictable. PAC-reducibility
is, hence, a powerful tool to obtain an understanding of the relative difficulty
of learning problems.

Exercise 10.15. * Prove the positive result for jk-clausal theories and learn-
ing from interpretations using a prediction-preserving reduction to the set of
monomials. Assume that monomials (conjunctions of boolean attributes) are
PAC-learnable.

Exercise 10.16. ** Specify a prediction-preserving reduction from r-term
DNF to the language Lf

1 . R-term DNF formulae are boolean formulae of the
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form T1 ∨ · · · ∨ Tr, where each of the Ti is a conjunction of literals over n
boolean variables. Furthermore, Lf

1 consists of single-clause hypotheses that
contain at most one free or existential variable, that is, at most one variable
appears in the body but not in the head of the clause. (See Cohen [1995],
Cohen and Page [1995] for a solution.)

10.3 Conclusions

Throughout this chapter, we have focused on computational aspects of logi-
cal and relational learning. First, we addressed implementation issues, where
we emphasized the need for efficient coverage testing. This lead us to investi-
gate the efficiency of θ-subsumption testing in the phase-transition framework,
and discuss various possible optimizations, such as sampling, use of interpre-
tations, and query-packs. Second, we investigated logical and relational learn-
ing from a theoretical computer science perspective, that is, we discussed the
convergence and complexity of logical and relational learning systems. Vari-
ous frameworks for learnability were considered, such as identification in the
limit and probably approximately correct learning. Although most results are
negative, we also presented some positive results for simple settings.

10.4 Historical and Bibliographic Notes

An excellent survey on scaling and efficiency issues in relational learning is
given by Blockeel and Sebag [2003]. The first section of this chapter is actually
partly based on this work. The prominent role of θ-subsumption in inductive
logic programming has motivated various researchers to look at algorithms
for testing θ-subsumption (cf. [Kietz and Lübbe, 1994, Scheffer et al., 1997,
Maloberti and Sebag, 2004]), and subsequently the effect for learning was
analyzed empirically within the phase-transition framework by Giordana and
Saitta [2000], Botta et al. [2003]. Various optimizations within Prolog were
developed by Blockeel et al. [2002], Costa et al. [2003b], and, recently, some
work has started looking at optimizations from a database perspective [Yin
et al., 2004]. Optimizations for learning from interpretations were suggested
by Blockeel et al. [1999].

There is also very rich literature on various frameworks for learning theory.
Surveys of results in inductive inference, including identification in the limit
and exact identification, can be found in [Angluin and Smith, 1983, Biermann,
1986], and of the PAC-learning framework in [Kearns and Vazirani, 1994,
Natarajan, 1991]. More recently, there has been quite some attention given to
statistical learning theory, lying at the basis of the developments around sup-
port vector machines and kernel methods; see Chapter 9 for more details. The
dissertation of Shapiro [1983] contains a seminal result on the identification
of Prolog programs using queries. A shorter version can be found in [Shapiro,
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1991]. The famous Horn algorithm and its variants for exact identification
of Horn theories from examples are described in [Angluin et al., 1992, Frazier
and Pitt, 1993]. The role of queries for learning is investigated in [Angluin,
1987, 2004].

The first results concerning PAC-learning of logical and relational learning
are due to Haussler [1989] and, in an inductive logic programming context,
to Džeroski et al. [1992]. Early negative results are also due to Kietz [1993];
see also [Kietz and Džeroski, 1994]. An excellent introduction to computa-
tional learning theory for logical and relational learning is given by Cohen
and Page [1995]. Various other interesting results can be found in [Cohen,
1995, De Raedt and Džeroski, 1994, Reddy and Tadepalli, 1997, 1998, Arias
and Khardon, 2000, Khardon, 1999]. Worth mentioning is also the work on the
polynomial learnability of elementary formal systems by Miyano et al. [2000].
Elementary formal systems employ a definite-clause-like syntax to specify for-
mal languages and manipulate strings. Further results can be found in the
proceedings of the annual conferences on Computational Learning Theory
and Algorithmic Learning Theory.
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11

Lessons Learned

Whereas the previous chapters introduced different aspects of logical and re-
lational learning, the present chapter constitutes an attempt to summarize
some of the main lessons learned that may be important for future develop-
ments in machine learning and artificial intelligence research. Taken together
these lessons put logical and relational learning in a new perspective.

11.1 A Hierarchy of Representations

There exists a hierarchy of representational languages that can be used for
logical and relational learning. The principles of logical and relational learning
apply to all of these languages.

A multitude of different languages exist that can be used to represent
structured data. As argued extensively in Chapter 4, they form a natural
hierarchy. The hierarchy includes boolean, attribute-value, multi-instance, re-
lational and logic programming representations as well as representations for
sequences, trees and graphs. This means that, for instance, attribute-value
representations are a special case of multi-instance learning representations,
which in turn specialize relational representations. This observation, although
straightforward, is important because learning problems and techniques devel-
oped for more expressive representations directly apply to the less expressive
representations. As one illustration, relational learning systems can, in princi-
ple, be applied to multi-instance learning problems. The observation also holds
for the theoretical results that exist about logical and relational learning, such
as those concerning the generality relation; see below.

The multitude of different representations also points to the difficulty and
desirability of selecting the right level of representation for the specific problem
at hand. Selecting a too general representation increases the computational
complexity, while selecting a too specific one may affect the quality of the
learned knowledge. Therefore, it is important to get the representation right
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even if this means that a new representation or system has to be designed.
This can be realized, when needed, by upgrading or downgrading.

11.2 From Upgrading to Downgrading

Logical and relational learning techniques can be obtained by upgrading tech-
niques for less expressive representations; conversely, techniques for less ex-
pressive representations can be obtained by downgrading logical and relational
learning techniques.

Most of the work so far in logical and relational learning has upgraded var-
ious propositional learning tasks, representations and systems to use logical
and relational representations; see also Chapter 6. The upgrading approach
has been successful and has resulted in many interesting new systems and rep-
resentations, such as the rule-learner Foil [Quinlan, 1990], the logical decision
tree inducer Tilde [Blockeel and De Raedt, 1998], the frequent query miner
Warmr [Dehaspe and Toivonen, 2001] and even the relational instance-based
learner Ribl [Emde and Wettschereck, 1996] and the Probabilistic Relational
Models [Getoor et al., 2001a]. The upgraded frameworks are typically very
expressive and allow one to emulate the original setting and system. For in-
stance, Bayesian nets are an instance of probabilistic relational models and
Quinlan’s [1993a] well-known decision tree learner C4.5 is a special case of
Tilde. At the same time, because of their expressiveness, they can work at
different levels of representation, also intermediate ones. For instance, graphs
and networks can easily be represented using relational logic, and hence logical
and relational learning systems are applicable to graph- and network-based
representations.

Expressiveness comes at a computational cost, which explains why logical
and relational learning are usually less efficient than, and do not scale as well
as more specialized machine learning techniques. Nevertheless, even in such
cases, logical and relational learning can give interesting results. First, logical
and relational learning systems can and should be used as a starting point
and as a baseline for evaluating more specific techniques. Second, logical and
relational learning systems can be downgraded, that is, specialized, tailored
and optimized for use with less expressive representations; there are many
opportunities for doing this. One productive line of research, which, arguably,
downgrades logical and relational learning, is that on mining and learning in
graphs.

11.3 Propositionalization and Aggregation

Propositionalization and aggregation can be used to transform logical and re-
lational learning problems into less expressive representations.
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Logical and relational learning has also studied how the richer representa-
tions can be transformed into simpler representations. In this regard, logical
and relational learning has contributed several propositionalization techniques
(cf. Sect. 4.12) that transform structured machine learning and data mining
problems into a simpler format, typically a feature-vector or an attribute-value
representation, though also more complex intermediate representations (such
as multi-instance representations) are possible. The resulting problems can
directly be input into the (more) standard machine learning and data mining
algorithms that employ flat representations such as support-vector and kernel
methods, decision tree learners, etc. Two types of techniques can be distin-
guished: static propositionalization, which first maps the logical or relational
learning problem onto the simpler format, and then invokes learners on the
simpler representations, and dynamic approaches, which incrementally con-
struct a set of good features by coupling the propositionalization step with
the learning step.

Aggregation (cf. Sect. 4.13) can play an important role in propositional-
ization as it summarizes the information about multiple values into a single
value.

Propositionalization and aggregation have to be exercised with care be-
cause there is a risk of losing information, though propositionalization and
aggregation techniques have proven to be effective for many classification
problems.

11.4 Learning Tasks

Logical and relational learning, in principle, apply to any machine learning
and data mining task.

Whereas initial work on logical and relational learning has focused on
the task of learning a set of rules from positive and negative examples, it
is clear that these representations are generally applicable, and can be used
for solving other tasks. Today, logical and relational learning techniques exist
that induce decision trees [Blockeel and De Raedt, 1998], realize clustering
and instance-based learning [Kirsten et al., 2001], discover association rules
in relational databases [Dehaspe and Toivonen, 2001], revise theories [Wrobel,
1996], employ kernels and support vector machines [Passerini et al., 2006],
define graphical models [Getoor and Taskar, 2007, De Raedt et al., 2008], and
learn from reinforcement [Džeroski et al., 2001].

11.5 Operators and Generality

Logical and relational learning has contributed a rich variety of frameworks
and operators for generality that apply also to other representations.
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The theory of logical and relational learning has contributed a rich variety
of frameworks for reasoning about the generality of hypotheses, cf. Chapter 5.
When using hypotheses in the form of logical formulae, the generality relation
coincides with that of logical entailment. Typically, a hypothesis G is said to
be more general than a hypothesis S if G entails S, that is, if G |= S. Applying
a deductive inference operator leads to specializations, and applying inverted
deductive operators, that is, inductive operators, leads to generalizations. A
multitude of operators for generalization and specialization have been devised
and are theoretically well-understood. Different operators exist that depend on
the form of the hypotheses (single or multiple clause), the presence or absence
of a background theory, the type of inference rule (deductive or inductive),
and the search strategy applied (heuristic or complete search).

Many of the frameworks for generality can also be downgraded for use
with more specialized representations, such as for instance graphs. The two
most important frameworks for deciding whether one clause is more general
than another one are θ-subsumption [Plotkin, 1970] and OI-subsumption [Es-
posito et al., 1996]. Specialized to graphs, these definitions correspond to the
well-known notions of subgraph-isomorphism and -homeomorphism. As a con-
sequence, it is easy (not to say straightforward) to adapt many of the results
and operators of the subsumption frameworks to those of the graph-morphism
ones. This can be used to obtain methods and algorithms for enumerating
graphs with different properties. At the same time, some variants of the sub-
sumption framework that take into account background knowledge in the form
of sets of clauses or rules might be adapted towards the graph mining setting,
potentially leading to a new class of graph mining systems.

11.6 Unification and Variables

Logical formulae can act as templates, realize parameter tying, and provide
memory for use in various hybrid representations.

A key difference between propositional logic and relational and first-order
logic lies in their use of variables and unification. Unification is a very pow-
erful tool for machine learning and data mining in at least two respects.
First, logical expressions that contain variables can be used as templates that
make abstraction of specific instances. Knowledge-based model construction,
as discussed in Chapter 8, is essentially the application of this idea to gen-
erate graphical models. Consider, for instance, Markov logic [Richardson and
Domingos, 2006], in which a set S of weighted logical formulae of the form
w : f is used to construct a Markov network. This is realized by generat-
ing from each ground instance fθ of a formula w : f some local fragment
of the Markov network. On the one hand, the templates provide a general
and compact description that allow us to deal with multiple extensions, and
on the other hand it also allows for parameter tying, which facilitates learn-
ing. Second, variables and unification can also be used to propagate infor-
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mation. This is not only useful when performing deduction in logic, but also
in the above sketched knowledge-based model construction approach. For in-
stance, in a logical Markov model context, abstract state transitions such
as p(X) → q(X), where p(X) is an abstract state, can be instantiated to
grounded states, that is, p(c1). The abstract state transition can then be in-
stantiated to p(c1) → q(c1) denoting that a transition to state q(c1) occurs
(perhaps with a particular probability). The value c1 is propagated from one
state to the next and realizes a kind of memory in the Markov model. This
mechanism by itself is important as it adds expressive power as shown, for in-
stance, in Logical HMMs [Kersting et al., 2006]. Even though logical Markov
models and Markov logic use elements of logic, they are not a purely logical
representation because they merge graphical models and logic. As a conse-
quence, logic is no longer used as a target language but rather as a means for
realizing interesting intermediate representations.

11.7 Three Learning Settings

The nature of the examples can be taken into account in logical and relational
learning by selecting the right learning setting.

The distinction between the model-theoretic and proof-theoretic perspec-
tive in logic has been used to define three settings for logical and relational
learning that are applicable to different types of data; cf. Chapter 4. In the
first setting, learning from interpretations, an example is a logical interpre-
tation I, that is, a state description or possible world, and an example is
covered by a hypothesis H (that is, a logical formula) if I is a model for H. In
the second setting, learning from entailment, an example corresponds to an
observation about the truth or falsity of a formula F . A hypothesis H then
covers the formula F if F is entailed by the hypothesis, that is, H |= F . In
the final setting, learning from proofs, an example is a proof (or a trace) and
an example P is covered by a hypothesis H if P is a possible proof in the
hypothesis H. Interpretations are the natural type of examples used in, for
instance, Bayesian networks and item-set mining; observations in the form of
true and false formulae are typical of scientific knowledge discovery problems,
and proofs and traces are very natural when learning tree-bank grammars and
Markov models. The settings provide different types of clues about the under-
lying target theory, and can be ordered according to their difficulty. Proofs
carry the most information, as they directly encode (instantiated) rules of the
unknown target theory; interpretations provide full information about a spe-
cific example; whereas formulae summarize or aggregate information about
multiple states (or interpretations). Therefore, learning from proofs is easier
than learning from interpretations, which in turn is easier than learning from
entailment; cf. [De Raedt, 1997].
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11.8 Knowledge and Background Knowledge

Using logical and relational learning new knowledge can be generated, and, in
principle, any type of background knowledge can be specified and used in the
learning process.

Throughout its history logical and relational learning has always stressed
the importance of knowledge. Logical and relational learning techniques can
generate new knowledge that is understandable and that provides new in-
sights into the applcation domain. Several examples, such as those concern-
ing structure activity relationship prediction, were discussed throughout this
book. At the same time, logical and relational learning techniques can also
incorporate background knowledge in the learning process. It enables this by
exploiting the underlying representation formalism, which typically supports
the definition of intentional or view predicates or relations, which provide
additional information about the domain of discourse. These predicates can
be used as any other predicate or relation in the learning process. This is a
simple but powerful mechanism because, when using logic programs, essen-
tially any “programmable” form of background theory can be specified. In
this way Craven and Slattery [2001] have even encoded learning algorithms as
background predicates. Furthermore, because hypotheses are encoded in the
same language as the background theory, already learned hypotheses can be
added to the background theory realizing closed-loop learning.

11.9 Applications

Logical and relational learning is applicable to a wide variety of problem do-
mains.

Even though the book has stressed machine learning and data mining prin-
ciples rather than applications, the reader should be aware that logical and
relational learning are applicable to a wide variety of problem areas. Indeed,
some well-known applications of logical and relational learning include natural
language learning [Cussens and Džeroski, 2000], in bio- and chemo-informatics
[King et al., 2004, Page and Craven, 2003], drug design [King et al., 1992],
qualitative reasoning [Bratko et al., 1992], music analysis [Tobudic and Wid-
mer, 2005], activity recognition [Liao et al., 2005], robotics [Kersting et al.,
2007, Limketkai et al., 2005], intelligent assistants [Myers et al., 2007], eco-
logical modeling [Džeroski et al., 1994], text and web mining [Craven and
Slattery, 2001], user modeling [Jacobs and Blockeel, 2001], game playing [Ra-
mon et al., 2001], validation and verification [Cohen, 1994b, De Raedt et al.,
1991]. Overviews of some of these applications can be found in [Bratko and
Muggleton, 1995, Page and Craven, 2003, Bratko and Džeroski, 1995, Džeroski
and Bratko, 1996, Džeroski, 2001, Cussens and Džeroski, 2000].
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O. R. Zäıne, and R. Goebel, editors, Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD-
2002), pages 143–152. ACM Press, 2002.

D. Angluin. Queries revisited. Theoretical Computer Science, 313(2):175–194,
2004.



352 References

D. Angluin. Queries and concept-learning. Machine Learning, 2:319–342,
1987.

D. Angluin and C. H. Smith. A survey of inductive inference: theory and
methods. Computing Surveys, 15(3):237–269, 1983.

D. Angluin, M. Frazier, and L. Pitt. Learning conjunctions of Horn clauses.
Machine Learning, 9:147–162, 1992.

M. Arias and R. Khardon. Learning closed Horn expressions. Information
and Computation, 178(1):214–240, 2002.

M. Arias and R. Khardon. A new algorithm for learning range restricted
Horn expressions (extended abstract). In J. Cussens and A. Frisch, edi-
tors, Proceedings of the 10th International Conference on Inductive Logic
Programming, volume 1866 of Lecture Notes in Artificial Intelligence, pages
21–39. Springer, 2000.

F. Bacchus. Lp, a logic for representing and reasoning with statistical knowl-
edge. Computational Intelligence, 6:209–231, 1990.

L. Badea. A refinement operator for theories. In C. Rouveirol and M. Sebag,
editors, Proceedings of the 11th International Conference on Inductive Logic
Programming, volume 2157 of Lecture Notes in Artificial Intelligence, pages
1–14. Springer, 2001.

P. Baldi and S. Brunak. Bioinformatics: the Machine Learning Approach.
The MIT Press, 1998.

P. Baldi, P. Frasconi, and P. Smyth. Modeling the Internet and the Web:
Probabilistic Methods and Algorithms. John Wiley, 2003.

F. Bancilhon and R. Ramakrishnan. An amateur’s introduction to recursive
query processing strategies. SIGMOD Record, 15:16–51, 1986.

R. B. Banerji. A language for the description of the concepts. General Systems,
5:117–127, 1964.

Y. Bengio and P. Frasconi. An input output HMM architecture. In G. Tesauro,
D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Information
Processing Systems, volume 7, pages 427–434. MIT Press, 1994.

F. Bergadano and A. Giordana. Guiding induction with domain theories. In
Y. Kodratoff and R. S. Michalski, editors, Machine Learning: An Artificial
Intelligence Approach, volume 3, pages 474–492. Morgan Kaufmann, 1990.

F. Bergadano and D. Gunetti, editors. Inductive Logic Programming: from
Machine Learning to Software Engineering. MIT Press, 1995.

F. Bergadano, A. Giordana, and L Saitta. Concept acquisition in noisy en-
vironments. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 10:555–578, 1988.

I. Bhattacharya, L. Getoor, and L. Licamele. Query-time entity resolution. In
T. Eliassi-Rad, L. H. Ungar, M. Craven, and D. Gunopulos, editors, KDD,
pages 529–534. ACM, 2006. ISBN 1-59593-339-5.

A. Biermann. Fundamental mechanisms in machine learning and inductive
inference. In W. Bibel and P. Jorrand, editors, Fundamentals of Artificial
Intelligence. Springer, 1986.



References 353

A. Biermann and J. Feldman. On the synthesis of finite-state machines from
samples of their behavior. IEEE Transactions on Computers, C(21):592–
597, 1972.

A. Biermann, G. Guiho, and Y. Kodratoff, editors. Automatic Program Con-
struction Techniques. Macmillan, 1984.

C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
G. Bisson. Learning in FOL with a similarity measure. In Proceedings of the

10th National Conference on Artificial Intelligence. AAAI Press, 1992a.
G. Bisson. Conceptual clustering in a first-order logic representation. In Pro-

ceedings of the 10th European Conference on Artificial Intelligence, pages
458–462. John Wiley, 1992b.

H. Blockeel and L. De Raedt. Lookahead and discretization in ILP. In
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S. Džeroski and I. Bratko. Applications of inductive logic programming. In
L. De Raedt, editor, Advances in Inductive Logic Programming, pages 65–
81. IOS Press, 1996.
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edge bases. In R. López de Mántaras and D. Poole, editors, Proceedings of
the 10th Annual Conference on Uncertainty in Artificial Intelligence, pages
262–269. Morgan Kaufmann, 1994.

C. Hartshorne and P. Weiss, editors. Collected papers of Charles Sanders
Peirce. Harvard University Press, 1965.

D. Haussler. Learning conjunctive concepts in structural domains. Machine
Learning, 4:7–40, 1989.

D. Haussler. Convolution kernels on discrete structures. Technical Report
99-10, UCSC-CRL, 1999.

F. Hayes-Roth and J. McDermott. An interference matching technique for
inducing abstractions. Communications of the ACM, 21:401–410, 1978.

N. Helft. Induction as nonmonotonic inference. In Proceedings of the 1st
International Conference on Principles of Knowledge Representation and
Reasoning, pages 149–156. Morgan Kaufmann, 1989.

C. Helma, editor. Predictive Toxicology. CRC Press, 2005.
H. Hirsh. Incremental Version-Space Merging: A General Framework for Con-

cept Learning. Kluwer Academic Publishers, 1990.
C. J. Hogger. Essentials of Logic Programming. Oxford University Press,

1990.
T. Horvath, S. Wrobel, and U. Bohnebeck. Relational instance-based learning

with lists and terms. Machine Learning, 43(1/2):53–80, 2001.
A. Hutchinson. Metrics on terms and clauses. In M. van Someren and

G. Widmer, editors, Proceedings of the 9th European Conference on Ma-
chine Learning, volume 1224 of Lecture Notes in Artificial Intelligence,
pages 138–145. Springer, 1997.

P. Idestam-Almquist. Generalization of clauses. PhD thesis, Stockholm Uni-
versity, Department of Computer and Systems Sciences, 1993.



362 References

A. Inokuchi, T. Washio, and H. Motoda. Complete mining of frequent patterns
from graphs: Mining graph data. Machine Learning, 50:321–354, 2003.

N. Jacobs and H. Blockeel. From shell logs to shell scripts. In C. Rouveirol
and M. Sebag, editors, Proceedings of the 11th International Conference on
Inductive Logic Programming, volume 2157 of Lecture Notes in Artificial
Intelligence, pages 80–90. Springer, 2001.

M. Jaeger. Model-theoretic expressivity analysis. In L. De Raedt, P. Fras-
coni, K. Kersting, and S. Muggleton, editors, Probabilistic Inductive Logic
Programming — Theory and Applications, volume 4911 of Lecture Notes in
Artificial Intelligence. Springer, 2008.

M. Jaeger. Parameter learning for relational Bayesian networks. In Z. Ghahra-
mani, editor, ICML, volume 227, pages 369–376. ACM, 2007.

M. Jaeger. Relational Bayesian networks. In D. Geiger and P. P. Shenoy, edi-
tors, Proceedings of the 13th Annual Conference on Uncertainty in Artificial
Intelligence, pages 266–273. Morgan Kaufmann, 1997.

D. Jensen and J. Neville. Linkage and autocorrelation cause feature selection
bias in relational learning. In C. Sammut and A. G. Hoffmann, editors, Pro-
ceedings of the 19th International Conference on Machine Learning, pages
259–266. Morgan Kaufmann, 2002.

F. V. Jensen. Bayesian Networks and Decision Graphs. Springer, 2001.
W. S. Jevons. The Principles of Science: a Treatise on Logic and Scientific

Method. Macmillan, 1874.
A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive logic programming.

Journal of Logic and Computation, 2(6):719–770, 1992.
A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logic

programming. In Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 5, pages 235–324. Oxford University Press, 1998.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled
graphs. In T. Fawcett and N. Mishra, editors, Proceedings of the 20th
International Machine Learning Conference, pages 321–328. AAAI Press,
2003.

M. Kearns and U. Vazirani. An Introduction to Computational Learning The-
ory. MIT Press, 1994.

K. Kersting and L. De Raedt. Bayesian logic programming: theory and tool. In
L. Getoor and B. Taskar, editors, An Introduction to Statistical Relational
Learning. MIT Press, 2007.

K. Kersting and L. De Raedt. Bayesian logic programs. Technical Report
151, University of Freiburg, Institute for Computer Science, April 2001.

K. Kersting and L. De Raedt. Logical Markov Decision Programs. In L. Getoor
and D. Jensen, editors, Working Notes of the IJCAI-2003 Workshop on
Learning Statistical Models from Relational Data (SRL-03), 2003.

K. Kersting, M. van Otterlo, and L. De Raedt. Bellman goes relational.
In Proceedings of the 21st International Conference on Machine learning.
ACM, 2004.



References 363

K. Kersting, L. De Raedt, and T. Raiko. Logical hidden Markov models.
Journal of Artificial Intelligence Research, 25:425–456, 2006.

K. Kersting, C. Plagemann, A. Cocora, W. Burgard, and L. De Raedt. Learn-
ing to transfer optimal navigation policies. Advanced Robotics, 21(13):1565–
1582, 2007.

R. Khardon. Learning function free Horn expressions. Machine Learning, 37
(3):141–275, 1999.

R. Khardon. Learning Horn expressions with Logan-H. In P. Langley, edi-
tor, Proceedings of the 17th International Conference on Machine Learning.
Morgan Kaufmann, 2000.

R. Khardon and D. Roth. Learning to reason. Journal of the ACM, 44(5):
697–725, 1997.

J.-U. Kietz. Some lower bounds for the computational complexity of inductive
logic programming. In P. Brazdil, editor, Proceedings of the 6th European
Conference on Machine Learning, volume 667 of Lecture Notes in Artificial
Intelligence, pages 115–124. Springer, 1993.
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