

Network Management
Know It All

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

Sebastian Abeck

Igor Bryskin

 John Evans

Adrian Farrel

Clarence Filsfi ls

Heinz-Gerd Hegering

James D. McCabe

Monique Morrow

Thomas P. Nadeau

Bernhard Neumair

Rajiv Ramaswami

 Kumar N. Sivarajan

 John Strassner

Kateel Vijayananda

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400,
Burlington, MA 01803

This book is printed on acid-free paper.

Copyright © 2009 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which Morgan Kaufmann
Publishers is aware of a claim, the product names appear in initial capital or all capital
letters. Readers, however, should contact the appropriate companies for more complete
information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
scanning, or otherwise, without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail:
permissions@elsevier.com. You may also complete your request on-line via the Elsevier
homepage (http://elsevier.com), by selecting “Support & Contact” then “Copyright and
Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Network management : know it all / Adrian Farrel . . . [et al.].
 p. cm. — (Morgan Kaufmann know it all series)
 Includes bibliographical references and index.
 ISBN 978-0-12-374598-9 (alk. paper)
 1. Computer networks—Management. I. Farrel, Adrian.
TK5105.5.N4661855 2009
004.6068—dc22 2008039610

For information on all Morgan Kaufmann publications,
visit our Website at www.mkp.com or www.books.elsevier.com

Printed in the United States
08 09 10 11 12 10 9 8 7 6 5 4 3 2 1

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

Contents

Preface ... vii
Contributing Authors .. xiii

CHAPTER 1 Requirements for the Management
of Networked Systems .. 1

1.1 Management Scenarios ... 1
1.2 Management Functions ... 13
1.3 Organizational Aspects of Management 23
1.4 Time Aspects of Management .. 25

CHAPTER 2 IP Network Management .. 29
2.1 Choosing to Manage Your Network 29
2.2 Choosing a Confi guration Method 31
2.3 Management Information Base ... 35
2.4 Simple Network Management Protocol 39
2.5 Extensible Markup Language .. 42
2.6 Common Object Request Broker Architecture 46
2.7 Choosing a Confi guration Protocol 53
2.8 Choosing to Collect Statistics ... 54
2.9 Policy Control ... 56

CHAPTER 3 IP-Based Service Implementation
and Network Management ... 61

3.1 Simple Network Management Protocol 62
3.2 Ip-Based Service Implementation—OSS 70
3.3 Provisioning Issues ... 72
3.4 Network Management Issues ... 78
3.5 OSS Architecture .. 84
3.6 Summary ... 88

CHAPTER 4 Network Management Architecture 91
4.1 Background ... 91
4.2 Defi ning Network Management 92

4.3 Network Management Mechanisms 95
4.4 Architectural Considerations .. 101
4.5 Summary ... 117

CHAPTER 5 SLA and Network Monitoring 119
5.1 Passive and Active Network Monitoring 119
5.2 Passive Network Monitoring .. 120
5.3 Active Network Monitoring .. 128

CHAPTER 6 MPLS Network Management: An
Introduction ... 147

6.1 A Brief Introduction to MPLS ... 147
6.2 MPLS Applications .. 154
6.3 Key Aspects of MPLS Network Management 155
6.4 Management Information Base Modules for MPLS 163
6.5 Summary ... 166

CHAPTER 7 MPLS Management Interfaces 167
7.1 The Basics of Management Interfaces 167
7.2 Command-Line Interface .. 170
7.3 CORBA .. 174
7.4 XML ... 180
7.5 Bulk File Transfer .. 184
7.6 Simple Network Management Protocol 187
7.7 Summary ... 207

CHAPTER 8 Optical Networks: Control and
Management .. 211

8.1 Network Management Functions 211
8.2 Optical Layer Services and Interfacing 217
8.3 Layers within the Optical Layer 219
8.4 Multivendor Interoperability .. 220
8.5 Performance and Fault Management 222
8.6 Confi guration Management .. 233
8.7 Optical Safety .. 240
8.8 Summary ... 243

CHAPTER 9 GMPLS Provisioning and Management 245
9.1 Provisioning and Management Systems 245
9.2 GMPLS MIB Modules .. 253

CHAPTER 10 The Foundation of Policy Management 265
10.1 Introduction—A Retrospective .. 265
10.2 Where We Are .. 271

iv Contents

10.3 Defi nition of Policy Management 274
10.4 Introduction to and Motivation for

Policy Management ... 276
10.5 The Need for a New Shared Information Model 289
10.6 The Benefi ts of PBNM .. 297
10.7 Summary ... 302

CHAPTER 11 Policy-Based Network Management
Fundamentals .. 305

11.1 Introduction .. 305
11.2 The Need for OOA, Design, and Modeling

in PBNM Systems .. 306
11.3 Conceptual Policy Model .. 321
11.4 Defi nition of a PBM System .. 324
11.5 Policy Terminology—An Approach 326
11.6 Essential Terminology for PBM Systems 327
11.7 New Terminology Not Covered in RFC 3198 347
11.8 Defi nition of Policy-Based Management 351
11.9 Defi nition of Policy-Based Network Management 351
11.10 High-Level Requirements of a PBNM System 351
11.11 Using Modeling to Solve Information Overload 354
11.12 Policy Used to Express Business Requirements 362
11.13 Summary ... 365

References and Further Reading ... 367
Index ... 375

Contents v

This page intentionally left blank

Preface

Introduction

Network management is the poor cousin of network design and implementation.
All too often it is treated as an inconvenience by equipment manufacturers, or
forgotten entirely. But the ability to manage network devices is fundamental to
their utility, and a successful and functional network can only be built from equip-
ment that can be easily managed and operated.

Management refers to the ability to confi gure, control, operate, and diagnose
equipment. Of course, no vendor ships devices that cannot be managed, but
typically each is operated and controlled in a different way. This is not a problem
for the vendor, and might not be a problem for a network operator if all equip-
ment in the network is located at the same site and purchased from the same
vendor. Obviously, however, networks are dispersed across large distances, have
components in unattended sites, and are constructed from switches and routers
supplied by various companies (often with different versions and releases of the
devices that come from the same fi rm). This makes diverse network management
approaches a signifi cant hurdle to effi cient and effective network operation.

The resultant mélange of control mechanisms leaves the operator with a wide
array of tools that must be used for each day-to-day management task. A lot of
money has been spent attempting to develop unifi ed provisioning systems, oper-
ations support systems, and network management systems that can present a
single interface to users while managing a range of equipment. These have been
partially successful, but are chronically diffi cult to maintain and must be updated
for every new release from a vendor and for each new piece of equipment installed
in the network.

Over the years, various attempts have been made to standardize the way in
which networks and network equipment are managed. Many standards bodies—
the International Standards Organization, the International Telecommunications
Union, the TeleManagement Forum, the Internet Engineering Task Force, the
Object Management Group, and the Multiservice Switching Forum, to name just
six—have devoted considerable time and effort to specifying architectures, data
schemas, and management communication protocols.

viii Preface

One general view is that the subject of network management should be sepa-
rated into fi ve distinct subtopics known by the acronym FCAPS: fault management,
confi guration management, accounting management, performance management,
and security management. Note that these relate to the management aspects in
each case and not to the underlying principles. Thus, for example, security man-
agement relates to how security is confi gured, enabled, and operated within a
network, but does not relate directly to the security procedures themselves.
Another approach that has strong support is to manage the network through a
set of policies that are confi gured by the operator and distributed to the devices
that act within the network according to the instructions they have been given.

However, the solutions proposed by these different standards bodies compete
among themselves, and each vendor must select which one(s) to support.
Even then, vendors may continue to prefer their own, in-house management
techniques and only pay lip-service to the standardized approaches. The night-
mare continues!

This Book’s Content

This book contains eleven chapters arranged in order to introduce the material
starting with the basics, leading on through the application of network manage-
ment to different areas of networking technology from Internet Protocol (IP) and
Multiprotocol Label Switching (MPLS) to optical networking and Generalized
MPLS (GMPLS), and culminating in a discussion of policy-based management.

Chapter 1 sets the scene for the rest of the book by presenting sample sce-
narios from a variety of different application areas with completely different levels
of abstraction to outline some of the requirements for the management of net-
worked systems. The chapter shows that the requirements vary considerably. It
appears, therefore, that it is sensible to consider whether the management func-
tions should be structured as a whole to give a consistency across application
types and deployment scenarios. The discussion in the chapter considers this
possibility and looks at the complexity of “management” from the standpoint of
functional areas, life cycles, and organizational consequences.

Chapter 2 gives an overview of centralized and standardized techniques for
remote management of the devices that make up a network. It begins with a brief
description of the benefi ts of network management and then discusses some
common techniques for the collection of operational statistics and the motivation
for doing so. The chapter moves on to compare the benefi ts of proprietary con-
fi guration methods with standardized approaches. Then individual sections intro-
duce some of the standardized management models, including Management
Information Bases (MIBs), the Simple Network Management Protocol (SNMP), the
eXtensible Markup Language (XML), and the Common Object Request Broker
Architecture (CORBA). After a discussion of the differences between the models,
the chapter concludes with a section describing the use of policy within modern
networks.

Preface ix

Chapter 3 discusses the implementation and delivery of IP-based services.
While technology plays an important role in developing services, it is also impor-
tant that the services be provisioned and delivered in an easy and profi table
manner. Easy and profi table here refers to the scalability of the solution in terms
of the staffi ng and skills required to implement the solution for a mass market.
Technical implementation in the lab is an academic exercise to show the feasibil-
ity of a solution. This solution may not be profi table for a service provider if
provisioning the service for a large number of customers is too expensive or time
consuming.

Chapter 4 examines the component architecture for network management.
Proper management is critical to the success of any network, and this chapter
shows the many factors to consider in providing network management. It dis-
cusses the various functions of network management and the mechanisms used
to achieve these functions. In addition, the chapter discusses and compares a
number of variations for network management architecture, as well as the internal
and external network management relationships.

Chapter 5 describes the technologies and techniques available for service level
agreement (SLA) and network monitoring in QoS-enabled IP networks. Two main
approaches are generally used in concert to monitor performance of a QoS-
enabled network service to determine whether SLAs have been or can be met:
passive network monitoring and active network monitoring. The chapter exam-
ines the implications of using each of these approaches and contrasts them to
help you understand when to use each one.

Chapter 6 looks at the origins of MPLS and introduces some of its basic con-
cepts, including the separation of the control and forwarding planes of MPLS, the
Forward Equivalence Class, and the MPLS label, as well as some of the new appli-
cations of MPLS networks such as traffi c engineering and virtual private networks.
After this introduction to MPLS, the chapter explains the basic premise behind
why MPLS-enabled networks need to be managed to provide scalable; usable; and,
most important, profi table MPLS networks. Given this motivation, the author
describes how MPLS networks can be managed effectively using both standards-
based and nonstandard tools, many of which are described in this book.

Chapter 7 introduces several different types of management interfaces that may
be used to manage MPLS deployments. In particular, it presents an introduction
to XML, CORBA, SNMP, and the command-line interface (CLI). There is an inves-
tigation and explanation of why operators might or might not wish to use one,
none, or all of these interfaces to manage their MPLS networks, as well as to hope-
fully provide device vendors with reasons why they should or should not imple-
ment them on their MPLS devices. The end of the chapter focuses particularly on
the SNMP interface by introducing it in such a way that it may be understood for
use in managing MPLS networks.

Chapter 8 starts with a brief introduction to network management concepts
in general and how they apply to managing optical networks. This is followed
with a discussion of optical layer services and how the different aspects of the

x Preface

optical network are managed. The chapter notes that however attractive a specifi c
technology might be, it can be deployed in a network only if it can be managed
and interoperates with existing management systems. The cost of operating and
managing a large network is a recurring expense and in many cases dominates
the cost of the equipment deployed in the network. As a result, carriers are now
paying a lot of attention to minimizing life cycle costs, as opposed to worrying
just about up-front equipment costs.

Chapter 9 introduces some of the ways GMPLS networks and devices can be
provisioned and managed. GMPLS reduces the management burden in transport
networks by offl oading functions from the operator and management plane to the
control plane. From the perspective of operators at their consoles in the Network
Operations Center, there may be very little visible difference between the tools
used to manage a traditional transport network and a GMPLS-enabled network;
however, it would be a mistake to assume that the effi ciency or mode of operation
of the underlying transport plane is unchanged. The GMPLS control plane ensures
that operators are always working with the most up-to-date information and also
makes sure that the services are managed effi ciently by the management plane.
Nevertheless, the management plane is an essential component of the GMPLS-
enabled network. The chapter also examines the structure that is applied to the
management framework for GMPLS networks.

Chapter 10 provides a brief retrospective about how Policy-Based Network
Management (PBNM) has been conceived in the past. Policy management means
many things to many people, and this chapter presents the fundamentals. This
material is used to point out two basic problems of previous solutions: the lack
of use of an information model and the inability to use business rules to drive
confi guration of devices, services, and networks. A path forward, and benefi ts
resulting from this improved approach, are described.

Chapter 11 introduces the basic terms and defi nitions used in the study of
policy management, as well as a simplifi ed conceptual policy model. This is fol-
lowed by a description of the high-level system requirements of a policy-based
network management system. Key among these requirements is the notion that
business rules drive the construction and deployment of device and network
confi guration. This approach enables the network to be operated as a profi t center
instead of a cost center. The chapter describes where policy-based management
systems fi t in to the overall scheme of management systems and provides an
introduction to their operating context.

A fi nal section of this book provides a list of references for further reading
extracted from all of the chapters that make up this book.

Source Material

Of course, many of the topics covered here have already been described at length
in other books. The Morgan Kaufmann Series in Networking includes a compre-
hensive range of titles that deal with many aspects of network management.

Preface xi

However, each book in the series has as its main focus a particular function or
technology. In some cases source texts are entirely devoted to the subject, while
other chapters are included from more general works in which network manage-
ment is presented as one aspect of some specifi c technology such as MPLS or
optical networking.

Therefore, what we have done in this book is to bring together material from
nine sources to provide you with a thorough grounding in network management.
When necessary we have edited the source material; however, on the whole, the
original text provides a rounded view of a particular author’s thoughts on the
subject and is simply reproduced here. This results in a single reference that
introduces network management and explains the basics. Readers wanting to
know more about a particular topic are encouraged to go to the sources and read
more.

There is some intentional overlap in the subject matter presented in this book,
and this is. All of the contributing authors have their own specifi c take on how
to present the problems of network management, and their own views on how
issues should be solved. By providing readers with the full text from the selected
chapters, we hope that we will give you a broad view of the problem space and
allow you to make up your own mind about the challenges that must be
addressed.

In producing Network Management: Know It All we have drawn on material
from the following Morgan Kaufmann books.

Integrated Management of Networked Systems: Concepts, Architectures,
and Their Operational Application by Hegering, Abeck, and Neumair—
This comprehensive book covers the architecture, implementation, and oper-
ational use of all the major approaches to management currently in favor. It is
a must-have for any network or management system architect, and anybody
else in need of a thorough understanding of network management technolo-
gies, tools, and practices.

The Internet and Its Protocols: A Comparative Approach by Farrel—This
book covers all the common IP-based protocols and shows how they combine
to create the Internet in its totality. Each protocol, including the various MPLS
and GMPLS ones, is described completely, with an examination of the require-
ments that the protocols address and the exact means by which they do the
job.

Developing IP-Based Services by Morrow and Vijayananda—This book meets
the challenge of uniting business and technical perspectives to provide a cohe-
sive view of the MPLS development and deployment process that enables
networking organizations to leverage IP and MPLS to drive traffi c and boost
revenue.

Network Analysis, Architecture, and Design, Third Edition, by McCabe—In
this book, James McCabe provides readers with design methods they can use

xii Preface

to avoid the common pitfalls of poorly functioning networks caused by network
designer’s’ temptation to jump straight into implementation without fi rst
understanding the scope of the problem. The book covers the step-by-step
progression through proven processes that will result in designs that are not
only viable, but designs that will also stand up to the scrutiny of technical and
fi nancial reviews.

Deploying IP and MPLS QoS for Multiservice Networks: Theory and Prac-
tice by Evans and Filsfi ls—The authors of this book have provided a compre-
hensive treatise on the subject of QoS in IP and MPLS networks. They have
included topics such as traffi c engineering, capacity planning, and admission
control. It provides real- world case studies about multiservice networks to
help remove the mystery behind QoS by illustrating the how, what, and why
of implementing QoS within networks.

MPLS Network Management by Nadeau—Practical information on managing
MPLS networks remains scarce, but this book, written by the coauthor of most
of the MPLS management standards, provides a comprehensive view of the
relevant techniques and tools.

Optical Networks, Second Edition, by Ramaswami and Sivarajan—Fiber-optic
networks are established as a crucial part of the core of today’s telecommuni-
cations and data networking infrastructures. Second-generation, all-optical net-
works that fully exploit the enormous bandwidth capacity of fi ber are just
beginning to emerge. This book is an indispensable and practical guide, written
by two of the principal architects of wavelength division multiplexing, that
explores the driving need for all-optical networks, the economic trade-offs
involved, and their fundamental capabilities and design.

GMPLS: Architecture and Applications by Farrel and Bryskin—The relatively
new area of GMPLS is not covered in detail by many books; however, this one,
written by two leading engineers who have been involved in the design of the
GMPLS protocols from the very start, presents a deep and broad view of GMPLS
from the protocol essentials, through the early deployment functions, to
advanced and future topics.

Policy-Based Network Management by Strassner—PBNM systems enable busi-
ness rules and procedures to be translated into policies that confi gure and
control the network and its services. This book cuts through the hype sur-
rounding PBNM and makes it approachable for those who really need to
understand what it has to offer. It discusses system requirements, information
models, and system components for policy-based management.

 Adrian Farrel

Contributing Authors

Sebastian Abeck (Chapter 1) received the diploma and doctorate degrees in
computer science from the Technical University of Munich in 1987 and 1991,
respectively. Until 1996, he worked as a senior researcher with the Munich
Network Management Team. During that time he designed and implemented
management solutions for large-scale IT service providers. He is now a professor
at the University of Karlsruhe, where he teaches networking and distributed
systems.

Igor Bryskin (Chapter 9) is Chief Protocol Architect at ADVA Optical, Inc., where
he is responsible for high-level and detailed architecture of the Generalized
Multiprotocol Label Switching (GMPLS) control plane software running on
ADVA’s optical cross-connects. He has been involved in data communications
since the 1980s, and since the 1990s he has worked primarily in the areas of IP/
MPLS and ATM. Igor has served as principal author or coauthor of several Internet
drafts and RFCs in the area of MPLS and GMPLS.

John Evans (Chapter 5) is a Distinguished Consulting Engineer with Cisco
Systems, where he has been instrumental in the engineering and deployment of
QoS and policy control. His current areas of focus include policy/resource control,
admission control, QoS, and traffi c management, with associated work in the DSL
Forum, the Multiservice Forum, and ETSI/TISPAN. Prior to joining Cisco in 1998,
John worked for BT, where was responsible for the design and development of
large-scale networks for the fi nancial community. Prior to BT, he worked on the
design and deployment of battlefi eld communications networks for the military.
He received a B.Eng. degree in electronic engineering with honors from the
University of Manchester Institute of Science and Technology (UMIST now
part of the University of Manchester), UK, in 1991 and an M.Sc. in communica-
tions engineering from UMIST in 1996. He is a Chartered Engineer (CEng) and
Cisco Certifi ed Internetworking Expert (CCIE).

Adrian Farrel (Chapters 2 and 9) has more than two decades of experience
designing and developing portable communications software. At Old Dog Consult-

ing, he is an industry-leading freelance consultant on MPLS, GMPLS, and Internet
routing. Formerly he worked as MPLS Architect for Data Connection Ltd. and as
Director of Protocol Development for Movaz Networks Inc. He is active within
the Internet Engineering Task Force, where he is co-chair of the CCAMP working
group responsible for GMPLS, the Path Computation Element (PCE) working
group, and the Layer One VPN (L1VPN) working group. Adrian has co-authored
and contributed to numerous Internet Drafts and RFCs on MPLS, GMPLS, and
related technologies.

Clarence Filsfi ls (Chapter 5) is a Cisco Distinguished System Engineer and a
recognized expert in Routing and QoS. He has been playing a key role in engineer-
ing, marketing, and deploying the QoS and Fast Routing Convergence technology
at Cisco Systems. Clarence is a regular speaker at conferences, has published several
journal articles, and holds more than 30 patents on QoS and routing mechanisms.

Heinz-Gerd Hegering (Chapter 1) is a professor of Informatics at Ludwig
Maximillians Universität. Since 1989, he has been the chairman of the Board of
Directors of Leibniz Computing Centre (LRZ) of the Bavarian Academy of Sciences
and Humanities. He is also a member of various organizations including the
National Coordination Board for Supercomputing of the Wissenschaftsrat, the
Steering Committee of the German eScience Initiative D-Grid, and numerous gov-
ernmental IT planning committees and the External Committee of the Bavarian
Minister-President’s Offi ce.

James D. McCabe (Chapter 4), Network Architect for BeamReach Networks, is
the recipient of multiple NASA awards and holds patents in supercomputer
network research. He has been architecting, designing, and deploying high-
performance networks for more than 20 years. He also consults, teaches, and
writes about network analysis, architecture, and design. McCabe holds degrees in
chemical engineering and pPhysics from the Georgia Institute of Technology and
Georgia State University.

Monique Morrow (Chapter 3) is currently CTO Consulting Engineer at Cisco
Systems. She has 20 years of experience in IP internetworking, including design
implementation of complex customer projects and service deployment. Morrow
has been involved in developing managed network services such as remote access
and LAN switching in a service provider environment. She has worked for both
enterprise companies and service providers in the United States and in Europe,
and led the Engineering Project team for one of the fi rst European MPLS-VPN
deployments in 1999. She has an M.S. in telecommunications management and an
M.B.A. in marketing and is a CCIE.

Thomas P. Nadeau (Chapters 6 and 7). Tom works at BT Group, where he is a
Senior Network Architect responsible for the end-to-end network architecture of

xiv Contributing Authors

BT’s 21C Network. Prior to BT, Tom worked at Cisco Systems, where he was a
technical leader responsible for the leadership and architecture of operations and
management for MPLS-related components of Cisco ISO and IOS-XR. This included
the areas of pseudowires, common optical control plane (GMPLS), bidirectional
forwarding detection (BFD), NetFlow, Service Assurance Agent, layer-2 and layer-
3 VPN, traffi c engineering, COPS, DiffServ, and SNMP in general.

Bernhard Neumair (Chapter 1) received his diploma and his Ph.D. in computer
science from the Munich University of Technology. From 1993 to 1998, he was
a senior researcher at the Ludwig-Maximilians University in Munich. In 1998, he
joined German Telekom as a group manager for communication solutions.

Rajiv Ramaswami (Chapter 8) leads a group planning and designing photonic
switching products at Nortel Networks. He has worked on optical networks since
1988, from early research to product development, including several years at IBM
Research, Tellabs, and Xros (now part of Nortel). He is an IEEE Fellow and a
recipient of the IEEE W. R. G. Baker and W. R. Bennett prize paper awards, as
well as an Outstanding Innovation award from IBM.

Kumar N. Sivarajan (Chapter 8) is cofounder and CTO at Tejas Networks, an
optical networking start-up in Bangalore, India. He has worked on optical, wire-
less, ATM, and Internet networking technologies for more than a decade, fi rst at
IBM Research and then at the Indian Institute of Science–Bangalore. He is a
recipient of the IEEE W. R. G. Baker and W. R. Bennett prize paper awards.

John Strassner (Chapters 10 and 11), Chief Security Offi cer of Intelliden Corpo-
ration, has occupied high-level roles for a number of prominent IT companies. At
Cisco, where he held the distinguished title of Cisco Fellow, he was responsible
for defi ning the overall direction and strategy for creating and deploying intelligent
networks and policy-driven networked applications. Strassner has led or served
on several standards committees, currently including the DMTF working group.
He is frequently an invited speaker at conferences and regularly teaches tutorials
on Policy-Based Network Management.

Kateel Vijayananda (Chapter 3) is currently a design consultant at Cisco Systems,
has 10 years of experience in data networking, featuring design, implementation,
management of IP networks, and software development devoted to OSI protocol
stack implementation. He has also been involved in developing managed network
service such as LAN switching and LAN interconnect in a service provider environ-
ment. Vijayananda has worked as a network engineer/architect for a European
service provider, where he was part of teams that designed and implemented an
MPLS network and that developed and managed IP-based services on top of an
MPLS network. He holds an M.S. and a Ph.D. in computer science and is a
CCIE.

Contributing Authors xv

This page intentionally left blank

CHAPTER

1Requirements for the
Management of
Networked Systems

To set the scene for this book, we will start by presenting sample scenarios from
a variety of different application areas with completely different levels of abstrac-
tion to outline some of the requirements for the management of networked
systems. This material is taken from Chapter 3 of Integrated Management of
Networked Systems: Concepts, Architectures, and Their Operational Application
by Hegering, Abeck, and Neumair.

What we fi nd is that the requirements vary. It therefore appears sensible to
consider whether the management functions as a whole could be structured in
some way. The discussion that follows considers this possibility and looks at the
complexity of “management” from the standpoint of functional areas, life cycles,
and organizational consequences.

1.1 MANAGEMENT SCENARIOS
The scenarios presented in this section comprise customer network management
requirements, management requirements of distributed data storage, central
graphics archive, as well as shared document systems. Another scenario deals with
help desk support systems and related management problems. Nomadic systems
and domain name services make quite different demands on management. Finally,
management requirements of backup and archiving systems are discussed.

1.1.1 Scenario 1: Customer Network Management

Figure 1.1 presents the national communications infrastructure (B-WIN) of German
scientifi c institutions around the year 2000. In other words, the public corporate
network for the universities and research institutes.

2 CHAPTER 1 Management of Networked Systems

The example shows four customer–provider relationships, which also typify
other corporate networks. The following notes apply to the four service providers,
their relationships, and the services they provide:

1. Provider, Deutsche Telekom; Customer, DeTeSystem; Service: Provision of
physical line capacity (SDH hierarchy).

2. Provider, DeTeSystem; Customer, DFN Verein; Service: Provision of a virtual
network (ATM-VPN) with access capacities of 34 Mbps and 155 Mbps as indi-
vidual or group access rates with the following types of service: available bit
rate, PVC constant bit rate, SVC being planned.

FIGURE 1.1

A German scientifi c network.

B-WIN laboratory

b

a f

c d
e

IP network
provider: DFN Verein

DFN-NOC

LRZ and
B-WIN user

 different CNM service interfaces
NOC: NW Operations Center
VPN: Virtual private network
LRZ: Leibniz Rechenzentrum (Leibniz Supercomputing Center)

X.25 access

SDH network
provider: Deutsche

Telekom

B-WIN

ATM-VPN
provider: DeTeSystem

International
links

B-WIN: German National Research Network

1.1 Management Scenarios 3

3. Provider, DFN Verein; Customer, a scientifi c facility (the one in the example
is the Leibniz Supercomputer Center LCC); Service: IP service (Internet access)
and ATM-PVC. DFN Verein provides the mentioned services with the aid of
three physically separate groups—the DFN business offi ce, the DFN-NOC
(network center), and the DFN laboratory (performance and quality-of-service
monitoring).

4. Provider, LRZ; Customer, universities in Munich, technical departments
(each having its own local networks) with a total of more than 100,000 end
users; Service: IP service, directory services, Web hosting, access to diverse
special-purpose computers (including supercomputers), and databases; opera-
tion from access servers (several hundred telephone-dialed access points,
analog/ISDN).

As the example shows, an entire customer–provider hierarchy exists in which
the contractual hierarchy and the service hierarchy with its associated technical
implementation have different interfaces. The IP service as well as the ATM-PVC
service are therefore available to the university end user or LRZ. Contractually,
both are provided by DFN Verein; technically, the fi rst one is provided by DFN,
the second by DeTeSystem. Management information from a number of lower
sources is required for use of a service, the generation of fault reports, perfor-
mance supervision, and management of the services that are made available to the
next highest “level” in the customer–provider chain.

Customer network management stands for the transition from a component-
oriented management to a service-related management. Customer and service-
relevant criteria are provided.

The scenario given is a complex one, but it provides an insight into a whole
range of different management requirements:

■ First of all, each provider must manage its own network. An integral part of this
task is component management, which concerns the supervision of the avail-
ability, capacity utilization, security, and fault-free operation of the individual
components. Added to this is the functioning of the network as a whole. This
requires management tasks such as routing and switching, multiplexing
datastreams, and monitoring logical paths and channels.

■ At the access to a network, all providers offer their customers services with a
certain quality of service (QoS) based on a service level agreement (SLA). The
constant monitoring of service quality is a management task. The management
of the customer–provider interface also includes procedures for fault reporting
and for service adaptation or service provisioning (e.g., ordering the establish-
ment of an ATM-PVC).

■ In a scenario like the preceding one, it is essential that customers have access
to specifi c management information (e.g., service quality, service availability)
because this is the information they need if they themselves want to develop
added value and other new services based on the network services they are

4 CHAPTER 1 Management of Networked Systems

already using. For customers, it is the service-related information based on the
customer SLA that is generally interesting rather than the “raw data” from the
component management of their providers.

Customer network management (CNM) or customer service management
(CSM) is fi rst and foremost a controlled transfer of information by the provider of
a communications service to its customers. CNM enables a customer to see the
relevant part of a usually public network (i.e., the customer’s virtual private
network (VPN) represented through management information) as a part of their
own network structure. This makes the public network more transparent to cus-
tomers so that they no longer perceive it as a “black box.” Ideally, customers are
informed immediately of any problems in the network and can be saved the time
of making long and diffi cult phone calls to fi nd out what is causing a failure.

The management information base (MIB) used by the customer (the CNM-MIB)
must refl ect services and SLAs. First of all, a data model for the implementation
of the CNM-MIB must be defi ned for the scenario described. The data comprise
user and accounting information, statistics and measurement results, and fault
reports, as well as breakdown messages, and are derived from many different
sources. Furthermore, a process model must be defi ned that describes the data
fl ow and operation processes involved in obtaining and forwarding information.
Lastly, a specifi cation of the CNM service interfaces that provide access to the
CNM-MIB is required. In Figure 1.1, individual lowercase letters are used to
indicate the different CNM service interfaces.

1.1.2 Scenario 2: Distributed Data Storage

A company’s data are stored in many places—on PCs, workstations, servers, and
special-purpose computers; in computer centers and departments; within the
intranet; and externally with suppliers and dealers.

Systems that are part of a data complex should have common concepts for
structuring fi le systems and allowing data access. One possible principle is to
compartmentalize individual fi le systems and databases using explicit security bar-
riers such as fi rewalls; another concept would be to create global virtualization
with locally transparent access.

If a network consists of systems with different architectures or supplied by
different vendors (see Figure 1.2), there will usually be a number of details, such
as different system parameters, that the network operator will fi rst have to settle
through management. A network structure must be able to cope with many dif-
ferent version states of the products involved. Data confi dentiality and integrity
must also be considered.

If transparency is wanted, then a location-dependent global name space is
required: Users always want to be able to fi nd their data over the same access
route regardless of which computers they happen to be using.

If security is wanted, then domain concepts that allow areas of accountability
and security to be specifi ed are useful. Policies that control the access fi ltering

1.1 Management Scenarios 5

and authentication mechanisms and initiate messages and event handling when
security breaches occur must be specifi ed for access systems.

The security aspect is also responsible for data consistency in redundant data
storage with replication, for data backup to prevent short-term loss, and for long-
term data storage in the form of archiving. Because some of the data are often
stored in different locations at different storage hierarchy levels, policies have to
be defi ned for migrating to these levels.

1.1.3 Scenario 3: Central Graphics Archive

Another search system provides a totally different management task. An automo-
bile manufacturer that has operations all over the world has a central digital graph-
ics archive for every type of design (of products as well as of production plants).
Access to this archive should be available to designers, maintenance personnel,
dealers, and suppliers anywhere in the world. The management task consists of
the following:

■ Setting up an appropriate directory structure, including directory services.
■ Making available a level of fast cache servers for the central archive,

which consists of several archive servers.

Dealer 1

Dealer
networks

System 1

Dealer i
System i

Transit
networks

Company network

Location 1 Location 2Intranet
marketing

subsidiary 1

subsidiary r

Intranet
production

Department 1

Department m

Firewall Firewall

Firewall

Transit networks (WAN)

Supplier 1 Supplier k Supplier
networksSystem A System K

System X1

Software Y1

Application Z1

System X2

Software Y2
Application Z2

(One-year-old car) (Graphics archive)

FIGURE 1.2

A corporate network.

6 CHAPTER 1 Management of Networked Systems

■ Integrating cache strategies and allowing them to be changed.
■ Defi ning and operating a platform-independent access procedure.
■ Guaranteeing security through suitable authorization, authentication, and

encryption procedures.
■ Protecting the different intranets from one another using fi rewalls or other

suitable privacy methods.

1.1.4 Scenario 4: Shared Document System

The patent examiners in one particular patent offi ce use a multilevel search pro-
cedure comprising around 20 million documents in the form of image information
(pixel images comprising 8 TBytes as 300-dpi documents, and 4 TBytes as 150-dpi
documents); in addition, 600,000 documents are available for full-text search.
Figure 1.3 illustrates a possible system for this purpose.

Based on the service level agreement, the system is to provide:

■ Availability: 98 percent during main hours of work.
■ Search times for 60 parallel queries and up to 100,000 hits: 3 seconds

per query without trunking, 4–20 seconds per query with trunking.
■ Viewing time: 0.7 second within and 1.5 seconds between documents.

The management tasks from this scenario comprise:

■ Monitoring QoS parameters in accordance with SLA requirements.
■ Applications management (software distribution, parameter provision and

search system updates, and operation of distributed “search” applications).
■ Network and system management: security of infrastructure operations

(network and end systems) and data backup.

Archive (12 TB)
10 servers

Search system
2 servers

Database/file server
2 servers

PC server
2 servers

Management stations
2 servers

Examiner stations
(60)

Examiner PCs
(200)

LAN

FIGURE 1.3

A search system.

1.1 Management Scenarios 7

■ User administration and cost compilation.
■ Reports and message services in regard to QoS.

1.1.5 Scenario 5: Help Desk Support

Fault tracking is a diffi cult and time-consuming process due to the increasing
complexity of distributed systems and communication services. Providers of large
infrastructures frequently offer their customers fault notifi cation procedures in
which a help desk, hotline, or call center serves as the central coordinating point.
A variety of different tools are available to a help desk—active tools that can be
used to monitor or control a distributed system, and passive tools that support a
call center. These include documentation systems (inventory registers, cabling
plans, system documentation, user and SLA directories) and in some cases trouble
ticket systems (TTSs). A TTS is a system in which fault reports are administered
as documents or trouble tickets (TTs), from the time a fault is recorded to when
a diagnosis is made and the fault is then corrected.

The following case study (with numbered steps corresponding to the annota-
tions in Figure 1.4) is a simplifi ed example of a typical fault handling procedure
and highlights the tasks of a TTS in the course of fault repair processing:

1. A user who wants to access centralized archive data in a computer center from
the PC at his or her workstation is unable to make a connection. This is
reported to the network operator in the computer center.

1

2

3

4 5

6

7

8

Communication network

Active tools (e.g., protocol analyzers, management station)

Operator

Operation

Passive tools (e.g., trouble ticket system)

FIGURE 1.4

TTSs are used in the fault repair process.

8 CHAPTER 1 Management of Networked Systems

2. The network operator searches the TTS to check whether a similar problem
has already been reported. If a matching TT cannot be found, the operator
records the current fault and provides the user with a fault identifi cation
number, the TT ID. This number enables the user to check at any time on the
progress being made with diagnosing or repairing the fault.

3. The operator checks network component availability from a management
station, but is unable to detect any faults. He or she documents actions taken,
including his or her fi ndings, in the TTS, and transfers the task of dealing with
the fault to the relevant expert.

4. The expert receives the appropriate message (e.g., via email) and accesses the
appropriate TT for details and any previous actions undertaken. He or she then
searches the TTS for similar fault cases that have already been resolved. The
results of the search query indicate that in similar cases the defective confi gu-
ration of a network component was usually the cause of the fault.

5. The expert checks the network documentation system to fi nd out about any
recent modifi cations that have been carried out and locates an appropriate
entry.

6. A confi guration tool is used to verify the packet processing of a component
(e.g., a router) and shows that a defective packet fi lter exists that is preventing
access by the user to the archive. The confi guration is modifi ed, and the com-
ponent is reloaded.

7. The expert documents the actions taken, including information about the
source of the fault in the TTS, and completes his or her part of the process.

8. A message that is generated automatically by the TTS informs the user that the
fault has been corrected.

This is, of course, only a simple scenario and omits a whole range of integrated
management issues. A small number of these are:

■ Direct coupling of a TTS to active management tools.

■ Integration of a TTS into a workfl ow management system to control the overall
fault handling process.

■ Generation of intelligent front ends for TT creation, such as by guiding users
through the process of fault localization. The basic idea is to allow users them-
selves—transparently using predetermined decision trees—to perform diagnos-
tics and to query databases. Through these actions, the information needed by
the experts to solve a problem is collected and formally entered into a TT.

■ Accompanying support of help desks through the availability of appropriate
telephone systems such as computer telephony integration (CTI), automatic call
distribution (ACD), and uniform collective calling numbers.

■ Intelligent use of TT databases as case study databases and analysis based on
appropriate information methods (TT correlation, case-based reasoning).

1.1 Management Scenarios 9

On this basis (see Figure 1.5), TTSs can evolve into integrated tools because
they are sometimes coupled with the active network and system components and
with customer support systems. They may also trigger and monitor actions
designed to isolate the faults, report issues, and initiate repair.

1.1.6 Scenario 6: Nomadic Systems

Imagine a situation involving several intranets of cooperating companies linked
over a wide area network (WAN) but separated by fi rewalls; in other words, secu-
rity components with access fi lter functions before a subnet. Within this frame-
work of cooperation, employees take their mobile computers (laptops, notebooks)
to the premises of one of the partner fi rms to work temporarily in another depart-
ment. Staff, of course, want to “take along” their familiar data processing (DP)
work environments. The issues that arise in this connection are:

Fault documentation

Correction

Diagnosis

Monitoring

Trouble
ticket

system

User
help
desk

Information
assistance

Trouble tickets

User

Alarms

Network

Management
action

FIGURE 1.5

A TTS as a tool in the management environment.

10 CHAPTER 1 Management of Networked Systems

■ How do IP addresses “travel”? This is not only signifi cant in terms of routing.
There are a number of applications for which the fi xed IP address of a computer
is important, such as in the confi guration of databases, in licensing control, and
in the security area. Fixed IP addresses are also important for Internet telephony
and in videoconferencing because they are treated as though they uniquely
identify a user.

■ How is authorization for certain resources such as printers and some servers
granted on a short-term basis or transferred to the other intranet?

■ How is accounting handled (e.g., how are accounts and account numbers trans-
ferred or new ones set up, how are the costs allocated)?

Addressing these issues is the challenge facing successful deployment and manage-
ment of virtual private networks.

1.1.7 Scenario 7: DNS Management

Domain name service (DNS) is one of the elementary Internet services and is used
to translate names to IP addresses and vice versa. For both mappings, the DNS
information is divided into two independent hierarchical and worldwide unique
name spaces: one for IP addresses and another for domain names. The DNS service
consists of a DNS client in each terminal, a resolver, and primary and secondary
DNS servers. The particularly noteworthy servers are the so-called root servers
that are principally used as the fi rst starting point for each query sent by the
interconnected DNS servers. Because DNS is realized as a worldwide distributed
system, the fault situations that can occur are very complex. A management solu-
tion addresses the conceptual and operational aspects, with the conceptual aspects
including:

■ Defi nition of naming conventions.
■ Division of the name spaces into appropriate subspaces.
■ Name server structuring.
■ Mapping parts of the name space to zones (delegation).
■ Defi nition of the resolver hierarchy.

The operational aspects include:

■ Confi guration of the resolvers in the terminals (hosts).
■ Confi guration and operation of the name server, updating the data of the

zones in the name server, and caching query results obtained by each
server.

■ Assurance of the consistency of both address and domain name spaces.
■ All measures relating to fault management.

The organizational issues arising in relation to the updating and coordination
of the internal name server complex are particularly complicated when corporate-
wide DNS servers are used in large fi rms with several hundred zones. Ultimately,

1.1 Management Scenarios 11

the DNS relies on administration by a central authority called the InterNIC and
fault-free confi guration and operation of root servers.

1.1.8 Scenario 8: Backup and Archiving System

This example relates to a large organization with many autonomous organizational
operating units (such as a university with all its departments and institutes). The
basic data processing equipment for the operating units is provided on an auto-
nomous decentralized basis. High-speed computers, overfl ow capacity, and certain
central services, which could include a backup and archiving system, are available
centrally. Because the operating units compute on all sorts of different distributed
and central systems and, furthermore, are physically dispersed, a distributed fi le
system is installed for security reasons and to provide the local transparency
required. What are the management requirements of a backup and archiving
system? We have listed a number of these requirements here, some of which will
be familiar from the previous scenarios.

Domains: It is essential that the administration of managed data can be delegated
on a hierarchical basis. The technical partitioning of an entire archive should
not have a direct effect on the administration; instead, it should be possible to
set up a large archive that technically is a coupling of a number of smaller
archives, and vice versa, to fi le data in an archive independently of the areas
administered. If a domain structure exists beyond the archive application, then
a relationship should exist between the domain structure within and outside
the archive; it could be obstructive to force a 1 : 1 representation in each
case.

Name spaces: It must be possible to map the distributed fi le systems to the name
spaces of the backup and archive system. In particular, a fi le that can be viewed
on different computers cannot give the archive system the impression of being
several different fi les.

Security techniques: If a special security technique (e.g., the use of shadow fi les
to force consistency) exists for a fi le system, then the security system of the
backup system should not undermine this technique.

Backup strategies: It should be possible to specify the backup strategies a user
requires (e.g., frequency, life of backed-up data) as well as the operational
conditions (e.g., certain times of the day for backup) to the automated
system.

Allocation of resources: Control over the resources used must remain with the
administrators.

Access control: Authorized users must be able to access their own fi les as well as
those to which they have been expressly granted access rights, but not the
fi les of other users. Administrators must be allowed to operate on behalf of the

12 CHAPTER 1 Management of Networked Systems

users they administer. There must be a way of controlling the extent to which
users are allowed to undertake actions on their own that are normally carried
out for them by the administrator (e.g., regular backups). The authorization
model for archived and backed-up data should be compatible with the autho-
rization model for online data (e.g., data accessible through the fi le system);
under no circumstances should it undermine any of the security measures.

Integration into more global management structures: If an enterprise manage-
ment tool is used in an operation, then appropriate modules must be available
to control and supervise the backup and archive system using the same
resources. Conversely, this process should not be contingent on the use of a
specifi c tool.

Software distribution: A backup and archive system has client software that is
distributed a hundred or a thousand times. Mechanisms are required for auto-
mating the distribution of new versions of client software.

Performance: A system must be able to cope with large quantities of fi les (e.g.,
up to a billion) and corresponding large databases for registering the archive
fi les. With some applications in the high-speed computing area, transfer rates
also play a major role. If different media are used within an archive, then there
should be a way of controlling the distribution of data over this media to
achieve optimal performance.

1.1.9 Importance of Management to the Business Processes

The scenarios presented serve only as examples that can be extended and expanded
in any number of ways. They relate to the levels of network, system, and applica-
tion management. More and more importance is being attached to distributed
systems and their management because competition is increasingly being based
on the processing and exchange of information—often in place of real values
or things (e.g., the stock market, money transfer, ordering goods, along with
simulation and virtual reality). Many companies are in the process of using
“business engineering” to adapt their business processes to this information-based
competition.

However, distributed systems create management barriers. These relate to
system complexity, change fl exibility, service availability, and cost of ownership.
System complexity is a product of the variety of technologies and conceivable
solutions, and the different levels of approach available. Added to this is the fact
that a form of distribution can exist at every level. The complexity of the systems
being managed is also refl ected in the complexity of the management systems,
and this in turn translates into a requirement for more highly trained staff.

Flexibility to change is essential because products and services have to adapt
to a fast-changing market. Business processes and the operating processes for the
information processing infrastructure derived from them are compelled to follow

the market. Lastly, the management solutions must also be adaptable. However,
management systems need to be fl exible to deal with the consequences of change
in the upper part of the management pyramid and to cope with location moves,
adaptations to new hardware and software visions, adaptations to processing load
changes, and so forth.

Distributed systems are not an end in themselves, but they should provide
services. Services are provided by a manager in accordance with a service level
agreement. But it is not enough to describe services only from the standpoint of
functionality. An “operable” interface is required to allow services to be invoked
and evaluated. Being evaluated means that it should be possible to assess the QoS
achieved. QoS assesses the quality of a service as a whole as well as the quality
of the security of the service and its customer service. Quality of service is typical
interface information between a service provider and a service user. The task of
monitoring it falls to performance management. We will return to this topic in
the next section.

1.2 MANAGEMENT FUNCTIONS
The scenarios presented in Section 1.1 gave an indication of the variety of manage-
ment tasks possible. Because the solution to a management task for distributed
systems is itself a distributed application, it should also be possible to describe
the modules used. In heterogeneous system environments, this even has to be an
“open” (in other words, multivendor) approach. Moreover, not all management
requirements will be the same in each concrete scenario. It is therefore useful to
classify the total “management” task into functional areas and then to describe the
management functions that are typical for each specifi c area.

Even this line of approach will fundamentally produce all different kinds of
classifi cations. We will fi rst concentrate on the fi ve functional areas defi ned in
the functional model of the Open Systems Interconnection (OSI) management
architecture:

1. Fault management.
2. Confi guration management.
3. Accounting management.
4. Performance management.
5. Security management.

The abbreviation FCAPS is often used in the literature when relating to these
functional areas. We will describe typical management tasks based on these fi ve
areas. For didactic reasons, we will describe FCAPS in a different order. Later on,
we will also discuss how the OSI areas could be extended.

It should be emphasized that in principle the functional areas apply to all object
types; in other words, the classifi cation of function areas is orthogonal to the
classifi cation of the objects they manage.

1.2 Management Functions 13

14 CHAPTER 1 Management of Networked Systems

1.2.1 Confi guration Management

The term confi guration frequently has different meanings (depending on the
immediate context). A confi guration can be:

■ A description of a distributed system based on the physical and geographical
arrangement of resources (i.e., media, network components, systems or hosts,
software), including how these resources are actually interconnected, and infor-
mation about their logical relationships. This description of a confi guration can
be abstracted from the physical arrangement of the resources based on different
views, such as organizational, geographical, administrative, or security-related
aspects.

■ The process of confi guration as an activity or as a manipulation of the structure
of distributed systems, therefore, setting and changing the parameters that
control the normal operation of a system and establishing the system environ-
ment required for this normal operation.

■ The result of a confi guration process, therefore, the generated system in the
sense of a set of certain parameter values that are characteristic for the normal
operation of a resource.

The context will generally indicate which meaning is appropriate for the term
confi guration. Where necessary, we differentiate between a confi guration descrip-
tion, which is frequently also refl ected in the appropriate documentation systems,
a confi guration result, or generated system, and the confi guration process, also
known as confi guration or system generation.

Confi guration is an adaptation of systems to operating environments and
includes installing new software, expanding old software, attaching devices, or
making changes to network topology or to traffi c load. Although confi guration
also encompasses aspects of physical installation, it is usually carried out through
a software-controlled generation and setting of parameters; these include function-
selection parameters; authorization parameters; protocol parameters (message
lengths, windows, timers, priorities); attachment parameters (type and class of
device, procedure, bit rate, parity); entries in routing tables, name servers, direc-
tories, as well as fi lter parameters for bridges (addresses, types of protocols, inte-
gration); spanning tree parameters for a bridge (priority of bridge or port); and
parameters for the connecting paths of routers (interfaces, speed, fl ow-control
procedures), maximum fi le size, computing times, and services allowed.

The following issues arise in relationship to operation and communication.
There are different evaluation criteria for confi guration tools:

Location of confi guration: The system being confi gured (target system) is not
always compatible with the system on which the confi guration is being per-
formed. This can be due to technical reasons such as a requirement for editors
and macro processors that are not available on one of the systems. But there
can also be security or organizational reasons for the problem, especially when

confi guration data can be loaded remotely. A confi guration can take place on
a component for the component itself, on each component for any other
component, at a selected station for a specifi c component (element manage-
ment system), or at a selected station (network management system) for all
components.

Storage of confi guration: Different solutions exist in this area also. If data are
stored in NVRAM or on the hard disk in the component, a confi guration can
be changed easily and quickly through reloading over the network. However,
this does not work when storing with EPROMs. Moreover, the scope of the
confi guration parameters can be lower due to capacity limitations, which can
also reduce fl exibility. A confi guration can also be stored on a boot server and
called up through appropriate load protocols.

Validity of confi guration: A static confi guration is one in which each reconfi gura-
tion is coupled with an interruption to operations. Dynamic confi guration, on
the other hand, allows changes to be made to confi guration data during running
operations. Thus, the events that signal the validity of new operating param-
eters can be the reloading of a component, the restart of a component, or the
restart of one of the affected component ports.

User interface of the confi gurator: The quality of a user interface depends on, on
one hand, to what extent individual parameters can quickly be changed and,
on the other hand, to what extent the network administrator can be relieved
of dealing with the individual parameters of a large number of devices. This
can be addressed through the defi nition of different options, device profi les,
or versions of confi gurations and the use of confi guration macros to include
entire groups of devices. It is also convenient to have corresponding documen-
tation on the confi guration data that at the same time lends itself to the support
of network control. It should also be mentioned that the confi gurator and the
confi guration fi les must be protected against unauthorized use. The variations
of access protection range from dispensing with passwords to breaking down
the areas responsible for a confi guration through a separation of network-
global, component-global, and function-specifi c passwords. Another approach
is securing the management protocols used to carry out confi guration.

Tools for Confi guration Management
Confi guration management therefore encompasses setting parameters, defi ning
threshold values, setting fi lters, allocating names to managed objects (loading
confi guration data, if necessary), providing documentation of confi guration
changes, and actively changing confi gurations. The tool functionality that is
assigned to confi guration management covers:

■ Auto-topology and auto-discovery, thus the ability to extrapolate a
description of a confi guration from the concrete actual system
environment.

1.2 Management Functions 15

16 CHAPTER 1 Management of Networked Systems

■ Systems for documenting descriptions of confi gurations, master databases.
■ Tools for generating network maps for the visualization of confi guration

data.
■ Tools for activating backup systems to detach missing components and so

forth.
■ Tools for setting and invoking confi guration parameters and system status.
■ Tools for software distribution and licensing control.
■ Tools for supervising and controlling authorization.

1.2.2 Fault Management

Faults are target/performance deviations in the behavior of resources. Fault man-
agement comprises reactive and proactive measures.

Fault management deals with the detection, isolation, and elimination of abnor-
mal system behavior. Identifying and tracking faults is a major operational problem
with all data processing systems. Compared to non-networked, localized systems,
fault management in computer networks and distributed systems is more diffi cult
for a variety of reasons. These include the large number of components involved,
the wide physical distribution of the resources, the heterogeneity of the hardware
and software components, and the different domains components fall under
(e.g., personnel of different organizational units).

A fault can be defi ned as a deviation from the set operating goals, system func-
tions, or services. Messages about faults are usually conveyed by the components
themselves or by the users of the system. Some of the sources of faults are data
transmission paths (e.g., transceiver cable, twisted-pair cable, optical fi ber, leased
lines, virtual channels), network components (e.g., transceivers, repeaters, bridges,
star couplers, server computers, data terminals), end systems, software for compo-
nents, inadequate interface descriptions (indirectly), or even incorrect operation.

Fault Management Tasks
The function of fault management is to detect and correct faults quickly to ensure
that a high level of availability of a distributed system and the services it provides
is maintained. The tasks that have evolved from this objective include:

■ Monitoring network and system state.
■ Responding and reacting to alarms.
■ Diagnosing fault causes (i.e., fault isolation and root-cause analysis).
■ Establishing error propagation.
■ Introducing and checking error recovery measures (i.e., testing and

verifi cation).
■ Operating trouble ticket systems.
■ Providing assistance to users (user help desk).

The following technical capabilities and important aids for fault management
can assist in fault analysis:

■ Self-identifi cation of system components.

■ Separate testability of components.

■ Trace facility (i.e., keeping records of switched message traffi c or labeling mes-
sages for the purpose of traceability or special compatibility reports).

■ Error logs.

■ Message echoes at all protocol layers (i.e., at transmission links and on an end-
to-end basis), such as “heartbeat” or “keep alive” messages that detect failure.

■ Retrieval possibilities for memory dumps.

■ Measures for purposely generating errors in defi ned system environments.

■ Start possibilities (which can also be initiated and monitored centrally) for self-
test routines and the transmission of test texts to specifi c ports (loop test,
remote test, problem fi le) as well as reachability tests such as ICMP packets for
ping and trace route analysis of network reachability.

■ Setting options for threshold values.

■ Triggering of planned resets and restarts (directed to specifi c ports, port groups,
and components).

■ Availability of special test systems (e.g., oscilloscopes, time-domain refl ecto-
meters, interface checkers, protocol analyzers, hardware monitors for line
supervision).

■ Support of fi lter mechanisms for fault messages or alarms and event
correlation for reducing the number of relevant events and for root-cause
analysis.

■ Interfaces of fault management tools to trouble ticket systems and help desks
(e.g., for automated propagation of fault notifi cations and corrections).

1.2.3 Performance Management

In terms of its objectives, performance management could be seen as a systematic
continuation of fault management. Whereas fault management is responsible for
ensuring that a communications network or a distributed system operates, this is
not enough to satisfy the objectives of performance management, which wants
the overall system to perform well. It is this “performing well” that signals the
fi rst problem that has to be resolved by performance management, namely, the
defi nition of quality of service.

The starting point for performance management is the guarantee of quality of
service. Quality of service is a typical mechanism for conveying interface informa-
tion between provider (i.e., the one responsible for a communications network
or for the IT infrastructure) and customer, thus the service user. Its importance
increases as more customer–provider relationships are involved in the implemen-
tation of corporate networks or distributed systems. The service interface is
defi ned as follows:

1.2 Management Functions 17

18 CHAPTER 1 Management of Networked Systems

■ Specifi cation of the service and service type (e.g., deterministic, statistic,
best possible).

■ Description of relevant QoS parameters (with quantifi able values; this
includes usage value, mean value, limit value).

■ Specifi cation of the monitoring operations (information regarding
measurement method, measuring points, and measurement values;
specifi cation of measurement report).

■ Description of reactions to changes of the QoS parameters mentioned
earlier.

It is very diffi cult to provide uniform guarantees in a layered and distributed
system. The crux, however, is that it is very diffi cult and not always possible to
provide a complete defi nition of a service interface on the basis of the aforemen-
tioned. The following problems tend to arise:

Vertical QoS mapping problems: Because communication systems are layered
systems, the layer-specifi c QoS parameters of layer N have to be mapped onto
the QoS parameters of layers (N + 1) or (N − 1) at the respective layer bound-
aries. For example, applications-oriented QoS (e.g., speech quality) needs to
be mapped to network-dependent QoS (e.g., jitter). QoS hierarchies have not
yet been defi nitively specifi ed for all services and protocol hierarchies. This
problem is exacerbated when services of different layers are provided by
different carriers or providers.

Horizontal QoS mapping problems: If more than one carrier is incorporated into
a corporate network, the result can be a concatenation of the different subnets
or trunk sections that are used to provide services with a uniform quality of
service for end user–to–end user communication. This assumes that the differ-
ent carriers have implemented the same quality of service features or else are
using standardized QoS negotiating protocols, resource reservation protocols,
or management protocols. The more complex the service is, the less often this
requirement is met. You just have to think about the voice service and the
noncompatible proprietary signaling protocols of telecommunications systems
and the fact that quadrature signaling (QSIG) is used.

Measurement methods: The optimal way to assess quality of service would be to
apply measurement methods based on visible quantities at the service interface
rather than to use an analysis of the technology supplied by the provider.
The latter can change quickly, and furthermore, the quantities measured are
often of no interest to the customer who fi rst has to convert them into QoS
parameters.

Performance management therefore encompasses all the measures required for
ensuring that the quality of service conforms to the service level agreement. It
includes:

■ Establishing QoS parameters and metrics.
■ Monitoring all resources for performance bottlenecks and threshold

crossings.
■ Carrying out measurements and trend analysis to predict failure before it

occurs.
■ Evaluating history logs (i.e., records on system activity, error fi les).
■ Processing measurement data and compiling performance reports.
■ Carrying out performance and capacity planning. This entails providing

analytical or simulative prediction models that are used to check the
results of new applications, tuning measures, and confi guration
changes.

Monitors, protocol analyzers, statistics packets, report generators, and model-
ing tools are some of the typical tool functionalities in this area.

1.2.4 Accounting Management, User Administration

User administration comprises tasks such as name and address administration,
including the related directory services, authorization granting the right to use
resources, and fi nally, the accounting services.

User Administration as a Basis for Authentication,
Authorization, and Customization
There are costs involved in providing communication and server services that
must be allocated to the users of the respective service (e.g., access charges and
utilization charges). The strategies and procedures for cost allocation cannot and
should not be rigidly established by an accounting system; it is the subject of
accounting policy. It is therefore important that accounting management is able
to confi gure this following the guidelines of accounting policy.

Accounting management includes compiling usage data (resource usage or
service usage accounting based on monitoring and metering), defi ning account-
able units, keeping settlement accounts and accounting logs, allocating costs to
these accounts, assigning and monitoring quotas, maintaining statistics on usage,
and lastly, defi ning accounting policies and tariffs, which leads to billing and
charging. If several providers are involved to support a service, usage reconcilia-
tion also belongs to accounting management. The settlement of the reconciliation
between two providers can be done using either an accounting revenue division
procedure, a fl at-rate procedure, or a traffi c unit–price procedure.

How an accounting system is implemented, which approach will be used in
compiling accounting parameters, and how costs will be allocated are manage-
ment decisions. These decisions can be infl uenced by company policy because of
the need to balance the ratio between the cost of compiling the costs and the
benefi ts derived.

Once the fi xed and variable costs of all the components (e.g., cabling systems,
network components, connection paths, servers, system services) to be included

1.2 Management Functions 19

20 CHAPTER 1 Management of Networked Systems

in the calculation have been compiled, the costs must be allocated to the appro-
priate user. There are all sorts of ingenious ways of compiling and then passing
on these costs. The more subtle the approach, the more complicated and cost
intensive is the accounting procedure. This means that usage accounting services
need to be cost-justifi ed in the same way as any other service.

The underlying usage parameters of a cost compilation include number of
transmitted packets or bytes, duration and time of day/week of a connection,
bandwidth and QoS of the connection, location of other communication partners
(e.g., when public networks are used), conversion costs for gateway services, use
of resources in the server, and use of software products (licensing control). In
addition to variable costs, fi xed costs are also taken into account (cost of offi ce
space, maintenance charges, depreciation).

Accounting Is Extremely Important for Telcos
To sum up, the accounting management functions comprise at least usage manage-
ment functions (usage generation, usage edits and validation of call events or
service requests, usage error correction, usage accumulation, usage correlation,
usage aggregation, usage distribution); accounting process functions (usage testing,
usage surveillance, management of usage stream, administration of usage data
collection); control functions (tariff administration, tariff system change control,
record generation control, data transfer control, data storage control); and charg-
ing functions (charge generation, bill production, payment processing, debt col-
lection, external reconciliation, contract processing).

Many of the functions mentioned are especially important for public telco
providers. In such environments, services are often multinetwork services (i.e.,
multiple network nodes, different providers, or mobile subscribers may be
involved). So, accounting management must address distributed collection of
usage data, improved performance requirements for usage collection and report
generation (in near real time), and multiple charging strategies.

The administration data needed for user administration and accounting man-
agement include subscriber details (demographic data, contract ID, credit informa-
tion, subscriber history), contract information services covered, contract validity,
authorized users, quotas, service level agreements, billing and payment details,
tariff information, usage information, and administration system parameters.

From this nonexhaustive list, it should become obvious that accounting man-
agement bears a very close relationship to service and business management
layers.

1.2.5 Security Management

The term security management is not used to refer to the security of management
(i.e., ensuring management is performed securely), but to the management of
security in distributed systems.

Security Management Requires Threat Analysis
The starting point for the discussion is the resources of a company that are worth
protecting: Information, IT infrastructures, services, and production represent
values that are exposed to threats of attack or improper use. Security measures
that refl ect the results of threat analyses or security risk analyses are needed to
prevent damage and loss. Typical threats are created by:

■ Passive attacks: eavesdropping on information; producing a user profi le or an
undesirable traffi c fl ow analysis or theft of information (passwords, etc.).

■ Active attacks: masquerades (i.e., users pretending to be someone else, or
spoofi ng); manipulating message sequences by changing the sequence, inadmis-
sible repeating, giving priority to or delaying messages; modifying messages;
manipulating resources through overloading, reconfi guration, reprogramming,
and so forth (unauthorized access, viruses, Trojan horses, denial-of-service
attacks).

■ Malfunctioning of resources.

■ Faulty or inappropriate behavior and incorrect response operation.

Breakdown of Security Management Tasks
Security requirements and goals are established on the basis of threat analyses and
the values (resources and services) needing protection. The security policies
defi ned ultimately identify the security requirements. Examples of security
policies are: “Passwords have to be changed every three weeks”; “Only second-line
managers have access to personnel data”; “All attacks on security have to be
recorded and followed up.” These policies serve as the framework for the security
services needed and consequently implemented. Security management therefore
comprises:

■ Conducting threat analyses.
■ Defi ning and enforcing security policies.
■ Checking identity (authentication based on signatures, notarization,

or certifi cation).
■ Carrying out and enforcing access controls.
■ Guaranteeing confi dentiality (encryption).
■ Ensuring data integrity (message authentication).
■ Monitoring systems to prevent threats to security.
■ Reporting on security status and violations or attempted violations.

It can be assumed that a reliable set of recognized security procedures, which
for the most part are already available as public-domain software, exists in the
security management area.

The main problem is fi nding the right way to embed these procedures
into management architectures and to control them in a uniform way within the
framework of a security policy.

1.2 Management Functions 21

22 CHAPTER 1 Management of Networked Systems

1.2.6 Other Approaches to Classifying Management Functions

Up to this point, we have chosen to use the OSI management functional areas as
the examples in our presentation of management functions. The literature even
mentions other areas such as inventory/asset management, problem management,
systems administration, change management, and service level agreements.

Business and Service Management Yield Other Functional Areas
Inventory management comprises functions that have to do with inventory,
archiving, backup, change services, and ordering. Activities of the directory ser-
vices are also included. If we disregard the ordering area, we see that we have
subsumed the other functions under confi guration management. Inventory man-
agement is the updating of documentation systems (e.g., network databases,
directories of all components). We have also included these management func-
tions under confi guration management. A documentation system is without doubt
the heart of all management procedures.

Asset management differs from inventory management in that it also incorpo-
rates an economic assessment that helps to provide more reliable information
about the “cost of ownership” of IT infrastructures.

Problem management refers to facilities provided in the environment of help
desks, hotlines, and trouble ticket systems. These have been presented as compo-
nents of fault management.

Service level agreements are part of performance management within our
interpretation. They can also be interpreted as a component of service manage-
ment from the standpoint of the management pyramid. This often happens in the
telecommunications network area where a distinction is made within service
management of the stages service creation, service provisioning, service subscrib-
ing, and service operation. The SLA would then particularly apply to the two last
stages.

In a narrower interpretation, change management can be viewed as part of
confi guration management. On the other hand, it can also be seen as a process
that transcends all functional areas (“management building” shown in Figure
1.6).

Administration is responsible for updating user profi les, for providing soft-
ware services, including the monitoring of versions, and for distributing soft-
ware. We added the fi rst area to user administration and the last two to con-
fi guration management. Administration is sometimes described as being system
management.

We could also take the tack of dissecting the complex management according
to management layering to arrive at a description and classifi cation of management
functions. This approach is, however, orthogonal to the one we have selected.
The functional areas we have selected break down types of tasks; the layering
breaks down objects of management.

1.3 ORGANIZATIONAL ASPECTS OF MANAGEMENT
The management of IT infrastructures should not only be considered from a tech-
nical standpoint; but an integrated solution must always also be analyzed in its
entirety.

1.3.1 Integrated Management Must Consider Organizational Aspects

On the one hand, an integrated approach involves slotting the solution into the
layered management pyramid, but it also means adapting management to the
corporate operational and organizational structure. This entails:

■ Defi ning the management processes that support the business processes. A
defi nition of the different roles involved is also required.

■ Defi ning the domains to which specifi c management policies and procedures
apply.

Enterprise management

Business and technology management

Change management

Management data warehouse

Network, system, and application management

S
ec

ur
ity

 m
an

ag
em

en
t

O
pe

ra
tio

ns
 m

an
ag

em
en

t

C
on

fig
ur

at
io

n
m

an
ag

em
en

t
In

ve
nt

or
y

m
an

ag
em

en
t

P
er

fo
rm

an
ce

 m
an

ag
em

en
t

P
ro

bl
em

 a
nd

 h
el

p
de

sk
 m

an
ag

em
en

t

FIGURE 1.6

The management building.

1.3 Organizational Aspects of Management 23

24 CHAPTER 1 Management of Networked Systems

■ Specifying interfaces between domains to enable the exchange of management
information and the invocation of management actions.

■ Planning and establishing a management infrastructure. This planning entails
defi ning procedures for implementing the management processes and specify-
ing the tool functionality required.

■ Establishing an operational and organizational structure for carrying out manage-
ment. This includes specifying job specifi cations for workplaces in areas such
as operating, administration, planning, analysis, and help desks. The qualifi ca-
tions of required staff vary according to the assignment of duties.

The term operating concept is used to refer to the specifi cation of conditions
for technical management in a concrete environment. The operating concept
defi nes the distributed application “management” as something that defi nes ser-
vices, tasks, job allocations to organizational units, procedures, and information
fl ows. This concept is therefore the prerequisite for the selection and operation
of management systems, procedures, and tools.

IT infrastructures can also be structured into domains (logical subdomains)
based on:

■ Different organizations or companies that are part of the management
environment (carriers, Internet service providers, outsourcers, suppliers
of management tools, user organizations).

■ Organizational structure of a particular company (teams, groups,
departments, operating areas).

■ Geographical conditions (country, location, campus, building, fl oor,
room).

■ Business areas.
■ Data processing–related aspects (e.g., LAN/WAN, central/distributed DP,

systems of a specifi c vendor).
■ Types of resources (hardware, system software, applications software,

data, operating materials, premises, technical infrastructure).

Establishing domains also always means forming groups of managed objects. These
groups of managed objects are assigned different jobs such as planning, selection,
procurement, provisioning and implementation, operation, maintenance, and
adaptation.

When an organizational defi nition of management is provided, it also includes
a distribution of responsibility, in other words, a domain-related assignment of
jobs and responsibilities. This distribution of responsibility essentially plays a key
role in determining the extent of management-relevant communication required
as well as the complexity of the security concept needed by management. There
are several basic models for the distribution of responsibility (centralized, hierar-
chical, distributed management). In addition to the subareas and activities men-
tioned earlier, the distribution of responsibility can also be oriented toward the
management function areas presented in Section 1.2. It has an infl uence on the

positioning of management systems and tools, the development of procedures,
and the defi nition of name spaces.

1.4 TIME ASPECTS OF MANAGEMENT
Time is an issue that occurs in different places during the management operations.
Similar to what happens with objects that are the subject of management, the
consideration of the time factor in the implementation of management tasks leads
to the life cycle phases planning, provisioning, operating, and change. This applies
as much to the framework for the operating concept as it does to an individual
management application or a management tool.

1.4.1 Planning as a Stage in the Life Cycle Requires a Number
of Accompanying Analyses

Although the planning phase is not dealt with as a single block here, many refer-
ences are made to planning aspects. Planning itself is another process that consists
of different steps, including:

Application analysis: This determines which services are to be provided. The
services for their part are characterized by the defi nitions of functionality and
quality of service.

Demand priority analysis: This analysis establishes how the users and resources
of a distributed system are physically distributed and serves as a basis for topol-
ogy studies and an analysis of traffi c relationships.

Demand size analysis: This deals with determining the distribution of transac-
tions and exchanged data from the standpoint of time and volume.

Component analysis: Component analysis establishes the type and quantity
of components to be taken into account in a distributed system, including
interface characteristics and software.

Analysis of other conditions: Other conditions that can affect planning or product
selection include protection of current investments (e.g., compatibility require-
ments for software versions, interfaces, and services); availability times of
MTBF/(MTBF + MTTR) with MTBF meaning “mean time between failure” and
MTTR meaning “mean time to repair”; data protection requirements; capacity
reserves; expansion capabilities; cost restrictions; implementation costs; tech-
nological developments; market trends; and standardization.

Planning the introduction of a system: This includes, at the very least, checking
operational procedures (operating concepts), adapting organizational charts,
planning the physical installations, making plans for training, and making plans
for delivery and installation.

1.4 Time Aspects of Management 25

26 CHAPTER 1 Management of Networked Systems

The adaptation phase mentioned earlier generally also impinges on the plan-
ning phase. This observation of feedback applies in general and can also be applied
within each phase. The time behavior of managed objects can be seen as a feed-
back loop result (Figure 1.7).

Resources are controlled or manipulated through parameter changes resulting
from management intervention (control). The effect of this intervention is appar-
ent later and is monitored at the appropriate location. The results of this measure-
ment are evaluated by the manager or management system (e.g., event analysis,
threshold analysis) and can sometimes initiate new management actions.

The different management activities that take place during the operating phase
can in turn be assigned to different time horizons according to Figure 1.8.

Short-term horizon: Short-term management tasks comprise those measures that
have to be implemented within seconds or minutes. These include a whole
area of monitoring tasks that involve determining in a short time, therefore in
seconds or in minutes, whether certain operating goals, such as availability and
security, are being endangered. Other examples of short-term actions include
executing fault messages and replacing resources that have failed with auto-
mated standbys.

Medium-term horizon: Medium-term tasks are carried out within a period of
hours. Whereas short-term tasks have to be completely automated in the man-
agement system because of the short time frame allowed, medium-term tasks
are usually undertaken in conjunction with a human expert. An example of a
medium-term task is the diagnosis of a fault by an expert with the help of a
diagnostic or trouble ticket system. Other examples include carrying out tests,

B: Control result
F: Measurement and analysis rules for monitoring
E: Decision-making for management operation
S: Control process as a management operation
Z: State of management object before intervention and change context
V: Behavior of management object due to intervention
 t: Time

Control
process S

Management object Measurement and
monitoring process B

V(...)=f[S(...). Z(...), t] B(...)=F[V(...)]

Manager

S(...)=E[B(...)]

FIGURE 1.7

Time behavior of managed objects as a feedback loop result.

generating confi guration changes, activating and deactivating, and collecting
and evaluating short-term measurement data.

Long-term horizon: In this case the time horizon relates to weeks or even months.
The goal of long-term tasks is to use the experience from day-to-day network
operations to improve operations for the future. Planning is therefore a key
aspect here. An example of a long-term management task is the maintenance
of statistics on failures to help in selecting the right vendor for the procurement
of new network components in the future. Relevant terms in this context are
trend analysis and capacity planning.

The services at the monitoring level must be able to detect all types of faults
short term, and services at the intervention level must reproduce the required
state in the medium term. However, certain kinds of faults must be corrected
immediately. A control level is introduced between the monitoring level and the

Time horizon

Short term Minutes

Hours

Weeks, months

Medium term

Long term

Management activities

Monitoring level

Control level

Intervention level

Strategic level

FIGURE 1.8

Time horizons and management activities.

1.4 Time Aspects of Management 27

28 CHAPTER 1 Management of Networked Systems

intervention level for the relevant services. As has already been mentioned, long-
term services incorporate planning aspects. To delineate conceptually from the
tasks of the planning phase, we refer to the level of long-term services as the
strategic level.

1.4.2 The Time Horizon Affects How Resources Are Interpreted
for Management Purposes

The time horizon does not only identify activities but is also important for the
generation of tools and databases. Therefore, for many monitoring tasks, the
monitoring interval must be stipulated as a frame of reference. This frame of refer-
ence determines the resolution granularity with many benchmarks and conse-
quently has an effect on counter sizes, buffer sizes, measurement frequency,
measurement accuracy, and analysis procedures. It also affects the distribution
and communication aspects of relevant management information. Time aspects
also affect management-relevant data storage. Thus, for example, contractual con-
ditions require that accounting information should be kept for a minimal period;
data protection laws dictate how long data have to be stored for the purposes of
furnishing proof of individual charges, traffi c matrices, and so forth. The storage
of system history data and different versions of confi gurations is essential for
tracking faults and resetting confi gurations.

CHAPTER

2IP Network Management

This chapter, based on Chapter 13 of The Internet and Its Protocols: A Com-
parative Approach by Farrel, gives an overview of centralized and standardized
techniques for remote management of the devices that make up a network. The
term network management is used to cover all aspects of confi guration, control,
and reporting that are useful to a network operator who is trying to understand
how a network is functioning, commissioning new equipment, directing traffi c
along specifi c paths, or performing maintenance on parts of the network.

We begin with a brief description of the benefi ts of network management and
then discuss some common techniques for the collection of operational statistics
and the motivation for doing so. The chapter moves on to compare the benefi ts
of proprietary confi guration methods with standardized approaches, followed by
the introduction of some of the standardized management models—management
information bases (MIBs), the Simple Network Management Protocol (SNMP), the
eXtensible Markup Language (XML), and the Common Object Request Broker
Architecture (CORBA). After a discussion of the differences between the manage-
ment models, the chapter concludes with a description of the use of policy within
modern networks.

This chapter is not intended to present each management mechanism in detail
but rather to give a working overview. Where specifi c protocol-related compo-
nents exist they are highlighted and described.

2.1 CHOOSING TO MANAGE YOUR NETWORK
At some level all network devices require some management. Even the most
simple devices have physical management needs as they are commissioned and
connected to a power supply. But most devices need some form of confi guration
to tell them what role they are to play in the network and precisely how to behave.
Even when autoconfi guration protocols like the Dynamic Host Confi guration Pro-
tocol (DHCP) are used to dynamically assign IP addresses and to download basic
confi guration information, a network operator will still want to use management
operations to inspect the devices to discover what addresses they are using.

30 CHAPTER 2 IP Network Management

In practice, many network devices are complex, requiring a large number
of confi guration parameters. Many, if not most, of these parameters can usually
use default values, but fi ne tuning may be necessary to ensure optimal functioning
of the network, and that requires some form of management access to the
device.

At the same time, it is crucial to the understanding of the operation of a
network to be able to inspect each node and observe how it is behaving. What
resources are active and how much traffi c are they carrying? Who has provisioned
those connections that are causing a bottleneck for the CEO’s emails? Why can’t
I send any packets to that host? The background information needed to answer
these types of question ranges from basic state information about the devices,
through detailed data concerning the inner functioning of the devices and thor-
ough statistics recording the number of errors, packets, and bytes.

In order to get the most meaning out of management information retrieved
from a device, it is usually decomposed in a logical and modular fashion. So, for
example, one might be able to access data about a whole router, the line cards
on the router, the interfaces on each line card, the protocol components running
on the router, and so on. Conversely, confi guration is most fl exible when it can
be applied to the same logical components of the system.

A fi nal management requirement is the ability to provision new services. This
may require commissioning resources at each node along a path through the
network, or if a signaling protocol is in use, simply issuing management requests
to the starting point of the new connection.

So, at many levels it is impossible to operate a network without some form of
management. The remainder of this chapter introduces how to use standardized
approaches to produce a coherent management strategy for the whole of the
network, making it possible to debug the network more effectively and to reduce
the management resources required to operate a network constructed from com-
puters from different vendors.

Network management is an area in which most Internet service providers
(ISPs) seem to struggle. The nature of their networks is constantly changing,
and the market is continually driving them to provide new and different
services. These changes put a strain on existing network management tools
and require the ISPs to race to adapt their techniques to their customers’ require-
ments. In previous years, managed Internet services were the highest requirement,
but these days, enterprises are looking for their ISP to support intranet or
extranet services. This means that the service provider needs to provide an entire
“network” to an individual enterprise customer and not just a set of simple
and unrelated connections to the Internet. The new network services are provided
to the customer as virtual private networks (VPNs) across a common shared
network infrastructure owned by the ISP. This sharing of network resources pro-
vides a new challenge to the network management capabilities of the service
provider that must now be able to partition resources and share them between
customers.

2.2 Choosing a Confi guration Method 31

2.2 CHOOSING A CONFIGURATION METHOD
There are many ways to confi gure devices, from automatic confi guration protocols
such as BOOTP and DHCP, through command line interface and confi guration
fi les, to graphical user interfaces. These techniques may use a mixture of propri-
etary manufacturer information and techniques and standardized protocols and
data formats. As will be shown in the following sections, there are benefi ts and
disadvantages to using the vendor-specifi c approaches, but the standardized
methods give a great benefi t in providing a centralized and coherent view of the
network.

2.2.1 Command Line Interfaces

The easiest management tool for a manufacturer of network equipment to write
is a command line interface (CLI), sometimes known as a craft interface (CI). A
CLI is a set of text-based commands issued by the operator at a terminal. The
commands have specifi c (sometimes complex and esoteric) syntaxes specifi ed by
the manufacturer and are very specifi c to the hardware being managed. This
means that an operator running a network of diverse nodes from different manu-
facturers must learn the command language for each node—no small task. Fortu-
nately, devices from one manufacturer tend to use the same commands where
there is an overlap of function, and the same syntaxes for all commands. Because
devices that perform the same functions need roughly the same confi guration,
and because vendors recognize the diffi culties of managing networks built from
hardware from many different vendors, there is a tendency for CLIs to look quite
similar, with convergence on the command syntaxes used by the incumbent
manufacturers. This has obvious benefi ts, but can also be frustratingly confusing
when the syntaxes are so similar as to make the differences hard to remember.

In its simplest form, the CLI requires that the operator be present at a terminal
directly attached to the device being managed. This is not viable in large networks
in which the routers and switches are distributed over a large geographic area
and are often installed in inaccessible places. Remote console access can be
achieved running a product such as a terminal server that the user connects to
using Telnet and that is physically connected to the device as though it were a
local terminal.

Alternatively, if the device supports TCP and runs a Telnet server, the operator
can log in using Telnet and run the CLI. In either case, the user can manage the
device remotely and must visit the location in which the equipment is installed
only in the event of a catastrophic failure.

It is a considerable inconvenience to an operator to have to reconfi gure a
device each time it is restarted (that is, power cycled), so most devices store their
confi guration data in some form. It is not really important whether this informa-
tion is on a local hard disk, in fl ash memory, or in a fi le held on a remote server
and accessed through some means such as the Trivial File Transfer Protocol

32 CHAPTER 2 IP Network Management

(TFTP). The effect is the same: The device is able to recover its confi guration by
reading a fi le and commence operation without any further management interven-
tion. Such confi guration fi les may be stored in any format, and could be simple
binary fi les that are easily read into memory and have meaning only to the software
that is using them, but a more sensible approach is to record the confi guration
commands necessary to recreate the required state and to replay the fi le as though
it were being typed by the operator. Command-based confi guration fi les have the
advantages that they can be inspected and understood by an operator, they can
be edited so that new confi guration is automatically picked up on reboot, and
they are more easily proofed against software version upgrades.

It should be noted that the one great benefi t of a CLI is that it is easily able to
give a very fi ne level of control over a device and allows a user to examine every
last detail of the device’s operation. Debug commands are rarely available in any
other form.

2.2.2 Graphical User Interfaces

Graphical user interfaces (GUIs) are a more user-friendly confi guration tool. The
operator does not need to remember a command language, but is led through a
series of screens with spaces to fi ll in the necessary confi guration information.
Default values are provided automatically and context-sensitive help is often avail-
able. Advanced GUIs support point-and-click provisioning in which an operator
can achieve a high level of management using a mouse to select devices and
components and to drag and drop confi guration objects.

The biggest benefi t to a GUI is the way in which data retrieved from devices
can be displayed. Although it is possible to just show tables of data as in the CLI
output, these tables can be easily enhanced to allow the user to click on any piece
of information to drill down further and see more details. Better still, the GUI can
provide graphical representations of information, tracking data against time or
mapping resources in physical space. A GUI can, for example, build a picture of
a device by learning from it what components it has that are installed and opera-
tional, and can present this to the operator as though he or she were looking at
the real device. Similarly, by connecting to multiple devices in the network, the
GUI can present a single, graphical view of the entire network.

This latter feature means that the GUI must be capable of operating remotely
and must not be limited to direct access on the managed device. Remote GUI
access can be achieved in a variety of ways, including through the X/Open remote
console protocols, but this requires that the complex graphical manipulation and
presentation are performed on the managed device. It is more common to place
the bulk of the function at the central management site on a dedicated computer
and to have the GUI-based management program contact the managed devices
using some form of communications protocol.

The GUI can be implemented “over the top of” the CLI so that all commands
issued at the GUI are mapped to CLI commands that are sent to the managed

2.2 Choosing a Confi guration Method 33

device using Telnet. Data that are displayed by the GUI can be collected in the
same way before being massaged to make the pretty screens. Alternatively, GUIs
may use their own communications protocols and data formats to “talk” to devices
with the benefi t of a more condensed information exchange since only the raw
data are sent without the lengthy text control commands and output strings.

There is still a place for confi guration fi les in systems that are managed using
a GUI. There is, however, a less obvious way to store the data. If the GUI is imple-
mented over the top of the CLI either locally or for remote transmission, then it
is obvious to store the confi guration using the CLI commands, but if the GUI is
implemented using direct access to confi guration data structures, it is often tempt-
ing for an implementer to build a binary confi guration store. This loses the ben-
efi ts of the text-based confi guration fi le described in the previous section and
makes it diffi cult to handle a system with a GUI and CLI, so the most common
approach is to convert the GUI confi guration into the equivalent CLI commands
before storing the information.

It is worth noting that despite the user-friendly aspects of a GUI, an experi-
enced network operator or fi eld engineer will often prefer to use the CLI. The
CLI gives access to a fi ner level of control and a greater amount of information
than the GUI, even if that information is not always formatted in the most readable
way. Further, many engineers claim that they can operate with the CLI much faster
than they can handle a GUI.

2.2.3 Standardized Data Representations and Access

Network managers dream of having a single application that they can use to
manage their entire network. This application must be capable of controlling all
of the devices in the network, and of collecting and integrating the information
and statistics stored on each device. The advantages for the operator are a coher-
ent view and a less complex management task because he or she doesn’t have to
learn to speak the different command languages for the different equipment
vendors and the different dialects for the different devices and models from the
same vendor.

One approach to building the global network management tool is to incorpo-
rate modules designed to talk to each of the individual components and map these
to a common display and control component. This is hard work for the writer of
a management application since he or she has to keep up with the latest command
syntaxes and products produced by each vendor. This is, however, a viable solu-
tion, especially if a modular approach is taken.

One easier way to produce a global management tool is to make the individual
vendors responsible for the modules that manage all of their devices and to make
those modules distinct (usually running on separate computers) with a north-
bound interface to the global application. This can be seen in Figure 2.1, in which
the operator works at a network management system (NMS) or through an oper-
ations support system (OSS) such as Telcordia’s TIRKS or NMA. Use of an OSS

34 CHAPTER 2 IP Network Management

allows the operator to utilize sophisticated provisioning and accounting services,
and the OSS uses a scripting language such as TL1 to pass CLI-like commands on
to the NMS. The NMS is the global management application that communicates
to many element management systems (EMSs), each of which is responsible for
managing a collection of devices of the same type. It is the EMS that the equip-
ment vendor supplies as a distinct module for incorporation into the whole man-
agement network.

As shown in Figure 2.1, the operator may have access to the EMSs where he or
she uses proprietary CLIs and GUIs to control the devices. But if the operator is
working at the NMS or OSS there must be a channel of communications between
the NMS and each EMS. This is popularly referred to as a northbound interface to
the EMS. There are two requirements for this communication: (1) the messages
must be understood universally (there must be a common communications proto-
col), and (2) the data must be comprehensible (there must be a common data
format). The popular standard for NMS to EMS communications is the Common
Object Request Broker Architecture described later. CORBA provides a standard-
ized way for the NMS to access data objects managed by each EMS, and a way for
the equipment vendors or EMS authors to publish a database format for the NMS
to access. These formats can become standardized, making the job even simpler.

The EMS is now free to manage the devices themselves. Each equipment
vendor may take a different approach to the management of its devices, as

Operator

OSS

TL1 NMS

EMSEMS EMS

Operator

Operator

CORBA

SNMP, XML,
or CORBA

FIGURE 2.1

The management network can be built up from a series of management systems so that the
operator can use a single, central management server.

described in the previous section, but it is increasingly popular to use one of a
small set of standardized protocols and data formats. There is a clear advantage
for vendors because they are able to leverage lots of existing code when they
produce a new device and they do not have to make substantial upgrades to their
EMS to support the new product. Three popular standards-based confi guration
techniques have emerged: CORBA, SNMP, and XML. If CORBA is used by the EMS
to manage its devices, the mapping between the NMS and a device is particularly
simple for the EMS, but otherwise a conversion component must be written.

However, once the devices support a standardized confi guration protocol,
there is less need for an EMS. It does continue to add management features specifi c
to the vendor’s equipment, but it gets in the way of centralized management from
the NMS and affects management performance if translations are required on every
command. For this reason, the EMS is increasingly dropped from the picture and
the NMS communicates with the devices directly using one of the standardized
protocols.

2.2.4 Making the Choice

Making the choice between confi guration methods may be constrained by what
protocols and techniques are supported by the equipment in your network. At
the worst, you will need to use the CLI on each piece of equipment, operating
via Telnet and possibly with the use of a terminal server.

If standardized management protocol support is available there are many
advantages to using it, but it should not be forgotten that there will often be more
detail and fl exibility available through proprietary confi guration interfaces than
are available through the standards. Nevertheless, except for the confi guration of
advanced features or for debugging, the benefi ts of a consolidated management
system dictate the use of a standardized technique.

2.3 MANAGEMENT INFORMATION BASE
One problem in the management of networks is deciding how the statistics and
confi guration data should be represented. Each device (switch, router, host, etc.)
will have different confi guration requirements and internal data structures accord-
ing to its implementation. Similarly, each network management tool will have
different commands and management screens displaying and requiring subtly dif-
ferent pieces of information. Nevertheless, any two devices that perform the same
function in the network (e.g., two OSPF routers) require substantially the same
confi guration to enable them to operate their IP-based protocols. This means all
that is required is a common, standardized way to represent the data while they
are moved between management station and device. The management tools are
free to collect and display the information in whatever way they choose, and the
devices can store the information and use it (or discard it) as they see fi t.

2.3 Management Information Base 35

36 CHAPTER 2 IP Network Management

For each protocol that it develops, the IETF produces a standard set of opera-
tional confi guration and statistics information necessary for successful confi gura-
tion and management of a device that runs the protocol. This information is
published in separate RFCs for each protocol and constitutes a module from the
global network MIB.

The MIB is an ordered, structured view of all of the information in all networks,
all at the same time. This is a pretty ambitious claim that is, in fact, true only
within the global uniqueness of identifi ers such as IP addresses and router identi-
fi ers. The secret to meeting this aim lies in the way that data values (or objects)
are given unique object identifi ers (OIDs) in a hierarchical and somewhat long-
winded way.

To illustrate this, consider the part of the OID tree shown in Figure 2.2. This
shows the root of the tree and the branches down as far as some individual MIB
modules. As can be seen, the MIB is broken into branches according to the
standards-making body. Within the ISO branch, the American Department of
Defense is responsible for the Internet. So all Internet OIDs begin with the value
1.3.6.1 using dot notation to represent the OID. Standardized IETF MIB modules
are assigned from the MIB-2 branch of the Management branch, but those that are
still under development usually come from the Experimental branch. Another

FIGURE 2.2

The OID tree from its root shown at the top of the example.

branch is designated for private use and allows enterprises (companies, network
operators, research establishments, etc.) to develop their own MIB modules. So,
for example, OIDs in proprietary Cisco MIB modules begin 1.3.6.1.4.1.9, where
9 has been assigned to denote Cisco.

Below these points in the OID tree come the individual MIB modules. An MIB
module contains all of the confi guration and reporting information for a single
type of logical component. This may be a line card or router, as shown for
Company X in Figure 2.2, or may be a component of a protocol such as an inter-
face as managed by the Interfaces MIB (IF-MIB) module. In other words, MIB
modules are defi ned to manage all instances of a single type of manageable
entity.

MIB modules comprise individual scalar objects and MIB tables. On a managed
object (e.g., a router) the scalar objects can be thought of as global variables, and
a MIB table can be thought of as an array of control blocks. Just as an implemen-
tation might need several types of control blocks, so a MIB module may include
more than one table.

The scalar objects are each assigned a single object identifi er within the MIB
module. Thus, in the IF-MIB module documented in RFC 2863, there is an object
called ifTableLastChange that records the time at which the Interface table
was last changed. This object is assigned the OID 5 from within the MIB module,
giving it the full OID of 1.3.6.1.2.1.31.1.5, where the penultimate 1 indicates that
this is an object in the MIB.

Each table is also assigned an OID within the MIB module. So, for example,
the Interfaces Receive Addresses table (ifRcvAddressTable) in the IF-MIB
module that is used to list all of the addresses that can be used on an interface
has the value 4. Each table is made up of a series of MIB rows or entries. An entry
is the equivalent of a single instantiation of a control block and is made up of a
sequence of objects, each with its own object identifi er. The ifRcvAddressTable
contains three objects: the address itself, the current status of the address (avail-
able for use or not), and the volatility of the address on the interface assigned the
OIDs 1, 2, and 3, respectively, so that the address object (ifRcvAddressAddress)
has the full OID of 11.3.6.1.2.1.31.1.1.4.11, where the penultimate 1 indicates
that this is an entry in the table. Thus, all of the addresses in this table form a
conceptual column in the table with the same OID.

Rows in MIB tables are distinguished by indexes. Indexes are object values
within the table or within some other MIB table on which this one depends. In
our example of the Interfaces Receive Addresses table, there are two indexes.
The primary index is the interface identifi er itself, a value stored in a separate
table, and the secondary index is the interface receive address in the ifRcv-
AddressAddress object. Using these two indexes it is possible to select an indi-
vidual row in the table and fi nd out about a specifi c address on a specifi c interface.
Alternatively, using just the primary index, and a “get next” operation, it is pos-
sible to read each of the addresses in use on a given interface. The table format
is shown in Figure 2.3.

2.3 Management Information Base 37

38 CHAPTER 2 IP Network Management

2.3.1 Representing Managed Objects

The Structure of Management Information (SMI) is specifi ed in RFC 2578. It
describes a subset of the Abstract Syntax Notation One (ASN.1) that may be used
to defi ne MIB modules and to encode MIB objects when they are passed from one
node to another in management requests. ASN.1 was devised by the Open Stan-
dards Organization (OSI) and provides a text-based, macro language that may be
used to defi ne data structures in a form that is both intelligible to humans and
machine readable. At the same time, ASN.1 also provides a set of rules for encod-
ing data when they are passed on the wire between network nodes called the
Basic Encoding Rules (BER). These rules provide for a very effi cient (that is, requir-
ing the smallest number of bytes) way to pass data along with their data types,
but are somewhat complicated by fl exibility of ASN.1 to handle complex and
nested data structures—a feature not required for MIB modules.

The SMI lays out a minimal subset of data types and constructs from ASN.1 and
extends these concepts to support the specifi c requirements of MIB modules.
Table 2.1 shows these data types. They form the basis of more complex data
types or textual conventions that can be defi ned within MIB modules. Textual
conventions usually defi ne interpretations to place on an object of a specifi c type.
For example, the MPLS Textual Conventions MIB module defi nes MplsBitRate
as an integer number of thousands of bits per second with a special meaning
assigned to zero (see Figure 2.4). Any other MIB module may import this
textual convention and is thereby saved the effort of redefi ning it and also
benefi ts from a consistent defi nition of bit rates. The SMI also defi nes some

FIGURE 2.3

MIB tables are built from rows with conceptual columns.

important macros used to embed useful information (e.g., status of the object, a
description, and display hints) and to defi ne common concepts such as MIB
objects and modules.

2.4 SIMPLE NETWORK MANAGEMENT PROTOCOL
Once the management station and the managed devices have a common view of
the management data (that is, MIB objects) all that remains is to provide a mech-
anism for the management station to create, write, read, and delete those objects.
This is achieved using the Simple Network Management Protocol (SNMP), which,
like anything that calls itself “simple,” should be taken with a pinch of salt.

Table 2.1 The Eleven Basic Data Types Defi ned in the SMI

Data Type Meaning

INTEGER Signed 32-bit integer.

OCTET STRING A series of bytes, each greater than or equal to 0 and less than or equal
to 255.

OBJECT IDENTIFIER An OID that can be displayed in dot notation.

Integer32 The same as INTEGER except that it is guaranteed to never need more
than 32 bits for a two’s complement representation.

Unsigned32 Unsigned 32-bit integer.

Counter32 A 32-bit integer used to count events (such as the number of packets
received). When the value of an object of this type reaches
4,294,967,295, it wraps to 0.

Gauge32 A counter that can go up or down to register the number of instances
of some object. Unlike Counter32 it cannot increment beyond
4,294,967,295, and does not wrap to 0. Similarly, it does not increment
below 0.

Counter64 A 64-bit version of Counter32. This is particularly useful when counting
things that are very fast (e.g., bytes on a high-capacity link), and the SMI
mandates that Counter64 be used for any counter that may wrap more
frequently than once an hour.

TimeTicks An unsigned 32-bit integer counting hundredths of seconds and
wrapping to 0.

Opaque An OCTET STRING wrapper of any arbitrary ASN.1 construct.

IpAddress A sequence of 4 bytes containing an IPv4 address. Note: This data type
is deprecated and new MIB modules use Unsigned32 for the same
purpose.

2.4 Simple Network Management Protocol 39

40 CHAPTER 2 IP Network Management

SNMP is an application-level protocol that can use any transport mechanism.
In practice, it is most often used with UDP using port 161 since that is mandatory
for conformance with SNMP standards. Other transport protocols are sometimes
used in a misguided attempt to handle some of the security issues covered in
Section 2.4.2. TCP is occasionally chosen when a management application does
not handle lost messages.

2.4.1 Requests, Responses, and Notifi cations

SNMP is a client-server protocol. Management agents connect to the managed
devices and issue requests. Managed devices return responses.

The basic requests are very simple. They are GET and SET to read and write to
an individual MIB object identifi ed by its OID and, if the object is in a table, by
the appropriate index values. Index objects are read and write protected—there
is no need to specifi cally read an index because it is always supplied in a GET
request and returned in a GET response to give context to the read request, and
clearly it would be a bad idea to allow the index of a row to be changed dynam-
ically. Some MIB modules also make some of their objects read-only so that the
device may report information (such as statistics) without it being modifi able by

MplsBitRate::=TEXTUAL-CONVENTION
DISPLAY-HINT “d”
STATUS current
DESCRIPTION

“If the value of this object is greater
than zero, then this represents the
bandwidth of this MPLS interface (or Label
Switched Path) in units of ‘1000 bits per
second.’
The value, when greater than zero,
represents the bandwidth of this MPLS
interface (rounded to the nearest 1000)
in units of 1000 bits per second.
If the bandwidth of the MPLS interface
is between ((n * 1000) − 500) and
((n * 1000) + 499), the value of this
object is n, such that n > 0.
If the value of this object is 0 (zero),
this means that the traffi c over this MPLS
interface is considered to be best effort.”

SYNTAX Unsigned32 (0|1..4294967295)

FIGURE 2.4

A textual convention allows multiple MIB modules to import the same construct and
meaning without having to redefi ne it.

an external component. Other than these restrictions, however, GET and SET are
quite straightforward in their operation.

However, it would be hugely ineffi cient to manage the confi guration of a
remote device one object at a time, so SNMP allows multiple objects within a
single MIB row to be read or written in a single request. That is, a single GET or
SET command can operate on multiple objects within a single row. Further, the
GET-BULK command allows a management station to read multiple rows from a
table, improving the retrieval time when an entire table is being read. Similarly,
the GET-NEXT request allows a management agent to “walk” the OID tree to fi nd
the next object in a MIB row, or more usually to navigate a MIB table (which may
be sparsely populated) reading one row at a time.

Row creation and deletion are special functions that are handled using the SET
command and not through their own special messages. MIB rows contain a special
writable object called the row status that is used to control the creation and dele-
tion of the row. When a management station creates a row for the fi rst time, it
writes the value create to the row status object—if the row already exists, the
operation will be failed by the managed device. If the row creation was successful,
the management status goes on to write the other objects, and when the row is
ready for use, it sets the row status to active. At this point, the confi guration
information is available and the device or component can be activated.

At any time the management station can move the row back into the not ready
state by writing that value into the row status object. This effectively takes the
row back into the state it was in as it was being created. To delete the row, the
row status is set to the value deleted and the managed device must stop the cor-
responding process or device and delete the corresponding information.

A fi nal SNMP message called a TRAP (sometimes known as a notifi cation) may
be issued by the managed device to report a specifi c event (e.g., the crossing of
a threshold).

2.4.2 SNMP Versions and Security

MIB data are encoded for transmission using the Basic Encoding Rules (BER) from
the ASN.1 specifi cation in the international standard ISO 8825. This is a compact
way of representing data and data types on the wire. For consistency, BER is also
used for encoding SNMP messages, with the added advantage that the messages
can be specifi ed using the ASN.1 text notation.

SNMP messages are built from an SNMP header and an SNMP protocol data
unit (PDU). The header is quite short and contains a protocol version number.
The PDU contains the request and any data.

There are three versions of SNMP. The original version of SNMP was produced
at the end of the 1980s. SNMPv1 turned out to be too simple in many respects,
not having suffi ciently powerful requests and using the limited SMIv1 to build its
PDUs. After several abortive attempts, the IETF produced SNMPv2 and docu-
mented it in RFC 1901 as an experimental protocol. At the same time, work began

2.4 Simple Network Management Protocol 41

42 CHAPTER 2 IP Network Management

on SMIv2, which was fi nally documented as RFC 2578, and SNMPv2 messages may
carry only PDUs built using SMIv2.

SNMPv1 and SNMPv2 have considerable security concerns. Even on networks
in which the data exchange is secured (e.g., by using the facilities of IPsec) there
is no control within these versions of SNMP as to who on the secure network is
allowed to perform SNMP operations and access the objects in a MIB module.
That is, any user on the network who can exchange UDP packets with the
managed device will be able to examine and modify the MIB objects. This is clearly
undesirable, so SNMPv3 includes application-level cryptographic authentication
to enable individual users to be authenticated. SNMPv3 differs from SNMPv2 in
the message header only—the PDUs are the same and both use SMIv2.

The IETF recommends strongly that deployment of SNMPv1 and SNMPv2
should be avoided, and that SNMPv3 be used instead. Further, they recommend
that cryptographic authentication be implemented and enabled so that it is
a matter for the network operator to manage the legitimacy of access to the
management information on each device.

2.4.3 Choosing an SNMP Version

As explained in the preceding section, the IETF has some strong views about
which version of SNMP should be deployed. In practice, however, although
SNMPv1 is pretty well deprecated except in a relatively small number of older
devices, SNMPv2 saw signifi cant deployment and new devices are still being
shipped that support only SNMPv2.

Therefore, although SNMPv3 is the ideal, management stations need to be able
to support both SNMPv2 and SNMPv3 for the foreseeable future. All new devices
should, however, be produced with support for SNMPv3, and it is reasonable to
assume that management software will support SNMPv3 so that it is no longer
necessary for a device to include SNMPv2 support.

2.5 EXTENSIBLE MARKUP LANGUAGE
The eXtensible Markup Language is a subset of the Standard Generalized Markup
Language (SGML) specifi ed in ISO 8879. XML defi nes data objects known as XML
documents and the rules by which applications access these objects. XML docu-
ments look very much like Hypertext Markup Language (HTML) documents (e.g.,
Web pages), but XML document specifi cations include strict defi nitions of the data
type in each fi eld of an object. This makes XML documents applicable to database
formats, whereas HTML documents are more suited for text management. Thus,
while presentation instructions (such as “center this text and print it in Arial
12 point”) are part of SGML, they are not relevant to XML but are very important
in HTML.

In effect, XML provides encoding rules for commands that are used to transfer
and update data objects. The syntax of these commands can be precisely specifi ed

and can be automatically parsed by a simple text-based application. Just as in
HTML, formatting and control are managed using text tags that delimit the data,
but unlike in HTML, the semantics of a tag is not global, but is specifi c to a given
XML document. The data themselves are presented as strings of bytes with each
string enclosed by a pair of tags known as a single XML element. ISO 8879 defi nes
how tags are used to enclose XML elements and what the meaning of the tags is
(i.e., how the tags cause the receiving application to operate on the data in the
XML element).

The collection of tags in an XML document is referred to as the markup data.
The markup data not only give instructions on the interpretation of individual data
elements, but defi ne how the elements are associated, and also describe the
purpose of the entire document and its applicability.

XML is developed by the World Wide Web Consortium (W3C) based on SGML.
SGML was standardized in the mid-1980s and work on XML started in 1996, reach-
ing its fi rst standard (or Recommendation) in 1998. As such, XML is neither a
communications protocol, nor tied to use within the Internet, but its applicability
and increasing popularity as a confi guration and management tool for Internet
devices makes it worthy of further examination.

2.5.1 Extensibility and Domains of Applicability

Key to the nature of XML is its extensibility. XML elements can be defi ned as they
are needed to fulfi ll the needs of specifi c document uses. Network management
is one such area of use or domain, and subdomains might be defi ned for the
management of a type of network element (e.g., a router) or even for a specifi c
make and model of a network element.

It is important to note that the defi nition of new XML elements is not the same
as the defi nition of new tags or syntaxes within XML. Tags and syntaxes are stan-
dardized, meaning that all XML documents can be successfully parsed by any
correctly implemented XML engine regardless of the domain to which the docu-
ment applies. The semantics of an XML element may, however, only be under-
stood within its domain of applicability.

The documents used within a specifi c domain will use a well-known set of
XML elements, tags, and markup data. Knowledge of this information is useful to
implementers since it governs the amount of code they have to write to construct
and parse XML and to interpret XML elements. XML documents for a domain are
described in a document type defi nition (DTD) and, conversely, a document
identifi es the domain to which it belongs by indicating the DTD. Note that DTDs
may be nested as subsets of other DTDs so that a document that conforms to a
child DTD will also conform to the parent.

2.5.2 XML Remote Procedure Calls

XML is a data encoding technique that can be used to represent data and data
requests that are transmitted between components on a single node or across a

2.5 Extensible Markup Language 43

44 CHAPTER 2 IP Network Management

network. It does not defi ne what data should be transferred (that is the responsi-
bility of the application developer, and any data including ASN.1-encoded SNMP
data can be encapsulated in XML), nor does it defi ne how the XML documents
should be exchanged.

XML documents may be transferred using any data or fi le transfer process.
Various processes have been applied, from UDP or TCP, through the File Transfer
Protocol (FTP) and the Hypertext Transfer Protocol (HTTP). The early uses of XML
utilized a remote procedure call (RPC) mechanism based on HTTP—this made
good sense because XML is closely related to HTML, which HTTP is designed to
carry, and because HTTP contains basic get and put operations.

XML-RPC is still in use and has been successful, but it is considered by some
to have too much overhead. A more object-oriented approach was desired, and
so the Simple Object Access Protocol (SOAP) was devised.

2.5.3 Simple Object Access Protocol

SOAP was originally named as the Simple Object Access Protocol. It was designed
as a lightweight protocol for exchange of XML documents over an underlying
transport protocol. It supports transactions on distributed objects in a Web-based
environment by defi ning how remote procedure calls and responses may be rep-
resented within messages that may be sent between participating network ele-
ments. As SOAP has developed and been extended, its longer name was considered
to be somewhat misleading, and so the protocol is now simply known as SOAP.

SOAP messages are encoded in XML, which makes them reasonably easy for a
user to read. The whole message is contained in an envelope and comprises an
optional header and a mandatory body. The header contains control information
about the message (things like priority and destination) and is not always required
because in most cases the default behavior can be applied and the assumed
destination is the receiver of the message. SOAP does allow messages to be
relayed, however. That is, a SOAP message from node A to node C may be sent
on a transport connection from node A to node B and relayed by the SOAP com-
ponent on node B, which sends the message onward on a connection to node C.
This feature requires that the header includes the target node for the message.
The SOAP body contains the XML operations and data being transferred, as shown
in Figure 2.5.

The SOAP envelope may alternatively contain a SOAP fault construct. This is
used to report errors and has several mandatory components, including an error
code for the fault, a text string describing the fault, and the identifi er of the report-
ing node. Figure 2.6 shows a sample fault message copied from the SOAP
specifi cation.

2.5.4 XML Applicability to Network Management

XML is a useful management tool, and some network equipment vendors support
only XML and their proprietary CLI. XML lends itself to the easy development of

<env:Envelope xmlns:env=“http://www.w3.org/2003/05/
soap-envelope”>

 <env:Header>
 <t:transaction xmlns:n=“http://elsevier.com/
 example-msg” env:mustUnderstand=“true”>
 <n:priority>Low</n:priority>
 <n:expires>2005-10-15T23:59:59-05:00</n:expires>
 display
 </t:transaction>
</env:Header>
<env:Body>
 <dsp:text>This message is displayed.</dsp:text>
</env:Body>
</env:Envelope>

FIGURE 2.5

Example SOAP message carrying a message to be displayed.

<env:Envelope xmlns:env=“http://www.w3.org/2003/05/soap-envelope”
 xmlns:m=“http://www.example.org/timeouts”
 xmlns:xml=“http://www.w3.org/XML/1998/namespace”>
 <env:Body>
 <env:Fault>
 <env:Code>
 <env:Value>env:Sender</env:Value>
 <env:Subcode>
 <env:Value>m:MessageTimeout</env:Value>
 </env:Subcode>
 </env:Code>
 <env:Reason>
 <env:Text xml:lang=“en”>Sender Timeout</env:Text>
 </env:Reason>
 <env:Detail>
 <m:MaxTime>P5M</m:MaxTime>
 </env:Detail>
 </env:Fault>
 </env:Body>
</env:Envelope>

FIGURE 2.6

Example SOAP fault message.

2.5 Extensible Markup Language 45

46 CHAPTER 2 IP Network Management

Web-based management applications that can read and write network confi gura-
tion information from and to remote devices.

It is relatively simple to use a DTD to generate the screens that an application
will display, and this is an important point since each vendor’s device managed
through XML is likely to have a different DTD even if the function of the devices
is similar.

XML is, however, a comparatively verbose way of encoding data. The tags are
usually descriptive, meaning that several text words may be used to encapsulate
a single piece of data. This is a large overhead compared with a binary encoding
of a known structure, but it is also a great strength because the format and
meaning are encoded in XML in a way that can be simply parsed by the recipient.
The overhead of XML encoding is overcome to some extent by compression
algorithms built into the protocols used to transfer XML documents.

2.6 COMMON OBJECT REQUEST BROKER ARCHITECTURE
The Common Object Request Broker Architecture is a distributed management
architecture that takes an object-oriented approach to management. CORBA
includes the specifi cation of the managed objects; the communications and
requests that are exchanged between management applications and the managed
objects; and the requests, access control, security, and relationships between the
objects.

CORBA is developed by the Object Management Group (OMG), which
was founded in 1989 and is currently developing version 3.0 of the CORBA
specifi cation.

2.6.1 Interface Defi nition Language

Each managed object (e.g., a device, a line card, or a connection) is represented
in CORBA by a CORBA object. The object is defi ned by an object interface, which
(much as in an object-oriented programming language) indicates the accessible
fi elds within an object, the operations that can be performed on the object, and
the relationship between the object and other objects. Relationships with other
objects are defi ned through inheritance.

The Interface Defi nition Language (IDL) is an object-oriented language speci-
fi ed by the OMG to describe object interfaces. IDL uses a subset of the C++ pro-
gramming language, but extends it with a small set of additional constructs to
support the type of object management that is needed in the context of network
management. The most notable extension is the any data type, which can be used
to represent an unknown or unspecifi ed data type.

2.6.2 The Architecture

CORBA is a client–server architecture. The client is a management agent that
performs operations on objects that are controlled by the server. The client and

server are connected by the Object Request Broker (ORB), which is responsible
for correlating the location of the client and server and managing the communica-
tions between them. This architecture protects the client from knowledge of the
location of the server for each object and allows local and remote objects to be
managed in a uniform way.

The Object Management Architecture (OMA) is illustrated in Figure 2.7. Central
to the architecture is the ORB that is responsible for relaying the client’s requests
to the correct component at the correct location. Client requests are typically
passed to the ORB through an application interface developed for the specifi c
management application. Application interfaces are usually developed for specifi c
purposes or management applications, although because these purposes are some-
times common, they may be standardized by the OMG. The ORB delivers the
requests to the appropriate components, which may be local or remote. Common
facilities are utilities or operations oriented toward applications, and they may be
common across multiple applications such as system and task management, oper-
ations on distributed document handling, and information management such as
the embedding of an object from one application within a document from another
application. Common object services (COS) are the underlying common functions
used by the ORB to answer the requests issued by the client. COS include the
necessary components to ensure end-to-end delivery of object transactions, and
also common services that range from object location and naming, through the
management of object relationships, persistence and life cycles to timing, security,
and event notifi cations.

The domain interfaces are a collection of components that serve purposes
similar to those of the common facilities and COS, but have scope limited to a
particular application (that is, to a specifi c domain). These components are spec-

FIGURE 2.7

OMA reference model as defi ned by the Object Management Group.

2.6 Common Object Request Broker Architecture 47

48 CHAPTER 2 IP Network Management

ifi ed as part of the object defi nition, but if any of them is discovered to be common
across multiple domains, it may be standardized and moved into the set of common
components.

Finally, the ORB delivers object operations to the server for application to the
objects themselves through the object adaptor. Like the application interface, the
object adaptor is domain specifi c (that is, it is developed for managing a specifi c
set of objects) and implementation specifi c, converting between the standard ORB
requests and the local server implementation. In particular, the object adaptor
may convert between the public and standard form of an object and the local
storage format.

Figure 2.8 shows the interaction between the ORB and the client and server
in more detail. It also shows the information repositories that are held at the client
and server. The interface repository is held on the client and contains information
about how the objects are handled, such as the interfaces and data attributes. The
implementation repository is held on the server and contains the information that
allows the ORB to locate and manage the objects; it also contains the active values
of the fi elds within the object.

FIGURE 2.8

Interaction between client, server, and an ORB is handled by a set of components that
provide abstraction and mapping functions. Communication between ORBs is provided by a
general protocol with a specifi c adaptation to bridge the gap to TCP/IP.

There are three components that provide the application interface from client
to ORB. The ORB interface is a standard abstract interface to the ORB defi ned by
the CORBA specifi cation to allow application implementations to be decoupled
from the ORB with an abstract representation of the objects. The IDL stub pro-
vides a mapping of object formats between the local application and the ORB.
This mapping is important when the local application has not been coded using
an IDL programming language—ORB development kits typically support map-
pings to standard languages (e.g., C, C++, and Java) and provide IDL compilers to
allow new objects to be defi ned in IDL and converted to the local programming
language. The third application interface component is the dynamic invocation
interface (DII), which provides direct access to the request–response mechanism
of the ORB, including an IDL stub but with full awareness of the format of the
objects.

Similarly, at the server, there are three components that provide access to the
implementation repository. The ORB interface supplies the same level of standard
abstract interaction on the server that it does on the client. The other two
components interact with the ORB through the object adaptor described
earlier. The IDL skeleton fulfi lls the same role on the server that the IDL stub does
on the client: It provides a mapping between the standard object formats and the
local formats stored in the implementation repository. The dynamic skeleton
interface (DSI) provides direct access to the request–response mechanism of the
ORB, including an IDL skeleton, but with full awareness of the format of the
objects.

Figure 2.8 also shows how the ORB communicates with other client or server
ORBs. The ORBs talk to each other using the General Inter-ORB Protocol (GIOP)
that defi nes a set of application-level messages and data representations for trans-
actions between ORBs. GIOP may be carried over a variety of transport protocols,
but we are interested only in transport over the Internet. For this purpose, CORBA
requires that an additional adaptation layer be used to bring the level of function
of TCP/IP up to the requirements of GIOP and to make visible the IP addresses
of the nodes on which objects reside. The combination of GIOP and this adapta-
tion layer is known as the Internet Inter-ORB Protocol (IIOP). GIOP and IIOP are
described further in the next section.

2.6.3 CORBA Communications

CORBA’s GIOP is defi ned along with CORBA by the OMG. GIOP is a generic object
exchange protocol designed to be mapped onto any connection-oriented trans-
port protocol. The OMG lists the objectives of GIOP as simplicity, scalability, low
cost, generality, and architectural neutrality. GIOP attempts to achieve these goals
by defi ning a set of assumptions about the underlying transport mechanism, mes-
sages to carry the data and data manipulation requests across the transport mech-
anism, and a list of syntaxes for the representation of IDL data types within the
messages.

2.6 Common Object Request Broker Architecture 49

50 CHAPTER 2 IP Network Management

The GIOP common data representation (CDR) defi nes how objects and data
are encoded within messages. There are several key points to note:

■ All data types are aligned on their natural boundaries to make it easier for appli-
cations to read and write data to messages. This has the obvious consequence
that messages may be larger than strictly required, but makes application imple-
mentation more simple. Note that as data objects are placed in a message, they
may need to be prepadded to bring the message up to the correct byte offset.

■ Integers are supplied in messages in the sender’s native format. This differs from
the normal process in which all integers are transferred in “wire format” with
the most signifi cant byte fi rst. Again, this allows for a simpler implementa-
tion—a sender never has to manipulate data before placing it in a message. A
fl ag in each GIOP message indicates the sender’s integer format and the receiver
need only manipulate the data from a message if its own integer format is
different.

■ Other encodings (such as ASN.1 for SNMP requests) may be encapsulated as
octet strings (that is, transparent streams of bytes) within the CDR.

■ The CDR includes a construct called an indirection that allows one part of a
message to point to data in another part of the message. This enables a degree
of compression so that repeated data need only be present in the message
once.

GIOP is a client-server protocol. The client is responsible for initiating a con-
nection (using the underlying transport mechanism) with the server, and initiating
the communications. In early versions of GIOP the server was not allowed to send
request messages—it could only respond to requests from the client so that if two
nodes wished to operate on each other’s data objects it was necessary to maintain
two connections between them. Although this added some simplicity to imple-
mentations in which only a unidirectional service was needed, the limitation has
been relaxed in later versions of GIOP to allow bidirectional request exchanges
on a single connection with the distinction of client and server diminished to
connection management.

All GIOP messages begin with a common header. The fi rst 4 bytes contain the
magic cookie “GIOP” encoded in ASCII. The next two fi elds give the version
number—the current version is 1.3, but any implementation supporting version
1.x must also support version 1.y for each y < x. The F-bit indicates whether this
is the last or only fragment of a message (zero) or whether further fragments will
follow (one). The B-bit shows how the integers in this message (including the
subsequent Message Length fi eld) are encoded—zero means the integers are Big-
Endian and one means Little-Endian. The Message Type fi eld indicates what the
message is for, using values from Table 2.2. The Message Length gives the length
of the remaining message, excluding the common header in bytes.

Each GIOP message starts with the common message header and continues
with some message-specifi c fi elds, including a 4-byte request identifi er to help

Table 2.2 GIOP Messages

Message Type Message

0 Request. Sent by client (or server if bidirectional GIOP is in use) to invoke a
CORBA object that is to read, write, or otherwise operate on an object. Request
messages carry unique identifi ers used to correlate replies and fragments.

1 Reply. Sent in response to a Request to return data that are read or to return the
result of the operation in the request. A fl ag in the Request indicates whether a
Response should be sent.

2 CancelRequest. Sent by the sender of a Request to attempt to cancel it before the
receiver acts on it and sends a Reply.

3 LocateRequest. Sent to determine whether the receiver is capable of performing
the requested operation on the specifi ed object. The LocateReply can affi rm or
deny the request and can also redirect the request to another location. Note that
these results are identical to the response to a Request message carried by a
Reply, but that the LocateRequest does not carry the full data, which are useful if
redirection is likely.

4 LocateReply. Sent in response to a LocateRequest.

5 CloseConnection. Sent by either end of a connection to indicate that the sender
intends to close the connection and that any outstanding Request messages sent
to it will not receive a Reply and will not be acted on.

6 MessageError. Reports a general, high-level parsing error such as an unsupported
version number or an unknown message type. More detailed message-specifi c
errors are handled in Reply messages.

7 Fragment. This message is used to continue and complete a sequence of frag-
ments started by a Request or Reply that has the F-bit in the common header set
to 1 to indicate that the data have been fragmented between multiple messages.

FIGURE 2.9

Basic encoding of values in GIOP messages.

2.6 Common Object Request Broker Architecture 51

correlate responses and fragments. The data are presented as a series of data
values. On a Request message the data values are the input parameters to the
object operation, and on a Reply they are the output parameters. Data values in
a GIOP message can be represented by the BNF encoding shown in Figure 2.9.
Each value begins with an integer value tag to identify the data type. The value

<value>::= <value_tag> [<codebase_URL>][<type_info>] <state> |

<indirection_tag> <indirection> |

<null_tag>

52 CHAPTER 2 IP Network Management

tag may optionally (according to the value of the value tag) be followed by strings
giving a codebase universal resource locator (URL) and type information to help
locate the data in a repository. Then comes the data (called the state). Alterna-
tively, the value tag may be replaced by an indirection to the data, or a special tag
to show that no data are present.

The state may be a sequence of one or more bytes (called octets) or may be a
nested sequence of values, allowing data structures to be represented as shown
in Figure 2.10. Note that there is support for splitting large (that is, of many bytes)
data values across messages by chunking them. The end tag is used to indicate
the end of a series of data chunks or the end of a nesting of values.

Connections are initiated in GIOP by a client. It uses the transport mechanism
to open a connection to the server. In early versions of GIOP only the client was
able to send Request, LocateRequest, and CancelRequest messages, and only
the server could send a CloseConnection message. In more recent versions the
distinction between client and server is limited to connection establishment. The
connection gives context to the request identifi ers used in the messages and
(obviously) transports the messages.

TCP/IP provides reliable connection-oriented transport and so should be suit-
able for use by GIOP, but TCP/IP is limited by the failure or closure of connections.
In particular, TCP does not provide a graceful shutdown whereby data “in the
pipe” are fl ushed before the connection is torn down. This is a requirement of
GIOP because the server may send a CloseConnection message and then shut
down the connection; if this operation is attempted in TCP, the CloseConnection
message may be lost, leaving the client unsure whether a new invocation is
required because the previous connection failed or whether the old connection
was closed under the control of an application. To bridge this gap, an additional
adaptation layer is added to GIOP to make the IIOP. Since IIOP is a minimum
requirement of a conformant CORBA implementation, and since TCP/IP is almost
ubiquitous, the term IIOP is used interchangeably with GIOP. IIOP is also defi ned
by the OMG in the base CORBA specifi cation along with GIOP.

The fi rst requirement of IIOP is to extend the object profi les to contain the
host on which the object is located and the port through which it can be accessed.
The host is presented as a string that may contain a partially or fully specifi ed
host name (that is, a name such as “enterprise,” or a fully qualifi ed domain name

<state>::= <octets>|

<value_chunk> [<end_tag>]|
<value> [<end_tag>]

<value_chunk>::= <chunk_size_tag><octets>

<octets>::= octet[<octets>]

FIGURE 2.10

Encoding of data values within a GIOP message may be a series of bytes, chunks of data,
or nested data types.

for the host such as “enterprise.accounts.mycompany.com”), or the IP address of
the host presented in dotted notation (e.g., “192.231.79.52”). The port number
identifi es the TCP port on which the server (that is, the identifi ed host) will be
listening.

IIOP modifi es the procedure for closing a connection by stipulating that the
receiver of a CloseConnection message must close the connection. This takes the
responsibility for connection closure away from the sender of the message and
allows the process to complete successfully.

2.7 CHOOSING A CONFIGURATION PROTOCOL
Choosing between CORBA, XML, and SNMP is not simple even if you have decided
to use a standardized technique rather than one of the proprietary confi guration
mechanisms built into your equipment. SNMP is well established, with MIB
modules designed within the IETF, often by the people who wrote the protocols
that are being managed. The MIB modules offer a great deal of detail and fi ne
control, but to some extent this is a downfall since the level of detail increases
the apparent complexity of a MIB module for the reader or the implementer. The
argument is often made that MIB modules are too complex and are consequently
hard to understand. In the end, the amount of information that needs to be
managed is static regardless of the protocol used to manage it; there is a constant
amount of information needed to control and operate a device no matter how
that information is transferred to the device. This means that discussions about
the quantity of managed data are bogus and all that remains to be considered are
the encodings and protocols.

XML provides an encoding technique that is at once easy to extend, readable
by a human, and easy for a program to parse. Its downside is that its very read-
ability makes it verbose, although compression techniques in the transport proto-
col may help to ameliorate this. XML is unquestionably easy and quick to develop
and for this reason it is beginning to gain considerable popularity.

CORBA has an established foothold, especially with the larger service providers
where the structured management network shown in Figure 2.1 is popular. Since
CORBA is so often a requirement as a northbound interface from EMSs, it may
make sense to offer CORBA support on the managed devices. Note that CORBA
is also popular with object-oriented programmers because of its inherent object-
oriented nature and the ready availability of ORB components in C++ and Java.

SNMP remains the most-deployed network management protocol. Despite
fears about security, SNMPv2 is widely used and MIB modules give a well-known
and detailed breakdown of the confi guration data. Although ASN.1 is initially hard
to get into, with familiarity the text representation is easy to read and can be
automatically parsed to generate management applications and source code for
clients and servers.

Note that it is possible to mix and match. One option that is sometimes used
is to maintain the confi guration data in MIB format, but to transfer them as bulk

2.7 Choosing a Confi guration Protocol 53

54 CHAPTER 2 IP Network Management

data using CORBA or XML. This can avoid some of the security concerns of the
earlier SNMP versions while continuing to use the detailed MIB modules.

2.8 CHOOSING TO COLLECT STATISTICS
Successful network operation is not just about confi guring devices, but also
requires constant monitoring of the status of the links and nodes that make up the
network to detect faults, congestion, and network “hot spots.” For ISPs to achieve
contracted levels of service, they must be continuously aware of the load within
their network and must discover node and link failures as quickly as possible.

SNMP provides notifi cations through trap messages to alert the management
station when key events occur, although it is of the nature of networking failures
that they may themselves prevent the delivery of any notifi cation messages. SNMP
also gives access to counters that provide basic statistical information about the
traffi c fl ows through a specifi c interface or device, and a management station may
read these counters repeatedly to get a view of the change in network usage.

It should be borne in mind that the process of collecting network statistics in
real time may have a detrimental effect on the operation of the network. This is
not quite Heisenberg’s Uncertainty Principle, but repeated requests to read data
at many nodes can cause a lot of additional traffi c and may congest the network
around the central location at which the data are accumulated. For this reason,
network statistics should be collected in a very structured way for day-to-day
operation, focusing on entry and exit points to networks rather than on every link
and node within the entire network. This has the benefi t of policing Internet work
agreements as well as checking to see which external links are close to their limits.
Figure 2.11 shows how only certain links in a network might be monitored.

At the same time, multiple collection points can be used within the network to
share the load of statistics collection. These intermediate collection points serve to
coalesce the data sets into a single useful group of statistics before forwarding the
information to the central collection point. In particular, since some statistics are
used for billing, some for fault detection, some for long-term planning, and some
for service maintenance, the intermediate collection points can fi lter the statistics
and send information to the appropriate consumer while still providing just a single
point of contact for each device. This hierarchy is shown in Figure 2.12.

Although SNMP may provide access to the necessary statistical information, it
is not the best choice for network monitoring because it is request–response
based. The client (or collection point) must issue read requests to the server (the
device being monitored) in order to read the information. Further, the MIB
modules are structured for wide confi guration reporting rather than pure statistics
gathering. These two factors mean that SNMP introduces a considerable overhead
if it is used for this purpose.

As an alternative, the NetFlow architecture was devised by Cisco and is now
being considered for standardization by the IETF. NetFlow is based on a series of

record formats specifi cally designed to contain statistical information and to allow
devices to report bulk data to their collection points. An important consideration
is that the maintenance and dispatch of the NetFlow records should have the
smallest possible impact on the ability of the device to forward data.

The NetFlow records can be collected by the device and sent periodically
(based on a timer or a threshold) to the collection point, generally using a transfer

FIGURE 2.11

Network statistics can be monitored at specifi c points in a network (shown by the arrows) to
gain a good view of overall operations without overloading the network.

Intermediate
collection points

Operations
center

Forward
planning

Accounts
and billing

Reporting
devices

FIGURE 2.12

Hierarchy of collection points for network statistics reduces the associated traffi c and
offl oads some of the processing requirements.

2.8 Choosing to Collect Statistics 55

56 CHAPTER 2 IP Network Management

protocol such as FTP. An intermediate collection point can operate on the data
and then send them onward. Since NetFlow is not an IP protocol, we will not
discuss it further.

2.9 POLICY CONTROL
Policy control is a variation of network management. It recognizes that when
confi guration requests arrive through signaling protocols rather than through
management protocols, each network node is responsible for applying some
policy to decide how to treat the requests. This policy may be local (specifi c to
the node making the decision) or applicable across a wider domain, and the
decision can be made at each node or devolved to centralized policy servers.

Note that when devices are managed through a management protocol there is
still a policy that governs what resources can be provisioned in support of which
services, but that policy is usually applied by the network operator in consultation
with a management application.

The IETF defi ned a framework for policy control in RFC 2753 and the Common
Open Policy Service (COPS) protocol to convey policy requests between clients
and servers in RFC 2748. Since then, it has been recognized that policy requests
and responses, and also policy pushes, are simple client/server data transfers
similar to fi le transfers, and the rather complicated COPS protocol has been largely
abandoned in favor of transferring XML-encoded policy information using SOAP
(see previous discussion) or the Blocks Extensible Exchange Protocol (BEEP).

2.9.1 Choosing to Apply Policy

When resources in a network are reserved to support service management for
integrated services or the Resource Reservation Protocol (RSVP) they are removed
from general availability and are held for exclusive use by a specifi c datastream.
This happens solely on the say-so of the requesting node—usually the node that
will be sending or receiving the data. This requesting node knows the character-
istics of the data being transferred and what network resources will be required
to support them, so the reservation request asks for what is needed.

A node in the network receives many such requests but has only limited
resources available. It must decide which requests should be satisfi ed and which
rejected. These decisions obviously take into account the available bandwidth,
and may consider authentication data (e.g., whether or not the request is from a
valid neighbor or not) and request priority (as in RSVP-TE for MPLS). However, in
a large network additional policy-based decisions need to be made to determine
whether precious resources should be tied up for use by data fl ows between
particular applications at the source and destination nodes.

It is not necessary to make these policy decisions at each node in the network.
It is suffi cient to consider the requests as they pass into and out of policy admin-

istrative domains. Once a request has entered such a domain, the nodes within
the network may consider that the local domain policy has been satisfi ed and can
reserve the resources as requested. This is shown in Figure 2.13. Policy checking
on departure from an administrative domain may not be necessary, but network
operators may want to distinguish between reservation requests that are satisfi ed
entirely within their network and the fi nancial cost of resources reserved outside
their network.

The points of policy control shown in Figure 2.13 may be confi gured with
suffi cient information to make policy decisions on their own. This would certainly
be the case for simple policies, but for more complex decisions based on detailed
information about the topology and players in the network—and possibly a fre-
quently changing network-wide policy—the points of policy control must consult
an external policy server.

Figure 2.14 shows how a router that makes policy decisions might be con-
structed. When a reservation request is received by the signaling component of
the router (step 1) it consults the local policy component (step 2). If the policy
control component on the router cannot make a decision, it consults a remote
policy server (step 3). The policy decision (step 4) is relayed by the local policy
component to the signaling component (step 5), which is able to make the
required resource reservations (step 6) before signaling to the next node in the
network (step 7). Finally, the data can fl ow, making use of the reserved resources
(steps 8 and 9).

Figure 2.15 shows the full architecture for policy-based decision making. The
IETF has named a point of policy control a policy enforcement point (PEP). The
PEP receives a policy request and consults its local policy decision point (LPDP),
which may involve examination of a cache of locally stored policy information. If

FIGURE 2.13

Policy is enforced at the boundaries of administrative domains.

2.9 Policy Control 57

58 CHAPTER 2 IP Network Management

FIGURE 2.14

Policy is the responsibility of a distinct component within a network node and may
require the assistance of a remote policy server.

FIGURE 2.15

Policy architecture allows for local decisions and the consultation of a remote policy
database.

the LPDP is unable to make a decision, the PEP consults a remote policy decision
point (PDP) on another node in the network. Since the PDP is remote from the
PEP, the two nodes must use a protocol to communicate; although the IETF
specifi ed the COPS protocol for this purpose, this protocol never gained much
momentum and has been replaced by other mechanisms such as the exchange of
XML-encoded policy information using SOAP (see Section 2.5.3) or Blocks Exten-
sible Exchange Protocol (BEEP). The PEP fi lls the role of a client, making policy
inquiries or requests to the PDP server.

The PDP has much more information available to it and can apply the full policy
rules to produce an answer for the PEP. However, as the size of networks grows
it may be infeasible for a single PDP server to retain all of the information neces-
sary to make proper policy decisions about all possible traffi c fl ows. The architec-
ture handles this by allowing both the LDPD and PDP to read additional policy
data from a full (and probably distributed) policy database using whatever proto-
col is suitable (perhaps LDAP, the Lightweight Directory Access Protocol, or
maybe SNMP).

2.9.2 Policy Information Base

The policy information that is exchanged between the PDP server and PEP and
stored in policy databases needs some structure and format. Initial policy uses
were specifi ed using text (see RFC 2749 that describes the use of COPS in support
of RSVP), but this is neither suffi ciently precise to be safe, nor easily extensible
as more client types are produced. In particular, there may be common concepts
such as interfaces that are shared between policy data for different clients—
it would be helpful if this information could be confi gured and managed
coherently.

The IETF recognized that the information to be managed was not dissimilar to
that for device confi guration and management and that the MIB described in
Section 2.3 already had an infrastructure suitable for specifying and encoding such
data. So the policy information base (PIB) was born.

The PIB is in many ways very similar to the MIB. It has tables and rows to
contain the information about instances of specifi c devices and managed entities.
These may range from the capabilities and restrictions of devices and interfaces,
through the resources and bandwidth, to the specifi c data fl ows and policy
request. PIBs are specifi ed using the ASN.1 BER just as MIBs are and they use the
same basic data types defi ned in the Structure of Management Information (SMIv2
in RFC 2578). RFC 3318 defi nes a framework PIB in the context of policy decision
points and defi nes some basic textual conventions for use by other PIB
modules.

2.9 Policy Control 59

This page intentionally left blank

CHAPTER

3IP-Based Service
Implementation and
Network Management

This chapter, taken from Chapter 6 of Developing IP-Based Services by Morrow
and Vijayananda, discusses the implementation and delivery of those services.
While technology plays an important role in developing services, it is also impor-
tant that the services be provisioned and delivered in an easy and profi table
manner. “Easy and profi table” here refers to the scalability of a solution in terms of
the staffi ng and skills required to implement the solution for a mass market. Techni-
cal implementation in the lab is an academic exercise to show the feasibility of a
solution. This solution may not be profi table for a service provider if provisioning
the service for a large number of customers is too expensive or time consuming.

It is important that the provisioning of the service be (1) simple, meaning that
it can be done easily and does not require skilled staff; and (2) scalable, meaning
that a signifi cant number of customers can be provisioned in a reasonable period
of time. The terms signifi cant number and reasonable period of time have to be
defi ned by the service provider with reference to profi tability. The choice of
network devices and provisioning tools plays an important role in making the
service provision simple and scalable.

Another signifi cant factor in provisioning services is service upgrades. A service
upgrade may require changes in the confi guration of existing devices or a soft-
ware/hardware upgrade of the network devices. The ease and speed at which a
service upgrade can be done for a large number of customers also play an impor-
tant role in making a service profi table for the service provider.

Another important aspect of delivering IP-based services is network manage-
ment. It is not enough if the service is implemented correctly. It must also be
monitored on a regular basis to ensure that it is functioning properly. This requires
an investment in equipment, staffi ng, and intelligence in the network devices.
There is a trade-off between the cost of monitoring and the benefi ts provided by
monitoring. Proactive monitoring is useful and helps to prevent service outages

62 CHAPTER 3 IP-Based Service Implementation

and network downtime. The cost of repairing a fault after its manifestation can
be much higher than the cost of monitoring the network and preventing the
occurrence of the fault in the fi rst place.

Consider the situation in which a network device starts malfunctioning as the
memory usage and load on it reaches a certain threshold. This device is in a remote
location, so it takes a few hours for the maintenance crew to physically reach it.
The load and memory usage are directly proportional to the number of customer
connections terminating on the device. When the load reaches the threshold, the
device stops functioning and must be reset. The maintenance crew must go to
the site where it is located in order to reset it. Proactive monitoring of the load
and memory usage of the device can help to prevent this situation. In order to
keep a good balance between the cost and benefi ts of monitoring, it is necessary
to have a good network management infrastructure.

This chapter focuses on the implementation of IP-based services, monitoring
the network to ensure correct delivery of the services, and reporting the
status of the devices to customers as part of the service level agreement (SLA).
Simple Network Management Protocol (SNMP) plays an important role in imple-
menting IP-based services, therefore, a brief discussion on SNMP is presented in
Section 3.1.

Several aspects related to the implementation of IP-based services are pre-
sented in this chapter, such as security and management. The operations support
system (OSS) is the system responsible for implementing IP-based services. A
discussion on the importance of OSS, its architecture, and its requirements is
presented in Section 3.5.

3.1 SIMPLE NETWORK MANAGEMENT PROTOCOL
SNMP is an application-layer protocol that facilitates the exchange of management
information between network devices. It is part of the Transmission Control
Protocol/Internet Protocol (TCP/IP) suite. SNMP enables network administrators
to manage network performance, fi nd and solve network problems, and plan for
network growth. Three versions of SNMP exist: SNMP version 1 (SNMPvl), SNMP
version 2 (SNMPv2), and SNMP version 3 (SNMPv3). All three versions have
a number of features in common, but SNMPv2 offers enhancements, such as
additional protocol operations, and SNMPv3 offers security features.

SNMP plays an important role in managing networks. It helps provide a uniform
interface to access and manage all network devices.

3.1.1 Description

SNMP defi nes a client–server relationship. The client program (called the network
management system, or NMS) makes virtual connections to a server program
(called the SNMP agent) that executes on a remote network device, and serves

3.1 Simple Network Management Protocol 63

information to the NMS regarding the device’s status. The database, controlled by
the SNMP agent, is referred to as the SNMP management information base (MIB)
and is a standard set of statistical and control values. SNMP additionally allows
the extension of these standard values with values specifi c to a particular agent
through the use of private MIBs.

Directives, issued by the NMS client to an SNMP agent, consist of the identi-
fi ers of SNMP variables (referred to as MIB object identifi ers or MIB variables)
along with instructions to either get the value for the identifi er or set the identifi er
to a new value. Through the use of private MIB variables, SNMP agents can
be tailored for myriad specifi c devices, such as network bridges, gateways, and
routers. The defi nitions of MIB variables supported by a particular agent are incor-
porated in descriptor fi les, written in Abstract Syntax Notation (ASN.1) format,
made available to network management client programs so that they can become
aware of MIB variables and their usage.

3.1.2 Components

As shown in Figure 3.1, an SNMP managed network consists of four key compo-
nents: managed devices, agents, MIBs, and an NMS.

NMS

SNMP interaction

Management
entity

Managed
entity

Managed
entity

Managed
entity

Managed
entity

Management
information

base

Management
information

base

Management
information

base

Management
information

base

SNMP
agent

SNMP
agent

SNMP
agent

SNMP
agent

FIGURE 3.1

SNMP components.

64 CHAPTER 3 IP-Based Service Implementation

Managed device: A network node that contains an SNMP agent and resides
on a managed network. Managed devices collect and store management
information and make this information available to the NMS using
SNMP. Managed devices, sometimes called network elements, can be
routers and access servers, switches and bridges, hubs, computer hosts,
and printers.

Agent: A network management software module that resides in a managed
device. An agent has local knowledge of management information and
translates that information into a form compatible with SNMP.

MIB: Consists of the management information that resides in the managed
device. The agent provides a standard access to the MIB.

NMS: Executes applications that monitor and control managed devices. The
NMS provides the bulk of the processing and memory resources required
for network management. One or more NMSs must exist on any managed
network.

3.1.3 Operations

Managed devices are monitored and controlled using four basic SNMP commands:
read, write, trap, and traversal operations.

Read command: Used by an NMS to monitor managed devices. The NMS
examines different variables that are maintained by managed devices.

Write command: Used by an NMS to control managed devices. The NMS
changes the values of variables stored within managed devices.

Trap command: Used by managed devices to asynchronously report events
to the NMS. When certain types of events occur, a managed device sends
a trap to the NMS.

Traversal operations: Used by the NMS to determine which variables a
managed device supports and to sequentially gather information in
variable tables, such as a routing table.

3.1.4 Management Information Base

A MIB is a collection of information that is organized hierarchically. MIBs are
accessed using a network management protocol such as SNMP. They are com-
posed of managed objects and are identifi ed by object identifi ers. A managed
object (sometimes called a MIB object, an object, or a MIB) is one of any number
of specifi c characteristics of a managed device. Managed objects are composed of
one or more object instances, which are essentially variables. Two types of
managed objects exist: scalar and tabular. Scalar objects defi ne a single object
instance. Tabular objects defi ne multiple related object instances that are grouped
together in MIB tables.

Figure 3.2 shows a sample MIB tree and examples of scalar and tabular managed
objects. An example of a scalar managed object is ifNumber, which is a scalar

3.1 Simple Network Management Protocol 65

object that contains a single object instance, the integer value that indicates the
total number of interfaces in the router. An example of a tabular managed object
is ifTable, which is a tabular object that contains a multiple object instance. Each
instance contains detailed information about the interfaces in the router. The top-
level MIB object IDs belong to different standards organizations, while lower-level
object IDs are allocated by associated organizations. Vendors can defi ne private
branches that include managed objects for their own products. MIBs that have
not been standardized typically are positioned in the experimental branch. The
managed object ifNumber can be uniquely identifi ed either by the object name—

dod(6)

ccitt(0) iso(1) iso-ccitt(2)

...

...

...

.........

... ...

...

standard(0) registration-
authority(1)

member-
body(2)

identified-
organization(3)

internet(1)

directory(1) mgmt(2) experimental(3) private(4) security(5) snmpV2(6)

mib-2(1)

interfaces(2)

ifTable(2)ifNumber(1)

FIGURE 3.2

Sample MIB tree.

66 CHAPTER 3 IP-Based Service Implementation

“iso.org.dod.internet.mxmt.mib-2.interfaces.ifNumber”—or by the equivalent
object descriptor—l.3.6.1.2.1.2.1.

3.1.5 SNMP Version 1

SNMPvl is the initial implementation of the SNMP protocol. It is described in RFC
1157 and functions within the specifi cations of the structure of management
information (SMI). SNMPvl operates over protocols such as the User Datagram
Protocol (UDP), IP, OSI Connectionless Network Service (CLNS), AppleTalk’s
Datagram Delivery Protocol (DDP), and Novell’s Internet Packet Exchange (IPX).
SNMPvl is widely used and is the de facto network management protocol in the
Internet community.

SNMPvl and the Structure of Management Information
The structure of management information (SMI) defi nes the rules for describing
management information, using ASN.1. The SNMPvl SMI is defi ned in RFC 1155.
It makes three key specifi cations: ASN.1 data types, SMI-specifi c data types, and
SNMP MIB tables.

SNMPvl and ASN.1 Data Types
The SNMPvl SMI specifi es that all managed objects have a certain subset of ASN.1
data types associated with them. Three ASN.1 data types are required: name,
syntax, and encoding. The name serves as the object identifi er (OID). The syntax
defi nes the data type of the object (e.g., integer or string). The SMI uses a subset
of the ASN.1 syntax defi nitions. The encoding data describe how information
associated with a managed object is formatted as a series of data items for trans-
mission over the network.

SNMPvl and SMl-Specifi c Data Types
The SNMPvl SMI specifi es the use of a number of SMI-specifi c data types, which
are divided into two categories: simple data types and application-wide data types.
Three simple data types are defi ned in the SNMPvl SMI, all of which are unique
values: integers, octet strings, and oids.

Integer data type: A signed integer in the range of –2,147,483,648 to
2,147,483,647.

Octet strings: Ordered sequences of 0 to 65,535 octets.
Object identifi ers: Come from the set of all oids allocated according to the

rules specifi ed in ASN.1.

Seven application-wide data types exist in the SNMPvl SMI: network addresses,
counters, gauges, time ticks, opaques, integers, and unsigned integers.

Network addresses: Represent an address from a particular protocol family.
SNMPvl supports only 32-bit IP addresses.

3.1 Simple Network Management Protocol 67

Counters: Nonnegative integers that increase until they reach a maximum
value and then return to zero. In SNMPvl, a 32-bit counter size is
specifi ed.

Gauges: Nonnegative integers that can increase or decrease but retain the
maximum value reached.

Time tick: Represents a hundredth of a second since some event.
Opaque: Represents an arbitrary encoding that is used to pass arbitrary

information strings that do not conform to the strict data typing used
by the SMI.

Integer: Represents signed integer–valued information. This data type
redefi nes the integer data type, which has arbitrary precision in ASN.1,
but bounded precision in the SMI.

Unsigned integer: Represents unsigned integer–valued information and is
useful when values are always nonnegative. This data type redefi nes the
integer data type, which has arbitrary precision in ASN.1, but bounded
precision in the SMI.

SNMP MIB Tables
The SNMPvl SMI defi nes highly structured tables that are used to group the
instances of a tabular object (i.e., an object that contains multiple variables). Tables
are composed of zero or more rows, which are indexed in a way that allows SNMP
to retrieve or alter an entire row with one Get, GetNext, or Set command.

SNMPvl Protocol Operations
SNMP is a simple request–response protocol. The network management system
issues a request, and managed devices return responses. This behavior is imple-
mented by using one of four protocol operations: Get, GetNext, Set, and Trap.

Get operation: Used by the NMS to retrieve the value of one or more object
instances from an agent. If the agent responding to the Get operation
cannot provide values for all the object instances in a list, it does not
provide any values.

GetNext operation: Used by the NMS to retrieve the value of the next object
instance in a table or list within an agent.

Set operation: Used by the NMS to set the values of object instances within
an agent.

Trap operation: Used by agents to asynchronously inform the NMS of a
signifi cant event.

3.1.6 SNMP Version 2

SNMPv2 is an evolution of the initial version, SNMPvl. Originally, SNMPv2 was
published as a set of proposed Internet standards in 1993. Currently, it is a draft
standard. As with SNMPvl, SNMPv2 functions within the specifi cations of the SMI.

68 CHAPTER 3 IP-Based Service Implementation

In theory, SNMPv2 offers a number of improvements to SNMPvl, including addi-
tional protocol operations.

SNMPv2 and the SMI
The SMI defi nes the rules for describing management information, using ASN.1.
The SNMPv2 SMI is described in RFC 2578. It makes certain additions and enhance-
ments to the SNMPvl SMI-specifi c data types, such as including bit strings, network
addresses, and counters.

Bit strings: Defi ned only in SNMPv2 and comprise zero or more named bits
that specify a value.

Network addresses: Represent an address from a particular protocol family.
SNMPvl supports only 32-bit IP addresses, but SNMPv2 can support other
types of addresses as well.

Counters: Nonnegative integers that increase until they reach a maximum
value and then return to zero. In SNMPvl, a 32-bit counter size is
specifi ed. In SNMPv2, 32-bit and 64-bit counters are defi ned.

SMI Information Modules
The SNMPv2 SMI also specifi es information modules, which specify a group of
related defi nitions. Three types of SMI information modules exist: MIB modules,
compliance statements, and capability statements.

MIB modules: Contain defi nitions of interrelated managed objects.
Compliance statements: Provide a systematic way to describe a group of

managed objects that must be implemented for conformance to a
standard.

Capability statements: Used to indicate the precise level of support that
an agent claims with respect to a MIB group. An NMS can adjust its
behavior toward agents according to the capability statements associated
with each agent.

SNMPv2 Protocol Operations
The Get, GetNext, and Set operations used in SNMPvl are also used in SNMPv2.
SNMPv2 adds and enhances some protocol operations. The SNMPv2 trap opera-
tion, for example, serves the same function as that used in SNMPvl, but it uses a
different message format and is designed to replace the SNMPvl trap. SNMPv2 also
defi nes two new protocol operations: GetBulk and Inform.

GetBulk operation: Used by the NMS to effi ciently retrieve large blocks of
data, such as multiple rows in a table. GetBulk fi lls a response message
with as much of the requested data as will fi t.

Inform operation: Allows one NMS to send trap information to another NMS
and receive a response. In SNMPv2, if the agent responding to the

3.1 Simple Network Management Protocol 69

GetBulk operation cannot provide values for all of the variables in a list,
it will provide partial results.

3.1.7 Security Issues

SNMP lacks any authentication capabilities, which results in vulnerability to a
variety of security threats. These include masquerading, modifi cation of informa-
tion, message sequence and timing modifi cations, and disclosure.

Masquerading: Consists of an unauthorized entity attempting to perform
management operations by assuming the identity of an authorized
management entity.

Modifi cation of information: Involves an unauthorized entity attempting to
alter a message generated by an authorized entity so that the message
results in unauthorized accounting management or confi guration
management operations.

Message sequence and timing modifi cations: These occur when an
unauthorized entity reorders, delays, or copies and later replays a
message generated by an authorized entity.

Disclosure: Results when an unauthorized entity extracts values stored in
managed objects, or learns of notifi ed events by monitoring exchanges
between managers and agents.

The security issues related to SNMP are addressed in the latest version of SNMP,
SNMPv3.

3.1.8 SNMP Version 3

SNMPv3 uses the framework provided by SNMPv2 and provides some additional
features. The new features of SNMPv3 (in addition to those of SNMPv2 listed
above) include:

■ Security features:
– Authentication.
– Privacy.
– Authorization and access control.

■ Administrative framework features:
– Naming of entities.
– People and policies.
– User names and key management.
– Notifi cation destinations.
– Proxy relationships.
– Remotely confi gurable via SNMP operations.

SNMPv3 includes three important services: authentication, privacy, and access
control. To deliver these services in a fl exible and effi cient manner, SNMPv3

70 CHAPTER 3 IP-Based Service Implementation

introduces the concept of a principal, which is the entity on whose behalf services
are provided or processing takes place. A principal can be an individual acting in
a particular role. It can also be a set of individuals with every individual acting in
a particular role. In essence, a principal operates from a management station
and issues SNMP commands to agent systems. The identity of the principal and
the target agent together determine the security features that will be invoked,
including authentication, privacy, and access control. The use of principals
allows security policies to be tailored to the specifi c principal, agent, and informa-
tion exchange, and gives human security managers considerable fl exibility in
assigning network authorization to users. SNMPv3 security options are shown in
Figure 3.3.

3.2 IP-BASED SERVICE IMPLEMENTATION—OSS
IP-based service implementation plays an important role in delivering services to
customers. It is also critical for service providers, because it helps them to roll
out their services in a timely manner, ensure that the services are implemented
correctly, win the confi dence of the customers, and thereby gain and maintain a
large share of the customer base. A good service implementation model is the key

Transmission from manager
to agent may be authenticated
to guarantee identity of sender
and integrity and timeliness
of message.

Agent may enforce access control
policy to restrict each principal to
certain actions on certain portions
of its data.

Manager

Manager

Agent

Agent

Agent

Agent

Manager

DES encryption
SNMPv3 messages
may be encrypted
to ensure privacy.

FIGURE 3.3

SNMPv3 security options.

to implementing services. The term implementation in regards to an IP-based
service for a customer refers to several aspects of the service. It starts when the
customer is sold the idea of the service, and the end result is when the customer
can make use of the service.

3.2.1 Selling the Services

To begin with, the customer is sold the idea of the service by the service provider.
Once the service is sold, it has to be realized before the customer can actually
use it. In some cases, the customer has to provide essential details for implement-
ing the service—for example, information about the IP addressing plan of the
customer network, the number of customer sites that require the service, the
network infrastructure available at each site, and so on. Once all of the informa-
tion is available, new network devices have to be installed as required on the
customer sites and connected to the nearest POP. The service provider’s network
devices have to be confi gured to provision all of the new connections; after the
confi gurations are complete, the service is ready to be made available to the
customer.

3.2.2 Integration within and among Key Business Departments

The devices have to be integrated into the network monitoring system of the
service provider. SLA reporting for the customer (if relevant for the service) has
to be activated so that reports can be generated and made available. The billing
department has to be informed about the new service so that the customer can
be charged for it.

The following key departments are involved in implementing IP-based
services:

Business marketing: Responsible for defi ning the business aspect of the
services like pricing, service options, time to market, and so on.

Sales: Responsible for selling the IP-based services to the customer,
maintaining the customer contact, and getting the requirements and
information from the customer that are required for implementing the IP-
based services.

Engineering: Responsible for developing and testing the technical solution
for implementing the IP-based services.

NMS: Responsible for developing the NMS tools required for mass
deployment of the services, service upgrades, billing, and SLA reports.

NOC: Responsible for deploying the services, monitoring the network, and
ensuring that SLAs are reported to the customer.

Billing: Responsible for billing the customer for their IP-based services.

Each department has information that is critical for the correct implementation
of the services to each individual customer. Oftentimes, the information provided
by one department is crucial input for another department in order to implement

3.2 IP-Based Service Implementation—OSS 71

72 CHAPTER 3 IP-Based Service Implementation

the service. For example, the NOC is responsible for deploying the services. The
billing department needs to know when the services have been implemented in
order to start billing the customer. If the customer is charged based on the band-
width of each link from the customer site to the nearest PoP, then the NOC must
also inform the billing department about the bandwidth of each installed link.

It is essential that information fl ow properly, accurately, and promptly from
one department to another. The service implementation model must meet the
requirements of all the departments and must also ensure that the services can be
correctly implemented. This system responsible for the integration of all the
requirements is often referred to as the operation support system (OSS). (More
details about the OSS are presented in Section 3.5.)

3.3 PROVISIONING ISSUES
This section presents the issues related to provisioning the services for the cus-
tomer. Details about the various tasks are also sketched out, giving you an insight
into the complexity of provisioning.

3.3.1 What Is Provisioning?

First of all, it is important to defi ne the term provisioning before discussing any-
thing about the issues related to this subject. When an IP-based service is offered
to a customer, it has to be implemented for that customer. This implementation
can involve the following tasks:

1. Installing new devices (customer-premises equipment, or CPE) at
customer sites.

2. Connecting the CPE device to the service provider network.
3. Confi guring the CPE devices for the new service.
4. Updating the confi guration of the relevant network devices in the service

provider network to activate the service.
5. Updating the network management systems with the information about

the new customer and the network devices that have been installed.
6. Activating the service.
7. Activating the monitoring of the devices that are relevant for service

delivery.

All of these tasks may not be necessary for every new customer. The term
provisioning loosely refers to all of these tasks. The following section discusses
these activities in detail.

Installation and Confi guration of CPE Devices
Most services require a CPE device to be installed at the customer site. After the
installation, they must be physically connected to the service provider network.

The next step is the logical connection between the CPE device and the service
provider network: CPE devices have to be confi gured, or programmed, to deliver
the correct service for the customer. It is important that the confi guration be
correct in order for the service to be delivered correctly. In most cases, the con-
fi guration on the CPE device has several parts: a part that is responsible for the
normal operation of the CPE device and other parts that are responsible for
specialized functions specifi c to the service in question.

For example, consider a router that is responsible for providing Internet con-
nectivity to a corporation. A part of the router is responsible for sending and
receiving IP packets. This can be considered as a basic confi guration on the router.
Another part of the router is responsible for ensuring that the IP address space of
the corporation is correctly advertised to the Internet using a routing protocol
such as the Border Gateway Protocol (BGP). This is the specialized confi guration
that is responsible for implementing the service (Internet access).

Another aspect of the confi guration on the CPE devices is the parameters
necessary to generate the confi guration. Some of these parameters may be the
same for all devices, while others are variable and depend on the service being
offered or on the customer location. For example, consider the same router pro-
viding Internet access. The IP address on the router interface connected to the
customer network is related to the IP addressing plan of the customer. The link
capacity to the Internet also depends on the customer requirements. All of this
information must be correctly confi gured on all of the CPE devices in order for
the service to function properly.

Confi guration of Network Devices
Before the CPE devices can communicate with the service provider network, the
devices in the service provider network have to programmed, or confi gured. It
may be necessary to program a single device or several devices before establishing
communication between the CPE device and the service provider network. It is
necessary that the confi guration on all the intermediate devices be correct before
the communication can be established.

For example, when ATM is used as the access technology, the VPI/VCI must
be confi gured correctly on all of the ATM switches between the CPE and the PE
in the access network. In addition, if bandwidth guarantee (quality of service, or
QoS) is a requirement, then the ATM class of service (CoS) must also match on
all of the ATM switches between the CPE and PE devices in order for the ATM
network to meet the bandwidth requirements of the CPE device.

It is also important that the confi gurations of the CPE device and the service
provider network match in order for them to communicate. Mismatch in confi gu-
rations can result in no communication or incorrect delivery of the service. For
example, the IP address on the CPE device and the PE in the service provider PoP
must be in the same network in order for them to be able to exchange IP packets
and routing information. If the IP addresses do not match, then there will be no
communication between these devices. In the case of guaranteed bandwidth

3.3 Provisioning Issues 73

74 CHAPTER 3 IP-Based Service Implementation

services using ATM technology, mismatch in the ATM CoS parameters can result
in loss of packets and hence a degradation in the service.

Service Activation
When all of the relevant devices have been correctly confi gured, the next step is
to activate the service. This step may involve several activities, such as:

1. Activating the Layer 2 connectivity on the CPE device.
2. Introducing all of the new CPE devices into the monitoring system.
3. Activating the monitoring of all CPE devices.

When all of these steps are completed, the service has been activated.

3.3.2 Device Confi guration

Every IP-based service requires confi guration of the CPE and service provider
network devices. Some of this confi guration is specifi c to a service and may not
affect all the devices. Several solutions may be available to implement the same
service, and each solution will have its advantages and disadvantages.

Consider the following scenario, in which a service provider wants to imple-
ment guaranteed bandwidth services in the access network. The access technol-
ogy is ATM, and the service provider has an ATM access network. The service
provider manages the CPE device. In order to implement guaranteed IP bandwidth
service, it is enough to implement ATM traffi c shaping on the CPE device. In order
to ensure that traffi c shaping functions properly on the CPE device (after all, this
is done in software and it is practically impossible to write bug-free software),
ATM traffi c policing can be implemented on the fi rst ATM switch (Figure 3.4).

PE
Switch 1 Switch 2

Switch 3

CPE
router 1

PC
host

ATM
network

Service provider
backbone network

Traffic shaping Traffic policing

Switch 4

FIGURE 3.4

Implementing guaranteed bandwidth service—solution 1.

Another possible variation is to implement traffi c shaping on all of the outbound
interfaces and traffi c policing on the inbound interfaces (Figure 3.5). The second
solution requires more resources to confi gure all of the devices and also makes
the confi guration more complicated.

Another major issue in the confi guration of network devices is the chance
of misconfi guration. The potential risk of misconfi guration is always there and
cannot be avoided. Modifi cations to the confi guration of network devices to
provision new service requests may not be done correctly and may disrupt
service for other customers if the changes to the confi gurations are incorrect and
are not implemented in the correct order. By keeping confi guration changes to a
minimum number of devices, the overall chance of misconfi guration can be
reduced.

Consider again the scenario described in Figure 3.4. The link between the CPE
device and the PE device is supposed to deliver 2 Mbps. In the case of solution
2, due to a mismatch in confi guration if the traffi c policing on Switch 2 is set for
512 Kbps instead of 2 Mbps, then the effective bandwidth between the PC and
the fi le server is only 512 Kbps. This problem could have been avoided if the
policing were restricted to Switch 1.

To summarize, to keep a service simple and easy to implement, it is necessary
to make the service-specifi c confi guration as simple as possible and restrict it to
a minimum number of devices. In doing so, one can reduce (1) the staffi ng and
time required to provision a service request, (2) the risks of misconfi guration, and
(3) disruption in service for other customers.

PE
Switch 1 Switch 2

Switch 3

CPE
router 1

PC
host

ATM
network

Service provider
backbone network

Traffic shaping Traffic policing

Switch 4

FIGURE 3.5

Implementing guaranteed bandwidth service—solution 2.

3.3 Provisioning Issues 75

76 CHAPTER 3 IP-Based Service Implementation

3.3.3 How to Confi gure the Devices

Most network devices have software installed on them that allows the confi gura-
tion of the device in order to support several functions. Modifi cation to relevant
parameters in the device activates the corresponding functions on the device.
Depending on the device and the manufacturer, several methods are available for
modifying confi gurations of network devices. Some common methods include:

■ Text-based command line interface (CLI) to modify values of parameters
or activate functions.

■ Menu-driven CLI to modify values of parameters or activate functions.
■ Web-based CLI to modify values of parameters or activate functions.
■ SNMP-based interface to set value of variables.

Most of these methods provide the operator with an interface to modify the
confi guration. In order to prevent unauthorized access to the device, some form
of authentication (user name/password) is implemented on all of the devices.
Operators are allowed to modify the confi guration only when they have correctly
identifi ed themselves to the device.

Text-Based CLI
Text-based CLI provides the operator with the possibility of viewing and modify-
ing the confi guration of the device. This requires the operator to log onto the
device. Devices normally have a console monitor that provides the interface to
the device. The operator then has the possibility of typing the commands that are
then executed by the device. A text-based interface requires the operator to have
a good understanding of the syntax and semantics of CLI. The operator must also
have a good knowledge about the semantics of the parameters that can be modi-
fi ed and also how to modify the value of parameters. The CLI, the syntax of the
commands, and the semantics of the variables may all vary from device to device.
Operators need to have a good understanding of all of these and must be well
trained in order to reduce the risks of misconfi guration.

Menu-Driven CLI
Like text-based CLI, menu-driven CLI helps the operator; unlike text-based CLI,
however, the operator does not need to know the syntax of all the commands.
The operator is prompted to choose from a list of commands—the menu-driven
CLI may have several choices—and is required to know the signifi cance of each
command. All of the commands may not be presented to the operator at the same
time.

The menu-driven CLI may be organized in a hierarchical manner, and the com-
mands may be grouped based on functionality. In this case, the operator needs to
have knowledge about the groups of commands and how to navigate through the
set of menus before executing the necessary commands in order to make con-
fi guration changes.

Web-Based CLI
Today, Web-based interfaces are very popular in all domains. Most of the network
devices from vendors also support Web-based interfaces. Web-based CLI helps
provide a standard access method. Most workstations support some form of Web
browsers and hence can be used to access the network device. Depending on the
support available on the network device, the Web-based CLI may have either a
menu-driven or a text-based CLI.

SNMP-Based Interface
The most popular method is the SNMP-based interface. SNMP is a standard pro-
tocol that is widely used in the industry. Its simplicity makes it a popular choice
for confi guring network devices. SNMP provides an operation known as Set, with
which it is possible to modify the value of parameters on the device. The MIB
includes defi nitions for parameters, or variables, that are a part of the device con-
fi guration. By modifying the value of these parameters using SNMP, it is possible
to change the confi guration of a network device.

Each device has its own MIB. In order to provide a common interface inde-
pendent of the network device and the manufacturer, standard MIB variables have
been defi ned for IP networks. This standardization has helped to provide a common
interface for accessing network devices independent of the manufacturer. The
MIB also contains device-specifi c variables and vendor-specifi c features on each
network device. These variables are defi ned as a private MIB specifi c to each
device.

In order to use SNMP to confi gure a network device, the MIB on the network
device must contain all of the variables that are required to modify the confi gura-
tion. The SNMP agent residing in the network device must be capable of reading
and modifying the value of these variables.

The use of SNMP helps to develop standard tools to confi gure devices, which
in turn helps to automate the tasks of confi guring new network devices and
modifying the confi guration of existing network devices in the service provider
network. General-purpose tools reduce the staff required to confi gure network
devices and help to fasten the process to provision new service requests. Automa-
tion also helps to reduce the chances of misconfi guration. Even if there is a mis-
confi guration due to software bugs in the confi guration tools, it is easy to fi x the
bugs and ensure that all of the devices are correctly confi gured.

3.3.4 Service Modifi cation

A typical service offered by a service provider will have several features. Over a
period of time, the customer will want to modify the service to include additional
features or to upgrade the quality of the service. This may require a change in the
confi guration of the devices or the installation of new devices. Consider the
example shown in Figure 3.4. The customer is offered a guaranteed bandwidth
service. Initially, the customer was offered a 512-Kbps ATM connection to the

3.3 Provisioning Issues 77

78 CHAPTER 3 IP-Based Service Implementation

service provider network. Over a period of time, the volume of traffi c from the
customer has grown steadily, so the requirements have increased to 2 Mbps.
This requires a change in the confi guration of all of the ATM switches and the
CPE device.

In the next phase, due to rapid expansion, the number of users in that cus-
tomer site increased dramatically. The volume of traffi c from this customer site
has outgrown the maximum link capacity on the CPE interface. Now it is neces-
sary to install new interfaces on the CPE device or install a new CPE device. This
upgrade in service requires installation of new equipment and also modifi cations
to the confi guration of the new devices.

3.3.5 Database Information

Information about all of the devices in the network is necessary to manage the
network. This information should be maintained in a database and must be acces-
sible to all of the systems that require them. It must be correct and consistent.
This is critical for the operation of the network, to guarantee the services to the
customer, and to meet the SLA requirements of the customer. When new service
requests are provisioned, it is necessary to update the database information as part
of the provisioning process.

3.4 NETWORK MANAGEMENT ISSUES
Network management is an integral part of any service offered by a service pro-
vider. It encompasses several issues and is important for the service provider to
manage their network in order to ensure the correct operation of all of the devices
and services that are offered using the network. A typical service provider network
has a wide geographic spread, covering several cities. The network devices are
installed in several locations and can be far apart. It is necessary to have a good
infrastructure to access and manage these devices from a central location to
reduce the cost of the network management infrastructure. Security is another
important aspect that must also be taken into account when managing a network.
The network management system and the network devices must be shielded from
illegal access by intruders and hackers. Most service providers invest a lot of time
and money in building a solid and secure network management infrastructure.

3.4.1 Network Management System

The network management system (NMS) is the crux of the network management
of a service provider network, providing the necessary infrastructure to manage
the network. It consists of both hardware and software that are necessary to
perform the network management activities (see Section 3.4.2). Several off-the-
shelf NMSs are available today that provide a framework to perform network
management activities. The service provider must modify or adapt them to meet

their requirements. Considering the fact that all service providers buy network
devices and NMS solutions from vendors, the competitive edge lies in adapting
the network devices and the NMS solutions to effi ciently implement the services
and deliver SLAs to customers. Since the NMS plays a crucial role, it is important
that they have redundancy in case of failure. The design of the NMS infrastructure
must take into account failure of components and must provide redundancy for
critical components.

3.4.2 Network Management Activities

Managing a service provider network involves several activities, including:

■ Verifying the status of all devices.
■ Recording and analyzing the error messages from all devices in order to

monitor the health of all devices.
■ Recording and analyzing statistical information in order to monitor the

health of the devices.
■ Recording and analyzing statistical information for SLA reporting.
■ Maintaining and periodically verifying all the confi gurations on all devices.
■ Upgrading software and hardware to accommodate more customers or to

remove bugs.

Monitoring Devices
Network devices must be up and functioning correctly in order to deliver services
to customers, so they must be monitored periodically. Monitoring can be a proac-
tive or a reactive activity, depending on the nature of the devices. Proactive
monitoring is important for critical devices. Reactive monitoring can be done for
devices whose failure can be anticipated based on information received from other
devices that do not affect the services offered to the customer.

Proactive monitoring is not free. It requires bandwidth to send requests and
receive responses from devices, and it requires a good management system to
handle the volume of traffi c. The interval between each request to monitor the
status of devices is also an important factor: If the interval is too high, then faulty
devices may not be detected for a long time, and this increases the downtime of
the device and the service offered by the device. Shorter intervals can help to
overcome this problem, but they result in a lot of load on the device, the NMS
system, and the network. A good balance has to be maintained between the two
choices. The optimum interval for monitoring devices must be determined by the
service provider when designing the monitoring system.

The monitoring system must be designed to take into account service windows
during which devices may not be functioning (e.g., for software or hardware
upgrades). It must be capable of selectively turning off the monitoring of devices
that are being upgraded. The system must inform the operator when devices do
not respond to monitoring requests. It must also be designed with the topology
of the network and the physical and logical relationship between devices in mind.

3.4 Network Management Issues 79

80 CHAPTER 3 IP-Based Service Implementation

Sometimes the failure of a single device may result in several other devices (con-
nected to this device) not being reached by the monitoring system. In this case,
the monitoring system must fi lter all of the alarms and forward a single alarm to
the operator.

Error Logs
Most network devices are capable of detecting failure of hardware or software
components. They can also anticipate such failures, depending on the situation.
For example, temperature sensors can be used to detect high temperatures, and
transmission errors on an interface can be used to detect loss of connectivity.
Network devices can be confi gured to send this information (as alarms or error
messages) to the NMS, which maintains it in a log. This log information is then
used by other systems to detect the failure of components of devices or devices
themselves, or even to anticipate failure and take corrective actions.

Error logs provide valuable information to the network operator in detecting
and troubleshooting problems in the network. For example, increasing transmis-
sion errors on an ATM interface can be used to anticipate degradation in the QoS
offered to the customer, and investigations can be initiated to determine the cause
of this problem before complete loss of connectivity on that interface.

Network management systems must be properly designed to ensure that the
network devices are confi gured to send critical error messages and to verify that
these error messages are logged and analyzed. Similar to the problems associated
with the monitoring interval, this must be designed properly to ensure that criti-
cal errors are logged and detected and also that the NMS is not fl ooded with too
many alarms or error messages.

Statistical Information
Network statistics play an important role in managing a network, delivering IP-
based services, and reporting SLAs to customers. Most network devices collect and
locally store statistical information in the device itself. This information can be
retrieved by the NMS and stored in a database to be used at a later stage. (Section
3.4.3 provides more details about how the statistical information is collected from
network devices.) Statistical information can be used for several purposes, includ-
ing error detection and troubleshooting, SLA reporting, and capacity planning.

Statistical information about errors observed by a network device can be useful
in detecting and even anticipating faults. Errors can also provide useful informa-
tion for troubleshooting. For example, the number of IP packets received on an
interface can help to detect if the interface is properly receiving and forwarding
IP packets. During troubleshooting, this information can be very useful in isolating
faulty interfaces.

Statistical information is also useful in reporting link utilization to customers.
It can be used to generate SLAs indicating the availability of the service—for
example, the availability of a service may be computed in terms of the uptime of
all the devices involved in delivering the service. (Uptime can be considered the
time the device has been up, or active, since it was last reset.)

Statistical information like link utilization or the number of interfaces on a
device can be useful in capacity planning. When these values reach a certain
threshold, it is time to install more interfaces for a new device with additional
interfaces.

Hardware and Software Upgrades
Technology grows at a very rapid rate, so it is necessary to upgrade the hardware
and software of network devices to keep up. Sometimes it is also necessary to
upgrade the software on devices in order to fi x problems. A hardware upgrade
may be required to meet the growing demand for a service and to provision more
customers.

Upgrading hardware and software is an important activity associated with
network management. Procedures must be defi ned to do it so as to reduce the
downtime associated with the services and the downtime for customers affected
by the upgrade. Normally, an SLA has a provision for downtime specifying a fi xed
time. This is sometimes referred to as a service window. As far as possible, hard-
ware and software upgrades must be done during the service window in order to
minimize the service downtime.

3.4.3 Carrying Out Network Management

As seen in this section, communication between the NMS and the network devices
is critical for managing the network. Without this communication, it is almost
impossible to confi gure and monitor the devices, generate SLAs for customers, or
predict the growth of the network and do capacity planning. There are two
aspects of the communication that are of interest: (1) the communication protocol
and the access method between the NMS and the network device, and (2) the
network that supports this communication.

Communication Protocols and Access Methods
For an IP-based network, it is logical to use a communication protocol based on IP
for communication between the NMS and the network devices. Most of the
network devices from vendors support some form of IP-based protocol to commu-
nicate with the network device. Depending on the communication protocol, the
access method can also vary. Some of these methods have been standardized, and
some of the most popular access methods and the communication protocols used
by these methods are discussed in this section. Of course, there are also vendor-
specifi c access methods and communication protocols. Each method has its advan-
tages and disadvantages. Good NMS systems must incorporate all of these methods
and help the operator in effi ciently performing the tasks of network management.

SNMP

SNMP is the industry standard for communication between the NMS and network
devices. The operations supported by SNMP make it practical for network moni-
toring and for the devices to report alarms to the NMS system.

3.4 Network Management Issues 81

82 CHAPTER 3 IP-Based Service Implementation

snmptrap is an operation supported by SNMP that makes it very useful for devices
to report unusual activities to the NMS. The SNMP agent on the network device
can be confi gured to report several types of alarms, snmptrap provides infor-
mation about the severity of the trap, and additional information can be
included in the trap to indicate the nature of the fault and the possible cause
of the problem. Some of these traps have been standardized, and there are also
device-specifi c and vendor-specifi c traps.

snmpget is an SNMP operation that can be used to access and extract statistical
information from a network device by the NMS.

snmpset is an SNMP operation that can be used to modify the value of variables
in the MIB of the network device. By using private MIB variables, this operation
can be used to modify the confi guration of the network device.

All of these operations make it possible to perform most of the activities of
network management discussed in Section 3.4.2. SNMP requires IP connectivity
between network devices and the NMS.

Text-Based CLI

Text-based CLI is another method to access network devices and get the required
information to do some of the tasks associated with network management. It can
be used to get the status of a device, to get statistical information, to modify the
confi guration of devices, and so on. It can use TCP-based protocols like Telnet if
the network device supports this protocol.

Text-based CLI is a popular method for getting small amounts of informa-
tion—for example, interface status, confi guration details, and so on for short-term
activities like troubleshooting or quickly modifying the confi guration of a device.
An operator can use this method during troubleshooting to determine and isolate
the cause of problems.

Text-based CLI may not scale for a network with a large number of devices to
perform certain activities of network management like collecting statistical infor-
mation. It can cause an unnecessary load on the devices when trying to extract
information on a periodic basis. It also requires additional programs to process
this information and save it in formats that can be used by other systems (e.g.,
SLA reporting). Most of the off-shelf NMSs use SNMP and provide some limited
support for text-based CLI.

Depending on the vendor and their implementation, text-based CLI may be
able to provide more information than SNMP. Proprietary implementations of new
technologies may not have the necessary MIBs to provide an SNMP interface.
Under these circumstances, it may be necessary to develop tools that can help to
automate network management activities. Tools that can process and extract
information from text-based responses are required to enable an operator to
effi ciently perform tasks.

Other Methods

Several other methods are available for getting information status about network
devices and also performing basic troubleshooting activities like device reachabil-
ity. These tools use some IP-based protocols to achieve their tasks. For example,
tools like ping use ICMP to determine the reachability of devices, and tools like
traceroute use ICMP to trace the path to destination networks and network
devices. These tools have to be adapted to meet the requirements of the network
management activity.

Communication Network
A network is required for communication between the NMS and the network
devices. It must support the protocol that is used for such communication. Two
possible solutions are in-band network management and out-of-band network
management.

In-Band Network Management

“In-band” refers to using the service provider network to communicate with all
network devices. The links that forward customer traffi c are used for communica-
tion between the NMS and the network devices. In-band network management is
a simple solution (Figure 3.6). All it requires is IP connectivity between the NMS
and the service provider network. Once this is established, then IP communication
between the NMS and network devices is very simple and straightforward.

The disadvantage of this approach is that failure in certain parts of the service
provider network may result in loss of connectivity between the network device
and the NMS. This may be critical at times when it is necessary to have direct
access to network devices. Moreover, this approach requires additional bandwidth
in the service provider network to accommodate the network management
traffi c.

Out-of-Band Network Management

Out-of-band network management implements a separate network to provide
communication between the NMS and the network devices (Figure 3.7). This
network is implemented separately from the service provider network (which is
used for transporting customer traffi c) and is used only for communication
between the NMS and the network devices. The advantage of this approach is
that customer traffi c will not affect the reachability between the NMS and the
network devices. Bandwidth need not be reserved in the service provider network
for the purpose of network management.

3.4.4 Security Issues: Managing an IP Network

Security is an important issue that must be addressed when discussing the manage-
ment of IP networks. Networks are prone to attack by hackers, so network devices

3.4 Network Management Issues 83

84 CHAPTER 3 IP-Based Service Implementation

and the NMS must be secured against intentional (or unintentional) intrusions.
The NMS devices must be protected from external intrusion. This can be achieved
by using fi rewalls between the service provider network and the NMS system.

3.5 OSS ARCHITECTURE
The OSS architecture plays an important role in implementing IP-based services.
Several key departments of both service providers and customers use this system
in order to implement services. The OSS maintains information that is critical to
service implementation and has the responsibility of ensuring that this information
is made available promptly to the various departments.

NMS

Service provider
network

In-band network

FIGURE 3.6

In-band network management.

NMS

Out-of-band
network

Out-of-band
network

Out-of-band
network

Out-of-band
network

Service provider
network

Connection to out-of-band network

FIGURE 3.7

Out-of-band network management.

86 CHAPTER 3 IP-Based Service Implementation

3.5.1 OSS Components

Some of the key components of this system are as described in the following
subsections.

Database System
A good database system is the key to OSS architecture. The OSS has a lot of infor-
mation that is relevant to service implementation and is also related to the cus-
tomer. The OSS must be capable of maintaining all of this information and making
it easily available to the different departments and to various other components
of the OSS that are responsible for service implementation.

Network Provisioning and Monitoring Tools
Network provisioning and monitoring tools are also essential components of the
OSS architecture. They can be vendor-specifi c, standard tools that are openly avail-
able, or even developed in-house. These tools interact with the network devices
and are responsible for confi guring the network devices, monitoring the status of
these devices, and extracting information (e.g., link utilization) that is essential
for SLA reporting and billing. The OSS architecture must have the capability of
seamlessly integrating all of these tools and ensuring that they can interact with
other components in order to get the correct information that is essential for
provisioning and monitoring the network devices.

SLA Reporting and Billing
SLA reporting and billing are important parts of service implementation. They use
the information related to customer requirements, services requested by the
customer, and the actual status of network elements responsible for deliver-
ing the services to the customer to generate periodic reports to the customer.
It is essential that SLA reporting and the billing system have access to correct
information.

3.5.2 Requirements of the OSS

Some of the requirements of the OSS architecture are that it be open, scalable,
automated, and easy to interface between network operators in the network
operations center (NOC) and customers.

Open Architecture
The OSS has several components that must communicate with one another in
order to ease the task of service implementation. These components may be pur-
chased from several different software vendors. It is essential that the OSS archi-
tecture allow the integration of all of these components into one system and
ensure that the information required by a component for its proper functioning
is readily made available to it.

Scalability
Scalability of the OSS refers to the ability to support a large number of services
and customers, to implement service requests from multiple customers within a
short period of time, and to maintain information related to several thousands of
customers in order to implement the services. Service providers typically have
a large customer base (hundreds of thousands of customers) and offer several
services. It is essential that the OSS be capable of supporting the implementation
of services for all of the customers.

When there is a surge in demand for a new service, several customers may
request this new service in a single day. This places a huge burden on the OSS to
implement all of the service requests. Scalability in this context refers to the ability
of the OSS to implement several service requests within a short period of time.

As the number of customers using a service offered by the provider increases,
the OSS system must be capable of maintaining the information about all of the
customers. The time required to access the customer information must not increase
as the number of customers increases. This is essential when online SLA reports
are made available to customers. SLA reporting must have access to customer
information (e.g., number of links and the bandwidth for each customer link) and
to the status of network devices (e.g., link utilization) in order to make reports
available to the customer online.

Another aspect of scalability is related to the network provisioning and moni-
toring tools. These tools must be capable of managing several network devices.
As the network grows, the number of network devices will increase. The time
taken to manage the network devices must be independent of the number of
devices managed by the OSS.

Automation
It is essential that the activities of implementing services are automated to the
maximum possible extent and that the intervention by human operators is mini-
mized as much as possible. This is a key requirement because it helps to minimize
both the mistakes due to manual intervention and the time taken to implement
the services.

As discussed in the beginning of Section 3.3, provisioning involves updating
the confi guration of various network devices before the service can be activated
for a customer. Depending on the type of service and the SLA offered to the cus-
tomer, the amount of information required to provision a service can be consider-
able. In order to ensure that all of this information is correctly confi gured on the
relevant devices, it is better to have software tools that can automate this process.
The software tools can extract this information from a database and consistently
confi gure all relevant devices in the correct order. The advantage of software tools
is that if they can correctly do a task once, they can do the same task correctly
several times. This is what is required in order to provision several customer
service requests in a short period of time and in a correct manner.

3.5 OSS Architecture 87

88 CHAPTER 3 IP-Based Service Implementation

SNMP provides the basic means for communication between the NMS and the
network devices. The operations provided for by SNMP help to extract informa-
tion from network devices and allow the network devices to report problems or
events to the NMS. Software tools based on SNMP can be used to automate the
task of confi guring network devices.

As seen in Section 3.4.2, network management involves many activities, most
of which are repetitive tasks that have to be performed periodically. Some of these
tasks involve correlating large volumes of data in order to verify the proper func-
tioning of the network devices and also to generate reports. Software tools are
best suited for such tasks, as they can do this much faster than human operators.
Tools to periodically monitor the devices are a must when the number of devices
in the network is large.

Intelligent systems based on rules or models (e.g., fi nite-state machines) can
be easily built to scan through event logs from all of the devices. The rules or
models can vary based on the service offered by the provider. Once these rules
or models are defi ned, they can be easily used to verify that the service offered
to the customer is functioning properly.

SLA reporting is another activity that can be automated. The information
required for generating the SLA reports must be made available to the reporting
system in order to automate this task. Once this is done, the reports can be auto-
matically generated, either periodically or on demand (e.g., upon customer
request).

Using Web-Based Tools
Web-based interfaces to applications are becoming more and more popular. Web
applications are based on HTML and use IP-based application-layer protocols like
HTTP for communication with servers. Web-based tools can help standardize the
interface to confi gure and manage network devices. With a few mouse clicks or
keystrokes, an operator can easily modify the confi guration of network devices
and get information about their status. The tools also make it easy to present SLA
reports to customers or provide customers with online information about the
status of their service or other information (e.g., link utilization).

Web-based tools can help the service provider to allow online access to SLA
reports. This will make it easy for customers to get information about their
network. Information related to link utilization can help customers in doing capac-
ity planning and ordering more bandwidth for sites that have very high link
utilization.

3.6 SUMMARY
This chapter has stressed the need for simple and effi cient provisioning and
network management systems as a differentiator for the service provider. Good
tools are required to simplify the task of provisioning new customers, to manage

services, and to deliver the SLA reports promised to customers. A good OSS
architecture is the key to rapid deployment of IP-based services and to making it
scalable.

SNMP plays a key role in managing IP networks. The features provided by
SNMP make the task of provisioning IP-based services and managing IP networks
easier for service providers. However, SNMP only provides the basic means to
communicate with the network device for the purpose of network management.
SNMP-based tools must be developed by the service provider to perform network
management activities in an effi cient manner.

3.6 Summary 89

This page intentionally left blank

CHAPTER

4Network Management
Architecture

This chapter, taken from Chapter 7 of Network Analysis Architecture and Design
by McCabe, examines the component architecture for network management.
Proper network management is critical to the success of any network, and, as you
will see, there are many factors to consider in providing network management.

In this chapter you will learn about network management and the network
management architecture. We discuss the various functions of network manage-
ment and the mechanisms used to achieve these functions. We discuss and
compare a number of variations for the network management architecture, as well
as the internal and external relationships for network management.

To be able to understand and apply the concepts in this chapter, you should
be familiar with network management protocols (SNMP and optionally CMIP/
CMOT); the utilities ping, traceroute, and tcpdump; management information
base (MIB) structures and parameters; and operations support system (OSS)
functions.

4.1 BACKGROUND
Network management (NM) consists of the set of functions to control, plan,
allocate, deploy, coordinate, and monitor network resources. Network manage-
ment used to be an afterthought in many network architectures. For example,
most network architectures and designs were developed without a thought
about users being malicious, which was generally true up until a few years ago.
Consider the changes that have recently been made in SNMP security. Today, and
in the future, networks are a resource whose integrity must be measurable and
verifi able.

The network management architecture, as with the other component archi-
tectures, begins with the requirements and fl ow analyses. Areas that should be
addressed during the analysis process include:

92 CHAPTER 4 Network Management Architecture

■ Choosing a network management protocol.
■ Implementing high-level asset management as part of the network

management architecture.
■ Reconfi guring the network often to meet changing requirements.
■ Monitoring the entire system from a single location or device.
■ Testing service provider compliance with service level agreements (SLAs)

and policies.
■ Monitoring for performance to avoid problems.
■ Out-of-band access requirements.

We begin this chapter by defi ning and characterizing management for a network
architecture, and how to plan for monitoring, confi guring, and troubleshooting
the planned network. We then examine network management protocols and
instrumentation requirements. This will lead to considerations for developing the
network management architecture.

4.2 DEFINING NETWORK MANAGEMENT
Network management can be viewed as a structure consisting of multiple
layers:

Business management: The management of the business aspects of a
network—for example, the management of budgets/resources, planning,
and agreements.

Service management: The management of delivery of services to users—for
example, for service providers this would include the management of
access bandwidth, data storage, and application delivery.

Network management: The management of all network devices across the
entire network.

Element management: The management of a collection of similar network
devices—for example, access routers or subscriber management systems.

Network–element management: The management of individual network
devices—for example, a single router, switch, or hub.

This structure is a top-down approach, with the most abstract component
(business management) at the top of the hierarchy, and the most specifi ed, con-
crete component (network–element management) at the bottom of the hierarchy.
This is shown in Figure 4.1.

Correspondingly, as the components become more abstract, the ways that they
are applied and measured (their information elements) change. Thus, at the
bottom of this hierarchy (network–element, element, network), management is
applied with variables and parameters, while at the top of this hierarchy (service,
business), management is applied in more abstract terms, using policies. This is

common to all architectural components, and we will fi nd that policies can be
used for each component.

Network management can be divided into two basic functions: the transport
of management information across the system, and the management of NM infor-
mation elements (Figure 4.2).

These functions, as shown in Figure 4.2, consist of a variety of tasks—monitor-
ing, confi guring, troubleshooting, and planning—that are performed by users,
administrators, and network personnel. One of the fi rst challenges in developing
a network management architecture is to defi ne what network management really
means to the organizations that will be performing the tasks and receiving the
end services—namely, the users, or customers, of the system.

Network–element

Element

Network

Service

Business

Policies

Variables

FIGURE 4.1

Network management hierarchy.

NM infrastructure

Element management

NM information transport

Device

Element
management

system

IP routerSwitch Device Switch IP router

FIGURE 4.2

Network management is composed of managing elements and transporting management
data.

4.2 Defi ning Network Management 93

94 CHAPTER 4 Network Management Architecture

There are four categories of network management tasks that we consider here,
corresponding to the four tasks mentioned above:

1. Monitoring for event notifi cation.
2. Monitoring for trend analysis and planning.
3. Confi guration of network parameters.
4. Troubleshooting the network.

4.2.1 Network Devices and Characteristics

A network device is an individual component of the network that participates at
one or more of the protocol layers. This includes end devices, routers, switches,
data service units (DSUs), hubs, and network interface cards (NICs). Network
devices have characteristics that can be measured. They are grouped into end-to-
end, per-link, per-network, or per-element characteristics, as shown in Figure 4.3.

End-to-end characteristics are those that can be measured across multiple
network devices in the path of one or more traffi c fl ows, and may be extended
across the entire network or between devices. Examples of end-to-end character-
istics for network devices are availability, capacity, delay, delay variation (jitter),
throughput, error rates, and network utilization. These characteristics may be
modifi ed or added to, depending on the types of traffi c on the network.

Per-link, per-network, and per-element characteristics are those that are spe-
cifi c to the type of element or connection between elements being monitored.
These characteristics may be used individually, or may be combined to form an
end-to-end characteristic. Examples of per-link characteristics are propagation
delay and link utilization, while examples of per-element characteristics include
(for an IP router) IP forwarding rates (e.g., packets/second), buffer utilization, and
any logs of authentication failures.

Management of network devices and networks includes network planning
(e.g., cell site planning for wireless), initial resource allocation (e.g., frequency
or bandwidth allocations), and FCAPS from the telecommunication network
management model: fault, confi guration, accounting, performance, and security
management.

End to end

Network Network

Per element Per link/per network Per element

FIGURE 4.3

Network characteristics can be per-element, per-link, per-network, or end-to-end.

4.3 Network Management Mechanisms 95

4.3 NETWORK MANAGEMENT MECHANISMS
We now take a look at some of the popular management mechanisms, including
network management protocols. There are currently two major network manage-
ment protocols: the Simple Network Management Protocol (SNMP) and the
Common Management Information Protocol (CMIP). CMIP includes CMIP over
TCP/IP (CMOT). These network management protocols provide the mechanism
for retrieving, changing, and transporting network management data across a
network.

SNMP has seen widespread use and forms the basis for many popular
commercial and public network management systems. It provides facilities for
collecting and confi guring parameters from network devices. These are
done through the SNMP commands Get (to collect the value of a parameter),
GetNext (to collect the value of the next parameter in the list), and Set (to
change the value of a parameter). There are also provisions for the unsolicited
notifi cation of events, through the use of traps. A trap is a user-confi gurable
threshold for a parameter. When this threshold is crossed, the values for one or
more parameters are sent to a specifi ed location. A benefi t of trap generation is
that polling for certain parameters can be stopped or the polling interval length-
ened, and instead an automatic notice is sent to the management system when an
event occurs.

Parameters that are accessible via SNMP are grouped into MIBs. Parameters
can be part of the standard MIB (MIB-II), other standard MIBs (typically based on
a type of network device, technology, or protocol), remote-monitoring MIBs, or
enterprise-specifi c MIBs, which have parameters specifi c to a particular vendor’s
product.

SNMP version 3 (SNMPv3) builds on the previous versions of SNMP, providing
more secure authentication, the ability to retrieve blocks of parameters, and trap
generation for most parameters. When SNMP is mentioned in this chapter, it refers
to SNMPv3 unless otherwise noted.

CMIP/CMOT provides for parameter collection and setting, as with SNMP, but
also allows for more types of operations. Many CMIP/CMOT features, such as
globally unique object naming, object classifi cation, alarm reporting, audit trails,
and test management, can also be provided by SNMP by creating new MIBs and
tools to support such abstractions.

In general, SNMP is simpler to confi gure and use than CMIP/CMOT, helping
to make it widely accepted. It is usually easier to instrument network devices with
SNMP. SNMP is used in monitoring, instrumentation, and confi guration mecha-
nisms, all of which are discussed below.

4.3.1 Monitoring Mechanisms

Monitoring is obtaining values for end-to-end, per-link, and per-element charac-
teristics. The monitoring process involves collecting data about the desired

96 CHAPTER 4 Network Management Architecture

characteristics, processing some or all of these data, displaying the (processed)
data, and archiving a subset of these data.

Data are usually collected through a polling (actively probing network devices
for management data) or monitoring process involving a network management
protocol (e.g., SNMP) or proxy service. As we see later in this chapter, several
techniques may be used to get this data as well as to ensure that the data are
current and valid. When the data are gathered, they may or may not refl ect the
characteristics we wish to monitor. Values for some characteristics may have to
be derived from the gathered data, while other values may be modifi ed (e.g.,
added, subtracted, time-averaged). This is processing of the data.

Sets of raw (unprocessed) and processed data will need to be displayed. There
are different types of displays you may use, including standard monitor displays,
fi eld-of-view or widescreen displays, and special-purpose displays. Along with
choosing displays you will also want to consider how the data will be shown to
the user, administrator, or manager. There are several techniques to display data,
such as logs and textual displays, graphs and charts (both static and moving), and
alarms. Some data may be abstracted by symbols, such as showing parts of the
network as a cloud.

At some time during this process some or all of the data are saved to a
(semi-)permanent media or system. This part of the process may have multiple
steps, including primary storage, the staging of data for short periods of time,
which could be at the network management server; secondary storage, the aggre-
gation of data from multiple primary storage sites, at a storage server for the
network; and tertiary storage, which is usually the most permanent—and
slowest—storage within the network. Secondary and tertiary storage are often
termed storage archives. Figure 4.4 shows each part of this process occurring on
a separate device, but they may all be combined on a single device.

NM data
storage

collection

NM data display NM data processing NM data display

Network

Network Network

WAN Network

Network

Network

Network

Network

NM data

FIGURE 4.4

Elements of the monitoring process.

4.3 Network Management Mechanisms 97

Monitoring for Event Notifi cation
An event is something that occurs in the network that is noteworthy. This may
be a problem or failure in a network device, across the network, or when a char-
acteristic crosses a threshold value. It may only be something that is informational
to the user, administrator, or manager, such as notifi cation of an upgrade. Events
may be noted in a log fi le, on a display, or by issuing an alarm, depending on the
priority level of the event. Events are similar to transients, which are short-lived
changes in the behavior of the network. Thresholds or boundaries may be set on
end-to-end, per-link, or per-element characteristics for short-term or immediate
notifi cation of events and transients; this is termed real-time analysis.

Figure 4.5 shows an example of such monitoring. Ping is used to gather round-
trip delay information, which is presented as a chart on the monitoring system. A
threshold of 100 ms has been chosen for this display. When this threshold is
crossed, it triggers an alarm to notify the network manager that a problem may
exist in the network.

Real-time analysis usually requires short polling intervals (time periods between
active probing of the network and network devices for management data), and
there is a trade-off between the number of characteristics and network devices
polled for real-time analysis versus the amount of resources (capacity, computer
processing unit, memory, storage) needed to support such analysis.

In some cases the amount of network data generated (and the resulting traffi c)
by the periodic polling of multiple characteristics on many network devices
can impact the overall performance of the network. For example, consider a
network that has 100 network devices, where each element has an average of

ICMP echo (ping) request

Network Network

ICMP echo (ping) reply

Time (seconds)

Threshold100
delay
ms

Alarms triggered

Data below
threshold
are stored
but not
reviewed in
real-time
analysis.

FIGURE 4.5

Monitoring for event notifi cation.

98 CHAPTER 4 Network Management Architecture

four interfaces and each interface is monitored for eight characteristics. This
would add up to

100 4

8

 network devices interfaces network device

 chara

() × () ×
ccteristics interface characteristics() = 3200

If each of the 3200 characteristics generates an average of 8 bytes of data and an
estimated 60 bytes of protocol overhead, the amount of data generated per polling
session would be

3200 8 60 217 6 1 74 characteristics bytes bytes KB or Mb() × +() = . , . , oof traffic

If we plan to poll with a polling interval of fi ve seconds, at best this 1.74 Mb of
traffi c would be spread out over the fi ve seconds, or 384 Kbps. It is more likely,
however, that most of the data will arrive shortly after the polls are generated, so
the traffi c may be more like a spike of 1.74 Mb for the second after the polls occur.
For a period of one day, the total amount of traffi c will be

1 75 720 24. Mb polling interval polling intervals hour hou() × () × rrs day

Gb of traffic

()
= 30 2.

The amount of data stored will be

3200 8 720 characteristics polling interval bytes polling() × () × intervals day

hours day MB data stored day

() ×
() =24 442

Over the course of a year, this would add up to over 161 GB of data. And this is
a conservative estimate for a mid-range enterprise environment.

Monitoring for Trend Analysis and Planning
The same end-to-end, per-link, and per-element characteristics used for event
monitoring can also be put to work in trend analysis. Trend analysis utilizes
network management data to determine long-term network behaviors or trends.
This is helpful in planning for future network growth.

In doing continuous, uninterrupted data collection, usually with long polling
intervals (minutes or hours instead of seconds), we can begin by establishing
baselines for trends, and then use these baselines to plot trend behavior. This is
shown in Figure 4.6. This fi gure shows long-term trends for availability, delay, and
percent of utilization. Polls for each characteristic are saved to network manage-
ment on a regular basis, and over a long period of time (usually weeks or months,
but sometimes up to years) trends in these characteristics begin to emerge. In
Figure 4.6, upward trends are clearly visible for delay and percent of utilization.

4.3.2 Instrumentation Mechanisms

Instrumentation is the set of tools and utilities needed to monitor and probe the
network for management data. Instrumentation mechanisms include access to

4.3 Network Management Mechanisms 99

network management data via SNMP, monitoring tools, and direct access. Instru-
mentation can be coupled with monitoring, display, processing, and storage to
form a complete management system.

SNMP (currently in version 3) provides access to MIB variables, including those
in MIB-II, other standard MIBs (e.g., DS1 MIB), enterprise-specifi c MIBs, and other
monitoring MIBs (remote monitoring (RMON) and switch monitoring (SMON)).
SNMP is the most common method for accessing network management data.
There are several commercially available and publicly available monitoring soft-
ware packages available that use SNMP for data access.

Monitoring tools include utilities such as ping, traceroute, and tcpdump, while
direct-access mechanisms include Telnet, FTP, TFTP, and connections via a console
port. An example of a base set of parameters to monitor can be developed from
the standard MIB-II. The following parameters can be collected on a per-interface
basis:

■ ifInOctets: Number of bytes received
■ ifOutOctets: Number of bytes sent
■ ifInUcastPkts: Number of unicast packets received
■ ifOutUcastPkts: Number of unicast packets sent
■ ifInNUcastPkts: Number of multicast/broadcast packets received
■ ifOutNUcastPkts: Number of multicast/broadcast packets sent
■ ifInErrors: Number of errored packets received
■ ifOutErrors: Number of packets that could not be sent

Network Network

Element management
system

Polls Polls
A

va
ila

bi
lit

y

% utilization

Polling time frame (weeks, months)

D
el

ay

%
 u

til
iz

at
io

n

FIGURE 4.6

Monitoring for metrics and planning.

100 CHAPTER 4 Network Management Architecture

These parameters can be used for both short-term event monitoring and long-
term trend analysis of throughput and error rates. In addition, the following
parameter may be collected to determine availability. It could be used in conjunc-
tion with monitoring tools such as ping to verify availability.

■ ifOperStatus: State of an interface (up, down, testing)

In developing the network management architecture, the instrumentation
requirements for each type or class of network device, such as forwarding
elements (e.g., routers, switches, hubs), pass-through elements (e.g., DSUs, simple
concentrators, simple bridges), and passive devices such as those that use RMON,
should be collected.

A consideration for the network management architecture is to ensure that the
instrumentation is accurate, dependable, and simple. There are a couple of ways
to ensure accuracy in the instrumentation: testing and taking alternate measure-
ments. If a lab environment is available, some limited network conditions can be
replicated and tested. For example, generating known quantities of traffi c by
devices and/or traffi c generators and comparing the results in the routers with
those from the devices/traffi c generators can test packet-forwarding rates in
routers.

Sometimes parameters can be verifi ed from the current network. Taking
alternate measurements of the same parameter at different points in the network
is one way to verify parameters. We may be able to get link-layer data from
DSUs, routers, and switches in the path of a fl ow, and, by comparing the various
sources of data, determine if and where there are discrepancies in parameter
measurements.

For a network management system to work properly, the instrumentation
needs to be dependable. A network management system is useless if it is the fi rst
thing to crash when network problems occur. This may seem obvious, but few
current management systems are truly robust and dependable. Ways that depend-
ability can be enhanced in the architecture include physically separating and
replicating the management components. By having multiple systems collecting,
processing, displaying, and storing management data for different parts of the
network, and by building hierarchy in the management data fl ows, the loss of any
single component of the management system will have less impact on the net-
work’s manageability. This is covered in more detail later in this chapter.

4.3.3 Confi guration Mechanisms

Confi guration is setting parameters in a network device for operation and control
of that element. Confi guration mechanisms include direct access to devices,
remote access to devices, and downloading confi guration fi les (Figure 4.7):

■ SNMP Set commands.
■ Telnet and command line interface (CLI) access.
■ Access via HTTP.

■ Access via Common Object Request Broker Architecture (CORBA).
■ Use of FTP/TFTP to download confi guration fi les.

As part of this process, we want to generate a working set of end-to-end, per-link,
and per-element characteristics, and plan for the architecture and design to have
the facilities to monitor these characteristics at short- and long-term polling inter-
vals. Later in this chapter we develop some guidelines on where monitoring
facilities should be placed in the network.

Many network devices require some degree of confi guration by network person-
nel. For each type or class of network device (e.g., Brand X router, Ethernet switch,
etc.), we want to generate a table of confi guration parameters, establish the methods
for confi guring these parameters, and understand the effects of changing each
parameter (when possible). In order to properly manage a network, it is important
to understand how confi guration parameters affect each network device.

We also need to understand the effects of problems with network devices and
how to correct such problems. Troubleshooting, which consists of problem noti-
fi cation, isolation, identifi cation, and resolution, can be aided by knowing likely
failure modes in the network, their effects, and any possible steps to correct
them.

It should be noted that, in generating a set of working characteristics, confi gu-
ration parameters, and failure modes, we are going through a detailed review of
how the network will operate. The result is that you will better understand what
will happen in the network.

4.4 ARCHITECTURAL CONSIDERATIONS
The network management process consists of choosing which characteristics of
each type of network device to monitor/manage; instrumenting the network
devices (or adding collection devices) to collect all necessary data; processing

Network NM data
storage

Element
management

system

Element
management

system
Direct

access

Remote access

Configuration files

FIGURE 4.7

Confi guration mechanisms for network management.

4.4 Architectural Considerations 101

102 CHAPTER 4 Network Management Architecture

these data for viewing, storage, and/or reporting; displaying a subset of the results;
and storing or archiving some subset of the data.

Network management touches all other aspects of the network. This is cap-
tured in the FCAPS model:

Fault management: processing events and alarms (where an alarm is an event
that triggers a real-time notifi cation to network personnel); problem identifi ca-
tion, isolation, troubleshooting, and resolution; and returning the network to
an operational state.

Confi guration management: setting system parameters for turn-up; provisioning
the network; confi guration, system backups, and restores; and developing and
operating system databases.

Accounting management: monitoring and managing subscriber service usage and
service billing.

Performance management: implementing performance controls, based on the IP
services architecture; collecting network and system performance data; analyz-
ing these performance data; generating short- and long-term reports from these
data; and controlling network and system performance parameters.

Security management: implementing security controls, based on the security
architecture; collecting and analyzing security data; and generating security
reports and logs from these data.

The network management process and management model both provide input to
the network management architecture. With the knowledge of what network man-
agement means for our network, we can consider the following in the architecture:

■ In-band and out-of-band management.
■ Centralized, distributed, and hierarchical management.
■ Scaling network management traffi c.
■ Checks and balances.
■ Managing network management data.
■ MIB selection.
■ Integration into OSS.

4.4.1 In-Band and Out-of-Band Management

In-band management occurs when the traffi c fl ows for network management
follow the same network paths as the traffi c fl ows for users and their applications.
This simplifi es the network management architecture, in that the same network
paths can be used for both types of data, and a separate path (and possibly
network) is not required (Figure 4.8).

A trade-off with in-band management is that management data fl ows can be
impacted by the same problems that impact user traffi c fl ows. Since part of

network management is troubleshooting problems in the network, this function
is negatively impacted if the management data fl ows are delayed or blocked. So
when network management is most needed, it may not be available. Also,
a primary objective of the network management architecture is to be able to
do event monitoring when the network is under stress—for example, when
congested with traffi c, suffering from network hardware/software confi guration
problems, or under a security attack.

Out-of-band management occurs when different paths are provided for
network management data fl ows and user traffi c fl ows. This type of management
has the distinct advantage of allowing the management system to continue to
monitor the network during most network events, even when such events disable
the network. This allows you to effectively see into portions of the network that
are unreachable through normal paths (i.e., user data-fl ow paths).

Out-of-band management is usually provided via a separate network, such as
frame relay or plain old telephone service (POTS) connections. Figure 4.9

Flows of user traffic

Network Network

Flows of management
traffic

Flows of management
traffic

Element management
system

FIGURE 4.8

Traffi c fl ows for in-band management.

Network

POTS

Flows of management traffic

Flows of management traffic

Element
management

system

Flows of
user traffic

Network

Management
network

FIGURE 4.9

Traffi c fl ows for out-of-band management.

4.4 Architectural Considerations 103

104 CHAPTER 4 Network Management Architecture

illustrates this point. An advantage of having a separate network is that additional
security features can be integrated into this (network management) network.
Since this network provides access to most or all network devices, having addi-
tional security here is important. Another advantage is that the out-of-band con-
nection can be used to troubleshoot and confi gure network devices that are in
remote locations. This saves time and resources when the user data network is
down and remote network devices need to be accessed.

Whenever out-of-band management is planned, a method to check and verify its
availability is needed. This can be as simple as planning to use out-of-band management
on a regular basis, regardless of need. This will help to ensure that problems with out-
of-band management are detected and solved while the network is still healthy.

A trade-off with out-of-band management is the added expense and complexity
of a separate network for network management. One way to reduce the expense
is to provide out-of-band monitoring at a low level of performance, relative to the
user data network. For example, out-of-band monitoring may be achieved using
phone lines. While this may be less expensive than providing dedicated network
connections, it does require time to set up (e.g., call) the out-of-band connections,
and the capacity of each connection may be limited.

For some networks a combination of in-band and out-of-band management is
optimal (Figure 4.10). Usually this is done when the performance of the user data
network is needed to support network management data fl ows (for monitoring
the operational network), but the separate, out-of-band network is needed when
the user data network is down.

Some trade-offs of combining in-band and out-of-band management are that the
expense of a separate network is still incurred, and security issues on the user
data network still need to be addressed.

Element
management

system

Flows of
user traffic

Flows of management
traffic when user traffic

paths are up

Flows of management
traffic when user traffic

paths are down
POTS

Network Network

FIGURE 4.10

A combination of in-band and out-of-band management traffi c fl ows.

4.4.2 Centralized, Distributed, and Hierarchical Management

Centralized management occurs when all management data (e.g., pings, SNMP
polls/responses, traceroute, etc.) radiate from a single (typically large) manage-
ment system. The fl ows of management data then behave like the client–server
fl ows shown in Figure 4.8.

The obvious advantage to centralized management is that only one manage-
ment system is needed, simplifying the architecture and reducing costs (depend-
ing on the choice of management system). In centralized management the
management system often has a variety of management tools associated with it.
The trade-offs to centralized management are that the management system is a
single point of failure, and that all management fl ows converge at the network
interface of the management system, potentially causing congestion or failure.

Distributed management occurs when there are multiple separate compo-
nents to the management system, and these components are strategically placed
across the network, localizing network management traffi c and distributing man-
agement domains. In Figure 4.11 multiple local element management systems
(EMSs) are used to distribute management functions across several domains.

In distributed management the components either provide all management
functions (monitoring, display, storage, and processing) or the distributed com-
ponents are the monitoring devices. For example, distributed management may
take the form of having multiple management systems on the network (e.g.,
one management system per campus or per management domain, as shown in
Figure 4.11), or a single management system with several monitoring nodes, as in
Figure 4.12.

Advantages to distributed management are that the monitoring devices act to
localize the data collection, reducing the amounts of management data that transit

Network Network

Flows of
management traffic

Local element
management

system

Local element
management

system

Flows of
management traffic

Local element
management system

Flows of
management

traffic

FIGURE 4.11

Distributed management where each local EMS has its own management domain.

4.4 Architectural Considerations 105

106 CHAPTER 4 Network Management Architecture

the network. They may also provide redundant monitoring, so that other monitor-
ing devices on that network can cover the loss of any single monitoring device.
A trade-off with distributed management is that costs increase with the number
of monitoring devices or management systems needed.

Hierarchical management occurs when the management functions (monitor-
ing, display, storage, and processing) are separated and placed on separate devices.
Management is hierarchical in that, when the functions are separated, they can
be considered layers that communicate in a hierarchical client–server fashion.
Figure 4.13 shows the structure of a hierarchical management system.

Network

Local monitoring
node

Network

Flows of
monitoring traffic

Local monitoring
node

Flows of
monitoring traffic

Local monitoring
node

Flows of
monitoring

trafficNetwork management
system

Flows of
management traffic

Flows of
management traffic

Flows of
management traffic

FIGURE 4.12

Distributed management where monitoring is distributed.

Network Network

Flows of
management traffic

Flows of
management traffic

Local data
collection

Flows of
management

traffic

NM
data

Regional element
management system

Local data
collection

Local data
collection

Displays NM
dataStorage/

archival

NM
data

FIGURE 4.13

Hierarchical management separates management into distinct functions that are distributed
across multiple platforms.

In hierarchical management, localized monitoring devices collect management
data and pass these data either directly to display and storage devices or to mon-
itoring devices to be processed. When the management data are passed on to
display and storage devices without processing, the monitoring devices act as they
did in distributed management, localizing the data collection and reducing the
amounts of management data that transit the network.

When the management data are processed before being sent to display and
storage devices, then the monitoring devices act as local fi lters, sending only the
relevant data (such as deltas on the values of counters or updates on events). This
can substantially reduce the amount of management data in the network, which
is especially important if the monitoring is in-band. Thus, we can have monitoring
devices at strategic locations throughout the network, polling local devices and
network devices, collecting and processing the management data, and forwarding
some or all of these data to display and storage devices. The numbers and loca-
tions of each type of device will depend on the size of the network, the amount
of management data expected to be collected (discussed later in this chapter),
and where the displays and storage devices are to be located in the network
management architecture.

An advantage to hierarchical management is that every component can be
made redundant, independent of the other components. Thus, it can be tailored
to the specifi c needs of your network. In some networks it may be preferable to
have several display devices, while in other networks, several processing devices
or storage devices are better. Since these components are separate, the numbers
of each can be individually determined. A trade-off in hierarchical management is
the cost, complexity, and overhead of having several management components
on the network.

4.4.3 Scaling Network Management Traffi c

Some recommendations are presented here to help determine and optimize the
capacity requirements of network management traffi c.

Recommendation 1: One Monitoring Device per IP Subnet
For a local area network (LAN) environment, start with one monitoring device
per Internet Protocol subnet. For each subnet, estimate values for the following
traffi c variables:

■ The number of devices and network devices to be polled.
■ An average number of interfaces per device.
■ The number of parameters to be collected.
■ The frequency of polling (polling interval).

Combining these variables gives you an estimate of the average data rate for man-
agement traffi c per subnet. If this rate is greater than approximately 10 percent
of the capacity (line rate) of the LAN, you may want to consider reducing the

4.4 Architectural Considerations 107

108 CHAPTER 4 Network Management Architecture

amount of management traffi c generated, by reducing one or more of the above
variables. When the estimated average rate is less than 1 percent of LAN capacity,
this indicates that it may be possible to increase one or more of the above
variables.

For most of the standard LAN technologies (Ethernet, Fast Ethernet, Gigabit
Ethernet, Token Ring, FDDI), the management traffi c rate should be targeted at 2
to 5 percent of the LAN capacity. As LAN capacity increases, you will have more
available capacity for network management traffi c and may choose to increase
one or more traffi c variables (Figure 4.14).

Recommendation 2: One Monitoring Device per WAN
For a wide area network (WAN) environment, start with one monitoring device
per each WAN–LAN interface. This is in addition to any monitoring devices
indicated in Recommendation 1. However, if a monitoring device is on a LAN
subnet that is also the WAN–LAN interface, that device may be used to
collect data for both the LAN and WAN. Placing a monitoring device at each
WAN–LAN interface allows us to monitor the network at each location, as well as
to measure, verify, and possibly guarantee services and performance requirements
across the WAN.

4.4.4 Checks and Balances

Checks and balances are methods to duplicate measurements in order to verify
and validate network management data. Although implementing checks and bal-
ances adds effort to the network management process, it is advisable to have more
than one method for collection network management data, particularly for data
considered vital to the proper operation of the network. SNMP agent and MIB

10 Mbps Ethernet
LAN

5%—500 Kbps

Distribute monitoring, reduce number of
 parameters polled, reduce polling interval.

Technology

100 Mbps Fast
Ethernet LAN

1000 Mbps GigE
LAN

2%—200 Kbps

5%—5 Mbps

2%—2 Mbps

5%—50 Mbps

2%—20 Mbps

Amount of management
traffic/subnet

 Consolidate monitoring, increase number of
parameters polled, increase polling interval.

Possible action taken

FIGURE 4.14

Scaling network management traffi c.

implementations are vendor-implementation specifi c and are not guaranteed to
provide data that are consistent across all vendors.

Objectives of performing checks and balances are to locate and identify:

■ Errors in recording or presenting network management data.
■ Rollovers of counters (e.g., returning a counter value to zero without

proper notifi cation).
■ Changes in MIB variables from one software version to another.

In addition, checks and balances help to normalize network management data
across multiple vendors, by verifying data through measurements from multiple
sources.

Collected management data should be verifi ed for accuracy. For example,
when polling for SNMP variables for an interface, consider RMON polling as well
to verify these data. Consider using a traffi c analyzer to verify data for various
random periods of time. You may also run independent tests with traffi c genera-
tors, the vendors’ network devices, and data collection devices to verify the
accuracy of collected data.

4.4.5 Managing Network Management Data

Flows of network management data typically consist of SNMP parameter names
and values, and the results of queries from utilities such as ping or traceroute.
These data are generated by network devices and other devices on the network,
transported via SNMP to monitoring devices, and possibly forwarded to display
and storage devices. It is important to the network management architecture that
we understand where and how the data are generated, transported, and pro-
cessed, as this will help us to determine where network management components
may be placed in the network.

Management data may be generated either in a query/response (stateless)
method, as with SNMP or ping queries, or in response to a prearranged set of
conditions (stateful), as with SNMP traps. Large numbers of SNMP queries should
be spread out over a time interval (e.g., polling interval), not only to avoid network
congestion, but also to avoid overburdening network devices and monitoring
devices with the processing required to generate management data.

Management data consist of frequently generated parameters for real-time
event notifi cation and less frequently generated (or needed) parameters for trend
analysis and planning. It may be that the same parameters are used for both pur-
poses. Since frequent polling can generate large amounts of data, storage of these
data can become a problem. Some recommendations for managing these data are
presented in the following subsections.

Recommendation 1: Local versus Archival Storage
Determine which management data are necessary to keep stored locally and
which data may be archived. Management data are usually kept locally, cached

4.4 Architectural Considerations 109

110 CHAPTER 4 Network Management Architecture

where they can be easily and quickly retrieved, for event analysis and short-term
(on the order of hours or days) trend analysis. Management data that are not being
used for these purposes should be archived to secondary or tertiary storage, such
as tape archives or off-site storage (Figure 4.15).

Recommendation 2: Selective Copying of Data
When a management parameter is being used for both event notifi cation and trend
analysis, consider copying every Nth iteration of that parameter to a separate
database location, where the iteration size N is large enough to keep the size of
these data relatively small, yet is small enough so that the data are useful in trend
analysis. In Figure 4.16 SLA variables are polled regularly (each variable polled per
second), while every Nth poll is saved in long-term storage (archival). Depending
on the bandwidth and storage available for network management traffi c, N can
range from 102 to 105.

A trade-off in selective copying of data is that whenever data are copied, there
is a risk that some data may be lost. To help protect against this you can use TCP
for data transmission or send copies of data to multiple archival systems (e.g., one
primary and one redundant).

If there are indications that more immediate analysis needs to be done, then
either a short-term trend analysis can be performed on the locally stored data (from
recommendation 1), or the iteration size N can be temporarily shortened.

Recommendation 3: Data Migration
When collecting management data for trend analysis, data can be stored local to
the management device and then downloaded to storage/archival when traffi c is
expected to be low (e.g., at night). In Figure 4.17 polls of network management
data are made in fi ve-minute intervals and stored locally. These data are then

Network Network

Local data
collection

NM
data

Element management
system

Storage/
archival

NM
data

FIGURE 4.15

Local and archival storage for management data.

downloaded to archival storage once or twice daily, usually when there is little
user traffi c on the network (e.g., at 2 a.m.).

Recommendation 4: Metadata
Metadata is additional information about the collected data, such as references
to the data types, timestamps of when the data were generated, and any indica-
tions that these data reference any other data. A management data-archival system
should provide such additional information regarding the data that have been
collected.

Each N th SLAPM poll
sent to archival

Network

Storage/archival NM
data

NM
data

Data (e.g., SLAPM)
polled 1/second

FIGURE 4.16

Selective copying to a separate database.

Network Network

Local data
collection

Storage/
archival

Local data
collection

5-minute
intervals

5-minute
intervals Daily

(e.g, 2 a.m.)

NM
data

NM
data

NM
data

FIGURE 4.17

Data migration.

4.4 Architectural Considerations 111

112 CHAPTER 4 Network Management Architecture

4.4.6 MIB Selection

MIB selection means determining which SNMP MIBs to use and apply, as well as
which variables in each MIB are appropriate for your network. This may, for
example, be a full MIB (e.g., MIB-II is commonly used in its entirety), a subset of
each MIB required for conformance to that MIB’s specifi cation (also known as a
conformance subset of the MIB where conformance subsets of MIBs are usually
listed at the end of each MIB’s specifi cation RFC), enterprise-specifi c MIBs (the
parameters available from each vendor-element or network-element type), or
possibly a subset of MIB parameters that you defi ne to apply to your network.

For example, a subset of performance-monitoring parameters can be used
from the interfaces MIB (RFC 2863): ifInOctets, ifInErrors, ifInUcastPkts,
ifOutOctets, ifOutErrors, and ifOutUcastPkts. This set of six parameters
is a common starting point for MIB parameters. These parameters can usually be
measured on all interfaces for most network devices.

One can consider MIB variables falling into the following sets: a common set
that pertains to network health, and a set that is necessary to monitor and manage
those things that the network needs to support, including:

■ Server, user device, and network parameters.
■ Network parameters that are part of SLAs, policies, and network

reconfi guration.

4.4.7 Integration into OSS

When the network includes an interface to an operations support system, the
network management architecture must consider how management is to be inte-
grated with the OSS. The interface from network management to OSS is often
termed the northbound interface, as it is in the direction of service and business
management (see Section 4.2). This northbound interface is typically CORBA or
SNMP (Figure 4.18).

4.4.8 Internal Relationships

Internal relationships for the network management architecture comprise the
interactions, dependencies, trade-offs, and constraints between network manage-
ment mechanisms. It is important to understand these relationships, as they are
part of a complex, nonlinear system and they defi ne and describe the behavior of
this architecture.

Interactions
Interactions within network management may include interactions among com-
ponents of the management system; between the network management system
and network devices; and between the network management system and the OSS.
If there are multiple network management systems, or if the network management

system is distributed or hierarchical, then there will be multiple components to
the management system. The network architecture should include the potential
locations for each component and/or management system, as well as the manage-
ment data fl ows between components and/or management systems. The interac-
tions here may be in the form of SNMP or CMIP/CMOT queries/responses, CORBA,
HTTP, fi le transfers, or a proprietary protocol.

Part of network management inheres in each managed network device, in the
form of management data (e.g., MIB variables) and software that allows access and
transport of management data to and from the management system (e.g., SNMP
agent software). Therefore, interactions between network management compo-
nents (particularly monitoring devices) and managed network devices can also be
considered here. We may choose to consider all of the managed network devices,
depending on how many of them are expected in the network; however, we
usually do not consider all managed devices in the network, as there can be quite
a large number of them. The devices that are most likely to be considered are
those that interact with several users, such as servers and specialized equipment.
Interactions here are likely to be in the form of SNMP or CMIP/CMOT queries/
responses.

If your environment includes an OSS, there will likely be some interactions
between network management and the OSS, for fl ow-through provisioning, service
management, and inventory control. The network management architecture
should note where the OSS would be located, which components of the network
management system will interact with the OSS, and where they will be located in
the network. Interactions here are likely to use CORBA, but may use SNMP or
HTTP (see Dependencies subsection).

Ordering

OSS components

CORBA
SNMP

Inventory

Activation

Provisioning

Engineering

Field service

Element management
system

Network

FIGURE 4.18

The integration of network management with OSS.

4.4 Architectural Considerations 113

114 CHAPTER 4 Network Management Architecture

Dependencies
Dependencies within network management may include dependencies on capac-
ity and reliability of the network for management data fl ows, dependence on the
amount of data storage available for management data, and dependence on the
OSS for the northbound interface requirement.

Network management may be dependent on the performance of the underly-
ing network for support of management data fl ows. In its most basic sense, the
network must provide suffi cient capacity for the estimated amount of manage-
ment data. This estimate can be derived using information on network layout. This
is particularly important when network management is centralized and all manage-
ment data will be aggregated at the network management system interface. This
may also be a dependency on IP services, discussed later in this section.

The amount of management data that can be stored is partly a function of how
much storage will be available; thus, network management can be dependent on
data storage availability.

While network management may interface with an OSS, it may also be depen-
dent on that OSS to determine the northbound interface. For example, some
OSSs require CORBA for their interface, which will have to be supported
by network management. This may also be considered a constraint on network
management.

Trade-Offs
Trade-offs within network management may include trade-offs between in-band
and out-of-band management, and trade-offs among centralized, distributed, and
hierarchical management. Trade-offs between in-band and out-of-band manage-
ment include:

■ In-band management is cheaper and simpler to implement than out-of-band
management; however, when management data fl ows are in-band, they can be
impacted by the same problems that impact user traffi c fl ows.

■ Out-of-band management is more expensive and complex to implement than
in-band management (since it requires separate network connections); however,
it can allow the management system to continue to monitor the network during
most network events, even when such events disable the network. In addition,
out-of-band management allows access to remote network devices for trouble-
shooting and confi guration, saving the time and effort of having to be physically
present at the remote location.

■ Out-of-band management, by defi nition, requires separate network connections.
This may be a benefi t, in that security for the separate network can be focused
on the requirements of management data fl ows, or it may be a liability, in that
additional security (with its associated expense and overhead) is required for
this network.

■ When in-band and out-of-band management are combined, there is still the
expense and complexity of out-of-band management, as well as the additional

security requirements. However, the combination allows (typically) higher-
performance in-band management to be used for monitoring (which is the
high-capacity portion of network management), yet still allows out-of-band
management to be used at critical times (e.g., when the user data network,
including in-band paths, is down).

The following are trade-offs among centralized, distributed, and hierarchical
management:

■ In centralized management only one management system is needed (all manage-
ment components, as well as other tools, are on one hardware platform),
simplifying the architecture and reducing costs (depending on the choice of
management system) over distributed or hierarchical management systems,
which may have several separate components. However, centralized manage-
ment can act as a single point of failure; all management data fl ows are aggre-
gated at the management system’s network interface, potentially causing
congestion or failure. Distributed or hierarchical management can avoid central
points of failure and reduce congestion points.

■ The degrees of distribution or hierarchy in management are a function of how
complex and costly you are willing to allow the management system to become,
and how important it is to isolate management domains and provide redundant
monitoring. Costs for distributed or hierarchical management increase with the
number of monitoring devices or management systems needed. However, if you
are willing to accept high management costs, you can provide a fully redundant,
highly fl exible hierarchical management system for your network.

Constraints
Constraints include the northbound interface from network management to the
OSS. This interface may be constrained by the interface requirement of the OSS.
Since the OSS potentially ties together several service and business components,
its interface requirements may be forced onto network management. CORBA is
often required for this northbound interface.

4.4.9 External Relationships

External relationships comprise trade-offs, dependencies, and constraints between
the network management architecture and each of the other component architec-
tures (addressing/routing, performance, security, and any other component archi-
tectures you may develop). Network management should be a part of all the other
architectural components as they will need some or all of the monitoring, control,
and confi guration capabilities that network management provides. As such, each
of the other components will interact at some level with network management.

There are common external relationships between network management and
each of the other component architectures, some of which are presented in the
following subsections.

4.4 Architectural Considerations 115

116 CHAPTER 4 Network Management Architecture

Interactions between Network Management and Addressing/Routing
Network management depends on the addressing/routing architecture for the
proper routing of management data fl ows through the network. If the manage-
ment is in-band, then the routing of management data fl ows should be handled in
the same fashion as the user traffi c fl ows and does not require any special
treatment in the architecture. However, if the management is out-of-band, then
the routing of management data fl ows may need to be considered in the
architecture.

Network management is often bounded by the network or networks that are
under common management. A management domain is used to describe a set
of networks under common management; autonomous system is another term
often used. Thus, the routing and addressing architecture may defi ne the manage-
ment domain for the network, setting the boundaries for network management.

If the management is out-of-band, the separate management network may
require routing and addressing as part of the architecture.

Interactions between Network Management and Performance
Network management interacts with the performance architecture through the
collection of network performance data as it seeks to verify the proper operation
of performance mechanisms. This may occur through a northbound interface
(described earlier) to OSS or to a policy database for performance. Performance
also depends on network management to provide data on the performance and
function of the network.

A trade-off between network management and performance comes in how
much network resources (e.g., capacity) network management requires, as this
may impact the network’s ability to support various performance levels. This is
particularly true when management is centralized, as management data fl ows in
centralized management are aggregated at the management system’s network
interface.

Network management can depend on performance in two ways: First, when
performance mechanisms support best-effort traffi c (as determined in the fl ow
specifi cation), part of this best-effort traffi c can be allocated to network manage-
ment data fl ows; second, if a higher-priority service is desired for network manage-
ment data fl ows, then network management will be dependent on performance
mechanisms to provide the necessary support for such services. When network
management data fl ows require high-priority service, network management may
be dependent on performance mechanisms to function properly.

Interactions between Network Management and Security
Network management is dependent on some level of security in order to be used
in most operational environments. This may be security at the protocol level (e.g.,
SNMP security) and/or for securing access to network devices. If the management
is out-of-band, the separate network that supports this management must be
secured. Network management may be constrained by security, if the security

mechanisms used do not permit network management data or access across the
security perimeter. This may also be considered a trade-off, when it is possible to
reduce the level of security in order to support access or management data trans-
port across the security perimeter. For example, consider the use of POTS for
out-of-band access. Such dial-in access is unacceptable to many organizations,
unless extra security measures are taken on each access line (e.g., dial-back, secu-
rity keys, etc.).

4.5 SUMMARY
While network management can appear to be a simple function, it is actually a
complex set of functions with interesting architectural features. In this chapter
we decomposed network management into monitoring, instrumentation, and
management, and explored how each of these can be achieved within the network
management architecture.

The essence of the network management architecture is in understanding what
you want to monitor and manage, determining where you want to locate each
network management function, and managing the fl ows of network management
traffi c. Depending on the characteristics of the network you are developing, you
have a wide range of architectural solutions, from a simple, single-platform system
with preconfi gured monitoring and management capabilities, to a distributed,
hierarchical system where you determine and confi gure its monitoring and
management capabilities.

Based on the information in this chapter, you have the fl exibility to create
a network management architecture tailored to the requirements of your
customer.

4.5 Summary 117

This page intentionally left blank

CHAPTER

5SLA and Network
Monitoring

This chapter is drawn from Chapter 5 of Deploying IP and MPLS QoS for Multi-
service Networks by Evans and Filsfi ls. Many of the concepts referred to in this
chapter can be found explained in more detail in other chapters in the source
text. This chapter discusses the technologies and techniques available for service
level agreements (SLAs) and network monitoring in quality-of-service (QoS)–
enabled IP networks.

5.1 APPROACHES FOR NETWORK MONITORING
There are two main approaches that are generally used in concert to monitor the
performance of a QoS-enabled network service in order to determine whether
SLAs have been or can be met:

Passive network monitoring: With passive network monitoring, network devices
record statistics on network traffi c, which can provide an indication of the
status at a particular network element. Periodic polling is typically used to
gather these data for reporting and analysis. This is a micro measure that looks
at each device in isolation; by looking at multiple network elements, an aggre-
gate view of the status of a network service may be deduced. Passive network
monitoring does not require any additional traffi c to be used for measurement
purposes.

Active network monitoring: Unlike passive monitoring, active monitoring involves
sending additional traffi c into the network. Synthetic test streams comprising
“probe” packets are sent across the network solely for the purpose of charac-
terizing the network performance; analysis of the received streams is used for
this characterization. Active monitoring provides a macro measure of network
SLAs in that it reports the measured performance across a number of network
elements as a system.

120 CHAPTER 5 SLA and Network Monitoring

Passive and active network monitoring systems may be deployed for a number
of reasons:

■ For monitoring and reporting, so that the network service offered is achieving
the committed SLA targets; this may include:
– Proactive network and SLA monitoring.
– Long-term trending of the relative changes in network SLA performance over

time.

■ For monitoring, so that network performance is suffi cient to meet the required
application quality of experience (QoE) targets.

■ As a feedback loop to network capacity planning processes, results from passive
and active monitoring may provide heuristics, allowing capacity planning
thresholds to be tuned based on correlation between network or per-class load
and SLA probing reports of delay, jitter, and loss.

For network service providers, active and passive network monitoring provide
potential value-added service opportunities as end customers look to outsource
their end-to-end wide area network (WAN)–related capacity management. Hence,
the service provider may report enough information to customers to let them
assess their network usage and how well their SLAs were met.

5.2 PASSIVE NETWORK MONITORING
From a QoS perspective, passive network monitoring involves polling the network
devices for statistics that they maintain for QoS functions they perform, such as
packet and byte counts or queue depths. This is typically performed using the
Simple Network Management Protocol (SNMP—RFC 1157) to poll for information
contained in management information bases (MIBs). The considerations on polling
and the types of statistics polled are described in the following sections.

5.2.1 How Often to Poll?

Any polling of network devices for statistics raises the question of how frequently
to poll? In practice, this represents a balance between the polling capacity of the
network management system (NMS), the number of devices that need to be
polled, the load incurred on the polled devices, and the impact of the polling
traffi c on the network.

Many of the retrieved statistics will be in the form of packet and byte counts;
these can be used to determine the average traffi c demands over the previous
sampling interval. Longer polling intervals implicitly have a larger sample size and
may be acceptable for trending purposes; however, the polled data will implicitly
be averaged over a longer time and therefore issues may be hidden. Therefore,
shorter intervals are preferred where measurements that are more granular are
required, although this has to be balanced against the increased polling load.

5.2 Passive Network Monitoring 121

For troubleshooting, proactive measurement, and SLA reporting, within the
bounds of the NMS and network constraints and capabilities, QoS statistics should
be polled as often as possible to prevent visibility of SLA-affecting network issues
being lost due to the effects of averaging. If the polling is frequent, the data can
always be averaged over longer timeframes. For trending, it may be more appro-
priate to poll every hour. Longer-duration measurements make the comparison
between days, months, and years easier and more statistically relevant.

5.2.2 Per-Link Statistics

Per-link QoS statistics can be used for different purposes, depending on from
where in the network they are recorded:

Access links: Network access links can be both the boundary of a DiffServ (dif-
ferentiated services) domain and a customer/provider boundary. Hence, access
link QoS statistics are used both for fault fi nding and reporting statistics to
customers of end services such that they can provision their edge QoS classes
adequately.

Core links: On core links, per-link QoS statistics are used both for fault fi nding
and as an input to the core network capacity planning processes.

Most vendors implement proprietary MIBs, which can be used to retrieve the
relevant per-link statistics. They could also be retrieved from the DiffServ MIB
defi ned by RFC 3289, although this is not widely implemented by network equip-
ment vendors. Where it is supported, the DiffServ MIB may be used for both
monitoring and confi guration of a router or switch that is capable of differentiated
services functionality. As the DiffServ MIB is designed to be generic across vendors,
vendor proprietary MIBs may provide information on QoS statistics that are spe-
cifi c to their implementation, and therefore that are not available in RFC 3289.

The following subsections describe the most important per-link QoS statistics
for monitoring DiffServ deployments in terms of the QoS functions and mecha-
nisms that are applied. Consideration is also provided on how these statistics
should be interpreted to assure the performance of a QoS-enabled network service.
In some cases, it may not be necessary to monitor all of the statistics that are
described; some of the statistics are interrelated and therefore may be deduced
from others without requiring explicit monitoring. This duplication can be useful
in providing a means for cross-verifying the retrieved statistics.

Monitoring Classifi cation
The main use for classifi cation statistics is to verify that traffi c is being correctly
classifi ed in the appropriate class. Classifi cation statistics can also be used to verify
or deduce other statistics; for example, the total number of packets dropped and
transmitted by the other functions applied to a particular class after classifi cation
must equal the total number of packets classifi ed into that class.

122 CHAPTER 5 SLA and Network Monitoring

A router may classify a number of traffi c streams into a single traffi c class, to
which actions may subsequently be applied. The following classifi cation statistics
are useful in understanding the offered traffi c load in each class, and the constitu-
ents of that traffi c class.

Per-Classifi cation Rule

If multiple rules are used to classify traffi c streams into a single class, it may be
useful to know the total number of packets and their cumulative byte count that
have been classifi ed per rule. For example, if traffi c marked DSCP 18 (i.e., AF21)
and DCSP 20 (i.e., AF22) is to be classifi ed into the same class, which is serviced
with an AF per-hop behavior (PHB), then it may be useful to know how much
AF21 traffi c (which could, for example, represent the in-contract traffi c) and how
much AF22 traffi c (which could represent the out-of-contract traffi c) there is
within the class.

Further, by knowing both the number of packets and bytes classifi ed into a
class, it is possible to estimate the average packet size for the class. This informa-
tion can be useful for ensuring that, for example, only small voice over Internet
Protocol (VoIP) packets are being classifi ed into a voice class. Therefore, in
general, for most QoS statistics polled, the results retrieved include both a packet
and a byte count.

On Aggregate

For the per-traffi c class, it is also important to know the total number of packets
and bytes that have been classifi ed on aggregate (i.e., across all classifi cation rules)
into that particular class.

Monitoring Policing
Policers may be applied for a number of reasons. Which statistics are relevant
when monitoring policers depends on the way in which they are used.

Enforcing a Maximum Rate for a Voice Class

The single-rate, three-color marker (SR-TCM) defi ned in RFC 2697 is commonly
applied to police the maximum rate of a voice class. This may be used both on core
and access links. On core links policers are commonly applied to voice classes to
ensure the voice class cannot starve other classes of bandwidth. On access links
policers are used both to prevent starvation of other classes and to enforce a Diff-
Serv edge traffi c conditioning agreement (TCA), ensuring that only voice traffi c that
conforms to the voice class TCA is admitted into the DiffServ network.

In either case when the SR-TCM is used to police a voice class it would typi-
cally have a defi ned common information rate (CIR) and committed burst size
(CBS), with excess burst size (EBS) set to zero; a violate (i.e., red) action of trans-
mit; and a conform (i.e., green) action of drop. Applied in this way, the SR-TCM

5.2 Passive Network Monitoring 123

would enforce a maximum rate of CIR and a burst of CBS on the voice class and
any traffi c in violation of this would be dropped.

Wherever a policer is applied to a voice class, the following statistics should
be monitored per policer:

Number of packets and bytes conforming (i.e., green): This is the number of
packets and bytes transmitted by the policer.

Number of packets and bytes violating (i.e., red): This is the number of packets
and bytes dropped by the policer. Wherever a policer is used to enforce a
maximum rate for a voice class, the policer is meant as a protective measure.
If the policer actually drops voice packets there is an issue somewhere that is
affecting the service (that is, assuming that the policer has been correctly
confi gured) and voice call quality will be affected. Therefore, ideally there
should be no packets violating the SR-TCM policer defi nition. If there are, the
resulting actions will depend on where the policer is being used:
■ Access links: To resolve drops by a voice class policer on an access link,

either the bandwidth provisioned for the voice class (and therefore the
policer rate) needs to be increased, or controls need to be put in place to
limit the offered voice traffi c load (e.g., using admission control).

■ Core links: Drops by a voice class policer are an indication of either a
capacity planning failure or a major network failure or a network attack.
In either case, the occurrence of such drops should trigger further
investigation to determine the cause of the drops and to prevent a
reoccurrence.

Marking In-Contract and Out-of-Contract

Either the SR-TCM or the two-rate, three-color marker (TR-TCM) defi ned in RFC
2698 are commonly applied to AF classes to mark certain amounts of traffi c in-
contract and out-of-contract. When deployed in this way, which statistics are
important depends on whether the SR-TCM or TR-TCM is used.

The SR-TCM is commonly used for in-contract or out-of-contract marking with
EBS = 0, a green action of {transmit + mark in-contract} and a red action of {trans-
mit + mark out-of-contract}. Applied in this way, the SR-TCM would enforce a
maximum rate of CIR and a burst of CBS on the traffi c stream. Conforming traffi c
would be marked in-contract and any traffi c in violation of this would be marked
out-of-contract. When deployed in this way the important statistics are:

■ Number of packets and bytes conforming (i.e., green): This is the
number of packets marked in-contract by the policer, and their respective
byte count.

■ Number of packets and bytes violating (i.e., red): This is the number of
packets marked out-of-contract by the policer, and their respective byte
count.

124 CHAPTER 5 SLA and Network Monitoring

The purpose of marking certain amounts of traffi c in-contract or out-of-contract
is to be able to offer a committed SLA for a defi ned in-contract rate, and to allow
traffi c in excess of this rate to be transmitted, but to mark it differently to indicate
that it is out-of-contract such that it may potentially be given a less-stringent SLA.
Therefore, when the SR-TCM is applied in this way, the main use for statistics of
packets and bytes conforming and violating is for reporting to customers of end
services such that they can provision their edge QoS classes adequately, rather
than for fault fi nding.

The TR-TCM can be used to mark a certain amount of a traffi c class as in-con-
tract, and everything above that as out-of-contract, up to a maximum rate above
which all traffi c is dropped, by applying a green action of transmit, yellow action
of {transmit + mark out-of-contract}, and red action of drop. Applied in this way
the TR-TCM would enforce a maximum rate of CIR and a burst of CBS on the
traffi c stream; any traffi c in excess would then be marked out-of-contract up to a
maximum rate of peak information rate (PIR) and a burst of peak burst size (PBS).
When deployed in this way the important statistics are:

■ Number of packets and bytes conforming (i.e., green): This is the
number of packets marked in-contract by the policer, and their respective
byte count.

■ Number of packets and bytes exceeding (i.e., yellow): This is the number
of packets marked out-of-contract by the policer, and their respective byte
count.

■ Number of packets and bytes violating (i.e., red): This is the number of
packets and bytes dropped by the policer.

Similarly to where the SR-TCM is used for in-contract or out-of-contract marking,
where the TR-TCM is used for this purpose, the main use for statistics of packets
and bytes conforming and exceeding is for reporting to customers of end services.
However, if there are a signifi cant number of packets that are violating (i.e.,
dropped) relative to the number of packets transmitted (i.e., conforming + exceed-
ing), this is an indication that the class load is exceeding the available capacity
and the performance of all applications within that class may be affected. There-
fore, consideration should be given to increasing the PIR confi gured for that class
or to reducing the traffi c load within the class.

Monitoring Queuing and Dropping
For all queuing classes, it is normal to monitor the following statistics:

■ Number of packets and bytes transmitted: This is the number of packets
successfully transmitted from the queue by the scheduler, and their
respective byte count.

■ Number of packets and bytes dropped: This is the number of packets
dropped by queue management functions acting on that queue, and
their respective byte count. The statistics that matter with respect to

5.2 Passive Network Monitoring 125

dropping mechanisms depend on the particular dropping mechanisms that
are used.

Monitoring Tail Drop

If simple tail drop is used to enforce a queue limit then a count of the number of
packets and bytes dropped per queue should be monitored.

If a queue limit is applied to a voice or video class queue, it is normal practice
for the queue limit to be at least as great as the burst size for the policer confi gured
for the class. In this case, the policer burst should constrain the class burst and
there should be no tail drops experienced for that queue; if tail drops are experi-
enced, this would be an indication of an issue. If the queue limit were set less
than the policer burst and tail drops were experienced, then the same actions
should be taken as if policer drops had occurred.

If a queue limit is applied to a data class queue and the measured drop rate—
that is, the ratio of packets and bytes dropped to packets and bytes transmit-
ted—is high (where high is dependent on the impact on application performance),
then this indicates one of the following:

■ The queue is operating in signifi cant congestion and therefore
consideration should be given both to increasing the bandwidth assurance
offered to that queue and to reducing the traffi c load within the queue.

■ The queue limit is set too low to accommodate the burst profi le of the
offered traffi c load and therefore the queue limit may need retuning.

Monitoring Weighted Tail Drop

Weighted tail drop is sometimes applied to AF class queues to discard a subset of
the traffi c within the queue preferentially if congestion is experienced within the
queue. This can be used to differentiate between traffi c that has been differentially
marked as in-contract and out-of-contract. Traffi c that is marked out-of-contract is
subjected to a lower queue limit and therefore is discarded in preference to traffi c
that is marked in-contract and that is subject to a higher queue limit.

If weighted tail drop is used, then statistics of the number of packets and bytes
dropped and transmitted per weighted tail drop profi le should be monitored. If
the intent of deploying weighted tail drop in this way is to ensure that in-contract
traffi c has a low loss rate, then the drop rate for the in-contract (i.e., higher) queue
limit should be very low, where low is defi ned by the in-contract SLA for loss. If
this is not the case, then the indications and rectifying actions that should be taken
with respect to the in-contract traffi c are the same as for simple tail drop as
described in the previous discussion of monitoring tail drop.

When weighted tail drop is used, it would be expected that the drop rate for
out-of-contract traffi c would be higher than for in-contract traffi c. It should be
noted, however, that individual fl ows might have some packets marked as in-
contract and others as out-of-contract. Therefore, if the drop rate for out-of-

126 CHAPTER 5 SLA and Network Monitoring

contract packets is too high, the performance of all applications using that queue
may be affected and the indications and rectifying actions that should be taken
with respect to the in-contract traffi c are the same as for simple tail drop, as pre-
viously described.

Monitoring RED

Random early detection, or RED, is an active queue management mechanism that
was designed to improve overall throughput for TCP-based applications. If RED is
applied to a data class queue, then the following statistics should be monitored:

The number of packets and bytes enqueued is the number of packets subjected
to this RED profi le that were successfully enqueued, and their respective byte
count. Where only a single RED profi le is active on the queue, this should be
the same as the number of packets and bytes transmitted from the queue.

The number of packets and bytes randomly dropped, or “random drops,” com-
prise the RED drops that occur when the measured average queue depth is
between the confi gured minimum threshold and maximum threshold for that
particular RED profi le. If RED is confi gured and working correctly, then the
majority of dropped packets should be random drops. If the drop rate for all
RED drops is high relative to the number of packets transmitted, then this
indicates one of the following:
■ The queue is operating in signifi cant congestion and therefore consideration

should be given to increasing the bandwidth assurance offered to that queue,
or to reducing the traffi c load within the queue.

■ The confi gured minimum and maximum thresholds or exponential weight-
ing constant for that queue are set too aggressively (i.e., too low) to accom-
modate the burst profi le of the offered traffi c load and therefore may need
retuning.

■ There are applications in that queue that are not responding to random drops
and consideration should be given to whether these applications may be
better serviced from a different class queue.

The number of packets and bytes force dropped make up the drops that occur
when the measured average queue depth is above the confi gured maximum
threshold; these are referred to as “forced drops.” If RED is confi gured and
operating correctly, then random drops should ensure that the average queue
limit is below the confi gured maximum threshold and therefore there should
be very few forced drops. If there are a signifi cant number of forced drops rela-
tive to the total number of RED drops, then the possible causes and rectifying
actions that should be taken are as described previously for high RED drops.

Polling for the measured RED average queue depth is not essential but provides
additional data, which can be used to supplement the RED other statistics. If
the measured average queue depth is frequently close to or above the confi g-

5.2 Passive Network Monitoring 127

ured RED maximum threshold, then this is also an indication that either the
queue is operating in signifi cant congestion or the RED confi guration is set too
aggressively and rectifying actions that should be taken are as previously
described for high RED drops.

Monitoring WRED

Weighted RED (WRED) is commonly applied to AF queues to differentiate between
in-contract and out-of-contract traffi c. To achieve this, two RED profi les are applied
to the same queue and traffi c marked out-of-contract is subjected to the more
aggressive RED profi le (i.e., with lower minimum threshold and maximum thresh-
old), and therefore “in” congestion is discarded in preference to traffi c that is
marked in-contract and that is subject to a RED profi le with higher minimum and
maximum thresholds.

Where WRED is used, the number of packets and bytes dropped and transmit-
ted per RED profi le is required. The sum of the packets successfully enqueued
across all RED profi les should be the same as the number of packets and bytes
transmitted from the queue.

As for weighted tail drop, the intent of deploying WRED in this way is to ensure
that in-contract traffi c has a low loss rate, then the drop rate for the in-contract
RED profi le should be very low, where low is determined by the in-contract SLA
for loss. If this is not the case then the indications and rectifying actions that
should be taken with respect to the in-contract traffi c are the same as for RED as
described previously.

As for weighted tail drop, if the drop rate for out-of-contract packets is too
high the performance of all applications using that queue may be affected and the
indications and rectifying actions that should be taken with respect to the in-
contract traffi c are the same as for RED, as described previously.

5.2.3 System Monitoring

Ideally, all packet drops within a router are handled intelligently by the QoS func-
tions confi gured on that router, which may be applied outbound on each inter-
face, for example. In practice, however, depending on how a particular router is
architected and implemented, there may be cases where drops can occur on other
parts of the system, due to system constraints. If, in the part of the system where
these drops occur, there is no understanding of the class of the traffi c being
dropped, then traffi c may be dropped indiscriminately of traffi c class.

Clearly, systems should be designed to try to minimize the occurrence of such
indiscriminate traffi c drops; however, in cases where they can occur it is essential
to monitor them, because they can provide an indication of serious system issues
that can potentially affect the SLAs across all traffi c classes.

The system drops that can occur will depend on the implementation of a par-
ticular device; however, some of the most common types of system drops are:

128 CHAPTER 5 SLA and Network Monitoring

No-buffer drops: Where buffer memory is shared between queues in a system,
there may be cases where a packet arrives and there is insuffi cient packet
buffer memory available to store the packet, in which case there is no alterna-
tive but to drop the packet. Such “no-buffer drops” should be an exception in
any well-designed system, rather than the norm; however, the occurrence of
no-buffer drops can be exacerbated in a heavily congested system if RED and
queue-limit settings are excessively high.

Input drops/ignores: Input drops, which are also known as ignores, occur when
there are insuffi cient packet buffers to store a packet even before a routing or
switching decision can be made. Input drops are a symptom of an oversub-
scribed system, for example, where the packets-per-second forwarding perfor-
mance of the system or component is being exceeded.

System drops such as no-buffer drops and input drops will generally need
to be monitored using vendor-specifi c MIBs, as system-specifi c statistics are not
available from the DiffServ MIB. Due to the impact they can have on the SLAs of
all traffi c classes, the occurrence of any such system drops should trigger
further investigation to determine the cause of the drops and to prevent a
reoccurrence.

5.2.4 Core Traffi c Matrix

The core traffi c demand matrix is the matrix of ingress to egress traffi c demands
across the core network. Traffi c matrices can be measured or estimated from
statistics gathered using passive monitoring techniques. The main benefi t of the
core traffi c matrix is for core network capacity planning, in that it can be used to
predict the impact that demand growths can have, and in the simulation of “what-
if” scenarios, to predict the impact that the failure of core network elements can
have on the utilization of the rest of the network.

5.3 ACTIVE NETWORK MONITORING
Ideally, it would be possible to measure the delay, jitter, loss, and throughput that
actual traffi c experiences as it traverses a network. In some cases, it may be pos-
sible to retrieve this information from the application end systems. Where the
real-time protocol (RTP—RFC 3550) is used, for example, the timestamp and
sequence number information in the RTP header could be used to determine the
delay, jitter, and loss of the received stream at the receiving end system. This is
not generally possible in practice, however, due to the following reasons: many
applications do not use RTP; retrieving such statistics from all application end
systems would be unscalable; or the end systems may not be under the same
administrative responsibility as the network elements. Further, to provide this
information at the network level would require the network elements to uniquely

identify a packet at every single hop and to timestamp it very accurately, which
is not possible in practice.

Network-level active network monitoring is an alternative approach, which is
more generally applicable. Active monitoring uses specially tailored synthetic
traffi c test streams comprising “probe” packets—that aim to emulate actual
network traffi c—which are sent between active monitoring devices in order to
characterize network performance and thereby infer the performance experi-
enced by the emulated traffi c. In DiffServ deployments, active monitoring can be
used to measure the performance of all classes of traffi c.

Active network monitoring requires the deployment of an active SLA probing
system, supporting capabilities such as those defi ned by the IP performance
metrics (IPPM) working group within the IETF. In such a system, active monitor-
ing agents are deployed (potentially on existing network elements) and test
streams are sent between the agents. The agents measure the received streams
and typically keep a statistical analysis of the measured results, which can then
be retrieved periodically from the active measuring devices, via SNMP for example.
In addition, the active monitoring devices may proactively issue traps, if defi ned
thresholds for the measured performance of the test streams are exceeded.

In deploying an active monitoring system, consideration should be given to
the following questions, which are addressed in the proceeding sections:

■ Which test streams should be used?
■ How often should testing be undertaken and for how long?
■ Which metrics should be measured for the received streams?
■ Where should active monitoring devices be deployed and what paths

should the active monitoring streams monitor?

To avoid confusion, we differentiate between the active monitoring traffi c
(i.e., the active measurement probes) and the monitored traffi c, the performance
of which the active monitoring traffi c is trying to estimate.

5.3.1 Test Stream Parameters

The characteristics of the test stream will affect the characteristics of the network
that the test stream will measure. These measured test stream results are only
useful if they are in some way representative of the performance experienced by
the monitored application or traffi c class. This gives rise to the question of what
test stream parameters are required to ensure that the measured characteristics of
the active measurement stream accurately refl ect the characteristics (e.g., delay,
jitter, loss, packet reordering, and availability) of the traffi c from the monitored
application or traffi c class.

The answer to this question is still the subject of further study; however, the
following sections consider the key parameters to defi ne for an active measure-
ment stream. It is noted that the term accurately in this context does not mean
that the difference between measured test stream characteristics and the charac-

5.3 Active Network Monitoring 129

130 CHAPTER 5 SLA and Network Monitoring

teristics of the traffi c must be small, but is does mean that the two results must
be highly correlated, such that it is possible to predict the measured traffi c per-
formance from test stream measurements with high fi delity.

Packet Size
There are two general approaches to the setting of packet sizes for active monitor-
ing probes. One is to use probe packets that are the same size as the packets of
the monitored traffi c. There are two justifi cations for this approach:

1. Packet size has a more signifi cant impact on serialization delay with lower-
speed links, therefore, using packets the same size as the packets of the
monitored traffi c will potentially provide a more accurate measurement of
delay. It is noted, however, that if the link speeds on the path are known,
adjustments can be made to take differences in serialization delay between
monitoring and monitored traffi c into account.

2. Packets larger or smaller than the packets of the monitored traffi c may experi-
ence a different loss than the monitored traffi c itself; if congestion occurs in
part of the network, as the queue depth increases a smaller packet is more
likely to be enqueued than a larger one.

An alternative is to use small-size packets, for two reasons:

1. In environments where there are very low-speed links, such as in some mobile
environments where the bandwidth is scarce and expensive, the smallest pos-
sible–size packets are used for bandwidth economy.

2. Where a high rate of test packets is needed to achieve measurement accuracy,
the use of larger packets may have a signifi cant impact on the traffi c being
measured. In this case, small-size packets are used to minimize the potential
impact.

There is no industry consensus on which approach is best. However, Hill, in his
M.Sc. thesis Assessing the Accuracy of Active Probes for Determining Network
Delay, Jitter, and Loss, concludes from simulations studying the effectiveness of
active SLA monitoring on a 2-Mb link that, “The accuracy of the probes is not really
affected by probe size. Both sizes (41 bytes and 850 bytes) show equally good cor-
relation coeffi cients for delay and loss.” He also concludes that larger-size probes
have signifi cantly greater impact on the delay and jitter of the traffi c whose perfor-
mance the test stream is trying to estimate. Therefore, he recommends that probes
should be small such that the active monitoring traffi c has less impact on the other
traffi c. Lima et al. also found no evidence that packet size affected the measurements
of packet loss, as described in Measuring QoS in Class-Based IP Networks Using
Multipurpose Colored Probing Patterns, in the Proceedings of SPIE.

In practice, however, most deployments use the same packet size for test
streams that are used by the applications they are emulating. It is further noted

that on higher-speed links, where the impact of serialization delay is less, and the
traffi c is more highly aggregated, the impact of probe packet sizing is likely to be
less signifi cant.

Sampling Strategy
The probe sampling strategy determines the distribution of the delay separating
consecutive test packets. There are three general probe sampling strategies that
may be used: periodic, random, and batch.

Periodic sampling consists of sending probes at equally spaced intervals (i.e.,
every n seconds). Opponents of this approach argue that one cannot fully
characterize the network behavior by “sampling” at regular intervals. There
might be some cases where unforeseen synchronization between the sending
of probe packets, or possibly other network events, could potentially lead to
inaccuracies. This kind of phenomenon, although theoretically possible, is
rarely seen in practice. RFC 3432 describes a methodology for network per-
formance measurement with periodic streams.

Random sampling consists of sending a probe at random intervals, where the
interval is regulated by a probability density function. Most commonly, a
Poisson process is used to distribute the probe packets, meaning that the
interarrivals between probing packets should be independent and exponen-
tially distributed with the same mean. This approach provides an unbiased
estimate of the desired time average, which is a property referred to as Poisson
Arrivals See Time Average, or PASTA. This approach is suggested by the IETF,
where RFC 2679 and RFC 2680 standardize metrics based on Poisson sampling
processes. Consequently, the IPPM working group has made the support of
Poisson streams mandatory for their One-Way Active Measurement Protocol
(OWAMP) described in RFC 4656.

The counterpoint to the use of a variable interpacket delay is based on the
fact that most of the real-world applications, which require tightly bounded
delay and jitter and therefore are often a focus of active monitoring, do not
have a Poisson distributed interpacket delay. Voice and video applications, for
instance, commonly have streams with a constant interpacket delay; so why
attempt to measure the performance of these applications on the network with
something other than a stream that emulates the application?

A variation on random sampling is to divide the total sampling period into
fi xed time intervals and then to send a probe within each interval with a
random offset from the start of the interval, where the offset is regulated
by a probability density function. The benefi t of this approach is that the
sample size within a defi ned number of intervals is known. This approach is
referred to as stratifi ed random sampling, where each interval represents a
stratum.

5.3 Active Network Monitoring 131

132 CHAPTER 5 SLA and Network Monitoring

In batch sampling, rather than sending individual probe packets, probes are sent
in bursts, where the spacing between bursts may be periodic or random.

The different sampling regimes are illustrated in Figure 5.1.
Several works have attempted to compare both approaches to fi nd if there is

a tangible difference between the methods. The conclusions are that there may
not be a signifi cant difference between Poisson and periodic probing, but that a
periodic pattern may lead to a slightly better match than a Poisson pattern. At the
same time, while both random and periodic sampling provide acceptable accuracy
for measuring delay and loss for VoIP and TCP, neither approach seems to provide
acceptable accuracy for measuring jitter.

In practice, however, periodic test streams with a constant interpacket delay
are most commonly used because this approach is easier to implement and inter-
pret and because it most closely emulates the applications that the active monitor-
ing is targeting. In recognition of this, RFC 3432 states:

Poisson sampling produces an unbiased sample for the various IP performance
metrics, yet there are situations where alternative sampling methods are
advantageous. . . . Predictability and some forms of synchronization can be
mitigated through the use of random start times and limited stream duration
over a test interval.

Test Rate
The test rate determines the amount of packets sent within the test duration, and
consequently, it affects the perturbation introduced by the measurement stream
on the actual network traffi c. For instance, sending a large amount of test traffi c
over a path with small bandwidth may potentially interfere with the delivery of
the actual measured traffi c stream that the active monitoring is trying to monitor.

Timen 2n 3n 4n

Periodic
sampling

Periodic
batch sampling

Random
sampling

Stratified
random sampling

FIGURE 5.1

Active monitoring sampling strategies.

Such an effect would clearly invalidate the measured results. Conversely, if the
test rate is too low, the measured characteristics of the test stream may not refl ect
the characteristics of the measured traffi c stream itself.

Determining an appropriate test rate is a balance between testing with a high
enough rate that the measured result is an accurate refl ection of the measured
traffi c stream, while ensuring that the measuring stream does not interfere with
the measured traffi c stream signifi cantly, such that it affects the very characteris-
tics it is trying to measure. There is no general answer to the question of what
test rate to use, but rather it depends on the characteristics of the application or
class being monitored.

Test Duration and Frequency
The test duration defi nes how long an active measurement test case will run. The
test frequency determines how many times the test will repeat within a specifi ed
time window. Assuming a given test traffi c rate, the test duration and frequency
need to be high enough that the measured result is an accurate refl ection of the
measured traffi c stream. The lower the (duration × frequency) in any given time
window, the greater the probability that signifi cant events will be missed, as illus-
trated in Figure 5.2.

If the active monitoring devices do not keep the raw data of the individual
probes, but rather keep a statistical representation of the results over the
test duration, as is commonly the case, then assuming a given test traffi c rate
the test duration will implicitly impact the measured statistics, as shown in
Figure 5.3.

Similarly to the discussion on the passive monitoring polling interval in Section
5.2.1, longer active monitoring test durations may be acceptable for trending
purposes; however, shorter durations are preferred where more granular measure-

D
el

ay

Time

D
el

ay

This event
missed

Active monitoring
test in progress

Time

Active monitoring
test in progress

Event detected

FIGURE 5.2

Impact of test (frequency × duration).

5.3 Active Network Monitoring 133

134 CHAPTER 5 SLA and Network Monitoring

ments are required, although this has to be balanced against the increased polling
load. A possible polling scheme could be as follows:

■ For troubleshooting, proactive measurement, and service level agreement
reporting, a network segment could be measured constantly with a test duration
of two minutes.

■ For trending, it may be more appropriate to measure for one hour every day,
during the peak hour previously determined by the more granular measure-
ments. Longer-duration measurements make the comparison between days,
months, and years easier and more statistically relevant.

Protocols, Ports, and Applications
In order to ensure that the network characteristics determined by a measuring
traffi c stream are representative of the traffi c stream they are measuring, it is
important that the measuring stream is classifi ed the same as the target stream
along the end-to-end network path. If DiffServ is deployed the network perfor-
mance experienced by applications will depend on how the traffi c is classifi ed
within the network; if measurement probes are classifi ed differently than the
emulated stream in any part of the network, they may experience different delay,
jitter, and loss, and therefore will not provide representative results.

Where simple classifi cation is used, the probe packets should share the same
marking (be it DSCP, IP precedence, or even 802.1p based) as the target stream,
but need not necessarily share the same IP addressing or protocol as the target
stream.

Where complex classifi cation is used, the criteria used for complex classifi ca-
tion should produce the same results for the measuring test stream as for the
measured application. If, for example, Voice over IP traffi c is classifi ed by a com-
bination of identifying UDP packets, with even UDP port numbers (e.g., represent-
ing RTP data) and from a specifi c source IP address, then headers of the probe
packets should be such that they also match these criteria. If the target traffi c

Time

D
el

ay

Min.

Max.

Avg.

Time

D
el

ay

FIGURE 5.3

Impact of test duration.

stream is TCP based and complex classifi cation is used, the IP protocol number
of the probe packets may also need to be set to 6 to indicate that the packets are
TCP.

Where DiffServ is deployed with AF classes supporting the concept of in-
contract and out-of-contract, the in-contract traffi c has a lower probability of
packet loss than the out-of-contract traffi c. Hence, if monitoring of the in-contract
SLA is required, it is important that any policers used to mark traffi c as in-contract
or out-of-contract do not remark the in-contract probes, else they may be wrongly
classifi ed and may not correctly report the in-contract SLA.

Some probing systems may attempt to characterize application as well as
network performance. For example, a probe may record the response time of a
domain name server (DNS) query to a particular DNS server or an HTTP Get query
of a specifi c Web page. In these cases, the results will capture multiple compo-
nents such as session establishment, end-system processing, sending, and receiv-
ing multiple packets between the client and the server, and closing the connection.
This kind of application-oriented operation may be useful to measure the user
experience, but gives no visibility of the performance of the individual compo-
nents that make up the measured response.

5.3.2 Active Measurement Metrics

Certain SLA metrics are important for defi ning IP service performance. Once the
appropriate test stream for your particular application has been identifi ed, consid-
eration needs to be given to which metrics to measure, how they are measured,
and how the resultant measurements should be interpreted. Multiple metrics can
be determined from a single test stream.

Delay
Delay can be quantifi ed either as one-way delay or as round-trip delay (round-trip
time, or RTT). Measurement of RTT requires that probes are sent from a sending
active monitoring agent to a responder and then back to the sender. In this case,
the RTT can be determined if the sender timestamps the probes when it sends
them (the timestamp is carried in the data of the probe packet) and subtracts this
value from the corresponding timestamp when it receives the probe response.
Measurement of one-way delay requires that the sender and receiver’s local time
clocks are synchronized such that the one-way delay can be determined by the
receiver, if the receiver also timestamps the probe packets on receipt; the differ-
ence between the sending timestamp and receiving timestamp is the one-way
delay.

Ensuring synchronization between sender and receiver with acceptable accu-
racy poses challenges; this is discussed later in more detail in the section on clock
synchronization. RTT is easier to implement and measure than one-way delay, and
may provide suffi cient measurement utility for many applications.

5.3 Active Network Monitoring 135

136 CHAPTER 5 SLA and Network Monitoring

For applications such as VoIP or interactive video conferencing, the important
delay metric when considering the engineering of the network is the one-way
end-to-end delay in each direction from end system to end system. From a moni-
toring perspective, however, it may be acceptable to monitor the RTT between
the end systems, because from a service perspective, it may not matter in
which direction excess delay is experienced; if excess is experienced at all,
then the service will be impacted. If SLA violations for delay occur, however,
RTT hides the detail of which direction the issue causing the violation occurred.
Therefore, measurement of one-way delay may be more useful for network
troubleshooting.

Delay can provide a number of important indicators of network performance.
Most active monitoring end systems will analyze the received probes and present
statistics on the resulting data set, but which statistics are important with respect
to delay measurement?

Minimum delay: The minimum network delay is the network delay “baseline,”
providing an indication of the delay that traffi c will experience when the path
from source to destination is lightly loaded. This will largely be composed of
propagation delay, switching delay, and serialization delay. Delay values above
the minimum provide an indication of the congestion experienced along the
path. Considering the percentile delay for a low percentile (e.g., 0.1 percentile)
will provide an indication of the minimum delay experienced while dis-
counting outliers (i.e, spuriously low results due to measurement system
glitches).

High-percentile delay: The maximum delay across a network may not be interest-
ing if it is caused by a very small percentage of outliers. Considering the per-
centile delay for a high percentile (e.g., 99.9 percentile) will provide an
indication of the maximum delay experienced while discounting outliers.

Threshold-exceeded count: For applications that have a stringent requirement on
delay, it may be useful to count the number of probe packets out of the total
that experienced a delay in excess of a defi ned threshold, set to indicate when
a packet arrived too late to be useful.

Average delay: The average delay may be interesting for trending purposes, but
for purposes of comparison, it should be recorded together with the standard
deviation of the sample; higher-than-normal standard deviations may be indic-
ative of spurious issues rather than of a trend.

Delay-Jitter
Delay-jitter, also known as jitter, is generally considered to be the variation of the
one-way delay for two consecutive packets. Measurement of one-way delay
requires timestamping at both sending and receiving devices, which requires
synchronization between sender and receiver; this is diffi cult for the reasons dis-

cussed later, in the section on clock synchronization. Fortunately, to calculate
jitter there is no need to know the individual one-way delays: instead, this can be
calculated from the difference between timestamps taken on single devices. No
operation need be performed between timestamps on two different devices,
which makes measurement of one-way delay-jitter simpler than measurement of
one-way delay.

Consider that Ts[n] is the time when packet n was sent, and Tr[n] is the time
when packet n was received; the one-way delay of this packet is denoted as D[n].
Then, the jitter J between packets n and n + 1 can therefore be calculated as:

J[n, n + 1] = D[n + 1] − D[n]

 = (Tr[n + 1] − Ts[n + 1]) − (Tr[n] − Ts[n])

 = (Tr[n + 1] − Tr[n]) − (Ts[n + 1] − Ts[n])

The most important statistics to report with respect to jitter are high-percentile
jitter, threshold-exceeded count, and average jitter. It is noted that the higher the
rate of the traffi c stream, the lower the measured jitter will be, as illustrated in
Figures 5.4 and 5.5, which show the variation in queuing delay within a queue,
and the resulting jitter measured by probes within that queue, for different probe
rates.

Therefore, measurement streams at rates below that of the measured traffi c
will likely report higher jitter than that actually experienced by the traffi c itself.
A batch sampling strategy may be used to overcome this problem.

Time

D
el

ay
Ji

tte
r

Lines indicate
probe packet

arrival.

Time

FIGURE 5.4

Lower rate, higher measured jitter.

5.3 Active Network Monitoring 137

138 CHAPTER 5 SLA and Network Monitoring

Packet Loss
In order to determine packet loss there needs to be a way to distinguish between
a lost packet and a packet with a large but fi nite delay. In practice, depending on
application and end-system implementations, packets delayed beyond a certain
threshold will be of no use and therefore can be considered lost; acceptable delay
thresholds may be set for different applications. The loss of an individual packet
is a binary measure, however, SLAs for loss are generally defi ned statistically and
therefore loss commitments need to be provided over a defi ned time interval.

The measure of the percentage of packets dropped may be useful for trending
purposes; however, it does not say anything about how those packets were
dropped. Therefore, it is not possible to understand the potential impact on appli-
cations from this measure alone. RFC 3357 introduces some additional metrics
that describe loss patterns and can be used to analyze the possible impact on
applications:

Loss period: The loss period defi nes the frequency and length (loss burst) of loss
once it starts.

Loss distance: The loss distance defi nes the spacing between the loss periods. It
is therefore recommended that the loss period and loss distance are measured
and compared against application-specifi c thresholds indicating where the
measured loss will unacceptably affect application performance. The impact
of packet loss may be signifi cantly different for different applications.

Time

D
el

ay
Ji

tte
r

Time

Lines indicate
probe packet

arrival.

FIGURE 5.5

Higher rate, lower measured jitter.

Bandwidth and Throughput
Application throughput is dependent on many factors, which can vary widely
depending on end-system implementations and traffi c profi les. Hence, active mon-
itoring systems generally do not attempt to characterize application throughput
explicitly. Rather, application throughput is generally inferred. Considering TCP
for example, TCP performance can be inferred from the measured network RTT
and packet loss rate. Active monitoring systems may send packets that appear to
be TCP packets (i.e., use the IP protocol number 6), but they need not, and com-
monly do not, implement a TCP stack (i.e., the transmission of the packets is not
controlled by TCP’s fl ow and congestion control mechanisms).

Reordering
IP does not guarantee that packets are delivered in the order in which they were
sent, and packet reordering can have an adverse impact on the performance of
many applications. Within an active monitoring test stream, reordering is deter-
mined by adding sequence numbers to the packets transmitted in the stream and
then comparing the sequence numbers of the received packets with the order
in which they are received. If a packet arrives with a sequence number smaller
than its predecessor’s then that packet would be defi ned as out of order, or
reordered.

The simplest metric by which to measure the magnitude of reordering is as a
reordering ratio, which is the ratio of reordered packets that arrived, relative to
the total number of packets received. A number of other metrics for quantifying
the magnitude of reordering are defi ned in RFC 4737.

Availability
Availability for IP services is generally defi ned either as network availability or as
service availability.

Network availability: Bidirectional network availability or connectivity between
two active monitoring devices can be determined using probes sent from a
sender to a responder and then back to the sender. For each response success-
fully received the network is considered available and for each not received
the network is considered unavailable. As with packet loss, a delay threshold
needs to be defi ned after which a response is considered “lost.”

Service availability: Service availability is a compound metric defi ning when a
service is available between a specifi ed ingress point and a specifi ed egress
point within the bounds of the committed SLA metrics for the service (e.g.,
delay, jitter, and loss).

Quality of Experience
Active monitoring end systems do not normally implement the full end-system
behavior for the applications they are trying to measure. Some active monitoring

5.3 Active Network Monitoring 139

140 CHAPTER 5 SLA and Network Monitoring

devices, however, will interpret the metrics of a received stream in order to
provide an objective measure of the quality of the application performance that
will be experienced from the perspective of the end users, which is also known
as the user quality of experience, or QoE. The most common QoE measure is the
mean opinion score (MOS), which provides a subjective numeric measure of the
QoE of a voice call. ITU standard G.107 uses a number of measured network
parameters to determine a “rating factor,” which can be transformed to give esti-
mates of the MOS for calls that use that network service.

5.3.3 Deployment Considerations

The following subsections detail the issues that should be considered in the
deployment of an active network monitoring system.

External versus Embedded Agents
An active measurement system uses active monitoring agents to send and receive
probe packets. These agents may be implemented in dedicated active monitoring
devices or alternatively may be embedded into existing network devices.

External Agents

External agents are implemented in dedicated active monitoring devices, which
may either use specialized hardware or dedicated but off-the-shelf computers
running active monitoring software. This approach decouples the forwarding path
(routers and switches) from the measurement devices; the dedicated active mon-
itoring devices appear as customers connected to the network and therefore this
approach may provide the closest view to the end-customer experience.

However, the use of dedicated devices requires additional network equipment,
which incurs additional cost in terms of capital expenditure, accommodation,
power, management, and maintenance. Therefore, for individual end users or
small branch offi ce locations the use of dedicated active monitoring devices is
generally not viable.

Embedded Agents

Some network hardware vendors implement software active monitoring agents
embedded in products, which may be network devices such as routers or switches
or could be end systems such as IP phones. The use of embedded agents in devices
that are already on the data-switching path allows the installed base of network
equipment to be leveraged, enabling the rapid rollout of an active SLA monitoring
system without requiring the deployment of new network equipment.

Active Monitoring Topologies
When deploying an active monitoring system, a key question is where to deploy
the active monitoring devices, be they external or embedded agents. In general,

the measurements from active monitoring should represent the application’s
experience, and therefore the active monitoring devices should be as close to the
application end system as possible. In all deployments, however, there are con-
straints that limit the location of such devices; there may be parts of the network
that are not under the control of the measuring organization, for example. In
large deployments, scalability of the active monitoring system is an additional
consideration.

The selection of the active monitoring topology depends on these constraints.
Consider the example physical network topology shown in Figure 5.6. A number
of different active SLA monitoring topologies, where the active SLA monitoring
topology is defi ned by the sources and destinations of the active monitoring test
streams, can be overlaid on this physical topology.

Full Mesh

A full mesh requires probes from every active monitoring location to every other
active monitoring location, as shown in Figure 5.7. This approach is the most
accurate because it measures end-to-end paths between all locations and gives full

Distribution or access routers

Core router

 Active monitoring agent

POP

*

*

* *

*

*

*

*

*

*

FIGURE 5.6

Example physical network topology.

5.3 Active Network Monitoring 141

142 CHAPTER 5 SLA and Network Monitoring

network coverage. In practice, however, it does not scale well as the number of
active monitoring nodes (n) increases; the number of bidirectional active monitor-
ing test streams required to interconnect them is n × (n − 1)/2, which increases
more than linearly with the number of nodes. Beyond a few nodes, this approach
may result in a confi guration burden, the test streams may use a signifi cant amount
of bandwidth, and the retrieval of the measurement data from all nodes may incur
signifi cant management system overhead. For these reasons, it is only used where
there are a limited number of sites to be monitored.

Partial Mesh

A partial mesh involves running a mesh of test streams on a subset of the topol-
ogy. For example, this could be a hub-and-spoke active monitoring topology in
networks where remote sites (the spokes) only communicate with the head offi ces
(the hubs), as shown in Figure 5.8. This approach reduces the number of test
streams required and provides end-to-end monitoring between a subset of loca-
tions. In a hub-and-spoke topology, if round-trip active monitoring is used, the
hub sites may be confi gured as the active monitoring probe senders, with the
spoke sites acting as responders; in this case, the active monitoring measurement
data need only be retrieved from the hub sites.

Hierarchical Mesh

In networks with any-to-any communication between sites, a full mesh may be
unscalable, while a partial mesh may not provide suffi cient network coverage. In

Active monitoring agent

Active monitoring test streams

FIGURE 5.7

Full-mesh active monitoring topology.

these cases, a hierarchical mesh may be used. With a hierarchical mesh, the active
monitoring is segmented. In a typical deployment, centralized active measurement
devices are located in each point of presence (POP) and test streams are run from
each POP to their connected remote sites in a hub-and-spoke active monitoring
topology. Test streams are then run in a full mesh from each POP to every other
POP, as shown in Figure 5.9.

A partial mesh facilitates the scaling of a network-wide active monitoring
system and therefore it is commonly used in practice. It signifi cantly reduces the
number of test streams required compared to a full mesh, while providing full
network coverage and being relatively easy to manage. If the POP active monitor-
ing devices are confi gured as senders for round-trip probes, with their respective
remote sites monitoring devices acting as responders, then the active monitoring
measurement data need only be retrieved from the central sites and there is no
need to access the remote sites.

This approach gives segmented measurements for the access links and across
the core network and maps well to the concept of a segmented SLA. The disad-
vantage of this approach is that it does not provide end-to-end monitoring. There-
fore, if measurements between two sites A1 and B1 were required, they would
need to be statistically estimated by combining, where possible, the measured
results for each segment in the end-to-end path (i.e., from site A1 to POP A, from
POP A to POP B, and from POP B to site B1).

For example, it is possible to estimate the average (or a specifi c percentile)
end-to-end delay by summing the average (or specifi c percentile) measured delay
for each segment. To estimate the end-to-end packet loss probability, if the prob-

Head office

Backup head
office

Active monitoring agent

Active monitoring test streams

FIGURE 5.8

Partial mesh active monitoring topology.

5.3 Active Network Monitoring 143

144 CHAPTER 5 SLA and Network Monitoring

ability of packet loss on segment x is given by Px, then the end-to-end packet loss
probability (P) across n segments is:

P = 1 − [(1 − P1) + (1 − P2) + . . . + (1 − Pn)]

It is not, however, possible to estimate end-to-end jitter from the measured
jitter of the segments on the end-to-end path because the measured jitter in IP
networks is not statistically additive in practice. Where a measure of end-to-end
jitter is required, end-to-end monitoring should be selectively deployed.

Measuring Equal-Cost Multiple Paths
Many networks have multiple paths between different parts of the network, for
reasons of both resilience and capacity provision. Interior Gateway routing Proto-
cols (IGPs) such as OSPF and IS–IS determine which paths will be used between
any two points in the network by choosing whichever path has the least total
cost, where the path cost is calculated by summing the individual metrics (which
express the preference of a link) of the links along the path. If there is more than
one least cost path, then the routing protocol will potentially distribute the traffi c
between the two points across all of those paths.

The algorithms that balance the load across the paths are generally referred to
as equal-cost multipath (ECMP) algorithms. ECMP algorithms are generally propri-
etary to each vendor. Different vendors will use different criteria to determine

Site A1 Site B1
POP A POP B

*

*

Active monitoring agent

Active monitoring test streams

POP

FIGURE 5.9

Hierarchical-mesh active monitoring topology.

which path will be used for a particular packet, although a common implementa-
tion is to perform a hash function using inputs including fi elds within the packet
header, such as source IP address, destination IP address, protocol number, source
UDP/TCP port, and destination UDP/TCP port.

ECMP poses a signifi cant issue for active monitoring for which there is no ideal
answer; a single measurement can only use one of the many possible paths and
not all of them. There are a number of potential resolutions to this issue; however,
none of them is a remedy that will provide a solution in all circumstances. It may
be possible to vary the source and destination IP addresses and UDP/TCP port
numbers of sent probes in order to try to use more than one of the paths. In
practice, however, ECMP algorithms can be diffi cult to predict (some also use a
random seed as an input to the hash), therefore, it may not be possible to guar-
antee that all paths are being tested. Alternatively, if the test is run from the load-
balancing router itself, then it may be possible to force probe packets via each of
the load-balancing interfaces in turn; however, this will not guarantee that response
probe packets use all return paths also.

Clock Synchronization
To achieve highly accurate one-way delay measurements, the clocks on all the
network elements participating in the test must be synchronized; any synchroniza-
tion error will result in an error in the measured one-way delay. Network devices
maintain local time using on-board clocks, which provide time to the device oper-
ating system. There are a number of potential ways that the local clocks on
network devices can be synchronized.

The most accurate way to synchronize clocks on network devices is to syn-
chronize each device with an accurate “stratum-1” external clock source such as
a global positioning system clock or radio clock. This is, however, an expensive
approach, and while it may be viable for devices within the core of the network,
it would not be viable for individual end users or small branch offi ce locations.

An alternative approach is to distribute stratum-1 time using a protocol, such
as the Network Time Protocol (NTP). NTP synchronizes clocks between network
devices by exchanging timestamped messages between a server and its clients.
NTP seeks long-term accuracy at the expense of short-term accuracy; it will, for
instance, slow or accelerate the internal clock (or add/subtract time quanta) to
adjust the local clock progressively to what it believes is the true time. If measure-
ments are taking place during those adjustments, strange results like negative delay
might be observed. NTP can usually maintain time to within 10 ms in WANs; this
does not generally provide a suffi cient level of accuracy for those applications
with tight delay bound requirements, which require one-way delay monitoring
such as VoIP and video streaming. In local area networks (LANs), under good
conditions, NTP can usually maintain time to 1 ms or better, which may be suf-
fi cient for active monitoring purposes.

Due to the constraints and costs of interdevice clock synchronization, a
common deployment model is to distribute time from a stratum-1 clock source to

5.3 Active Network Monitoring 145

146 CHAPTER 5 SLA and Network Monitoring

all the devices within a POP using a separate network (commonly the management
network) to ensure synchronization via NTP to within 1 ms or better. This enables
the measurement of one-way delay between POPs. Synchronization of access
routers via NTP is generally not accurate enough and the use of stratum-1 clock
sources in these locations is generally not viable, therefore, SLA reporting of the
access links from POP to access router is commonly reported as RTT rather than
one-way delay.

Acknowledgment
This chapter benefi ted enormously from the input of Emmanuel Tychon, technical
marketing engineer for Cisco IOS IP Service Level Agreement (IP SLAS), whose
contribution formed the basis of the active monitoring section.

CHAPTER

6MPLS Network
Management: An
Introduction

In this chapter, taken from chapter 1 of MPLS Network Management by Nadeau,
we look at the origins of Multi-Protocol Label Switching (MPLS) and introduce
some of its basic concepts, including the separation of the control and forwarding
planes of MPLS, the forward equivalence class, and the MPLS label. After this
introduction, we then introduce and discuss some of the new applications of MPLS
networks such as traffi c engineering and virtual private networks.

After an introduction to MPLS, we explain the basic premise behind why MPLS-
enabled networks need to be managed to provide scalable, usable, and most
importantly profi table MPLS networks. Given this motivation, we introduce how
MPLS networks can be managed effectively using both standards-based and non-
standard tools.

It is not our goal for this discussion to be an in-depth introduction to MPLS.
We assume you have a good level of understanding of MPLS already and that the
introduction given in this chapter can be used as a refresher.

6.1 A BRIEF INTRODUCTION TO MPLS
In the past, routing devices were designed with the control and forwarding com-
ponents commingled, which led to many shortcomings including low perfor-
mance and scalability issues. In particular, routing lookups, especially those
involving so-called longest-prefi x match lookups, were quite complex and expen-
sive in nature—in fact, quite a deal more complex than any layer-2 switching or
bridging operation.

Further complicating this process was the fact that many routers were required
to forward packets from many different routing protocols. By accepting packets
from different protocols, the positions of fi elds in packet headers could potentially

148 CHAPTER 6 MPLS Network Management: An Introduction

be different for nearly every packet received, potentially further degrading for-
warding performance. In contrast, nonrouting devices such as layer-2 bridges and
switches were able to forward traffi c at relatively high speeds because they based
their forwarding decisions not on variable-length packet headers and network
addresses of varying lengths, but on a short, fi xed-length fi eld.

For example, all asynchronous transfer mode (ATM) cells have a fi xed length
and well-defi ned format. Devices switching ATM cells only need to examine a
short identifi er and can immediately forward the cells based on this simple piece
of information. There is no question as to the position of the forwarding informa-
tion in a cell. However, layer-2 devices suffered from the lack of routing informa-
tion, which ultimately limited their scope and effectiveness. Let us now examine
the control and forwarding planes in more detail, and then investigate how they
can form the basis of an effi cient and scalable MPLS label switching router
(LSR).

The control component of a router is responsible for the exchange of routing
information between other network nodes. It is this information that is used to
form the router’s routing database. This database paints a picture of the network
from which a router can discern what it considers to be the most optimal path to
any given destination in the network. Once stabilized, this database of best paths
can be used to program the router’s forwarding table. In contrast, the forwarding
function of a router focuses exclusively on the actual decision of moving packets
between ports on a network node.

Each packet contains a header with source, destination, and other information.
When a node receives a packet on a port, it needs to decide which port (or ports)
it needs to forward that packet to. The forwarding process is quite mechanical by
nature. When a node receives a packet, the forwarding component in that node
will fi rst examine the destination address contained in the incoming packet as
well as perhaps other fi elds in the header. This information is then compared with
entries in its forwarding database. It is this simple process that allows the forward-
ing component to make quick and simple decisions as to where the packet needs
to be forwarded.

In some devices, the forwarding component is tightly coupled with the routing
component. This approach sometimes results in limited portability of that technol-
ogy to other types of forwarding planes. It also sometimes results in diffi culties in
extending the protocol with additional functions. MPLS is built on both the
premise of a clean separation of the control and forwarding functions to take
advantage of their individual advantages, as well as using them together in concert
to provide additional advantages not possible with other technologies.

The control and routing functions of MPLS are based on the Internet Protocol
(IP) suite of protocols, which includes IP, RSVP, BGP, OSPF, and so on. The basic
device in an MPLS-enabled network is the LSR. This device implements both the
MPLS control and forwarding planes. The control function of an MPLS LSR is
responsible for distributing routing information to other LSRs, as well as the infor-
mation required to convert this information into forwarding tables that can then

6.1 A Brief Introduction to MPLS 149

be used by the forwarding function. The MPLS forwarding function is based on
the use of a short, fi xed-length label. This concept comes from the use of the same
concept in layer-2 technologies such as ATM and frame relay, which base forward-
ing actions on a short, fi xed-length identifi er.

6.1.1 Forward Equivalency Classes

The forwarding function of a router is responsible for forwarding traffi c toward
its ultimate destination. The information in the forwarding table is programmed
based on information from the control plane. If a packet is not delivered via a
local interface directly to the destination, the router must forward the packet
toward the ultimate destination using a port that will steer that traffi c on a path
considered most optimal by the routing function.

For this reason, a router must forward traffi c toward its destination via a next-
hop router. This next-hop router may be the next-hop along the most optimal
path for more than one destination subnetwork, so many packets with different
network layer headers may be forwarded to the same next-hop router via the same
output port. The packets traversing that router can then be organized into sets
based on equivalent next-hop network nodes.

We call such a set a forward equivalency class (FEC). Thus, any packet that
is forwarded to a particular next-hop is considered part of the FEC and can be
forwarded to the same next-hop. One important feature of the FEC is the granular-
ity of the classifi cation of traffi c it can encompass. Since the FEC is based on a
next-hop router, it can include different classifi cations of packets. For example,
since the routing information for a particular next-hop classifi cation can be based
on a destination prefi x, it might include every packet traveling toward that desti-
nation. In this way, the granularity of packets classifi ed by that FEC is quite coarse.
However, if the routing database has programmed some next-hops for some traffi c
based on an application layer, for example, the traffi c granularity might be much
fi ner.

6.1.2 MPLS Shim Header

MPLS packets are encapsulated using an MPLS shim header. The header has this
name because it defi nes an additional header that is placed—or shimmed—between
existing layer-2 and layer-3 headers. Figure 6.1 shows the MPLS shim header
format. The shim header comprises a sequence of one or more label stack entries.

FIGURE 6.1

MPLS shim header format.

0 0

0

1 2 3 4

Label EXP TTLS

5 6 7 8 9 01 2 3 4 5 6 7 8 9 01 12

2

3

3

4 5 6 7 8 9

1

150 CHAPTER 6 MPLS Network Management: An Introduction

The entries in the sequence can be viewed together as a conceptual stack. A label
stack entry comprises several components: label, EXP bits, the bottom of the stack
bit, and TTL.

The fi rst element is the MPLS label. The label is a fi xed-length, 20-bit quantity
that represents the label used to switch a packet. This label has local signifi cance
on a given interface between two neighboring LSRs only. That is, a label taken
out of the context of a specifi c interface between two LSRs may or may not be
found to be useful, or may be assigned to a different segment of a label switched
path (LSP). The second portion of the header is 3 bits, called the experimental
(EXP) bits. These bits are reserved for experimental use, such as for the purposes
of classifying LSPs using differentiated services (DiffServ) code points. The next
element of the shim header is a single bit used to indicate the “bottom of the
stack.” This bit is set to 1 for the last entry in the label stack (i.e., for the bottom
of the stack) and 0 for all other label stack entries. The fourth and fi nal element
in the stack is an 8-bit quantity called the time-to-live (TTL) fi eld. The format of a
label stack entry is detailed in Figure 6.2.

Label Stack Entries
MPLS packets may contain more than one label. Depending on the application, it
may be desirable to nest LSPs. For example, some traffi c engineering (TE) and
virtual private network (VPN) operations fi nd it useful to nest LSPs. When labels
are nested, they are represented in the MPLS shim header as a stack structure, that
is, a last-in, fi rst-out (LIFO) queue. The label stack is represented as a sequence of
label stack entries in this stack. The topmost label appears closest to the layer-2
header, and the bottommost closest to the layer-3 header. Figure 6.2 demonstrates
the label stack as a sequence of label stack entries. Each label stack entry is repre-
sented by 4 octets, or 32 bits, of data. Only the topmost label stack entry is used
for any single lookup in the MPLS label forwarding information base (LFIB).

6.1.3 MPLS Label Switching

The MPLS forwarding plane is responsible for forwarding traffi c based on an MPLS
label. An MPLS label is a short, fi xed-length, 20-bit value (see Figure 6.1) that has
no structure. The MPLS label only has local signifi cance between any two LSRs;
therefore, the same label can be reused simultaneously within an MPLS-enabled
network. In order for an MPLS LSR to be able to switch an MPLS packet, the label
used in that packet’s header must represent an entry in the MPLS LFIB of that LSR.

Layer-2
header

Layer-3
headerLabel L(2) EXP S-0 TTL Label L(1) EXP S-0 TTL Label L(0) EXP S-1 TTL

FIGURE 6.2

The MPLS label stack as it appears within the MPLS shim header.

6.1 A Brief Introduction to MPLS 151

The LFIB is essentially the label-to-label switching database used to program the
LSR’s forwarding plane. Once a packet is received, its label will be used by the
forwarding plane to make a decision on where to forward the packet. At the edges
of an MPLS-enabled network, LSRs will map IP packets into FECs based on infor-
mation provided by the MPLS control plane. Once classifi ed into a FEC, the for-
warding plane will be able to encapsulate any packet it receives that matches that
FEC using the next-hop MPLS label assigned to that FEC.

Although assigned to a particular packet, the MPLS label does not necessarily
encode the packet’s network layer address, just its next-hop that will allow the
packet to be forwarded to its destination, because many packets that are in the
same FEC will be assigned the same label. This means that the next-hop choice
may span multiple packets to many destinations. Thus, an MPLS label really
encodes a FEC identifi er. For example, if a FEC has classifi ed all packets destined
for the same next-hop based on multiple layer-3 destination network prefi xes, all
of the packets matching that FEC will be assigned the same label (and next-hop).
Once a packet is assigned a label, it will be switched based on this label until it
reaches its ultimate destination. At that point, the MPLS header is removed and
the packet forwarded using its original encapsulation. When an MPLS packet is
received, the LSR attempts to fi nd a matching forwarding entry in its LFIB based
on the packet’s label and the interface on which the packet was received.

There are three operations—pop, push, or swap—that may be executed on
the label stack when an MPLS packet is received and an entry matching this label
is found in the LFIB. All operations are executed on the top entry of the stack.
When the topmost label is “popped” from the label stack, its label stack entry is
completely removed from the MPLS shim header. When a label is “pushed” onto
the stack, it moves all of the existing labels down by one relative index in the
stack and inserts itself at the top of the stack. When a swap operation is executed,
the topmost label entry is replaced with a different label, but the size of the stack
remains the same. The S bit is set to indicate the last or bottommost entry in the
label stack. All other entries in the label stack must set the S bit to zero.

The example shown in Table 6.1 demonstrates what an MPLS LFIB might look
like. In the example, labels that are received on this LSR’s MPLS interface, “MPLS-

Table 6.1 Simplifi ed LFIB

Incoming Interface Incoming Label Outgoing Label Next-Hop Outgoing Interface

MPLSEthl/2 1000 1050 10.20.0.1 MPLSEthl/3

MPLSEthl/2 1002 1070 10.30.0.1 MPLSEthl/6

MPLSEthl/2 1006 “pop” — —

MPLSEthl/2 1005 1080 10.40.0.1 MPLSEthl/7

152 CHAPTER 6 MPLS Network Management: An Introduction

Ethl/2,” are switched to various other interfaces based on the incoming label. For
example, when a packet containing label “1000” is received on interface “MPLS-
Ethl/2,” it is swapped for label “1050” and is forwarded on interface “MPLSEthl/3”
to next-hop address 10.20.0.1. Note that this happens in all but the second-to-last
row. The outgoing label in this case is noted as “pop.” This refers to the removal
of the MPLS shim header from the packet. Packets that have their MPLS headers
stripped or “popped” are then forwarded on using their layer-3 encapsulation.

MPLS Domain
An MPLS domain is composed of one or more MPLS LSRs. An LSR is any router or
switch that supports the forwarding of MPLS-encapsulated packets based solely
on the incoming interface and the information in the shim header. An LSR that
sits at the edges of an MPLS domain and forwards traffi c into and out of the MPLS
domain is called a label edge router (LER). An LER maintains at least one interface
into and out of the MPLS domain and acts as the point where the MPLS shim
header is fi rst imposed onto the incoming packet, and where the header is ulti-
mately stripped and the packet forwarded using its original layer-3 encapsulation.
The LER must connect between the incoming technology and MPLS or vice versa.
This process, in effect, tunnels the incoming technology through the MPLS network
by encapsulating it within the MPLS packets.

From this point on, we will assume that the layer-3 payload is always IP. Other
protocols are equally supported and handled by routing, switching, or forwarding
engines specifi c to their characteristics. However, to avoid confusion in the text
we will limit our view to the most common payload, which is IP.

Figure 6.3 shows a simple MPLS domain as well as the basic components of
an MPLS-enabled network. The fi gure shows how MPLS LERs connect to external
IP networks that may or may not contain customer sites. LERs are interconnected
with other LERs within an MPLS-enabled domain. Other MPLS LSRs are intercon-
nected in various ways within the MPLS domain.

Label Switched Path
An LSP is the path taken through the MPLS domain by a packet. The path taken
may not be understood or completely stored by any one LSR within the MPLS
domain, although in some cases it is. For example, traffi c engineering allows the
complete path to be stored at all LSRs along the path. This is because the labels
swapped at each LSR have only local signifi cance with regard to any two adjacently
connected LSRs. Each LSR simply makes a local forwarding decision based on the
incoming label of a packet, and switches the packet to a known outgoing label
on a different interface. We should note that once the LFIBs have been established
on all LSRs along the path of an LSP, the LSP is uniquely associated with the label
and interface it is associated with, and therefore it is uniquely associated with a
FEC.

An example of a label switched path is demonstrated in Figure 6.4. IP traffi c
to a destination reachable via the second LSR from the left is bound to a FEC at

6.1 A Brief Introduction to MPLS 153

the leftmost LSR. All traffi c entering the leftmost LSR will be classifi ed using this
FEC and will subsequently have MPLS shim headers imposed with a specifi c label
associated with this FEC—in this case 15. The MPLS-encapsulated packet will leave
the leftmost LSR and will have its label swapped with the one indicated on the
link as it traverses the LSP. When it arrives at the rightmost LSR, the shim header
is removed and the packet forwarded out the rightmost interface using its original
encapsulation.

 IP network

Label switching
router

Non-MPLS router

 IP network

LER

LER

LER

MPLS domain

FIGURE 6.3

Components of an MPLS network.

IP

IP 15 IP 18 IP

IP

17

IP traffic grouped into a
single FEC and transmitted
via an MPLS LSP. MPLS
shim header imposed here.

LSP switched
using MPLS labels.

MPLS shim header removed.
Packets forwarded
using original IP header.

FIGURE 6.4

Example of an MPLS label switched path.

154 CHAPTER 6 MPLS Network Management: An Introduction

6.2 MPLS APPLICATIONS
Currently, the two most important applications of MPLS are TE and VPNs. However,
other new applications are taking shape such as DiffServ-aware TE that will enable
voice over IP (VoIP) applications over MPLS, as well as virtual circuit emulation
and virtual private local area network (LAN) services over MPLS networks that
will allow existing MPLS networks to be leveraged to offer additional emulated
services. Although some of the applications of MPLS such as TE and VPNs techni-
cally can and are, in fact, currently being implemented and deployed using exist-
ing non-MPLS-based protocols, MPLS makes these applications simpler and more
scalable. The reason that MPLS is able to achieve these goals is that it takes advan-
tage of the separation of the routing and forwarding functions, and because of its
integrated signaling mechanisms. This has the advantage of reducing or eliminat-
ing many of the limitations of traditional routing and provisioning. For example,
in the use of VPNs, MPLS simplifi es the act of confi guring a VPN by only requiring
that the operator confi gure the edge devices connecting the customer edge net-
works into the VPN. MPLS signaling takes care of the actual connection to other
pieces of the VPN. MPLS further improves the scalability by obviating the need
for state information about the VPN to be stored anywhere within the core of the
network.

An example of an MPLS network that supports VPN is depicted in Figure 6.5.
In this example two VPNs are supported: VPN A and VPN B. In order to support
each VPN, the provider edge (PE) devices that connect the VPN sites must be
confi gured. The core of the network is composed of provider core LSRs, or P
routers. For example, P1 denotes a core P router in the fi gure. The core P routers
do not have their confi gurations modifi ed to support new sites of VPNs.

Another example of an important application of MPLS is in TE, where through
the use of MPLS it is possible to specify explicit routes during the process of setting

VPN A

VPN AVPN A

VPN B

VPN B

PE1 PE3

PE4
P1

P2

P3

MPLS core
network

P4

P5
PE2

FIGURE 6.5

Example of an MPLS VPN.

up a path such that some specifi c data may be routed around network hot spots.
Current technologies use routing protocols that tend to converge on a single,
least-cost path to each possible (aggregate) destination. This occurs even if there
are multiple least-cost paths to the same destination.

There are several problems with this approach. First, in many cases, parallel
equal-cost paths exist to the same destinations, but all but one is preferred by the
routing protocol. Second, since protocols generally prefer a single path that is
considered most optimal, the routing protocols will direct all of the traffi c destined
to that destination onto that path. This often results in network hot spots at points
in the network where many paths cross a single node.

It is possible to overcome these shortcomings with MPLS TE, since it allows
an operator to specify an explicit route to direct some fraction of traffi c through
other parts of the network that are not selected by the routing process. These
alternate paths may or may not be parallel least-cost paths. The important
point is that the operator has the ability to override the routing protocol and
choose which path certain fl ows of traffi c take. Furthermore, TE allows an opera-
tor to create alternate backup paths, which bypass network trouble spots (i.e.,
disabled nodes or links). Given this mechanism, it is also straightforward to estab-
lish MPLS TE tunnels that transport packets that would not otherwise be correctly
routed across a backbone network. For example, this is sometimes necessary in
order to support VPNs across a backbone network between VPN end points,
thereby making address translation and more cozily tunneling approaches
unnecessary.

An example of MPLS TE is depicted in Figure 6.6. Assume that each link carries
an equal cost that is given to the routing protocol. Notice that given this assump-
tion, two equal-cost paths that traverse the same number of network nodes exist.
The thick dotted line represents the path through the network that the routing
protocol has chosen as most optimal. The thin dotted line represents an MPLS TE
tunnel that has been confi gured to override the path chosen by the routing pro-
tocol. This allows some of the traffi c that would have taken the default path to
be steered across the alternate path. In this example, the TE tunnel has been
confi gured to use an alternative, unused path through the network in an effort to
better utilize network resources.

6.3 KEY ASPECTS OF MPLS NETWORK MANAGEMENT
Networks need to be managed for several reasons. First, from an entirely practical
perspective, devices need to be monitored to ensure that they are functioning
properly. Devices may also alert the operator to fault conditions, but if no correc-
tive action is taken by the operator, then the device may continue to malfunction.
For example, if a router’s routing table has grown to a size that will soon exceed
its available memory, it may be benefi cial for the device to inform the operator
of this condition.

6.3 Key Aspects of MPLS Network Management 155

156 CHAPTER 6 MPLS Network Management: An Introduction

Services that are offered by a network also need to be managed, particularly
when they are provisioned. In these cases, devices are contacted and confi gured.
Managed services also require monitoring and maintenance. For example, if a
service provider offers a VPN service to a client, it may be necessary to monitor
the health and performance of the network paths that carry that client’s traffi c to
ensure that they are getting the network services they paid for. In fact, this
monitoring arrangement is sometimes a contractual necessity.

In all of these scenarios, it is either extremely diffi cult or nearly impossible for
operators of medium to large networks to monitor every device in their networks
by hand; instead, most prefer to do this in an automated manner. Some accomplish
their management using a centralized approach, as is demonstrated by the sophis-
ticated operations center shown in Figure 6.7. However, others may choose to
have several smaller operations centers that are distributed. In either case, it is
extremely time consuming, and hence costly, for an operator to manually connect
to each device’s console in order to monitor its status, isolate faults, or confi gure
the device. This becomes more obvious when you consider those provider net-
works where the network devices are located over a wide range of geographic
areas. In this case, it becomes even more costly to travel to a remote location or
hire additional staff to be on site where those additional devices are located.

Path selected by routing protocol
TE tunnel

FIGURE 6.6

Example of an MPLS traffi c-engineered tunnel.

Second, to make a sound business case for deploying MPLS, it must be made
fully manageable so that the operational aspects of the network can scale up to
numbers of devices, services, and customers that will make the network profi t-
able. For example, the money spent debugging a problem by sending an operator
into the fi eld or by having the same operator go from router/switch to router/
switch scratching his or her head might be better spent in building an automated
system that can listen for alarms (see Section 7.6.6) that the router/switch can
emit when in distress. These alarms can then be used to pinpoint and isolate the
scope of the problem.

Once isolated, a management system can take automated actions to correct
the situation or simply alert an operator. An automated system can even be smart
enough to not bother an operator if it deems a problem insignifi cant. Furthermore,
management of the MPLS network becomes paramount when placed within the
context of service level agreements (SLAs) and MPLS virtual private network ser-
vices. When SLAs are made between customers and providers, the service pro-
vider will not earn any money from that customer unless the services provided
meet the SLA. The monitoring of the agreed-on terms such as bandwidth, latency,
delay, or service availability can be best accomplished using a network manage-
ment system (NMS).

6.3.1 Origins of Network Management for MPLS

Once MPLS began to become mature and operational experience began to be
gained by service providers deploying the technology, it was clear that MPLS was
not very manageable given the lack of standard tools and management interfaces

FIGURE 6.7

A network management operations center.

6.3 Key Aspects of MPLS Network Management 157

158 CHAPTER 6 MPLS Network Management: An Introduction

available at the time. In particular, the majority of MPLS vendors including Juniper
and Cisco had only provided proprietary command-line interface extensions for
the confi guration and monitoring of MPLS features. When MPLS deployments
were in early stages, it was acceptable for these and other vendors to provide
minimal management capabilities for the MPLS features since operators were
largely interested in simply having the protocol function up to specifi cations.

However, as deployments became more mature and providers were more
comfortable with the notion of using this protocol, it was clear that management
of the protocol and its many features was now a priority. Furthermore, in hetero-
geneous networks where devices from multiple vendors had to coexist, an even
larger problem existed. Since vendors had only deployed proprietary command-
line interfaces, providers deploying devices from more than one vendor had to
contend with more than one management interface for MPLS. This approach is
expensive because it requires duplication of effort to manage the confi guration
and monitoring of the same features. The duplication of resources often ultimately
translates into lost revenues for service providers. It was these requirements that
began the push for standard interfaces for MPLS. In particular, the work on the
IETF MIBs began in earnest during this time.

6.3.2 Confi guration

One sore point for many operators is how to confi gure each one of the potentially
hundreds of devices in their network. Further complicating the picture of con-
fi guration is the fact that many, if not most, provider networks are not comprised
of devices made by a single vendor. This results in the service provider having to
learn at least one different confi guration language for each vendor from which it
purchases equipment. Even further compounding this situation is that, through
the magic of mergers and acquisitions, many vendors actually supply devices that
have different confi guration languages depending on which product line of theirs
you choose to deploy.

It should be obvious from this description of the problems inherent in confi g-
uring a network of devices that it is a diffi cult situation at best. What would alle-
viate this situation would be the use of a common language and associated
interfaces that can be used for the confi guration of devices. There are many such
languages available, yet no single one is used ubiquitously. Perhaps the closest
contenders are the Simple Network Management Protocol (SNMP)—that is,
SNMPvl (RFCs 1155, 1157, and 1213), SNMPv2c (RFCs 1901–1906), and SNMPv3
(RFCs 3411–3415)—the Common Object Request Broker Architecture (CORBA),
and the eXtensible Markup Language (XML). Unfortunately, today the clear winner,
at least for confi guration, is the proprietary command-line interface (CLI), although
SNMP is generally regarded as the best option for monitoring.

The diffi culty with a proprietary CLI is that it is generally accessible only via
Telnet or hardwired connections and generally has no standards-based schema.
This results in every vendor implementation having a different management inter-

face, which is clearly not something that excites a provider deploying a multiven-
dor network. Although the CLI represents a majority of management interfaces,
at least in the confi guration area, the tide is turning toward standardized interfaces
as networks grow ever more complex. These interfaces are commonly used for
monitoring, and in many cases for provisioning as well. We will delve into the
details of these various standard mechanisms for confi guration in the pages to
come.

6.3.3 Service Level Agreements

Typically, when a user signs up for access service (e.g., DSL, cable modem, dial-
up), the service provider only agrees to provide that user with access to their
network, and sometimes eventual access to the Internet. This agreement typically
only specifi es a minimum amount of bandwidth and provides no specifi cs about
the average delay between access points and any other point in the network, or
generally any other guarantees of service. Furthermore, there is typically no
minimum response time during which outages in the network will be corrected
by the service provider. This generally means that users of a service are out of
luck if their service does not function as advertised.

Some operators take their level of service a step further. These operators
choose to monitor and maintain what some refer to as the “user experience.”
Although many operators strive to have networks simply function (i.e., route and
switch a lot of traffi c), others wish to ensure that their network is performing at
levels acceptable to its customers. For example, this can mean that if user access
to the Internet is unacceptably slow, the service provider will take some action
to correct the situation—sometimes automatically. This approach is in direct con-
trast to other providers who would be content with end users just having access
to the Internet at any speed.

The notion of service assurance and verifi cation can be taken a step further
beyond a provider assuring that they will monitor the health of user services.
Frequently, end users and service providers will enter a formal contract called a
service level guarantee or agreement. This agreement is an offi cial agreement or
contract between the service provider and a customer that specifi es that the pro-
vider will sell a certain service to an end user for a certain price.

If a service is provided as agreed on, the end user must pay a certain fee for
the service. However, if the service is not provided, typical recourses for the user
are a reduction or refund of the fee they pay for the service during that period.
Often the amount of additional work that a provider must perform to ensure that
a service is functioning according to the SLA is signifi cant. This elevated cost is
precisely why SLAs are typically only signed between service providers and higher-
paying customers such as large corporations or other service providers.

For example, in the United States the service provider market is largely focused
on selling bandwidth. This bandwidth is sometimes sold with guarantees of quality
such as minimum delay and jitter. In other parts of the world, service providers

6.3 Key Aspects of MPLS Network Management 159

160 CHAPTER 6 MPLS Network Management: An Introduction

concentrate instead on selling VPN services where site-to-site access quality is
most important. All of these deployments typically contain SLA agreements with
guarantees on the components of the service that the customers fi nd most impor-
tant, as well as the things a provider is willing to assure.

Given the motivation and elevated revenues from SLA agreements, providers
are motivated to offer these premium services. However, these services do not
come without additional effort on their part to verify the service quality and take
corrective action when it does not meet the specifi ed quality. In this regard,
manual verifi cation of SLAs is highly undesirable from a provider’s perspective.
This is simply because of its repetitive and frequent nature, especially when per-
formed on a large scale. SLA agreements may also require that the operator take
corrective action within some short period of time after a fault is detected. It is
for these reasons that SLA monitoring and verifi cation can be cumbersome or
impossible if done manually, and therefore is a driver for the task to be performed
by a fully or semi-automated network management system.

In order to realize a management system that can verify SLAs in an automated
fashion, network management functions must be integrated into devices that must
be monitored. In particular, common management interfaces allow a provider to
effectively monitor the data points of a service. This is especially important for
heterogeneous networks and is also important in cases where customers insist on
having independent third parties verify the SLA, since these companies often
prefer not to build SLA verifi cation software that is customized to a particular
provider’s network. Instead, they prefer to build software that is able to talk to a
large set of devices in order to service many different service provider
networks.

Service Level Agreement Verifi cation
One often overlooked aspect of SLAs is called service level agreement verifi ca-
tion. The agreement of services between the end user and provider can be verifi ed
in several ways. The simplest form might be to issue Internet Protocol (IP) pings
that emanate from the customer access points to other points in their networks
or to locations within the Internet. This simulates user traffi c traveling along the
data path that all traffi c takes through the network. If this traffi c takes too long to
traverse the network—or worse, is not getting to certain points within or external
to the service provider’s network—then the user experience suffers. Monitoring
of the user experience might also be as sophisticated as monitoring the
performance of many key network devices, collecting this information at a
central location, and then making dynamic adjustments to the network using this
information.

More sophisticated SLA verifi cation is typically accomplished using network
management tools that are specifi cally designed for the task. These tools include
remote monitoring (RMON) or simply monitoring various counters on the network
devices. Figure 6.8 illustrates how SLA monitoring and verifi cation might be
accomplished within an MPLS VPN deployment. An NMS is positioned at key

points, monitors certain traffi c and quality of service (QoS) statistics, and reports
them to the operator and customer. SLA verifi cation can be done by the service
provider, the customer, or by an unbiased third party.

Use of standard network management interfaces to expose variables within the
often diverse population of network devices present in service provider networks
is critical, especially when a third party is contracted to do the verifi cation. The
reason for this is simple: interoperability. SLA verifi cation becomes quite cumber-
some and costly if the party performing the verifi cation is required to customize
the verifi cation suite for every device in a network. This is important if a third-
party SLA verifi cation company either sells software/hardware to service providers
or performs the SLA verifi cation service directly.

6.3.4 Fault Isolation

Fault isolation and detection are simply means by which operators can detect,
isolate, and report on defects discovered within their networks. The operator can

Network management
system used for SLA

monitoring

SLA monitoring point
for VPNs A and B

SLA monitoring
point for

VPNs A and B
VPN B

VPN B

VPN A

VPN A

VPN A

PE1 PE3

PE4
P1

P2

P3

P4

P5
PE2

FIGURE 6.8

Example of a network of VPNs where SLAs are monitored by gathering information at
certain key points within the network.

6.3 Key Aspects of MPLS Network Management 161

162 CHAPTER 6 MPLS Network Management: An Introduction

use the information to repair the defect(s) found manually or automatically. When
a device detects a problem, it will emit one or more messages as an alarm to alert
the operator of the fault condition. These messages can be emitted under many
conditions, including loss of service, device in distress (e.g., low on memory), or
when the device has rebooted. Fault isolation is usually accomplished in modern
networks in a three-part process that includes devices emitting asynchronous
alarms, operators receiving those alarms, and then operators taking possible action
because of those alarms.

When a network device such as a router or switch discovers that an event of
interest has occurred, it may issue an alarm. This alarm can be of the form of a
system console message or an SNMP notifi cation, which can be transmitted to the
operators as an inform or notifi cation. The reason for raising the alarms can
include a confi gured threshold being exceeded, an internal fault condition such
as low memory, or a system reboot. Although other forms of alarms do exist,
including audible buzzers or fl ashing notifi cations on the command terminal,
SNMP notifi cations are used in the majority of deployments.

Depending on the size and structure of the service provider’s network, the
operator may place one or more listening probes (i.e., workstations) around their
network to listen for and collect these messages. Figure 6.9 demonstrates such a
confi guration where an NMS is deployed within an MPLS network. One of its
purposes is to listen for notifi cations emitted from the LSRs in that network. The
fi gure shows one of the links in the sample network breaking and the LSRs on
either side of that link emitting an SNMP notifi cation. The NMS would catch this

Issues SNMP
notification

Issues SNMP
notification

NMS listens for
notification

Fault!

FIGURE 6.9

MPLS fault isolation using SNMP.

notifi cation and possibly alert the operator to the situation or trigger an automated
procedure for possible corrective action.

Sometimes, when the networks are large and/or multitiered, the operator will
even have notifi cations aggregated and perhaps even summarized if processing
power permits, and then relayed to a central alarm-processing center. This center
will then decide whether or not to issue a trouble ticket for an alarm and dispatch
personnel to address the situation. It should be obvious that the activities just
described would be next to impossible to achieve if done manually in any practi-
cal network deployed today. For MPLS to be deployed successfully on a large scale,
network nodes must be capable of issuing the necessary alarms (i.e., SNMP noti-
fi cations) that are specifi c not only to MPLS functions, but also to the other func-
tions in the devices being deployed.

6.4 MANAGEMENT INFORMATION BASE MODULES FOR MPLS
The IETF, ITU, ATM Forum, and other standards bodies defi ne documents called
management information base (MIB) modules that provide an external manage-
ment interface for protocols and other features that are standardized within those
organizations. Each MIB module can be thought of as a form of a data model used
to manage the protocol or feature. The MIB module also defi nes the syntax,
maximum access levels, and object interactions between those objects defi ned in
that and other MIBs. The collection of MIB modules comprises the conceptual
MIB that defi nes the entirety of MIB modules. We should also note that a MIB
module is sometimes referred to as “a MIB” within certain contexts; thus, care
should be taken to discern when you mean a single MIB module or a collection
of MIB modules that comprise a MIB.

The MPLS Traffi c Engineering MIB (MPLS-TE MIB) module and the MPLS Label
Distribution Protocol MIB (MPLS-LDP MIB) were the fi rst MIBs proposed at the
IETF in 1998. As standards-related work on these MIBs continued within the
working group, and implementation and operational deployment by both device
vendors and service providers continued, the MPLS-TE MIB had grown signifi -
cantly in both size and scope. The primary reason for this was due to feedback
and requirements from those deploying the MIB.

In essence, the MIB has grown to encompass the functionality of both general
LSR functions as well as TE functions. It was at this point that the MPLS working
group decided that the MPLS-TE MIB needed to be split into two MIBs: one
to encompass general LSR switching functions, and one to encompass the
general MPLS TE capabilities. So the MPLS Label-Switching Router MIB (MPLS-LSR
MIB) was split from the MPLS-TE MIB and chartered as a separate working
group item.

As time went on, the feedback process from service providers continued. The
MPLS FEC-to-Next-Hop Label-Forwarding Entry MIB (MPLS-FTN MIB) was pro-
posed to expose the FEC-to-NHLFE mapping within LERs. In addition, MPLS BGP/

6.4 Management Information Base Modules for MPLS 163

164 CHAPTER 6 MPLS Network Management: An Introduction

VPNs were proposed, and implementation of this new application of MPLS had
begun as well. Not long after this, the Provider-Provisioned MPLS Virtual Private
Network MIB (PPVPN-MPLS-VPN MIB) was proposed to the IETF and was adopted.
It is likely that there will be many other standard MIBs provided by the Internet
Engineering Task Force that cover all of the essential and common MPLS function-
ality, thereby making the manageability of MPLS networks far easier and straight-
forward for those who choose to utilize this technology.

Table 6.2 enumerates many of the MIB modules that were available at the time
this chapter was written. More will surely become available as time goes on.
However, we provide this table to illustrate those that are currently available so
that you might see the progression from essentially no standard management
interfaces for MPLS, to the near dozen available today.

The remainder of this text will focus on SNMP MIB-based solutions for manag-
ing MPLS networks. Figure 6.10 illustrates how each MIB fi ts in with the others
as well as how each one depends on the others. The MIBs are organized as
follows:

MPLS-TC MIB describes textual conventions that are used by all MPLS-related
MIBs. The remaining four MIBs are shown as having dependencies on
the MPLS-TC MIB, as well as the IF-MIB (RFC 2863). Since nearly all of the
MIBs are related to the IF-MIB, a specifi c icon has not been included for it in
the fi gure; instead, a gray triangle in the corner of each MIB indicates this
dependency.

Table 6.2 MPLS MIB Module Drafts

MIB Title Date Started Date Published Description

RFC 3815 August 1998 June 2004 LDP protocol

RFC 3812 November 1998 June 2004 Traffi c engineering

RFC 3813 June 1999 June 2004 Active TFIB of an LSR

RFC 3814 November 2000 June 2004 FEC-to-NHLFE mapping

RFC 4265 August 2001 November 2005 Common textual conventions for MPLS VPNs

RFC 4382 August 2001 February 2006 MPLS/BGP layer-3 VPNs

RFC 3811 June 2001 June 2004 Common textual conventions for MPLS MIBs

RFC 4802 March 2002 February 2007 GMPLS TE

RFC 4801 March 2002 February 2007 Common textual conventions for GMPLS MIBs

RFC 4803 March 2002 February 2007 GMPLS

MPLS-LSR MIB describes the basic label-forwarding operations of an LSR. The
MPLS-LSR MIB also exposes which interfaces the LSR has MPLS enabled on by
cross-referencing each MPLS-enabled interface that appears in the IF-MIB.
This MIB presents a foundation of actual objects (as opposed to TCs in the
MPLS-TC MIB) that are used in many other MIBs; thus, it is viewed as the base
MPLS MIB by many.

MPLS-TE MIB provides the operator with a view of which TE tunnels are confi g-
ured, signaled, or presignaled (for backup). If a tunnel is also represented as
an interface in the IF-MIB, an entry will exist there as well. The MPLS-TE MIB
depends on the MPLS-LSR MIB in that the system software in a device can be
programmed to associate the active LSP with a tunnel when such a relationship
exists.

MPLS-LDP MIB provides insight into what the LDP protocol is doing on an LSR,
assuming that LDP is enabled and in use. The MPLS-LDP MIB depends on the
MPLS-LSR MIB for its mapping tables that are used to associate LDP sessions
with active LSPs. The MPLS-LDP MIB also depends on the IF-MIB in that it
exposes which label ranges are confi gured on an MPLS-enabled interface.
Finally, the MPLS-FTN MIB presents the operator with a view of how IP traffi c
is entering the MPLS network and how that IP traffi c is being mapped onto
MPLS LSPs or TE tunnel interfaces.

MPLS-TC MIB

MPLS PPVPN

Depends

Depends on RFC 2863

PPVPN-TC MIB

PPVPN-MPLS-
VPN MIB

MPLS-LSR MIB

MPLS-TE MIB

MPLS-FTN MIB

MPLS-LDP MIB

FIGURE 6.10

MIBs for MPLS network management discussed in this text.

6.4 Management Information Base Modules for MPLS 165

166 CHAPTER 6 MPLS Network Management: An Introduction

MPLS-FTN MIB depends on the MPLS-LSR and MPLS-TE MIBs because the way that
it associates incoming IP traffi c is to point at the associated LSP or TE tunnel
head as represented in the MPLS-LSR and MPLS-TE MIBs, respectively. The
MPLS-FTN MIB depends on the IF-MIB because it allows an operator to confi g-
ure FEC-to-NHLFE mapping rules on a per-interface basis.

PPVPN-MPLS-VPN MIB is shown to possess only dependencies on the PPVPN-TC
MIB. This MIB contains common textual conventions used by the PPVPN-MPLS-
VPN MIB as well as other MIBs defi ned by the IETF PPVPN working group.
The PPVPN-MPLS-VPN MIB provides an operator with a view of which VPN
instances are confi gured on a specifi c PE, as well as related statistics, BGP, and
interface information. The interface information extends those interfaces that
are already represented in the IF-MIB; thus, yet another dependency on the
IFMIB exists.

6.5 SUMMARY
This chapter covered the basic components of MPLS. At the heart of MPLS is the
separation of the control and forwarding planes. There are distinct advantages to
this approach, as we have seen. The forwarding plane is composed of various
IP-based protocols such as BGP and RSVP. The forwarding plane is based on
switching a short, fi xed-length label. This method is based on the forwarding
mechanisms of several layer-2 forwarding technologies such as ATM and Frame
Relay.

The remainder of the chapter introduced some of the reasons why it is crucial
for world-class MPLS deployments to provide robust and comprehensive network
management capabilities. We discussed fault and confi guration management and
how these two components of a management solution alone were critical if the
network was to be deployed effectively, especially on a large scale. We then dis-
cussed performance measurement within the context of SLAs. Monitoring and
verifying the quality of a network connection is especially important when required
by a service level agreement.

Finally, we presented an overview of how the MPLS MIBs fi t together to
provide the reader with a pictorial “30,000 foot view” of the MIBs that will be
discussed later in the book.

CHAPTER

7MPLS Management
Interfaces

This chapter, taken from Chapter 2 of MPLS Network Management by Nadeau,
introduces several different types of management interface that may be used to
manage Multi-Protocol Label Switching (MPLS) deployments. In particular, we will
introduce you to XML, CORBA, SNMP, and the command-line interface. We will
investigate and explain why operators might or might not wish to utilize one,
none, or all of these interfaces to manage their MPLS networks, as well as to hope-
fully provide device vendors with reasons for why they should or should not
implement them on their MPLS devices. The end of the chapter will focus par-
ticularly on the SNMP interface by introducing it in such a way that it may be
understood for use in managing MPLS networks.

7.1 THE BASICS OF MANAGEMENT INTERFACES
Management interfaces allow network operators to manage the devices in their
networks by providing access to each device’s control, confi guration, and status
information. Many different types of management interfaces exist, but in general,
a management interface is composed of two parts: a protocol describing the com-
munication rules between the operator and the device, and the format of the
information that will be exchanged using that protocol.

The basic features of a management interface are depicted in Figure 7.1. Notice
how the management interface provides a unifi ed external view of the managed
device. It should be noted that devices might support more than one management
interface, but all typically support at least one. Some management interfaces
provide additional functions such as secure authentication, control of transactions,
reliable or unreliable network transport options, and even functions that allow for
the translation between other management interfaces. This collection of features,
functions, and protocol comprise what is generally referred to as a management
interface.

168 CHAPTER 7 MPLS Management Interfaces

The management interface provides a consistent external view of the manage-
able objects in a device. This view ideally remains consistent across all devices
supporting the management interface, thus providing the same interface for the
operator or the operational software used to manage these devices. To be more
specifi c, the format of manageable objects is consistent. For example, the manage-
ment interface may specify that the total time that the system has been running
since it was last initialized be represented as a 64-bit integer. However, some
devices may only be able to maintain 32-bit integers natively depending on the
specifi c hardware used. Therefore, devices that are unable to support the wider
data type natively must simulate it in order to support the management interface.
Another example is objects that are stored in tables. A device may store the objects
internally as an array of objects or as a linked list; however, the external repre-
sentation will always be that of a table.

Figure 7.2 demonstrates two models of Acme Corporation’s routers; both
support the same management interface but implement it differently internally.
The management interface in the fi gure specifi es that table A be viewed as a table
of objects indexed in a certain manner to the external manager. While maintaining
an external view consistent with this management interface, Acme model 7200
represents the table internally as a linked list. On the other hand, Acme model
7500 is still able to maintain a consistent external view of the same data, but
represents the table internally as an array.

Some management interfaces defi ne a data model that can be used as a map
of the collection of information that the operator will have access to. This model

Network
management

station
Management

protocol

Management interface

Managed device

Managed
objects

FIGURE 7.1

In general, a management interface provides two things: a protocol between the manager
and the device and a consistent external representation of the managed device.

can then be used to easily build applications that can be used to manage this
information, while at the same time, devices implementing this model can use the
model as a basis for their implementations. Still others simply defi ne a format or
syntax that operators can expect to view the managed information in, or will be
required to use when confi guring that same data. It is important to make a clear
distinction between a data model and a management interface.

As was just described, a data model describes the relationship between managed
objects in a system. It may also defi ne the syntax for accessing these objects. This
model may also describe the actions that a manager can take on these objects, as
well as the actions the objects themselves may take. For example, a data model
may describe how an object may trigger an event to be generated by a managed
device when it reaches a certain value. Another example might be the result of a
manager triggering a particular action on a managed object, such as to start a
routing protocol. For those familiar with object-oriented programming method-
ologies, a data model used for management purposes has the same meaning as
one defi ned for a program.

Managed objects

Managed objects

Acme 7500

Acme 7200

Managed device

Network
management

station

Management interface
for table A

Management interface
for table A

FIGURE 7.2

Two models of Acme’s routers, both supporting the same management interface. The
management interface specifi es that table A be viewed as a table externally. While
preserving the consistent external view, Acme model 7500 represents the table internally
as an array. Acme model 7200 represents the table internally as a linked list, while
preserving the same external representation.

7.1 The Basics of Management Interfaces 169

170 CHAPTER 7 MPLS Management Interfaces

As crude as some may regard them, the Simple Network Management Protocol
(SNMP) management interface defi nes documents called a management informa-
tion base (MIB). Each document can be thought of as a form of a data model.
These documents defi ne the syntax, maximum access rights to the objects defi ned
therein, and object interactions between those objects defi ned in that and other
MIBs. On the other hand, more sophisticated data models can be constructed
using other management interfaces such as CORBA Interface Defi nition Languages
(IDLs). Not only can these other data models be used to describe what the MIBs
can describe, but they can also be used to model the objects running inside a
network management application.

The most common form of a management interface is a proprietary command-
line interface (CLI). This interface typically allows an operator to connect to a
device using a remote Telnet session. The format of the data viewed over this
Telnet session is specifi ed as being in ASCII format and must be entered in the
command-line syntax defi ned by the vendor. However, the format of the output
can (and sometimes does) vary depending on the version of software running on
the device. Other management interfaces, such as SNMP, defi ne stricter rules
for how the managed information will both be accessed and offered to the
manager.

In addition to the raw tools and protocols provided by management interfaces,
the actual use of the management interface can be arranged and deployed in many
different ways depending on the network or the operational philosophy of those
running the network. There are far too many different approaches to investigate
in this chapter. Instead, we will focus on showing you the tools that management
interfaces provide.

There are at least a dozen management interfaces in use today, some useful to
those managing MPLS networks, others that are less so. In general, all of the well-
known management interfaces can be applied at least in some ways to MPLS net-
works. In addition to using a single management interface, many operators have
chosen to use a combination of two or more interfaces for their networks. In the
following sections, we will focus on and describe some of the management inter-
faces that are most prevalent in large operational MPLS networks today. Further-
more, the remainder of the chapter will focus on the specifi c tools that are made
available within these more widely used management interfaces. While we recog-
nize that management interfaces other than the ones we will discuss exist, and that
they may be useful for the management of some MPLS networks, we will not focus
on these at this time either because they are too proprietary, or because these
management interfaces are simply not in enough use to interest a wide audience.

7.2 COMMAND-LINE INTERFACE
Most, if not all, network devices since the early days of networks have provided
the operator with some sort of character-based command-line interface. The CLI

7.2 Command-Line Interface 171

typically provides the user with screens of information for viewing specifi c device
functions or confi guration, as well as a structured syntax for interacting with it.
The CLI provided a console screen similar to that of early mainframe computers.
Early implementations of the CLI were as simple as a paper-based teletype that
was wired directly to the device via a serial cable. Since then, the prevalent
method of connecting to a network device is to use a Telnet network connection,
although other means exist that are still popular, including the good-old hardwired
serial connection; however, the sophistication of the input and output of this
interface has not changed substantially. Figure 7.3 shows an example of a CLI
from a well-known label switching router (LSR) vendor.

In general, a vendor will specify a CLI syntax that governs how an operator
may interact with it. This syntax is typically broken into two areas: display screens
and confi guration entry. Display screens are used by the operator to view the
information stored within the device. The information shown on these screens is
typically status or confi guration information. The display of information on the
screen can either be triggered as the result of an operator query or may be the
result of an asynchronous display made by the device. Confi guration information
can contain all or part of the device’s confi guration.

For example, the commands show router version and show mpls forwarding
were used to generate the output shown in Figure 7.3. The show command dis-
plays general system confi guration information such as the version of software
image that is currently executing the device, how much memory is installed in
the device, or the version of the ROM code present. Notice that the command
used to trigger the output has a certain form or syntax. Every time the operator
enters the command show router version, the screen shown will appear with
the same syntax. Variables in the fi elds may be different, however. Furthermore,
if show router version were entered as show routerbbb version, it would have
resulted in an error being reported to the operator, since this constitutes an illegal
command.

Unfortunately, the command-line syntax specifi ed by any two vendors is typi-
cally different even though they are used to manage identical abstract objects. In
fact, sometimes it is even the case that different products from the same vendor
use different screen formats and syntax to manage the same feature. Some newer
vendors have tried to copy the syntax of older vendors, but even this inevitably
results in some discrepancies when the vendor being copied decides to change
their CLI without the other noticing. Unfortunately, no standard CLI syntax is
defi ned by any standards body that might better help the situation. This is a large
disadvantage for service providers who have to manage networks with disparate
devices and corresponding CLIs, since it means that managing these types of
networks will probably be much more diffi cult and expensive than a homoge-
neous network.

One important feature of a CLI is the ability to display asynchronous notifi ca-
tions without any operator intervention. Some devices even provide a separate
CLI session that allows an operator to more easily capture and recognize these

172 CHAPTER 7 MPLS Management Interfaces

Cisco Internetwork Operating System Software
IOS (tm) 7200 Software (C7200-JS-M), Experimental Version 12.2 (20011220 : 212756) [tnadeau-
ldp_mib_122s_pi 101]
Copyright (c) 1986–2001 by cisco Systems, Inc.
Compiled Fri 21-Dec-Ol 10:43 by tnadeau
Image text-base: 0x60008960, data-base: 0x61738000

ROM: System Bootstrap, Version 11.1(13)CA, EARLY DEPLOYMENT RELEASE SOFTWARE (f c l)
BOOTLDR: 7200 Software (C7200-BOOT-M), Version 12.0(2)XE2, EARLY DEPLOYMENT RELEASE
SOFTWARE (fcl)

tagsw7200-43 uptime is 2 weeks, 5 days, 11 hours, 19 minutes
System returned to ROM by reload at 07:04:33 UTC Fri Dec 21 2001
System image file is "tftp://UNKNOWN/tnadeau/c7200-js-mz"

cisco 7206 (NPE200) processor (revision B) with 114688 K/16384 K bytes of memory.
Processor board ID 16065231
R5000 CPU at 200 Mhz, Implementation 35, Rev 2.1, 512 KB L2 Cache
6 slot midplane, Version 1.3

Last reset from power-on
Bridging software.
X.25 software, Version 3.0.0.

SuperLAT software (copyright 1990 by Meridian Technology Corp).
TN3270 Emulation software.
8 Ethernet/IEEE 802.3 interface(s)
2 ATM network interface(s)
125 K bytes of non-volatile configuration memory.
4096 K bytes of packet SRAM memory.

20480 K bytes of Flash PCMCIA card at slot 1 (Sector size 128 K).
4096 K bytes of Flash internal SIMM (Sector size 256 K).
Configuration register is OxO

tagsw7200-43# show mpls forwarding

Local
tag
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
Local
tag

Outgoing
tag or VC
Pop tag
Untagged[T]
Pop tag
Untagged[T]
Pop tag [T]
Pop tag [T]
26
27
28
29
Outgoing
tag or VC

Prefix
or Tunnel Id
10.0.0.5 12 [72]
55.55.0.0/32
10.0.0.1/32
10.3.5.0/24
10.0.0.3/32
10.0.0.5/32
10.0.0.1 1 [77]
10.0.0.1 2 [76]
10.0.0.1 3 [76]
10.0.0.1 11 [76]
Prefix
or Tunnel Id

Bytes tag
switched
0
0
0
0
0
0
0
0
0
0
Bytes tag
switched

Outgoing
interface
Et1/1
Tu43003
Et1/5
Tu43003
Tu43003
Tu13
Et1/2
Et1/2
Et1/2
Et1/2
Outgoing
interface

Next Hop

10.1.2.1
point2point
10.21.22.21
point2point
point2point
point2point
10.2.3.3
10.2.3.3
10.2.3.3
10.2.3.3
Next Hop

[T] Forwarding through a TSP tunnel.
View additional tagging info with the 'detail' option

FIGURE 7.3

Sample CLI output from a popular LSR vendor.

7.2 Command-Line Interface 173

messages. Notifi cations, or “alarms” as some call them, can be used to alert the
operator to critical or fault situations. As with the syntax of the CLI, the format
of the on-screen alarms will vary from vendor to vendor. Some vendors have
chosen to specify a format for what is displayed on the screen, while others will
allow the software to display a freeform string that may change from version to
version of the system’s software.

7.2.1 CLI Security

Other features of CLIs include security functions such as authentication to verify
the identity of the operator accessing the CLI, or encryption of the actual datastream
over which the CLI data fl ows. Operators have options in terms of authentication,
ranging from the simplest clear-text password authentication, whereby the oper-
ator must specify a user name and a password that are checked for authenticity
within the system, to a complete RADIUS system for managing encrypted pass-
words. Different vendors will offer different security features with their CLIs.

One very common security option used by operators is the secure shell (SSH).
Operators will run an SSH session between their operation station or network
management system (NMS) and the network device rather than traditional clear-
text Telnet. SSH provides the user with transparent, strong encryption, as well as
reliable public-key authentication that is quite easy to confi gure. Implementations
are freely available, so vendors have little excuse not to offer this solution to
operators. Furthermore, since SSH is a popular and rather robust TCP/IP-based
solution that solves many network security and privacy concerns for operators,
vendors are encouraged to implement this as an option for accessing their CLI.

In addition to securing the CLI session, SSH also supports secure fi le transfer
between management stations and network devices, so those vendors offering
bulk fi le transfer of management information or confi guration fi les can easily inte-
grate this into their device software as well. Further, SSH provides the capability
of “tunneling,” which can be used to easily add additional encryption to otherwise
insecure network applications. As has been mentioned, there are many feature-
fi lled freeware versions of SSH available; therefore, operators will fi nd that many
device vendors have already adopted SSH in their devices.

We recommend strongly that operators who have access to secure CLI imple-
mentations use them whenever possible. This added level of security aids in
completely locking intruders out of devices, or at least making it much more dif-
fi cult for them to access the devices. This is important not only in preventing the
viewing of such sensitive information as a device’s active confi guration and the
activity of a device, but also in preventing unwanted and unauthorized changes
to a device’s confi guration.

7.2.2 Using Scripts with the CLI

One common means by which operators have effectively utilized the CLI is to use
UNIX shell scripts or Perl scripts to interact with the various devices in their

174 CHAPTER 7 MPLS Management Interfaces

networks. Scripts are programmed to connect to remote devices using Telnet or
other means, authenticate, and then read data from what would be displayed on
the user’s screen, or send commands to the device to alter its confi guration.
Another terminology for scripts reading information from the CLI is called “screen
scraping,” which implies that the scripts are culling data from the characters they
“scrape” off the screen.

Using scripts to scrape the CLI and confi gure devices can be a simple and
effective means of managing a device and, in some cases, can approximate the
effi ciencies and ease of use provided by other management interfaces such as
SNMP; however, with simplicity comes several problems. First, the syntax of the
management interface that scripts are programmed to understand may change
between versions of the vendor’s software. Therefore, the operator needs to be
keen on the changes made. This can be compounded by the fact that an operator
may have to manage more than one vendor’s equipment. Second, the volume of
the data that are read back to the script over the network is relatively large as
compared to that of other management interfaces.

The amount of fi xed information printed on a screen versus the characters that
are used to display variable fi elds is generally signifi cant, and therefore results in
superfl uous network traffi c, since the entire screen is read back to the script via
its Telnet session. Other management interfaces provide a much more compact
representation of variable data because they do not have to transmit the entire
meaning of the fi elds being retrieved or modifi ed. However, some of these fi elds
may not be available via another management interface, so having the information
in albeit a not-so-compact way may be better than not having it at all. This is again
why the CLI is considered the lowest common denominator by many.

7.3 CORBA
The Common Object Request Broker Architecture (CORBA) defi nes a distributed
object computing infrastructure that has several uses. In particular, CORBA pro-
vides for an architecture that automates many common network programming
tasks such as object registration, location, and activation of network objects.
Network objects can reside anywhere in the network, including on a traditional
management station or even in embedded networking devices such as routers and
switches. In addition to locality control, CORBA facilitates parameter marshalling
and demarshalling, and operation dispatching among objects, as well as request
demultiplexing and multiplexing for specifi c objects.

The CORBA standard is maintained by the Object Management Group (OMG).
The primary components of the OMG CORBA reference model architecture are
listed in Table 7.1.

The OMG reference model is composed of three general layers, each of which
is assigned a variety of specifi c responsibilities. The bottommost layer in this
model is called the object services layer and is composed of object services that

are domain independent. The functions and responsibilities provided in this layer
can be applied to many differing types of objects. An example of such a service
is a generic object location service. This service can be applied across most if not
all objects within a system. The topmost layer in the model provides domain-
specifi c services, which are outlined in the following Table 7.2. The architecture
is also illustrated in Figure 7.4.

Table 7.1 OMG Reference Model Architecture Components

Component Description

Application interfaces Application-specifi c interfaces are generally not standardized; rather, they are
developed specifi cally for a type of application and used as such. However, if
over time the service becomes widely applicable, it is possible that the OMG
will standardize the proprietary application interface.

Domain interfaces These interfaces have roles similar to the object services and common
facilities, but have specifi c application with a particular application domain
such as telecommunications, medical, and fi nance.

Common facilities These interfaces are oriented toward end-user applications. An example of
such an application may be for the exchange of embedded objects within
electronic documents. For example, objects originate within a spreadsheet
application, but then can be linked into a word processor document.

Object services Object services are domain-independent interfaces used by many distributed
object programs. Two examples of object services that fulfi ll this role are a
naming service that allows clients to fi nd objects based on globally unique
names or based on their properties. Another example of such a service might
be life cycle management, security, transactions, and event notifi cation, as
well as many others.

Application
interfaces

Domain
interfaces

Common
facilities

Object Request Broker

Object
services

FIGURE 7.4

OMG reference model architecture.

7.3 CORBA 175

176 CHAPTER 7 MPLS Management Interfaces

Table 7.2 Description of OMG CORBA Reference Model ORB Elements

Component
Name Description

Object This is a CORBA programming entity. Each object has an identity, interface, and
implementation. An implementation is also known as a servant.

Servant A servant is an implementation programming language entity. Servants defi ne
operations that support a CORBA IDL interface.

Client This is a CORBA programming entity that is capable of triggering operations on an
object. When services are accessed, the specifi cs of the service should remain
transparent to the client. Invocation of services is typically performed in the same way
that an object method is invoked in order to keep the operation as simple as possible
for the caller.

Object Request
Broker (ORB)

The CORBA ORB provides a mechanism for transparently communicating client
requests to target object implementations. The ORB decouples the client from the
details of the method invocations, which results in client requests appearing to be local
function calls. When a client triggers an operation, the ORB must fi nd the correct
object implementation to invoke the action, and then transparently activate it if
necessary. The ORB is also responsible for delivering the request to the object and
returning a response (if any) to the caller.

ORB interface The CORBA specifi cation defi nes an abstract interface for an ORB that decouples
applications from the details of their implementation. This interface achieves
transparency by providing various functions that help hide the internal details of the
interface.

CORBA IDL
stubs and
skeletons

CORBA IDL stubs serve as a layer between the client and server applications, and
the ORB. Transformation from CORBA IDL defi nitions into the target programming
language such as C or C++ is typically performed by a CORBA IDL compiler.

Dynamic
Invocation
Interface (DII)

The DII allows a client to directly access the underlying request mechanisms provided
by an ORB. Applications utilize the DII interface in order to dynamically issue requests
to objects without requiring an IDL interface-specifi c stub to be linked with its code.
This is in contrast to IDL stubs that function as RPC-style requests. The DII interface
also allows clients to invoke nonblocking, deferred, and synchronous (separate send
and receive operations), which may be necessary for certain operations to function
correctly. This interface also provides for one-way calls that are made to objects that
act as events (they are sent only, and no response is sent).

Dynamic
Skeleton
Interface (DSI)

This interface is similar to the client DII interface except that it runs on the server side.
The DSI interface allows an ORB to deliver requests to an object implementation that
does not have compile-time knowledge of the type of object it is implementing.
Specifi cally, it allows the client issuing the operation request to have no specifi c
knowledge of whether the implementation is using type-specifi c IDL skeletons, or if
it has employed dynamic skeletons.

Object adapter The purpose of the object adapter is to assist the ORB in delivering request objects.
It also assists the ORB with activating the specifi c object. An object adapter can be
used to associate a specifi c object implementation with the ORB by smoothing out
differences between the two. Furthermore, object adapters can provide support for
certain types of object implementations. For example, object adapters for object-
oriented databases can be provided to support persistent library objects.

The middle layer of the OMG reference model is referred to as the Object
Request Broker (ORB). In essence, the ORB provides the middle layer of abstrac-
tion that “glues” the object services layer to the upper application interface,
domain interface, and common facilities functions.

Figure 7.5 illustrates the primary components in the CORBA ORB architecture.
The ORB architecture is comprised of several components. The object (servant)
is a programming language implementation component that defi nes the opera-
tions used to support a CORBA IDL interface. IDL interfaces can be implemented
in several programming languages including C, C++, and Java. The client compo-
nent is a program construct that invokes an operation on an object. This operation
will potentially access the services of a remote object. When this occurs, this
action should be transparent to the caller. The ORB provides a mechanism for
transparently communicating client requests to other object implementations. The
architecture of the ORB greatly simplifi es distributed programming in that it
removes the client from the specifi c details of method invocation. This allows the

Out arguments + return value

Standard
language mapping

Standard
protocol

Implementation
repository

Interfacer
repository

IDL compiler

Client

OBJ ref.

DII

ORB coreGIOP/IIOP

Standard
interface

ORB-specific
interface

DSI

IDL
stubs

IDL
skeleton

ORB
interface

Object adapter

Object (servant)

In arguments

Operation()

FIGURE 7.5

ORB elements from OMG CORBA reference architecture.

7.3 CORBA 177

178 CHAPTER 7 MPLS Management Interfaces

client requests to appear to be local procedure calls, when in fact they may be
remote calls.

The ORB is responsible for locating the appropriate object implementation
when a client invokes an operation on that object. The ORB must also deliver the
request to the possibly remote object and return a response, if one is given, to
the calling client. To decouple applications from their specifi c implementation
details, the abstract interface for an ORB is called the ORB interface. This provides
various functions and routines that convert between internal implementation
specifi cs and those provided in the standard CORBA application programming
interface (API). The CORBA IDL provides various stubs and skeletons that “glue”
the client and server applications together with the ORB. The conversion between
the CORBA IDL defi nitions and the programming language used to implement the
objects is usually automated using a CORBA IDL compiler. The object adapter
associates object implementation specifi cs with the ORB. In doing so, an object
adapter can be specialized to provide support for implementation-specifi c object
styles. This function also assists the ORB in delivering requests to and activating
a remote object.

Finally, the DSI is the server-side counterpart to the client-side DII. The DSI
enables an ORB to deliver requests to a specifi c object implementation that might
not have compile-time knowledge of the specifi c internal type of the object it is
implementing.

7.3.1 CORBA and SNMP Usage Description

Although we will cover SNMP in detail in Section 7.6, we will touch on one
variation on the use of CORBA that works in conjunction with SNMP to leverage
existing MIB module deployments without having to convert the code on each
device to support CORBA. Instead, SNMP MIB modules can be translated into
CORBA IDLs using some well-defi ned rules. These new IDLs can then be translated
into DSI or DII functions that can be used to build CORBA applications containing
data models supporting those defi ned in the MIBs. A further modifi cation is to
allow these new objects to be queried regardless of whether they are implemented
within an SNMP manager or agent entity.

Specifi cally, if an object is queried on a management station (e.g., an API asks
a counter object to display itself), this object, through the ORB architecture
described earlier, can locate the value of its corresponding embedded side instance,
which is located within an agent running on a network device. Once it locates
the object, it can convert the request from CORBA into SNMP and send the
managed device a request for its value using SNMP. This is illustrated in Figure
7.6 as the SNMP-aware CORBA management station.

One variation on this theme is to build applications that act as SNMP proxy
agents, which are sometimes known as midlevel managers. These entities are
responsible for translating SNMP requests and responses to and from CORBA. This
allows existing CORBA applications to speak to SNMP devices without any modi-

fi cation. Instead, they speak to a CORBA ORB that does the translation externally.
This ORB can also catch SNMP notifi cations and relay them to the appropriate
application as CORBA events.

Figure 7.6 demonstrates how a midlevel manager translates between CORBA
and SNMP for native CORBA management stations that cannot speak SNMP. At
the same time, a native SNMP manager entity communicates directly with
the agent entity on the managed device using SNMP. Note that both the midlevel
manager and the native SNMP management station can be confi gured to
receive SNMP notifi cations from the managed device. The CORBA translator will
translate these notifi cations into CORBA object messages that will be delivered
to the appropriate objects, while the native SNMP NMS will process the events
directly.

As with all translation mechanisms, we have witnessed that this method too
suffers from performance issues, even if implemented correctly. Those who have
used CORBA implementations in the past can attest to the fact that they were not
very fast to begin with, so this added layer of indirection simply adds to the time
between management requests and their corresponding responses. A further dif-

Native SNMP network
management station

CORBA network
management station

CORBA-to-SNMP
midlevel manager

SNMP-aware
CORBA

management station

CORBA

SNMP
Managed device

SNMP

SNMP

CORBA

FIGURE 7.6

CORBA midlevel manager translates (SNMP protocol converter) between CORBA and
SNMP for native CORBA management stations, while a native SNMP manager
communicates directly with the managed device using SNMP. An SNMP-aware CORBA
management station also can communicate directly with the managed device without the
help of the midlevel manager.

7.3 CORBA 179

180 CHAPTER 7 MPLS Management Interfaces

fi culty with this approach is simply the implementation and maintenance. If a new
SNMP object is introduced into the system, several pieces of code must be modi-
fi ed in a harmonious fashion.

We should note that the translation between SNMP and CORBA messages and
events is not unique to these two management interfaces. Other translations are
possible. For example, XML, which we discuss in the next section, can be used
to translate to and from a proprietary CLI language. The same can be done
between a CLI and SNMP. The important point to keep in mind about any transla-
tion mechanism is the data model mapping between management interfaces. If
the mapping is not accurate and complete, inconsistencies may arise.

7.4 XML
The eXtensible Markup Language (XML) provides an encoding method for indi-
vidual and batched management commands that allows for the creation of a
command-specifi c syntax that can be automatically parsed and checked. It can be
applied to existing management schemas such as a CLI or SNMP, or allows for the
creation of a new set of commands and parameters specifi c to an XML client and
server. XML describes a class of data objects called XML documents and specifi es
the behavior of applications that are used to process these documents. XML rep-
resents a subset of the Standard Generalized Markup Language (SGML) (ISO 8879);
thus, XML documents are by nature conforming SGML documents.

To the untrained eye, the markup in an XML document may appear similar
enough to an HTML document that the two may be confused with each other
until some crucial differences are noticed. XML represents a meta-language to
markup text documents. XML offers the reality of both a truly cross-platform and
long-term data format.

Data are embedded within XML documents as strings of text and are sur-
rounded by special markers that describe the data so that they can be parsed and
displayed. Each piece of data delineated by markup markers is referred to as an
XML element. The exact syntax of how data are delineated by markup markers is
detailed in the XML specifi cation. The XML specifi cation includes the details of
such things as how each element is delimited by tags, what the precise defi nition
of what a valid tag is, and the valid format of document names for elements, among
others. XML documents are comprised of virtual storage bins called entities. An
entity can contain parsed or unparsed data. While the contents of unparsed data
are unknown, the contents of parsed data represent characters that form either
markup or character data. Markup data are used to encode instructions indicating
how the document is structured and how it is stored.

The markup used in an XML document not only describes the document’s
structure, but also allows you to determine which elements are associated with
one another. Furthermore, good XML documents also include information about
the semantics of the document so that you can understand which domain the

document best applies in. For example, the semantics of a document might indi-
cate that a data element represents model numbers for computer monitors, or
automobile license plate numbers. An important distinction between XML and
other document formats is that XML is not a document presentation language;
rather, it is used to describe the structure of the document. For example, XML
documents do not contain markers that specify that a particular word is to be
displayed in a blue, 12-point, Times Roman font. This information can be
embedded in the document, but it is not specifi cally XML data.

XML is a fl exible meta-markup language. Specifi cally, XML does not have a rigid
set of tags and elements; instead, XML allows elements to be defi ned as they are
needed. This has fostered the development of domain-specifi c XML element sets
that allow XML to be extended and expanded to meet the unique needs of a par-
ticular domain of use. Although XML allows user-defi ned sets of elements, it does
not allow users to modify the grammar or syntax of XML documents. The grammar
defi ned for XML is specifi c about the syntax for the placement and appearance of
tags, as well as other points about the syntax of elements. This grammar is then
used to build XML parsers that can interpret any standard XML document. Docu-
ments that follow the syntax defi ned in the grammar are known as well-formed
documents, while documents that are not are referred to as non-well-formed
documents.

The markup style permitted in a particular XML application is typically described
in a document type defi nition (DTD). The DTD is a place where all markup and
other specifi cs about the domain where this DTD applies are included. This is
loosely analogous to a common header fi le in C that is included by all fi les that
use a particular library. In this case, a particular instance of a document that is
being applied to a specifi c domain will specify that it conforms to the specifi c
DTD of that domain. XML parsers can then compare this document to the DTD
to verify that it matches the DTD. If the document matches the DTD for the
domain that it specifi es, it is considered a valid document. Bear in mind that it is
possible to compare the same document to multiple DTDs and have the document
be considered valid for all DTDs. This can happen, for example, if the DTDs are
subsets of a common DTD.

It is important to understand that DTDs are an optional element in XML; there-
fore, either they may not exist or they may be inadequate to completely validate
a document. Furthermore, documents that are considered invalid may still be
useful under some conditions. This is simply because the syntax specifi ed for
DTDs is limited. In short, buyers beware!

It is also important to understand that XML is not a programming language,
nor is XML a database or a network transport protocol. Many marketing depart-
ments may try to convince you that it is one or all of these things, but it is not.
XML is simply a document description language. Some may be tempted to try to
convince you that a confi guration fi le for a network device contains XML program-
ming, but it does not. In reality, this fi le is just formatted using XML and an XML
DTD instead of a proprietary vendor’s format. This confi guration fi le cannot be

7.4 XML 181

182 CHAPTER 7 MPLS Management Interfaces

written in XML; it is instead described in XML, which is an important distinction.
It may contain confi guration commands that are surrounded by XML tags, and
these strings might be parsed by an XML-aware command parser. Actions such as
confi guration changes may even be taken as a result, but XML does not constitute
a structured programming language for the fi le; it only describes its format (and
perhaps its semantics). Similarly, the XML-formatted confi guration fi le does not
represent a database of information, even if stored within the network device in
that format.

The database must be implemented using operations and structure that are
outside the scope of XML. An example may be an Oracle database format. SQL
operations are used to access the database, even if the data are stored in XML
format. Finally, XML does not represent a network transport protocol. XML, like
HTML, cannot be used to send data across a network per se. Data can be sent
formatted as XML across a network using some network transport protocol such
as IP/UDP, IP/TCP, or IP/TCP/HTTP. ASN.l-encoded SNMP data can even be trans-
ported after being encapsulated within XML, but it still must be transported using
a real network transport protocol such as the User Datagram Protocol (UDP). In
short, XML can be used to format data sent across a network, but software that is
not part of the XML document must actually transmit the document.

XML documents are ASCII text fi les that are divided into logical pieces referred
to as records. Therefore, any tool that is capable of reading ASCII text fi les can
read an XML document. This is quite important, since most, if not all, document
editors available today can read ASCII text. What most cannot do is read each
others’ proprietary formats. Several XML document fragments can comprise a
single document. It is also possible for documents not to reside anywhere in par-
ticular. XML documents may reside in a device’s memory after being dynamically
generated, or the fi le fragments may be stored across multiple fi le systems. The
temporal locality of an XML document does not have to be common among a set
of document fragments that constitute its totality. XML represents a format that
can be truly ubiquitous because the format is in clear ASCII text and provides all
of the important information about the document’s structure (and sometimes its
semantics).

XML parsers are applications that interpret the contexts of XML documents
and validate them. XML parsers can be contained within other parsers and be used
to trigger actions that result from the successful interpretation of an XML docu-
ment. The successful interpretation might include just a single line or a series of
lines contained in an XML document. For example, XML-formatted CLI commands
might fi rst be transported to a command-line interface that understands XML-
formatted commands. The command will fi rst be validated by running it through
the embedded XML parser. Once the command has been validated, the command
is then passed to the command interpreter that reads the command and, if
appropriate, triggers the appropriate action function. Similarly, the result of the
command might be formatted internally and then sent to the command-line inter-
face. The CLI might then, in turn, format the response using XML and return that

to the operator. The operator’s terminal or management application must then be
able to interpret XML-formatted responses. This should not be diffi cult since the
application had to send an XML-formatted command to the device in the fi rst
place.

7.4.1 XML-RPC and SOAP: XML Serialization and RPC over HTTP

Since its inception, XML has been applied in various ways. Originally, XML Remote
Procedure Call (XML-RPC) was developed to provide a simple RPC mechanism
using XML and HTTP as a transport protocol. XML-RPC presented an interesting
application of XML in that it positioned it as the basis for standards-based transac-
tional computing. Several implementations of XML-RPC are still in use today.
These implementations demonstrate that XML-RPC is platform-neutral and
language-neutral while still being very useful.

Simple Object Access Protocol (SOAP), like XML-RPC, can be thought of as a
Web-based abstraction of traditional distributed object communication. SOAP
represents a lightweight XML-based protocol that can be used to exchange
information in a distributed environment. SOAP consists of the following three
principal components:

■ It defi nes a container framework that is used to describe what the
contents of a valid message are and how a parser should process it.

■ It defi nes a set of encoding rules that can be used to express instances of
application-defi ned data types.

■ It defi nes a representation for remote procedure calls and their
corresponding responses.

SOAP itself does not address higher-level distributed object issues such as
object activation, nor does it address object life cycle management. SOAP does
not specify the messaging semantics of the XML transport encapsulation. That is,
it does not defi ne quality of service (QoS), queuing, or other related issues. On
the contrary, applications that process SOAP messages must provide the transport
semantics used for the connection. Finally, issues do exist regarding the use of
SOAP as an RPC mechanism over HTTP. Specifi cally, the issues of transaction
control, replay protection, and encryption are in question. Due to these limita-
tions, some have built true messaging models using SOAP as the base and addressed
these issues in the new layer.

7.4.2 Encoding Managed Information Using XML

As was mentioned, XML can be used to encapsulate or wrap managed objects
from existing management interfaces such as proprietary CLI (see Section 7.2) or
SNMP (see Section 7.6). When XML is used as a transport encapsulation, managed
information can be encoded for display or storage at a network management
station in several different ways. First, SNMP can be encoded within XML. In this
way, XML tags can encode SNMP object names and values in clear text, allowing

7.4 XML 183

184 CHAPTER 7 MPLS Management Interfaces

XML parsers to understand the information and display it. The same can be done
for CLI data. Although allowing for easy display, this mechanism, however, has
the disadvantage that the format of the data is quite verbose as compared to the
standard data encapsulations, and thus results in signifi cantly more network
traffi c.

7.5 BULK FILE TRANSFER
Bulk fi le transfer is an option that some device vendors offer as a means of offl oad-
ing large amounts of data from their devices via a File Transfer Protocol (FTP). In
particular, deployments of devices that are required to maintain large confi gura-
tions or large amounts of manageable information may fi nd an advantage when
exporting these data in bulk form using a fi le transfer mechanism. Of course, other
options such as the SNMP GetBulk operation exist, but in some cases, even this
optimized approach is still too ineffi cient for some networks.

Bulk fi le transfer generally results in one or more fi les containing the equivalent
management data that would have been offl oaded using a more traditional
management interface such as SNMP or CLI. Data can be exported to or imported
from a device, just as fi les can be transferred to and from any networked computer.
The choice of exporting or importing data depends on the goals of such activities.
For example, statistics or an existing confi guration might be exported from a
device, while a new confi guration might be loaded into a device by importing a
bulk fi le. The actual details of how this process is confi gured and eventually
triggered vary from vendor to vendor. For example, some vendors simply allow
this to be engineered from the CLI, while other vendors may even provide a MIB
that can be used to both confi gure and instigate the fi le upload/download
process.

In all cases, the motivation for using such a mechanism is simple: effi ciency of
operations and a reduction in network overhead resulting from management pro-
tocol ineffi ciencies. In comparison to using any other management protocol, the
amount of overhead when using a bulk fi le transfer of the same amount of man-
ageable objects is very low. The reason is simple: The bulk fi le transfer generally
requires one or two operations by the manager, and then the fi le is either sent or
received using a very effi cient FTP. The data being transferred can be highly com-
pressed. By comparison, other management interfaces require several operations
to achieve the same goals, as well as additional framing for each piece of managed
data to identify it.

With this effi ciency comes a low amount of fl exibility. Essentially bulk fi le
transfer is used for one or two types of operations: confi guration upload/download
or bulk statistical data offl oad. In the case of bulk statistical transfer, potentially
large volumes of data are offl oaded to an offl ine server for processing. Instead of
the management station querying for each managed object, they are all packed a

priori into the bulk fi le and are transferred in one operation. This is important also
for the recording of historical data that may result in large volumes of data being
transferred across the network to the management station. Instead, the device can
cache the data and transfer them all together as a single fi le. This saves on network
traffi c and makes it more likely that sensitive statistical data will not be lost.

In the case of confi guration fi les, some network devices require very large
confi guration fi les. If each managed object must be transferred one at a time to
the managed device, it may take several minutes (or hours!) to confi gure a device
that has rebooted, or one that requires a large amount of reconfi guration. In these
cases, it is preferable to simply transfer the confi guration fi le to the device and
allow it to read the data either from its memory or from an onboard disk drive.

Bulk fi les can either be “pushed” or “pulled” from a device. This describes how
the manager extracts the fi le data. In the case of fi les being pushed, an operator
would specify a target machine to which the machine later transfers fi les using
the FTP or the UNIX Network File System (NFS). The machine either would then
send the fi le at some specifi c time or might be triggered to send the fi le if some
SNMP variable is set. The pull model is used when a device wishes to be the host
of the fi les created. The operator would then use one of the aforementioned FTPs
to connect to the router as if it were a host computer, and then transfer the fi les
from it. In either case, fi les, such as one containing the device’s confi guration, can
be offl oaded or uploaded using the effi ciency of a bulk fi le transfer rather than
individual protocol confi guration operations.

7.5.1 Encoding Bulk Data

The format of the bulk fi le can vary, as several encoding methods exist including
XML, proprietary CLI, and SNMP. For example, the information in a fi le can be
encoded using the SNMP SMI, type, and value. This information is then encoded
using Basic Encoding Rules (BER), ASN.1, for example. Other options are to simply
include ASCII text of commands or to encode these in binary. Since the specifi c
format is typically proprietary, the shortcoming of using such an approach is that
it is not an open standard used by more than one vendor. The downside to this
is that it is generally only provided by the vendor and the vendor’s management
applications, requiring decoding of multiple formats in a heterogeneous network.
Sometimes the vendor will not even provide the format to third-party application
developers or operators, requiring that they use that company’s device manage-
ment software. This may unfortunately result in a network comprised of devices
from N vendors, requiring an operator to understand and manage as many as N
different bulk fi le export/import applications. For most vendors we have inter-
acted with, this is an unacceptable solution. This also applies to other management
interfaces that we have already discussed or that we will discuss, including XML,
CLI, and CORBA. Fortunately, SNMP does solve this problem. We will discuss how
in Section 7.6.

7.5 Bulk File Transfer 185

186 CHAPTER 7 MPLS Management Interfaces

Further compounding this problem for operators is the fact that in order
for commercial parsers to convert proprietary formats that may have much of
their semantic information “compressed” out, they may have to be uncompressed
into more verbose representations that are more easily useable by applica-
tions that are generally unavailable. To alleviate this problem, some vendors
provide applications to their customers that accomplish these things, but again,
these applications are proprietary and only understand the format of the devices
made by that vendor. This results in higher operating costs for the operator
since they are only left with the options of either writing their own parsers to
decode bulk-formatted data or purchasing one from each vendor. For these
reasons, some vendors are moving toward providing their customers with an XML-
based representation of bulk data that can be parsed and understood by many
different applications, including readily available off-the-shelf versions. Although
this does not solve the problem of providing a ubiquitous format for the encoded
data, it does allow an operator to build a single application using a common
protocol.

An example of how you can reduce the complexity associated with interpreting
SNMP data encoded into a proprietary bulk transfer format is to defi ne a new bulk
data format that is based on an XML schema. Let’s call this new format vendor-x-
bulk-xml. This format will be similar to the existing proprietary vendor-x-bulk-
snmp, which formats SNMP data as a pair containing an SNMP object identifi er (oid)
that describes the object and an instance of that data, as well as the value (if any)
associated with that object instance. The XML version of this formation will modify
the format slightly by replacing the oids with the verbose representation of the
object. Additional XML tags may also be needed to denote fi elds within the fi le, as
well as an XML database template library (DTL). The tags used in this format will
be relatively small, while still providing enough semantic meaning about the tagged
data. By formatting data in the vendor-x-bulk-xml format, we lose some compres-
sion that the vendor-x-bulk-SNMP format provides, but the data produced in the
vendor-x-bulk-xml format will still be suffi ciently compressed.

A benefi t of using the vendor-x-bulk-xml format is that we can provide DTD
specifi cations that provide a well-understood format for describing well-formed
XML documents. This same format is either not provided by proprietary formats,
or when it is, it is almost completely different from any other vendor’s format. In
addition, we can provide style sheets that can be used to transform the vendor-
x-bulk-xml-formatted data into user-friendly representations or other XML
representations.

There are signifi cant advantages to this vendor-x-bulk-xml format. Such data
would be easy to interpret with existing XML parsers, saving customers from
having to write their own parsers. The structured tagging makes for easier debug-
ging in customer environments. Furthermore, the advantages of bulk transfer are
still present: large volumes of data can be offl oaded from a device in a very effi cient
(and now well-understood) format. This reduces the complexity of managing
devices, as well as provides an effi cient mechanism for doing so.

7.6 SIMPLE NETWORK MANAGEMENT PROTOCOL
SNMP was devised many years ago by the IETF to solve the problem of managing
network devices remotely using a standard protocol, access methods, and a well-
known format for representing managed data stored in network nodes. The stan-
dard for SNMP has been enhanced and extended over the course of its existence to
include additional protocol operations, enhanced security, and additional standard
management models. The fi rst version, called SNMPvl (RFCs 1155, 1157, and 1213),
has since been surpassed by SNMPv2c (RFCs 1901–1906) and, most recently,
SNMPv3 (RFCs 3411–3415). With each new revision came many new features
including new protocol operations, security features, and modifi cations to the lan-
guage SNMP uses to represent managed information. In addition, during this time,
the acceptance of SNMP in the marketplace grew. Today, most production net-
works use SNMP as at least a part of their overall network management strategy.

SNMP is composed of three basic components: structure of management infor-
mation (SMI), MIB, and SNMP.

7.6.1 Structure of Management Information

Management information is viewed as a collection of managed objects, residing
in a virtual information store that is referred to in SNMP as a management informa-
tion base (see Section 7.6.2). The SMI is the data modeling language used to model
the management data. The SMI (RFC 2578) is the language that is used to write,
defi ne, and specify a MIB module. The roots of the SMI are actually in an adapted
subset of OSI’s Abstract Syntax Notation One (ASN.1). This adaptation was fi rst
done in 1988. The SMI has since changed in the second version of the SMI, called
SMIv2. The SMIv2 has been used for several years now as the standard language
in which to defi ne MIB modules. Furthermore, a new SMI is being worked on at
the IETF, called the SMIng, that encompasses even more powerful modeling lan-
guage and constructs. It is important to understand that it is much better not to
call this ASN.1.

Structure information management is divided into three parts: object defi ni-
tions, MIB module defi nitions, and notifi cation defi nitions. A SMI macro called the
ModuleIdentity is used to specify the semantics of an information module. This
macro is always found at the top of the module defi nition. Object defi nitions are
used to describe managed objects. The ASN.1 ObjectType macro is used to specify
the semantics and syntax of a managed object. Finally, notifi cation defi nitions are
provided to describe spontaneous transmissions of management information. The
ASN.1 NotificationType macro is used to specify the syntax and semantics of a
notifi cation.

Textual Conventions and Basic Data Types
The SMI provides a number of basic data types that are used to specify the seman-
tics and syntax of objects defi ned in MIB modules. When designing a MIB module,

7.6 Simple Network Management Protocol 187

188 CHAPTER 7 MPLS Management Interfaces

it is sometimes benefi cial to defi ne new types that are derived from those defi ned
in the SMI. Each of these new types has a different name and a similar syntax,
but more precise semantics than the type it is derived from in the SMI. These
newly defi ned types are termed textual conventions (TCs) and are defi ned with
the TextualConvention data type. TCs do not add any new basic types to the
SMI. This is very important because a TC is encoded within an SNMP packet—a
protocol data unit (PDU)—using the same rules that defi ne their derived type.
That is, the actual underlying basic data that are transmitted in the SNMP PDUs
(i.e., on the wire) remain the same as the basic data type that the TC is derived
from.

Table 7.3 lists most of the basic types that are defi ned in the SMIv2 (RFC 2578).
These objects do not, however, represent the totality of object types in SMIv2. As
mentioned, these types can be and frequently are extended using SNMP textual
conventions to adapt their syntax or semantics to different domains.

SMI Versions
There have been two versions of the SMI. Let’s briefl y discuss them, since they
are often confused or incorrectly used interchangeably. Back in the late 1980s,
when SNMPvl was fi rst specifi ed, SMIvl was defi ned to facilitate the defi nition of
SNMP MIB modules. The fi rst version of the SMI consisted largely of the specifi ca-
tions in RFC 1155, RFC 1212, and RFC 1215. SMIvl is currently a full standard
(STD 16) within the IETF, although since 1995/1996 standard MIB modules have
not been typically allowed to be defi ned using SMIvl. It should be noted that some
corporations still defi ne their enterprise MIB modules using SMIvl, although that
is more of an exception to the norm. The SMIv2 consists of RFC 2578, RFC 2579,
and RFC 2580 and is currently a full standard (STD 58) within the IETF.

It is important to understand that all of the data types defi ned in SMIvl can be
represented in SMIv2. It was the intent of the IETF when it defi ned the SMIv2 not
to break existing implementations that used the SMIvl. It should be noted that
although the data types in SMIv2 are a superset of those defi ned in SMIvl, some
of the data types from SMIvl are only in SMIv2 for backward compatibility, and
so should not be used in new MIB module defi nitions. These exceptions are noted
in the defi nitions for those types in SMIv2. Despite this backward compatibility
between SMIvl and SMIv2, translation in the other direction, from SMIv2 to SMIvl,
is a bit more problematic. For example, the new type Counter64 is particularly
diffi cult to convert because there is no direct mapping from this type to any other
single type in SMIvl. For those readers interested in the specifi cs of how these
conversions are performed or recommendations on this subject, RFC 2576 explains
how to convert SMIvl MIB modules into SMIv2 MIB modules and vice versa.

7.6.2 The Management Information Base

Each managed system is composed of a collection of objects that are used to model
system functions, concepts, or attributes. Objects are capable of representing

Table 7.3 Basic Data Types as Defi ned in SMIv2 (RFC 2578)

Data Type Description

INTEGER A signed 32-bit integer quantity with a range that is from −2,147,483,648 to
2,147,483,647.

Integer32 This is the same as INTEGER except that it never needs more than 32 bits for a
two’s complement representation. The valid range is from −2,147,483,648 to
2,147,483,647.

Unsigned32 An unsigned 32-bit quantity with a range of 0 to 4,294,967,295.

OCTET STRING A series of bytes, each ≥0 and ≤255.

Gauge32 An unsigned 32-bit quantity used for counters with a range of 0 to 4,294,967,295.
This object latches onto a specifi c value, but does not wrap around as a normal
counter would, so it should not be confused with the standard Unsigned32 or
Counter32.

OBJECT

IDENTIFIER
Contains a unique oid. When displayed, it is typically shown as a series of dot-
separated unsigned integers.

IpAddress Contains an IPv4 address as a sequence of 4 bytes. Note that this type is only
present in the SMIv2 for backward compatibility. It is no longer used in the
specifi cation of new MIBs.

Counter32 The Counter32 type is used when a nonnegative integer that monotonically increases
is necessary. The Counter32 type increases in value monotonically until it reaches
the maximum value of a 32-bit integer (4,294,967,295 decimal), and then “wraps
around” to 0, where it starts increasing again.

Counter64 64-bit counter used for counters that wrap in less than one hour with 32-bit
counters. The valid range is from 0 to 18,446,744,073,709,551,615.

BITS The BITS construct represents an enumeration of named bits. The collection of
named bits is assigned nonnegative, contiguous values starting at 0. Only those
named bits that are enumerated by the defi nition may be present in a value.
Therefore, enumerations of bit positions must be assigned to consecutive bits (i.e.,
there cannot be holes in the enumeration).

Opaque The Opaque type supports the capability to pass arbitrary ASN.1 syntax. A value is
encoded using the ASN.1 BERs (RFC 2578) into a string of octets. This, in turn, is
encoded as an OCTET STRING, which in effect “wraps” the original ASN.1 value
twice. The Opaque type is provided for backward compatibility and is no longer used
in new MIBs.

TimeTicks Represents an unsigned integer that represents the time modulo 232 in hundredths
of a second between two epochs. The DESCRIPTION clause defi nes both reference
epochs.

7.6 Simple Network Management Protocol 189

190 CHAPTER 7 MPLS Management Interfaces

many things and are only limited in power and fl exibility by the data modeling
language in which they are defi ned. For example, an object might represent a
fi nite component within the system, such as an interface, and keep track of that
interface’s counters, state, or name. Another object might represent the state of
a routing protocol on that same system. However, given the modeling language
used, it is possible, for example, that some of the specifi c attributes or behaviors
of these objects will not be possible.

The collection of managed objects can be thought of as a database of manage-
able information. This information can be used to form a data model of the system.
In addition to the objects themselves, the database must also represent the type,
behavior, and associated access policy for each object. It may also be necessary
to represent the interaction between objects in the database. The objects in the
model can be accessed using a variety of management interfaces to query or
modify them. Examples of management interfaces include XML, CORBA, CLI, or
SNMP, among others.

However, maintaining this information in a database alone does not guarantee
that all manager entities can access this information. Unless an external represen-
tation of the managed information such as an abstract data model is agreed on by
both manager and agent entities, an agent on one device may provide access to
its information in a manner that is inconsistent with that of another device. This
could easily happen, for example, if one manufacturer produced a representation
of one variable as a string, while another represented it as an integer—perhaps
because the management interface is nonstandard, as is the case with the CLI. In
addition to these challenges, managed objects can be, and usually are, imple-
mented in a variety of ways depending on the specifi c device, or even the software
revision running on that device. Therefore, it is important for the management
interface to provide a consistent view of the data model that agent entities can
present to manager entities. SNMP accomplishes this using its MIB.

The MIB is the collective set of MIB modules that together make up the MIB
that is being managed/monitored. The MIB is also sometimes referred to as the
device’s virtual object store because it defi nes the data model for a device. MIB
modules are defi ned using the SMI, which provides a consistent data modeling
language in which managed objects are defi ned. It also allows MIB modules to be
parsed by MIB compilers can that not only check their syntax, but can also gener-
ate code that is used to implement the objects defi ned in that MIB module. An
individual MIB module specifi cation should not be confused with the entire col-
lection of specifi cations implemented by any particular device, which is referred
to as a device’s MIB proper. Many use the terms MIB and MIB module interchange-
ably. This is sometimes problematic, since the actual meaning must be distin-
guished based on the context in which it is used; therefore, we will use the term
MIB module to describe a specifi c subset of the MIB, and MIB as the entire col-
lection of MIB modules.

MIB module specifi cations are generally produced by two types of organiza-
tions: standards organizations and private entities such as corporations. In the case

of standards-based defi nitions, standards bodies such as the IETF, ITU, and ATM
Forum have produced, and continue to produce, MIB module specifi cations that
can be used to manage various protocols and network device functions. The
advantage to MIB modules that are produced by standards organizations is that
they provide a common data model that can be adhered to by all vendors imple-
menting the feature being managed. For example, the OSPF MIB module defi nes
standard managed objects that can be used to manage a standards-based OSPF
implementation. All devices implementing this MIB will represent the objects
defi ned in that MIB externally in the manner in which they are specifi ed in the
MIB module, regardless of their actual internal implementation.

Aside from standards-based MIB modules, company-specifi c versions called
enterprise MIB modules are also produced by corporations. These MIB modules
are typically produced to extend existing standards-based MIB specifi cations
because they do not adequately refl ect the entirety of managed information for
that feature as implemented by a specifi c corporation’s device. It is common that
the standard MIB module contains a subset of managed objects required to manage
a specifi c feature. Vendors typically augment the standard function, thereby adding
value to it. These additional functions are then represented in that company’s
enterprise MIB module.

Each MIB module specifi cation is composed of several components: a textual
preamble, a MIB module defi ned using the SMI, and references to other related
documents. Standards-based MIB module specifi cations rarely vary from this
format, while proprietary MIB module specifi cations typically only contain the
MIB module.

Each managed object in an agent’s virtual object store must be modeled in a
specifi c MIB module before it can be made available for access through the SNMP
management interface. Each managed object is defi ned using the OBJECT-TYPE
macro. This macro allows the specifi c syntax and semantics for an object to be
defi ned. Two basic types of objects exist in MIB modules: scalar and columnar.
If an object can only exist as a single instance, it is referred to as a scalar object.
Management operations in SNMP apply exclusively to scalar objects; that is, the
basic operations in SNMP always act on a scalar object.

The Get and Set operations, for example, may only act on an instance of an
object such as a scalar object or columnar instance. No specifi c construct exists
within SNMP to organize together scalar objects; however, related scalar objects
can be found grouped together at least conceptually within a MIB module. For
example, scalars related to the OSPF protocol may be found in the OSPF MIB
module. Organizing objects together in this way sometimes enhances the MIB
module’s readability and usefulness. Figure 7.7 illustrates a collection of scalar
objects. Notice that the scalar objects are not organized in any particular way, and
that each represents a single instance of an object (i.e., no two overlap in color).

We mentioned that two basic types of objects exist in SNMP. Let us now
investigate columnar (i.e., tabular) objects. It is often a necessity to group managed
objects together into a conceptual tabular structure to form an ordered collection

7.6 Simple Network Management Protocol 191

192 CHAPTER 7 MPLS Management Interfaces

of objects within the MIB module. Each conceptual table contains zero or more
rows, each of which can contain one or more columnar objects. Thus, conceptual
tables in SNMP contain a series of rows and columns. This conceptualization is
specifi ed using the OBJECT-TYPE macro. This macro can be used to defi ne both
an object that corresponds to a table and an object that corresponds to a row in
that table. The intersection of a row and one or more columns represents a specifi c
object instance and is how specifi c instances of objects are called out or indexed
from within a conceptual table of objects.

Figure 7.7 illustrates how a conceptual table in a MIB module might be con-
fi gured with several rows and columns. The table represents horizontal rows,
where the specifi c row is identifi ed by the indexes for the table, and the specifi c
instances of a columnar variable. Object instances are indicated by the cell within
the table where both the columnar and row rectangles intersect.

Table Indexing
Each table defi ned in a MIB module is indexed by one or more objects. The index-
ing of a table is specifi ed using either the INDEX or AUGMENTS clauses. The INDEX
clause contains objects that are either present in the table or are found elsewhere
that are used to index the rows in that table. The most common approach is to
include objects defi ned in the table as indexes for the table. When this approach
is used, the objects used as indexes must not be accessible.

Two additional choices exist when a table wishes to extend the entries of an
existing table without having to add additional columns to that table. This may be
necessary if, for example, you wish to extend a table defi ned in a standard MIB
module with objects that are enterprise specifi c. In this case, it would not make
sense to add additional objects to the standard table. The choice of using one of the
table extension mechanisms or another depends specifi cally on whether a one-to-

Conceptual
column

Conceptual
row

Collection of
scalar objects

Object instance

FIGURE 7.7

SMI conceptual table containing columns, rows, and object instances, and a collection of
scalar objects.

one relationship exists at all times between the instances of the objects contained
in both tables. If a row in the new table will exist for every row created in the base
table, then the AUGMENTS clause can be used instead of the INDEX clause to defi ne
the indexing of this table. The AUGMENTS clause specifi es the base table that the new
table will augment, but does not specify any indexes. In doing so, the new table is
implicitly indexed using exactly the same indexes as the base table.

The other method of table extension is used if a sparse relationship exists
between the objects in both tables. This method is called the extends relationship.
This approach requires the new table to defi ne its indexes with the INDEX clause
using the same indexes as are found in the base table. This method allows entries
in the base table to be created that do not correspond to entries in the new table.
This is an important feature of this approach since this allows entries in the new
table to correspond to those in the base table only if it makes sense to do so. For
example, if a new table wishes to extend the IF-MIB’s ifTable to include addi-
tional objects for a new type of interface, this new table would be implemented
using an extends relationship, because the possibility exists that the ifTable could
contain interfaces that might not be related to all of the entries in this new table.
However, if the new table was defi ned to contain counter objects that applied to
every possible type of interface, then it would be appropriate to use the AUGMENTS
clause to specify the indexing for this table.

7.6.3 Access to Objects

Each object defi ned in a MIB module must have a MAX-ACCESS clause associated
with it. The valid values for MAX-ACCESS are ordered, from least to greatest:
not-accessible, accessible-for-notify, read-only, read-write, and read-create. The
MAX-ACCESS clause indicates the maximum access that would make what is called
“protocol sense” for the object. For example, if the MAX-ACCESS is defi ned as read-
only, then a Set operation that attempted to modify that object would fail. If that
object’s MAX-ACCESS is set to read-write or read-create, then the Set operation
may succeed. However, there may still be many reasons why a Set might fail.

First, an implementation may not have implemented the object such that it
could be modifi ed. Therefore, the object’s actual access is read-only, thus prevent-
ing modifi cations of the object. Similarly, the RowStatus for the conceptual row
containing that object might be implemented or confi gured to disallow write
access. Second, the Set request may be attempting to modify an object that is
confi gured with noAuthNoPriv in the view-based access model (VACM). Third,
the device’s confi guration may be set to not allow Sets for unsecured requests,
and the Set request comes in unsecured. Fourth, the specifi c user requesting the
modifi cation of that object is not allowed to execute that operation on that object
given the confi guration in the VACM MIB (RFC 2575). Please note RFC 2576 also
maps community-based (that is, SNMPvl and SNMPv2c) access into the VACM
access control. Table 7.4 enumerates the fi ve specifi c access types in increasing
order of permissions granted to the manager.

7.6 Simple Network Management Protocol 193

194 CHAPTER 7 MPLS Management Interfaces

It is important to understand that the MAX-ACCESS clause specifi es the maximum
access that is required for an object, but it does not specify the minimum access
possible. It is up to the implementation to choose this, given how it has chosen
to implement the object. It is permissible to implement an object using a
MAX-ACCESS that is lower than the MAX-ACCESS specifi ed in the MIB module. The
implementation can specify how it has varied from the MIB module where the
object is defi ned by noting this variation in the agent capability statement (see
RFC 2580 for more information) for that MIB module. For example, an object that
is specifi ed with a MAX-ACCESS as read-write might actually be implemented as
read-only. Alternatively, this can be accomplished by specifying a MIN-ACCESS
clause in the conformance section of the MIB module.

7.6.4 Object Identifi er

SNMP specifi es a scheme by which all of the objects and instances of those objects
present within a system can be uniquely identifi ed. These items are called object
identifi ers, or more commonly, oids. Oids are specifi ed as an ordered sequence
of nonnegative integers written from left to right and separated by a period (i.e.,
dot). This is referred to as the dot notation. For example, “1.1” represents an oid.
The oid space itself does not have any limitation as to how many branches (sublDs)
are possible. For SNMP, however, a limit of 128 sublDs has been defi ned. Each
consecutive integer is separated from the numbers around it by a period. The
sequence must contain two integers at a minimum and does not have a maximum
number (although all implementations will have a specifi c limit to this size).

Oids are arranged and organized in a hierarchical tree structure. The topmost
levels in the oid tree are controlled by the ITU and ISO standards bodies. These

Table 7.4 Possible Values of the MAX-ACCESS Clause

MAX-ACCESS Type Description

Not-accessible Not allowed for scalar or columnar object types; only for indexes.

Accessible-for-notify This value indicates that an object is available only via a notifi cation. That is,
this object may only be contained within a notifi cation, but cannot be
accessed using the other SNMP operations (e.g., Get, Set, etc.).

Read-only The object type may be an operand in only retrieval and event report
operations.

Read-write The object type may be an operand in modifi cation, retrieval, and event
report operations.

Read-create Same as read-write, except specifi ed for columnar objects that require a
value to be set before a row in that table can be created. Once created, these
objects can be read or written.

organizations delineate how new assignments are given. A portion of this oid tree
is managed and maintained by standards organizations or corporations. A portion
of the oid tree is shown in Figure 7.8. Note that the example contains the IETF
subtree. Standard MIBs typically contain oids that use the prefi x 1.3.6.1.2.1.

SNMP objects and object instances—sometimes referred to as SNMP vari-
ables—are assigned unique oids. As was noted earlier, SNMP variables are either
scalar or tabular objects. SNMP MIB modules are also typically assigned an oid
within the oid tree shown in Figure 7.8. This oid often represents the root oid for
all objects present in that MIB module. The point where the MIB module is rooted
depends on the status of the MIB specifi cation as well as which organization owns
and maintains the document. As mentioned earlier, two general types of MIB
specifi cations exist: enterprise (or proprietary) and standard. Documents that are
produced by a standards organization are typically rooted somewhere below that
organization’s node in the overall oid tree. For example, MIBs that are produced
by the IETF are sometimes fi rst placed under the experimental(3) oid. These MIB
modules will be assigned oids with a prefi x of l.3.6.1.3.

Once the MIB specifi cation has been adopted for standards-track status, it is
moved under a different portion of the IETF’s oid subtree, typically mib-2. Simi-
larly, private organizations maintain enterprise MIB modules. These modules are
assigned oids that are rooted under the IETF organization’s private(4) enter-

experimental(3)

ccitt(0)

mgmt(2)

mib-2(1)

org(3)

iso(1)

root

joint-iso-ccitt(2)

internet(1)

dod(6)

private(4)

enterprises(1)

FIGURE 7.8

Sample portion of the oid tree containing IETF subtree oid assignments starting at
internet(1).

7.6 Simple Network Management Protocol 195

196 CHAPTER 7 MPLS Management Interfaces

prises(1) subtree. For example, Cisco Systems maintains a subtree of oids under
1.3.6.1.4.1.9. Corporations sometimes further delineate their oid space in a manner
that is consistent with the one used by the IETF. That is, corporations sometimes
maintain additional subtrees that contain portions for experimental or prototype
MIBs, as well as those that are offi cially released.

The general format of an oid is of the form <object identifier>.<instance
id>. The fi rst part of the identifi er represents the oid of the object, as defi ned in
the MIB module. The second portion identifi es the specifi c object instance. In
general, the oid representing a scalar object instance contains the object prefi x
and an instance identifi er of 0. The format of a tabular object instance oid is com-
prised fi rst of the table entry’s oid. The second portion contains the columnar
identifi er. The last portion contains one or more identifi ers that represent the
index of the row. This is sometimes confusing, but remember that this must be
the case because tables may be indexed by one or more object instances. Thus,
the general format of an oid representing an object instance in a table is of the
form:

<table entry suboid>.<column>.<index0> . . . <indexn>

We will investigate how oids are operated on in Section 7.6.9.

MIB Module Versions
Since around 1996, MIB modules have, in general, been written using SMIv2.
However, a small set of MIB modules are still written in SMIvl. The most visible
and important one is MIB II, which is defi ned in RFC 1213 as well as Standard 17
(STD 17). It is also important to understand that much of MIB II has been split off
into new MIB modules that replace these functions. These new modules are
written in the newer SMIv2. For example, the system group from MIB II can now
be found in the SNMPv2-MIB module (RFC 1907). This can sometimes be confus-
ing for the novice (or someone who has been doing this for a while), so we
recommend searching the IETF RFC archive and going over the vl MIBs before
implementing them, as newer SMIv2 versions of the MIB module (or the portions
you are interested in implementing) may exist.

7.6.5 SNMP Application Components

The Simple Network Management Protocol is the protocol that is used to send
management information as is defi ned in MIB modules. This information is
exchanged between SNMP entities. SNMP entities are traditionally referred to as
SNMP managers and SNMP agents. However, in the current IETF SNMP architec-
ture as defi ned in RFC 3411, managers and agents have been generalized into
SNMP entities. The architecture of an SNMP entity is shown in Figure 7.9.

All entities are comprised of an engine and applications. An SNMP engine
provides services for sending and receiving messages (dispatcher and message
processing system), authenticating and encrypting messages (security subsystem),
and controlling access to managed objects (access control subsystem). There is a

one-to-one association between an SNMP engine and the SNMP entity that contains
it. All SNMP entities also contain SNMP applications. There are several types of
SNMP applications, enumerated in Table 7.5.

Previous versions of SNMP did not allow a command generator to reside within
a managed device. Similarly, notifi cation originators were not allowed to reside
within a management station. However, the new architecture as defi ned in RFC
3411 does not make that distinction and instead only refers to an SNMP entity.

Notification
receiver

Command
generator

Command
responder

Notification
originator

Other

Proxy forwarder

Dispatcher
Message

processing
system

Security
subsystem

Access control
subsystem

SNMP entity

SNMP engine

Application(s)

FIGURE 7.9

SNMP application components.

Table 7.5 SNMP Application Components

SNMP Application Description

Command generator Typically resides in an NMS or similar device.

Command responder Typically resides in a managed device such as a
router.

Notifi cation originator Typically resides in a managed device such as a
router.

Notifi cation receiver Typically resides in an NMS or similar device.

Proxy forwarder Translates between various SNMP versions.

Other Other application types defi ned in the future.

7.6 Simple Network Management Protocol 197

198 CHAPTER 7 MPLS Management Interfaces

This obviates the need for referring to the different components as an SNMP
manager, agent, or a dual-role entity.

In Figure 7.10 an agent and a manager are shown conversing using SNMP. The
agent maintains a database of managed objects in its MIB. When the agent accepts
a request from the manager, it processes the requests using its security and access
control systems. If all tests performed by these systems are successful, then the
request is made to its database of managed objects to access the information
specifi ed in the request. Once the information is retrieved, it is encoded in a
response message that is returned to the manager entity.

Dual-Role Entity
Until now, we have discussed the interaction between the manager and the agent
as one of a manager requesting objects or modifying their values by sending pro-
tocol operations to an agent. However, a variation of this model of interaction is
possible that will allow an entity to act as a translator between SNMP and another
protocol, including a different version of SNMP. Recall the scenario previously in
the CORBA section (see Section 7.3.1) that explained how SNMP messages could
be translated between SNMP and CORBA. This not only included protocol retrieval
or modifi cation messages, but also included SNMP notifi cation conversion. For
this confi guration to work correctly, the entity responsible for translating between
CORBA and SNMP needs to be implemented as an entity with a proxy-forwarder

Manager
(NMS)

Manager device

Management
communication

Management
access

MIB

Agent

FIGURE 7.10

SNMP manager and agent entities conversing using SNMP. The agent maintains a
database of managed information that a manager accesses to manage the device on which
the agent resides.

application. Such an entity is commonly referred to as a dual-role entity or a
midlevel manager.

7.6.6 SNMP Notifi cations

Network devices often maintain system software that is capable of operating in
an asynchronous manner. Node software can sometimes be programmed to raise
asynchronous alarms that are intended to alert the system’s operator of some
interesting condition or event. SNMP provides a means by which agents are able
to issue asynchronous messages to managers (or midlevel managers). These mes-
sages are called SNMP notifi cations. SNMP notifi cations are defi ned in a MIB
module with the NOTIFICATION TYPE macro. Notifi cations can be sent from a
notifi cation originator to a notifi cation receiver using one of two mechanisms:
either a TRAP (a TRAPvl or a TRAPv2, depending on the version of the protocol
operations being used), or an INFORM (only available with version 2 of the proto-
col operations).

The notifi cation message contains one or more pairs of oids and values. Each
pair consists of an oid and a corresponding value that is informative for the noti-
fi cation the object is contained in. The TRAP version of a notifi cation message is
sent either in a reliable (INFORM) or unreliable (TRAPv2) manner. Therefore, recep-
tion of a notifi cation is not always guaranteed. SNMPv2 added a reliable notifi ca-
tion called an INFORM. An INFORM notifi cation contains similar semantics to the
notifi cation except that the agent continues to attempt delivery of the INFORM
message until it receives an acknowledgment from the manager that it has received
it (or it times out). The TRAP or INFORM destinations are specifi ed either directly
on a device via its CLI, or using SNMP’s RFC 2573 MIB module. Retry counts and
timeouts for INFORMs are specifi ed in those MIB modules.

Special care should be taken when using TRAPs to ensure that a manager is
generally capable of both catching them and then reacting in a reasonable amount
of time to those messages if necessary. The transmission of notifi cations in large
amounts can actually exacerbate a failure condition by either overloading the
network between the device entity and the manager entity, or overloading the
manager entity such that it cannot take appropriate corrective action because it
is busy processing notifi cations.

7.6.7 SNMP Security

SNMP provides varying degrees of security and security features depending largely
on the version of SNMP used. SNMPvl provides a very weak form of security called
the community-based security model. In this model, a clear-text phrase is associ-
ated with certain access privileges. Unfortunately, this level of security has proven
to be very weak because most implementations use the same phrases for access
(e.g., public is used for read-only access, while private is often used for write
access). When the IETF redesigned SNMPvl, one of the major hurdles to the new
version being standardized was a new model of security.

7.6 Simple Network Management Protocol 199

200 CHAPTER 7 MPLS Management Interfaces

Unfortunately, a compromise could not be reached, so several versions of
SNMP were released. At this time, VACM offered a stronger means of confi guring
access control than the community-based model of SNMPvl. VACM allows for
more constrained access to objects by allowing the per-object access policy to be
confi gured. However, since this mechanism still used the community-based pass
phrase token for authentication, it could still be easily compromised. When
SNMPv3 was standardized, one of the most signifi cant new features it provided
was a very robust and comprehensive security model. SNMPv3 security provides
approaches for encrypting the SNMP message, replay detection/protection, and
antispoofi ng mechanisms. These, coupled with VACM, provide a very comprehen-
sive security model that can be used as an effective means by which operators
can allow full write access to their systems with the confi dence that they are
secure.

7.6.8 SNMP Transport Protocols

It is mandatory that an SNMP entity supports and implements SNMP over UDP/IP.
However, SNMP can certainly be run over a variety of other network transport
protocols. SNMP has been successfully run over IP/TCP, XML/HTTP, and IPX. It
is diffi cult to say specifi cally whether one network transport is necessarily better
than another, but it is clear that SNMP over UDP/IP is the most prevalent mode
of operation, due to it being mandatory for compliance to the standard. We
suggest that you determine what network and operational requirements exist and
choose a transport protocol that best suits these requirements. From our experi-
ence, however, we have seen that although a small and dwindling number of
vendors may implement some of the non-IP/UDP transports above for SNMP,
the trend today is to use IP/UDP or IP/TCP for those requiring reliable transport
services.

7.6.9 Protocol Operations

SNMP defi nes a simple protocol that is used to carry out the interaction between
the manager and agent. We will now discuss three of the most widely used
operations, although please keep in mind that others such as GetBulk exist and
can be quite useful. These operations are used to access or modify the objects
maintained by the agent. We will discuss the Get, GetNext, and Set operations.
We should fi rst note that it is not possible to obtain or modify the value of anything
other than an instance of an object; thus the Get and Set operations must include
the oid of a valid object instance. However, the GetNext operation may act on an
invalid oid, as the agent will always attempt to fi nd an object instance whose oid
is lexically greater than the one specifi ed.

The Get operation is issued by the manager entity when it wishes to know the
value of a specifi c instance of a managed object. To do so, the manager entity
inserts the oid of a specifi c object instance into an SNMP PDU and sends it to an
agent entity. If the agent entity accepts the request, it will fi ll in the value portion

of the request with the value of the object instance and return it to the manager
entity. This operation is very straightforward for scalar object instances. However,
it is slightly more complicated for tabular object instances. To retrieve the value
of an object instance that resides within a table, it is necessary to specify the index
of that object instance in such a way as to precisely reference it within the table.
Recall that conceptual tables represent rows and columns. The columns in the
table represent objects and are specifi ed with one or more indexes.

It is generally not possible to directly retrieve or modify indexes of a table
using the Get, Set, or GetNext operations. Columnar indexes defi ned in MIB
modules are required to defi ne their indexes as having a MAX-ACCESS of not acces-
sible, therefore an agent entity that receives a request for such an object will return
an error. This restriction exists because it is not necessary to access the indexes
of a table directly. This is because the indexes of a table must be specifi ed in order
to specify a unique object instance in the table.

The Get operation is demonstrated in Figure 7.11. The fi gure shows a simulated
oid tree rooted somewhere under the enterprise oid. After a manager issues a Get
operation using the oid 1.5.8.1.1.0, the agent accepts the request, queries its
object database, and returns the value of this scalar object. All scalar objects
have associated instances that are conventionally identifi ed with instance 0. In this
case, the .0 at the end of the 1.5.8.1.1.0 oid specifi es the instance of object
1.5.8.1.1. Notice that when the manager issues a Get operation containing the oid
1.5.8.1.5.3, the agent returns an error because 1.5.8.1.5.3 does not represent an

1

1

1Agent oid database

1

1

1

1

1

1

8

8 8 8

8

0

4 4

4

4

2

2

3

3

5

5

Get
(1.5.8.1.1.0)
returns the

scalar value in
1.5.8.1.1.0.

FIGURE 7.11

Example of an SNMP Get operation.

7.6 Simple Network Management Protocol 201

202 CHAPTER 7 MPLS Management Interfaces

instance of any object; it instead represents an actual object. This is demonstrated
in Figure 7.12.

The second protocol operation defi ned is called the Set operation. Set repre-
sents the analog to the Get operation: It is used to modify the value of an object
instance versus simply retrieving it. To this end, a Set operation must specify both
an object instance and a value to assign to that instance. When an agent receives
a Set request, it fi rst checks the access specifi cs for that object. If the object is
specifi ed with a MAX-ACCESS of read-write (or read-create), the agent will modify
the value of that object with the one specifi ed in the request. If, however, write
access to the object specifi ed is not allowed, the agent will return an error inform-
ing the manager that the requested modifi cation has not taken place.

The last operation we will cover is GetNext. This operation is used to retrieve
the value of the next lexically greater object instance in the oid database. Remem-
ber, the GetNext operation must still retrieve the value of the next lexically greater
oid, so it must end up executing a Get operation on a valid object instance. By
“lexically greater,” it is meant that the object with the next largest oid should be
retrieved. To fi nd the next largest value, the agent traverses the oid tree from the
point specifi ed in the request using a depth-fi rst search and will return either the
next scalar object or instance of a tabular column. For example, using the oid tree
shown in Figure 7.13, the object 1.3.1.8.1.1.2 is lexically greater than 1.3.1.8.1.1.
Let us examine why. Begin at the root of the oid tree and traverse down it using
a depth-fi rst traversal, stopping when you arrive at the second-to-last node in the

1

1

1Agent oid database

1

1

1

1

1

1

8

8 8 8

8

0

4 4

4

4

2

2

3

3

5

5

Get
(1.5.8.1.5.3)

returns an error
because there is

no instance to
return.

FIGURE 7.12

Example of invalid Get operation.

oid tree. If we do this, we arrive at the .1 node on the far bottom left of the fi gure
(just above the 1 and 2 terminal nodes).

At this point, we now need to fi nd the oid of an object instance that is lexically
greater than 1.3.1.8.1.1. What this means is that either we need to fi nd the oid of
an object instance that has the last number in its oid greater than 1.3.1.8.1.1, or
we need to fi nd the fi rst oid with one more part to its oid (i.e., the oid is longer
than the one we are using by at least one dotted decimal). In this case, since
1.3.1.8.1.1 possesses six parts to its oid, and since we have exhausted all of the
available oids at this ply in the oid tree, we need one with seven. Since no other
nodes exist at this level, we will not be able to fi nd an oid with a prefi x of 1.3.1.8.1
that has six parts to its oid. Therefore, we must descend one more ply in the oid
tree. If we do this, we fi nd that the next level down contains two leaf nodes: 1
and 2. Appending either to the prefi x of 1.3.1.8.1.1 will result in a lexically larger
oid; however, the next lexically greater oid only results if we pick the fi rst oid
available—l. If we then choose this node and attach it to the current prefi x of
l.3.1.8.1.1, we correctly arrive at the next lexically larger oid of 1.3.1.8.1.1.1.

Let’s investigate a slightly more diffi cult oid. Let’s examine how we discover
the next lexically larger object instance oid to oid 1.5.4. If we begin with the
depth-fi rst search algorithm starting at node 1 in Figure 7.13 and traverse the tree
down to node 1.5.4, we will fi rst notice that we have run out of levels in the oid

1

1

1Agent oid database

1

1

1

1

1

1

8

8 8 8

8

0

4 4

4

4

2

2

3

3

5

5

GetNext (1.5.8.1.1) returns
the tabular instance

contained in 1.5.8.1.5.1.4.

GetNext (1.5.8) returns
the scalar 1.5.8.1.1.0.

FIGURE 7.13

Examples of the GetNext operation on both tabular and scalar objects.

7.6 Simple Network Management Protocol 203

204 CHAPTER 7 MPLS Management Interfaces

tree below this point. When this happens, we must use the same steps that the
depth-fi rst search algorithm would use. In this case, the algorithm would back up
the tree until it found a place where it could descend down again. When the
algorithm backs up one level in the tree, it will then try to descend down to a
terminal leaf node. Since leaf nodes in the oid tree always represent object
instances, the algorithm will correctly discover the next lexically greater
instance.

To continue with the example, after we back up one level in the tree, we will
continue down to .8.1.1.0 using the rules just described. We have arrived at a
terminal leaf node. Examining the complete oid of the path just traversed reveals
that we have found an oid for an object instance (actually a scalar object instance)
of 1.5.8.1.1.0. If we compare this oid to the original one of 1.5.4, we fi nd that we
have satisfi ed all of the criteria of the next lexically greater oid. Eureka!

This GetNext operation is useful for several tasks. In general, a manager will
often use the GetNext operation repeatedly by feeding in the oid that is returned
by the operation into a subsequent call to “walk” some subset of the oid tree, or
even the entire tree. The walk operation might be terminated when an object
instance is encountered whose oid length exceeds the one used to start the
operation. It might also be terminated when the oid of a valid object instance
whose last dotted decimal that is greater than the one given is found. Some com-
mercial SNMP toolkits provide tools with “walk” as part of their name, and they
behave this way. Using these tools, several operations are available to the opera-
tor. First, it is possible to walk the entire oid tree contained in an agent by
specifying 1.1 as the point of the walk. Second, it is possible for a manager to
specify the “top” oid of a table and use this to walk all columnar instances, or
even all rows and columnar instances within a table. This is often useful if either
the manager does not know the indexes of the instances within a particular table,
or the snapshot stored by the manager has grown stale.

In addition to the examples just shown for GetNext, two examples of the
GetNext operation are illustrated in Figure 7.13. In the fi rst example, the GetNext
operation is executed on oid 1.5.8. Using the algorithm we described earlier for
locating the next lexically greater object instance reveals that this oid is 1.5.8.1.1.0.
The value returned for this object is the value of the scalar object represented by
the object instance. The type of this object is specifi ed by the object 1.5.8.1.1.
The second example attempts a GetNext operation on oid 1.5.8.1.1. Using the
algorithm described earlier again, we arrive at the oid 1.5.8.1.5.1.4. This oid rep-
resents an instance of a tabular object. The type of the value returned depends
on the type of the columnar object.

Protocol Operation Versions
At the protocol level, SNMP has been specifi ed as two versions. That is, two pro-
tocol specifi cations exist for the protocol data units (PDUs) that are transported
within SNMP messages. Version 1 of the protocol operations as specifi ed in RFC
1157 specifi es the version 1 protocol operations (PDU types) that can be used.

These operations include Get, GetNext, GetResponse, Set, and TRAPvl. It also
specifi es the remaining parts of the format of a PDU such as the request-id, the
error-status and error-index, and the variable-bindings.

Version 2 of the protocol operations is specifi ed in RFC 1905. This document
is currently a draft standard, but a revision has been approved as full standard.
This document specifi es the version 2 protocol operations (PDU types) that can
be used. These operations include Get, GetNext, GetResponse, GetBulkSet,
INFORM, TRAPv2, and Report. It also specifi es the remainder of the PDU format of
a PDU that includes things such as the request-id, the errorstatus and error-
index, and the variable-bindings. It is important to note that as of the second
version of the protocol operations, the TRAPvl no longer exists. The GetBulk,
INFORM, TRAPv2, and Report that are introduced in the specifi cation as new PDU
types represent what are essentially new SNMP protocol operations. The error-
status value that is contained in the new message format has a much more
detailed list of possible errors, which can be used to further isolate errors or
recover from them. Lastly, the variable-bindings can now contain special values
to indicate exceptions such as noSuchObject, noSuchInstance, and endOf-
MibView, which further enhance the functionality of SNMP.

7.6.10 SNMPvl, SNMPv2c, and SNMPv3

Several versions of SNMP have existed since the protocol’s inception in the late
1980s. The original SNMPvl was used until it was realized that it had many SNMP
message header SNMP PDU shortcomings. In particular, additional protocol oper-
ations were necessary as well as additional security features. It was at that time
that work on SNMPv2 began. During that time, there were various iterations of
SNMPv2. All but one of these intermediate versions has failed. The IETF has
declared (or soon will) these versions as historic standards. The only version that
is still used in the fi eld is SNMPv2c as defi ned in RFC 1901. This version is an
experimental protocol as far as the IETF is concerned, and it too will soon be
reclassifi ed as historic. Since then, SNMPv3 has been approved as a full IETF
standard.

When management applications and managed devices exchange management
information, they do so by exchanging SNMP messages. The basic format of an
SNMP message is shown in Figure 7.14. This basic format consists of an SNMP
message header and an SNMP PDU.

SNMP message header SNMP PDU

FIGURE 7.14

Basic SNMP message format.

7.6 Simple Network Management Protocol 205

206 CHAPTER 7 MPLS Management Interfaces

Since three versions of the SNMP protocol exist, three versions of SNMP mes-
sages are also possible. The format of the SNMPvl message version is described in
the now full standard RFC 1157. An SNMPvl message is composed of an SNMPvl
message header that includes a fi eld to indicate it is an SNMPvl message, a com-
munity string (a clear-text password that is included in the message), and the
version 1 protocol operation (PDU type), which can only contain SMIvl data types
in the variable-bindings.

The format of the SNMPv2c message is described in RFC 1901. An SNMPv2c
message is composed of an SNMPv2 message header (very similar to an SNMPvl
message header) that includes a fi eld that indicates it is an SNMPv2c message, a
community string, and a version 2 protocol operation (PDU type), which can only
contain SMIv2 data types in the variable-bindings, plus three exceptions:
noSuchObject, noSuchlnstance, and endOfMibView. It is important to note that
SNMPv2c messages have a very similar header as SNMPvl messages, and as such,
they are as (in)secure as SNMPvl messages. The big difference is that an SNMPv2c
message must carry a version 2 PDU and thus the data in such PDUs must be one
of the SMIv2 data types.

The format of the SNMPv3 message is described in RFC 2572. This RFC is a
draft standard, but a revision has been approved as a full standard. An SNMPv3
message is composed of an SNMPv3 message header. This message header is
much more extensive than the message headers defi ned in the earlier versions
of the protocol, but does still carry a version 2 PDU, which implies that these
PDUs can only contain SMIv2 data types. The SNMPv3 message header
contains several new message fi elds. Specifi cally, the new header includes a fi eld
that indicates it is an SNMPv3 message (instead of SNMPvl or SNMPv2c), a
message ID, the maximum message size, and other message fl ags. The header
also contains a fi eld indicating the security model in use. This fi eld contains
additional security-related fi elds that depend on the security model
specifi ed therein. For instance, if the user-based security model (USM) is
specifi ed, then the authoritative enginelD, engineBoots, engineTime, username,
authenticationParameters (MAC code), and privacyParameters are also
included. This added header information provides for a high level of security for
SNMPv3 messages.

To summarize, the difference between SNMPvl and SNMPv2c message types
is that the SNMPvl message carries version 1 PDUs and thus SMIvl data types, and
an SNMPv2c message carries version 2 PDUs that use SMIv2 data types. SNMPvl
and SNMPv2c are similar in that they both use community-based security (i.e.,
plain-text passwords/pass phrases) and so both are equally insecure. The message
formats of SNMPv2c and SNMPv3 differ in that SNMPv3 messages allow secure
SNMP message exchanges, while SNMPv2 messages do not. SNMPv2c and SNMPv3
both carry version 2 PDUs that use SMIv2 data types. For the reader who wishes
to pursue this topic further, we suggest reading RFC 2576. RFC 2576 explains the
coexistence of the different SNMP versions and how to map from one to the other.

This documentation is quite useful for those wishing to migrate from one version
to the other.

7.7 SUMMARY
This chapter introduced the concept of management interfaces. Management
interfaces are useful because they provide a well-known and well-understood
method of both modeling managed objects within a device, as well as a protocol
for accessing these managed objects. The differences between many of the man-
agement interfaces we discussed are largely a matter of object defi nition complete-
ness using data modeling language used for that management interface. Other
differences exist, however, such as security, effi ciency under certain circum-
stances, and portability. Of course, with any technology that is deployed in the
marketplace, the most important differences between it and its competitors are
the perceived ones. These perceptions are largely related to cost and performance
effectiveness of the interface. Unfortunately, in many cases, these perceptions are
not grounded in technical reasoning, but rather on the marketing literature from
one corporation or another.

The chapter began with a general introduction to management interfaces and
what the advantages are to standards-based and proprietary versions. The discus-
sion then focused on specifi c approaches to management interfaces. The fi rst
management interface discussed was the ever-ubiquitous command-line interface.
We investigated how CLIs could be managed using various scripting languages,
and how this was preferable to an operator accessing each device personally. We
also discussed how this interface was the most pervasive in the industry today
despite its shortcomings. We explained how the widespread use of the CLI, as
the preferred management interface from device vendors, was not such a great
achievement from the perspective of the network operators who operate a het-
erogeneous network. Having to manage multiple CLI languages and perhaps dif-
ferent data models for each type of device in a network is expensive and wasteful
of resources.

Next, we investigated the Common Object Request Broker Architecture. We
gave an overview of the CORBA technology and then discussed how CORBA could
be used to build management applications as well as agents in managed devices
using CORBA ORBs. We investigated how you might translate between CORBA
and another management interface. In particular, we showed how a CORBA trans-
lator could act as an SNMP mid-level manager and translate SNMP requests and
notifi cations to and from CORBA, and how this would be advantageous for exist-
ing CORBA management systems that might be in use today without native SNMP
support.

We then delved into a discussion of the eXtensible Markup Language. We fi rst
investigated the basic defi nitions and properties of XML, in particular, how XML

7.7 Summary 207

208 CHAPTER 7 MPLS Management Interfaces

describes a class of data objects called XML documents and specifi es the behavior
of applications that are used to process these documents. We showed how data
are embedded within XML documents as strings of text and are surrounded by
special markers that describe the data so that they can be parsed and displayed,
and how these delineated strings were called XML elements. One of the greatest
advantages of XML documents is that the markup used in an XML document not
only describes the document’s structure, but also allows you to determine which
elements are associated with one another. Furthermore, XML documents are
written using plain ASCII text that can be read and written by a wide variety of
word processors. We showed how XML could be used as a general RPC mecha-
nism, and potentially as a management protocol by building features on top of it.
We then investigated how XML could be used as a general encapsulation of
managed data stored natively in a variety of formats and, specifi cally, how CLI text
could be encapsulated in XML for easy parsing and display by management sta-
tions. In addition, XML can be used to delineate SNMP data, both using HTTP as
a transport and within bulk fi le transports.

Next, we discussed many forms of bulk fi le transfer. Bulk fi le transfer is a
popular mechanism for offl oading large volumes of data from managed devices.
Once transferred to a management station, data can be processed offl ine at the
manager’s convenience. This is important for management applications such as
offl ine TE calculations that require large volumes of data with a high degree of
integrity. That is, if the same offl ine TE application had fetched the same managed
objects over the network as the data were available, it might have missed some
of the data either due to network conditions causing the responses to be lost, or
because the counters on the device changed too quickly. We also discussed the
issues surrounding the format of these fi les, and how it could make a difference
for an operator with a heterogeneous network.

Finally, we discussed the Simple Network Management Protocol, the basic
components of the SMI, MIB modules, and the protocol operations. We fi rst inves-
tigated the details of the SMI and why it is so important to the defi nition of a MIB
module. We also explained the differences and similarities between the various
versions of the SMI. We then defi ned a MIB module as containing object defi ni-
tions using the SMI. MIB modules were collectively part of the larger MIB that
constituted a data model for a device. The key elements of MIBs were discussed,
including objects, object instances, tables, and tabular indexing. Next, we intro-
duced and later demonstrated the various key protocol operations provided by
SNMP. Specifi cally, we gave an example of how some of the protocol operations
could be used to retrieve instances of managed objects from an entity’s MIB. In
particular, we gave detailed examples of how the Get, Set, and GetNext opera-
tions would function under certain circumstances. We ended the section with an
overview of the various versions of SNMP.

It is clear that management interfaces play an important part in the overall
management of any network. Given this, you must weigh the relative benefi ts and
weaknesses of each approach within the context of your network deployment to

determine which interface or interfaces to deploy. We hope that our introduction
has given you an even-handed look at many of the options for management inter-
faces. In many cases, one or more of the interfaces introduced in this chapter can
be applied to an MPLS-enabled network. If you are a network operator, the ques-
tion is how much work do you want to do to use a management interface? What
are the benefi ts given your specifi c style of network operations management? If
you are a device vendor, you must cater to the needs of your customers, who are
in large part network operators if you are selling MPLS-enabled equipment. This
probably means that you must implement at least two of the management inter-
faces described in this chapter—and sometimes more.

7.7 Summary 209

This page intentionally left blank

CHAPTER

8Optical Networks: Control
and Management

Network management is an important part of any network. However attractive a
specifi c technology might be, it can be deployed in a network only if it can be
managed and interoperates with existing management systems. The cost of oper-
ating and managing a large network is a recurring cost and in many cases domi-
nates the cost of the equipment deployed in the network. As a result, carriers are
now paying a lot of attention to minimizing life cycle costs, as opposed to worry-
ing just about upfront equipment costs.

This chapter is from Optical Networks 2e by Ramaswami and Sivarajan, Chapter
9; it starts with a brief introduction to network management concepts in general
and how they apply to managing optical networks. This is followed with a discus-
sion of optical layer services and how the different aspects of the optical network
are managed.

8.1 NETWORK MANAGEMENT FUNCTIONS
Classically, network management consists of several functions, all of which are
important to the operation of the network:

Performance management deals with monitoring and managing the various
parameters that measure the performance of the network. Performance man-
agement is an essential function that enables a service provider to provide
quality-of-service guarantees to their clients and to ensure that clients comply
with the requirements imposed by the service provider. It is also needed to
provide input to other network management functions, in particular, fault
management, when anomalous conditions are detected in the network. This
function is discussed further in Section 8.5.

Fault management is the function responsible for detecting failures when they
happen and isolating the failed component. The network also needs to restore

212 CHAPTER 8 Optical Networks: Control and Management

traffi c that may be disrupted due to the failure, but this is usually considered
a separate function. We will study fault management in Section 8.5.

Confi guration management deals with the set of functions associated with man-
aging orderly changes in a network. The basic function of managing the equip-
ment in the network belongs to this category. This includes tracking the
equipment in the network and managing the addition/removal of equipment,
including any rerouting of traffi c this may involve and the management of
software versions on the equipment.

Connection management is an aspect of confi guration management that deals
with setting up, taking down, and keeping track of connections in a network.
This function can be performed by a centralized management system. Alterna-
tively, it can also be performed by a distributed network control entity. Dis-
tributed network control becomes necessary when connection setup/takedown
events occur very frequently or when the network is very large and
complex.

Adaptation management, also an aspect of confi guration management, is applied
when the network needs to convert external client signals entering the optical
layer into appropriate signals inside the optical layer. We will study this and
the other confi guration management functions in Section 8.6.

Security management includes administrative functions such as authentication of
users and setting attributes such as read and write permissions on a per-user
basis. From a security perspective, the network is usually partitioned into
domains, both horizontally and vertically. Vertical partitioning implies that
some users may be allowed to access only certain network elements and not
other network elements. For example, a local craftsperson may be allowed to
access only the network elements he or she is responsible for and not other
network elements. Horizontal partitioning implies that some users may be
allowed to access some parameters associated with all the network elements
across the network. For example, a user leasing a light path may be provided
access to all the performance parameters associated with that light path across
all the nodes that the light path traverses.

Data protection is a part of security that involves protecting data belonging
to network users from being tapped or corrupted by unauthorized entities.
This part of the problem needs to be handled by encrypting the data
before its transmission and by providing the decrypting capability to legitimate
users.

Accounting management is the function responsible for billing and for develop-
ing lifetime histories of the network components. This function doesn’t appear
to be much different for optical networks, compared to other networks, and
we will not be discussing this topic further.

8.1 Network Management Functions 213

Safety management is an additional consideration for optical networks, needed
to ensure that optical radiation conforms to limits imposed for ensuring eye
safety. This subject is discussed in Section 8.7.

8.1.1 Management Framework

Most functions of network management are implemented in a centralized manner
by a hierarchy of management systems. However, this method of implementation
is rather slow, and it can take several hundreds of milliseconds to seconds to com-
municate between the management system and the different parts of the network
because of the large software path overheads usually involved in this process.
Decentralized methods are usually much faster than centralized methods, even in
small networks with only a few nodes. Therefore, certain management functions
that require rapid action may have to be decentralized, such as responding to
failures and setting up and taking down connections if these must be done rapidly.
For example, a SONET ring can restore failures within 60 ms, and this is possible
only because this process is completely decentralized. For this reason, restoration
is viewed as more of an autonomous control function rather than an integrated
part of network management.

Another reason for decentralizing some of the functions arises when the
network becomes very large. In this case, it becomes diffi cult for a single central
manager to manage the entire network. Further, networks could include multiple
domains administered by different managers. The managers of each domain will
need to communicate with managers of other domains to perform certain func-
tions in a coordinated manner.

Figure 8.1 provides an overview of how network management functions are
implemented on a typical network. Management is performed in a hierarchical
manner, involving multiple management systems in many cases. The individual
components to be managed are called network elements. Network elements
include optical line terminals (OLTs), optical add/drop multiplexers (OADMs),
optical amplifi ers, and optical cross-connects (OXCs). Each element is managed
by its element management system (EMS). The element itself has a built-in agent,
which communicates with its EMS. The agent is implemented in software, usually
in a microprocessor in the network element.

The EMS is usually connected to one or more of the network elements and
communicates with the other network elements in the network using a data
communication network (DCN). In addition to the DCN, a fast signaling channel
is also required between network elements to exchange real-time control informa-
tion to manage protection switching and other functions. The DCN and signaling
channel can be realized in many different ways, as will be discussed in Section
8.5.5. One example is the optical supervisory channel (OSC), shown in Figure
8.1, a separate wavelength dedicated to performing control and management
functions, particularly for line systems with optical amplifi ers.

214 CHAPTER 8 Optical Networks: Control and Management

Multiple EMSs may be used to manage the overall network. Typically each EMS
manages a single vendor’s network elements. For example, a carrier using wave-
length division multiplexing (WDM) line systems from vendor A and cross-
connects from vendor B will likely use two EMSs, one for managing the line
systems and the other for managing the cross-connects, as shown in Figure 8.1.

The EMS itself typically has a view of one network element at a time and may
not have a comprehensive view of the entire network, and also of other types of
network elements that it cannot manage. Therefore, the EMSs in turn communi-
cate with a network management system (NMS) or an operations support system
(OSS) through a management network. The NMS has a network-wide view and is
capable of managing different types of network elements from possibly different
vendors.

In some cases, it is possible to have a multitiered hierarchy of management
systems. Multiple OSSs may be used to perform different functions. For example,
the regional Bell operating companies (RBOCs) in the United States—Verizon,
Southwestern Bell, Bellsouth, and U.S. West (now part of Qwest)—use a set of
OSSs from Telcordia Technologies: network monitoring and analysis (NMA) for
fault management, trunk inventory and recordkeeping system (TIRKS) for inven-
torying the equipment in the network, and transport element management system
(TEMS) for provisioning circuits. These systems date back a few decades, and

CORBA/Q3

TL1/SNMP/Q3

Element management system

Network management system

Data communications networkData communications network

OXC

AmplifierOADM

OSC

OLT

FIGURE 8.1

Overview of network management in a typical optical network, showing the network
elements (OLTs, OADMs, OXCs, amplifi ers), the management systems, and the associated
interfaces.

8.1 Network Management Functions 215

introducing new network elements into these networks is often gated by the time
taken to modify these systems to support the new elements.

In addition to the EMSs, a simplifi ed local management system is usually pro-
vided to enable craftspeople and other service personnel to confi gure and manage
individual network elements. This system is usually made available on a laptop or
on a simple text-based terminal that can be plugged into individual elements to
confi gure and provision them.

8.1.2 Information Model

The information to be managed for each network element is represented in the
form of an information model (IM). The information model is typically an object-
oriented representation that specifi es the attributes of the system and the external
behavior of the network element with respect to how it is managed. It is imple-
mented in software inside the network element as well as in the element and
network management systems used to manage the network element, usually in an
object-oriented programming language.

An object provides an abstract way to model the parts of a system. It has certain
attributes and functions associated with it. The functions describe the behavior
of the object or describe operations that can be performed on the object. For
example, the simplest function is to create a new object of a particular type. There
may be many types, or classes, of objects representing different parts of a system.
An important concept in object-oriented modeling is inheritance. One object class
can be inherited from another parent object class if it has all the attributes and
behaviors of the parent class but adds additional attributes and behaviors. To
provide a concrete example in our context, an OLT typically consists of one or
more racks of equipment. Each rack consists of multiple shelves and multiple
types of shelves. Each shelf has several slots into which line cards can be
plugged.

Many different types of line cards exist, such as transponders, amplifi ers, mul-
tiplexers, and so on. With respect to this, there may be an object class called rack,
which has as one of its attributes another object class called shelf. Multiple types
of shelves may be represented in the form of inherited object classes from the
parent object shelf. For example, there may be a common equipment shelf and a
transponder shelf, which are inherited from the generic shelf object.

A shelf object has as one of its attributes another object called slot. Each line
card object is associated with a slot. Multiple types of line cards may be repre-
sented in the form of inherited object classes from the parent object line card.
For example, the transponder shelf may house multiple transponder types (say,
one to handle SONET signals and another to handle Gigabit Ethernet signals). The
common equipment shelf may house multiple types of cards, such as amplifi er
cards, processor cards, and power supply cards.

Each object has a variety of attributes associated with it, including the set of
parameters that can be set by the management system and the set of parameters

216 CHAPTER 8 Optical Networks: Control and Management

that can be monitored by the management system. As an example, each line card
object normally has a state attribute associated with it, which is one of in service,
out of service, or fault, and there are detailed behaviors governing transitions
between these states.

Another example that is part of a typical information model is the concept of
connection trails, which are used to model light paths. Again multiple types of
trails may be defi ned, and each trail has a variety of associated attributes, including
ones that can be confi gured as well as others that can be used to monitor the
trail’s performance.

8.1.3 Management Protocols

Most network management systems use a master–slave sort of relationship between
a manager and the agents managed by the manager. The manager queries the agent
to obtain the status of parameters in the network element (called the Get opera-
tion). For example, the manager may query the agent periodically for perfor-
mance-monitoring information. The manager can also change the values of variables
in the network element (called the Set operation) and uses this method to effect
changes within the network element. For example, the manager may use this
method to change the confi guration of the switches inside a network element
such as an OXC.

In addition to these methods, it is necessary for the agent sometimes to initiate
a message to its manager. This is essential if the agent detects problems in the
network element and wants to alert its manager. The agent then sends a notifi ca-
tion message to its manager. Notifi cations also take the form of alarms if the
condition is serious and are sometimes called traps.

There are multiple standards relating to network management and perhaps
thousands of acronyms describing them. Here is a brief summary. In most cases,
the physical management interface to the network element is through an Ethernet
or RS-232 serial interface.

The Internet world uses a management framework based on the Simple
Network Management Protocol (SNMP). SNMP is an application protocol that
runs over a standard Internet Protocol (IP) stack. The manager communicates with
the agents using SNMP. The information model in SNMP is called a management
information base (MIB).

In North America, the carrier world has been using for a few decades a simple
textual (or ASCII) command and control language called Transaction Language–
1 (TL1). TL1 was invented in the days when the primary means of managing
network elements was through a simple terminal interface using textual command
sets. However, it is still widely used today and will probably remain for a while,
as many of the existing legacy management systems still mainly support only
TL1.

Over the past decade, there has been a huge effort to standardize a manage-
ment framework for the carrier world called the telecommunications manage-

ment network (TMN). TMN defi ned a hierarchy of management systems and
object-oriented ways to model the information to be managed, and also specifi ed
protocols for communicating between managers and their agents. The protocol
is called the common management information protocol (CMIP), which usually
runs over an open systems interconnection (OSI) protocol stack; the associated
management interface is called a Q3 interface. Adaptations have also been defi ned
for running CMIP over the more commonly used TCP/IP protocol stack. The spe-
cifi c object model is based on a standard called guidelines for description of
managed objects (GDMO). The fi rst two concepts of TMN, namely, the hierarchi-
cal management view and the object-oriented way of modeling information, are
widely used, but the specifi c protocols, interfaces, and object models defi ned in
TMN have not yet been widely adopted, mostly because of the perceived complex-
ity of the entire system.

There is currently a signifi cant effort under way to migrate toward a model
where network elements from different vendors come with their own element
management systems, and a common interface is specifi ed between these
element management systems and a centralized network management system.
This interface is based on the Common Object Request Broker Architecture
(CORBA) model. CORBA is a software industry standard developed to allow
diverse systems to exchange and jointly process information and communicate
with each other.

8.2 OPTICAL LAYER SERVICES AND INTERFACING
The optical layer provides light paths to other layers such as the SONET, IP, or
ATM layers. In this context, the optical layer can be viewed as a server layer, and
the higher layer that makes use of the services provided by the optical layer is the
client layer. From this perspective, we need to specify clearly the service interface
between the optical layer and its client layers. The key attributes of such a
managed light path service are the following:

■ Light paths need to be set up and taken down as required by the client layer
and as required for network maintenance.

■ Light path bandwidths need to be negotiated between the client layer and the
optical layer. Typically the client layer specifi es the amount of bandwidth
needed on the light path.

■ An adaptation function may be required at the input and output of the optical
network to convert client signals to signals that are compatible with the optical
layer. This function is typically provided by transponders. The specifi c range of
signal types, including bit rates and protocols supported, need to be established
between the client and the optical layer.

■ Light paths need to provide a guaranteed level of performance, typically speci-
fi ed by the bit error rate (typical requirements are 10−12 or less). Adequate

8.2 Optical Layer Services and Interfacing 217

218 CHAPTER 8 Optical Networks: Control and Management

performance management needs to be in place inside the network to ensure
this.

■ Multiple levels of protection may need to be supported, for example, protected,
unprotected, and protect on a best-effort basis, in addition to being able to carry
low-priority data on the protection bandwidth in the network. In addition, res-
toration time requirements may also vary by application.

■ Light paths may be unidirectional or bidirectional. Almost all light paths today
are bidirectional. However, if more bandwidth is desired in one direction com-
pared to the other, it may be desirable to support unidirectional light paths.

■ A multicasting, or a drop-and-continue, function may need to be supported.
Multicasting is useful to support distribution of video or conferencing informa-
tion. In a drop-and-continue situation, a signal passing through a node is dropped
locally, but a copy of it is also transmitted downstream to the next node. The
drop-and-continue function is particularly useful for network survivability when
multiple rings are interconnected.

■ Jitter requirements exist, particularly for SONET/SDH connections. In order to
meet these requirements, 3R regeneration may be needed in the network. Using
2R regeneration in the network increases the jitter, which may not be accept-
able for some signals.

■ There may be requirements on the maximum delay for some types of traffi c,
notably ESCON. In ESCON, the throughput of the protocol goes down as the
propagation delay increases. This causes ESCON devices to place restrictions
on the maximum allowed propagation delay (or equivalent link length) between
them. This will need to be accounted for while designing the light paths.

■ Extensive fault management needs to be supported so that root-cause alarms
can be reported and adequate isolation of faults can be performed in the
network. This is important because a single failure can trigger multiple alarms.
The root-cause alarm reports the actual failure, and we need to suppress the
remaining alarms. Not only are they undesirable from a management perspec-
tive, but they may also result in multiple entities in the network reacting to a
single failure, which cannot be allowed. We will look at examples of this
later.

Enabling the delivery of these services requires a control and management
interface between the optical layer and the client layer. This interface allows the
client to specify the set of light paths that are to be set up or taken down and to
set service parameters associated with those light paths, and enables the optical
layer to provide performance and fault management information to the client
layer. This interface can take on one of two facets. The simple interface used today
is through the management system. A separate management system communicates
with the optical-layer EMS, and the EMS in turn then manages the optical layer.

The present method of operation works fi ne as long as light paths are set up
fairly infrequently and remain nailed down for long periods of time. It is quite pos-

sible that, in the future, light paths are provisioned and taken down more dynami-
cally in large networks. In such a scenario, it would make sense to specify a
signaling interface between the optical layer and the client layer. For instance, an
IP router could signal to an associated optical cross-connect to set up and take
down light paths and specify their levels of protection through such an interface.

Different philosophies exist as to whether such an interface is desirable or not.
Some carriers are of the opinion that they should decouple optical layer manage-
ment from its client layers and plan and operate the optical network separately.
This approach makes sense if the optical layer is to serve multiple types of client
layers, and allows its management to be decoupled from a specifi c client layer.
Others would like tight coupling between the client and optical layers. This makes
sense if the optical layer primarily serves a single client layer, and also if there is
a need to set up and take down connections rapidly as we previously discussed.
We will discuss this issue further in Section 8.6.

8.3 LAYERS WITHIN THE OPTICAL LAYER
The optical layer is a complicated entity performing several functions, such as
multiplexing wavelengths, switching and routing wavelengths, and monitoring
network performance at various levels in the network. In order to help delineate
management functions and in order to provide suitable boundaries between dif-
ferent equipment types, it is useful to further subdivide the optical layer into
several sublayers. The International Telecommunications Union (ITU) has identi-
fi ed three such layers within the optical layer, as shown in Figure 8.2. At the top
is the optical channel (OCh) layer. This layer takes care of end-to-end routing of
the light paths.

We have been using the term light path to denote an optical connection. More
precisely, a light path is an optical channel trail between two nodes that carries

Amplifier
Transponders/regenerators

OADM

OTS OTS OTS OTS

OMS OMS OMS

OCh-S OCh-S

OCh-P

OLT

FIGURE 8.2

Layers within the optical layer, showing OCh-P, OCh-S, OMS, and OTS layers.

8.3 Layers within the Optical Layer 219

220 CHAPTER 8 Optical Networks: Control and Management

an entire wavelength’s worth of traffi c. A light path traverses many links in the
network, wherein it is multiplexed with many other wavelengths carrying other
light paths. It may also get regenerated along the way. Note that we do not include
any electronic time-division multiplexing functions in the optical layer. This is a
higher-layer (e.g., SONET/SDH) function. So a 10 Gbps connection between two
nodes that is carried through without any electronic multiplexing/demultiplexing
would be considered a light path.

Each link between OLTs or OADMs represents an optical multiplex section
(OMS) carrying multiple wavelengths. Each OMS in turn consists of several link
segments, each segment being the portion of the link between two optical ampli-
fi er stages. Each of these portions is an optical transmission section (OTS). The
OTS consists of the OMS along with an additional OSC, which we will discuss
further in Section 8.5.7.

The optical channel layer itself is further subdivided into multiple sublayers.
ITU G.709 describes these sublayers. To keep the discussion simple, we will use
some terms that differ slightly from the ITU defi nitions. An optical channel–
transparent section (OCh-TS) represents the section of a light path within an
all-optical subnetwork. Within this section, a light path is carried optically without
any conversion into the electrical domain. At the boundary of an OCh-TS, a light
path is regenerated. Just above the OCh-TS is the optical channel–section (OCh-
S). This layer adds some overheads to the light path, such as forward error cor-
rection (FEC), to condition the signal for transport over an all-optical subnet.
Finally, the optical channel–path (OCh-P) represents the end-to-end transport of
a light path across multiple regenerators in the path.

In principle, once the interfaces between the different layers are defi ned, it is
possible for vendors to provide standardized equipment ranging from just optical
amplifi ers to WDM links to entire WDM networks. Equally important, the layers
help us break down the management functions necessary in the network, as we
will see later in this chapter. For example, dropping and adding wavelengths is a
function performed at the optical channel layer. Monitoring optical power on each
wavelength also belongs to this layer, but monitoring total power belongs either
to the OTS layer or OMS layer, depending on whether the optical supervisory
channel is included or not.

The preceding defi nition of an optical layer does not include optical networks
that may be able to provide more sophisticated packet-switched services, such as
virtual circuits or datagrams. Photonic packet-switched networks can potentially
provide such services; however, these types of networks are several years away
from commercial realization.

8.4 MULTIVENDOR INTEROPERABILITY
Service providers like to deploy equipment from multiple vendors that operate
together in a single network. This is desirable to reduce the dependence on any

single vendor as well as to drive down costs, and is one of the driving factors
behind network standards. For instance, without standards, we would have to
have special interoperability between every pair of vendors, rather than having to
deal with a single standardized interface to which all vendors conform. Another
important effect of standards is that they allow operations personnel to get trained
on a single type of equipment and then become capable of managing that type of
equipment from a variety of vendors, in contrast to being trained separately to
deal with each vendor’s equipment.

However, interoperability between WDM equipment from different vendors is
easier said than done. The SONET standards were established in the late 1980s,
and only recently have we been able to achieve interoperability between equip-
ment from different vendors. In the case of WDM, achieving interoperability at
the optical level is made particularly diffi cult by the fact that the interface is a
fairly complex analog interface, rather than a simple digital interface. The set of
parameters that we would need to standardize to achieve interoperability include
optical wavelength; optical power; signal-to-noise ratio; bit rate; and the supervi-
sory channel wavelength, bit rate, and its contents.

Different vendors use signifi cantly different parameters in their link design and
make different compromises among the various impairments. For example, vendor
A might choose to use directly modulated lasers and dispersion compensation
inside the network to eliminate dispersion. Vendor B instead might choose to
use externally modulated lasers and avoid dispersion compensation inside the
network. This would make it diffi cult to have vendor A’s equipment and
vendor B’s equipment on opposite sides of the same WDM link. Even if some
interoperability can be achieved, it is quite diffi cult to locate and isolate faults in
such an environment.

Rather than trying to solve this complex problem, the practical solution toward
interoperability is to use regenerators or transponders to interconnect disparate
all-optical subnetworks, as shown in Figure 8.3. While this approach may result

Amplifier

Vendor BVendor A

OADM

All-optical subnetAll-optical subnet

Transponders/regenerators

OLT

FIGURE 8.3

Interoperability between WDM systems from different vendors, showing all-optical subnets
from different vendors interconnected through transponders/regenerators.

8.4 Multivendor Interoperability 221

222 CHAPTER 8 Optical Networks: Control and Management

in higher equipment costs, it provides clear-cut boundaries between all-optical
subnets, making it easier to locate and identify faults. Each all-optical subnet would
include equipment from a single vendor. For example, a subnet could simply be
a WDM link with some intermediate add/drops. So a service provider could deploy
vendor A’s equipment on one link and vendor B’s equipment on another link and
have them interoperate through transponders. The interface between the tran-
sponders would be either SONET/SDH or the digital wrapper, which we will
discuss in Section 8.5.7. Using the digital wrapper allows the service provider to
manage the entire network effectively.

The standards bodies initially started with the goal of establishing optical
interoperability and are still pursuing this (ITU G.959, Telcordia GR-2918), although
it will be a while before this comes to fruition in a practical network. Meanwhile
there is a consensus building around the digital wrapper standard (ITU G.709).

In addition to accomplishing interoperability at the data level, we also need to
have interoperability as far as the control and signaling protocols are concerned,
particularly if we are using the distributed methods discussed in Section 8.6.2.
This is a goal that appears to be accomplishable, given that similar functions have
been standardized for other networks in the past.

8.5 PERFORMANCE AND FAULT MANAGEMENT
As we stated earlier, the goal of performance management is to enable service
providers to provide guaranteed quality of service to the users of their network.
This usually requires monitoring of the performance parameters for all the con-
nections supported in the network and taking any actions necessary to ensure
that the desired performance goals are met.

Performance management is closely tied in to fault management. Fault manage-
ment involves detecting problems in the network and alerting the management
systems appropriately through alarms. If a certain parameter is being monitored
and its value falls outside its preset range, the network equipment generates an
alarm. For example, we may monitor the power levels of an incoming signal and
declare a loss-of-signal (LOS) alarm if we see the power level drop below a certain
threshold. In other cases, alarms could be triggered by outright failures, such as
the failure of a line card or other components in the system.

Fault management also includes restoring service in the event of failures. This
function is considered an autonomous network control function because it is
typically a distributed application without network management intervention
(except for confi guring various protection parameters up front, reporting events,
and performing maintenance operations).

8.5.1 The Impact of Transparency

The light paths provided by the optical layer need to be managed just like SONET
and SDH connections are managed. To a large extent how much management can

be provided depends on the level of transparency provided by the optical layer.
Different levels of transparency are possible, based on the range of signals, bit
rates, and protocols that can be carried on a light path.

In a purely transparent network, a light path will be capable of carrying analog
and digital signals with arbitrary bit rates and protocol formats. This is the utopian
vision of optical networking and would allow service providers to offer a range
of services without any constraints and provide future-proofi ng in case the service
mix changes over time or when new services are added. However, such a network
is very diffi cult to engineer and manage. It is diffi cult to engineer because the
various physical layer impairments that must be taken into account in the network
design are critically dependent on the type of signal (analog versus digital) and
the bit rate. It is diffi cult to manage because the management system may have
no prior knowledge of the protocols or bit rates being used in the network.
Therefore, it is not possible to access overhead bits in the transmitted data to
obtain performance-related measures. This makes it diffi cult to monitor the bit
error rate.

Other parameters such as optical power levels and optical signal-to-noise ratios
can be measured. Most systems today only measure optical power levels. However,
small, portable optical spectrum analyzers are now becoming available to measure
the signal-to-noise ratio, making it practical to incorporate this measurement in
newer systems. However, the acceptable values for these parameters depend on
the type of signal. Unless the management system is told what type of signal is
being carried on a light path, it will not be able to determine whether the mea-
sured power levels and signal-to-noise ratios fall within acceptable limits.

At the other extreme, we could design a network that carries data at a
fi xed bit rate (say, 2.5 Gbps or 10 Gbps) and of a particular format (say, SONET/
SDH only). Such a network would be very cost effective to build and manage.
However, it does not offer service providers the fl exibility they need to deliver a
wide variety of services using a single network infrastructure, and it is not future-
proof at all.

Most optical networks deployed today fall somewhere in between these two
extremes. The network is designed to handle digital data at arbitrary bit rates up
to a certain specifi ed maximum (say, 10 Gbps) and a variety of protocol formats
such as SONET/SDH, IP, ATM, Gigabit Ethernet, and ESCON. These networks
make use of a number of unique techniques to provide management functions,
as we will see next.

8.5.2 BER Measurement

The bit error rate (BER) is the key performance attribute associated with a light
path. The BER can be detected only when the signal is available in the electrical
domain, typically at regenerator or transponder locations. Framing protocols used
in SONET and SDH include overhead bytes. Part of this overhead consists of parity
check bytes by which the BER can be computed. This provides a direct measure
of the BER. Similarly, the digital wrapper overhead developed specifi cally for the

8.5 Performance and Fault Management 223

224 CHAPTER 8 Optical Networks: Control and Management

optical layer also allows the BER to be measured. We will discuss the digital
wrapper in Section 8.5.7. As long as the client signal data are encapsulated using
the SONET/SDH or digital wrapper overhead, we can measure the BER and guar-
antee the performance within the optical layer.

Given the complexity of optical physical layer designs, it is diffi cult to estimate
the BER accurately based on indirect measurements of parameters such as the
optical signal power or the optical signal-to-noise ratio. These parameters may be
used to provide some measure of signal quality and may be used as triggers for
events such as maintenance or possibly protection switching (which could be
based, for example, on loss of power and signal detection) but not to measure
BER.

8.5.3 Optical Trace

Light paths pass through multiple nodes and through multiple cards within the
equipment deployed at each node. It is desirable to have a unique identifi er asso-
ciated with each light path. For example, this identifi er may include the IP address
of the originating network element along with the actual identity of the transpon-
der card within that network element where the light path terminates. This iden-
tifi er is called an optical path trace. The trace enables the management system to
identify, verify, and manage the connectivity of a light path. In addition it provides
the ability to perform fault isolation in the event that incorrect connections
are made.

A trace can be used in different layers within the optical layer. For instance, a
light path passes through multiple nodes and potentially gets regenerated along
the way. We can verify the end-to-end connectivity of a light path using an optical
channel–path trace. This trace is inserted at the beginning of the light path and
monitored at various locations along its path. In order to localize and verify con-
nectivity between regenerator locations, we make use of an additional identifi er
called the optical channel–section trace, which is associated between each adja-
cent pair of regeneration points of the light path. Within an all-optical subnet, we
can use an optical channel–transparent section trace. The last two traces are
inserted and removed at regenerator locations in the network. We will look at
different ways of carrying the trace information in Section 8.5.7.

8.5.4 Alarm Management

In a network, a single failure event may cause multiple alarms to be generated all
over the network and incorrect actions to be taken in response to the failed con-
dition. Consider, in particular, a simple example. When a link fails, all light paths
on that link fail. This could be detected at the nodes at the end of the failed link,
which would then issue alarms for each individual light path as well as report an
entire link failure. In addition, all the nodes through which these light paths tra-
verse could detect the failure of these light paths and issue alarms. For example,
in a network with 32 light paths on a given link, each traversing through two

intermediate nodes, the failure of a single link could trigger a total of 129 alarms
(1 for the link failure and 4 for each light path at each of the nodes associated
with the light path). It is clearly the management system’s job to report the single
root-cause alarm in this case, namely, the failure of the link, and suppress the
remaining 128 alarms.

Alarm suppression is accomplished by using a set of special signals, called the
forward defect indicator (FDI) and the backward defect indicator (BDI). Figure
8.4 shows the operation of the FDI and BDI signals. When a link fails, the node
downstream of the failed link detects it and generates a defect condition. For
instance, a defect condition could be generated because of a high BER on the
incoming signal or an outright loss of light on the incoming signal. If the defect
persists for a certain time period (typically a few seconds), the node generates an
alarm.

Immediately on detecting a defect, the node inserts an FDI signal downstream
to the next node. The FDI signal propagates rapidly and nodes further downstream
receive the FDI and suppress their alarms. The FDI signal is also sometimes
referred to as the alarm indication signal (AIS). A node detecting a defect also
sends a BDI signal upstream to the previous node, to notify that node of the failure.
If this previous node didn’t send out an FDI, it then knows that the link to the
next node downstream has failed.

Note further that separate FDI and BDI signals are needed for different sub-
layers within the optical layer, for example, to distinguish between link failures and
failures of individual light paths, or to distinguish between the failure of a section
of the link between amplifi er locations and that of the entire link. The exact types
and behavior of defect indicators for the optical layer are being standardized cur-
rently (ITU G.709). Figure 8.5 illustrates one possible use of these different indica-
tor signals in a network. Suppose there is a link cut between OLT A and amplifi er
B as shown in the fi gure. Amplifi er B detects the cut. It immediately inserts an OMS-
FDI signal downstream indicating that all channels in the multiplexed group have
failed and also an OTS-BDI signal upstream to OLT A. The OMS-FDI is transmitted
as part of the overhead associated with the OMS layer, and the OTS-BDI is transmit-
ted as part of the overhead associated with the OTS layer.

Note that an OMS-FDI is transmitted downstream and not an OTS-FDI. This is
because the defect information needs to be propagated all the way downstream
to the network element where the OMS layer is terminated, which, in this case,

BDI

FDI

FIGURE 8.4

Forward and backward defect indicator signals and their use in a network.

8.5 Performance and Fault Management 225

226 CHAPTER 8 Optical Networks: Control and Management

is OADM D. Amplifi er C downstream receives the OMS-FDI and passes it on.
OADM D, which is the next node downstream, receives the OMS-FDI and deter-
mines that all the light paths on the incoming link have failed. Some of these light
paths are dropped locally and others are passed through.

For each light path passed through, the OADM generates the OCh-TS-FDIs and
sends them downstream. The OCh-TS-FDIs are transmitted as part of the OCh-TS
overhead. At the end of the all-optical subnet, at OLT E, the wavelengths are
demultiplexed and terminated in transponders/regenerators. Therefore, the OCh-
TS layer is terminated here. OLT E receives the OCh-TS-FDIs. It then generates
OCh-P-FDI indicators for each failed light path and sends that downstream to the
ultimate destination of each light path as part of the OCh-P overhead. Finally, the
only node that issues an alarm is node B.

Another major reason for using the defect indicator signals is that defects are
used to trigger protection switching. For example, nodes adjacent to a failure
detect the failure and may trigger a protection-switching event to reroute traffi c
around the failure. At the same time, nodes further downstream and upstream of
the failure may think that other links have failed and decide to reroute traffi c as
well. A node receiving an FDI knows whether it should or shouldn’t initiate pro-
tection switching. For example, if the protection-switching method requires the
nodes immediately adjacent to the failure to reroute traffi c, other nodes receiving
the FDI signal will not invoke protection switching. On the other hand, if protec-
tion switching is done by the nodes at the end of a light path, then a node receiv-
ing an FDI initiates protection switching if it is the end point of the associated
light path.

8.5.5 Data Communication Network and Signaling

The element management system communicates with the different network ele-
ments through the data communication network. This DCN is usually a standard

OLT

OTS failure alarm

OMS-FDI

OTS-BDI
A B C D E

F G

IH

OMS-FDI OCh-TS-FDI OCh-P-FDI

OCh-P-FDI

Amplifier Amplifier OADM

FIGURE 8.5

Using hierarchical defect indicator signals in a network. Defect indicators are used at the
OTS, OMS, and the various OCh sublayers.

TCP/IP or OSI network. If the DCN is suffi ciently well connected (2-connected,
to be more precise), then the DCN can stay up even if there is a failure in the
network. The DCN can be transported in several ways:

1. Through a separate out-of-band network outside the optical layer. Carriers can
make use of their existing TCP/IP or OSI networks for this purpose. If such a
network is not available, dedicated leased lines could be used for this purpose.
This option is viable for network elements that are located in big central offi ces
where such connectivity is easily available, but not viable for network elements
such as optical amplifi ers that are located in remote huts in the fi eld.

2. Through the OSC on a separate wavelength (see Section 8.5.7). This option is
available for WDM line equipment that processes the optical transmission
section and multiplex section layers, where the optical supervisory channel is
made available. For example, optical amplifi ers are managed using this approach.
However, this option is not available to equipment that only looks at the optical
channel layer, such as optical cross-connects.

3. Through the rate-preserving or digital wrapper in-band optical channel layer
overhead techniques, described in Section 8.5.7. This option is useful for equip-
ment that only looks at the optical channel layer and does not process the
multiplex and transmission section layers, such as optical cross-connects. Also,
it is available only at locations where the light path is processed in the electri-
cal domain, that is, at regenerator or transponder locations.

Table 8.1 summarizes the applicability of different DCN options available for
each type of network element. We assume that OADMs are part of the line system
that includes OLTs and amplifi ers. Access to the optical supervisory channel is
typically restricted to elements within a line system due to the proprietary nature
of the OSC.

Table 8.1 Methods for Realizing the DCN for Different Network Elements

Network Element Out-of-Band OSC
Rate-Preserving Overhead
or Digital Wrapper

OLT with transponders Yes Yes Yes

OADM Yes Yes Yes (for dropped channels)

Amplifi er No Yes No

OXC with regenerators Yes No Yes

All-optical OXC (no regenerators) Yes No No

Note: The OADM is assumed to have transponders for channels that are dropped and added, but not for channels
that are passed through.

8.5 Performance and Fault Management 227

228 CHAPTER 8 Optical Networks: Control and Management

In addition to the DCN, in many cases, a fast signaling network is needed
between network elements. This allows the network elements to exchange criti-
cal information between them in real time. For instance, the FDI and BDI signals
need to be propagated quickly to the nodes along a light path. Other such signals
include information needed to implement fast protection switching in the network.
Just as with the DCN, the signaling network can be implemented using dedicated
out-of-band connections, the optical supervisory channel, or through one of the
overhead techniques.

8.5.6 Policing

One function of the management system is to monitor the wavelength and power
levels of signals being input to the network to ensure that they meet the require-
ments imposed by the network. As we previously discussed, the acceptable power
levels will depend on the signal types and bit rates. The types and bit rates are
specifi ed by the user, and the network can then set thresholds for the parameters
as appropriate for each signal type and monitor them accordingly. This includes
threshold values for the parameters at which alarms must be set off. The thresh-
olds depend on the data rate, wavelength, and specifi c location along the path of
the light path, and degradations may be measured relative to their original
values.

Another more important function is to monitor the actual service being utilized
by the user. For example, the service provider may choose to provide two ser-
vices, say, an ESCON service and an OC-3 service, by leasing a transparent light
path to the user. The two services may be tariffed differently. With a purely trans-
parent network, it is diffi cult to prevent a user who opts for the ESCON service
from sending OC-3 traffi c. What this implies is that services based on leasing
wavelengths will likely be tariffed based on a specifi ed maximum bit rate, with
the user being allowed to send any signal up to the specifi ed maximum bit rate.

8.5.7 Optical Layer Overhead

Supporting the optical path trace, defect indicators, and BER measurement requires
the use of some sort of overhead in the optical layer. We have alluded indirectly
to some of these overheads earlier, for example, the use of the SONET/SDH over-
head to measure the BER and the use of the optical supervisory channel to carry
some of the defect indicator signals. In this section, we describe four different
methods for carrying the optical layer overhead. These methods are illustrated in
Figure 8.6 and compared in Table 8.2.

The pilot tone approach and the optical supervisory channel are useful to carry
overhead information within an all-optical subnetwork. At the boundaries of each
subnetwork, the signal is regenerated (3R) by converting into the electrical domain
and back. The rate-preserving overhead and the digital wrapper can be used to
carry overhead information across an entire optical network through multiple all-
optical subnetworks.

Pilot Tone or Subcarrier Modulated Overhead
Here, the overhead is realized by modulating the optical carrier (wavelength) of
a light path with an additional subcarrier signal. This signal is also sometimes called
a pilot tone. As long as the modulation depth of this signal is kept small compared
to the data, typically between 5–10 percent, and the subcarrier frequency is
chosen carefully, the data are relatively unaffected as a result. The pilot tone itself

Pilot tone
insert

Pilot tone
monitor

Pilot tone
terminate

Pilot tone
terminate

Pilot tone
insert

Pilot tone
monitor

Digital wrapper or rate-preserving
overhead insert

Overhead monitor/modify Overhead remove

Transponders/regenerators

All-optical subnet All-optical subnet

AmplifierOADM

OSC OSC OSC OSC
From
client

To
clientOLT

FIGURE 8.6

Types of optical-layer overhead techniques. The OSC is used hop by hop. The pilot tone is
inserted by a transmitter and can be monitored at elements in an all-optical subnet until it is
terminated at a receiver. The digital wrapper or rate-preserving overhead is used end to end
across multiple subnets through intermediate regenerators.

Table 8.2 Applications of Different Optical-Layer Overhead Techniques

All-Optical Subnet End to End

Application OSC Pilot Tone Rate Preserving Digital Wrapper

Trace OTS OCh-TS OCh-P, OCh-S OCh-P, OCh-S

DIs OTS, OMS, OCh-TS None OCh-P OCh-P

Performance
monitoring

None Optical power BER BER

Client signal
compatibility

Any Any SONET/SDH Any

Note: The different techniques apply to different sublayers within the optical layer—namely, OTS, OMS, OCh-S, or
OCh layers. The trace and DI signals are defi ned at multiple sublayers.

8.5 Performance and Fault Management 229

230 CHAPTER 8 Optical Networks: Control and Management

may be amplitude or frequency modulated at a low rate, say, a few kilobits per
second, to carry additional overhead information.

At intermediate locations, a small fraction of the optical power can be tapped
off and the pilot tones extracted without receiving and retransmitting the entire
signal. Note that the pilot tones on each wavelength can be extracted from the
composite WDM signal carrying all the wavelengths without requiring each wave-
length to be demultiplexed.

The pilot tone frequency needs to be chosen carefully. First, it should have
minimal overlap with the data bandwidth. For instance, a light path carrying
SONET data at 2.5 Gbps has relatively little spectral content below 2 MHz, and a
pilot tone in the 1- to 2-MHz range can be added with minimal impact to the data.
The pilot tone frequency also needs to lie above the gain modulation cutoff of the
erbium-doped optical amplifi ers, which is typically around 100 kHz. Tones below
this frequency will cause the amplifi er gain to vary with the pilot tone amplitude,
causing this modulation to be imposed on other channels as undesirable “ghost”
tones or crosstalk. The pilot tone frequency can also be chosen to lie above the
data band, in this example, say, above 2.5 GHz, but it is relatively more expensive
to process signals at higher frequencies than at lower frequencies.

The advantages of the pilot tone approach are that it is relatively inexpensive
and that it allows monitoring of the overhead in transparent networks without
requiring knowledge of the actual protocol or bit rate of the signal.

The disadvantages of this approach are that it cannot be used to monitor the
BER, and the pilot tone can be modifi ed only at the transmitter or at a regenerator
and not at the intermediate nodes. Thus, it can be used for the OCh-TS trace func-
tion inside a transparent subnetwork between regenerator points, but cannot be
used to insert FDI and BDI signals at intermediate nodes without a regenerator.
The trace function can be accomplished using pilot tones in several possible ways.
For example, each light path could have a unique pilot tone frequency, which by
itself serves as the trace. Alternatively, we could have a unique pilot tone fre-
quency for each wavelength, and the pilot tone can be modulated with a digital
signal containing a unique light path identifi er.

Optical Supervisory Channel
In systems with line amplifi ers, a separate OSC is used to convey information
associated with monitoring the state of the amplifi ers along the link, particularly
if these amplifi ers are in remote locations where other direct access is not pos-
sible. The OSC is also used to control the line amplifi ers, for example, turning
them on or off for test purposes. It can also be used to carry the DCN, as well as
some of the overhead information.

The OSC is carried on a wavelength different from the wavelengths used for
carrying traffi c. It is separated from the other wavelengths at each amplifi er stage
and received, processed, and retransmitted, as shown in Figure 8.7.

The choice of the exact wavelength for the OSC involves a number of trade-
offs. Figure 8.8 shows the usage of various wavelength bands in the network for

carrying traffi c, for pumping the erbium or Raman amplifi ers, and for the OSC.
The OSC could be located within the same band as the traffi c-bearing channels,
or in a separate band located away from the traffi c-bearing channels. In the latter
situation, it is easier to fi lter out and reinsert the OSC at each amplifi er location.
However, we need to locate the OSC away from the Raman pumps if they are
used in the system.

Perhaps the only advantage of locating the OSC in the same band as the traffi c-
bearing channels is a slight reduction in amplifi er noise. For instance, if a two-stage
amplifi er design is used, the in-band OSC can be fi ltered out after the fi rst stage
along with the amplifi er noise that is present at this wavelength.

For WDM systems operating in the C-band, the popular choices for the
OSC wavelength include 1310 nm, 1480 nm, 1510 nm, or 1620 nm. Using the
1310-nm band for the OSC precludes the use of this band for carrying traffi c.
The 1480-nm wavelength was considered only because of the easy availability of
lasers at that wavelength—it happens to be one of the wavelengths used to pump

TransmitterReceiver

 Processing

λosc λosc

λ1,…,λwλ1,…,λw

OSC choices

OSC standard

Traffic channels
S-band

S-band

O-band

1250 1300 1350 1400 1450 1500 1550 16501600

C-band L-band

C-band L-band

Wavelength (nm)EDFA pump

Raman pumps

FIGURE 8.7

The optical supervisory channel, which is terminated at each amplifi er location.

FIGURE 8.8

Usage of wavelengths in the network. Traffi c is carried on the O (original), S (short), C
(conventional), or L (long) wavelength bands. Raman pumps, if used, are located about
80–100 nm below the signal.

8.5 Performance and Fault Management 231

232 CHAPTER 8 Optical Networks: Control and Management

an erbium-doped fi ber amplifi er (EDFA). For the same reason, however, there can
be some undesirable interactions between the OSC laser and the EDFA pump, so
this is not a popular choice.

After going through some of these trade-offs, the ITU has adopted the 1510-nm
wavelength as the preferred choice. This wavelength is outside the EDFA pass-
band, does not coincide with an EDFA pump wavelength, and lies outside the
C-band and L-band. Note, however, that this wavelength falls in the S-band and
may also overlap with Raman pumps for the L-band.

Yet another choice used by some vendors is the 1620-nm wavelength, on the
outer edge of the L-band. This choice avoids most of the preceding problems,
except that we have to be careful about separating this channel from a traffi c-
bearing channel toward the edge of the L-band.

The OSC can be used to carry OTS traces and defect indicators, as well as OMS
and OCh-TS defect indicators.

Rate-Preserving Overhead
The idea here is to make use of the existing SONET/SDH overhead that is used
with most of the signals entering the optical layer. This overhead includes several
bytes that are currently unused. Some of these bytes can be used by the optical
layer. These bytes can also be used to add forward error correction (FEC), which
improves the optical-layer link budget. This technique can be used only at loca-
tions where the signal is available in electrical form, that is, at regenerator loca-
tions or at the edges of the network. Unlike the pilot tone method, it cannot be
used inside a transparent optical subnetwork.

The advantages of this method are the following: First, it can be used with the
existing equipment in the network. For example, a new network element with
this capability can communicate with other network elements of the same type
through intermediate WDM and SONET equipment that is already present in the
network. Second, it retains the existing hierarchy of bit rates in the SONET/SDH
standards, without the need for creating a new hierarchy of rates that would be
needed with the digital wrapper technique to be discussed next. This allows exist-
ing SONET/SDH chipsets, such as clock-recovery circuits, receivers, modulators,
and overhead processing chips, to be used without requiring the development of
a new set of components to support the new rates.

The disadvantages of this method are the following: First, the number of
unused bytes available is limited and may not offer suffi cient bandwidth to carry
all the optical-layer overhead and FEC. Second, while the SONET/SDH standards
specify the set of unused bytes, several vendors have already made use of some
of these bytes for their own proprietary reasons, which makes it diffi cult to deter-
mine which set of bytes are truly unused! Third, it does not work with signals
that don’t use SONET/SDH framing, such as Fibre Channel or Gigabit Ethernet.

Digital Wrapper Overhead
Here, a new set of overhead bytes is added to the signal as it enters the optical
layer and removed when the signal is handed back to the client layer. This scheme

offers essentially the same capabilities as the rate-preserving overhead discussed
previously. The digital wrapper defi nes a new set of overheads associated with
the optical layer and can be used instead of the SONET/SDH overhead. It is being
standardized in the ITU.

The advantages of this method are the following: First, suffi cient overhead
bytes can be added so as to provide adequate FEC and support the DCN as well
as to allow for future needs. Second, a new standard based on this technique
would allow better interoperability among multiple vendors through regenerators.
Third, the technique is not limited to SONET/SDH signals. The wrapper can be
used to encapsulate a variety of different signals, such as Fibre Channel and Gigabit
Ethernet.

The main disadvantages of the digital wrapper approach are that it is not suit-
able for use with legacy equipment, and that it requires the development of a new
set of components to support the new hierarchy of bit rates. However, new com-
ponents have already been developed to support the wrapper, and it is now avail-
able on many WDM products.

The digital wrapper is ideally suited to carrying OCh-section and path layer
traces and defect indicators, as well as providing other overheads for management,
such as those used by an automatic protection-switching (APS) protocol for signal-
ing between network elements during failures.

8.6 CONFIGURATION MANAGEMENT
We can break down confi guration management functions into three parts: manag-
ing the equipment in the network, managing the connections in the network, and
managing the adaptation of client signals into the optical layer.

8.6.1 Equipment Management

In general, the principles of managing optical networking equipment are no dif-
ferent from those of managing other high-speed networking equipment. We must
be able to keep track of the actual equipment in the system (e.g., number and
location of optical-line amplifi ers) as well as the equipment in each network
element and its capabilities. For example, in a terminal of a point-to-point WDM
system, we may want to keep track of the maximum number of wavelengths
and the number of wavelengths currently equipped, whether there are optical
pre-amplifi ers and power amplifi ers or not, and so forth.

Among the considerations in designing network equipment is that we
should be able to add to existing equipment in a modular fashion. For instance,
we should be able to add additional wavelengths (up to a designed maximum
number) without disrupting the operation of the existing wavelengths. Also,
ideally the failure of one channel shouldn’t affect other channels, and the
failed channel should be capable of being serviced without affecting the other
channels.

8.6 Confi guration Management 233

234 CHAPTER 8 Optical Networks: Control and Management

An issue that comes up in this regard is the use of arrayed multiwavelength
components versus separate components for individual wavelengths, such as
multiwavelength laser arrays instead of individual lasers for each wavelength.
Using arrayed components can reduce the cost and footprint of the equipment.
However, if one element in the array fails, the entire array will have to be replaced.
This reduces the system availability, as replacing the array will involve disrupting
the operation of multiple channels, and not just a single channel. Using arrays also
increases the replacement cost of the module. Therefore, there is always a trade-
off between obtaining reduced cost and footprint on one front against system
availability and replacement cost on the other front.

We may also want to start out by deploying the equipment in the form of a
point-to-point link and later upgrade it to handle ring or other network confi gura-
tions. And we may desire fl exibility in associating specifi c port cards in the equip-
ment with specifi c wavelengths. For example, it is better to have a system where
we can choose the wavelength transmitted out of a port card independently of
what slot it is located in.

Another problem in WDM systems is the need to maintain an inventory of
wavelength-specifi c spare cards. For example, each channel may be realized
by using a card with a wavelength-specifi c laser in it. Thus, you would need
to stock spare cards for each wavelength. This can be avoided by using a
wavelength-selectable (or tunable) laser on each card instead of a wavelength-
specifi c laser; such devices are only now becoming commercially available at
reasonable cost.

8.6.2 Connection Management

The optical network provides light paths, or more generally, circuit-switched con-
nections, to its user. Connection management deals with setting up connections,
keeping track of them, and taking them down when they are not needed
anymore.

The traditional telecommunications way of providing this function is through
a centralized management system, or rather a set of systems. However, this
process has been extremely cumbersome and slow. The process usually
involves confi guring equipment from a variety of vendors, each with its own
management system, and usually one network element at a time. Moreover,
interoperability between management systems, while clearly feasible, has been
diffi cult to achieve in practice. Finally, service providers in many cases deploy
equipment only when needed. The net result of this process is that it can take
months for a service provider to turn up a new connection in response to a user
request. Given this fact, it is not surprising that once a connection is set up, it
remains in effect for a fairly signifi cant period of time, ranging from several months
to years!

As optical networks evolve, connections are getting more dynamic and net-
works are becoming bigger and more complex. Service providers would like to

provide connections to their customers rapidly, ideally in seconds to minutes, and
not impose long-term holding time commitments on these connections. In other
words, users would dial up bandwidth as needed.

Supporting all this requires carriers to predeploy equipment (and bandwidth)
ahead of time in the network and having methods in place to be able to turn
on the service rapidly when needed. This is becoming a signifi cant competitive
issue in differentiating one carrier from another. This method of operation also
stimulates what is called bandwidth trading, where carriers trade their unused
bandwidth with other carriers for increasingly shorter durations to improve the
utilization of their networks and maximize their revenue.

Due to the preceding reasons, we are seeing a trend toward a more distributed
form of control for connection management. Distributed control protocols have
been used in IP and ATM networks. They have also had a fair degree of success
with respect to standardization and accomplishing interoperability across vendor
boundaries. We can make use of similar protocols for performing these functions
in the optical layer.

Distributed connection control has several components to it:

Topology management: Each node in the network maintains a database of the
network topology and the current set of resources available as well as the
resources used to support traffi c. In the event of any changes in the network,
for example, a link capacity change, the updated topology information needs
to be propagated to all the network nodes. We can use the same techniques
used in IP networks for this purpose. Nodes periodically, or in the event of
changes, fl ood the updated information to all the network nodes. We can use
an Internet routing and topology management protocol such as OSPF or IS-IS,
with suitable modifi cations to represent optical-layer topology information, and
update it automatically.

At the time the network is brought up, or whenever there is a topology
change (link/node addition or removal), nodes will need to automatically dis-
cover the network topology. This is done typically by having adjacent nodes
exchange information to determine their local connectivity (to their neighbors)
and then broadcasting this information to all the network nodes using the same
procedure used to convey topology changes.

Route computation: When a connection is requested from the network, the
network needs to fi nd a route and obtain resources along the route to support
this connection. This can be done by applying a routing algorithm on the
topology database of the network. The routing algorithm needs to take into
account the various constraints imposed by the network, such as wavelength
conversion ability, and the capacity available on each link of the network. In
addition to computing routes for carrying the working traffi c, the algorithm
may also have to compute protection routes for the connection, which are
used in the event of failures.

8.6 Confi guration Management 235

236 CHAPTER 8 Optical Networks: Control and Management

Signaling protocol: Once routes are computed, the connection needs to be set
up. This process involves reserving the resources required for the connection
and setting the actual switches inside the network to set up the connection.
The process requires nodes to exchange messages with other nodes. Typically,
the destination or source of the connection signals to each of the nodes
along the connection path to perform this function. Protocols based on MPLS
Internet signaling protocols such as RSVP-TE can be used for this purpose. The
same protocols can also be used to take down connections when they are no
longer needed.

The process of setting up or taking down a connection must be executed
carefully. For example, if the connection is simply taken down by the source
and destination, then the intermediate nodes may sense the loss of light on the
connection as a failure condition and trigger unwanted alarms and protection
switching. This can be avoided by suitable coordination among the nodes along
the route of the light path.

Signaling network: Nodes need a signaling channel to exchange control informa-
tion with other nodes. We described the many options available to attain this
in Section 8.5.5.

Interaction with Other Layers
One important aspect of the connection management protocols is in how they
interact with the client layers of the optical layer. With IP routers emerging as the
dominant clients of the optical layer, and because the optical layer control proto-
cols are based on Internet protocols, the issue of how these protocols interact in
particular with the IP layer becomes a crucial issue.

Different types of interactions are likely needed for different scenarios, such
as metro versus long-haul networks, incumbent versus new service providers,
multiservice versus IP service-centric providers, and facility ownership versus
leasing providers.

There are many schools of thought with respect to this interaction, ranging
from the so-called overlay model to a peer model. Figure 8.9 shows a variety of
models being considered today.

Figure 8.9(a) shows the overlay model. In this model, the optical layer has its
own control plane, and the higher layers have their own independent control
planes. The optical layer provides a user network interface (UNI), through which
higher (client) layers can request connections from the optical layer. Within the
optical layer, different subnetworks can interoperate through a standardized
network-to-network interface (NNI). This approach allows the connection control
software for the optical layer to be tailored specifi cally to the optical layer without
having to worry about developing a single unifi ed piece of control software. It
also allows the optical layer and client layers to scale and evolve independently.

Details of the optical network topology can be hidden from the client layer
through the UNI. We can use this model to interconnect a variety of clients,

including IP, ATM, Ethernet, and SONET/SDH clients, with the optical layer. The
model is also appropriate for supporting private-line light path service, transport
bandwidth brokering, carrier’s carrier trunking, and optical virtual private net-
works. Finally, this model can be applied to incumbent or new multiservice car-
riers who either own or lease their transport facilities.

An enhanced version of the overlay model is the overlay-plus model, shown
in Figure 8.9(b), which allows closer interaction between the layers. In this case,
there is a trusted intermediate intelligent controller between the two layers that
has available to it a suitably abstracted version of specifi c client and optical-layer
topology and status information. The controller can use this information to request
and release light paths based on specifi c policies, such as specifi c service level
agreements made between the client and optical layers. These requests can be
rapidly invoked to avoid network abnormalities such as congestion and failures,
increase infrastructure utilization, coordinate protection and restoration options,
and automate engineering by rebalancing the network and forecasting needed
resource (such as node and link capacity) upgrades for both the IP and optical
layers.

Figure 8.9(c) shows the peer model, where IP routers and optical-layer ele-
ments, such as OXCs and OADMs, run the same control plane software. This
would allow routers to look at OXCs as if they were routers, effectively treating
the IP layer and optical layer as peers. An OXC would simply be a special type
of router, analogous to a label-switched router (LSR). Routers would have full

Client-layer control plane

Optical layerOptical layerOptical layer

Optical-layer control plane Optical-layer control plane

Optical layer

Client-layer control plane

Client layer Client layer Client layer Client layer

UNI UNI

NNI

(a) (b)

(d)(c)

Unified control plane

Optical layer

Optical-layer control plane

Optical layer

Client layer Client layer

UNI = NNI

Client-layer control plane

Optical layerOptical layer

Client layer Client layer

UNI UNI

NNI

UNI UNI

NNI

Controller

Augmented
information
exchange

FIGURE 8.9

Different control plane models for interconnecting client layers with the optical layer: (a)
overlay model, (b) overlay-plus model, (c) peer model, and (d) augmented model.

8.6 Confi guration Management 237

238 CHAPTER 8 Optical Networks: Control and Management

topology awareness of the optical layer and could therefore control optical-layer
connections directly. While this is an elegant approach, it is made complicated by
the fact that optical-layer elements impose signifi cantly different constraints with
respect to routing and protection of connections, compared to the IP layer. In
this case, we need to fi nd a way to suitably abstract optical-layer routing con-
straints into a form that can be used by route computation engines residing on IP
routers.

Figure 8.9(d) shows another enhanced version of the overlay model, called an
augmented model, where the IP layer has access to summarized routing, address-
ing, and topology information of the optical layer, but still operates as a separate
control plane from the optical layer.

The models in Figures 8.9(c) and (d) tend to apply mainly to new IP-centric
providers or IP-centric business units within established carriers who own their
transport facilities. These models allow (or require) signifi cantly more trust and
closer coupling between the IP and optical layers, compared to the overlay models
of Figures 8.9(a) and (b). All these models are being pursued today, but the overlay
approach is likely to be the fi rst one implemented. It has also been adopted for
standardization by the ITU.

8.6.3 Adaptation Management

Adaptation management is the function of taking the client signals and converting
them to a form that can be used inside the optical layer. This function includes
the following:

■ Converting the signal to the appropriate wavelength, optical power level, and
other optical parameters associated with the optical layer. This is done through
the use of transponders, which convert the signal to electrical form and retrans-
mit the signal using a WDM-specifi c laser. In the other direction, the WDM signal
is received and converted into a standardized signal, such as a short-reach
SONET signal.

■ Adding and removing appropriate overheads to enable the signal to be managed
inside the optical layer. This could include one or more of the overhead tech-
niques that we discussed in Section 8.5.7.

■ Policing the client signal to make sure that the client signal stays within bound-
aries that have been agreed on as part of the service agreement. We discussed
this in Section 8.5.

The WDM network must support several types of interfaces to accommodate
a variety of users requiring different functions. Figure 8.10 shows the different
possible adaptation interfaces.

Compliant wavelength interface: One interface might be to allow the client
to send in light at a wavelength that is supported in the network. In this
case, the user would be expected to comply with a variety of criteria set by

the network, such as the signal wavelength, power, modulation type, and so
on. These wavelengths may be regarded as compliant wavelengths. In this
case, the interface might be purely optical, with no optoelectronic conversions
required (a signifi cant cost savings). For example, you might envision that
SONET or IP equipment must incorporate WDM-capable lasers at wavelengths
suitable for the WDM network. Likewise, it would be possible to directly send
a wavelength from the WDM network into SONET equipment. Here the user
complies to the requirements imposed by the network.

Noncompliant wavelength interface: This is the most common interface and
encompasses a variety of different types of attached client equipment that use
optical transmitters and/or receivers not compatible with the signals used
inside the WDM network. For example, this would include SONET equipment
using 1.3-μm lasers. Here, until all-optical wavelength conversion (and perhaps
all-optical regeneration) becomes feasible, optoelectronic conversion must be
used, along with possibly regeneration, to convert the signal to a form suitable
for the WDM network. This is likely to be the interface as well when we need
to interconnect WDM equipment from different vendors adhering to different
specifi cations, as we discussed in Section 8.4.

Subrate multiplexing: Additional adaptation functions include time-division mul-
tiplexing of lower-speed streams into a higher-speed stream within the WDM
equipment prior to transmission. For example, the WDM equipment could
include multiplexing of SONET OC-48 streams into OC-192 streams. This could
reduce costs by eliminating the separate equipment that would normally be
needed to perform this function.

The level of transparency offered by the network also affects the type of adap-
tation performed at the edges of the network. The network needs to be capable
of transporting multiple bit rates. In general, the optical path can be engineered
to support signals up to a specifi ed maximum bit rate.

Wavelength interfaces

Compliant

1541 nm

1551.721 nm

O/E/O

O/E/O

O/E/O
TDM

WDM mux/demux

Fiber

ITU λ

1552.524 nm

1553.329 nm

1554.134 nm

1310 nm

1310 nm

4 × 2.5 Gbps
10 Gbps

Noncompliant

Noncompliant

Noncompliant

FIGURE 8.10

Different types of interfaces between a WDM optical network and its clients.

8.6 Confi guration Management 239

240 CHAPTER 8 Optical Networks: Control and Management

The adaptation devices and regenerators used within the network need to be
capable of supporting a variety of bit rates as well. An important enabler for this
purpose is a programmable clock data-recovery chip that can be set to work at a
variety of bit rates. The chips available today are capable of handling integral
multiples of bit rates (e.g., 155 Mbps, 622 Mbps, 1.25 Gbps, and 2.5 Gbps). They
are also capable of handling a narrow range of bit rates around a mean
value. For example, a single chip could deal with SONET OC-24 signals or with
Gigabit Ethernet signals, which are both around 1.25 Gbps, but not exactly at the
same rate. Finally, using a digital wrapper to encapsulate the client signal allows
the network to transport multiple data rates and protocol formats in a supervised
way.

8.7 OPTICAL SAFETY
The semiconductor lasers used in optical communication systems are relatively
low-power devices; nevertheless, their emissions can cause serious damage to the
human eye, including permanent blindness and burns. The closer the laser wave-
length is to the visible range, the more damage it can do, since the cornea is more
transparent to these wavelengths. For this reason, systems with lasers must obey
certain safety standards. Systems with lasers are classifi ed according to their emis-
sion levels, and the relevant classes for communication systems are described
next. These safety issues in some cases can limit the allowable optical power used
in the system.

A Class I system cannot emit damaging radiation. The laser itself may be a high-
power laser, but it is prevented from causing damage by enclosing it in a suitably
interlocking enclosure. The maximum power limit in a fi ber for a Class I system is
about 10 mW (10 dBm) at 1.55 μm and 1 mW (0 dBm) at 1.3 μm. Moreover, the
power must not exceed this level even under a single failure condition within the
equipment. A typical home CD player, for example, is a Class I system.

A Class IIIa system allows higher emission powers—up to 17 dB in the 1.55-
μm wavelength range—but access must be restricted to trained service personnel.
Class IIIa laser emissions are generally safe unless the laser beam is collected
or focused onto the human eye. A Class IIIb system permits even higher emis-
sion powers, and the radiation can cause eye damage even if not focused or
collected.

Under normal operation, optical communication systems are completely
“enclosed” systems—laser radiation is confi ned to within the system and not seen
outside. The problem arises during servicing or installation, or when there is a
fi ber cut, in which case the system is no longer completely enclosed and emission
powers must be kept below the levels recommended for that particular system
class. Communication systems deployed in the enterprise world must generally
conform to Class I standards since untrained users are likely to be using them.
Systems deployed within carrier networks, on the other hand, may likely be Class

IIIa systems, since access to these systems is typically restricted to trained service
personnel.

The safety issue thus limits the maximum power that can be launched into a
fi ber. For single-channel systems without optical power amplifi ers using semicon-
ductor lasers, the emission levels are small enough (−3 to 0 dBm typically) that
we do not have to worry much about laser safety. However, with WDM systems,
or with systems using optical power amplifi ers, we must be careful to regulate
the total power into the fi ber at all times.

Simple safety mechanisms use shuttered optical connectors on the network
equipment. This takes care of regulating emissions if a connector is removed from
the equipment, but cannot prevent emissions on a cut fi ber further away from the
equipment. This is taken care of by a variety of automatic shutdown mechanisms
that are designed into the network equipment. These mechanisms detect open
connections and turn off lasers and/or optical amplifi ers (the spontaneous emis-
sion from amplifi ers may itself be large enough to cause damage).

Several techniques are used to perform this function. If an amplifi er senses a
loss of signal at its input, it turns off its pump lasers to prevent any output down-
stream. There is some handshaking needed between the two ends of a failed link
to handle unidirectional cuts. If one end senses a loss of signal, it turns off its
transmitter or amplifi er in the other direction. This in turn allows the other end
to detect a loss of signal and turn off its transmitter or amplifi er. Another technique
is to look at the back-refl ected light. In the event of a fi ber cut, the back-refl ection
increases and can be used to trigger a shutdown mechanism.

After the failure is repaired, the system can be brought up manually. More
sophisticated open fi ber control mechanisms allow the link to be brought back
up automatically once the failure is repaired. These mechanisms typically pulse
the link periodically to determine if the link has been repaired. The pulse power
is maintained below the levels specifi ed for the safety class. Here, we describe a
particular protocol that has been chosen for the Fibre Channel standard.

8.7.1 Open Fiber Control Protocol

Figure 8.11 shows a block diagram of a system with two nodes A and B using the
OFC protocol. Figure 8.12 shows the fi nite-state machine of the protocol. The
protocol works as follows:

1. Under normal operating conditions, A and B are in the ACTIVE state. If the link
from A to B fails, receiver B detects a loss of light (LOL) and turns off laser B,
and B enters the DISCONNECT state. Receiver A subsequently detects a LOL
and turns off its laser and also enters the DISCONNECT state. Similarly, if the
link from B to A fails, or if both links fail simultaneously, A and B both enter
the DISCONNECT state.

2. In the DISCONNECT state, A transmits a pulse of duration τ every T seconds;
B does the same. If A detects light while it is transmitting a pulse, it enters the

8.7 Optical Safety 241

242 CHAPTER 8 Optical Networks: Control and Management

STOP state and is called the master. If A detects light while it is not transmit-
ting a pulse, it transmits a pulse for τ seconds and then enters the STOP state
and is called the slave; likewise for B.

3. Upon entering the STOP state, the node turns off its laser for a period of τ′
seconds. It remains in this state until a LOL condition is detected on the incom-
ing link. If this happens within the τ′ seconds, it moves into the RECONNECT
state. Otherwise, it moves back into the DISCONNECT state.

4. Upon entering the RECONNECT state, if the node is the master, it sends out a
pulse of duration τ. If light is detected on the incoming link within this time
period, the node enters the ACTIVE state. Otherwise, it shuts off its transmitter
and enters the DISCONNECT state. If the node is the slave, it monitors the link
for a period of τ seconds, and if light is detected on the incoming link within
this period, it turns on its laser and enters the ACTIVE state. Otherwise, it goes
back to the DISCONNECT state.

Receiver

Receiver Laser

Laser

A B
Open fiber

control
Open fiber

control

FIGURE 8.11

Open fi ber control protocol in the Fibre Channel standard.

ACTIVE RECONNECT
Light detected

within τ

No light detected
within τ

Light detected

LOL
within τ′LOL

STOP

No LOL
within τ

DISCONNECT

FIGURE 8.12

State machine run by each node for the open fi ber control protocol in the Fibre Channel
standard.

This is a fairly complex protocol. A simpler version of this protocol would not
have the STOP and RECONNECT states. Instead, the nodes would directly enter
the ACTIVE state from the DISCONNECT state upon detecting light. The reason
for having the other states is to try to ensure that both nodes have functioning
safety circuitry. If one of the nodes does not turn off its laser during the STOP
period, it is assumed that the safety circuitry is not working and the other node
goes back to the DISCONNECT state.

In order for the protocol to work, τ, τ′, and T must be chosen carefully. In the
DISCONNECT state, the average power transmitted is τP/T, where P is the trans-
mitted power when the laser is turned on. This must be less than the allowed
emission limits for the safety class. The values chosen for τ and τ′ depend on the
link propagation delay.

Since the Class I safety standard also specifi es that emission limits must be
maintained during single fault conditions, the open fi ber control circuitry at each
node is duplicated for redundancy.

8.8 SUMMARY
Network management is essential to operate and maintain any network. Operating
costs dominate equipment costs for most telecom networks, making good network
management imperative in ensuring the smooth operation of the network.
The main functions of network management include confi guration (of equipment
and connections in the network), performance monitoring, and fault management.
In addition, security and accounting are also management functions. Most
functions of management are performed through a hierarchy of centralized
management systems, but certain functions, such as restoration against failures,
or the use of defect indicators to suppress alarms, are done in a distributed
fashion. Several management protocols exist, the main ones being TL1, SNMP, and
CMIP.

It is useful to break down the optical layer into three sublayers: the optical
channel layer, which deals with individual connections or light paths and is end
to end across the network; the optical multiplex section layer, which deals with
multiplexed wavelengths on a point-to-point link basis; and the optical transmis-
sion section layer, which deals with multiplexed wavelengths and the optical
supervisory channel between adjacent amplifi ers.

Interoperability between equipment from different vendors is a major issue
facing the industry today. Initially the focus was on trying to get interoperability
between vendors at the WDM level, but that has been recognized now as being
very complex. Today the focus is on establishing interoperability by defi ning
standard port-side single-wavelength interfaces at regenerator (or transponder)
locations. There is also signifi cant work under way to defi ne optical-layer over-
heads and their functions, as well as to establish signaling and control protocol
standards for controlling connections in the optical layer.

8.8 Summary 243

244 CHAPTER 8 Optical Networks: Control and Management

The level of transparency offered by the optical network affects the amount
of management that can be performed. Key performance parameters such as the
bit error rate can only be monitored in the electrical domain. Fast signaling
methods need to be in place between network elements to perform some key
management functions. These include the use of defect indicator signals to prevent
the generation of unwanted alarms and protection-switching action, and other
signaling bytes to control rapid protection switching. Optical path trace is another
indicator that can be used to verify and manage connectivity in the network.
Several methods exist for exchanging management information between nodes,
including the optical supervisory channel, pilot tones, the use of certain overhead
bytes in the SONET/SDH overhead, and the new digital wrapper overhead defi ned
specifi cally for the optical layer.

Connection management in the optical network is slowly migrating from a
centralized management plane-based approach to a more distributed connection
control plane approach using protocols similar to those used in IP and ATM net-
works. Eye safety considerations are a unique feature of optical fi ber communica-
tion systems. These considerations set an upper limit on the power that can be
emitted from an open fi ber, and these limits make it harder to design WDM
systems, since they apply to the total power and not to the power per channel.
Safety is maintained by using automated shutdown mechanisms in the network
that detect failures and turn off lasers and amplifi ers to prevent any laser radiation
from exiting the system.

CHAPTER

9GMPLS Provisioning
and Management

This chapter, based on Chapters 14 and 15 of GMPLS: Architecture and Applica-
tions by Farrel and Bryskin, introduces some of the ways Generalized Multi-
Protocol Label Switching (GMPLS) networks and devices can be provisioned and
managed.

9.1 PROVISIONING AND MANAGEMENT SYSTEMS
GMPLS reduces the management burden in transport networks by offl oading func-
tions from the operator and management plane to the control plane. For example,
the collection and correlation of information about the status and capabilities of
the links are automatically handled and kept up to date by the GMPLS routing
protocols. Similarly, the GMPLS signaling protocols make it possible to provision
new label switched paths (LSPs) and manage existing LSPs with only a small
number of management plane interactions.

From the perspective of an operator at their console in the network operations
center, there may be very little visible difference between the tools used to
manage a traditional transport network and a GMPLS-enabled network, but it
would be a mistake to assume that the effi ciency or mode of operation of the
underlying transport plane is unchanged. The GMPLS control plane makes sure
that the operator is always working with the most up-to-date information and also
makes sure that the services are managed effi ciently by the management plane.

Nevertheless, the management plane is an essential component of the GMPLS-
enabled network. The fi rst and most important question is the structure that is
applied to the management framework for the network: How does the operator
coordinate the many devices that make up the network and are physically remote
and supplied by different vendors? Next we look at how management networks
are physically provided and what network resources are needed so that the
network itself can be managed. We then discuss proprietary management inter-

246 CHAPTER 9 GMPLS Provisioning and Management

faces and describe some of the more common standardized techniques used to
manage network devices. There is then a brief discussion of alarms and asynchro-
nous events.

9.1.1 The Structure of Management

A transport network is typically constructed from equipment supplied by several
different vendors. Despite the long-term goal of complete and free interchange-
ability of devices from different vendors, operators usually build clusters of devices
from the same vendor and manage them as separate administrative domains. There
are several benefi ts to this approach, not the least of which is a reduction in the
number of points within the network where genuine interoperability is occurring.
(This is a good thing, because these are the points where most protocol and
hardware problems are likely to be seen.)

Devices from different vendors have different management characteristics even
though they perform very similar network functions. As we will see later in this
chapter, there is a wide variety of proprietary interfaces and standardized proto-
cols that could be used to manage a transport network device. This means that
the operator will need to use many different applications or at least remember
several different command syntaxes to control the entire network. In this situation
it makes good sense to collect the devices with the same management character-
istics into separate administrative domains—a different operator can be given
control of each domain and they need only be familiar with the management
techniques for the devices within their domain. Although interactions between
operators will be needed for services that span domains, these interactions can
be managed at a more abstract level and will not require a deep understanding of
the confi guration techniques of the other domains.

Another fact that infl uences the distribution of vendors’ equipment within
networks is network mergers. Small networks are typically resourced from one or
at most two vendors. This naturally forms clusters of network nodes of a similar
type. However, the trend is to increase the size of networks by connecting
together smaller networks within a single company, through corporate acquisi-
tions or through cooperative agreements between service providers. The result
naturally produces islands or administrative domains of devices from the same
vendor.

9.1.2 Management Tools

The four major management system components are shown in Figure 9.1.

User interfaces: Most devices have some way for the operator to connect directly
so that he or she can confi gure and control the local resources. A device may
have a dedicated terminal, may support the attachment of a terminal emulator
(perhaps through a serial port), and usually also supports remote access through

9.1 Provisioning and Management Systems 247

an application such as Telnet. All of these mechanisms give the operator the
ability to connect to individual network nodes as separate entities rather than
as part of the whole network.

The element management system (EMS): EMS is an application or workstation
dedicated to the management of one or more network elements. Typically, an
EMS application is specifi c to a single vendor’s equipment, but can manage
multiple nodes of the same type. An EMS workstation may run several EMS
applications (for different equipment) and may be where the operator sits to
use the remote user interfaces of various network devices. It is important to
note that the EMS does not manage the network, but manages individual
network nodes.

The network management system (NMS): NMS is a central management station
or application that has a view of the whole network and can control and con-
fi gure all of the devices in the network. The NMS operator does not want to
handle multiple applications to control the network, so the NMS provides a
single application that presents a common interface to all of the subnetworks,
administrative domains, and individual network elements. In practice, the NMS
is sometimes bundled with one or more EMSs so that it can talk to network
devices directly, but more often the NMS speaks a standardized management
protocol to a group of EMS workstations that manage the devices.

The operations support system (OSS): OSS is also a central management system,
but it has a less hands-on interaction with the network. The OSS is where
planning and service installation are managed. The operations at the OSS may
be asynchronous and disjointed in time from the day-to-day management of
the network. Nevertheless, the OSS needs to issue management requests to

FIGURE 9.1

The structure of a management network.

248 CHAPTER 9 GMPLS Provisioning and Management

provision and control services in the network (or networks) for which it is
responsible. It does this by issuing commands (usually through a standardized
protocol) to the NMS.

Additionally, one may consider a fi fth component that passively collects infor-
mation from network devices rather than exerting control over the resources.
Management events, such as alarms, are usually fed back up the management tree
so that the various components of the management system are fully aware of them.
But other operational information, such as statistics and event logs, are normally
collected through separate distributed utilities that are responsible for collating
and aggregating the information before passing it back to a centralized server.
The devices that provide support for statistics gathering and processing may be
coincident with the EMS, NMS, and OSS nodes, or may be completely separate
workstations.

9.1.3 Management Networks

Figure 9.1 shows the logical connectivity for control of a network, but it would
not be practicable to physically connect the EMSs and network elements in the
manner shown—that would require far too many point-to-point connections. In
practice, the management plane must achieve the same level of connectivity as
the control plane so that the EMSs can send management commands to any
network element. Unlike the control plane, the emphasis is not on hop-by-hop
connectivity to parallel the data plane; the management plane needs connectivity
from the EMSs to network elements.

This connectivity is usually provided by an IP management network. It may be
that each network element is connected directly to the management network,
but where there is in-band or in-fi ber control plane communication between
the network elements, the management messages may be carried that way (see
Figure 9.2).

9.1.4 Proprietary Management Interfaces

As previously described, most network devices are supplied equipped with one
or more proprietary interface. The most common format is the command-line
interface (CLI). Here an operator can issue a series of text commands to manage
the device. The CLI may be run through a directly attached terminal or over a
remote-access protocol such as Telnet. CLIs are usually the most powerful manage-
ment tools available for any vendor’s equipment: They give access to the entire
function of the device and allow a very fi ne level of control. For this reason,
however, a CLI can also be very hard to use; it has a great number of commands,
each with many parameters, and a complex syntax based on keywords, which
sometimes have obscure meanings and are hard to remember. The CLI is really a
tool for developers, support engineers, or the well-trained operator.

9.1 Provisioning and Management Systems 249

Some vendors also develop their own graphical user interfaces (GUIs) to help
users manage their devices. There is really no big distinction between a GUI and
an EMS in this context, because it is very unusual for a network device to support
a GUI through a directly attached terminal; the GUI is usually an application that
runs on a separate workstation. A well-organized GUI provides a hierarchical view
of the confi gurable and manageable components of each network device, allows
point-and-click navigation, hides complex functions behind an “Advanced” button,
and supplies well-thought-out defaults for most parameters. Although there are
great similarities between the confi gurable components and commodities from
one network device to another, the GUIs often only bear comparison at the
highest level.

9.1.5 Standardized Management Protocols

Proprietary management interfaces are fi ne up to a point, but as a service provider
attempts to add equipment from different vendors to their network it becomes a
major problem. Operators are either required to learn the user interfaces, program-
ming languages, and GUI layouts of each new piece of equipment, or some form
of homologation is needed to map from the operator’s favorite set of commands
to the instructions understood by each device. This latter choice makes life con-
siderably easier for the operator, but is only achieved at great expense and effort
by the service provider.

Many attempts have been made to standardize the way in which management
workstations communicate with network devices. The aim in all cases is to produce
a single management protocol that will be understood by all equipment in the
network and can be spoken by the management station to control the network.

Unfortunately, the standardization process has led not to a single protocol but
to a whole set of different solutions. Each has its advantages and disadvantages,

FIGURE 9.2

The management network may partially coincide with the transport network.

250 CHAPTER 9 GMPLS Provisioning and Management

and each its proponents and detractors. A few of the more common protocols are
described in the following paragraphs.

The Simple Network Management Protocol (SNMP) is IETF’s management
protocol of choice. It has a checkered past, with version 1 regarded as unscalable,
and version 2, insecure. Version 3 has recently been stabilized and claims to
address all issues in previous versions. However, the time that it has taken to
evolve, combined with a widespread belief that SNMP is in no way “simple,”
means that many vendors are reluctant to offer SNMP management of their devices,
and where they do, the take-up in live networks (especially core, transport net-
works) is very poor and the protocol is used for monitoring rather than for
control.

Nevertheless, because SNMP is actively promoted by the IETF, it is a signifi cant
confi guration protocol. In SNMP, data are encoded in Abstract Syntax Notation
One (ASN.1). It has two formats, one for carrying data on the wire (within
protocol messages) and one for representation in text documents. The total set
of data managed in SNMP is known as the management information base (MIB),
and each new protocol developed within the IETF is required to have a MIB
module defi ned. The MIB modules for GMPLS are discussed in a later section of
this chapter.

The eXtensible Markup Language (XML) is a text-formatting language that is a
subset of the Standard Generalized Markup Language (SGML) specifi ed in the
International Standards ISO 8879. XML documents look very much like those
written in the Hypertext Markup Language (HTML) used to encode Web pages.
However, XML includes the ability to characterize data fi elds giving their data
types and encodings as well as their values.

XML is a somewhat verbose way of encoding data. The management data for
a device are presented as a document with tags that give meaning and format to
each fi eld. The tags are usually descriptive, so several text words may be used to
encapsulate a single piece of data. This is a great strength because the format and
meaning are encoded in XML in a way that can be simply parsed by the recipient,
but it also imposes an overhead compared with a binary encoding of a known
structure. XML documents are exchanged using the Simple Object Access Protocol
(SOAP), a lightweight, transaction-oriented protocol that utilizes an underlying
transport protocol.

The Common Object Request Broker Architecture (CORBA) takes an object-
oriented approach to management through a distributed management architec-
ture. CORBA specifi cations include the defi nition of the managed objects; the rules
for communication between management applications and the managed objects;
and the requests, access control, security, and relationships between the
objects.

In CORBA, data are encoded using Interface Defi nition Language (IDL), which
extends a subset of the C++ programming language by adding constructs to
support the type of object management that is needed in the context of network
management. Data sets are constructed as objects and are exchanged using the
General Inter-ORB Protocol (GIOP), a message-based transaction protocol. When

9.1 Provisioning and Management Systems 251

GIOP is adapted to use TCP/IP as its transport, it is known as the Internet Inter-
ORB Protocol (IIOP).

Transaction Language-1 (TL1) is a standardized, transaction-based ASCII script-
ing language that is very popular in management systems. It grew out of the Man
Machine Language (MML) specifi ed by Bellcore as a standard language for control-
ling network elements within the Regional Bell Operating Companies (RBOCs).

TL1 is certainly the most common management protocol in transport net-
works. It owes this position partly to the fact that it is a man–machine language—
a language that is understood both by users and by the devices it controls.
However, its success must also be attributed to the fact that around 80 percent
of the devices in telecommunication networks in the United States utilize OSS
software from Telcordia: Telcordia compatibility certifi cation (through OSMINE)
is therefore a crucial (and expensive) requirement for vendors in this market, and
because Telcordia uses TL1, most vendors support TL1 either directly to their
network devices or as a management interface to their EMSs.

The Lightweight Directory Access Protocol (LDAP) is a set of protocols for
sharing and accessing information in distributed directories. When you look at the
requirements for controlling and managing the equipment within a network, you
discover that it is not far removed from a distributed directory with some portions
of the data held on the network devices, and a central directory held on the EMS
or NMS.

LDAP has grown out of the X.500 set of directory standards, and the data are
encoded in ASN.1. But unlike X.500, LDAP operates over TCP/IP, making it avail-
able within the Internet and across an Internet Protocol (IP) management network.
Although not currently very popular as a management tool, LDAP is increasingly
used as an automated inventory mechanism. In this mode, network elements can
report the components and cards that they have installed (and the status of those
components) to the EMS.

As can be seen from the previous descriptions, the common standardized
management protocol solutions do not just use different message exchanges, they
also have entirely different ways of representing and encoding the confi guration
data for the managed devices. Far from making things easier, the array of choices
tends to reduce the take-up of interoperable solutions by vendors who, unable to
decide which standard solution to offer, simply stick with their own proprietary
solution.

Some multivendor interoperability consortia under pressure from service pro-
viders are now beginning to develop and agree on common approaches (e.g., the
TeleManagement Forum and the Multiservice Switching Forum). These are tending
to converge on CORBA and TL1, with XML still making a strong showing, result-
ing in the model shown in Figure 9.3.

9.1.6 Web Management

There is nothing very special about Web management of network devices, although
it is hyped somewhat by equipment vendors. The chief advantage for operators

252 CHAPTER 9 GMPLS Provisioning and Management

is that they are able to use a GUI to control and confi gure their network without
actually having to run a specifi c application (such as an EMS) on their own work-
station. All that an operator needs is a Web browser and connectivity (usually
across the IP management network) to the server that runs the management
application. The management application generates control panels as forms that
the operator can complete.

The most common implementation of Web management simply provides a
remote GUI to a vendor-specifi c EMS. The facilities of HTML mean that this sort
of management tool can be made to look very sexy and can perform all sorts of
clever point-and-click operations.

In some extreme cases, network devices may be capable of running Web
servers to allow browsers to connect to them directly and send confi guration
commands. This, however, is very rare because the primary purpose of a network
device is not to host HTTP sessions, and it is unusual for there to be space to put
this kind of software support on a switch or router.

9.1.7 Alarms and Events

The collection, correlation, and servicing of alarms or events raised by network
elements is an important feature of network management systems. Although some
alarms may be handled by the network elements, possibly in conjunction with
the control plane, to minimize the impact on services, it is crucial that the alarms

FIGURE 9.3

Common network management usage is assigning specifi c roles to the different network
management protocols within the management network.

are passed on to the management system so that the operator (or some automatic
trouble-ticketing system) can take remedial actions to protect existing services
and to repair the fault.

To ensure that the operator or his or her applications are fully informed of
their status, the network elements report (raise) alarms and other key events to
their EMS. The EMS passes the fault notifi cations on to the NMS, and the NMS may
even tell the OSS, so that planning and procurement actions can be taken. Although
any layer in this model may take remedial action, the notifi cations are still sent so
that the higher layers can make their own judgments.

Note, however, that a network device may raise many alarms in response to a
single fault. For example, if a fi ber is cut, the associated line card may raise a “loss
of light” alarm, but other components of the device such as the cross-connect and
the downstream transmitter may also suffer from the error and raise correspond-
ing “loss of signal” alarms. These alarms can be correlated vertically; that is, the
alarms can be seen to all correspond to the same event and are in some sense a
chain reaction. In other circumstances a single failure, such as of a whole line
card, may cause multiple parallel alarms to be raised; for example, an “interface
down” alarm for each port on the line card. These alarms can be correlated
horizontally.

If each device passed all alarms to its EMS, and each EMS passed all alarms to
the NMS, the NMS could be seriously overloaded. To prevent this from happening,
two features are confi gurable within the network. The fi rst assigns priorities or
severities to each alarm or event and allows control of which faults are reported
and which are silently ignored or just logged. The second feature allows levels
within the management network to correlate alarms and only report the issue to
which all other alarms can be traced (and from which all other alarms can be
deduced).

Alarm and event reporting mechanisms typically utilize the same protocols
that are used for management control. Thus, SNMP has the concept of a Trap or
Notification that allows a device to pass unsolicited information to its manage-
ment station. Similarly, CORBA and TL1 all allow a lower management level to
report an event to a higher level.

Other asynchronous event protocols such as Syslog can also be used to collect
alarm and event notifi cations from network elements, but these are typically used
for historic archival and are examined by operators and fi eld engineers who want
to understand what has been happening in the network.

9.2 GMPLS MIB MODULES
SNMP is the management protocol of choice within the IETF. This does not mean
that GMPLS-conformant devices are restricted to SNMP or are forced to implement
SNMP. Indeed, most GMPLS-capable network elements have a variety of manage-
ment interfaces as described in the previous sections.

9.2 GMPLS MIB Modules 253

254 CHAPTER 9 GMPLS Provisioning and Management

However, it is an IETF requirement that all IETF protocols have MIB modules
defi ned to allow implementations to be modeled and managed. The MIB is the
global distributed database for management and control of SNMP-capable devices,
and a MIB module is a collection of individual objects and tables of objects, each
of which contains a value that describes the confi guration or status of a manage-
able entity or logical entity of the same type.

This section briefl y describes the MIB modules that exist for MPLS traffi c engi-
neering (TE) and then describes how those modules are extended for GMPLS.

9.2.1 MPLS TE MIB Management

Three MIB modules are of particular relevance to the management of devices in
an MPLS TE network: the MPLS textual conventions (TC) MIB module, the MPLS
label switching router (LSR) MIB module, and the MPLS TE MIB module.

The MPLS TC MIB module (MPLS-TC-STD-MIB) contains an assortment of
general defi nitions for use in other MIB modules. In a sense it is a little like a
header fi le that defi nes types and structures for use in other fi les. It includes
defi nitions of things like bit rates, but more important, it defi nes textual conven-
tions (that is, types) for use when representing tunnel IDs, extended tunnel IDs,
label switched path (LSP) IDs, and MPLS labels.

The MPLS LSR MIB module (MPLS-LSR-STD-MIB) is used to model and control
an individual MPLS label switching router. This MIB module concerns itself with
the core function of an LSR (that is, forwarding of labeled packets), so it is as appli-
cable to Label Distribution Protocol (LDP) as it is to RSVP-TE. In fact, the LSR MIB
module could be used in the absence of any signaling protocol to manually confi g-
ure LSPs through the LSR.

There are four basic units to the LSR MIB module. There is a table of MPLS-
capable interfaces on which labeled packets can be sent and received. There is a
table of in-segments corresponding to labels received on interfaces or upstream
legs of LSPs. There is a table of out-segments modeling downstream legs of LSPs
identifi ed with a stack of one or more labels to be pushed onto a packet and
indicating the interface out of which to send the packet. The fourth unit is a table
of cross-connects that shows the relationships (which may be more complex than
one-to-one) between in-segments and out-segments.

A third MIB module, the MPLS TE MIB module (MPLS-TE-STD-MIB), is used to
model and control MPLS TE LSPs. The primary purpose of the module is to allow
an operator to confi gure and activate a TE LSP at an ingress LSR, but the module
is equally valid for examining the LSP at any LSR along its path.

The MPLS TE MIB module contains tables to confi gure multiple instances of an
LSP tunnel for simultaneous activation (such as for load-sharing or protection) or
for sequential activation (such as for recovery). Thus, a tunnel, which is an end-to-
end traffi c trunk or service, has a common root in the mplsTunnelTable and may
be supported by one or more LSPs either at the same time or at different times.
Each LSP is represented in the mplsTunnelTable as an “instance” of the tunnel.

Other tables allow the confi guration and inspection of resource usage for the
LSP, and the requested, computed, and actual routes of the LSP.

The dependencies between the MPLS TE MIB modules can be seen in
Figure 9.4. The arrows indicate the relationship depends on.

9.2.2 GMPLS MIB Modules

GMPLS MIB management is built on MPLS TE management. Nearly every aspect
of the MPLS TE MIB modules is reused, but a fair amount of new objects are
needed to handle the extra complexity and function of a GMPLS system.

Figure 9.5 shows the new MIB modules (in white) and their relationship to the
MPLS TE MIB modules (in gray). As can be seen, there are four new modules for
GMPLS. The GMPLS-TC-STD-MIB provides some additional textual conventions
specifi c to GMPLS. The GMPLS-LSR-STD-MIB and the GMPLS-TE-STD-MIB are
mainly used to “extend” tables in the MPLS TE MIB modules; that is, they effec-
tively provide additional objects for inclusion in the tables defi ned in the MPLS
TE MIB modules.

The GMPLS label management MIB module (GMPLS-LABEL-STD-MIB) is a new
module designed to handle the fact that GMPLS labels may be considerably more

FIGURE 9.4

The relationship between the MPLS TE MIB modules.

FIGURE 9.5

The relationship between the GMPLS MIB modules.

9.2 GMPLS MIB Modules 255

256 CHAPTER 9 GMPLS Provisioning and Management

complex than the 20-bit numbers used as labels in MPLS. It contains a table of
labels that have simple indexes, but may have complex forms, and that may be
referenced from the other MIB modules.

9.2.3 GMPLS Label Switching Router Management

The GMPLS LSR is managed using all of the tables in the MPLS LSR MIB with
extensions to handle the additional function for GMPLS.

The table of MPLS-capable interfaces (mplsInterfaceTable) is extended by
the gmplsInterfaceTable. An entry in the former means that the interface uses
RSVP-TE for MPLS unless there is also an entry in the GMPLS table. In this case,
there is an object in the gmplsInterfaceTable that defi nes the GMPLS signaling
protocol in use, and another that defi nes the signaling Hello period to use on the
interface.

The performance of label switching on the interface is recorded in the
mplsInterfacePerfTable, and no extensions are made for GMPLS. In fact, two
of the counters are specifi c to packet processing and are consequently only valid
when GMPLS is used in a packet-capable environment.

Inward segments in MPLS are tracked in the mplsInSegmentTable. For GMPLS,
where bidirectional LSPs are permitted, this might appear confusing; however,
the table is well named and the entries refer to the direction of data fl ow and have
no bearing on the signaling used to establish the LSP. Thus, a bidirectional LSP
would have one in-segment on the upstream interface (for the forward direction)
and one in-segment on the downstream interface (for the reverse direction). The
in-segment table is extended for GMPLS by the gmplsInSegmentTable, which tells
us whether the segment is used on the forward or reverse direction of a bidirec-
tional LSP, and provides a pointer to an external table (perhaps of a proprietary
MIB module) that can contain additional parameters to support technology-
specifi c transports (e.g., SONET resource usage). The mplsInSegmentTable may
contain a pointer into the gmplsLabelTable to handle the encoding of complex
labels.

The performance of in-segments is tracked in the mplsInSegmentPerfTable.
Most of the objects in this table are specifi c to bytes and packets and would only
be used when GMPLS is running in a packet-capable environment.

The mplsInSegmentMapTable allows an operator to make a reverse lookup
from {interface, label} to fi nd the relevant in-segment in the mplsInSegment-
Table. This useful function is preserved for GMPLS, but is slightly complicated by
the fact that the label may be found by an indirection to the gmplsLabelTable.

Similar extensions are made for the mplsOutSegmentTable that contains the
details of LSP legs that carry data out of the device. Through indirection,
the top label to impose on the outgoing traffi c may now be found in the
gmplsLabelTable. The gmplsOutSegmentTable extends the MPLS table to say
whether the segment is in use on the forward or reverse path of the LSP. There
is also a pointer to an external table to encode additional parameters if appropri-

ate. Finally, the gmplsOutSegmentTable contains an object to specify by how
much to decrement the time-to-live (TTL) of any payload packets forwarded on
the segment if per-hop decrementing is done; this is clearly also only relevant in
packet-switching environments.

The performance of out-segments is tracked in the mplsOutSegmentPerfTable.
In the same way as for in-segments, most of the objects in this table are specifi c
to bytes and packets and would only be used when GMPLS is running in a packet-
capable environment.

The mplsLabelStackTable is preserved for GMPLS, but also only applies in
packet environments because this is the only time that label stacking is relevant.
This table lists the additional label stack to be applied to outgoing packets beneath
the topmost label. These labels may also be found through indirection to the
gmplsLabelTable (although this particular usage is unlikely because the stack will
be made up from simple 23-bit labels).

Both the in-segment and out-segment tables may contain pointers to an exter-
nal table that contains parameters that describe the traffi c on this LSP. The pointer
may indicate an entry in the mplsTunnelResourceTable in the MPLS TE MIB
module, or it may point to an entry in a proprietary MIB module. This leaves just
the mplsXCTable, which is unchanged in usage from MPLS. That is, it ties together
in-segments and out-segments to provide LSPs through the device.

Figure 9.6 shows all of the MIB tables used for managing a GMPLS LSR with
their relationships indicated by arrows. Gray boxes denote tables in the MPLS LSR
MIB module, ovals are tables in external MIB modules, and white boxes are tables
in the GMPLS LSR MIB module.

mplsInterfacePerfTable

mplsInterfaceTablemplsInSegmentPerfTable

gmplsInSegmentTable

mplsInSegmentMapTable

mplsInSegmentTable mplsOutSegmentTable gmplsOutSegmentTable

mplsLabelStackTable

mplsXCTable

gmplsLabelTable

extra_Parameters_Table
external_Traffic_Table

extra_Parameters_Table

mplsOutSegmentPerfTable

gmplsInterfaceTable

FIGURE 9.6

The relationship between MIB tables in GMPLS LSR management.

9.2 GMPLS MIB Modules 257

258 CHAPTER 9 GMPLS Provisioning and Management

9.2.4 GMPLS TE LSP Management

Management of individual TE LSPs is slightly simpler and requires fewer tables than
the management of the label-switching router described earlier. The basis of the
management is the mplsTunnelTable, which contains active and confi gured LSP
tunnels that start, end, or transit the device. Entries in the tunnel table are not
indexed by the fi ve-tuple that defi nes the LSP, as might seem natural, but by a
slightly different set of parameters. That is, the normal group of identifi ers of
the LSP {source, destination, tunnel ID, extended tunnel ID, LSP ID}
is replaced in this MIB table by {tunnel index, tunnel instance, ingress LSR
ID, egress LSR ID}. The tunnel index maps to the tunnel ID that is signaled, while
the tunnel instance disambiguates distinct LSPs that support the tunnel (either
simultaneously or over time) and thus may be safely mapped to the LSP ID that is
signaled. The MIB module assumes that the source and destination of the LSP will
be expressed as LSR IDs (which might not be the case) and makes the false assump-
tion that the extended tunnel ID will always be set equal to the ingress LSR ID and
thus does not need to be confi gured. Having said this, the indexing scheme is actu-
ally quite acceptable for nonpacket systems and, because it is now used for MPLS
packet systems, it is clearly extensible for GMPLS packet LSPs.

The purpose of the GMPLS TE MIB module is both to allow LSPs to be confi g-
ured and managed at their ingresses and to allow the LSPs to be inspected at any
point within the network. To confi gure an LSP it must be possible to select param-
eters for any constraint or option that can be signaled. The core set of objects
for this are found in the mplsTunnelTable, and gmplsTunnelTable extends it to
support the following additional features:

■ Presentation of this tunnel within the LSR as an unnumbered interface.
■ Selection of label recording.
■ The encoding type requested for the LSP.
■ The switching type requested for the LSP.
■ The link protection requested for the LSP.
■ The payload (G-PID) carried by the LSP.
■ Whether the LSP is a secondary (that is, backup) LSP.
■ Whether the LSP is unidirectional or bidirectional.
■ The control of alarms and other LSP attributes.
■ What manner of path computation the ingress LSR is required to perform.

Some of these attributes are useful in MPLS as well as GMPLS and can be used
by picking up the gmplsTunnelTable and setting the encoding type to zero to
indicate an MPLS LSP. All of the objects listed before are also used when an LSP
is examined at a transit or egress LSR. Additionally, it is possible to see the Notify
recipients for forward and backward notifi cation and the Admin Status fl ags. A
pointer from the gmplsTunnelTable can be used to reference an additional exter-
nal table (perhaps of a proprietary MIB module) that can contain additional param-
eters to support technology-specifi c transports (e.g., SONET resource usage).

The MPLS TE MIB module contains the mplsTunnelPerfTable to record the
performance of the LSP. However, because the MPLS tunnels are unidirectional,
the GMPLS TE MIB module introduces the gmplsTunnelReversePerfTable to
record the performance in the opposite direction. Both performance tables are
primarily concerned with packets and bytes and may be largely inappropriate in
nonpacket environments.

The resource requirements and usage of each LSP are recorded in the
mplsTunnelResourceTable. No changes are needed to this table for GMPLS.

A signifi cant part of TE LSP management relates to the specifi cation, computa-
tion, and recording of the path taken by the LSP. The MPLS TE MIB
module provides three tables for this function: the mplsTunnelHopTable, the
mplsTunnelCHopTable, and they are the mplsTunnelARHopTable, respectively.
GMPLS increases the level of control that may be specifi ed in a confi gured and
signaled route (e.g., by adding explicit control of labels) and also allows for this
information to be recorded. Thus, it is necessary to extend all three of the tables
within the GMPLS TE MIB module. Further, because labels are now involved, the
new tables include pointers into the gmplsLabelTable.

The fi nal extension in the GMPLS TE MIB is the gmplsTunnelErrorTable. This
table is not really specifi c to GMPLS because it records errors that occur when
trying to establish an LSP or when the LSP fails at some later stage. Because it
extends the mplsTunnelTable it may be used equally in MPLS and GMPLS
systems.

Figure 9.7 shows all of the MIB tables used for managing GMPLS TE LSPs with
their relationships indicated by arrows. Gray boxes denote tables in the MPLS TE
MIB module, ovals are tables in external MIB modules, and white boxes are tables
in the GMPLS TE MIB module.

mplsTunnelPerTable gmplsTunnelReversePerTable

gmplsTunnelErrorTable mplsTunnelTable

mplsTunnelHopTable

mplsTunnelResourceTable

mplsTunnelCHopTable

mplsTunnelARHopTable

gmplsTunnelTable

gmplsTunnelHopTable

gmplsTunnelCHopTable

gmplsTunnelARHopTable

gmplsLabelTable

extra_Parameters_Table

FIGURE 9.7

The relationship between MIB tables in GMPLS TE management.

9.2 GMPLS MIB Modules 259

260 CHAPTER 9 GMPLS Provisioning and Management

9.2.5 Traffi c Engineering Link MIB Module

The TE link MIB module is equally applicable to MPLS and GMPLS systems. It allows
TE links to be confi gured and managed to help an operator set up and use link
bundles. Confi guring a bundled link involves defi ning the bundled link and the TE
links, assigning shared risk link groups (SRLGs) to the TE link, confi guring the
component links to their bandwidth parameters, associating the component links
with the appropriate TE link, and associating the TE links with the appropriate
bundled link. To this end, the TE link MIB module includes seven tables:

■ Entries in the teLinkTable represent the TE links, including bundled
links, and their generic TE parameters.

■ The teLinkDescriptorTable contains the TE link interface switching
capabilities.

■ The teLinkSrlgTable lists the SRLGs that may be associated with the TE
links.

■ Priority-based bandwidth TE parameters for association with the TE links
are placed in the teLinkBandwidthTable.

■ Entries in the componentLinkTable represent the component links and
show their generic TE parameters.

■ The componentLinkDescriptorTable holds the switching capability
descriptors for each component link.

■ Priority-based bandwidth TE parameters for association with each
component link are placed in the componentLinkBandwidthTable.

This MIB module contains the basic necessities for managing TE links but is
somewhat short of confi gurable constraints for links in optical networks. Further
developments and extensions to this MIB are likely as traffi c engineering becomes
more established in photonic networks.

9.2.6 Link Management Protocol MIB Module

The TE link MIB module allows an operator to confi gure and manage data
links so that they can be bundled and advertised as TE links. But what is also
needed is a way to manage the use of the Link Management Protocol (LMP) on
links between GMPLS devices. This can be found in the LMP MIB module
(LMP-STD-MIB).

The fi rst requirement to run LMP is to confi gure the neighbors with which a
label switching router will exchange LMP messages. The Link Management Proto-
col does not have a neighbor discovery mechanism, so each would-be peer must
be confi gured in the lmpNbrTable. The operator must confi gure the node ID of
each partner and can also provide values for the retransmission interval and limit
for each message that is sent.

Once we know about neighbors, we need control channels to be confi gured.
Although control channel activation involves a degree of negotiation, it is never-

theless underpinned by confi guration, and the lmpControlChannelTable is used
to enable LMP exchanges on a per-interface basis. The addresses for the control
channel messages and the options, including the Hello and Dead Interval timers,
can be confi gured.

The behavior of the control channel can be monitored through the
lmpControlChannelPerfTable. Unlike the management of the signaling protocols
where the performance tables show the characteristics of data traffi c, this table
strictly monitors the LMP traffi c, indicating the number of bytes sent and received,
recording the number of errors, and counting the number of each message type
used on the control channel.

At this point, the protocol can be run and monitored, and the remainder of
the MIB module is concerned with the TE links that will be reported and moni-
tored by LMP. The lmpTeLinkTable is used to specify those TE links for which
LMP exchanges information, and contains some basic LMP parameters. The infor-
mation that can be confi gured includes the LMP neighbor to which the link con-
nects, and whether the optional procedures (link verifi cation, fault management,
and LMP-WDM) are supported.

If link verifi cation is used, the verifi cation parameters are confi gured through
the lmpLinkVerificationTable for each TE link. As well as confi guring the timer
values for the verifi cation process, the MIB table includes an object to select the
transport verifi cation mechanisms to use on the associated data links.

LMP discovery procedure results are recorded in the lmpDataLinkTable. An
entry is created in this table for each data link, and the relevant local information
(interface address and encoding type) is confi gured. As LMP discovers the remote
confi guration information, it updates the table with the remote interface address
and interface index. This information can then be utilized by GMPLS signaling to
ensure that adjacent nodes have the same understanding of which data link is
being referred to.

The performance of LMP in relation to a given TE link is recorded in the
lmpTeLinkPerfTable. The objects count the same events that are found in the
lmpControlChannelPerfTable (protocol messages), but in this case only the mes-
sages specifi cally related to the TE link are recorded. In the case where there is
only one control channel between a pair of LMP peers, the numbers in this table
are a subset of those in the lmpControlChannelPerfTable, but where more than
one control channel is used the relationship is not so simple.

The performance of the data link is still related to the exchange of protocol
messages, but because the only messages sent on the data link are Test messages
(and even those might not be sent on the data link), lmpDataLinkPerfTable
records the performance of the link verifi cation process for each data link.

9.2.7 The Interfaces MIB Module

The interfaces MIB module defi nes generic managed objects for managing inter-
faces. An interface in this context is the end of a logical connection through which

9.2 GMPLS MIB Modules 261

262 CHAPTER 9 GMPLS Provisioning and Management

an application can send or receive data. This concept used to be limited to
physical connections but has been extended to include logical connections (such
as LSPs) that are carried by physical connections. In the context of GMPLS, this
meaning of interface is synonymous with the term data link end. The GMPLS and
MPLS MIB modules make references to interfaces so that it can be clearly deter-
mined where the procedures managed by the MIB modules should be performed
and, specifi cally, to manage those interfaces.

Additionally, modules utilize interface stacking when there is a hierarchical
relationship between interfaces on a device. Such interface stacking is primarily
used for logical interfaces, although the bottom element in any stack is a physical
interface. Note that this hierarchical relationship is not the hierarchy of LSPs, but
a familiar concept from the interfaces MIB that allows a subdivision of a physical
interface (a logical interface) to be presented to an application for its use as though
it was a dedicated physical interface.

The TE MIB modules based on MPLS-TE-STD-MIB allow TE LSPs to be managed
as logical interfaces. The interfaces MIB module contains a table (the interfaces
table—ifTable) that includes information on each interface, and is constructed
so that each sublayer below the internetwork layer of a network interface is con-
sidered an interface in its own right. Thus, a TE LSP managed as an interface is
represented as an entry in the ifTable.

The interrelation of entries in the ifTable is defi ned as interface stacking.
When TE LSPs are managed as interfaces, the interface stack might appear as in
Figure 9.8. In the fi gure, the “underlying layer” refers to the ifIndex of any inter-
face type for which (G)MPLS internetworking has been defi ned. Thus, two distinct
TE LSPs may be presented as separate interfaces to their applications, but may
actually be carried over a single, (G)MPLS-enabled physical interface. GMPLS
inherits the terminology of the MPLS usage so that interfaces that are realized
through TE LSPs are known as TE LSP tunnel interfaces, and physical interfaces
that are MPLS- or GMPLS-enabled are called MPLS interfaces.

TE LSP tunnel interface
ifType = mplsTunnel (150)

(ifIndex = 3)

TE LSP tunnel interface
ifType = mplsTunnel (150)

(ifIndex = 4)

MPLS interface
ifType = mpls (166)

(ifIndex = 2)

Underlying layer
(ifIndex = 1)

FIGURE 9.8

Two TE LSPs managed as interfaces over a single MPLS-capable interface.

Interface stacking is also used in the TE link MIB module to manage TE links
as logical interfaces. The TE link interface is represented as an entry in the ifTable
and stacking may be carried out as before. When using TE link interfaces, the
interface stack table might appear as is shown in Figure 9.9. In the fi gure,
opticalTransport is an example of an underlying physical interface. Both TE link
management and link bundling can be seen in the fi gure. Two TE links are defi ned,
each managing an optical transport link; these two TE links are combined into a
single bundle that is managed as a single TE link interface that supports MPLS and
is presented as an MPLS interface.

MPLS interface
ifType = mpls (166)

(ifIndex = 6)

TE link (bundledlink)
ifType = teLink (200)

(ifIndex = 5)

TE link
ifType = teLink (200)

(ifIndex = 3)

Component link
ifType = opticalTransport(196)

(ifIndex = 1)

Component link
ifType = opticalTransport(196)

(ifIndex = 2)

TE link
ifType = teLink (200)

(ifIndex = 4)

FIGURE 9.9

Two physical component links managed as separate TE links and then bundled.

9.2 GMPLS MIB Modules 263

This page intentionally left blank

CHAPTER

10The Foundation of Policy
Management

This chapter, Chapter 1 from Policy-Based Network Management by Strassner,
will fi rst provide a brief retrospective of how policy-based network management
(PBNM) has been conceived in the past. This will be used to point out two fun-
damental problems of previous solutions—the lack of use of an information model,
and the inability to use business rules to drive confi guration of devices, services,
and networks. A path forward, and benefi ts resulting from this improved approach,
are described.

10.1 INTRODUCTION—A RETROSPECTIVE
Policy management means many things to many people. As Michael Jude writes:

When fi rst conceived in the late 1990s, PBNM promised enterprise information
technology shops the ability to control the quality of service (QoS) experienced
by networked applications and users. . . . In fact, the hype went further than
that: Vendors promised that CIOs or CEOs would soon be able to control
policies through a simple graphical interface on their desk. Behind the scenes,
those instructions would translate into specifi c traffi c management adjustments,
bypassing traditional network operations.

QoS means many things to many people. Contrary to popular belief, QoS does not
mean “just” an increase or decrease in bandwidth speed. Rather, it means differ-
entiated treatment of one or more metrics. These metrics are completely depen-
dent on the type of application(s) that the QoS is being designed for. Thus, QoS
for a voice application is usually different than QoS for a mission-critical data
application, because the characteristics of each application are different. This
causes the specifi c QoS mechanisms to be made different.

266 CHAPTER 10 The Foundation of Policy Management

One favorite defi nition of QoS is “managed unfairness.” This describes the dif-
ferences in how network elements are programmed to provide different QoS
mechanisms to treat various application traffi c streams differently. Clearly, this is
complex to perform for the same type of devices; the complexity of this confi gu-
ration increases dramatically if different devices with different capabilities and
commands are used in the same network.

Differentiated QoS, which is the ability to provide different confi gurations of
QoS for different types of applications, is the key to opening up new avenues
of revenue. Because providing QoS is currently very diffi cult, the application of
policy to provide differentiated QoS is one of the primary drivers for implement-
ing PBNM solutions.

The emphasis on managing and implementing QoS describes some of the
buildup and excitement that followed the dawn of PBNM. The reason, of course,
is because networks are complex, and running different services, each of which
have different requirements on the same network, is very diffi cult. People who
were looking for a “quick fi x” to their network problems were disappointed;
PBNM was found to be time intensive, complex, and expensive. There were
several reasons for this:

■ Most early PBNM solutions were single-vendor approaches and could only
manage some of the devices on the network. As a result, multiple incompatible
PBNM solutions had to be introduced to manage the entire network, which
caused hard-to-solve integration problems.

■ PBNM solutions were focused on particular technologies and devices. For
example, a QoS policy server might be able to control most (but probably not
all) of the QoS functions of a particular vendor’s device or device families.
However, it probably could not control other types of technologies, such as
security and Internet Protocol (IP) address management.

■ PBNM solutions focused on the IP world. This caused disruption in organiza-
tions that have different technologies present in their networks.

■ PBNM solutions were misunderstood.

■ PBNM solutions rushed forth without a solid set of standards in place.

Although the fi rst three problems are important, the last two are fundamental
problems that prevented the fi rst wave of PBNM solutions from realizing their
goals.

In addition, two other problems prevented wide adoption. First, the solutions
initially available were not very scalable, and hence could not easily be used in
large service provider networks despite the fact that they provided some attractive
technology (e.g., confi guring QoS functions).

Second, network monitoring technology lagged behind the new provisioning
technology promoted by PBNM solutions to control the network. As a result, there
was no easy way to monitor whether the PBNM solutions were actually
working.

10.1 Introduction—A Retrospective 267

10.1.1 Early PBNM Solutions Missed the Point

In its early days, PBNM was characterized (and unfortunately, this characterization
continues somewhat today) as a sophisticated way to manipulate different types
of QoS. The motivation for this was to avoid overprovisioning the network, (i.e.,
enough resources are present for the network to respond to any anticipated need).
The problem with this approach is that it is static and cannot adjust to the chang-
ing environment. Thus, if the network is provisioned according to the maximum
expected load, resources will be wasted most of the time. Furthermore, if that
load is exceeded for some reason (e.g., a heavy day of stock trading), then the
network will still be unable to perform.

PBNM was used to set the QoS levels based on inspecting different fi elds
in the header of traffi c that was being sent. People then reasoned that PBNM
could also be used for other applications (such as ensuring that high-priority traffi c
was delivered ahead of less important traffi c and that different services received
the level of service that they were contracted for) and for different types of
security applications (such as refusing traffi c from an unknown source to enter
the network or starting an accounting application when a connection was
completed).

The common theme to each of these (and other) applications is the desire to
link the way the business runs to the services that the network provides. Regard-
less of application, PBNM was defi ned as reacting to a particular condition and
then taking an appropriate action. The missing point is that some centralized
authority has to decide which users and applications get priority over other users
and applications.

Business rules are defi ned as the set of rules, regulations, and practices for
operating a business. They often defi ne and sometimes constrain business pro-
cesses. Business processes are defi ned as the means by which one or more
activities are accomplished in operating business practices. They take the form of
an interconnected set of business functions (perhaps constrained by various busi-
ness rules) to obtain a specifi c set of business goals.

Recently, the focus has turned to integrating business rules and processes with
PBNM solutions. This focus makes intuitive sense, as it is certainly natural to want
the network to provide services according to business contracts. However, the
relationship can be, and should be, deeper than that. Business rules and processes
govern how a system is run. They are responsible for the many decisions that
must be made for every action performed by the system.

If policies are the reasons for doing something and business rules and processes
are the means for doing it, why not connect them together? Although this seems
obvious in retrospect, precious few information models have been constructed
with this direction and capability. An important corollary of this decision is as
follows:

PBNM solutions require information models that contain business and system
entities that can be easily implemented.

268 CHAPTER 10 The Foundation of Policy Management

This chapter describes a unique object-oriented information model, called
DEN-ng (Directory Enabled Networks—new generation). It is being developed in
the TeleManagement Forum. The development is led by this author, and many
different companies are involved. The author’s company, Intelliden, is also actively
involved in implementing DEN-ng and has incorporated it into the latest release
of its product. Other companies, such as British Telecom, Telecom Italia, Telstra,
MetaSolv, Hewlett Packard, and Agilent, have participated in reviews of DEN-ng.

An object-oriented information model is a means to represent various entities
in a managed environment. An entity can be a person, a computer, a router, or
even a protocol message—anything that needs a uniform and consistent represen-
tation for confi guration and management is a possibility for defi nition and repre-
sentation in DEN-ng.

An object-oriented information model provides a common language in which
different types of management entities can be represented. This common language
is of the utmost importance. Operational support systems (OSSs) are large, complex
sets of applications that are composed of best-of-breed applications. This tendency
to use best-of-breed applications encourages the use of “stovepipe” applications,
which are applications that maintain their own defi nition of data. Much of the
data used by each stovepipe application should be shared with other stovepipe
applications. Unfortunately, this simply cannot be accomplished unless a common
language exists to represent these common data.

One diffi culty in building an OSS lies in the large variety of different manage-
ment objects that must be harmonized and shared among the different manage-
ment applications being used. Further exacerbating this problem is the fact that
different types of management data have different characteristics. For example,
very volatile data, such as statistical interface measurements, change much too
fast to be placed in a directory. Other data are very appropriate to put into a
directory. Thus, an OSS needs to use multiple repositories to accommodate the
different characteristics and uses of different management information.

An object-oriented information model, such as DEN-ng, is independent of any
specifi c type of repository, software usage, or access protocol. Therefore, DEN-ng
can be used as a single authoritative means for describing how different manage-
ment information are related to each other.

To put this into perspective, Figure 10.1 shows fi ve exemplary management
applications that comprise an OSS. Notice that for two of these applications, the
same data appear. For the Username attribute, two different names are given. This
makes it very diffi cult for applications to realize that these two different names
actually refer to the same attribute of the same object. Furthermore, both applica-
tions defi ne the same Employee attribute. However, the data types are different.
This can cause problems in trying to write a single query to gather data based on
this and other attributes across these two repositories.

Thus, unless there is a way to relate different information that are implemented
using different data models to each other, it will be impossible to share and reuse
management information. This raises the cost of the OSS and increases the prob-

10.1 Introduction—A Retrospective 269

ability that errors (resulting from the inability to share and reuse management
data) will be embedded in the system. Furthermore, it means that entire processes
will be repeated to derive and/or retrieve the same data (because the data cannot
be shared). Instead, what is desired is a single, unifi ed information model that
relates the differences in data model implementations to each other.

DEN-ng is unique because it contains business and system entities that can be
used to build management representations and solutions. In fact, in the Intelliden
implementation, the DEN-ng information models are translated to two types of
data models (Java and directory models). Specifi cally, business and system entities
are represented in generic form in the information model and are then translated
to platform-specifi c implementations. The Intelliden product uses these models
to defi ne business rules to activate network services. Other companies, such as
MetaSolv (in their case, primarily a database), are using different repositories to
implement DEN-ng and the shared information and data (SID).

10.1.2 Early PBNM Solutions Were Ahead of the Standards

The Internet Engineering Task Force (IETF) took the DEN policy model and, in
August 1998, formed a working group to start modeling policy. This working
group was originally cochaired by myself and was based on using the DEN policy
model. This model concentrated on the generic representation of policy and chose
QoS as a representative application that would be modeled as a separate set of
extensions of the generic representation of policy. This is shown in Figure 10.2.

The policy core information model defi ned a framework of classes and relation-
ships that could represent the structure of policy of any discipline. This is an
important point. The use case in 1998 is still the same as it is now—to build a
single PBNM solution that can be used to manage different types of policies

Service order
management

Trouble ticket
management

Username: string 4
Employee: integer
IsAdmin: Boolean

Performance
management

Configuration
management

Inventory
management

Username: string 1
Employee: string 2
Manager: string 3

FIGURE 10.1

Problems in not using a single information model.

270 CHAPTER 10 The Foundation of Policy Management

required by different applications. For example, QoS for voice applications is
fundamentally different than QoS for data applications. As such, the target of the
Policy Core Information Model (PCIM) was to be able to represent how a policy
was defi ned—it was not targeted at defi ning the content of the policy.

The policy QoS information model refi ned this framework and added semantics
to represent policies that could be used to control QoS mechanisms. The QoS
device data-path information model was derived from the Distributed Management
Task Force’s (DMTF) common information model and represented much of the
original DEN network model. The QoS device data-path information model was
used to represent the various mechanisms that the policy QoS information model
would be used to manage. Both information models were designed to provide
content within a common overall representational structure.

The DMTF’s Common Information Model (CIM) was proposed as a way to
provide a high-level representation of network elements. Thus, the policies could
be “grounded” and applied to a network device. For example, a policy could
describe a change in a function of a device; the content of this change could be
represented by the policy QoS information model, and the structure of the policy
could be represented in PCIM.

Unfortunately, the CIM model was too high-level and confused many people
in how policy would be applied. For example, the CIM had no representation of
either a physical port or a logical device interface (and this is true even today).
This made it very diffi cult for people to picture how policies were going to be
applied and built. Furthermore, the DMTF CIM was not really an information
model—it was more of a data model. An information model is supposed to be
independent of platform and technology.

The DMTF CIM is based on the use of “keys”—special attributes that are used
to name and uniquely identify a particular object. Keys are really a database con-
struct, and their use must be carefully considered or else mapping to other types
of data models that do not use keys (or have different keys than those of a data-

Policy Core Information Model

QoS application

Policy QoS
information

model

QoS device
datapath

information
model

DMTF CIM

InheritanceInheritance

Derivation Derivation

FIGURE 10.2

The structure of the IETF information models.

base) will be much harder. This is why specifi c constructs used in one type of
data model should not be part of a more general information model. In contrast,
DEN-ng is a true information model in that it does not contain keys or other tech-
nology-specifi c concepts and terms. It instead concentrates on defi ning managed
objects and their interrelationships. This is also true of the TeleManagement
Forum’s (TMF) SID, of which the DEN-ng information model is one component.

The approach shown in Figure 10.2 was good. It took a very long time,
however, to get the participants in the IETF to agree to these models. The PCIM
was not published as an RFC until February 2001. Although the policy QoS infor-
mation model was ready, it was not published as RFC 3644 until November 2003.
The QoS device data-path information model is further behind.

There were many reasons for the holdup. This was the fi rst time that the IETF
was working with information models. Second, policy models of this depth had
not been done before in the industry. The main holdup was the fact that the IETF
is composed of many different people; each of whom are there primarily to rep-
resent the companies that they work for. Each network vendor had by then
launched its own set of policy applications. No one wanted a standard to come
out that would brand their products as noncompliant! Thus, the standards were
worked on, and watered down, and watered down some more, until they repre-
sented something that everyone could agree on. The delay in issuing standards is
due to these reasons plus the delay in getting different companies (through their
IETF members) to announce consensus. Members are always fearful that a last-
minute change in the standard will adversely impact their companies’ products,
and so consensus building is a relatively long process.

However, there was another, more serious, problem. The above models focused
“just” on network devices. Although the PCIM was generic in nature, it was also
limited. For example, there was no model of how a policy rule would be evalu-
ated. More important, there were no business entities in these models and very
few non-network entities. Thus, there was no formal way to defi ne how business
rules could use policy to control network services. The primary motivation for
building the DEN-ng model was to address these problems.

10.2 WHERE WE ARE
Work has proceeded in various standards bodies and forums to rectify problems.
Prominent among these is the work of the TMF. Two examples of this work are
in the new-generation operational systems and software (NGOSS) architecture and
the TMF’s SID model.

10.2.1 NGOSS Architecture

The NGOSS architecture is characterized by the separation of the expression and
execution of business processes and services from the software that implements

10.2 Where We Are 271

272 CHAPTER 10 The Foundation of Policy Management

these business processes and services. Fundamentally, NGOSS is concerned with
defi ning an architecture that automates business processes.

For example, policies can be used to choose which set of processes are used
to perform a function. Feedback from executing processes can then be used to
change which policies are in force (or even applicable) at any given time. Thus,
although either policy management or process management can be used by itself
to manage an NGOSS system, to do so is to fail to realize the greater potential
afforded by using both to manage the same system.

The NGOSS behavior and control specifi cation defi nes in high-level terms the
architectural ramifi cations of using policy management. The NGOSS policy speci-
fi cation defi nes in high-level terms the defi nition of a policy model that includes
business, system, and implementation viewpoints. This is based on work from ISO
and on a Unifi ed Modeling Language (UML).

Although these are evolving specifi cations, credit should be given to the TMF
for having the vision to try and specify these important concepts and also to
develop them for all to use. Good examples of this are the catalyst programs of
the TMF. These team demonstrations are usually led by a service provider or
independent software vendor (ISV) and are designed to demonstrate one or more
concepts of the NGOSS architecture. This work is important because it defi nes
architectural and implementation ramifi cations of using PBNM solutions. This is
one of the few forums in the world where this is being studied in depth by com-
mercial, academic, and industrial players.

One of the prominent differences between the design of DEN-ng and the
design of other information models is that DEN-ng was built to support the needs
of the NGOSS architecture. All other information models that the author is famil-
iar with were not built to support any particular architecture.

The TMF approach is inherently better suited to produce useful standards
faster. First, it is centered on real-world work that is proven to be implementable
through its catalyst programs. Second, the TMF has as one of its goals the produc-
tion of a shared information model. While the IETF emphasizes protocol develop-
ment, the TMF emphasizes architecture and information modeling. Finally, because
the different vendors are all united in achieving common goals (architecture and
information modeling), it is easier for them to come to agreement than in the
IETF.

10.2.2 TMF Shared Information and Data Model

TMF’s shared information and data model is a federated model, which means that
it is composed of different “submodels,” which have either been contributed by
companies, mined from other standards, or developed within the TMF.

The communications industry is seeking technological advances that will
improve time to market for new products and services. Service providers and
enterprises like to use best-of-breed software. However, this software is hard to
integrate with other software products constructed in a similar manner. Further-

more, each software product that is produced in a “vacuum” more than likely
redefi nes concepts that are used by other applications.

To achieve true interoperability (where data from different components can
be shared and reused), a common language needs to be developed and agreed on.
This goal is even more important in an NGOSS system, because one of its key
architectural principles is to use component-based software, interacting through
contracts. Therefore, the TMF embarked on building a shared information model
that could be used as a single source for defi ning common data.

The SID consists of inputs from Intelliden, MetaSolv, British Telecom, Telstra,
Vodaphone, Motorola, Agilent, AT&T, and others. Material donated includes DEN-
ng and several models and model snippets from many of these companies. The
objective of the SID is to provide the industry with a common language, defi ned
using UML, for common shared data. By agreeing on a common set of informa-
tion/data defi nitions and relationships, the team sets forth a common language
used in the defi nition of NGOSS architectures.

Another important feature of the SID is that it contains multiple models that
concentrate on different disciplines. Most other information models concentrate
on a single subject, such as networking. In contrast, the charter of the SID is to
defi ne business and system concepts for a variety of different domains. These
domains characterize how network elements and services are represented, used,
and managed in business and system environments.

10.2.3 The Ingredients in a Compelling PBNM Solution

The industry is now starting to appreciate the complexity of PBNM solutions.
PBNM is more than writing a policy rule and building elaborate UML models; it is
about a paradigm shift.

Historically, network management has focused on setting parameters of indi-
vidual interfaces of a device one at a time. Recent innovations of policy manage-
ment, ranging from new protocols to the use of information models to represent
policy rules, have helped simplify this daunting task. However, in and of them-
selves these are insuffi cient to develop PBNM solutions that will solve network
confi guration problems and help make network services profi table once again.

We need a more extensible, more robust solution. The key to implementing
this solution is to think more holistically about policy management. Most people
consider policy to be a set of rules that express a set of conditions to be monitored
and, if those conditions are met, one or more actions will be executed. This defi -
nition fails to take into account two key issues: users and process.

First, different types of people use policy. Business people do not want to
express their policies in networking terminology, and networking people do not
want policies written using business concepts. However, business and network
personnel must work together to ensure that network services are managed
according to the business goals of the organization. A new form of policy is needed
that can translate business needs into device confi guration.

10.2 Where We Are 273

274 CHAPTER 10 The Foundation of Policy Management

However, this by itself is not enough. The second missing feature is process.
No matter how simple or sophisticated, every confi guration change has an under-
lying set of business rules that govern its deployment. Business procedures will
defi ne who checks the change for correctness (sometimes from a technical and
a business point of view). They identify who must approve the change and who
must implement the change. They also describe how to verify that the change has
been properly implemented and what to do if a problem is discovered.

Policies defi ne how the shared resources of the organization are accessed and
allocated. Different users and services have different needs, and policy is the tool
that enables the appropriate process to be applied as a function of business prior-
ity. This enables network services to be adjusted in response to the changing
environment (e.g., new users logging on, different application usage, and so forth)
by providing dynamic and automatic (re)confi guration of the appropriate network
devices according to the business rules of the organization.

The realization that business rules and processes, device confi guration, and
service activation are all tightly bound together provides the clue to our answer.
We need a robust, extensible information model that can represent the managed
environment as a set of entities. If policies are also entities that exist in this infor-
mation model, then we can be assured that policies are represented using the
same tools, and therefore can be applied to users, applications, device interfaces,
services, and other managed objects. The information model provides a set of
formalisms through which we can build a robust system.

10.3 DEFINITION OF POLICY MANAGEMENT
Policy is typically defi ned as a set of rules. Each policy rule consists of a condition
clause and an action clause. If the condition clause is true, then the actions in
the action clause are allowed to execute. Therefore, our fi rst defi nition of policy
management is:

Policy management is the usage of rules to accomplish decisions.

Policy is usually represented as a set of classes and relationships that defi ne
the semantics of the building blocks of representing policy. These building blocks
usually consist of a minimum of a policy rule, a policy condition, and a policy
action. They are represented in Figure 10.3 as classes. This simple UML model

PolicyCondition PolicyRule0..n PolicyAction0..10..1

HasActions

0..n

HasConditions

FIGURE 10.3

A simplistic policy model.

shows the relationships between these three classes. Attributes and methods have
not been shown to keep the discussion simple.

Figure 10.3 shows that a PolicyRule contains a set of conditions and a set of
actions. These are represented by the hasConditions and hasActions aggrega-
tions, respectively (an aggregation is a special type of relationship that is used to
represent whole-part dependencies).

PBNM solutions usually use an information model to represent policy. Some
of the better ones also use an information model to represent the subject and
target of the policy. DEN-ng is unique, in that it does this for business, system,
and implementation viewpoints. By representing what you want the policy to do
and how you want it to act, you can use the power of an information model to
represent how different entities relate to each other. For example, two different
users can be logged on to the same system but receive different classes of service,
which dictate how the applications that each operate are handled in the
network.

An information model is a means for defi ning common representation of infor-
mation. This enables management data to be shared, reused, and altered by mul-
tiple applications. The DEN-ng policy model is different to other policy models in
the industry. However, three differences are important to discuss now. The fi rst
is the use of an event model to trigger the evaluation of the policy condition
clause. This changes Figure 10.3 to what is shown in Figure 10.4.

Figure 10.4 can be read as follows:

On receipt of an event, evaluate the PolicyCondition of a PolicyRule. If it
evaluates to true, then execute the set of PolicyActions that are associated
with this PolicyRule.

The second difference is the use of constraints to better defi ne (through restriction
and more granular specifi cation) what the model represents. For example, it
makes no sense to defi ne a PolicyRule that does not have any conditions.

This is allowed in the simplistic model of Figure 10.3, because the cardinality
on each end of the hasConditions aggregation is 0. However, this is not the case

PolicyEventSet

PolicyActionPolicyCondition PolicyRule

1..n

1..n

IsTriggeredBy

1..n 1..n

{ordered}

PolicyAction
InPolicyRule

1..n 1..n
{ordered}

PolicyCondition
InPolicyRule

{ordered}

FIGURE 10.4

A simplistic view of the DEN-ng policy model.

10.3 Defi nition of Policy Management 275

276 CHAPTER 10 The Foundation of Policy Management

in Figure 10.4, as the cardinality is 1..n on each side of the PolicyCondition
InPolicyRule aggregation. Another example is the Object Constraint Language
(OCL) expression {ordered}. This expression requires that the PolicyEvents,
PolicyConditions, and PolicyActions are each ordered when aggregated in the
PolicyRule.

The third difference is that DEN-ng uses a fi nite-state machine to represent the
state of a managed entity. Most current information models, such as those from
the DMTF, IETF, and International Telecommunications Union (ITU), are current
state models (i.e., they defi ne a managed entity to represent a state of an object).
Although important, that does not make a closed-loop system. In particular, it does
not enable the life cycle of the managed object to be represented.

Therefore, DEN-ng defi nes a fi nite-state machine and instantiates multiple
current state models to represent the different states that a managed object can
take. This enables behavior of an individual or a group of managed objects to be
represented. More important, the behavior of an object or set of objects can be
related to the value of one or more attributes that are used to represent the current
state of the attribute. This helps simplify the design of closed-loop PBNM solutions.
For example, suppose that a particular state transition sets the attribute of an entity
to a particular value and that this represents a bad or failed state. The changing
of this attribute value is in fact an event, which can be used to trigger the evalu-
ation of a PolicyRule. The PolicyRule can cause a state transition back to a valid
state, which is checked by ensuring that the value of the attribute is changed to
an acceptable value.

Without events or a state machine, such closed-loop control is not possible.
More important, policy is represented as a means to control when a managed
object transitions to a new state.

This notion is simple, yet powerful. It succinctly captures the connotation of
“control” that policy has and shows how policy can be used to govern the behav-
ior of a managed object throughout its life cycle. Furthermore, it provides a means
to control the behavior of a managed system in a predictable and consistent
fashion. Events represent external stimuli that correspond to changes in state.
If policies are used to control state transitions, then policies can be defi ned
that govern each state of the managed object—from creation, to deployment, to
destruction. This guarantees that the correct state of the managed object is
achieved in response to a given event, in a simple and consistent manner.

10.4 INTRODUCTION TO AND MOTIVATION
FOR POLICY MANAGEMENT

The promises of policy management are varied, powerful, and are often
conceptualized as a single, simple means to control the network, as illustrated in
Figure 10.5.

The simplicity of the components shown in Figure 10.5 is part of the appeal
of policy management. In particular, the ability to hide vendor-specifi c interfaces
behind a uniform information model is very important. Without this ability, a
common interface to programming the same function in different network devices
cannot be accomplished. This is one of the toughest problems a network manager
needs to deal with—how to string a network of multivendor equipment together
to provide a seamless set of customer-facing services. Furthermore, the growth of
large ISP networks that seek to provide multiple specialized services exacerbates
this problem.

This drive for simplicity has led to six commonly heard value propositions for
policy management that position policy management as a means of:

■ Providing better than best-effort service to certain users.
■ Simplifying device, network, and service management.
■ Requiring less engineers to confi gure the network.
■ Defi ning the behavior of a network or distributed system.
■ Managing the increasing complexity of programming devices.
■ Using business requirements and procedures to drive the confi guration

of the network.

These six points are discussed in more detail in the following subsections.

10.4.1 Providing Different Services to Different Users

The Internet was built to handle traffi c on a best-effort basis. Clearly, people
will not be satisfi ed with best-effort service. People want predictable services—
services that they can rely on for providing information and functionality that they
desire (whether the Internet is being used or not). This is the fundamental motiva-
tion for QoS.

Administrator Policy management
software

Network

FIGURE 10.5

The promise of policy management.

10.4 Introduction to and Motivation for Policy Management 277

278 CHAPTER 10 The Foundation of Policy Management

When I worked at Cisco, we used to describe QoS as “managed unfairness.”
This complements the above desire for information and functionality that meet a
specifi c set of needs. QoS is not just about providing faster downloads or more
bandwidth. Rather, it is about providing the right set of functionality to provide
a user with the service(s) that the user is requesting. Although this may mean
faster downloads or more bandwidth, the point is that such metrics in and of
themselves are not a good defi nition of QoS.

QoS is harder to provision and manage than it may fi rst appear because of two
factors:

1. Complexity of implementing QoS.
2. Variety of services that can use QoS.

The complexity of implementing QoS is caused by two main factors: (1) network
vendors continue to add additional types of mechanisms that can be used (by
themselves or with other mechanisms) to implement QoS, and (2) different devices
have different QoS mechanisms. This makes it hard to ensure that the same rela-
tive levels of service are implemented by different devices that use different
mechanisms.

Another problem is the lack of specifi city in standards. For example, the IETF
has completed a set of RFCs that specify different approaches for implementing
differentiated services (e.g., the Differentiated Services RFCs). However, these
RFCs by themselves are not suffi cient to build an interoperable network because
they concentrate on specifying behavior without specifying how to implement
that behavior. For example, none of the RFCs specify what type of queuing and
drop algorithms to use to implement a particular type of behavior. This is in rec-
ognition of the IETF—this is in fact in recognition of the fact that network vendors
have designed a vast arsenal of different mechanisms to condition traffi c as well
as recognizing that different services uses different QoS mechanisms.

Thus, we have the fi rst motivation for policy management—the promise of
using a set of standard declarations for managing the different QoS mechanisms
required to implement a service. This desire is amplifi ed by the fact that multiple
users want different services. Clearly, a service provider or enterprise cannot
provide tens or hundreds of different services because of the complexity of man-
aging these different services coupled with the fact that most approaches (such
as DiffServ) defi ne far less than these. DiffServ, for example, provides a set of 64
total code points, but these are divided into 32 standard and 32 experimental code
points. Most service providers offer between three and ten different services. This
provides the second motivation for policy management—the promise of providing
a small set of standard rules that can be used to manage the set of services provided
to multiple customers.

10.4.2 Simplifying Device, Network, and Service Management

PBNM was conceptualized as a set of mechanisms that can be used to “fi ne-tune”
different network services. Similarly to how a stereo equalizer gives the user

control over the response of the stereo to different frequencies, a PBNM-based
system provides a set of mechanisms that can be used to condition traffi c fl owing
through the network. PBNM systems also have the ability to defi ne a complex set
of mechanisms that can be used to implement a predefi ned service. This is a par-
ticularly attractive characteristic—choosing a single command to implement what
previously consisted of a set of commands.

In addition, the real power of PBNM systems is through abstraction. Imagine
a network where a switch feeds a router. The switch uses the IEEE 802.1q speci-
fi cation for delivering QoS, while the router uses DiffServ. This causes a problem,
because there is not a defi ned set of standards for relating an 802.1q marking to
a DiffServ code point (DSCP). Now, assume that the switch is programmed using
Simple Network Management Protocol (SNMP) set commands, while the router
is programmed using command-line interface (CLI) commands. The network
administrator is now forced to learn two different ways to program a single
network connection.

The motivation for PBNM is one of simplifi cation through abstraction. By
providing an intermediate layer of policy rules, PBNM users can concentrate
on the task at hand, rather than the myriad programming models and traffi c-
conditioning mechanisms used to program a device.

However, an equally powerful motivation exists—recovery from changes and
failures. Networks present an ever-changing infrastructure for providing services.
The day-to-day management of this infrastructure includes making subtle changes
to how different components are confi gured. Sometimes, these changes can
adversely affect network services. These changes are hard to fi nd, because most
of the time, the change being made is not obviously related to the service that
was being changed. In addition, networks can develop faults that impair the ability
for the network to provide services that people and applications depend on. When
this happens, administrators tend to fi x the fault by changing the confi guration of
the device.

These and other factors culminate in a set of changes that, over time, impact
the ability of the device to support one or more of its services. When this happens,
PBNM systems can be used to restore the confi gurations of devices to their origi-
nal state. Thus, PBNM provides a means to fi x the fault and to also keep track of
the state of various network devices. This requirement for tracking state is one of
the reasons why DEN as well as DEN-ng both use fi nite-state machine models.

10.4.3 Requiring Fewer Engineers to Confi gure the Network

There is an acute shortage of engineers who understand new technologies and
mechanisms implemented by network vendors. There are even less engineers who
understand these technologies and are able to deploy and manage them on a
network. In addition, the cost of using an emerging technology is very high, inter-
actions with other legacy technologies are not completely known, and manage-
ment costs associated with initially deploying the technology often outweigh the
advantage provided by that technology.

10.4 Introduction to and Motivation for Policy Management 279

280 CHAPTER 10 The Foundation of Policy Management

Many network operators, for example, choose to overengineer their networks
to address any performance concerns rather than deploy QoS techniques. This is
because the cost associated with learning the new technologies (and the tools
used to deploy them) and managing them is much higher than the savings in
bandwidth-related costs that would result from deploying these technologies.
Another factor is the previous lack of specifi city mentioned—if different tech-
nologies are being used, then they can only interoperate if their functionality is
specifi ed at a suffi ciently detailed level. For example, there is no standard that
defi nes how to map ATM’s concept of QoS to the different DSCP values that are
present in an IP network.

The theory behind being able to use fewer personnel to run a network is based
on distributing intelligence to managed devices and applications that manage
devices so that dynamically changing environments can be more easily managed
and controlled. Although the number of skilled individuals may be reduced, it is
wrong to think that PBNM applications will eliminate the need for specialized
network engineers. Skilled personnel will always be needed to build and operate
systems.

However, PBNM systems provide two important benefi ts. First, the majority of
network confi guration tasks are simple in nature and do not require a specialist.
Many of these are also repetitive. If the PBNM system can be programmed to deal
with these mundane changes, then they enable more highly skilled engineers to
be used on other, more strategic problems. Second, PBNM systems enforce
process. Figure 10.6 illustrates this.

PBNM can be used to defi ne processes, such as:

■ Which personnel are qualifi ed to build a confi guration change.
■ Which personnel must approve a confi guration change.
■ Which personnel must install a confi guration change.
■ Which personnel must validate a confi guration change.

Deploy configuration
changes workflow

Configuration management workflow

Construct
configuration

changes workflow

Approval Installation Validation

FIGURE 10.6

Processes used in confi guration management.

The preceding four processes are meant to be exemplary in nature and should
not be construed as being the “only” processes that are involved in device
confi guration.

The strength of PBNM is that these four processes (and others) can be enforced
by a PBNM system independent of whether it is used to implement a confi guration
change or not. For some reason, this message has not been emphasized by most
vendors. Even some researchers tend to ignore it, concentrating instead on the
representation of policy. Two counterexamples to this trend are Intelliden and
MetaSolv, both of which are building software to help in this area.

PBNM systems also offer the ability to ensure that the same approved processes
are used to consistently implement specifi c types of confi guration changes. The
Intelliden product is a good example of offering these benefi ts.

10.4.4 Defi ning the Behavior of a Network or Distributed System

Networks are growing in complexity because of several factors, including an
increasing number of people using networks, a growing number of different
applications used, and an increase in the number of different services required by
network users.

These factors all help to create an ever-growing overhead of operating and
administrating networks. As a result, it is very diffi cult to build management
systems that can cope with growing network size, complexity, and multiservice
operation requirements. There is also a need to be able to dynamically change the
behavior of the system to support modifi ed or additional functionality after it has
been deployed.

A single network device can have thousands of interfaces or subinterfaces.
Clearly, if an administrator has to manually confi gure each of these, the network
cannot scale. For example, assume each device interface takes 10 minutes to
confi gure and that there are 10,000 total interfaces. This works out to requiring
69.44 days, or 9.92 weeks, to program this set of interfaces. Without software,
this is simply not possible. In addition, the chances of making an error without
automation software are enormous.

PBNM software can help in several ways. First, it can be used to defi ne policy
rules once and mass deploy them. For example, the Intelliden product has a
concept called “command sets” that enable sets of confi guration changes (which
are controlled by policy) to be deployed to multiple devices concurrently. Second,
policy rules can be used in either an ad hoc or reusable fashion. Although ad hoc
policy rules are intended to be used once, reusable policy rules (or even policy
components) are designed to be used multiple times by different applications.

This concept can be used to help simplify the arduous process of confi guring
different interfaces. For example, an access control list can be defi ned that fi lters
on certain fi elds in the IP header and then performs a set of actions if those fi elds
matched or not. This is a fundamental building block that can be used for many
different types of policies. Third, large systems will execute many different poli-

10.4 Introduction to and Motivation for Policy Management 281

282 CHAPTER 10 The Foundation of Policy Management

cies. PBNM systems should enable different sets of policies to be analyzed to
ensure that they do not result in confl icting actions.

However, most important, PBNM software can be used to capture business
logic that is associated with certain conditions that occur in the network. Although
centralizing the development and management of this business logic is important,
coordinating its proper application is mandatory for large systems. This last
point raises four important questions readers should ask when evaluating PBNM
systems:

■ How many physical devices is the PBNM software capable of managing?
■ How many logical components (e.g., subinterfaces) is the PBNM software

capable of managing?
■ How many changes per time period (e.g., minute or hour) can the PBNM

software execute?
■ How does the PBNM solution handle errors?

Each of these points is important. The third point is especially important,
because most organizations operate using a “time window” in which changes must
occur. The point, then, is how many changes can your PBNM software physically
perform during that time window? The reader will fi nd that this is often the limit-
ing factor in choosing a PBNM system. The fourth point is also critical, because
one of the reasons for deploying a PBNM solution is to automate complex tasks.
The form of this question is different than a simple “can it scale” question. Vendors
will all claim that their solutions scale. Thus, a much easier way to be sure of what
you are buying is if it can provide a common error-handling methodology for large
deployments. This is a simpler and better test of what you are buying.

10.4.5 Managing the Increasing Complexity
of Programming Devices

Present-day IP networks are large, complex systems that consist of many different
types of devices. Different devices are chosen for cost and functionality. However,
from the end user’s point of view, it is imperative that the end user not have to
be explicitly aware of these differences. In other words, the network should
appear as a single homogenous entity that provides services for the end user.

Therefore, when most services are defi ned, they are characterized as having a
set of properties that exist from one end of the network to the other. For example,
think of a service level agreement (SLA) that specifi es availability (which in this
example is defi ned as remote access accessibility without busy signals). While the
service provider will likely specify different times for different networks (e.g., a
connection to a U.S. network versus a connection to a European network), it
certainly will not specify availability between different parts of the network. Not
only is this too hard to do (and very costly for the service provider), it doesn’t
really matter, because the service is specifi ed as an end-to-end service. The end
user does not care what devices or QoS mechanisms are used or what the latency

or drop rate is along an intermediate path in the network as long as the service
that was contracted for is successfully delivered.

Network engineers do not have this luxury. In fact, ensuring that all of the
different devices that comprise a network interoperate smoothly is far from a
trivial task. This is because different devices have different functionality, repre-
sented as different commands that are available to the network developer. The
problem is that these different network devices are each responsible for doing
their best in providing consistent treatment of the traffi c. Clearly, if the two
devices have different commands, then this is harder to achieve, because a mapping
needs to be defi ned to map the different commands to each other.

For example, consider two Cisco devices, one running a pre-12.x release of
IOS (a common operating system used by Cisco routers and other types of devices)
and another running a 12.x release of IOS. Suppose that the task is to provide
QoS for traffi c that contains voice, video, and data. Both devices can do this.
However, the actual commands that are used are very different. As an example,
the design for the 12.x device is likely to use low-latency queuing, which is not
available in pre-12.x IOS releases. Thus, someone (or something) has to provide
a mapping between the set of commands used in each version of an operating
system.

Clearly, if different devices are using different operating systems, this mapping
becomes both harder and more important. Mapping the commands is a good
start, but even that is not suffi cient. Other factors must also be taken into account.
Two important ones are side effects and dependencies in executing each
command.

Sometimes, when a command is executed, effects occur that cause other enti-
ties to be affected besides the ones that are targeted by the command. These are
called side effects, because though these changes were not intended, they never-
theless happened. If these commands have any side effects, then they must be
noted, and if the side effects affect the traffi c, then they must be emulated for
each device.

Exacerbating this situation is the notion of hardware and software dependen-
cies. For example, a device that uses an older processor may be unable to perform
the same functions as a device that uses a newer processor past a certain line rate.
This is a hardware dependency and must be accounted for to ensure that each
device performs traffi c conditioning in a consistent manner. Similarly, software
dependencies exist; if they affect the fl ow of the traffi c, then their effect must be
emulated in devices that do not have these same software dependencies.

If that is not bad enough, new technologies have emerged or will continue to
emerge to either address current limitations or to perform a task better. Thus, the
PBNM system must be capable of addressing new commands and features of the
devices that it supports. This is best done using an information model to abstract
the different functionality that is present in multiple devices. For example, Figure
10.7 shows a simplifi ed approximation of the DEN-ng QoS model, which is an
information model designed to represent QoS.

10.4 Introduction to and Motivation for Policy Management 283

284 CHAPTER 10 The Foundation of Policy Management

0..n

Service
Package
Atomic

PlatinumPackage

SilverPackage

BronzePackage

BestEffort
Package

(Remember that a line with an arrowhead denotes inheritance in UML. Thus, GoldPackage is a subclass of
ServiceBundle, which is a subclass of CustomerFacingService, which is a subclass of Service.)

CoS1Package

CoS2Package

CoS3Package

CoS4Package

Service
Package
Composite

ServicePackage ServiceBundle
NetworkForwarding

Service

1

0..n

hasServicePackages

1 0..n

packageContainsServiceBundle

0..n 0..n

nextService

Traffic
Identification

Service

QoSService
0..n

hasQoSSubServices

11..n

forwardingDefinedBy

0..1

0..n

conditionsQoSService

0..1

identifiesQoSService

ClassifierService

MarkerService MeterService

QueueService

SchedulingService

DropperService

CompoundConditioning
Element

0..1

GoldPackage

Traffic
Conditioning

Service

FIGURE 10.7

Simplifi ed DEN-ng QoS model.

In DEN-ng, there are two types of services: CustomerFacingServices and
ResourceFacingServices. This is modeled as two separate subclasses that inherit
from the Service superclass.

CustomerFacingServices are services that a customer is directly aware of.
For example, a virtual private network (VPN) is a service that a customer can
purchase. ResourceFacingServices are network services that are required to
support the functionality of a CustomerFacingService, but which the customer
cannot (and should not!) know about. For example, a service provider doesn’t
sell Border Gateway Protocol (BGP, a means of advertising routes between
networks) services to a customer. Yet, BGP is required for different types of
CustomerFacingServices to operate correctly. Thus, BGP is an example of a
ResourceFacingService.

A ServicePackage is an abstraction that enables the packaging of different
CustomerFacingServices together as a group. Thus, a GoldService user may
access high-quality voice, video, and data, whereas a SilverService user may be
unable to use voice.

Several types of ResourceFacingServices are shown in the preceding fi gure.
QoSService is an abstraction that relates the particular networking architecture
to its ability to provide QoS. For example, ToSService uses the 3-bit type-
of-service (ToS) bits in IPv4 to defi ne the QoS that can be given, whereas
DiffServService uses the 6-bit code point to defi ne much more granular QoS for
IPv4. Because a given network may have both DiffServ-compliant and DiffServ-
unaware devices, the information model provides a formal way to synchronize
their confi gurations, so that a given ToS setting provides the same QoS as a par-
ticular DiffServ setting.

Finally, NetworkForwardingService defi nes how traffi c is conditioned and has
two types of subservices: the ability to identify traffi c and the ability to
affect the order in which packets are transmitted from the device. Again, because
these are distinct concepts, two distinct subclasses are used to represent
them: TrafficIdentificationService and TrafficConditioningService,
respectively. As for TrafficIdentificationServices, ClassifierService per-
forms the separation of traffi c into distinct fl ows that each receive their own quality
of service, whereas MarkerService represents the ability of a device to mark or
remark the ToS or DiffServ bits. This marking tells the other devices what type of
QoS that fl ow should receive. With respect to TrafficConditioningServices:

■ DropperService drops packets according to a particular algorithm,
which has the effect of telling certain types of sending applications to
slow their transmission.

■ MeterService limits the transmission of packets.
■ QueueService delays the transmission of packets.
■ SchedulingService defi nes which queue (of multiple output queues)

should send packets.

10.4 Introduction to and Motivation for Policy Management 285

286 CHAPTER 10 The Foundation of Policy Management

■ CompoundConditioningService models advanced features, which are
combinations of the above basic services.

The objective in such a model is to describe a particular feature (such as
metering) and how that feature relates to other features (e.g., classifi cation and
dropping) in a particular function (e.g., traffi c conditioning) using classes and
relationships. The idea is that if the abstractions are defi ned properly they can be
used to model the types of functions that are present in different vendor devices
and accommodate new functionality.

Put another way, the model can be used as a design template for constructing
commands that are to be applied to a device or set of devices. The advantage of
such a model is that the model can be used to represent the functionality desired
and can hide the intricacies of translating to different implementations from the
user. In fact, this is one of the principles on which the Intelliden R-Series was
founded.

Sometimes, such models are all that are needed, and enable vendor-specifi c
programs that are derived directly from these models to be used. Often, however,
additional information is required. In the DEN-ng information model, this will take
the form of subclasses that are used to model vendor-specifi c differences from the
model.

10.4.6 Using Business Rules to Drive Network Confi guration

The thesis of A New Paradigm for Network Management is that existing network
management architectures prevent business processes from being used to drive
the confi guration and management of the network. In essence, this paper states
that businesses must defi ne and implement network services according to their
own business processes and policies. Although this is true for all businesses, it is
even more true for the so-called “next-generation network” initiatives and corpo-
rations that are striving to become more profi table by changing the network
services that they provide.

Business driven device management (BDDM) is one example of using business
rules to drive network confi guration. As defi ned by the author, BDDM is a new
paradigm that enables business rules to be used to manage the construction and
deployment of network confi guration changes. The difference is that BDDM con-
trols both the construction and the deployment of confi guration changes using a
combination of policies and processes.

Most of the current research in PBNM systems revolves around the defi nition
of policy class hierarchies that can be used to represent functionality of a network
device. BDDM leverages this work, but combines it with policies and processes
that defi ne how confi guration changes are created, deployed, and modifi ed in a
scalable and consistent manner. Part of the desire to use business rules to drive
the confi guration of a device is because business rules provide a higher-level view
of what needs to be accomplished. This is necessary to ensure that those changes
will not disrupt the operation of the device or the network. This, in turn, requires

other entities besides devices and services (such as users and their various differ-
ent roles) to be modeled.

Although abstractions that are used to represent business entities can still be
modeled in UML, their content and detail is signifi cantly different than that used
for device and service entities. The administrator does not have to understand the
low-level details of the technology used to support a particular business need to
direct its usage. For example, suppose that a network operator needs to defi ne
three levels (gold, silver, and bronze) of customers. An administrator can easily
assign each customer to a particular level based on their contract.

A variety of techniques can be used to implement these three services in the
network; one such example is to use DiffServ. However, there is a difference
between the business person, whose job is to assign a particular service level to
a customer, and a network administrator, who is responsible for implementing
commands that will enable the network to recognize and enforce these three
network service levels.

Both the business person and the network administrator can use policies. For
example, a business person may need to write policies for handling service
outages or interruptions, whereas a network administrator will be more interested
in writing policies that control how the confi guration of a device is changed. This
difference is fundamental to how policies for each are used and expressed, and
mandates that different representations of policy should be used for the business
person and the network administrator.

If business rules and processes are not used to manage changes made to the
confi guration of network devices, the device’s confi guration is reduced to chang-
ing lines in a fi le. This doesn’t refl ect how the business operates! Even worse, this
means that the network is probably not refl ecting the proper set of services that
the organization needs to run its business. The semantics of what to change, when
to change it, and who can change it are all captured using business rules and
processes. These semantics must be used to drive how the confi guration is con-
structed and deployed.

However, the problem is more complex than “just” modeling QoS commands
or defi ning which user can make a confi guration change. Fundamentally, different
types of people—having different responsibilities and different functions in the
organization—use policy for different reasons. Business people do not want to
express their policies in networking terminology, because network terminology
is not needed to express their requirements. Similarly, networking people do not
want policies written using business concepts, because these concepts are usually
not precise enough to enable them to program the devices that they are managing.
However, both business and network personnel must work together to ensure
that network services are managed according to the business goals of the organi-
zation. A set of policies that supports the translation between one type of policy
and another is therefore needed.

This translation between different types of policies is called the policy con-
tinuum. Each level in the policy continuum addresses a specifi c type of user who

10.4 Introduction to and Motivation for Policy Management 287

288 CHAPTER 10 The Foundation of Policy Management

has a very specifi c understanding of the managed entities operating at that par-
ticular level of abstraction. The policy continuum is shown in Figure 10.8. The
PBNM system must translate these entities and concepts between layers of
the policy continuum. The DEN-ng model is the only information model that uses
the concept of a policy continuum.

This chapter and the next use the new DEN-ng information model to represent
managed entities, people, and applications that use those managed and policy
entities. The advantage of using a single information model that has multiple
domains is that it is easier to relate different elements in each domain to other
elements in other domains.

10.4.7 Summary of the Benefi ts of PBNM

PBNM’s traditional promise is that people will be able to deploy more complex
services across a wider array of devices with fewer highly skilled individuals. This
will in turn simplify network and service management. This is augmented by
newer promises, such as those envisioned by BDDM, that use business require-
ments to drive the network’s confi guration. This forms a tight closed-loop system
in which decisions governing the behavior of the network and the services it
provides are driven by business rules. The results of these promises are compel-
ling: increased revenue, faster time to activate services, and decreased expenses.

The next two sections will focus on two key themes:

■ The need for and use of a shared information model.
■ The benefi ts of using PBNM.

FIGURE 10.8

The policy continuum as defi ned in DEN-ng.

10.5 THE NEED FOR A NEW SHARED INFORMATION MODEL
The two big issues that face us today concerning network devices and network
management are:

1. Lack of a consistent product model prevents predictable behavior.
2. No standard for shared data.

10.5.1 Lack of a Consistent Product Model

The lack of a consistent product model means that, despite all the standards that
you hear about, different vendors build devices with different hardware and soft-
ware. One router can have vastly different characteristics and functionality than
another router. This situation is exacerbated when mergers, acquisitions, and
divestitures occur, as the customer ends up buying completely different devices
that happen to have the same logo and vendor name on them. Therefore, when
different devices are used in the same network, predictable behavior cannot be
obtained.

Standards help defi ne invariant parts of the programming model. However,
they are usually not explicit enough to guarantee interoperability. For example,
RFC 2474 defi nes the structure of a DSCP, which is used to indicate how to
condition traffi c. The invariant portion of this RFC includes the fact that a
DSCP is 6 bits long, and certain bit patterns are already defi ned. However,
this RFC does not defi ne which dropping and queuing algorithms to use for dif-
ferent bit patterns. Thus, multiple vendors can be compliant with the differenti-
ated service standard (of which this RFC is one element) without being able to
interoperate.

This is also true, but to a lesser degree, of the emerging policy information
model standards. RFC 3060 and RFC 3460 defi ne a class hierarchy and relation-
ships for representing generic policy elements, while further work in the IETF
extends these to provide QoS models. There is even a Lightweight Directory
Access Protocol (LDAP) mapping, and the beginnings of one for policy core exten-
sion LDAP schema. These classes and relationships help defi ne how policy is used
to control various QoS mechanisms. However, these models have very limited
semantics and are subject to interpretation by different applications. For example,
these networking concepts are not linked closely enough to network device and
service entities to specify how policy could be used to program device features
(let alone commands). As a simple example, because these models do not specify
the concept of a device interface they cannot be used to specify how to program
a device interface.

More important, these models do not contain any associations to business enti-
ties, such as Product and Customer. Thus, they cannot be used to defi ne which
Services from which Products are assigned to which Customers. This also
contributes to the complexity of building a management system, because now

10.5 The Need for a New Shared Information Model 289

290 CHAPTER 10 The Foundation of Policy Management

additional components must be used if business rules and processes are used to
drive the confi guration of the network.

A networking model that is associated with other models that represent users
and targets of networking services and a policy model that controls how network-
ing services are implemented and provided to users are needed. This requires a
layered, integrated information model.

10.5.2 Lack of a Standard for Representing Shared Data

Until the TMF launched its SID model effort, no standard existed for sharing and
reusing data for network devices and services. The common information model
(CIM) of the DMTF is rooted in instrumentation of desktop applications. Although
the model has reached out over the last few years to encompass additional con-
cepts, it still lacks many telecommunications concepts that enterprise and service
provider networks need. For example, its physical device model has no physical
port, and its logical model has no device interface. Without these, the model
cannot be used in telecommunications applications. The CIM is not a bad model;
it is simply not a self-contained model that can be used for telecommunications
applications.

This is precisely why the DEN-ng and the SID efforts were started. The DEN-ng
effort was designed to extend and enhance the original DEN effort to tie it more
closely to the NGOSS effort of the TMF. The design of the DEN-ng model is unique,
because one of its use cases is to support the NGOSS architecture specifi cation.

The DEN-ng effort focuses on modeling network elements and services.
However, it provides a business, system, and implementation viewpoint of these
models. The focus of the SID is on the entire NGOSS environment. The SID uses
many models, including DEN-ng, to provide comprehensive coverage of entities
and concepts present in an NGOSS environment.

DEN-ng is being developed in the TMF because the TMF catalyst programs can
be used to validate and spread the model across different service providers,
vendors, and independent software vendors (ISVs). This distribution vehicle (which
also provides detailed feedback) is lacking in other standards bodies and forums
and is one of the main reasons why DEN-ng was developed in the TMF.

The DEN-ng policy model was developed using an iterative top-down, bottom-
up approach. Business concerns were fi rst considered, which provided a high-level
structure for and helped defi ne key concepts of the overall policy information
model. This model was then augmented by adding detail necessary to build a system.
This is currently where the public part of the DEN-ng set of specifi cations exists.

Intelliden’s vision is to take this a step further in its product line. Once these
business and system views were defi ned, a set of tools will be produced that will
focus on translating the information model to two different data models: a direc-
tory data model and a Java model. This will enable the information model to be
implemented in software. A second set of tools will be developed, which will
focus on ease of implementation (Figure 10.9).

This brief description is meant to show the reader that information models can
and should be used to drive software implementations. By embedding the informa-
tion model in a product, that product is better able to adjust to changing features
and functions. For example, in the Intelliden R-Series, the different functions of
IOS are modeled using extensions of the DEN-ng logical model. When a new IOS
train is released, Intelliden only has to update the model. Code is then generated
that understands these features, and these features are updated as part of that
release’s product catalog. These features are assigned as capabilities to that par-
ticular IOS version.

This is a great example of building to accommodate the future. The information
model provides a formal structure to represent different device capabilities. Soft-
ware can then be written that uses this formal structure to represent these capa-
bilities in the R-Series product. This enables the structure of the R-Series to be
fi xed; when new IOS releases are produced by Cisco, Intelliden updates the infor-
mation model, new Java code is generated, and the rest of the interface and APIs
of the product stay the same.

As another example, in the Intelliden implementation, the information model
is used for the following tasks:

■ Represent different functions that can be programmed using IOS software:
– Routing and forwarding functions.
– Peering with other hosts and devices.
– Traffi c classifi cation and conditioning functions.

■ Represent different commands and their structure as a function of a particular
software release.

■ Represent different hardware and software capabilities of a given device.

Policy model:
Business view

Policy model:
System view

Policy model:
Translation tools Policy model:

Implementation view

Define business
entities and
concepts

Define system
application

model

Define
mappings for
technology-

specific
implementations

Define
implementation

model

DEN-ng policy model

FIGURE 10.9

Design approach for building the DEN-ng policy model.

10.5 The Need for a New Shared Information Model 291

292 CHAPTER 10 The Foundation of Policy Management

■ Defi ne business policies that control:
– Who can perform what changes on which devices.
– Who must approve a certain change (or category of changes).
– When a change is deployed.

■ Defi ne system policies that control when certain actions happen (e.g., when a
device is examined for changes to its confi guration and/or to its physical com-
position).

■ Defi ne implementation policies that control how changes are made and how
services are activated.

The information model serves as the centralized authority that links different
parts of the managed environment to each other. As shown in the preceding
example, the information model is used to defi ne different types of policies that
are used to control various types of behavior. Business, system, and implementa-
tion parts of the product are all seamlessly integrated using the DEN-ng informa-
tion model.

10.5.3 Why an Information Model Is Important

An information model is more than just a representation of a set of objects. The
most important feature of an information model is its ability to describe relation-
ships between managed objects. From this, other types of models and diagrams,
such as defi ning how data fl ow within the system, can be defi ned.

The information model serves as a normalization layer. By concentrating on
invariant aspects of an object (e.g., a device has physical ports over which infor-
mation fl ows), a framework can be defi ned that can represent the different fea-
tures and functions of heterogeneous devices. Device-specifi c differences can then
be modeled by extending the common framework to accommodate the features
and functions of these different devices. Without a common framework, different
device features and functions cannot be easily accommodated because there is no
common set of objects that can be used to build them from.

In other words, to accommodate ten new features, a system that does not have
a common information modeling framework must defi ne ten new sets of objects
(and more if interactions between these objects are to be modeled). If it is desired
to interoperate between these ten new features, then in the worst case, all of the
permutations of each new object operating with not just the other objects, but
existing objects, must be defi ned.

Compare this to a system that uses a common framework. Adding ten new
features means that the framework itself will be expanded to accommodate as
many of these as extensions (i.e., subclasses) as possible. Furthermore, by devel-
oping these new features as extensions, interoperability with existing concepts
and information is guaranteed.

It is not feasible to have a single information model that can represent the full
diversity of management information that is needed. This is because the charac-

teristics of managed data are very different and require many different subject
matter experts. DEN-ng solved this problem by defi ning a layered information
model that used patterns and roles.

A layered information model is one in which a common framework is built
that supports different domain models. A simplifi ed view of the DEN-ng layered
information model is shown in Figure 10.10.

The DEN-ng common framework model consists of a set of classes and relation-
ships that enable the different lower-level models to be associated with each other.
Because DEN-ng and SID are complementary, the DEN-ng model takes the work
of the SID team and either uses it in an unaltered state (as shown by the business
interaction model) or makes minor modifi cations to it (as is done in the party,
product, and location models). Note that for the party, product, and location
models, DEN-ng takes the SID models and defi nes new subclasses wherever
possible.

This means that the DEN-ng versions are more granular versions of the SID
models. If DEN-ng needs to change something in the SID, then it is submitted as
a change for review by the SID team. In addition, many parts of the DEN-ng model
are in the process of being contributed to the SID team, as is shown in the policy,
service, and resource models. Each of these is in reality another framework model,
which additional submodels “plug into.” For example, the DEN-ng policy model
provides a generalized framework into which business policy, application use of
policy, and other policy models can each plug into.

To provide as extensible a framework as possible, DEN-ng uses patterns and
roles to model common concepts in as generic a way as possible. This differenti-
ates DEN-ng from most other models (e.g., DMTF, IETF, and ITU), as they do not
use roles and patterns.

DEN-ng common framework model

SID business
interaction model

SID product
model

DEN-ng
product
model

(subclass of
SID model)

SID location
model

DEN-ng and
SID policy
framework

model

DEN-ng application
policy model

DEN-ng and
SID service
framework

model

DEN-ng MPLS
VPN model

DEN-ng IPsec
model

SID party
model

DEN-ng
party
model

(subclass of
SID model)

DEN-ng business
policy model

Representative
of other models

Representative
of other models

Representative
of other models

DEN-ng
location
model

(subclass of
SID model)

DEN-ng physical
resource model

DEN-ng logical
resource model

DEN-ng and
SID resource
framework

model

FIGURE 10.10

A simplifi ed view of the DEN-ng layered information model.

10.5 The Need for a New Shared Information Model 293

294 CHAPTER 10 The Foundation of Policy Management

Modeling objects describe entities in a system, their interrelationships and
behavior, and how data fl ow within the system. This provides the ability to rep-
resent and understand the programming model of the device. Three examples are
CLI, SNMP, and Transaction Language-1 (TL1). TL1 is a set of ASCII instructions
that an OSS uses to manage a network element—usually an optical device.

More important, modeling provides the ability to understand dependencies
between hardware and software. For example, a router may have a line card that
has a main CPU and memory that are dedicated to performing traffi c-conditioning
functions. This may work fi ne at low speeds (e.g., a fractionalized T1). However,
at high speeds, such as OC-48, suppose that this particular type of CPU cannot
keep up. Or even if it could, suppose that there was not enough memory.

This is an example of a dependency that most current PBNM systems will not
catch. That is, the card has the correct operating system version, and the operat-
ing system says that it can perform this type of function. However, the physical
media are simply too fast for this card to perform this type of function. The reason
that most PBNM systems will not catch this dependency is because there is no
convenient way to represent it. In contrast, any PBNM system that uses an infor-
mation model, such as DEN-ng, will be able to model this and other dependencies
naturally.

Information modeling provides a common language to represent the features
and functions of different devices. DEN-ng uses the concepts of capabilities to
represent functions of an entity and constraints as restrictions on those functions.
Think of the information model as defi ning a common language that enables the
different capabilities of each device to be represented in a common way. This
enables them to be programmed together to deliver a common service. But some-
times, a particular environment might restrict the use of certain commands. For
example, export control laws might restrict different encryption or other features
from being used. These are modeled as constraints.

The combination of capabilities and constraints form a set of powerful abstrac-
tions that can be used to model current and future devices and services.

10.5.4 Linking Business, System, and Implementation Views

Most information models have focused on policy as a domain that is isolated from
the rest of the managed environment. Here, domain is used to signify a set of
related information and concepts. In contrast, the main use case for the DEN-ng
policy model is to defi ne a policy model that is closely integrated with the rest of
the managed environment. The DEN-ng policy model is best thought of as an
information model that defi nes how policy interacts with the rest of the managed
environment (which is also represented as an information model). This has three
important consequences.

First, it was apparent that building a policy information model in isolation of
other information models was not going to work. The original DEN specifi cation,

as well as CIM, had many different domains in addition to policy. However, little
effort was made to associate policy in detail with these other domains. In addition,
the original DEN and CIM models did not specify in enough detail how policy
could be applied to a managed object. The DEN-ng model takes a different
approach. It builds out the policy model as one of the last domain models and
then concentrates on associating appropriate parts of the policy model with
appropriate parts of other domain models.

Second, the existing models concentrated on representing policy. They either
did not address or addressed in a very superfi cial manner how policy affected
other managed entities. The difference here is subtle but important. Current policy
models concentrate on defi ning the structure of a policy rule, what its condition
terms are, and so forth. Although there was a lot of talk about policy changing a
value in a device confi guration fi le, the details of how that was accomplished were
left unspecifi ed.

For example, the IETF and DMTF models do not specify the concept of a device
interface or physical port. If the device uses CLI to change its confi guration, how
then can policy be used if these fundamental concepts are not modeled? The
DEN-ng policy model fi xes this unfortunate situation by developing other domain
models alongside the policy model and ensuring that appropriate elements in the
policy model can be associated with appropriate elements in other models. The
goal of DEN-ng is the ability to translate policy expressions directly to running
code—something that cannot be done with existing models.

Third, the original models (and almost all current additions to those models)
are still thinking of policy in a very static way (i.e., they use policies to express
the static confi guration of target devices). Most models concentrate solely on the
network layer and do not provide an information model for representing business
entities and how they affect target devices. In fact, there is very little literature on
detailed information models that are designed with business views in mind, and
even less literature describing how business information models can be linked to
information models of other domains.

For example, how does a changed SLA affect device confi guration fi les? Clearly,
the SLA defi nes how traffi c should be treated, but when it is changed, the policy
of treating that traffi c is changed—how is that accomplished? Or how does a
customer, who has just bought a new product with a higher class of service, get
that service installed and running? These are two simple examples of linking the
business world, with its set of entities and concepts, to the system and network-
ing worlds, which have different expressions for those concepts. Although policy
is required, unless the representations are equated, the business, system, and
networking domains will always remain disconnected. This adversely affects
service activation and deployment.

Both the IETF and DMTF approaches do not attempt to represent business
entities and objectives. Although a few other approaches do, none have addressed
building a set of models that are designed to support business, system, implemen-
tation, and runtime views that are closely tied to an overall architecture.

10.5 The Need for a New Shared Information Model 295

296 CHAPTER 10 The Foundation of Policy Management

Figure 10.11 shows a conceptual view of the NGOSS architecture. The NGOSS
knowledge base is a collection of information and data models, specifi cations,
contracts, code, and supporting documentation that collectively and cooperatively
describe how to build an NGOSS system. The four quadrants represent the busi-
ness, system, implementation, and runtime views. The overall behavior of the
system is driven by the holistic combination of policy and process management
functions.

The TMF has developed a set of principles and procedures to coordinate each
of these four processes. This takes the form of the various architectural specifi ca-
tions (e.g., TMF053 series), the TMF documents, the contract work, and other
elements, which together form the NGOSS knowledge base. Each of the DEN-ng
domain models were built to fi t into this approach.

A key objective of the NGOSS methodology is the development of models that
focus on particular characteristics and procedures in an NGOSS system. These are
characterized by the four viewpoints shown in Figure 10.11. The viewpoints
are in turn tied together through the use of common shared information and a
common means to exchange that information—contracts. The combination of the
SID and contracts allow interoperability to be realized.

The SID (as well as DEN-ng) was built to provide a set of entities that model
business, system, implementation, and runtime concepts. Put another way, the

Need

M
odel

Validate
Ru

n

Customer
OSS

Gateway Services

Gateway
Interface

Provider Services

Customer
Management
Interface

Customer Management Services Product Management Services

<<SDM>>
ProductRequest

<<SDM>>
CustomerContact

<<SDM>>
Customer

<<SDM>>
InvoiceInquiry

<<SDM>>
CreditViolation

<<SDM>>
ProductCatalog

<<SDM>>
ProductService

Customer
Order

Manager
Product

Fulfillment
Manager

Ordering 3
Process

*

*

Customer
Relationship
Management

Resource
Infras'ture
Dev't and
Mngmnt

Supplier/
Partner

Service
Development
and Op'ns
Management

Information

Customer

Assess Service
Availability

Provide Service
Availability Date

Determine
Resource
Availability

Provide Availability
Date

Qualify
Customer

Identify Solution
Alternatives

Update Customer
Contact Record

Solution
Alternatives
Available

No Action
Required

Pre-Order
Feasibility
Request Made

Receive Pre-Order
Feasibility Request

Contract Interface
Service

Implementation

Policy and
process

management

Im
plem

entation

viewSy
st

em
vi

ew

B
usiness

view

NGOSS
Knowledge

Base

Ordering 3 Use Case
Thu Apr 05 12:47:19 2001

Use Case Diagram

Run
tim

e
vi

ew
FIGURE 10.11

The TMF NGOSS architecture.

SID (and DEN-ng) were built to help realize the NGOSS architecture shown in
Figure 10.11 by providing a common language to represent the transition of a
concept from the business through the runtime views.

One main goal of the DEN-ng policy model was to accommodate the NGOSS
architecture as shown in Figure 10.11. The DEN-ng policy model accomplishes
this goal in two ways. First, it uses the different layers of the policy continuum to
defi ne different abstractions that must be modeled. This enables the different users
of policy to work with and express concepts in their own terminology, rather
than having the terminology and concepts of a static model given to them, never
to be changed. Second, the different viewpoints are each supported by different
views of the DEN-ng information model. This is realized by focusing on different
entities for each of the DEN-ng domain models.

10.6 THE BENEFITS OF PBNM
There are many benefi ts to PBNM solutions. Some of the original drivers were
listed at the beginning of this chapter. This section describes some of the more
popular current benefi ts.

10.6.1 An Intelligent Alternative to Overprovisioning the Network

The economic downturn has forced companies to stop overprovisioning their
networks and instead look to more intelligent means of delivering needed network
services.

Overprovisioning may be done for several reasons. An organization may be
running several mission-critical applications that must run in a timely, noninter-
rupted fashion. Or, it may use overprovisioning to achieve the desired levels of
application delivery, such as QoS, which its users require. However, the real
reason that most networks have been overprovisioned is that it is supposedly
easier and cheaper than its alternative—classifying, prioritizing, and conditioning
the different types of traffi c that exist in the network.

In truth, although overprovisioning can deliver on some of its promises, it
cannot really solve QoS, and it is very expensive. With respect to QoS, overpro-
visioning attempts to solve the problem by making it go away. That is, its approach
is to provide more resources than will be needed. However, QoS is all about levels.
For example, although the following mechanisms all take a different approach to
QoS, they all use a particular level on which to act:

■ Congestion management methods, which essentially are different ways
to sort and schedule traffi c.

■ Congestion-avoidance methods, which use various techniques to avoid
congestion from occurring.

■ Policing and shaping enable the input and output rates of traffi c to be
controlled.

10.6 The Benefi ts of PBNM 297

298 CHAPTER 10 The Foundation of Policy Management

Part of managing different types of traffi c is planning on which types of traffi c
need which resources and trying to ensure that those resources exist. The problem
with overprovisioning is that it never establishes a minimum level of performance.
In addition, you must be careful what you overprovision. For example, providing
extra bandwidth for certain types of applications, such as Systems Network Archi-
tecture (SNA) and voice, does nothing; these applications need strict requirements
on jitter, latency, and delay.

Of course, other problems exist with overprovisioning. The most important of
these is that your network is being severely underutilized most of the time. Over-
provisioning means that you will provision the network for a particular capacity.
The longer you run at less than that capacity, the less your valuable (and expen-
sive!) equipment is used.

PBNM solutions can be used to intelligently allocate resources. There is no free
lunch here, however. A lot of work must be done, and the amount of work is
arguably more than simply throwing equipment at the problem, as is done in
overprovisioning. This is because what is important is ensuring that different
applications having different needs of the network can peacefully coexist. This is
more diffi cult than simply adding more bandwith. However, the benefi ts are a
more effi cient, cost-effective, streamlined operation. Plus, as PBNM is implemented
to classify traffi c, it can also be used for a variety of other tasks (such as providing
better security) at the same time.

10.6.2 Providing Better Security

As the number of users and applications proliferate, networks get more complex,
and with complexity comes risk. One important form of risk is resource abuse.

The benign form of resource abuse is when authorized users misuse their
network privileges (e.g., downloading large music or video fi les when the network
is congested, playing network games, and other acts). Users often do not realize
what an adverse effect such acts can have on a network. PBNM solutions can help
by simplifying the enforcement of policies that clamp down on these abuses and
prevent them from happening.

The worrisome form of resource abuse is when unauthorized users attempt to
gain access to corporate information. A variant of this is when malicious users
attempt to disrupt the operation of the network by either a denial-of-service attack
or by sending a worm or virus into the network. PBNM can help categorize traffi c
into expected and unexpected types and assign rules to deal with each. For
example, if a Web-based virus is detected, a PBNM product can easily shut down
the ability for routers to forward Web traffi c. This helps contain the problem while
it is being diagnosed.

The dangerous form of resource abuse is when an employee or similarly trusted
user decides to willfully misuse his or her privileges and violate a company’s intel-
lectual property rights. Studies show that the greatest threats to intellectual prop-
erty come from within a company. PBNM lets administrators restrict users to only

those applications and information sources that they need during their current
session.

Any one of these forms can stop unauthorized applications from using shared
resources that they should not have access to. For example, if the goal is to meet
a particular SLA that has availability levels specifi ed, the seemingly innocent use
of the network to download research information may cause periods of congestion
that cause the SLA to fail. An SLA is a business concept. Therefore, it makes sense
to let the business and IT personnel defi ne which users can use which shared
resources. This allows the company to defi ne its network utilization based on the
real requirements of the business contract. PBNM solutions are a good match for
business policies that seek to optimize the performance of the network—the
PBNM tools can be used to catch such unwanted occurrences and help ensure
that the SLA is met. PBNM solutions can also be used to reveal traffi c usage pat-
terns, so that policies can be fi ne-tuned on an ongoing basis.

The common thread in all of these examples is that PBNM tools operate by
fi rst classifying traffi c. Just as classifi cation is used to decide which type of traffi c
conditioning to give to a particular fl ow, it can also be used to determine whether
a particular user can access a resource or not. Depending on the capabilities of
the PBNM tool, it may be able to do even more. For example, some PBNM tools
can perform “deep packet inspection” and examine the contents of URLs. Security
improvements can be done if the PBNM tool enables administrators to write
policies to perform these checks and actions.

10.6.3 Managing Device Complexity

Network devices can be classifi ed along several different dimensions. Some of the
more important ways of classifying network devices are:

■ What is the role of this device? For example, will it be on the edge or in
the core? Is it a border router?

■ What is the physical capacity of this device? For example, how much of a
particular resource (e.g., number of ports) does a device have?

■ What is the logical capacity of this device? For example, how many VPNs
can a particular device support?

■ What is the programming model (e.g., CLI, SNMP, TL1, etc.) used to
program the device?

■ What is the programming model used to monitor the device?
■ Which version of the operating system is this device going to use?
■ What are the critical features (i.e., commands) that this device must

support?
■ Which types of cards are available for this device?
■ Is the confi guration small enough to fi t in fl ash memory, or does it require

RAM?
■ Which types of services are planned to be activated on this device?

10.6 The Benefi ts of PBNM 299

300 CHAPTER 10 The Foundation of Policy Management

This is a very short list of many of the different factors that need to be consid-
ered. An information model is well suited for managing this complexity, as it is
able to represent these different device characteristics and relate them to each
other. For example, the simplifi ed DEN-ng model shown in Figure 10.10 provides
separate physical and logical resource models. Associations and constraints can
be defi ned that relate different logical features to different physical features,
thereby building up a more complete picture of the device.

Similarly, policy can be applied to control which combinations of features
can be used in a given situation. Separating the different domain models (e.g.,
physical resource from logical resource in the preceding example) enables each
domain model to change without adversely impacting the other domain models.
All that needs to be updated are the relationships between the different domain
models. Furthermore, the ability to work on each domain model in parallel enables
the information model to be more rapidly updated to accommodate new
devices.

The benefi t of using an information model to model device features and func-
tionality is that this method is robust enough to justify the investment in under-
standing the capabilities of the information model. It provides a robust starting
point for managing device and service complexity and offers an extensible and
scalable platform to accommodate the future requirements of new devices and
services.

10.6.4 Managing Complex Traffi c and Services

The world has changed. Today, more types of applications are available that gen-
erate more types of traffi c than ever before. Some sophisticated applications
generate several types of traffi c of different types (e.g., H.323 traffi c, which gener-
ates both UDP and TCP fl ows). Other applications provide unpredictable behavior
(e.g., they open random ports for communication).

In addition, networks have increased in complexity. Security is more important
than ever, because a network can carry many types of different traffi c. Many of
the individual fl ows representing this traffi c load have different requirements. In
the typical converged network (i.e., a network that carries data, voice, and video
application traffi c), some of the fl ows are sensitive to delay and jitter, whereas
others are not. Thus, different fl ows require different types of traffi c conditioning.
For example, using any of the weighted fair-queuing approaches will adversely
affect voice traffi c. Instead, voice traffi c demands priority queuing so that jitter,
latency, and delay can be controlled. However, if priority queuing is used for data
traffi c, relatively unimportant fl ows can swamp the priority queue and effectively
starve other types of traffi c. As another example, some traffi c is classifi ed as
mission critical. If this traffi c is to share the same network resources, then it
demands completely different treatment to avoid compromising its usage.

Therefore, simply throwing bandwidth at network traffi c is no longer the
answer (not that it ever was for certain types of fl ows, such as Systems Network

Architecture traffi c, but people keep stubbornly associating PBNM with band-
width). The real problem that network administrators face today is how to enable
multiple applications that each demand slightly different resources from the
network to not just peacefully coexist, but to work and consume shared resources
according to their importance.

PBNM solutions are natural choices for these types of applications. PBNM solu-
tions are predicated on analyzing traffi c and classifying it into one of several
predefi ned categories. Each category will correspond to preprovisioned traffi c
conditioning that is suited to the type of traffi c that is being carried by that appli-
cation. Advanced network technologies, such as Multi-Protocol Label Switching
(MPLS) or DiffServ (or even both), can be used to mark this traffi c so that appro-
priate traffi c conditioning is applied.

10.6.5 Handling Traffi c More Intelligently

Because PBNM solutions rely on classifi cation, they provide the opportunity to
make other more intelligent decisions regarding how to handle all types of traffi c.
In addition to deciding how the fl ow is to be conditioned, the classifi cation deci-
sion itself can be used to help direct different types of traffi c. For example:

■ Nonauthorized users, as well as other forms of unwanted traffi c, can be denied
access to network resources. This is not to say that fi rewalls or VPNs are no
longer needed; rather, it means that an additional measure of security is present
and available.

■ Business-critical applications can be identifi ed immediately and transported
using special mechanisms, such as policy-based routing (i.e., based on a classi-
fi cation decision, traffi c can be instructed to use a special path that normal traffi c
is not allowed to use).

Many more examples could be given. PBNM solutions provide the inherent
intelligence to be used to accomplish more tasks than those that were originally
intended.

10.6.6 Performing Time-Critical Functions

PBNM solutions can simplify and better implement two basic types of time-critical
network functions:

1. Change device confi gurations within a specifi c time window.
2. Perform scheduled provisioning functions.

The fi rst point refl ects the need to address common maintenance functions. Most
organizations perform maintenance operations on their network at night or during
other nonbusiness hours to avoid any inadvertent adverse effects on the operation
of network services. The second point addresses small, simple changes for a spe-
cifi c customer or set of customers. This is the “network equivalent” of setting up
a conference call.

10.6 The Benefi ts of PBNM 301

302 CHAPTER 10 The Foundation of Policy Management

Part of the allure of PBNM solutions is that they can address both of these
functions.

10.7 SUMMARY
This chapter provided a quick retrospective on how PBNM was designed. Despite
many of its early limitations, such as having single-vendor approaches and being
focused on a particular technology, great promise was envisioned for PBNM solu-
tions. Accordingly, vendors poured resources into making various types of policy
solutions, and the press hyped these new solutions.

Unfortunately, these early solutions were misunderstood and were quickly
developed without supporting technology and, most important, standards. Interop-
erability was destroyed, and PBNM started to get a bad reputation.

Fortunately, the TMF rejuvenated this effort. It brought a completely different
approach—one predicated on tying policy to an architecture that used a shared
information model—to the forefront. The TMF’s NGOSS architecture emphasized
the importance of business rules and processes, which was something that was
lacking in previous efforts. Furthermore, it resurrected early work done using
viewpoints to help provide an integrated, multifaceted approach for defi ning
policy. This was picked up by the TMF’s SID effort. The SID is a federated
approach that incorporates DEN-ng and other models and information defi nitions.
The result is that policy has reemerged as a new approach that is tightly inte-
grated with other domain models.

The DEN-ng effort was based on this premise. It added additional insight, such
as the use of a policy continuum and a fi nite-state machine, to transform it to a
collected set of models, each of which represented a state of a managed object.
Policy, then, was redefi ned as the means to control when a managed object
transitioned to a new state.

With this introduction in place, the motivation for PBNM was examined in
more detail. Part of the allure of PBNM was its simplicity. Other benefi ts were also
its ability to provide different services to different users; its promise of simplifying
device, network, and service management; and its promise of requiring less engi-
neers to do the work. Newer promises, such as helping to defi ne the behavior of
a system and managing the ever-increasing complexity of devices and services,
were added.

However, the true breakthrough was when PBNM was defi ned as a means for
business rules to drive the confi guration of the network. This brought forth the
promise of changing the network from a cost center to a profi t center. Although
the other benefi ts are very important, they only incrementally affect profi tability.
Transforming the network into a profi t center is very compelling, as it affects the
bottom line of the entire organization.

To complete this transformation, two key ingredients were needed. The fi rst
was the establishment of a shared information model. This was needed for many

reasons, but one of the most important ones was interoperability. Modern-day
OSSs are not purchased from a single vendor, as they are too complex. Instead,
they are built from best-of-breed applications. For these applications to scale, they
should be constructed as components. For the components to share and reuse
data, they need to use the same data, defi ned in a “universal language” that any
OSS component that needs to share data can use. This universal language takes
the form of a layered information model. DEN-ng and the SID are part of that
solution.

The second ingredient is a revolution in how management applications are
built. Management applications should be constructed using models to defi ne their
data and architecture. This revolutionary idea is epitomized by the NGOSS archi-
tecture. Its design process uses four viewpoints—business, system, implementa-
tion, and runtime—to defi ne the functionality and processes of the architecture.
Interoperability is achieved using the SID and contracts, which defi ne how data
are communicated.

Finally, fi ve new benefi ts of PBNM solutions were provided. Two of these
focused on providing more intelligence to routing and managing traffi c. Instead
of overprovisioning the network and wasting valuable resources, PBNM can be
used to intelligently assign different traffi c to preprovisioned paths that already
have the appropriate traffi c conditioning in place. In addition, managing complex
traffi c and services, where different types of traffi c having different needs compete
for the same shared resources, can be effi ciently managed using PBNM
solutions.

Additional benefi ts were provided by realizing that the classifi cation portion
of PBNM solutions can be used for providing better security, accommodating the
needs of confi dential and mission-critical traffi c, and others.

Finally, PBNM can be used to manage device complexity. Combined with an
information model, a system can be built that can accommodate new types of
devices that have new types of functionality by changing the information model
and ensuring that software can be used to translate changes in the information
model to code. In other words, the structure, graphical user interface, and appli-
cation programming interfaces of the application remain constant; only the inter-
nals (which are governed by the information model) change. An example of this
new avant-garde application is the Intelliden R-Series.

10.7 Summary 303

This page intentionally left blank

CHAPTER

11Policy-Based Network
Management Fundamentals

This chapter, taken from Chapter 2 of Policy-Based Network Management by
Strassner, introduces basic terms and defi nitions that are used in the study of
policy management, as well as a simplifi ed conceptual model of policy. This will
be followed by describing the high-level system requirements of a policy-based
network management system. Key among these is the notion of business rules
driving the construction and deployment of device and network confi guration.
This new approach enables the network to be operated as a profi t center instead
of a cost center.

11.1 INTRODUCTION
This chapter describes where policy-based management (PBM) systems fi t in the
overall scheme of management systems and provides an introduction to their
operating context. As such, it will answer three fundamental questions:

■ What is policy-based management?
■ Why is it important?
■ How is it used?

Policy-based management was briefl y defi ned in Chapter 10. This is a very
active research area, with entire conferences and parts of prestigious conferences
covering various aspects of policy. However, to understand policy, we need to
defi ne some common terms. Therefore, this chapter begins by defi ning those
terms. Next, a simple conceptual model of policy will be built to provide brief
answers to the three questions—what, why, and how. Subsequent sections of this
chapter will then examine each question in detail.

Terminology is very important. The third section of this chapter reviews and
summarizes current accepted terminology and provides some additional terms to
help explain how PBM systems are implemented and used. This is important
because words, such as “policy” and “goal,” have many levels of meaning and

306 CHAPTER 11 Policy-Based Network Management Fundamentals

understanding. Next, common requirements of PBM systems will be discussed.
This section builds on Section 10.6, The Benefi ts of PBNM, in Chapter 10 by defi n-
ing the common features needed to realize these benefi ts. Finally, the notion of a
workfl ow-based process for implementing policy is introduced. This process is
essential to enabling policy-based network management (PBNM) systems to inte-
grate the needs of the business world with the services that the network can
provide.

11.2 THE NEED FOR OOA, DESIGN, AND MODELING
IN PBNM SYSTEMS

This section will describe the need for object-oriented analysis (OOA), object-
oriented design (OOD), and object-oriented information modeling (OOIM) for
PBNM systems. First, important concepts of object orientation will be defi ned.
Second, OOA and OOD will be briefl y explained, along with a description of their
essential benefi ts. Finally, a brief description of why OOIM is important will be
provided. A familiarity with object-oriented concepts will help the reader.

11.2.1 A Guide to Object-Oriented Concepts for PBNM Systems

Object-oriented technology models the real world in terms of objects. This impor-
tant point is often overlooked. Many people are intimidated by the set of formal-
isms used by object-oriented technology. However, this intimidation is unfounded.
The basic object-oriented paradigm uses human description of the environment
to create software models. In other words, object-oriented tools seek to represent
what already exists in the real world in a consistent format.

An object is an abstraction of something that consists of a collection of char-
acteristics and behavior. This collection is treated by the system as a named entity
that has state and a unique identity. We defi ne objects to represent system entities
that can be managed, confi gured, and reported on, as well as objects to represent
things, places, and concepts. Objects promote understanding of the system com-
ponents, the interaction between these components, and the overall system. They
are, in effect, a set of building blocks that can be used to describe the entity or
concept in a reusable manner. In addition, they provide an extensible basis for
implementation of a system.

For our purposes, an object has four fundamental parts: attributes, methods,
relationships, and constraints.

Attributes
An attribute (also called a property) represents data that defi ne fundamental
characteristics of a particular object. The data can be defi ned using a simple data
type (e.g., integer), a complex data type that is composed of simple data types
(e.g., a TimePeriod, which is made up of two Date attributes), or as a reference

11.2 The Need for OOA, Design, and Modeling in PBNM Systems 307

to another object whose semantics are used to defi ne the attribute (e.g., Authen-
ticationMethod). Not all attributes that are defi ned in a class have to be created;
some are mandatory and some are optional.

Two criteria are used to decide whether an attribute should be created or not.
The fi rst criterion is imposed by the model. This criterion defi nes whether an
attribute is required or not as a function of the integrity of the model. For example,
a salary attribute of an employee will probably be designated as a required attri-
bute because it represents common information that is present in all employees
and because it also models a key aspect of what makes an employee an employee.
Conversely, including the middle name of the employee might be nice, but not
required, because some people do not have a middle name, whereas others have
several. The second criterion is common sense: If that attribute describes a key
characteristic of what is being modeled, then it should be created; otherwise, it
is extraneous and does not need to be created (as long as the model does not
declare it to be required, of course).

Methods
A method is a function or procedure that represents some behavior that is char-
acteristic of the class. This behavior can be simple and fundamental to using the
object or can be more complex. For example, the accessing and storing of its
attributes (e.g., via “getter” and “setter” methods) enable the object’s data to be
encapsulated and not manipulated directly. This fundamental tenet of object-
oriented systems ensures that the specifi cation of what an object can do is kept
separate from its implementation. As another example, methods could be defi ned
that enable the transformation and/or sharing of that attribute with other objects,
perhaps by performing a computation using one attribute and writing the result
into another attribute.

Complex operations may also have side effects, which may also be modeled.
We assume that all attributes of a class are read, written, and edited using the
methods of the class (direct manipulation of attributes without using methods
violates the principles of object orientation, which are discussed later in this
section). Methods may therefore be viewed as performing a transformation, or
mapping, of the attribute(s).

Relationships
A relationship is a construct that defi nes how two or more objects are related to
each other. The nature of the relationship defi nes how the objects are semantically
related to each other. Four types of relationships are used here: generalization,
associations, aggregations, and compositions. The following defi nitions are based
on the Unifi ed Modeling Language (UML)—the de facto standard for defi ning and
implementing information models.

A generalization defi nes how more generic objects (i.e., superclasses or “parent”
classes) are used to defi ne more specifi c objects (i.e., subclasses or “child”

308 CHAPTER 11 Policy-Based Network Management Fundamentals

classes). Generalization enables separate concepts that are common to many
objects to be used by each of those objects through inheritance (i.e., if an
attribute is defi ned once in a superclass, that same attribute is inherited by all
of its subclasses).

An association is a semantic relationship (e.g., “depends on,” “requires”) between
two or more classifi ers. A classifi er is a mechanism that describes behavioral
and structural features of interest, such as classes and data types. An association
can be thought of as a way to “connect” two or more objects and is therefore
the “glue” that is used in an object model to connect different objects together
to describe a concept. Without associations, the object model is nothing more
than a set of disparate classes that are unrelated to each other.

An aggregation is a special form of association that specifi es a whole–part rela-
tionship between the aggregate (whole) and a component part. Thus, if an
object “depends on” or “requires” a set of other objects to exist, then it is an
aggregation.

A composition is a strong form of aggregation that requires that a part instance
be included in at most one composite at a time and that the composite object
is responsible for the creation and destruction of the parts. It is this propaga-
tion of operations from the composite to the constituent parts of the compos-
ite that differentiates a composition from an aggregation. Composition may be
recursive. Compositions are used for many things, but one of their essential
uses is to represent containment.

Constraints
Finally, a constraint is a semantic condition (often in the form of a restriction)
that in UML is represented as a Boolean expression using the Object Constraint
Language (OCL). Constraints are used to represent global properties, conditions,
or restrictions that apply to an object. For example, a constraint may be defi ned
to say that an object can be created only after some operation to one or more
other objects has been successfully completed.

Additional Object Parts
Two additional constructs deserve mention. The fi rst is the notion of a class, and
the second is an introduction to abstraction. The structure and behavior of similar
objects is defi ned by their common object class. A class is a description of one or
more objects that have a uniform set of data (called attributes) and functions that
manipulate and operate on the data (called methods). Concrete classes can be
instantiated, whereas abstract classes cannot be instantiated. Abstract and con-
crete classes are used to organize and classify information in a class hierarchy,
which is a set of classes that is used to organize information about a management
domain. For example, Figure 11.1 defi nes the high-level construct of a Network
Device. Although a Router, Switch, or Firewall is each a different type of

11.2 The Need for OOA, Design, and Modeling in PBNM Systems 309

NetworkDevice, all have a set of attributes and concepts in common. Thus, these
different objects are grouped together in a hierarchy of related classes.

11.2.2 Introduction to Object-Oriented Modeling
by Way of Example

As a brief introduction to object-oriented modeling, we will take the preceding
model and improve and enhance it.

The model shown in Figure 11.1 has several inherent problems. The most basic
problem is that it defi nes each of the three subclasses to be a “fi xed” concept. To
illustrate this point, consider a switch. A switch is traditionally classifi ed as a
“layer-2” device, meaning that it operates at the data link layer (below the network
layer and above the physical layer).

Layers 3 and 4 are two of the seven layers defi ned in the International Standards
Organization (ISO) open systems interconnect (OSI) model. This model is used to
describe defi ned layers in a network operating system. The layers provide clearly
defi ned functions that can better enable different devices from different manufac-
turers to interoperate. Each layer has a standard defi ned input and output.

Many manufacturers advertise traditional switches and so-called “layer-3
switches” and “layer-4 switches.” One possible solution that accommodates these
additional types of switches is shown in Figure 11.2.

The problem with the approach in Figure 11.2 is that it misses the point of
why these devices are called Layer3Switch and Layer4Switch. A Layer2Switch
forwards packets based on the unique address of each device connected to
the network. Layer 3 is traditionally used to partition subnetworks. Layer 4 is
known as the transport layer and is the communications path between end user
devices and the network infrastructure. Thus, layer 4 is associated with a “higher
intelligence.”

Layer3Switch and Layer4Switch add intelligence to the switching function
by switching traffi c at higher network layers. Thus, subclassing a Layer3Switch
or a Layer3Switch from a Layer2Switch is wrong, because the behavior defi ned

NetworkDevice

Router Switch Firewall

FIGURE 11.1

Different types of NetworkDevice.

310 CHAPTER 11 Policy-Based Network Management Fundamentals

for switching functions in each of these different layers is at different levels of
abstraction.

A similar problem arises if a manufacturer makes a router that also has some
fi rewall capabilities; this is shown in Figure 11.3.

This example tries to defi ne a new class by using multiple inheritance (i.e., the
new RouterWithFirewall class is derived from both the Router class and the
Firewall class). Although this makes intuitive sense, the problem is that many
systems cannot support multiple inheritance. The model is useless if it cannot be
implemented!

A better approach is to use the concept of roles. Roles defi ne different con-
cepts an object can play with in the context of its related objects. The key to
unraveling this puzzle is to think differently. Instead of conceptualizing a Router,
a Switch, and a Firewall each as an atomic device, separate the device from its
functionality. Then, abstract the different functionality defi ned and associate each
bit of functionality back to a device. Thus, instead of embedding functionality into
a device, the role approach used by Directory Enabled Networks–new generation
(DEN-ng) defi nes roles to represent different functions and then enables a device
to aggregate one or more roles. This provides a much more extensible approach
to defi ning functionality.

In the approaches illustrated in Figures 11.2 and 11.3, if a new function is
added, an entire new subclass must be built. In the DEN-ng approach, a new role
is created and then it can be decided if it should be associated with a particular
device or not. The DEN-ng role-based approach for solving this problem is shown
in Figure 11.4.

The following simplifi ed DEN-ng role model enables a LogicalDevice to take
on zero or more roles. (In DEN-ng, a device, such as a router, is divided into a

NetworkDevice

RouterSwitch Firewall

Layer3Switch Layer4Switch

FIGURE 11.2

Trying to model layer-3 and layer-4 switches—a bad approach.

11.2 The Need for OOA, Design, and Modeling in PBNM Systems 311

NetworkDevice

RouterSwitch Firewall

RouterWithFirewall

FIGURE 11.3

Trying to model a router with fi rewall capabilities—a bad approach.

RoutingRole

SwitchingRole

FirewallRole

LogicalDeviceLogicalDeviceRole

0..n 0..1

LogicalDeviceHasRoles

LogicalResource

FIGURE 11.4

Using roles in DEN-ng to model device functionality.

312 CHAPTER 11 Policy-Based Network Management Fundamentals

PhysicalDevice and a LogicalDevice; PhysicalDevice models physical aspects
of the device, such as cards and power supplies, whereas the LogicalDevice
models logical aspects such as routing and switching traffi c.) Different function-
ality is now abstracted as a LogicalDeviceRole, and new roles, such as
Layer3SwitchingRole, can be added without affecting the defi nition of the
LogicalDevice.

DEN-ng also defi nes various physical roles. Roles will be discussed later in this
chapter.

11.2.3 What Are OOA and OOD?

Object-oriented analysis is the process of understanding a problem domain, deter-
mining what the responsibilities of the various components of the system(s)
and participants using the system are, and developing a specifi cation of how
the objects of that domain function are related to each other. Implicit in this
defi nition is the use of abstraction (i.e., the principle of ignoring certain aspects
of a subject that are not relevant to the current purpose, so that the aspects
of a subject that are relevant can be focused on exclusively). This is in effect a
“divide-and-conquer” strategy, where a diffi cult problem is divided into smaller
parts to better understand each part. Thus, by understanding each constituent
part, a better and more thorough understanding of the whole problem can be
achieved.

Object-oriented design is the process of taking a specifi cation produced by
OOA and adding enough detail to enable it to be implemented. The implementa-
tion is developed using the object-oriented principles defi ned earlier.

Traditionally, OOA and OOD have been defi ned and used as separate disci-
plines. However, most methodologies suggest or implement a “blurring” between
the hard lines of OOA and OOD. This important principle deserves further elabo-
ration. In traditional approaches, the strict defi nitions of OOA and OOD defi ned
a set of differences that required different languages and notations. There are two
obvious problems with this approach. First, if different notations and languages
are used, how can all of the appropriate concepts, principles, and objects from
OOA be represented in OOD? A good analogy is in the problems encountered
when a literal translation between dissimilar human languages is attempted. Literal
word-for-word translation and replacement of these words often forms gibberish
or meaningless phrases. The second problem is that if the representation cannot
be guaranteed, how can it be implemented correctly?

Instead, it should be realized that, fundamentally, both OOA and OOD are
based on object-oriented principles. Therefore, the opportunity is to bridge these
traditionally separate disciplines and concentrate on the unifi ed representation of
objects and concepts. After all, the basic object-oriented paradigm uses fundamen-
tal human linguistic and cognitive mechanisms to create software models. Why,
then, cannot this same paradigm be used to analyze, design, and implement PBNM
systems? We argue here that it can and should be used.

11.2 The Need for OOA, Design, and Modeling in PBNM Systems 313

11.2.4 Benefi ts of OOA and OOD

When blended together, OOA and OOD provide several compelling benefi ts over
alternative methods that do not use object-oriented concepts. The most important
of these are as follows:

■ Provide a consistent underlying representation for representing the
information being analyzed and modeled.

■ Improve the ability for analyst, subject matter experts (i.e., theorists), and
implementation personnel to interact.

■ Improve the ability to cope with the complexity of a distributed system.
■ Improve the ability to better recognize common concepts and behavior

within a system and to realize them as objects that can be shared and/or
reused by other system components.

■ Build specifi cations that are robust and resilient to change (a key feature
of the DEN-ng and SID object-oriented information models).

Providing a Consistent Frame of Reference
OOA is concerned with understanding a given problem domain. It aids this
process by bringing a set of formal methods and procedures to help understand
the problem. One key advantage of this approach is that it is resistant to redefi n-
ing the same concepts. Rather, an initial concept will instead become more
detailed as additional analysis and design is performed.

For example, Figure 11.5 shows a simple UML model of an Individual suitable
for business analysts. This fi gure is taken from the DEN-ng specifi cation, which is

Individual

gender: String
placeOfBirth: String
nationality: String
maritalStatus: Integer
driversLicenseNumber: String
passportNumber: String

Party

Organization

typeOfOrganization: Integer
isLegalEntity: Boolean
existsDuring: TimePeriod

FIGURE 11.5

Simple business model of a Party.

314 CHAPTER 11 Policy-Based Network Management Fundamentals

a system view of the higher-level (as in more abstract) business view of the
TeleManagement Forum’s shared information and data (SID) model common
business entity defi nition party specifi cation. This fi gure shows that two common
concepts—Individual and Organization—are generalized into a new concept
called Party. This abstraction makes it easier to represent behavior where an indi-
vidual, a group of individuals, or an entire organization can be the subject and/or
target of policy (policy subject and target are defi ned later in this chapter).

Although useful for a variety of uses, Figure 11.5 is not very extensible. Con-
sider, for example, the simple case where an employee can play several roles in
an organization. If the approach of Figure 11.5 is used, many different subclasses
of Individual and Organization will have to be created, and a complex set of
associations linking them will also have to be defi ned. This is because individuals
and organizations exhibit complex behavior that can change over time. Subclasses
can only represent a single particular fi xed concept. Thus, if a Party has to play
more than one role at any given point in time, multiple subclasses with a compli-
cated set of associations must be used.

Figure 11.6 shows an improved model, where the concept of a PartyRole is
introduced (attributes have been suppressed to make the fi gure simpler). It uses
the role object pattern to simplify this problem. By separating the information
held about any Individual and Organization from the roles that they perform,
this model enables any Party to aggregate one or more PartyRole. Note that the
Party model has been signifi cantly enhanced by building on existing simpler
concepts. In fact, the DEN-ng specifi cation, and each addendum of the SID, is
written to lead the reader through a progressively more complex representation
of an entity. This approach enables different abstractions of the same concepts to
be used by different types of users.

Party PartyRole

1 0..n

HasPartyRoles

Individual Organization
ValueNetworkRole

ServiceProvider Vendor Intermediary Customer

Employee

FIGURE 11.6

Improved business model of a Party, using the role object pattern.

11.2 The Need for OOA, Design, and Modeling in PBNM Systems 315

This use of roles is very similar to the previous use of roles to abstract device
functionality. In fact, both DEN-ng and SID use roles throughout the information
model to make each part of the information model inherently extensible.

Another important point in Figure 11.6 is how easily varying amounts of detail
can be accommodated using OOIMs. The amount of detail shown on any given
OOIM is determined by the use of that model and the needs of the users of that
model. This enables a single “infrastructure” to be built, whose details are shown
and hidden to suit the needs of the users.

Details of each class (e.g., attributes and methods) and constraints and relation-
ships can be shown or hidden to suit the needs of the users and/or applications
that are using the OOIM. Additional subclasses and components of those classes
can be defi ned where needed and can be used to defi ne additional functionality.
For example, the full SID model has a fl exible and robust set of mechanisms for
dealing with how different instances of Party and PartyRole are used. For
example, different individuals and organizations can be referred to by different
names. Consequently, the full SID model has a robust naming model that satisfi es
this need. This advanced functionality is rarely needed and was hidden (along with
other features of the Party model) in Figure 11.6 because it was not needed.

Enable Different Types of Users to Interact Better
Complex systems require a variety of different users, ranging from business ana-
lysts, to system designers, to implementation specialists, to work together to build
a working system. OOA and OOD both rely heavily on classifi cation, which is a
formal way to organize the knowledge represented by an information model. This
enables different people with different responsibilities to better add their knowl-
edge to the collective whole without having to understand every detail of every
part of the design. By merging the OOA and OOD disciplines, specifi c knowledge
can be applied to a consistent underlying representation. In effect, a continuum
of knowledge is built—some of the continuum is applicable at the analysis stage,
some at the design stage, and some at the implementation stage.

Complexity in PBNM Systems
One reason that policy is needed in network management is to cope with the
inherent complexity of networks. OOA and OOD provide formal, yet intuitive,
methods for tackling the complexity of network management systems. Various
forms of abstraction, which are represented naturally using OOA and OOD
methods, can be used to reduce system complexity. Three examples are proce-
dural, data, and entity abstraction:

Procedural abstraction enables any operation that provides a well-defi ned result
to be treated by its users as a single process, even though the operation may
in fact have been realized through a sequence of lower-level operations. This
also enables the various entities that participate in this set of operations to be
similarly abstracted.

316 CHAPTER 11 Policy-Based Network Management Fundamentals

Data abstraction enables a data type to be defi ned in terms of the operations that
are applied to objects of that type. This enables complex data types to be
designed and used by many different objects. For example, DEN-ng defi nes a
TimePeriod complex data type that can be used to defi ne the starting and
ending points of a period of time. It is an object because it contains many dif-
ferent features that enable the starting and ending points of the time period to
be specifi ed. Because it is an object, it can be used by any other DEN-ng object
that supports the concept of a time period. As we will see, this is an important
concept in representing policy rules.

Entity abstraction: To describe this principle, for example, consider a router. The
wrong way of modeling a router is as a single class with a large number of
attributes because such a model is not reusable. When one aspect of the router
changes, the entire router model has to change.

Abstraction enables us to separate distinct aspects and functions of the router,
as shown in Figure 11.7. This is a simplifi ed and abstracted view of six types of
different aspects of a managed device, as modeled in DEN-ng and the SID.

This fundamental abstraction is the DEN-ng defi nition of a managed device,
which is also used in the SID. This abstraction enables each of these different
aspects of a device to be defi ned in its own submodel. Development of each
submodel can then proceed in parallel. More important, each of these different
models can be reused by other types of devices. For example, the concepts of

AuxiliaryComponent EquipmentEquipmentHolder

Software Hardware Statistics AlarmsProtocol

NetworkDevice

0..n

0..1

0..n

0..1

0..n

0..1

0..n

0..1

0..n

0..1

Service

0..n

0..1

HasHardwareHasSoftware HasStatisticsHasServices

HasAlarmsUsesProtocols

FIGURE 11.7

Using abstraction to defi ne different aspects of a device.

11.2 The Need for OOA, Design, and Modeling in PBNM Systems 317

Statistics and Alarms are applicable not only to Routers, but also to many other
types of NetworkDevice. A Router is defi ned as a type of NetworkDevice (see
Figure 11.3). Similarly, in Figure 11.4, the function of routing is defi ned as a type
of LogicalDeviceRole. Therefore, both Statistics and Alarms can be applied
to various types of NetworkDevice and to roles that network devices play.

This design also provides inherent fl exibility. For example, if the Statistics
of one type of device differ from those of a different type of NetworkDevice,
then this difference can be accommodated by defi ning different subclasses of the
Statistics class. Because the overall model still relates Statistics to Network-
Device, the new subclasses of Statistics will also be “automagically” related to
network devices.

Improvements in Reusing and Sharing Objects
OOA uses inheritance to identify common objects and concepts that can be
shared and reused by different components. When combined with OOIM, a set
of powerful class hierarchies—one for each different concept—can be defi ned.
Furthermore, if both OOA and OOD are merged, then a common language and
representation enables the best of OOA (representing what is to be built) and
OOD (describing how to build the components identifi ed in the OOA stage) to
be holistically merged. This combination establishes a continuum for the objects
being defi ned and specifi es how knowledge can be systematically expanded and
applied to different applications.

The previous example of defi ning new types of Statistics classes is a good
example of this point. The model shown in Figure 11.7 captures the fundamental
relationship of a device aggregating a set of Statistics. Because a subclass
inherits the relationships defi ned by its superclasses, new types of Statistics
classes can be defi ned whenever needed. This provides an inherent robust
extensibility to the model. Furthermore, because NetworkDevice can be
subclassed as well, different NetworkDevice uses can have different Statistics
classes. Thus, by taking care and building a rich infrastructure, different instances
of NetworkDevice having different statistical capabilities can be easily accommo-
dated, and new classes can be reused by other classes.

Building Robust, Resilient Object Specifi cations
OOA and OOD (as well as OOIM) mechanisms use classifi cation to organize infor-
mation. This has the wonderful side effect of limiting changes to objects to a
particular portion of the model. DEN-ng and the SID take this concept a step
further by defi ning the concept of a Specification class (Figure 11.8).

DEN-ng and the SID represent different types of managed objects using differ-
ent types of patterns. Patterns can be thought of as specifying a repeatable way
to represent and/or implement a concept. This particular pattern is called the
Entity-EntitySpecification pattern and features prominently in DEN-ng, SID,
and OSS/J (the OSS for Java effort). It is used to defi ne how a managed object is
represented. The idea is for the invariant (i.e., nonchanging) characteristics and

318 CHAPTER 11 Policy-Based Network Management Fundamentals

behavior of a ManagedEntity to be represented by an EntitySpecification (or
an appropriate subclass). This enables different ManagedEntities to specify the
changeable characteristics and behavior of the managed object being modeled.

Put another way, the EntitySpecification defi nes characteristics and behav-
ior that different Entities have, and each of the Entities can then defi ne its
own unique characteristics and behavior that can be used to differentiate its
instance from other instances. For example, suppose we want to model a phone.
The EntitySpecification for the phone is used to defi ne common things that
all phones share. Differences in individual phone capabilities, such as whether it
is a single, dual-band, or tri-band phone, can be captured in the specifi c phone
Entity. Continuing the example, if there are multiple types of tri-band phones,
then a subclass of the more general EntitySpecification can be created to
model this capability.

The SpecifiesResource aggregation defi nes which ManagedEntities are
related to which ResourceSpecification. For example, a vendor could make a
Layer2Switch and a Layer3Switch; the difference is that the Layer3Switch
also has some simple routing capabilities. If the only difference is additional soft-
ware capabilities, then a ResourceSpecification could be defi ned for both the
Layer2Switch and the Layer3Switch, and the differences between the two
switches captured with two different ResourceRole classes.

ResourceResourceSpecification

0..n1

SpecifiesResource

PhysicalResource
Specification

LogicalResource
Specification PhysicalResource LogicalResource

0..n 0..nPResourceSupports
LResource

Specification Entity

ManagedEntityEntitySpecification

FIGURE 11.8

The use of a Specification class in the DEN-ng model.

11.2 The Need for OOA, Design, and Modeling in PBNM Systems 319

In Figure 11.8, a Specification is an object that represents the invariant
(i.e., nonchanging) characteristics and behavior of an object that it is associated
with. The EntitySpecification class is the particular class (along with the
ManagedEntity class) that establishes the Entity-EntitySpecification pattern.
The ResourceSpecification class is one of several subclasses of the more generic
EntitySpecification class, just as Resource is one of the more specifi c sub-
classes of ManagedEntity. ResourceSpecification is an abstract base class used
to defi ne the invariant characteristics (attributes, methods, relationships, and
constraints) of a Resource. Other examples include ProductSpecification and
ServiceSpecification.

An Entity represents the base class of all discrete devices in the managed
environment. Its subclass, ManagedEntity, represents all devices that can be
managed. This is an important distinction. An Entity is not manageable, however,
even if the Entity is not manageable, it may still provide an important function
that needs to be represented. A good example is a legacy hub, which provides
connectivity. Thus, DEN-ng and the SID are capable of representing all entities in
the environment.

A Resource is the abstract base class for all entities that are inherently manage-
able and comprise a Product (note that ManagedEntities are not necessarily tied
to Products). Because ResourceSpecification is related to Resource through
the SpecifiesResource association, more specifi c subclasses of Resource and
ResourceSpecification are also related. Thus, the subclasses PhysicalResource
and LogicalResource, which represent the physical and the logical
aspects of a Resource (such as a NetworkDevice), are related to the sub-
classes PhysicalResourceSpecification and LogicalResourceSpecification,
respectively.

This pattern is a robust and extensible way to model managed objects of dif-
ferent types. Although Figure 11.8 shows this pattern applied to Resources, it is
also used for Products, Services, and many other DEN-ng objects.

11.2.5 Why Object-Oriented Information Modeling Is So
Important to PBNM Systems

Object-oriented modeling is a design methodology that applies OOA and design
techniques to describe a system. A complete object-oriented model will describe
both the physical and the logical aspects of the system. To do this, object-oriented
terminology is introduced.

Basic Terminology
Objects that are grouped into the same class can also share similar relationships
between other objects as well as share common semantics. Through inheritance,
a subclass (child) of a superclass (parent) automatically has the same attributes,

320 CHAPTER 11 Policy-Based Network Management Fundamentals

methods, constraints, and relationships defi ned as its superclass does. Therefore,
a class can be thought of as a template that defi nes attributes, methods, con-
straints, and relationships that describe the class in a uniform way.

An instance refers to an actual object that belongs to a particular class. Each
instance of a class can potentially have the same attributes and methods. However,
it can contain different values for its attributes. It also does not need to instantiate
all of the possible attributes that are defi ned by its class. The class defi nes the
attributes, methods, and relationships that the instance can possess, and the
instance defi nes and differentiates objects that belong to the same class.

Object-Oriented Thinking
Object oriented implies a particular way of organizing and using information to
build software and systems. Specifi cally, it means that a system is thought of as
composed of a set of objects, each of which encapsulates data and behavior. Six
fundamental axioms are required by this type of thinking:

1. Identity: The ability to distinguish each object within a system; this implies
that two instances of the same class can be identifi ed even if they have the
exact same attribute values.

2. Abstraction: The process of focusing on a subset of essential characteristics of
an object, even if other characteristics of that object must be ignored.

3. Classifi cation: The process of grouping objects that have the same character-
istics and behavior (e.g., attributes, methods, and relationships) into the same
class. Classifi cation further implies that there is a structured hierarchy for orga-
nizing all classes in a system.

4. Encapsulation: The process of separating the external characteristics and
behavior of an object from its internal implementation. Other objects in the
system can then depend on those characteristics and behavior without having
to know how the object is implemented. Encapsulation conceals the structure
and implementation of an object, and instead focuses on its externally visible
characteristics and behavior. This enables the implementation of an object to
change without drastically affecting other objects in the system.

5. Inheritance: A mechanism for expressing that two classes are related to each
other. Specifi cally, a subclass inherits all of the attributes, methods, and rela-
tionships of its superclass. Thus, common characteristics and behavior are
expressed once in a superclass, enabling subclasses to represent specifi c refi ned
behavior of the superclass.

6. Polymorphism: A mechanism that enables several classes to share the
same basic type of functionality, but to implement the same operation differ-
ently in each class. For example, a draw function that is used by two
different shapes (a line and a circle) renders each shape in slightly different
ways. Furthermore, each function may have different prerequisites and side
effects.

11.3 CONCEPTUAL POLICY MODEL
It will be easier to understand what PBM is all about if we fi rst start by understand-
ing one of its fundamental building blocks: the policy rule.

The underlying model of a policy rule, PolicyRule, is deceptively simple and
is illustrated in Figure 11.9 using UML notation. The lines with the diamonds at
the end are aggregations, with the diamond denoting the aggregate part of the
relationship. In this model, a PolicyRule is a container that aggregates a set of
PolicyConditions and a set of PolicyActions. The cardinalities of these two
aggregations are defi ned so that at least one condition and at least one action must
be defi ned as part of the PolicyRule.

Note that the Internet Engineering Task Force (IETF) and Distributed Manage-
ment Task Force (DMTF) made these two cardinalities zero-or-more to zero-or-
more. This was to allow for policies that are in an incomplete state. However, this
is wrong, because this mixes the state of constructing a PolicyRule with the state
of an already constructed PolicyRule. If the PBM system is supposed to manage
the construction of a PolicyRule, then as a minimum, the process of constructing
a PolicyRule, including its life cycle aspects, must be modeled. This results in
a set of interrelated models that work together to model various aspects of the
life cycle of a PolicyRule. The simplifi ed model shown in Figure 11.9 is just
one portion of this set of models and is used to model the current state of a
PolicyRule.

Directory-enabled networks (DEN) and DEN-ng both model the process of con-
structing and deploying a PolicyRule using a fi nite-state machine. Figure 11.10
shows the other major processes needed to model the life cycle of a PolicyRule.

PolicyCondition PolicyAction

PolicyRule 0..n

0..1

HasPolicyRules

1..n

0..1

HasConditions

1..n

0..1

HasActions

FIGURE 11.9

Simplifi ed conceptual model of a PolicyRule.

11.3 Conceptual Policy Model 321

322 CHAPTER 11 Policy-Based Network Management Fundamentals

(Note that confl ict detection and resolution, as well as the basic notion of editing
a PolicyRule, are not specifi cally included in this fi gure. This is because they need
more description, as each is a potentially complicated operation.)

The semantics of this simple PolicyRule are as follows. The PolicyRule is
itself a container that consists of three things:

1. Metadata, which defi nes the overall behavior and function of the
PolicyRule.

2. Boolean condition clause.
3. Action clause.

Although the Boolean PolicyCondition clause may be composed of a set of
PolicyCondition clauses, the end result is a single result that says whether or
not the PolicyCondition is satisfi ed. If the PolicyCondition is satisfi ed, then the
actions aggregated by this PolicyRule may be evaluated. In theory, one could
defi ne action clauses that defi ne what should happen if the PolicyCondition
clause is not satisfi ed. Practice has shown, however, that the (dramatic) increase
in complexity of doing this results in little practical return. The increase in com-
plexity results from many factors, such as the interaction of a PolicyRule with
another PolicyRule, as well as the side effects that can result from the execution
of a PolicyRule. In addition, this greatly complicates the policy confl ict detection
and resolution process.

Similarly, the PolicyAction clause is composed of one or more PolicyAction.
PolicyAction can be optionally prioritized. This prioritization, along with what
we refer to as an “execution strategy,” enables a set of common semantics to be
applied that govern how these PolicyActions execute with respect to each
other. For example, one PolicyAction could have an execution strategy of

Construct the PolicyRule

Install the PolicyRule

Deploy the PolicyRule

Remove the PolicyRule

Define events.
Use common conditions and actions.
Define unique conditions and actions.

Define linkage to components that
need to use this PolicyRule.
Store the PolicyRule and its components
in private and reusable repositories.

Implement transition states required.

Remove PolicyRule and its components.
Optionally remove from repositories.

FIGURE 11.10

Simplifi ed life cycle model of a PolicyRule.

execute and exit (i.e., prevent further processing of the actions), whereas another
could have the semantics of execute and continue (i.e., try and execute the next
action).

This structure and more advanced policy structures could be examined in more
detail. For now, it is suffi cient to note that this simple defi nition will be expanded
in three important ways:

1. Concept of nested (as in hierarchical) PolicyRules and PolicySubRules
will be added (true of the IETF, DMTF, and DEN-ng approaches).

2. Concept of rule-specifi c versus reusable policy components will be added
to enhance the (simplistic) defi nitions of conditions and actions in the
PolicyRule (true of the IETF, DMTF, and DEN-ng approaches, although
the DEN-ng approach enhances this beyond the IETF and DMTF
approaches).

3. The concept of events that trigger the evaluation of the conditions in the
PolicyRule will be added (true only of the DEN-ng approach).

The IETF (and DMTF) have defi ned the fi rst and second of these additional
concepts, but not the third. This is important, because events can be used as a
mechanism to explicitly indicate how a PolicyCondition is evaluated. Without
this triggering mechanism, there is no way to indicate when a PolicyCondition
is going to be evaluated. This is why DEN-ng expands this model to an event-
condition-action triplet (as shown in Figure 11.11).

The preceding model of a DEN-ng PolicyRule has three important differences
(even at this simplifi ed level) compared with the IETF and DMTF approaches, as
shown in Figure 11.12.

These differences exist for the following three reasons. First, if the trig-
gering mechanism for evaluating a PolicyCondition is not specifi ed, then it is
impossible to guarantee interoperability between different implementations of
PBNM systems. Second, it is important for the model to be precise. Specifying a
cardinality of 1..n prevents degenerate structures (e.g., a PolicyRule with no

PolicyEventSet

PolicyActionPolicyCondition PolicyRule

1..n

0..n

IsTriggeredBy

0..n
{ordered}

1..n

PolicyActionInPolicyRule

1..n 0..n
{ordered}

PolicyConditionInPolicyRule

{ordered}

FIGURE 11.11

Simplifi ed DEN-ng model of a PolicyRule.

11.3 Conceptual Policy Model 323

324 CHAPTER 11 Policy-Based Network Management Fundamentals

PolicyAction) and enables a higher degree of interoperability. Finally, the use of
OCL enables rule-specifi c semantics to be specifi ed in a simple way.

11.4 DEFINITION OF A PBM SYSTEM
We can now provide a more formal defi nition of a PBM system: Policy-based
management is defi ned as the usage of policy rules to manage the confi gura-
tion and behavior of one or more entities.

This defi nition implies the use of an object model that expresses the
PolicyRule as an instance of a class hierarchy, along with the use of a manage-
ment method (i.e., a fi nite-state machine). This last point is critical. Most models
are “open-loop” systems (i.e., they represent just the state of a set of managed
entities). DEN and DEN-ng, as well as the emerging policy work in the TMF, all
use a fi nite-state machine to model the various states that a managed entity can
have in its life cycle and the operations required to transition a managed entity to
a new state (or to keep it in a current state). This enables models to be built to
represent the entire life cycle of the managed system.

Given these defi nitions, we can now answer the three questions posed at the
beginning of this chapter. Note that the IETF and DMTF approaches do not specify
any type of management method and hence are current state models.

Simply stated, PBM is a methodology for managing systems. It does this by
modeling the different entities in the environment to be managed as a set of
objects. However, it does not stop here—it also models the various relationships
between objects and constraints placed on those objects. For example, two dif-
ferent users can be logged on to the same system but receive different classes of
service, which dictate how the applications that each operate are handled in the
network.

The models used by PBM provide a common representation of information
that different system components and applications can use to build more intelli-
gent, easier-to-manage systems. A common representation of information enables

Functionality IETF/DMTF Approach DEN-ng Approach

Triggering evaluation of a policy condition Not specified Specified using a set of events

Cardinality of aggregations 0..n to 0..n for all 0..n to 1..n for all

Use of OCL None Specified in each aggregation

FIGURE 11.12

High-level comparison between the IETF/DMTF and DEN-ng PolicyRule models.

management data to be shared, reused, and altered by multiple applications. This
common representation has as one of its foundations the principle of abstraction,
which enables us to construct class and relationship hierarchies that model differ-
ent aspects of managed objects.

For example, instead of having one class to model a router, with many (i.e.,
unmanageable) attributes, we can instead focus on different aspects of the router—
for example, its physical composition, the protocols it runs, the management
information bases (MIBs; a body of knowledge that defi nes characteristics about
an aspect or function of a network device) it supports, the traffi c it fi lters, and so
forth—and develop classes to represent each of these aspects. This enables us to
reuse valuable concepts (e.g., a card that contains memory is not specifi c to a
router and can be used to add memory to a wide variety of objects) and apply
them to different objects. This in turn enables consistent representation of these
same concepts.

PBM is a methodology that describes one or more applications that manage
one or more systems according to a set of rules. These rules take the form of
policies that are applied to components of the system to better and more effi -
ciently manage those components. The application of the rules is governed by the
fi nite-state machine that describes how to manage the system. In this way, we can
achieve true end-to-end control, as opposed to having just device- or element-level
control without PBM control because the behavior of each component is captured
by the states defi ned in the fi nite-state machine.

PBM differs from other approaches in its use of policies to control the behav-
ior of managed entities. As stated previously, implicit in our defi nition of a PBM
system is the use of a management methodology—in our case, a fi nite-state
machine—to manage the life cycle aspects of entities.

PBM uses policies to control the behavior of a managed system in a predictable
and consistent fashion. To do this, the characteristics of the system that is being
managed must be represented in as much detail as required. Then, policies can
be defi ned that govern each state of the managed object—from creation, to
deployment, to destruction. Without policies, there is no way to coordinate the
behavior (e.g., the state and state transitions) of the objects being managed, and
there is no way to guarantee consistent behavior and reaction to events.

How PBM uses policies is critical to the implementation of a PBM system. Many
current PBM systems are focused on a particular component in a system, or a set
of features, that must be controlled. For example, many quality-of-service (QoS)
PBM systems are designed to control a small subset of the features of a device,
such as a router. The worry, of course, is the interaction between the QoS features
and other features of the router: What if the QoS PBM system makes an adjustment
that adversely affects the delivery of some other service or feature that the router
is supporting? The answer, of course, is for a PBM system to holistically manage
the different components in a system and the different services that each device
supports.

11.4 Defi nition of a PBM System 325

326 CHAPTER 11 Policy-Based Network Management Fundamentals

11.5 POLICY TERMINOLOGY—AN APPROACH
Now that we understand what a PBM system is, we can identify the essential
terminology needed to study PBM. These terms provide a basic overview of the
key components comprising a policy system and give insight into how PBM
systems are implemented and used.

The motivation for a consistent set of policy terminology is that without
common terminology, interoperable PBM systems will be impossible to describe,
let alone implement and use. However, until relatively recently, no document
defi ning a policy terminology existed.

In November 2001, RFC 3198, an informational RFC that took the fi rst step to
formally defi ne terminology for PBM systems, was released. This delay wasn’t for
lack of effort. Rather, the problem was one of getting agreement from the major
vendors who were implementing PBM systems. To understand this, realize that
virtually all of the major network vendors have at least one, and usually multiple,
PBM systems. Therein lies the problem—no vendor wants their deployed product
branded as “nonstandard.” Furthermore, because the IETF operates by consensus,
until there is a majority consensus, a specifi cation of the IETF will not be advanced
regardless of how seminal the work is. Even then, the process of advancing an
Internet draft can be delayed based on the review of one or more respected
people. Given these considerations, the fact that this RFC was produced is indeed
a positive step forward.

One may ask why such specifi cations are required, given that vendors are
already producing products. The answer is to promote interoperability. Some-
times, one can buy a policy server to control all of the functions of a device.
However, the usual case is that a policy server is built to have a purposely narrow
scope. For example, vendors will build a QoS policy server that controls some of
the QoS functions for a set of different devices. Most policy servers that control
a particular function, such as QoS, do not control all of the different commands
of a given device corresponding to that particular function, let alone control all
of the commands for other functions. Furthermore, if a network vendor builds a
policy server, then that policy server will almost certainly be limited to supporting
devices from that vendor. Thus, people need to integrate different policy servers,
so that either the appropriate functionality and/or necessary vendor devices are
managed.

RFC 3198 is important because it is the fi rst specifi cation that seeks to formally
defi ne policy terminology from the IETF. However, because the information model
that this RFC was describing was not completely defi ned and because this was
arguably the fi rst information model that the IETF had dealt with, there are several
errors in this document. The author’s name is on the document because more
good would come out of a partially correct document than not having a document
be released at all and because the author was at that time still actively involved
in the IETF. Because that is no longer the case (the author having shifted most of
his “standards” time to other forums), the following section contains just the

essential policy terminology, with due accreditation, that the author uses. The
advanced practitioner can refer to RFC 3198 for other terms.

11.6 ESSENTIAL TERMINOLOGY FOR PBM SYSTEMS
This section will summarize only those terms that are relevant to generic PBM
system design. There are in general two sources for these terms:

■ RFC 3198.
■ From the author, who is part of the ongoing DEN-ng specifi cation work.

RFC 3198 is focused on policy-based network management, and in particular is
strongly infl uenced by current IETF work in the areas of differentiated services,
policy representation, and security. As such, it is not generic to PBM, but rather
is specifi c to policy-based network management.

Some of these defi nitions will be changed, based on implementation experi-
ence of the author. In other cases, the defi nitions of RFC 3198 will be modifi ed
to make these terms more generic to PBM systems (i.e., when a single defi nition
is overloaded with confl icting meanings resulting from different uses that are
forced into a single defi nition). In every case, the RFC defi nition will fi rst be ana-
lyzed to explain why it needs modifi cation and then a new defi nition will be
provided.

This RFC is a perfect example of how the standards process works in real life.
The reader will notice that I am a coauthor of this RFC, yet I do not agree with
all of its defi nitions. This is because the IETF standards process is driven by con-
sensus. Coauthors can infl uence the content of the draft, but at the end of the
day, the working group chairs need to go for consensus. Plus, vendors will often
become more involved as the Internet draft nears completion, to avoid the stigma
of having their product labeled as “nonconforming” with the standard.

The pertinent defi nitions from RFC 3198 now follow in alphabetical order,
except when terms are dependent on each other. Each defi nition is given in its
own section, and comments (where appropriate) are provided immediately below
each one.

11.6.1 Terms Relating to the Object-Oriented Foundations of PBM

This initial set of terms are formal defi nitions for terms used by PBM. They are
either conceptual or architectural in nature, and although they don’t defi ne directly
what a PBM term is, they do defi ne needed concepts for PBM.

Data Model (defi ned in RFC 3198; modifi ed by DEN-ng)
RFC 3198 defi nes a data model as:

A mapping of the contents of an information model into a form that is specifi c
to a particular type of data store or repository. A “data model” is basically the

11.6 Essential Terminology for PBM Systems 327

328 CHAPTER 11 Policy-Based Network Management Fundamentals

rendering of an information model according to a specifi c set of mechanisms
for representing, organizing, storing, and handling data.

The problem with the preceding defi nition is that it is not so much a mapping as
it is the defi nition of an implementation (which requires not just a mapping, but
other factors, such as implementing for ease of querying or performance). A better
defi nition is as follows:

A data model is a concrete implementation of an information model in terms
appropriate to a specifi c type of repository that uses a specifi c access protocol
or protocols. It includes data structures, operations, and rules that defi ne how
the data are stored, accessed, and manipulated.

Information Model (defi ned in RFC 3198; modifi ed by DEN-ng)
RFC 3198 defi nes an information model as:

An abstraction and representation of the entities in a managed environment.
This includes defi nition of their properties, attributes and operations, and the
way that they relate to each other. It is independent of any specifi c repository,
software usage, protocol, or platform.

This defi nition is workable, although there are some small problems with it: (1)
What is the difference between a property and an attribute (they are actually
synonyms)? (2) “The way they relate to each other” lacks the formalism to mandate
the use of object-oriented relationships, such as associations, aggregations, and
compositions. (3) Platform doesn’t have any effect on the structure or implemen-
tation of an information model. Therefore, this defi nition is modifi ed as follows:

An information model is an abstraction and representation of the entities in a
managed environment. This includes defi nition of their attributes, operations,
constraints, and relationships. It is independent of any specifi c type of reposi-
tory, software usage, or access protocol.

An information model can be thought of as the defi ning document that is used
to model all of the different managed objects in a managed environment.

Figure 11.13 illustrates the relationship between an information model and a
data model in DEN-ng.

Information model

Data model
(platform 1)

Data model
(platform n)

FIGURE 11.13

Relationship between an information model and a data model.

DEN-ng specifi es that a single information model is to be used. Multiple data
models must be used, because management information is diverse and requires
different types of repositories to facilitate the storage, querying, and editing of
these data. This single information model will thus serve as the basis for all data
models that are used. This helps ensure that different data models that represent
parts of the same object will be able to interoperate.

Model Mapping (from DEN-ng)
RFC 3198 does not defi ne the term model mapping. It defi nes the term policy
translation; however, this isn’t quite the same thing, as this relates just to policies,
not to entire models. Policy translation is covered later in this section.

Model mapping is used to enable different types of models to be related
to each other. It is defi ned here so that other defi nitions in this section can use
the term.

A model mapping is a translation from one type of model to another type of
model. Model mapping changes the representation and/or level of abstraction
used in one model to another representation and/or level of abstraction in
another model.

The most common form of model mapping is from an information model to a
data model; another important form is from a vendor-neutral data model to a
vendor-specifi c data model. Another important form of model mapping is being
done in the SID modeling working group of the TMF, where different types of
models (e.g., business domain models and system analysis models) are being inte-
grated to form a common continuum of shared data.

Figure 11.14 shows one form of model mapping. In this fi gure, a particular data
model (e.g., a directory) is mapped from an information model. This map-
ping produces a directory implementation that conforms with the appropriate

Standard

Standard

Vendor-specific
implementation

Data model
(platform 1)

Data model
(platform n)

Data model
(vendor 1)

Data model
(vendor m)

Information model

FIGURE 11.14

The concept of model mapping.

11.6 Essential Terminology for PBM Systems 329

330 CHAPTER 11 Policy-Based Network Management Fundamentals

standards (e.g., LDAP or X.500). The second tier of mapping accounts for the fact
that different vendors provide varying degrees of compliance with the standard. In
addition, some vendors provide features that are not yet standardized. This second
tier of mapping enables these differences to be normalized, so that different imple-
mentations of the same data model can better interoperate. Thus, our hierarchy
shows an information model standard being mapped to the appropriate data model
standard, from which various vendor-specifi c implementations are built.

DEN (defi ned in RFC 3198; modifi ed by DEN-ng)
RFC 3198 defi nes DEN as:

A data model that is the LDAP mapping of the Common Information Model
(CIM). Its goals are to enable the deployment and use of policy by starting with
common service and user concepts (defi ned in the information model), speci-
fying their mapping and storage in an LDAP-based repository, and using these
concepts in vendor- and device-independent policy rules.

This defi nition is wrong and misleading; the DEN specifi cation was defi ned as two
things:

■ An information model (as defi ned earlier).
■ A mapping to a specifi c data model that used the directory access protocol

(DAP; part of the ITU X.500 suite) or lightweight DAP (LDAP; defi ned by
the IETF) to access data stored in a directory.

Thus, we see that DEN is not just an LDAP mapping, and it is not solely a
mapping of CIM. CIM is not a pure information model by the preceding defi nition
because it contains elements of data models (e.g., keys and weak references,
which are both database concepts) that cause problems when mapping to various
types of data models. The correct defi nition of DEN is as follows:

DEN is two things. First, it is a specifi cation of an object-oriented information
model describing the elements and entities in a managed environment and how
they are related to each other. Second, it also specifi es a model mapping to a
format that can be stored in a directory that uses (L)DAP as its access protocol.

DEN-ng (defi ned in DEN-ng)
DEN-ng is the next version of the DEN standard. It is being constructed in the
TeleManagement Forum, not the DMTF, because it is very strongly tied to
the NGOSS architecture effort. In addition, DEN-ng, like DEN, is UML compliant.
The DMTF CIM is not UML compliant. Thus, it is easier to develop DEN-ng outside
of the DMTF DEN effort. The defi nition of DEN-ng is as follows:

DEN-ng is an object-oriented information model that describes the business and
system views of managed entities and their relationships. This defi nition is done
using UML and is strongly tied to the defi nition of new-generation operational
systems and software (NGOSS).

Because there was confusion regarding DEN being both a specifi cation for
building an information model and a data model, these efforts have been split
apart in DEN-ng. Thus, there is a DEN-ng information model and a set of DEN-ng
data models.

11.6.2 Main Worker Terms of Policy

This section contains a set of formal defi nitions for the policy-specifi c terms policy,
policy rule, policy group, policy condition, and policy action.

Policy (defi ned in RFC 3198; modifi ed by DEN-ng)
RFC 3198 defi nes policy in a very generic fashion as follows:

Policy can be defi ned from two perspectives:
■ A defi nite goal, course, or method of action to guide and determine present

and future decisions. “Policies” are implemented or executed within a par-
ticular context (such as policies defi ned within a business unit).

■ Policies as a set of rules to administer, manage, and control access to network
resources as described in RFC 3060.

Both perspectives of this defi nition are too generic to be useful. This defi nition
fails to account for the differences among business, system, and network policies.
For example, no difference is offered between a low-level queuing policy (to
control how network traffi c is conditioned) versus a high-level policy governing
what resources can be accessed as a function of how the user is logged on (e.g.,
intranet versus public Internet), time of day, and other factors.

There are more problems with this defi nition. Looking at the fi rst perspective,
it specifi cally avoids the use of the word “rule.” This means that no defi nitive
mechanism exists to defi ne, implement, and use policy. More important, the
“context” referred to in the fi rst perspective is not present in RFC 3060. Therefore,
it confl icts with the RFC that defi nes the policy information model in the fi rst
place. (Note that policy core information model extensions defi ned in RFC 3460
make mention of defi ning a “context” by using a role. I think that this is a misuse
of roles as defi ned in RFC 3060.)

A policy can be defi ned as follows:

A policy is a rule that can be used to change the behavior of a system.

The only thing lacking from this defi nition is that it is specifi c to changing behav-
ior. Let’s instead use the following defi nition:

Policy is a set of rules that are used to manage and control the changing and/or
maintaining of the state of one or more managed objects.

In this defi nition, “behavior” is replaced with “changing and/or maintaining of
the state.” This emphasizes the relation of policy to a management methodology;
in our case, a fi nite-state machine. The changing and/or maintaining of the state

11.6 Essential Terminology for PBM Systems 331

332 CHAPTER 11 Policy-Based Network Management Fundamentals

could indeed denote a behavioral change, but it does not have to. Hence, the
preceding defi nition is more fl exible.

The defi nition is infl uenced by the design of DEN and DEN-ng, which both use
a fi nite-state machine model. This is fundamental to the design of DEN-ng, which
consists of three sets of classes: to model the state, the changing of the state, and
policies to control when the state is being changed.

Policy Rule (defi ned in RFC 3198; modifi ed by DEN-ng)
RFC 3198 defi nes a policy rule as:

[A] basic building block of a policy-based system. It is the binding of a set of
actions to a set of conditions—where the conditions are evaluated to determine
whether the actions are performed.

This defi nition is somewhat obtuse. Furthermore, this defi nition is not accurate
enough for our purposes, because the actions are not bound to the conditions (as
implemented in RFC 3060, which is quoted in the defi nition). Rather, the actions
and conditions are both aggregated by the policy rule, and the actions are enabled
by the condition being satisfi ed. This was shown in Figure 11.11.

Furthermore, metadata contained in the policy rule itself defi nes how the dif-
ferent actions will be executed (e.g., in which specifi c order) and whether execu-
tion should continue if a problem is encountered. In other words, the policy rule
is an intelligent container that plays a vital role in determining how the events,
conditions, and actions all work together. This leads to the following revised
defi nition for a policy rule:

A policy rule is an intelligent container. It contains data that defi ne how the
policy rule is used in a managed environment as well as a specifi cation of
behavior that dictates how the managed entities that it applies to will interact.
The contained data are of four types: (1) data and metadata that defi ne the
semantics and behavior of the policy rule and the behavior that it imposes on
the rest of the system, (2) a set of events that can be used to trigger the evalu-
ation of the condition clause of a policy rule, (3) an aggregated set of policy
conditions, and (4) an aggregated set of policy actions.

In our usage, the conditions and actions each form clauses, and the action
clause is only executed if the condition clause is satisfi ed. Although many condi-
tions can exist in a condition clause, the end result of all such policy conditions
is to determine whether this policy rule is applicable. If applicable, then additional
logic residing in the policy rule container is used to determine which policy
actions are executed and how they are executed.

One or more events, or a combination of events, can be used to trigger the
evaluation of the policy condition. Similarly, many actions may exist in a condition
clause, and one or more of them will execute as a function of the logic contained
in the policy rule.

A simplifi ed picture of the DEN-ng PolicyRule has already been shown in
Figure 11.11.

Policy Group (defi ned in RFC 3198; modifi ed by DEN-ng)
RFC 3198 defi nes a policy group as:

[A]n abstraction in the Policy Core Information Model. It is a class representing
a container, aggregating either policy rules or other policy groups. It allows the
grouping of rules into a Policy, and the refi nement of high-level Policies to
lower-level or different (i.e., converted or translated) peer groups.

This defi nition should not be restricted to RFC 3060. Otherwise, interoperability
is impaired. In addition, the last part of the last sentence is wrong. PolicyGroup
classes do not cause refi nement or translation of policy abstraction levels; they
are used simply to coordinate the actions of separate policy rules. This results in
the following modifi ed defi nition of policy group:

A policy group is a container that can aggregate PolicyRule and/or Policy-
Group objects.

In DEN-ng and policy core information model extensions (PCIMe), a superclass
of PolicyGroup, called PolicySet, is defi ned. By defi ning a recursive aggregation
on PolicySet, both PolicyRule and PolicyGroup can inherit this relationship.
This also enables us to defi ne compound policy rules. Thus, a simplifi ed picture
of the DEN-ng PolicyGroup is shown in Figure 11.15.

PolicyGroup PolicyRule

PolicySet
0..n

0..1

containedPolicySets

FIGURE 11.15

The DEN-ng simplifi ed view of PolicyRule and PolicyGroup.

11.6 Essential Terminology for PBM Systems 333

334 CHAPTER 11 Policy-Based Network Management Fundamentals

Policy Condition (defi ned in RFC 3198; modifi ed by DEN-ng)
RFC 3198 defi nes a policy condition as:

[A] representation of the necessary state and/or prerequisites that defi ne
whether a policy rule’s actions should be performed. This representation need
not be completely specifi ed, but may be implicitly provided in an implementa-
tion or protocol. When the policy condition(s) associated with a policy rule
evaluate to true, then (subject to other considerations such as rule priorities
and decision strategies) the rule should be enforced.

The problem with this defi nition is its insistence that “this representation need
not be completely specifi ed.” The original thinking in the RFC was that part of
the representation would serve as a guide for implementation. However, this
makes interoperability impossible, as there is no single standard to tie together
different implementations. Another problem in the preceding defi nition is its lack
of specifi city.

The fi nal problem with this defi nition is that it does not say what happens
when multiple policy conditions are present. Although a simple policy rule may
only require a single policy condition, most policy rules need a set of policy
conditions that must be evaluated together. This is called a PolicyCondition
clause in DEN-ng.

Experience has shown that implementing the PolicyCondition clause as a
Boolean expression clause is simple and fl exible enough to handle most PBM
implementations. In this context, the task is to evaluate a Boolean expression to
see if the policy actions of the policy rule should be executed or not. As with the
nested rules, there can be complex conditions, which are conditions that are
composed of many individual condition clauses that are bound together. In such
cases, one policy condition in a PolicyCondition clause may need evaluation fi rst
for effi ciency reasons (i.e., if it fails, then there is no need to evaluate the other
condition clauses). The formal defi nition of a PolicyCondition clause is as
follows:

A PolicyCondition clause is an aggregation of individual policy conditions and
is treated as an atomic object that is aggregated by a PolicyRule. It is repre-
sented as a Boolean expression and defi nes the necessary state and/or prereq-
uisites that defi ne whether the actions aggregated by that same PolicyRule
should be performed. This is signifi ed when the PolicyCondition clause asso-
ciated with a PolicyRule evaluates to true.

A policy condition is typically associated with the occurrence of an event
(i.e., something signifi cant that has happened). The PBM system itself will
defi ne what events are of interest. Common examples include a user logging
onto the system, a link failing, and someone logging on to a router to change its
confi guration.

A policy condition is usually represented by an expression that typically con-
sists of three elements: a variable, an operator, and another variable or constant.

A simplifi ed view of the DEN-ng PolicyCondition class is shown in Figure
11.16. OCL expressions (such as the ordering of the PolicyConditions) have
been omitted for simplicity and so as to emphasize the three fundamental relation-
ships that affect PolicyConditions.

The recursive aggregation ContainedPolicyConditions will be used to
build compound PolicyConditions. The aggregation IsTriggeredBy defi nes the
set of PolicyEvents that can trigger the evaluation of the PolicyCondition.
This is associated to the PolicyRule using the PolicyConditionInPolicyRule
aggregation.

Policy Action (defi ned in RFC 3198; modifi ed by DEN-ng)
RFC 3198 defi nes a policy action as:

[A] defi nition of what is to be done to enforce a policy rule, when the conditions
of the rule are met. Policy actions may result in the execution of one or more
operations to affect and/or confi gure network traffi c and network resources.

The problem with the preceding defi nition is its use of the word “enforce.”
Because a policy rule is an aggregation of policy conditions and policy actions,
what exactly is being enforced?

Although some representations implicitly defi ne this, it is incorrect to abstract
all defi nitions of policy actions to have this form. For example, consider the simple
PolicyRule: “If traffi c originated from this range of IP addresses, mark it with this
DSCP.” It’s easy to see that “enforcing” this PolicyRule means that anytime
packets are detected with a particular range of source IP addresses, they should
be marked a special way (e.g., certain bits in the IP header should be changed to
a special value).

PolicyCondition
0..n

0..1

ContainedPolicyConditions

PolicyEventSet

PolicyRule

0..n 1..n

PolicyConditionInPolicyRule

0..n

1..n

IsTriggeredBy

FIGURE 11.16

The DEN-ng simplifi ed view of a PolicyCondition.

11.6 Essential Terminology for PBM Systems 335

336 CHAPTER 11 Policy-Based Network Management Fundamentals

Consider a policy that says: “Only relegate 30 percent of my core bandwidth
to streaming video applications.” How do you enforce this policy as it is currently
written? First, you have to defi ne what network elements are in the “core” of your
network, and then you have to defi ne which traffi c corresponds to “video stream-
ing” traffi c. But what happens when there is no video traffi c—does 30 percent of
your network remain idle?

The other problem with this defi nition is that the representation of policy in
RFC 3060 lacks the semantics and metadata required to enforce anything because
there is no specifi cation of what is to be enforced. (As a side note, we could not
get agreement in the working group about how to include a specifi cation of what
to enforce, which is why it is lacking. Vendor implementations played a large part
in removing semantics and metadata from the defi nition.)

The fi nal problem with this defi nition is that it does not say what happens
when multiple policy actions are present. Although a simple policy rule may only
defi ne a single policy action, most policy rules need a set of policy actions that
must be executed together. In DEN-ng, this is called a PolicyAction clause.

The formal defi nition of a PolicyAction clause is as follows:

A PolicyAction clause is an aggregation of individual policy actions and is
treated as an atomic object that is aggregated by a PolicyRule. It represents
the necessary actions that should be performed if the PolicyCondition clause
evaluates to true. These actions are applied to a set of managed objects and
have the effect of either maintaining an existing state, or transitioning to a new
state, of those managed objects.

Note that DEN-ng differentiates between executing a PolicyAction and
enforcing the results of that PolicyAction. This concept is missing in the IETF
and DMTF approaches.

A simplifi ed view of the DEN-ng PolicyAction class is shown in Figure 11.17.
OCL expressions (such as the ordering of the PolicyActions) have been omitted
for simplicity and to emphasize the two fundamental relationships that affect
PolicyActions.

The ContainedPolicyActions aggregation is used for defi ning nested
PolicyActions. The PolicyActionInPolicyRule aggregation is used to associate
a set of PolicyActions with a particular PolicyRule.

PolicyAction 0..n

0..1

ContainedPolicyActions

PolicyRule

0..n 1..n

PolicyActionInPolicyRule

FIGURE 11.17

The DEN-ng simplifi ed view of a PolicyAction.

11.6.3 Terms for Controlling Policy

This section contains a set of formal defi nitions for the policy-specifi c terms policy
confl ict, policy decision, policy server, PDP, and PEP.

Policy Confl ict (defi ned in RFC 3198; modifi ed by DEN-ng)
RFC 3198 states that a policy confl ict,

. . . occurs when the actions of two rules (that are both satisfi ed simultaneously)
contradict each other.

Although correct, this defi nition is terse. The following expands on this defi nition,
making its purpose clearer:

A policy confl ict occurs when the conditions of two or more policy rules that
apply to the same set of managed objects are simultaneously satisfi ed, but the
actions of two or more of these policy rules confl ict with each other.

Actions can confl ict with each other in several ways. For example, two actions
may generate two different values for an object. In general, confl icting actions
will cause confl icting states to be specifi ed for the same managed object.

Policy Decision (defi ned in RFC 3198; modifi ed by DEN-ng)
RFC 3198 defi nes a policy decision as follows:

[T]wo perspectives of “policy decision” exist:
■ A “process” perspective that deals with the evaluation of a policy rule’s con-

ditions.
■ A “result” perspective that deals with the actions for enforcement, when the

conditions of a policy rule are true.

The problem with the preceding defi nition is that it is overloading a single defi ni-
tion with two different meanings that arise from two different uses. Each of these
different meanings should be given its own defi nition, as follows:

A policy evaluation is the set of computations necessary to determine if the
PolicyCondition clause is satisfi ed.

A policy decision is the determination that one or more policy actions that
are aggregated by a policy rule should be applied to a set of managed objects.
These policy actions correspond to either maintaining the current state or tran-
sitioning to a new state of each of the managed objects that they are affecting.

Policy Server (defi ned in RFC 3198; modifi ed by DEN-ng)
RFC 3198 defi nes a policy server as:

[A] marketing term whose defi nition is imprecise. Originally, RFC 2573 that
defi ned a framework for policy-based admission control referenced a “policy
server.” As the RFC evolved, this term became more precise and known as the

11.6 Essential Terminology for PBM Systems 337

338 CHAPTER 11 Policy-Based Network Management Fundamentals

policy decision point (PDP). Today, the term is used in marketing and other
literature to refer specifi cally to a PDP or for any entity that uses/services
policy.

This defi nition needs further clarifi cation. Although it is an imprecise marketing
term, it should not be perceived as just a PDP. A “server” connotes more than just
requesting and providing decisions; it also implies a broader interaction with the
rest of the system.

As a bare minimum, the defi nition should be enhanced to include a PDP and
a PEP. (By the way, this was not agreed to in the IETF because of differing vendor
implementations, as some products were just PDPs and others combined the
notion of a PDP with a PEP, and both wanted to call their products a policy
server.)

This thinking is predicated on the IETF decision to defi ne a simple policy
system, as illustrated in Figure 11.18. The DMTF also uses this defi nition; however,
the TMF and DEN-ng do not for reasons that will soon become apparent.

There is more to a functioning PBM system than just these simple components.
Two examples include the tasks of detecting (let alone resolving) policy confl icts
and of translating policies to legacy entities that are not aware of policy. These
require functionality that is not present in a PDP or PEP. This is because, in the
most general case, confl ict detection between different technologies, such as QoS
and security, requires the PDP or PEP to be knowledgeable in each of those
domains. When you add to this the needs of different devices having different
programming models, a monolithic solution to confl ict detection and resolution
quickly becomes nonimplementable.

Therefore, a policy server needs to include these additional entities as a
minimum. This is clearly a much longer discussion and is covered in detail in the
Strassner book, Policy-Based Network Management. However, it is instructive to

Various protocols

Policy console

Policy decision point

Policy enforcement point

COPS, Telnet/CLI, SNMP. ...

LDAP

LDAP Policy
repository

FIGURE 11.18

The IETF/DMTF conceptual model of a policy-based system.

see the differences between what I think is a minimal specifi cation of a realistic
PBM system and the conceptual model shown in Figure 11.18. Therefore, Figure
11.19 shows my defi nition of a realistic PBM system.

Several important differences exist between Figures 11.18 and 11.19. The main
points of this architecture are as follows. First, this architecture defi nes PBM
systems as distributed systems, which means that all of the components of a PBM
system must communicate with each other. This can be accomplished in a variety
of ways. The fi gure uses a message bus; however, other methods, such as distrib-
uted communication using Jini, are also possible. Second, this architecture pro-
vides for three different types of confl ict detection: global, neighborhood
(inter-PDP), and local (intra-PDP). Global detection catches confl icts that are tech-
nology independent; inter-PDP detection catches confl icts between different tech-
nologies and/or vendors; and intra-PDP detection catches confl icts within a
particular device or family of devices (or, depending on the complexity of the
implementation, confl icts within particular functions of a device or device
family).

Furthermore, legacy devices may be unable to communicate with the PBM
system; they may use different protocols and/or object models and/or program-
ming mechanisms and may not have the ability to translate policy rules into their

Policy definition tool

Policy entry
console

Policy entry
API

Policy broker
(including validation and
conflict detection logic)

Policy rules and
associated data

Policy repository

Policy service

Security
policy server Multiple

types of
policy

servers for
multiple

technologies

Network QoS
policy server

Policy
controller

Proxy

Policy enforcement points

Policy decision
local to a

policy server

Policy decision
local to the

device

Coordination
within a policy

service

Global policy
decisions

FIGURE 11.19

The IETF/DMTF conceptual model of a policy-based system.

11.6 Essential Terminology for PBM Systems 339

340 CHAPTER 11 Policy-Based Network Management Fundamentals

own confi guration commands. (By the way, this gives rise to the defi nition
of a policy-unaware entity in the following section.) Therefore, a policy proxy is
used to translate PBM policy rules into legacy confi guration commands, such as
command-line interface (CLI).

Policy Decision Point (defi ned in RFC 3198; modifi ed by DEN-ng)
RFC 3198 defi nes a PDP as:

[A] logical entity that makes policy decisions for itself or for other network
elements that request such decisions.

The obvious problem with this defi nition is the explicit reference to a network
element. In addition, it does not defi ne what a “decision” is. This latter problem
is solved by the previous defi nition of a policy decision. Our defi nition of a PDP
is as:

An entity that makes policy decisions for itself or for other entities that request
such decisions.

Policy Execution Point (defi ned in RFC 3198; modifi ed by DEN-ng)
RFC 3198 defi nes PEP as:

A logical entity that enforces policy decisions.

This defi nition is terse and does not defi ne what is meant by “enforcement.” Our
defi nition of a PEP is as follows:

An entity that is used to verify that a prescribed set of policy actions have been
successfully executed on a set of policy targets. Note that DEN-ng differentiates
between enforcement and execution.

11.6.4 Policy Container Terms

This section contains a set of formal defi nitions for the policy-specifi c terms policy
domain and policy repository.

Policy Domain (defi ned in RFC 3198; modifi ed by DEN-ng)
RFC 3198 defi nes a policy domain as:

[A] collection of elements and services, and/or a portion of an Internet over
which a common and consistent set of policies are administered in a coordi-
nated fashion. This defi nition of a policy domain does not preclude multiple
sources of policy creation within an organization, but does require that the
resultant policies be coordinated.

To be honest, I’ve never understood this defi nition.
RFC 2474 defi nes the DiffServ fi elds for use in IPv4 and IPv6 headers and

doesn’t even contain the term policy domain. Second, a domain is used to contain

things, so that common operations can be executed against a group of the
contained entities. The preceding IETF defi nition mentions “coordinated fashion,”
but this isn’t necessarily true—domains are more about who than how. Third,
elements and services are limiting—what about managing the allocation of
common IP addresses, which are neither elements nor services?

The key to fi xing this defi nition is as follows:

■ A managed entity is what we want to collect in a domain—a managed
entity can be a network device, a network service, an IP address, a route,
or anything else that we need to manage in a common way.

■ The purpose of defi ning a domain is to defi ne a set of managed entities
that are all operated on in the same way. Although administration is
important, it is only one of a set of operations that are targeted on entities
in a domain.

Thus, the following defi nition of a policy domain is used instead:

A policy domain is a collection of managed entities that are operated on using
a set of policies. The policies are used to administer and control the set of
characteristics and behavior of these managed entities.

A simplifi ed diagram of the DEN-ng PolicyDomain is shown in Figure 11.20.

Policy Repository (defi ned in RFC 3198; modifi ed by DEN-ng)
RFC 3198 defi nes a policy repository from three perspectives:

■ A specifi c data store that holds policy rules, their conditions and actions,
and related policy data. A database or directory would be an example of a
store.

0..n

PolicyDomain

0..n

0..1

HasSubDomains

ManagedEntity

ManagementDomain0..n

ScopedManagedEntities

FIGURE 11.20

The DEN-ng simplifi ed view of a PolicyDomain.

11.6 Essential Terminology for PBM Systems 341

342 CHAPTER 11 Policy-Based Network Management Fundamentals

■ A logical container representing the administrative scope and naming of policy
rules, their conditions and actions, and related policy data. A QoS policy
domain would be an example of a container.

■ In RFC 3060, a more restrictive defi nition than the prior one exists. A policy
repository is a model abstraction representing an administratively defi ned,
logical container for reusable policy elements.

Again, the preceding defi nitions suffer from overloading different meanings into
a single defi nition.

The original defi nition of a policy repository was the third defi nition (the term
“model abstraction” should really be replaced by “object class”). The text stating
that it was “a more restrictive defi nition” was added to signify that the original
purpose of the policy repository was just for reusable elements. Vendors with
existing implementations, however, were using repositories for rule-specifi c
elements, and therefore the attempt to make a “better” (as in more fl exible) fi rst
defi nition. (Basically, a rule-specifi c component is one that conceptually is
“attached” to a particular policy and is not usable by other policy rules; a reusable
component is one that can be used by multiple rules.)

The problem with the fi rst defi nition is that it loses the essential semantic of
being an administratively defi ned container (as opposed to an entire data store,
as the RFC 3198 defi nition states). The second defi nition arose from some vendors
who believed that their implementations were providing extra semantics. That is,
a policy repository was more than just a container; it was a container that had a
specifi c purpose.

In real-life implementations, there is no reason that the second and third defi -
nitions cannot be combined. There is also no reason that a policy repository be
restricted to a particular type of object (reusable or rule specifi c). This allows us
to ignore the fi rst defi nition, because it now represents a subset of the second
and third defi nitions. This leads to the following defi nition:

A policy repository is an administratively defi ned logical container that is used
to hold policy information.

For the purposes of this defi nition:

■ “Administratively defi ned” means that it resides in a single policy domain.
■ “Logical container” means that it may be implemented as either a separate

data store or a special area of a data store that is used expressly to contain
policy information.

■ “Policy information” means policy rules and groups, their constituent
elements, and related data that may be used in the evaluation and/or
execution of policy conditions and actions.

A simplifi ed view of a DEN-ng PolicyRepository is shown in Figure 11.21.
A PolicyRepository is subclassed from Collection because a Collection

provides the necessary semantics to iterate over, group, and select sets of entities

that are residing in the PolicyRepository. In Figure 11.21, the Collected
Entities aggregation enables different types of ManagedEntities to be placed in
a PolicyRepository. Sets of PolicyRepositories can be defi ned as being
contained in a particular PolicyDomain using the PolicyRepositoryInPolicy
Domain aggregation. This enables different policies to be applied to a particular
PolicyRepository.

11.6.5 Terms Defi ning Roles, Policy Subjects,
and Policy Targets

This section contains a set of formal defi nitions for the terms role and role com-
bination, as well as policy subject and policy target.

Role (defi ned in RFC 3198; modifi ed by DEN-ng)
This is a diffi cult concept. The Policy Framework working group wanted to con-
strain the concept of a role to an attribute, per the following defi nition from RFC
3198:

Role is defi ned from three perspectives:
■ A business position or function, to which people and logical entities are

assigned.
■ The labeled endpoints of a Unifi ed Modeling Language association. . .
■ An administratively specifi ed characteristic of a managed element (e.g.,

an interface). It is a selector for policy rules and Provisioning Classes (PRCs)
to determine the applicability of the rule/PRC to a particular managed
element.

Only the third defi nition (roles as selectors of policy) is directly related to the
management of network policy. However, the fi rst defi nition (roles as business
positions and functions) may be referenced in policy conditions and actions.

PolicyDomainManagedEntity

Collection 1

0..n

CollectedEntities

0..n

0..1

HasSubDomains

PolicyRepository

0..n
1

PolicyRepositoryInPolicyDomain

FIGURE 11.21

The DEN-ng simplifi ed view of a PolicyRepository.

11.6 Essential Terminology for PBM Systems 343

344 CHAPTER 11 Policy-Based Network Management Fundamentals

This defi nition is confusing, because it overloads different meanings and uses
into one word. Furthermore, it completely ignores the existence of the role object
pattern. This design pattern is used in DEN-ng and in the TMF SID modeling group.
Thus, this defi nition needs clarifi cation.

Looking at the third defi nition from RFC 3198, we see that a role as far as the
IETF and DMTF are concerned is nothing more than an attribute. Thus, we need
to differentiate between the use of the role object pattern and the role attribute.
The role object pattern is used when different abstractions of the same entity (e.g.,
two different types of people) are required. Rather than having one large “bloated”
class that contains different attributes, methods, and relationships corresponding
to the different abstractions, the role object pattern defi nes an aggregate object
that consists of a “core” object to which separate “role” objects are dynamically
attached and removed from as needed (Figure 11.22).

An important benefi t of this pattern is that different roles can be defi ned to
suit different clients’ needs. Object interfaces are kept pure and simple because

Component

Attribute-1

operation-10
addRole(Spec)
getRole(Spec)
hasRole(Spec)
removeRole(Spec)

ComponentRole

Attribute-1

operation-10
addRole(Spec)
getRole(Spec)
hasRole(Spec)
removeRole(Spec)

ComponentCore

Attribute-1
State
operation-10
addRole(Spec)
getRole(Spec)
hasRole(Spec)
removeRole(Spec)

ComponentRoleA

Attribute-1
newState

operation-10
addRole(Spec)
getRole(Spec)
hasRole(Spec)
removeRole(Spec)
newOperation()

ConcreteRoleB

Attribute-1
anothernewState

operation-10
addRole(Spec)
getRole(Spec)
hasRole(Spec)
removeRole(Spec)
differentOperation()

roles

implements operations

FIGURE 11.22

The structure of the role object pattern.

each interface can be optimized to serve the needs of particular clients. The use
of the role object pattern in DEN-ng and in the TMF SID group is explained in
more detail in Policy-Based Network Management by Strassner.

One obvious way to differentiate between the role object pattern and the role
attribute is to qualify their usage with different names and to avoid using the term
role unless its meaning is unambiguous. Therefore, the following terms and defi ni-
tions are proposed:

■ A role attribute is a fundamental characteristic of an object that is used to
defi ne the purpose or function of that object.

■ A role object pattern is as an aggregate set of objects that enable a
component object to be adapted to different needs through transparently
attached role objects.

■ A role object is an object that is not meant to stand on its own; rather, it
is meant to supply a combination of common and unique functionality
that can augment the basic defi nition of another object. The unique
functionality may be supplied in the form of additional attributes,
methods, and/or relationships (note that this is a characteristic of DEN-ng
and the work in the SID).

In terms of quantifying the semantics of roles, the following defi nitions are
used:

■ A role selector is a means of grouping together a set of objects, so that a
set of policies can be applied to them.

■ A role behavior is a means of explicitly defi ning behavior that is expected
of one or more objects.

Finally, we have teased apart the essence of using a role as an attribute—some-
times it is used to group objects together for operating on them, and sometimes
it is used for specifying behavior. Note that DEN-ng uses role in this object pattern
sense by default, since this provides the greatest fl exibility and extensibility.

Role Combination (defi ned in RFC 3198; modifi ed by DEN-ng)
RFC 3198 defi nes a role combination as:

[A] lexicographically ordered set of roles that characterize managed elements
and indicate the applicability of policy rules. . . . A policy system uses the set
of roles reported by the managed element to determine the correct rules . . . to
be sent for enforcement. That determination may examine all applicable policy
rules identifi ed by the role combination, its sub-combinations, and the indi-
vidual roles in the combination. The fi nal set of rules . . . for enforcement are
defi ned by the policy system, as appropriate for the specifi ed role combination
of the managed element.

There is little use in addressing this defi nition in detail, as we have already decided
not to use “role” without a qualifi er and because we have changed the semantics
of roles as defi ned in RFC 3198.

11.6 Essential Terminology for PBM Systems 345

346 CHAPTER 11 Policy-Based Network Management Fundamentals

The essence of this defi nition, however, is the ability to combine roles in some
meaningful way. For example, we might have the roles “edge interface,” “core
interface,” “Ethernet interface,” and “OC-48 interface.” It would be benefi cial to
be able to differentiate between ports on a router in the core of the network that
carry Ethernet traffi c and ports on that same router that carry OC-48 traffi c. By
allowing a role selector to contain more than one attribute value, we achieve this.
(The same benefi cial effect can be achieved for allowing a role behavior to specify
more than one type of behavior, but that gets more complicated.)

However, the “devil is in the details.” In the preceding example, what objects
get selected by the combination of the “core interface” and “OC-48” roles—only
those objects that contain both roles or all objects that contain either one (or
both) of the roles? The IETF decided that (quoting from RFC 3060), “the selection
process for a role combination chooses policies associated with the combination
itself, policies associated with each of its sub-combinations, and policies associated
with each of the individual roles in the role combination.” In other words, the
“kitchen sink.”

This is simply too general to be useful. If the purpose of the role selector is to
indeed select objects, then it stands to reason that fewer is better. This yields the
following slight modifi cation to the defi nition of role selector:

A role selector is a means of grouping together a set of objects, so that a set of
policies can be applied to them. Multiple role selectors can be combined to
select a set of objects, in which case only those objects that contain all attributes
specifi ed by the role selector will be selected.

However, the preceding changes should not be applied to the defi nition of role
behavior, because the crispness of the role behavior specifi cation will then be
lost. Practice has shown that combining multiple behavioral specifi cations into a
single specifi cation makes implementation very diffi cult, if not impossible.

The defi nitions of role selector and role behavior give rise to the defi nitions of
policy subject and policy target.

Policy Subject (defi ned in RFC 3198; modifi ed by DEN-ng)
Policy subject is defi ned in RFC 3198 as:

[A]n entity, or collection of entities, which originates a request, and is verifi ed
as authorized/not authorized to perform that request.

There are several problems with this defi nition.
Although originating a policy information (or decision) request is certainly

interesting, the subject of a policy is the identifi cation of the theme, or focus,
of the policy. Therefore, the subject of a policy will do more than simply
request information. Furthermore, whether or not a subject is authorized to
perform an operation (such as requesting information) is completely separate from
the act of performing the operation. Therefore, we’ll use the following defi nition
instead:

A policy subject is a set of entities that is the focus of the policy. The subject
can make policy decision and information requests, and it can direct policies
to be enforced at a set of policy targets.

Policy Target (defi ned in RFC 3198; modifi ed by DEN-ng)
Policy target is defi ned in RFC 3198 is defi ned as:

[A]n entity, or collection of entities, which is affected by a policy. For example,
the “targets” of a policy to reconfi gure a network device are the individual
services that are updated and confi gured.

There are also several problems with this defi nition.
First, the term target implies an object that a set of operations is being directed

at, which is lacking in the preceding defi nition. Second, the example is confusing
at best. To reconfi gure a network device, its confi guration must change, which
means that one or more interfaces on the device will be changed. Services may
be changed, but this is a second-order effect that is a direct function of the chang-
ing of the confi guration of the device interfaces. In other words, in the preceding
example, the “target” should be the confi guration that is applied to the set of
interfaces over which the services run. Therefore, we will use the following defi -
nition instead:

A policy target is a set of entities that a set of policies will be applied to. The
objective of applying policy is to either maintain the current state of the policy
target or to transition the policy target to a new state.

With respect to the preceding example on reconfi guration, a policy target
could be a device (e.g., power it on), a device interface (e.g., check if it is up or
down), or a device confi guration (as in the preceding example). The new defi ni-
tion is able to link in the notion of using a fi nite-state machine to control the
behavior of the policy target—this is one of the foundations of PBM.

11.7 NEW TERMINOLOGY NOT COVERED IN RFC 3198
This section will defi ne additional terminology that is not covered in RFC 3198,
but which is important for a clear understanding of the design and implementation
of PBM systems.

11.7.1 Capabilities

One diffi culty in providing an end-to-end service is that the path that traffi c will
take usually traverses different devices. These devices often use different means
to provide a common function, such as the mechanisms used to condition traffi c
(e.g., classifi cation, dropping, queuing, and so forth). Unless these mechanisms
are abstracted into a common layer, they cannot be controlled in a unifi ed manner.
DEN-ng uses the term capabilities to describe this abstraction:

11.7 New Terminology Not Covered in RFC 3198 347

348 CHAPTER 11 Policy-Based Network Management Fundamentals

The capabilities of a device represent the set of features that the device sup-
ports that can be harnessed to perform a service. This set of capabilities is
independent of any particular protocol, repository, or programming mecha-
nism, and enables different devices having different implementation mecha-
nisms to coordinate their features to apply the equivalent function.

An example will help clarify this concept. Imagine a scenario that defi nes three
different classes of service (CoS). Traffi c is fl owing through two routers made by
two different vendors. Each router uses different mechanisms to implement
various traffi c-conditioning functions, such as dropping and queuing, which are
required by each CoS. The notion of capabilities enables the different high-level
features of each device to be abstracted from their low-level implementations.
This in turn allows the high-level abstraction of CoS to be understood by each
router.

Furthermore, each router is free to use different low-level mechanisms to
do its part in conditioning the traffi c in accordance with the high-level CoS. The
end result is consistent traffi c conditioning according to the capabilities of each
device, even though different commands and mechanisms are being used. This
powerful concept is crucial to providing end-to-end service in heterogeneous
environments.

11.7.2 Constraints

Another important concept is constraints, which DEN-ng defi nes as follows:

Constraints represent invariant conditions that must hold for the system being
modeled. These conditions do not have side effects and can not alter the state
of the system that they are applied to. Rather, they represent limitations and/or
restrictions on using certain aspects of the system.

Although constraints are not policies, there are many similarities between them.
Figure 11.23 illustrates these differences.

The difference is subtle, yet important. Constraints represent predefi ned system
restrictions or limitations that do not change over time. Constraints are expressions

Functionality Policy Constraint

Predefined Almost always is Can be

Triggering mechanism PolicyEvent PolicyEvent or statically defined

Invariance Different policies apply at
different times

Constraint applies once

Object Yes No

FIGURE 11.23

High-level comparison between DEN-ng policy and constraint functionality.

(usually Boolean) that restrict or limit the operation or behavior of the managed
entity that they apply to. Because constraints are expressions, they can be triggered
statically or dynamically. In contrast, policies are objects that are evaluated, which
can give different results at different times in response to different conditions. Poli-
cies can use constraints, but constraints normally do not use policies.

11.7.3 Policy-Aware Entity

It is important to be able to distinguish between entities that can operate using
policies versus those that do not. That represents one of the fi rst design decisions
in a PBM system: Will policy be used to control all, or just some, of the objects
in the system? The defi nition of a policy-aware entity is as follows:

A policy-aware entity is one that can understand and use policies to make
present and future decisions. These decisions are used to manage and control
the changing and/or maintaining of the state of one or more managed objects
that are the targets of the policy.

11.7.4 Policy-Unaware Entity

The defi nition of a policy-unaware entity is as follows:

A policy-unaware entity is one that can neither understand nor use policies to
make present and future decisions. A policy-unaware entity cannot use policies
to manage and control the changing and/or maintaining of the state of one or
more managed objects.

11.7.5 Policy-Enabled System

Similarly, it is important to be able to distinguish between systems that can
operate using policies versus those that do not. The defi nition of a policy-enabled
system is:

A policy-enabled system is one that can operate using policies to make present
and future decisions. These decisions are used to manage and control the chang-
ing and/or maintaining of the state of one or more managed objects that are
the targets of the policy.

A policy-enabled system can be explicitly disabled from processing policies.

11.7.6 Reusable and Rule-Specifi c Policy Components

Policy rules may consist of several components, not just conditions and actions.
Reusable policy components are defi ned as follows:

A reusable policy component is one that can be associated with multiple policy
rules. This implies that reusable policy components are stored in a different
location than the policy rules that are using them.

11.7 New Terminology Not Covered in RFC 3198 349

350 CHAPTER 11 Policy-Based Network Management Fundamentals

Similarly, the components of a policy rule that are designed to be used by just a
single policy rule are called rule-specifi c policy components and are defi ned as
follows:

A rule-specifi c policy component is one that is only associated with a single
policy rule.

The difference between a rule-specifi c policy component and a reusable one
is based solely on the intent of the policy administrator, not on how many policy
rules are using a policy component. This means two things:

1. There is no limitation in functionality between what a reusable policy
component and a rule-specifi c policy component can be used to
represent.

2. A policy component that a policy administrator has created to be reusable
may at some point in time be associated with exactly one policy rule,
without thereby becoming a rule-specifi c policy component.

Figure 11.24 provides a simple example of the difference between reusable and
rule-specifi c policy rules.

In DEN-ng, many different types of ManagedEntities can be placed in a
PolicyRepository. This enables these entities to be used by multiple containing
entities. In Figure 11.24, both PolicyRuleA and PolicyRuleB are reusable policy

PolicyRepository

PolicyRuleA PolicyRuleB PolicyRuleC

PolicyAction1 PolicyAction2

Reusable PolicyRules Rule-specific
PolicyRule

FIGURE 11.24

Conceptual difference between reusable and rule-specifi c policies.

rules, because they both reuse at least one reusable PolicyRepository entity.
PolicyRuleC is a rule-specifi c policy rule because it does not use any reusable
entities.

A rule-specifi c policy rule can be thought of as an object that has embedded
in it all of the information (e.g., the PolicyCondition and PolicyAction clauses)
that it needs to be used. Although this clearly makes it nonreusable, it just as
clearly enables it to be accessed more effi ciently (because it is in effect a single
object). In contrast, a reusable policy rule requires a set of access operations (one
for the policy rule itself and one for each reusable component). However, the
components are all able to be used by other entities.

11.8 DEFINITION OF POLICY-BASED MANAGEMENT
PBM controls the state of the system and objects within the system using policies.
Control is implemented using a management model, such as a fi nite-state machine.
It includes installing and deleting policy rules as well as monitoring system per-
formance to ensure that the installed policies are working correctly. PBM is con-
cerned with the overall behavior of the system and adjusts the policies that are in
effect based on how well the system is achieving its policy goals.

11.9 DEFINITION OF POLICY-BASED NETWORK MANAGEMENT
Policy-based network management is an area of network management that treats
the system being managed as a policy-enabled system. As in a PBM system, policies
are used to control the state of objects within a network (such as the ports on a
router). This includes installing and deleting policy rules in network devices and
monitoring network performance related to the installed policy. PBNM is specifi -
cally concerned with the overall behavior of the network (e.g., the end-to-end or
edge-to-edge services provided by the network) and uses policy to provide con-
sistent and predictable network services across the entire network, not just on a
device-by-device basis. As such, PBNM treats the network as a provider of intel-
ligent services and assigns these services based on the needs of clients using the
network.

11.10 HIGH-LEVEL REQUIREMENTS OF A PBNM SYSTEM
IT administrators are searching for tools to better manage their service offerings.
PBNM systems offer the promise of being able to better manage large and dynamic
environments. The basic approaches to building such tools form the basic require-
ments for a PBNM system and are discussed in this section.

11.10 High-Level Requirements of a PBNM System 351

352 CHAPTER 11 Policy-Based Network Management Fundamentals

11.10.1 Controlling Access to Shared Resources

Data traffi c continues to grow, and the number of users keeps on increasing.
Furthermore, applications are also increasing in complexity, and they demand
different services from the network. The issue is no longer bandwidth; rather, the
real issue is which applications get priority usage of shared system resources. For
example, imagine three classes of service (CoS) that govern, at a high level, which
applications get preferred access to network resources. Different applications are
assigned to each CoS, as shown in Figure 11.25.

Each CoS (Gold, Silver, and Bronze) has its own set of services. Some of the
services represent new functionality that is only available at that (and higher)
levels of service (e.g., ERP and SAP applications). Other services, such as Data and
Web, are available at all levels—the difference is quality. For example, in a TCP-
based environment, the lowest CoS would have the highest probability of drop-
ping packets, which signals some types of sending applications to slow down their
transmission rates; similarly, the highest CoS would have the lowest-drop probabil-
ity. These drop probabilities work together to tell the router to drop traffi c belong-
ing to a lower CoS when there is congestion.

Sharing the defi nition of CoS and the specifi cations that govern router behavior
(e.g., through DiffServ), enables these relationships to be more easily implemented
in a consistent fashion. Abstracting the capabilities of each router enables these
defi nitions to be built in a vendor- and technology-independent fashion. The set
of model mappings that transform these vendor- and technology-independent

There are three differences between Gold, Silver, and Bronze Service:

Functionality

Quality

Gold Services are treated better collectively than Silver Services, which are treated better
collectively than Bronze Services

Gold Service

SAP

ERP

Data

Web

Silver Service

ERP

Data

Web

Bronze Service

Data

Web

FIGURE 11.25

Different classes of service for prioritizing application traffi c.

specifi cations to (ultimately) a set of device-specifi c confi guration commands can
then be done in a structured fashion using different model mappings (as will be
shown later in Figure 11.30).

Another advantage in this grouping is that all of the applications in Gold service
will receive “better” service than similar applications in Silver and Bronze services.
“Better” takes many forms, such as more bandwidth, less jitter, and optimized
costs. Each metric requires preferential access to different types of shared resources
in the network. Without the ability to abstract different services into different
CoSs, this becomes much more diffi cult to implement consistently. Thus, the
requirement is for a set of abstractions, structured as a set of models, to represent
the translation of business goals to device confi gurations.

11.10.2 Integrating the Business and Networking Worlds

One current problem with network management is that it is not linked to the
business processes that run the network. For example, people should not be
allowed to Telnet into a router and start changing its confi guration! This violates
fundamental business processes and makes it very diffi cult for the overall state of
the network to be tracked and updated. For every confi guration, regardless of
how large or how small, defi ned processes govern how a confi guration fi le is built,
who must approve it, when it can be scheduled for installation, and what to do
if something goes wrong. Ultimately, the business and operational policies that
govern the construction and deployment of confi guration changes are more
important than the confi guration changes themselves!

Process is everything. The network is not a “fat, dumb pipe” that is composed
of individual interfaces; businesses do not operate or sell interfaces! Businesses
operate and manage services according to the priority and contractual obligations
that the business enters into. This mandates intelligent processes that can manage
the rich functionality of your network and ensure that changes to your network
devices follow approved processes.

This philosophy can be recursively applied to different types of services. Specifi -
cally, many processes are associated with the management of a service. In the DEN-ng
model, there is a difference between a customer-facing service and a resource-facing
service. A good example of a customer-facing service is an RFC 4364 (i.e., RFC 2547-
bis) VPN, which is a type of virtual private network (VPN). A VPN is a private network
(e.g., a network that ensures confi dential communications) that is constructed
within a larger public network, where “virtual” means that the private network has
no physical counterpart and is in reality a virtual connection.

This service is termed a customer-facing service in DEN-ng because the cus-
tomer is explicitly aware of and can purchase such a service. In contrast, a
resource-facing service is one that the customer is not explicitly aware of (and
hence cannot purchase), but nevertheless is required for the proper operation of
the customer-facing service. Resource-facing services include protocols, such as

11.10 High-Level Requirements of a PBNM System 353

354 CHAPTER 11 Policy-Based Network Management Fundamentals

BGP or OSPF. Customers buy VPN services and are not interested in the subser-
vices that are used to build up the customer-facing service. The informal model
shown in Figure 11.26 refl ects this.

The “simple things” that we often take for granted, such as corporate intranet
connectivity using a VPN, can be quite complicated to manage. Furthermore, if
business processes are used to manage complicated networking concepts, it is
imperative that scalable, extensible, structured management approaches, such as
PBNM, be used. The requirement—integrating the business and networking
worlds—is achieved by using an information model to represent the entities to
be managed and by using policy to control their management. Specifi cally, PBNM
systems that use an information model with policy enable the different business
rules that govern how a confi guration change is constructed, approved, installed,
and verifi ed to drive network and confi guration management. This enables
business rules to drive service activation, making the network more responsive to
business needs.

11.11 USING MODELING TO SOLVE INFORMATION OVERLOAD
Information overload comes in many forms. Two of them are the sheer increase
in the number of entities to be managed, and the increase in the complexity of
the solution to be managed. The solution to both of these problems is to use an
information model to provide a set of abstractions to simplify the differences in
the entities being managed.

RIP OSPF EIGRP

LDPService RSVPService

BGPService IGP

2547bisVPNService

ContainsBGP

ContainsIGP

RouteControlService

ContainsMPLS

Uses

MPLSService

FIGURE 11.26

Different services in an RFC 4364 (RFC 2547-bis) VPN service hierarchy.

11.11.1 Managing an Increased Number of Devices

The soaring demand for advanced IP services is leading service providers and
enterprises to build IP backbones as fast as they can. Recent studies indicate that
enterprise IP traffi c (e.g., text, images, video, and audio) is doubling every year.
In fact, at the time of this writing, more than 50,000 terabytes of IP traffi c are
created around the world every day, driving the demand for responsive data
networks.

However, it is not just this sheer demand in moving data that is increasing the
number of devices. Different data require very different types of traffi c condition-
ing (i.e., behavior) in the network to provide appropriate quality, responsiveness,
and other metrics that guarantee a good end-user experience. Figure 11.27 shows
that different types of traffi c require different types of conditioning. This is because
they are sensitive to different characteristics in how data are transmitted.

Most companies built out separate networks to support these diverse needs.
People then realized that all of the different costs in running separate networks
outweighed the benefi ts of having separate networks. The lack of control means
increased costs, because different networks require different protocols and man-
agement tools to confi gure devices. Reliability and availability suffered, because
the overall reliability (and availability) of a system is the product of the reliability
(and availability) of each of its individual components. Furthermore, it became
increasingly problematic to fi nd qualifi ed people to run the different networks.
Fundamentally, therefore, lack of control means lack of service.

Convergence is the coalescing of separate voice, data, and video networks onto
a single (IP) network. Although the number of devices does not necessarily
decrease, the number of management tools and protocols should decrease. This
is in spite of the proliferation of different device-specifi c functions. For conver-

Bandwidth

Random drop sensitive

Delay sensitive

Jitter sensitive High

High

Low

Low

Low

High

Low
Low to
moderate

Moderate
to high

Moderate
to high

Low to
moderate

Moderate

Voice FTP
ERP and

mission critical

FIGURE 11.27

Traffi c characteristics are not all the same.

11.11 Using Modeling to Solve Information Overload 355

356 CHAPTER 11 Policy-Based Network Management Fundamentals

gence to work, we must be able to abstract the differences among these different
tools, protocols, and device functions and instead provide a unifi ed method of
provisioning and service activation. Thus, the requirement is for a set of informa-
tion models to abstract the differences in heterogeneous devices, so that their
capabilities can be more easily harnessed to support different services.

11.11.2 Managing the Proliferation of Device-Specifi c Functions

The combination of more users and more sophisticated applications necessitates
more sophisticated handling of traffi c in networks. Network vendors have
responded with more features and functions, which have dramatically increased
the complexity of managing and programming network devices. Device confi gura-
tions used to be relatively straightforward and required hundreds of lines—now
they are very complex and can be thousands of lines or much more.

From a modeling point of view, this can be characterized (and normalized) as
increasing the number of capabilities that devices have. These increased capa-
bilities are needed because of the integration of different applications and different
users, each of which (in general) have different needs and therefore have spawned
new services. These new network services cause a problem, because each new
service has its own management approach, which usually requires new com-
mands, new protocols, and new ways to program the service. This causes two
immediate problems: (1) these new features and services must interoperate (or at
the least, peacefully coexist) with existing features and services and (2) each of
these new features and services are implemented in proprietary ways. Even if
there is a standard that is produced to govern the service (e.g., RFC 4364, which
specifi es a particular type of VPN), most vendors support this new standard in
either a proprietary (that is not necessarily interoperable) manner or by combining
support for it with other new features.

This new service will require new management tools, which has placed a ter-
rible burden on IT administrators who must learn each of these new tools and
programming models to manage the environment. This causes the IT administrator
to duplicate the actions used to confi gure and/or manage devices on a vendor-by-
vendor basis, because these new services require new programming and manage-
ment methods. Worse, when companies acquire or merge with other companies,
the resulting products act differently and are often programmed differently, despite
having the same vendor label. I have used networking as an exemplar—this
problem exists not just for networking, but for just about anything an IT admin-
istrator may need to confi gure and manage.

The solution is to build a set of common information models that can represent
the capabilities of different products of multiple vendors. We cannot stop vendors
from implementing new functions in proprietary ways nor would we want to. We
can model these new functions using a consistent representation. This enables
different functions and different implementations of the same function to be cat-
egorized (i.e., placed in a class hierarchy), thereby facilitating their comparison

and integration. This in turn lets us use the appropriate mechanism or feature
from each device to build an end-to-end service.

For example, consider traffi c fl owing through two routers. One is “DiffServ-
aware,” which classifi es traffi c using different DSCPs. The other is not DiffServ-
aware, and it classifi es traffi c using different settings of the ToS byte. These two
different implementations of the same function—classifi cation—use different
mechanisms to communicate the result. End-to-end management is greatly facili-
tated by having a model that identifi es these two different markings as two imple-
mentations of the same function. This enables a mapping to be defi ned between
the values of the ToS byte and equivalent values in the DSCP. Once this mapping
is defi ned, it is possible to build an end-to-end service that has common semantics
supported by different mechanisms. Thus, the requirement is for a set of device-
specifi c functions to be modeled in a uniform manner, so that business rules
can be used to defi ne how each different device function can be used to provide
the appropriate type and/or level of service.

11.11.3 Using Models as Part of the PBNM Process

By itself, an information model is not enough to solve this problem. The informa-
tion model will describe the characteristics and behavior of managed entities.
However, this only defi nes the current state of an object. We need a fi nite-state
machine that lets us model the system as a closed-loop system. Thus, we need
classes to model the current state, classes to model the changing of the state, and
classes to control when the state can be changed.

Policy is the mechanism to control when and how the state is changed. Policy
will provide two essential benefi ts in the management of heterogeneous network
devices:

1. Overall simplifi cation of the management process through the use of a
closed-loop system.

2. Automating what is currently done manually and improving consistency
of confi guration changes in the process.

The fi rst benefi t implies the use of a layered information model (i.e., a set of
information models, each focused on a particular management domain, that work
together to provide a single, unifi ed, cohesive view of the managed environment).
Examples of different layers are the business, administrative, system (device-
independent), and other layers. This point addresses the holistic nature of manage-
ment and recognizes the fact that managing a service is more than just taking fault
or performance measurements.

The second benefi t recognizes that to deploy a confi guration change, multiple
processes need to occur in a specifi c order. The notion of one or more workfl ow
processes can be used to control the different processes of approving the
confi guration, installing it, and verifying that the installation was successful.
This is made even more diffi cult by realizing that workfl ow processes can be

11.11 Using Modeling to Solve Information Overload 357

358 CHAPTER 11 Policy-Based Network Management Fundamentals

complicated. That is why two things are needed. First, a set of different models
(e.g., information models, activity and sequence diagrams, and so forth) must be
used to cooperatively specify what the workfl ow should do and how it should be
managed. Second, we need the ability for workfl ows to contain workfl ows, so
that different processes that have different execution patterns can have their own
workfl ows, yet still be bound within a higher-level process (Figure 11.28).

This shows one master workfl ow, called confi guration management, which
has two subordinate workfl ows: construct confi guration changes and deploy con-
fi guration changes. The former is an atomic workfl ow, whereas the latter is com-
posed of three subordinate workfl ows. This fl exibility is critical for modeling the
different subprocesses involved in managing the confi guration change process.

Policy controls the different management processes that are represented by
workfl ows. The workfl ow encapsulates the set of managed entities that must
be affected to accomplish a given task. The goal of automating confi guration man-
agement cannot happen until these different subprocesses are also automated.
Policy, therefore, gives us an extensible vehicle to control what happens when and
how.

Thus, an information model should be used to represent not just entities, such
as routers, services, and users, but also policies. If policies are an integral part of
the information model, we can use them to control when and which managed
entities are managed and how they are managed.

11.11.4 Sharing and Reuse of Data

Operational support systems (OSSs) are commonly built using best-of-breed prod-
ucts that provide solutions for different functions needed by the OSS. For example,
an OSS may consist of one application for fault and performance measurement,
another application for billing, and yet another application for confi guration man-
agement and service activation.

Using a single common model provides two important benefi ts. First, it lets
multiple applications share and reuse the same data. An example of this is using the

Configuration management workflow

Construct
configuration

changes workflow
Deploy configuration changes workflow

Approval
workflow

Installation
workflow

Validation
workflow

FIGURE 11.28

Workfl ows within workfl ows.

output of a discovery application to feed an inventory application to dynamically
catalog the devices that are currently operational. Second, it enables processes to
be built to do a function once and to apply that function in different applications
under different contexts. Continuing the preceding example, other applications
(e.g., confi guration and service activation) could also use the output of the discov-
ery application as input for different processes. Thus, the requirement is for a set
of common information to be used to represent common functions, enabling
different applications to share and reuse common information.

11.11.5 Interfacing with Different Constituents

Most systems defi ne a policy as a single entity; this is incorrect. For example, there
are policies to represent business rules, and policies to represent confi guring a
feature of a device. There is little in common with these two ends of the policy
continuum, because they use different grammars to express their function and
because they are used by different constituencies. However, they are in reality
different views of the same policy. This is shown in Figure 11.29.

Each view is optimized for a different type of user who needs and/or uses
slightly different information. For example, the business user wants service level
agreement (SLA) information and is not interested in the type of queuing that will
be used. Conversely, the network administrator may want to develop CLI com-
mands to program the device and may need to have a completely different repre-
sentation of the policy to develop the queuing CLI commands. For now, it is
suffi cient to realize that this is indeed the case.

Business view: SLAs, processes, guidelines, and goals

System view: Device- and techology-independent operation

Network view: Device-independent, technology-specific operation

Device view: Device- and technology-specific operation

Instance view: Device-specific MIBs, PIBs, CLI, etc. implementation

FIGURE 11.29

The policy continuum.

11.11 Using Modeling to Solve Information Overload 359

360 CHAPTER 11 Policy-Based Network Management Fundamentals

Thus, the requirement is for policy to be treated as a continuum, where dif-
ferent policies take different forms and address the needs of different users.
Unless there is an information model that can be used to relate these different
forms of policy to each other, it becomes diffi cult (if not impossible) to defi ne a
set of mappings that transform the data between each type of policy in the con-
tinuum. This is one of the cornerstones of the DEN-ng policy model. Specifi cally,
it provides a layered set of policies with different levels of abstractions and model
mappings to translate between them.

11.11.6 Interfacing with Devices and EMSs

Traditionally, device confi gurations were changed and managed using element
management systems (EMSs). The conceptual model of the PBNM system shown
in Figure 11.19 can either replace or augment this function.

This decision depends on how integral policy management is to your business
and application. A gradual introduction of PBNM systems could be accomplished
by having them control one or more aspects of device confi guration management
(e.g., control the confi guring of DiffServ support) or perhaps defi ne different IP
address pools and enforce how IP addresses are allocated.

Although this simplifi es integration (and possibly acceptance) of the new
system, it does not offer the complete set of advantages that a true commitment
to policy management provides. This latter puts the PBNM system in control of
constructing, managing, and deploying device confi gurations, as well as other
associated functions (e.g., user access rights, and permissions to access shared
system resources). EMSs do not necessarily disappear in this approach; they are
augmenting the function of “pushing the device confi guration changes to the
device” by wrapping that process in a higher-level workfl ow process that enables
business policies to drive those changes. The main difference is that most EMSs
do not use auditable workfl ows to manage the deployment of confi guration
changes.

Thus, a PBNM system must be able to interface with EMSs. Rather than being
viewed as an alternative to an EMS, a PBNM system should instead be viewed as
a higher-level process that guides the use of EMSs.

11.11.7 Interfacing with NMSs

The purpose of network management is to simplify the management and opera-
tion of large networks by maintaining network stability, tuning network perfor-
mance, and troubleshooting problems that might arise. Network management also
aids in strategic planning for network growth.

Network management architectures are implemented using a network manage-
ment system (NMS) to manage a set of devices. Traditionally, managed devices
contain software modules called agents that gather and store information about
the managed device in a repository and provide this information (proactively or
reactively) to the NMS. The NMS is a computer system that contains software

processes that poll agents in managed devices (automatically or by user request)
to check the management information that they contain. It also contains processes
that react to alerts from managed devices by executing one or more actions, such
as notifying the network administrator, performing event logging, shutting down
a system, or attempting system repairs.

PBNM can augment NMSs by providing a framework in which to supply NMS
components management information. This includes not just specifi c details on
how a device is currently operating, but other important pieces of management
information, such as when a confi guration was changed, why it was changed, and
who changed it. Thus, the requirement is:

A PBNM system must be able to interface with NMSs. Rather than being viewed
as an alternative to an NMS, a PBNM system should instead be viewed as a
higher-level process that guides the use of NMSs and facilitates communication
between the NMS and other systems in the OSS.

11.11.8 Interfacing with Other Portions of the OSS

The ITU-T’s telecommunications management network (TMN) model attempted
to provide a framework for telecommunications management. This framework
provided for a large variety of functions that are commonly referred to as FCAPS
(fault, confi guration, accounting, performance, and security) management.

TMN is a collection of many standards that defi ne three key areas of commu-
nications management:

■ An architecture that views “management” as a set of layers and groups of
functions. The architecture is recursive and can be used to model multiple
operators who may be involved in the service delivery chain.

■ A methodology for defi ning the management behavior of managed
devices. This uses an object-oriented modeling methodology known as the
“guidelines for the defi nition of managed objects.”

■ A set of protocols for management information to be passed between
systems. These protocols defi ne a standardized interface at all seven layers
of the OSI model with options for wide-area and local area networking.

Theoretically, PBNM systems can, and should, interface with all of these dif-
ferent systems. As stated earlier, PBNM “treats the system being managed as a
policy-enabled system.” Thus, PBNM systems are not limited to just confi guration
management, but rather, are concerned with the overall behavior of the network.
Managing this behavior requires PBNM systems to interface with other OSS com-
ponents. Thus, a PBNM system must be able to interface with different compo-
nents of the OSS. The PBNM system provides a common lingua franca for
communicating between different OSS systems and enables different layers to
more effi ciently interface with each other.

A PBNM system spans multiple layers of the TMN model, which is in direct
contrast to the association of an EMS with the element management layer (and to

11.11 Using Modeling to Solve Information Overload 361

362 CHAPTER 11 Policy-Based Network Management Fundamentals

a lesser degree, the network element layer) of the TMN model. The relationship
between a PBNM system and an NMS is less clear, because the defi nition of an
NMS is not as straightforward. This is because most people have successfully
disassociated the original meaning of an NMS, which had more to do with manag-
ing high-level features of the system, such as faults and alarms, with what they
currently refer to as an NMS—a system that can perform higher-level network
functions. However, PBNM systems include business functions, which are not
included in the current (or original) defi nition of an NMS. Thus, PBNM systems
are still fundamentally different than NMSs.

11.11.9 Communication with Policy-Unaware Elements

Many PBNM systems assume that they will use their protocols, object models, and
programming methods to communicate with and confi gure devices that they
manage. This assumes that the PBNM system is the “center of the universe.” It is
exactly this type of thinking that has created stovepipe applications! A common
information model should instead be used to ensure that different PBNM systems
can share and reuse management information from each other.

The question then is: How are policy-unaware entities controlled, and how do
they communicate with and be managed by the PBNM system? This requires the
use of a proxy (as was shown in Figure 11.19) or a mediation layer that performs a
model mapping between the object model used in the PBNM system and the object
model used in the policy-unaware entities (or their EMSs). Thus, the PBNM system
must be able to interface with both policy-aware and policy-unaware entities.

11.12 POLICY USED TO EXPRESS BUSINESS REQUIREMENTS
Today, the network and the services that it provides exist as their own individual
entities, divorced from the operation of the business. One goal of PBNM is to
enable business requirements to drive the confi guration and management of
network services. Although PBNM can help express and integrate the different
business, system, and implementation views of the system, the area that has been
given the least attention is the link between PBNM and business requirements.
This section will examine this link in more detail.

Given the policy continuum that was shown in Figure 11.29, we need a set of
model mappings that will translate the purpose of each policy at its given level
to a form that the policy at the next level can use. This can be better seen by
revisiting the defi nition of policy:

Policy is a set of rules that are used to manage and control the changing and/or
maintaining of the state of one or more managed objects.

Therefore, a set of mappings is needed that defi ne equivalent managed objects
in each level. This is best explained by examining the example shown in Figure
11.30. This fi gure is by no means complete; its purpose is to provide a sample of
how the mapping is done.

Each view has its own particular grammar and type of objective, which means
that the types of objects that are needed to support policies of one view are at a
different level of abstraction than objects of a different view. What we have,
therefore, is a set of two parallel mappings—one to translate between objectives
and grammar, and one to translate between objects. This duality enables us to use
business rules (which by defi nition do not use networking terms) to manage the
construction and deployment of device and system confi gurations that by defi ni-
tion use very detailed networking terms. There are two fundamental principles of
using business processes to drive confi guration management: individuality and
process.

11.12.1 Individuality

Individuality means that different types of confi guration changes require different
processes. For example, a huge difference exists between changing the SMTP
server address of a device and changing how routes are distributed on that same
device. Some of the differences include the technical complexity of each change
(implying different profi ciencies in the personnel who could be assigned to imple-
ment the change), different approval processes (because the business impact for
each change is different), and different guidelines for installing the change. These
differences mandate different, customized processes (i.e., workfl ows) for imple-
menting these changes. The corollary—different confi guration changes are not all
the same—is signifi cant and is a fundamental principle.

Because not every confi guration task can be handled using the same
“template,” fl exibility is needed to assign different processes to each task, but

Sample objective Sample objectsView

Business

System

Administrative

Device

Instance

John gets Gold Service.

Define three Classes of Services.

Use DiffServ to define traffic conditioning
for Gold, Silver, and Bronze; use RSVP to
reserve bandwidth when required.

Pick specific devices and software releases
of their operating systems that support the
above requirements.

Write the appropriate CLI, and monitor
using the appropriate MIBs.

Customer; GoldService;
GoldApplications

Set of customer-facing services:
Gold, Silver, Bronze

Define mappings between devices
that are DiffServ-aware and not
DiffServ-aware.

Define specific type of queuing
objects used per device and map
their functional differences.

Define objects to represent CLI and
MIBs and define mapping between
them.

FIGURE 11.30

Mapping between different entities in the policy continuum.

11.12 Policy Used to Express Business Requirements 363

364 CHAPTER 11 Policy-Based Network Management Fundamentals

consistency is also needed to ensure that each task will be handled according to
the proper procedure. This is the opportunity for a PBNM system.

11.12.2 Process versus Policy, or Process and Policy

Many people believe that process management and policy management should
exist as separate management efforts and applications. One main point of this text
is to defi ne a richer, more holistic approach for PBNM systems where policy and
process management can work together to better manage and control network
elements and services.

Figure 11.28 showed a sample workfl ow for controlling different elements of
confi guring a change to a network device, and it is repeated for convenience here
as Figure 11.31 with some embellishments.

As shown in Figure 11.31, policies can be used with processes to better control
the different phases of the confi guration process. Policies by themselves can
defi ne what to do, but not how to do it. Similarly, processes can defi ne how to
accomplish a particular task, but are not decision-making entities in and of them-
selves. This is because while policies take the form If <condition clause> is
true then do <action clause> (or On <event clause> if <condition
clause> is true then do <action clause> in DEN-ng), DEN-ng processes
take the more restricted form On <event clause> do <action clause>. Thus,
policies select which processes to use, and processes perform the requested task.
Results of processes are then used to adjust which policies are currently active
and enabled, forming a closed-loop management system.

Policies to choose who
does what change

Policies to choose which
people are required to

approve a change

Policies to choose when
the change is deployed

Policies to choose what to
do if a change was not

installed correctly

Configuration management workflow

Construct
configuration

changes workflow
Deploy configuration changes workflow

Approval
workflow

Installation
workflow

Validation
workflow

FIGURE 11.31

The interaction between policy and process management.

11.13 SUMMARY
This chapter has provided a foundation for understanding PBM. After a brief
review of critical object-oriented terminology, a conceptual policy model was
introduced to help defi ne the key components of a PBNM system and enable us
to focus on the specifi c terminology needed to better understand that system.

Policy terminology was then introduced and defi ned. Without a consistent set
of terminology, we cannot describe (and certainly cannot build) interoperable
policy systems. The terminology was compared against RFC 3198, an IETF docu-
ment that defi nes several policy terms in the context of specifi c network manage-
ment efforts in the IETF. This chapter’s policy terminology section began with a
detailed comparison of essential terms from RFC 3198 and provided enhanced
defi nitions that made the terminology more generic, fi xed defi nitions based on
implementation experience, or disambiguated terms that were overloaded with
multiple meanings. Then new terminology not covered by RFC 3198, but which
is essential for understanding the design and implementation of PBNM systems,
was discussed.

High-level requirements of a PBNM system were then discussed. The key
requirements were:

■ Use a set of layered information models to represent different objects at
different abstraction layers.

■ Build policy objects as part of the same information model that represents
users, devices, and services.

■ Form a closed-loop system by using a fi nite-state machine to model the
allowable states and state transitions of managed objects and use policy to
control when, where, why, and how managed objects change state.

■ Use business rules to drive network confi guration and management
through the use of a common information model that includes policy as
fi rst-class objects.

■ Use an information model to solve information overload of management
data (both the number of devices and interfaces as well as the plethora of
new, yet dissimilar, features of network devices).

■ Use the notion of workfl ow and subworkfl ows to gather the different
managed entities that need to be operated on to implement policy rules.

■ Interface with all parts of the OSS in a uniform way using policy and a
common information model.

■ Ensure that PBNM systems can communicate with policy-aware and policy-
unaware elements equally well.

One primary goal of PBNM systems is to enable the network to be operated as a
profi t center instead of as a cost center.

11.13 Summary 365

This page intentionally left blank

References and Further Reading

Requests for Comment

Many of the chapters in this book reference standardization efforts from the Inter-
net Engineering Task Force (IETF). When this work is stable, it is published as a
request for comment (RFC). The RFCs can be downloaded from IETF’s web site
at www.ietf.org. The RFCs referenced in this book are as follows:

RFC 1142—OSI IS–IS Intradomain Routing Protocol.
RFC 1155—Structure and Identifi cation of Management Information for TCP/IP-Based

Internets.
RFC 1157—Simple Network Management Protocol (SNMP).
RFC 1212—Concise MIB Defi nitions.
RFC 1213—Management Information Base for Network Management of TCP/IP-Based

Internets: MIB-II.
RFC 1305—Network Time Protocol (Version 3) Specifi cation, Implementation, and

Analysis.
RFC 1901—Introduction to Community-Based SNMPv2.
RFC 1902—Structure of Management Information for Version 2 of the Simple Network

Management Protocol (SNMPv2).
RFC 1903—Textual Conventions for Version 2 of the Simple Network Management

Protocol (SNMPv2).
RFC 1904—Conformance Statements for Version 2 of the Simple Network Management

Protocol (SNMPv2).
RFC 1905—Protocol Operations for Version 2 of the Simple Network Management

Protocol (SNMPv2).
RFC 1906—Transport Mappings for Version 2 of the Simple Network Management

Protocol (SNMPv2).
RFC 1907—Management Information Base for Version 2 of the Simple Network

Management Protocol (SNMPv2).
RFC 2328—OSPF Version 2.

368 References and Further Reading

RFC 2474—Defi nition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6
Headers.

RFC 2547—BGP/MPLS VPNs.
RFC 2572—Message Processing and Dispatching for the Simple Network Management

Protocol (SNMP).
RFC 2573—SNMP Applications.
RFC 2574—User-Based Security Model (USM) for Version 3 of the Simple Network

Management Protocol (SNMPv3).
RFC 2575—View-Based Access Control Model (VACM) for the Simple Network

Management Protocol (SNMP).
RFC 2576—Coexistence between Version 1, Version 2, and Version 3 of the Internet-

Standard Network Management Framework.
RFC 2578—Structure of Management Information Version 2 (SMIv2).
RFC 2579—Textual Conventions for SMIv2.
RFC 2580—Conformance Statements for SMIv2.
RFC 2679—A One-Way Delay Metric for IPPM.
RFC 2680—A One-Way Packet Loss Metric for IPPM.
RFC 2697—A Single-Rate, Three-Color Marker.
RFC 2698—A Two-Rate, Three-Color Marker.
RFC 2748—The COPS (Common Open Policy Service) Protocol.
RFC 2749—COPS usage for RSVP.
RFC 2753—A Framework for Policy-Based Admission Control.
RFC 2863—The Interfaces Group MIB.
RFC 3060—Policy Core Information Model—Version 1 Specifi cation.
RFC 3076—Canonical XML Version 1.0.
RFC 3198—Terminology for Policy-Based Management.
RFC 3289—Management Information Base for the Differentiated Services Architecture.
RFC 3318—Framework Policy Information Base.
RFC 3357—One-Way Loss Pattern Sample Metrics.
RFC 3411—An Architecture for Describing Simple Network Management Protocol

(SNMP) Management Frameworks.
RFC 3412—Message Processing and Dispatching for the Simple Network Management

Protocol (SNMP).
RFC 3413—Simple Network Management Protocol (SNMP) Applications.
RFC 3414—User-Based Security Model (USM) for Version 3 of the Simple Network

Management Protocol (SNMPv3).
RFC 3415—View-Based Access Control Model (VACM) for the Simple Network

Management Protocol (SNMP).
RFC 3416—Version 2 of the Protocol Operations for the Simple Network Management

Protocol (SNMP).
RFC 3417—Transport Mappings for the Simple Network Management Protocol (SNMP).
RFC 3418—Management Information Base (MIB) for the Simple Network Management

Protocol (SNMP).
RFC 3432—Network Performance Measurement with Periodic Streams.

References and Further Reading 369

RFC 3460—Policy Core Information Model (PCIM) Extensions.
RFC 3470—Guidelines for the Use of Extensible Markup Language (XML) within

IETF Protocols.
RFC 3512—Confi guring Networks and Devices with Simple Network Management

Protocol (SNMP).
RFC 3550—RTP: A Transport Protocol for Real-Time Applications.
RFC 3644—Policy Quality of Service (QoS) Information Model.
RFC 3811—Defi nitions of Textual Conventions (TCs) for Multiprotocol Label Switching

(MPLS) Management.
RFC 3812—Multiprotocol Label-Switching (MPLS) Traffi c Engineering (TE) Management

Information Base (MIB).
RFC 3813—Multiprotocol Label-Switching (MPLS) Label-Switching Router (LSR)

Management Information Base (MIB).
RFC 3814—Multiprotocol Label Switching (MPLS) Forwarding Equivalence Class to Next

Hop Label Forwarding Entry (FEC-To-NHLFE) Management Information Base (MIB).
RFC 3815—Defi nitions of Managed Objects for the Multiprotocol Label Switching

(MPLS), Label Distribution Protocol (LDP).
RFC 4265—Defi nition of Textual Conventions for Virtual Private Network (VPN)

Management.
RFC 4364—BGP/MPLS IP Virtual Private Networks (VPNs).
RFC 4382—MPLS/BGP Layer 3 Virtual Private Network (VPN) Management Information

Base.
RFC 4656—A One-Way Active Measurement Protocol (OWAMP).
RFC 4737—Packet Reordering Metrics.
RFC 4801—Defi nitions of Textual Conventions for Generalized Multiprotocol Label-

Switching (GMPLS) Management.
RFC 4802—Generalized Multiprotocol Label Switching (GMPLS) Traffi c Engineering

Management Information Base.
RFC 4803—Generalized Multiprotocol Label-Switching (GMPLS) Label-Switching Router

(LSR) Management Information Base.

Further Reading

Most of the chapters reproduced in this book also recommend further reading or
reference other work. This section reproduces those references.

Chapter 1
Heiler, K. Eine Methodik zur Modellierung von Konfi gurationsvorgängen für Szenarien

im Net- und Systemmanagement. Dissertation. Technische Universität München, 1997.
Huntingdon-Lee, J. Network Management Functions. Data Pro Network Management

1510, January 1998.
Lariger, M., Loidl, B., and Nerb, M. Customer Service Management: A More Transparent

View to Your Subscribed Services. Proceedings of the Ninth IFIP/IEEE International
Workshop on Distributed Systems: Operations and Management, 1998.

370 References and Further Reading

McConnell, J. Managing Client-Server Environments: Tools and Strategies for Building
Solutions. Prentice-Hall, 1996.

Terplan, K. Communications Network Management, 2nd Edition. Prentice-Hall, 1992.
Terplan, K. Client/Server Management Datacom. Buchverlag Bergheim, 1995.

Chapter 2
Abstract Syntax Notation One (ASN.1), International Standard ISO 8824.
The Basic Encoding Rules for ASN.1, International Standard ISO 8825.
Harold, E. R., and Means, S. XML in a Nutshell. O’Reilly, 2002.
Henning, M., and Vinoski, S. Advanced CORBA Programming with C ++. Addison-Wesley,

1999.
Hittersdorf, M. CORBA/IIOP Clearly Explained. AP Professional, 2000.
Nadeau, T. MPLS Network Management: MIBs, Tools, and Techniques. Morgan Kaufmann,

2003.
Mauro, D., and Schmidt, K. J. Essential SNMP. O’Reilly, 2001.
Perkins, D., and McGinnis, E. Understanding SNMP MIBs. Prentice-Hall, 1996.

Chapter 3
Abstract Syntax Notation One (ASN.1), “Constraint Specifi cation,” ITU-T Recommendation

X.682 (1997) and ISO/IEC 8824-3, 1998.
Abstract Syntax Notation One (ASN.1), “Information Object Specifi cation,” ITU-T Recom-

mendation X.681 (1997) and ISO/IEC 8824-2, 1998.
Abstract Syntax Notation One (ASN.1), “Parameterization of ASN.1 Specifi cations,” ITU-T

Recommendation X.683 (1997) and ISO/IEC 8824-4, 1998.
Abstract Syntax Notation One (ASN.1), “Specifi cation of Basic Notation,” ITU-T Recom-

mendation X.680 (1997) and ISO/IEC 8824-1, 1998.
Downes, K., Ford, M., Lew H. K., Spanier, S., and Stevenson T. Internetworking Tech-

nologies Handbook, 2nd Edition. Macmillan Technical Publishing, 1998.
Stallings, W. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2, Third Edition. Addison-Wesley

Longman, 1998.

Chapter 4
Case, J. D., Fedor, M., Schoffstall, M. L., and Davin, C. Simple Network Management Pro-

tocol (SNMP), STD 0015, May 1990.
Perkins, D., McGinnis, E. Understanding SNMP MIBs. Prentice-Hall, 1996.
Stallings, W. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2, Fourth Edition. Addison-

Wesley, 1999.

Chapter 5
Hill, J. Assessing the Accuracy of Active Probes for Determining Network Delay, Jitter, and

Loss. M.Sc. thesis, The University of Edinburgh, 2002.
Lima, S. R., Carvalho, P. M., and Freitas, V. L. Measuring QoS in Class-Based IP Networks

Using Multipurpose Colored Probing Patterns. Proceedings of SPIE, vol. 5598:171–182,
September 2004.

References and Further Reading 371

Tariq, M., Mukarram, B., et al. Poisson versus Periodic Path Probing (or, Does PASTA
Matter?). Proceedings of the Internet Measurement Conference, October 2005,
pp. 119–124.

Wolff, Ronald W. Poisson Arrivals See Time Averages. Operations Research 30(2),
1982.

Chapter 6
Davie, B. S., and Rekhter, Y. MPLS: Technology and Applications. Morgan Kaufmann,

2000.
Gray, E. W. MPLS: Implementing the Technology. Addison-Wesley Professional, 2001.

Chapter 7
Bray, T., Paoli, J., Sperberg-McQueen, C. M., and Maler, E. Extensible Markup Language

(XML) 1.0: W3C Recommendation, Second Edition, 2000.

Chapter 8
Aidarus, S., and Plevyak, T. (eds.), Telecommunications Network Management into the

21st Century. IEEE Press, 1994.
American National Standards Institute. Z136.2, Safe Use of Optical Fiber Communication

Systems Utilizing Laser Diodes and LED Sources, 1988.
ATM Forum. Private Network–Network Interface Specifi cation, Version 1.0, 1996.
Awduche, D., and Rekhter, Y. Multiprotocol Lambda Switching: Combining MPLS Traffi c

Engineering Control with Optical Cross-Connects. IEEE Communication Magazine
39(4):111–116, 2001.

Black, U. Network Management Standards. McGraw-Hill, 1995.
Cidon, I., Gopal, I. S., and Segall, A. Connection Establishment in High-Speed Networks.

IEEE/ACM Transactions on Networking, 1(4):469–482, 1993.
Epworth, R. E. Optical Transmission System. U.S. Patent 5463487, 1995.
Gruber, J., and Ramaswami, R. Towards Agile All-Optical Networks. Lightwave, December

2000.
Heismann, E., Fatehi, M. T., Korotky, S. K., and Veselka, J. J. Signal Tracking and Perform-

ance Monitoring in Multi-Wavelength Optical Networks. Proceedings of European Con-
ference on Optical Communication, pp. 3.47–3.50, 1996.

Hill, G. R., et al. A Transport Network Layer Based on Optical Network Elements. IEEE/OSA
Journal on Lightwave Technology, 11:667–679, 1993.

Hamazumi, Y., and Koga, M. Transmission Capacity of Optical Path Overhead Transfer
Scheme Using Pilot Tone for Optical Path Networks. IEEE/OSA Journal on Lightwave
Technology, 15(12):2197–2205, 1997.

International Electrotechnical Commission. 60825-1—Safety of Laser Products, Part 1:
Equipment Classifi cation, Requirements and User’s Guide, 1993.

International Electrotechnical Commission. 60825-2—Safety of Laser Products, Part 2:
Safety of Optical Fiber Communication Systems, 2000.

ITU-T SG15/WP 4. Rec. G.681: Functional Characteristics of Interoffi ce and Long-Haul Line
Systems Using Optical Amplifi ers, Including Optical Multiplexing, 1996.

372 References and Further Reading

ITU-T. Rec. G.664: Optical Safety Procedures and Requirements for Optical Transport
Systems, 1999.

Maeda, M. Management and Control of Optical Networks. IEEE Journal of Selected Areas
in Communications, 16(6):1008–1023, 1998.

McGuire, A. Management of Optical Transport Networks. IEE Electronics and Communi-
cation Engineering Journal, 11(3):155–163, 1999.

Ramaswami, R., and Segall, A. Distributed Network Control for Optical Networks. IEEE/
ACM Transactions on Networking, December 1997.

Subramanian, M. Network Management: Principles and Practice. Addison-Wesley,
2000.

Udupa, D. K. TMN Telecommunications Management Network. McGraw-Hill, 1999.
U.S. Food and Drug Administration, Department of Radiological Health. Requirements of

21 CFR, Chapter J for Class I Laser Products, January 1986.
Wei, Y., et al. Connection Management for Multiwavelength Optical Networking. IEEE

Journal of Selected Areas in Communications, 16(6):1097–1108.
Wilson, B. J., et al. Multiwavelength Optical Networking Management and Control. IEEE/

OSA Journal on Lightwave Technology, 18(12):2038–2057, 2000.

Chapter 9
Farrel, A. The Internet and Its Protocols: A Comparative Approach. Morgan Kaufmann,

2004.
Harold, E. R., and Means, W. S. XML in a Nutshell. O’Reilly, 2002.
Hittersdorf, M. CORBA/IIOP Clearly Explained. AP Professional, 2000.
Mauro, D. R., and Schmidt, K. J. Essential SNMP. O’Reilly, 2001.
Nadeau, T. MPLS Network Management: MIBs Tools and Techniques. Morgan Kaufmann,

2003.
Perkins, D., and McGinnis, E. Understanding SNMP MIBs. Prentice-Hall, 1996.

Chapter 10
Alhir, S. UML in a Nutshell—A Desktop Quick Reference. O’Reilly, 1998.
Faurer, C., Fleck, J., Raymer, D., Reilly, J., Smith, A., and Strassner, J. NGOSS: Reducing the

Interoperability Tax. TMW University Presentation, October 2002.
ISO. RM-ODP, Part 1: Overview and Rationale, ISO/IEC 10746-1:1998(E).
Jude, M. Policy-Based Management: Beyond the Hype. Business Communications Review

March:52–56, 2001.
Low-Latency Queuing Combines Strict Priority Queuing with Class-Based Weighted Fair

Queuing, article available at: http://www.cisco.com/en/US/products/sw/iosswrel/ps1830/
products_feature_guide09186a0080087b13.html.

Rumbaugh, J., Jacobson, I., and Booch, G. The Unifi ed Modeling Language Reference
Manual. Addison-Wesley, 1999.

Strassner, J. Directory Enabled Networks, chapter 10. Macmillan Technical Publishing,
1999.

Strassner, J. A New Paradigm for Network Management: Business-Driven Network Manage-
ment. Presented at the SSGRR Summer Conference, L’Aquila, Italy, July 2002.

References and Further Reading 373

Strassner, J. NGOSS Technology Overview. TMW Asia-Pacifi c Conference, August 2002.
TeleManagement Forum. GB921: eTOM—the Business Process Framework, version 2.6,

March 2002 (TMF member document).
TeleManagement Forum. GB922: Shared Information/Data (SID) Model—Concepts, Princi-

ples, and Business Entities and Model Addenda, version 1.5, May 2002 (TMF member
document).

TeleManagement Forum. GB922: Common Business Entity Defi nitions Addenda 1P, May
2002 (TMF member document).

TeleManagement Forum. TMF 053: The NGOSS™ Technology Neutral Architecture Speci-
fi cation, Annex C: Behavior and Control Specifi cation, version 0.4, November 2002.

TeleManagement Forum, TMF 053: The NGOSS™ Technology Neutral Architecture Speci-
fi cation, version 3.0, April 2003.

TeleManagement Forum. TMF 053: The NGOSS™ Technology Neutral Architecture Speci-
fi cation, Annex P: Policy Specifi cation, version 0.3 (work in progress).

UML 1.4 specifi cation, available at: http://www.rational.com/uml/resources/
documentation/.

Chapter 11
Baumer, D., Riehle, D., Siberski, W., Wulf, M. The Role Object Pattern. Available at: http://

www.riehle.org/papers/1997/plop-1997-roleobject.html.
Booch, G. Object-Oriented Analysis and Design with Applications. Addison-Wesley,

1994.
Damianou, N., Dulay, N., Lupu, E., and Sloman, M. Ponder: A Language for Specifying

Security and Management Policies for Distributed Systems—The Language Specifi cation,
version 2.3, October 2000.

Fowler, M. Role Patterns. Proceedings from PLoP, 1997.
International Standard 9594-1, ITU-T Recommendation X.500, Information Technology—

Open Systems Interconnection—The Directory: Overview of Concepts, Models and
Services.

ITU-T, Principles for a Telecommunications Management Network, Recommendation
M.3010, May 1996.

Larman, C., Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design, Prentice-Hall, 1998.

LeRoux, J-L, et al. Evaluation of Existing GMPLS Protocols Against Multilayer and Multiregion
Networks (MLN/MRN), 2008.

OMG. Unifi ed Modeling Language Specifi cation, version 1.4, September 2001.
Strassner, J. Directory-Enabled Networks. Macmillan Technical Publishing, 1999.
RFC 1633—Integrated Services in the Internet Architecture: An Overview, R. Braden, D.

Clark, and S. Shenker, IETF, 1994.
RFC 1990—The PPP Multilink Protocol (MP), K. Sklower et al., IETF, 1996.
RFC 2098—Toshiba’s Router Architecture Extensions for ATM: Overview, Y. Katsube

et al., IETF, 1998.
RFC 2205—Resource ReSerVation Protocol (RSVP)—Version 1: Functional Specifi cation,

R. Braden et al., IETF, 1997.

374 References and Further Reading

RFC 2207—RSVP Extensions for IPSEC Data Flows, L. Berger and T. O’Malley, IETF,
1997.

RFC 2210—The Use of RSVP with IETF Integrated Services, J. Wroclawski, IETF, 1997.
RFC 2309—Recommendations on Queue Management and Congestion Avoidance in the

Internet, R. Braden et al., IETF, 1998.
RFC 2328—OSPF Version 2, J. Moy, IETF, 1998.
RFC 2474—Defi nition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6

Headers, K. Nichols et al., IETF, 1998.
RFC 2475—An Architecture for Differentiated Services, S. Blake et al., IETF, 1998.
RFC 2597—Assured Forwarding PHB Group, J. Heinanen et al., IETF, 1999.
RFC 2702—Requirements for Traffi c Engineering over MPLS, D. Awduche et al., IETF,

1999.
RFC 2961—RSVP Refresh Overhead Reduction Extensions, L. Berger et al., IETF, 2001.
RFC 2998—A Framework for Integrated Services Operation over Diffserv Networks, Y.

Bernet et al., IETF, 2000.
RFC 3031—Multiprotocol Label-Switching Architecture, E. Rosen et al., IETF, 2001.
RFC 3032—MPLS Label Stack Encoding, E. Rosen et al., IETF, 2001.
RFC 3175—Aggregation of RSVP for IPv4 and IPv6 Reservations, F. Baker et al., IETF,

2001.
RFC 3209—RSVP-TE: Extensions to RSVP for LSP Tunnels, D. Awduche et al., IETF, 2001.
RFC 3246—An Expedited Forwarding PHB (Per-Hop Behavior), B. Davie et al., IETF,

2002.
RFC 3270—Multi-Protocol Label-Switching (MPLS) Support of Differentiated Services, F.

Le Faucheur et al., IETF, 2002.
RFC 3945—Generalized Multi-Protocol Label Switching (GMPLS) Architecture, E. Mannie

et al., IETF, 2004.
RFC 4201—Link Bundling in MPLS Traffi c Engineering (TE), K. Kompella, Y. Rekhter, and

L. Berger, IETF, 2005.
RFC 4202—Routing Extensions in Support of Generalized Multi-Protocol Label Switching

(GMPLS), K. Kompella and Y. Rekhter, IETF, 2005.
RFC 4364—BGP/MPLS IP Virtual Private Networks (VPNs), E. Rosen and Y. Rekhter, IETF,

2006.
RFC 4847—Framework and Requirements for Layer 1 Virtual Private Networks, T. Takeda

et al., IETF, 2007.
RFC 5036—LDP Specifi cation, L. Andersson et al., IETF, 2007.
RFC 5212—Requirements for GMPLS-Based Multi-Region and Multi-Layer Networks (MRN/

MLN), K. Shiomoto et al., IETF, 2008.
TeleManagement Forum, SID Working Group. Mining Information from the DMTF CIM into

the TMF SID, July 2002.
TeleManagement Forum. Shared Information/Data Model, Addendum 1P: Common Busi-

ness Entity Defi nitions—Party, version 3.0, June 2003.
TeleManagement Forum. Shared Information/Data (SID) Model—Common Business Entity

Defi nitions-Policy-Addenda 1-Pol, July 2003.

Abstract classes, 308
Abstraction, 279, 315–316, 320
Abstract Syntax Notation One, 38, 41, 63, 66,

182, 187, 250
Access control, 11–12
Access links, 121
Accounting management, 19–20, 212
Active attacks, 21
Active network monitoring, 119

bandwidth, 139
clock synchronization, 145–146
delay-jitter, 136–137, 138f
deployment considerations, 140–146
metrics, 135–140
network-level, 129
packet loss, 138
reordering, 139
sampling strategy, 131–132
test duration and frequency, 133–134
test rate, 132–133
test stream parameters, 129–135
throughput, 139
topologies, 140–144
uses of, 120

Adaptation management, 212
optical networks, 238–240

Addressing, 116
Administration, 22
Agent, 360

element management system, 213
embedded, 140
external, 140
proxy agents, 178
SNMP, 62, 64, 196, 198f

Aggregation, 308
Alarm(s), 216, 252–253

prioritizing of, 253
suppression of, 225

Alarm indication signal, 225
Alarm management, 224–226
Application analysis, 25
Application programming interface (API), 178
Archival storage of data, 109–110, 110f
Archiving system, 11–12
ASN.1. See Abstract Syntax Notation One
Asset management, 22
Association, 308
Asynchronous transfer mode (ATM), 74–75, 148
Attribute, 306–307

role, 345
Auto-discovery, 15

Index

Note: Page numbers followed by an italic f denote fi gures; those followed by t denote tables.

Auto-topology, 15
Average delay, 136

Backup system, 11–12
Backward defect indicator, 225
Bandwidth, 139

selling of, 159–160
Bandwidth tracing, 235
Basic encoding rules (BER), 38, 41, 185
Batch sampling, 132
Bidirectional network availability, 139
Bit error rate, 223–224, 230
Bits, 189t
Bit strings, 68
Border Gateway Protocol (BGP), 73
Bulk data encoding, 185–186
Bulk fi le transfer, 183–186, 208
Business-critical applications, 301
Business driven device management, 286
Business management, 92
Business marketing, 71
Business rules, 267

Capabilities, 294, 347–348
Capability statements, 68
C-band, 231
Central graphics archive, 5–6
Centralized management, 105, 115
Change fl exibility, 12–13
Change management, 22
Checks and balances, 108–109
Class, 308, 320
Classifi cation statistics, 121–122
Class of service (CoS), 73, 352
Client–server architecture, 46–49
Clock synchronization, 145–146
CMIP. See Common Management Information

Protocol
Command-based confi guration fi les, 32
Command generator, 197, 197t
Command-line interface (CLI), 31–32, 171, 248

asynchronous notifi cations displayed with,
171, 173

development of, 359
disadvantages of, 248
example of, 172f
graphical user implemented over the top of,

32–33
menu-driven, 76
notifi cations, 171, 173
proprietary, 158

376 Index

Command-line interface (cont’d)
scripts used with, 173–174
security features of, 173
syntax, 171
text-based, 76, 82
Web-based, 77

Committed burst size, 122
Common data representation, 50
Common information model, 270
Common information rate, 122
Common Management Information Protocol

(CMIP), 95, 217
over TCP/IP, 95

Common Object Request Broker Architecture.
See CORBA

Common Object Services (COS), 47
Community-based security model, 199
Compliance statements, 68
Compliant wavelength interface, 238–239
Component analysis, 25
Composition, 308
Conceptual policy model, 321–324
Concrete classes, 308
Confi guration, 14, 100

business rules for, 286–288
element management systems used to change,

360
location of, 14–15
mechanisms and methods for, 100–101

CLIs, 31–32
graphical user interfaces, 32–33

in MPLS network management, 157
network devices, 158–159
SLA changes and, 295
standards-based techniques, 35
storage of, 15
user interface of confi gurator, 15
validity of, 15

Confi guration management, 212
automation of, 358
business processes used for, 363–364
conceptualization of, 358
individuality and, 363–364
optical networks, 233–240
PBNM, 280
tools for, 15–16

Confi guration protocols
CORBA. See CORBA
selection of, 53–54
SNMP. See SNMP
XML. See XML

Congestion management, 297
Connection management, 212

optical networks, 234–238, 244
Connection trails, 216
Constraints, 294, 308, 348–351
Control level, 27–28
Convergence, 355
CORBA, 34–35, 174, 250

advantages of, 53
API, 178
architecture of, 46–49
communications, 49–53
components of, 175f

development of, 46
domain interfaces, 47–48
interface defi nition language, 46, 170, 178,

250
midlevel managers, 178–179
object management architecture, 47, 47f
ORB elements, 176t, 177f, 177–178
OMG, 175–178
reference model architecture, 175, 176f
SNMP and, 178–180
uses of, 174

Core links, 121
Core traffi c demand matrix, 128
Corporate network, 5f
Cost compilation, 20
Counter(s), 67–68
Counter32, 39t, 189t
Counter64, 39t, 189t
Craft interface, 31
Customer-facing service, 353
Customer network management, 3

benefi ts of, 4
example of, 1–4
MBI, 4

Customer-premises equipment
confi guration of, 72–77
installation of, 72–73
service provider network, and connection

between, 73
Customer–provider relationships, 2–3
Customer service management, 4

Data
accuracy of, 109
bulk, 185–186
display methods for, 96
generation methods for, 109
GUI display of, 32–33
metadata, 111
migration of, 110–111, 111f
protection of, 212
query-based format for creating, 109
reusing and sharing of, 358–359
selective copying of, 110, 111f
shared, 290–292
standardized representations of, 33–35

Data abstraction, 316
Data communication network, 213, 226–228
Data model, 169, 327–328, 328f
Data storage

archival, 109–110, 110f
distributed, 4–5
local, 109–110, 110f
primary, secondary, and tertiary, 96

Deep packet inspection, 299
Defect condition, 225
Defect indicator signals, 226
Delay, 135–136
Delay-jitter, 136–137, 138f
Demand priority analysis, 25
Demand size analysis, 25
DEN, 330
DEN-ng, 268, 272, 276, 290, 330–331

capabilities, 294, 347–348

Index 377

constraints, 294, 348–351
customer-facing service, 353
design approach for, 291f
information model, 293f, 329
PolicyCondition, 334–335
policy model, 294
QoS model, 283, 284f
resource-facing services, 353
role model, 310
services, 285

Dependencies, 114
Differentiated quality of service, 266
DiffServ code point (DSCP), 279
Digital wrapper overhead, 232–233
Directory-enabled networks (DENs), 321, 330.

See also DEN-ng
Disclosure threat, 69
Distributed data storage, 4–5
Distributed management, 105–106f, 105–106,

115
Distributed Management Task Force, 270, 295
Distributed systems

behavior of, 281–282
change fl exibility of, 12
management barriers created by, 12
services provided by, 13

Document type defi nition, 43, 46, 181–182
Domain interfaces, 47–48
Domain name server, 135
Domain name service (DNS)

management of, 10–11
purpose of, 10

Drop-and-continue, 218
Dual-role entity, 198–199
Dynamic Host Confi guration Protocol (DHCP),

29
Dynamic invocation interface, 176t
Dynamic skeleton interface, 49, 176t

Element management systems, 34, 92, 213–214,
247

device confi gurations changed using, 360
GUIs vs., 249
transport, 214

Embedded agents, 140
Encapsulation, 320
End-to-end characteristics, 94
Enterprise MIB modules, 191, 195
Entities, 180

dual-role, 198–199
policy-aware, 349
policy-unaware, 349, 362
XML document, 180

Entity, 319
Entity abstraction, 316
Equal-cost multipath algorithms, 144–145
Equipment management, 233–234
Erbium-doped fi ber amplifi er, 232
Error logs, 80
ESCON, 218
Event notifi cation, 97–98
Events, 97, 252–253
eXtensible Markup Language. See XML
External agents, 140

Fault(s), 16
isolation and detection of, 161–163

Fault management, 16, 211–212
optical networks, 222–233
support for, 218
tasks associated with, 16–17

Fault tracking, 7
FCAPS model, 102
File transfer protocol (FTP), 44, 99

trivial, 31–32, 99
Finite-state machine, 276, 325, 357
Forward defect indicator, 225
Forward equivalency class, 149
Full-mesh active monitoring topology,

141–142

Gauge32, 39t, 189t
Gauges, 67
GDMO. See Guidelines for description of

managed objects
General Inter-ORB Protocol, 250

as client-server protocol, 50
common data representation, 50
connections in, 52
messages, 50–52, 51f
objectives of, 49
TCP/IP, 52

Generalization, 307–308
Generalized Multiprotocol Label Swithing.

See GMPLS
German scientifi c network, 2
GetBulk operation, 68–69
GetNext operation, 67
Get operations, 67, 200–204
GIOP. See General Inter-ORB Protocol
Global name space, 4
Global network management, 33
GMPLS

alarms, 252–253
benefi ts of, 245
control plane, 245
LSR management, 256–257
management protocols. See Management

protocols
management structure, 246
MIB modules, 253–254

GMPLS-LABEL-STD-MIB, 255–256
MPLS-LSR MIB, 165, 254
MPLS-TC MIB, 164, 254
MPLS-TE MIB, 165, 254–255
TE MIB, 258–260

provisioning systems, 245–253
Web management, 251–252

Graphical user interfaces (GUIs), 32–33
benefi ts of, 249
element management system vs., 249
over CLIs, 32–33

Guidelines for description of managed objects,
217

Heisenberg’s Uncertainty Principle, 53
Help desk support, 7

case study of, 7–9
Hierarchical management, 106–107, 115, 217

378 Index

Hierarchical-mesh active monitoring topology,
142–144, 144f

High-percentile delay, 136
Horizontal quality of service, 18
H.323 traffi c, 300
Hypertext Markup Language (HTML), 42, 250
Hypertext Transfer Protocol (HTTP), 44

ICMP, 83
IDL. See Interface Defi nition Language
IETF. See Internet Engineering Task Force
Ignores, 128
IIOP. See Internet Inter-ORB Protocol
In-band management, 83, 84f, 102–104,

114–115
Individuality, 363–364
Information models, 215–216, 328

data model and, 328f
DEN-ng layered, 293f, 294, 329
Distributed Management Task Force, 295
functions and tasks for, 291–292
IETF, 270f, 271, 295
importance of, 292–294
shared, 289–297
uses of, 275

Information overload
constituents, 359–360
data sharing and reuse, 358–359
modeling used for, 354–362
network devices, 355–356

Inform operation, 68
Inheritance, 215, 319–320
Input drops, 128
Instance, 320
Instrumentation, 98–99
INTEGER, 39t
Integer, 50, 67
Integer32, 39t, 189t
Integrated management, 23–24
Interface

command-line. See Command-line interface
graphical user. See Graphical user interfaces
management. See Management interfaces
MIB module, 261–263
northbound, 33–34, 112
into OSS, 112
SNMP-based, 77
Web-based, 77, 88

Interface defi nition language (IDL), 46, 178, 250
Interface stacking, 262
Interior Gateway Routing Protocols, 144
International Standards Organization (ISO) OSI

model, 309
International Telecommunications Union,

219
Internet Engineering Task Force, 36, 56, 250,

269
information models, 270f, 271, 295

Internet Inter-ORB Protocol, 49, 52, 251
Internet service providers, 30
Internetwork Operating System, 291
Intervention level, 27
Inventory management, 22
IpAddress, 39t, 189t

IP-based services
billing for, 71
business departments associated with, 71–72
implementation of, 61–62, 70–71
marketing of, 71
operational support system for. See Opera-

tional support system
selling of, 71
upgrades, 61

Jitter, 136–137, 138f, 218

Keys, 270–271

Label edge router, 152
Label forwarding information base, 150–151
Label switched path (LSP), 152–153, 153f
Label switching, 150–153
Label switching router (LSR), 148–149, 237

GMPLS, 256–257
Life cycle, planning as stage in, 25–28
Light paths, 217–218, 222–223, 234
Lightweight Directory Access Protocol (LDAP),

59, 251, 289, 330
Line cards, 215
Link Management Protocol MIB module, 260–261
Local policy decision point (LPDP), 57
Local storage of data, 109–110, 110f
Longest-prefi x match lookups, 147
Loss distance, 138
“Loss of light” alarm, 253
Loss period, 138

Managed objects, 26
Management, 24

adaptation. See Adaptation management
alarm, 224–226
asset, 22
business, 92
business driven device, 286
centralized, 105, 115
change, 22
confi guration. See Confi guration management
congestion, 297
connection. See Connection management
distributed, 105f–106f, 105–106, 115
distributed systems’ effect on, 12
distribution of responsibility, 24
element. See Element management systems
equipment, 233–234
fault. See Fault management
hierarchical, 106–107, 115, 217
importance of, 12–13
in-band, 83, 84f, 102–104, 114–115
integrated, 23–24
inventory, 22
network. See Network management
organizational aspects of, 23–25
out-of-band, 83, 85f, 103–104, 114–115
performance. See Performance management
policy-based, 305, 324. See also Policy-based

network management
problem, 22
process, 364

Index 379

safety, 213
security. See Security management
service, 92
structure of, 246
time aspects of, 25–28

Management Information Base. See MIB
Management interfaces, 167–170

bulk fi le transfer, 183–186, 208
CLI. See Command-line interface
CORBA. See CORBA
data model, 169
features of, 168f
function of, 207
proprietary, 248
SNMP. See SNMP
summary of, 207–209
XML. See XML

Management network, 246–248, 247f
Management protocols, 249–250

CORBA. See CORBA
LDAP, 59, 251
SNMP. See SNMP
TL1, 216, 251, 294
XML. See XML

Man Machine Language, 251
Mapping, 329–330, 362–363
Markup data, 43
Masquerading, 69
MAX ACCESS, 193–194, 194t
Mean opinion score, 140
Menu-driven CLIs, 76
Mergers, 246
Message sequence and timing modifi cations

threat, 69
Metadata, 111, 332
Method, 307
MIB, 4, 35–36, 64, 77, 95, 170, 190, 250, 325

conformance subset of, 112
data encoding, 41
modules, 53, 68, 163–166
MPLS, 163–166
object identifi ers, 36–37, 63
policy information base, and similarities

between, 59
proprietary, 121
selection of, 112
SNMP, 63–64, 170, 188, 190–193, 216
tree, 64–65, 65f
types of, 95

MIB modules, 190, 208
enterprise, 191, 195
GMPLS. See GMPLS; MIB modules
interfaces, 261–263
LMP-STD-MIB, 260–261
MAX ACCESS clause, 193–194, 194t
MPLS-FTN MIB, 163, 166
MPLS-LDP MIB, 165
MPLS-LSR MIB, 165, 254
MPLS-TC MIB, 164, 254
MPLS-TE MIB, 165, 254–255
MPLS-TE-STD MIB, 262
PPVPN-MPLS-VPN MIB, 166
scalar objects, 37, 64, 191
specifi cations, 190–191

tabular objects, 64–65, 191
versions, 196

MIB tables, 37
indexing, 192–193
SNMP, 67

Minimum delay, 136
Model mapping, 329–330
Modifi cation of information threat, 69
Monitoring, 95–96

active. See Active network monitoring
devices, per IP Subnet and WAN, 107–108
elements of, 96f
event notifi cation, 97–98
need for, 155
network devices, 79–80
passive. See Passive network monitoring
remote, 109, 160
SLAs, 160, 161f
trend analysis and planning, 98

Monitoring level, 27
MPLS, 147–149, 301

applications of, 154–155
domain, 152
forward equivalency class, 149
forwarding plane, 150
generalized. See GMPLS
label edge router, 152
label forwarding information base, 150–151
LSP, 152–153, 153f
label switching, 150–153
LSR, 148–149
MIB modules for. See MPLS; MIB modules
management interfaces, 167–170

bulk fi le transfer, 183–186, 208
CLI. See Command-line interface
CORBA. See CORBA
SNMP. See SNMP
summary of, 207–209
XML. See XML

MIB modules. See MIB modules
network managemen, 155–157t

automated systems, 157
confi guration, 158–159
fault isolation, 161–163
origins of, 157–158

shim header, 149–150
TE tunnel, 154–155, 156f
Traffi c Engineering MIB, 163

Multicasting, 218
Multiprotocol Label Switching. See MPLS

Name space
global, 4
mapping the distributed fi le system to, 11

NetFlow, 54–55
Network

behavior of, 281–282
complexity of, 300–301
in-band, 83, 94f
management, 246–248, 247f
optical. See Optical networks
out-of-band, 83, 85f
overprovisioning of, 297–298
security issues, 83–84

380 Index

Network addresses, 66, 68
Network administrator, 287
Network availability, 139
Network devices, 94

alarms, 253
characteristics of, 94
classifi cation of, 299–300
communication protocols for, 81–82
confi guration of, 158–159
end-to-end characteristics of, 94
error logs for, 80
hardware and software upgrades, 81
information overload from, 355–356
interfaces, 281
monitoring of, 79–80
per-link characteristics of, 94
subinterfaces, 281
troubleshooting of, 101
uptime of, 80

Network elements, 213
management of, 92

Network engineers, 279–281, 283
Network fi le system, 185
Network management, 29, 91–92, 243

activities associated with, 79–81, 88, 101–102
analysis of, 91–92
business management, 92
business processes and, 353–354
communication protocols for, 81–83
constraints in, 114–115
customer. See Customer network

management
dependencies in, 114
element management, 92
FCAPS model, 102
focus of, 273
framework, 213–215
functions of, 93, 211–217, 243, 360
global, 33
hierarchy of, 93f
importance of, 78
interactions in, 112–113
issues and challenges for, 289–292
lack of a consistent product model, 289–290
layers of, 92, 243
mechanisms of, 95

confi guration, 100–101
instrumentation, 98–100
monitoring, 95–98

need for, 29–30
network–element management, 92
operations center for, 157
OSS integration with, 113f
policy for, 357
protocols for, 95, 216–217
reasons for, 155
service management, 92
SNMP, 62–64, 88–89
statistical data, 54–56, 80–81
tasks in, 93
XML applicability to, 44, 46

Network management architecture, 99–100
addressing/routing, 116
centralized management, 105, 115

checks and balances, 108–109
data management. See Data
distributed management, 105f–106f, 105–106,

115
external relationships, 115–117
hierarchical management, 106–107, 115
implementation of, 360
in-band management, 83, 84f, 102–103,

102–104
interactions, 112–113
internal relationships, 112–115
out-of-band management, 83, 85f, 103–104
performance and, 116
scaling of traffi c, 107–108
security, 116–117
trade-offs in, 114–115

Network management system, 33–34, 78–79,
247, 360–361

element management system, communication
with, 214

instrumentation of, 98–100
IP-based services implementation and, 61, 71
modifi cations of, 78–79
in MPLS network, 162
network devices and, communication

between, 81–83
off-the-shelf, 78
PBNM, interfacing with, 360–362

Network mergers, 246
Network provisioning, 72, 86–87
Network time protocol, 145
Network-to-network interface, 236
New-generation operational systems and

software (NGOSS), 271–272, 296
No-buffer drops, 128
NOC, 71–72
Nomadic systems, 9–10
Noncompliant wavelength interface, 239
Northbound interface, 33–34, 112
Notifi cations

alarms, 216
CLI, 171, 173
SNMP, 40–41, 54, 162, 199
trap, 216
types of, 216

Object, 306
attributes of, 306–307
class of, 308, 320
constraints of, 308
identity of, 320
inheritance, 319
methods of, 307
relationships of, 307–308
reusing and sharing of, 317
role, 345

Object adaptor, 48, 176t
Object constraint language, 308
OBJECT IDENTIFIER, 39t, 189t
Object identifi ers (oids)

MIB, 36–37, 63, 66
SNMP, 194–196

Object interface, 46
Object Management Architecture, 47, 47f

Index 381

Object-oriented analysis (OOA), 312
benefi ts of, 313–319
OOD and, 313–319
principles of, 312

Object-oriented design (OOD), 312
benefi ts of, 313–319
OOA and, 313–319
principles of, 312

Object-oriented information model, 268
Object-oriented modeling, 215

defi nition of, 319
example of, 309–312
importance of, 319–320

Object-oriented technology, 306
objects, 306–308
terminology associated with, 327–331

Object request broker (ORB), 47–49, 48f
CORBA, 176t, 177f, 177–178

Object services layer, 175–176
OCL. See Object constraint language
Octets, 52
OCTET STRING, 39t, 189t
oids See Object identifi ers
OMS-FDI, 225
One-Way Active Measurement Protocol, 131
One-way delay, 135–136
Opaque, 39t, 67, 189t
Open Fiber Safety Protocol, 241–243
Open Standards Organization, 38
Open Systems Interconnection (OSI) functional

model, 13, 217, 309
Operating concept, 24
Operational support systems, 247–248, 268

architecture of, 84, 86–88, 33–34, 70–72, 214
automation of, 87
components of, 86, 358
diffi culties associated with building of, 268
interface into, 112
management applications, 268, 269f
network management integration with, 113f
PBNM, interfacing with, 361–362
purpose of, 84
requirements of, 86–88
scalability of, 87

Optical add/drop multiplexers, 213
Optical channel, 219
Optical channel-path, 220, 224
Optical channel-section trace, 224
Optical channel-transparent section, 220, 224
Optical cross-connects, 213
Optical multiplex section, 220
Optical networks

adaptation management of, 238–240
alarm management, 224–226
bit error rate measurement, 223–224, 230
confi guration management, 233–240
connection management, 234–238, 244
data communication network, 226–228
digital wrapper overhead, 232–233
equipment management, 233–234
fault management, 222–233
information model, 215–216
interfacing, 217–219
layers of, 217–220

light paths, 217–218, 222–223, 234
multivendor interoperability, 220–222
network management

framework, 214–215
functions, 211–213
protocols, 216–217

Open Fiber Safety Protocol, 241–243
optical layer overhead, 228–233
optical trace, 224
overlay model, 236–237, 237f
performance management, 222–233
policing, 228
rate-preserving overhead, 232
safety of, 240–243
topologies, 236–237
transparency effects, 222–223, 244

Optical path trace, 224
Optical supervisory channel, 213, 214f, 230–232
Optical transmission section, 220
ORB. See Object request broker
OSS. See Operational support systems
OTS-FDI, 225
Out-of-band management, 83, 85f, 103–104,

114–115
Overprovisioning, 297–298
OWAMP. See One-Way Active Measurement

Protocol

Packet loss, 138
Packet size, 130–131
Partial mesh active monitoring topology, 142,

143f
Passive attacks, 21
Passive network monitoring, 119

per-classifi cation rule, 122
polling, 120–121
queuing, 124–127
random early detection, 126–127
single-rate, three-color marker, 122–123
system monitoring, 127–128
tail drop, 125
two-rate, three-color marker, 123–124
uses of, 120
weighted random early detection, 127
weighted tail drop, 125–126

PASTA. See Poisson arrivals see time average
Pattern, 317–318

role object, 344–345
PBNM. See Policy-based network manage-

ment
PDU. See Protocol data unit
Peak burst size, 124
Peak information rate, 124
Peer model, 237
PEP. See Policy enforcement point
Per-classifi cation rule, 122
Per-element characteristics, 94
Performance, 116
Performance management, 17, 211

elements of, 18–19
optical networks, 222–233

Per-hop behavior (PHB), 122
Periodic sampling, 131
Per-link characteristics, 94

382 Index

Per-link statistics, 121–127
Perl scripts, 173
Per-network characteristics, 94
Pilot tone, 229–230
Ping, 83, 97
PNM. See Passive network monitoring
Poisson arrivals see time average, 131
Poisson sampling, 132
Policy, 273–274, 331–332, 357

network management uses of, 357
process vs., 364
reusable components, 349–350
rule-specifi c components, 350

Policy action, 335–336
Policy-aware entity, 349
Policy-based management, 305, 324
Policy-based network management (PBNM),

265, 276–277, 274, 351
abstraction, 279
advantages of, 277
benefi ts of, 280, 288
business requirements, 362–364
business rules, 267
complexity in, 282–286, 315–317
conceptualization of, 278–279
confi guration management, 280
constituency interfacing, 359–360
diffi culties associated with, 266
element management system, interfacing

with, 360
engineers needed to confi gure network,

279–281
goals of, 365
high-level requirements, 351–354, 365
implementation of, 325
models used in, 324–325, 357–358
motivation for, 278–279
network management system, interfacing

with, 360–362
operational support system, interfacing with,

361–362
policy rule, 321–324
policy-unaware entities, 349, 362
policy use by, 325
processes defi ned by, 280
programming devices, 282–286
purpose of, 324
quality of service, 325
security, 298–299
services provided to users, 277–278
shared resources access, 352–353
software, 281–282
solutions, 266–271, 273–275, 298–299
summary of, 302–303
terminology associated with, 305–306,

326–351, 365
time-critical functions, 301–302

Policy condition, 334–335
Policy confl ict, 337
Policy continuum, 287–288, 288f, 359f, 362
Policy control, 54

framework for, 54
policy decisions, 56–59
policy information base, 59

Policy core information model, 270

Policy decision, 337
Policy decision point, 59, 338, 340
Policy domain, 340–341
Policy-enabled system, 349
Policy enforcement point, 57
Policy execution point, 340
Policy group, 333
Policy model

conceptual, 321–324
DEN-ng, 294

Policy repository, 341–343
Policy rule, 274, 321–324, 332–333
Policy server, 337–340
Policy subject, 346–347
Policy target, 347
Policy translation, 329
Policy-unaware entity, 349, 362
Polling, 96

frequency of, 120–121
RMON, 109

Polling intervals, 97, 120
Polymorphism, 320
Primary data storage, 96
Principal, 70
Priority queuing, 300
Problem management, 22
Procedural abstraction, 315
Process management, 364
Property, 306
Protocol data units (PDU), 41–42, 204
Provider edge devices, 154
Provisioning, 72, 86

systems for, 245–253
Proxy agents, 178

Q3, 217
Quality of experience, 139–140
Quality of service (QoS), 3, 265–266

complexity of implementing, 278
DEN-ng, 283
differentiated, 266
guarantee of, 17
horizontal, 18
as “managed unfairness,” 278
PBNM system, 325
polling of statistics, 121
services offered by, 278
vertical, 18

Queuing, 124–127

Rack, 215
Random drops, 126
Random early detection, 126–127
Random sampling, 131–132
Rate-preserving overhead, 232
Read command, 64
Real-time analysis, 97
Real-time protocol, 128
Records, 182
Relationships, 307–308
Remote monitoring

polling, 109
SLA verifi cation, 160

Remote procedure calls, 43–44
Reordering, 139

Index 383

Resource(s)
abuse of, 298
allocation of, 11
control of, 26
shared, 299, 352–353
time horizon effects on, 28

Resource, 319
Resource-facing services, 353–354
Resource Reservation Protocol (RSVP), 54
Restriction, 308
Reusable policy components, 349–350
RMON. See Remote monitoring
Role, 310, 343–345
Role attribute, 345
Role behavior, 345
Role combination, 345–346
Role object pattern, 344–345
Role selector, 345
Root-cause alarms, 218
Round-trip time, 135–136
Route computation, 235
Routing, 116
Row status, 41
Rule-specifi c policy components, 350

Safety management, 213
Scalar objects, 37, 64, 191
Scaling of network traffi c, 107–108
Secondary data storage, 96
Secure shell, 173
Security

CLIs, 5, 173
community-based model, 199
need for, 116–117
network, 83–84
SNMP, 69, 199–200
techniques for, 11

Security management, 20, 212
tasks associated with, 21
threat analysis for, 21

Selective copying of data, 110, 111f
Semiconductor lasers, 240
Service availability, 139
Service level agreements (SLAs), 3, 22, 62, 159,

282
bandwidth, 159–160
billing, 86
confi guration fi les affected by, 295
fees based on, 159
indications for, 80
metrics, 135–140
monitoring of, 160, 161f
purpose of, 295
reporting, 86, 88
verifi cation, 160–161

Service management, 92
Service provider network

customer-premises equipment, and
connection between, 73

database information, 78
devices

confi guration of, 74–77
error logs for, 80
monitoring of, 79–80

geographic range of, 78

management activities for, 79–81
misconfi guration concerns, 75
security issues, 78
service modifi cation, 77–78

Set operation, 67
SGML, 180
Shared document system, 6–7
Shared information and data model, 314
Shared resources, 299, 352–353
Shelf object, 215
Shim header, 149–150
Signaling protocol, 236
Simple Network Management Protocol. See

SNMP
Simple Object Access Protocol, 44, 45f, 183
Single-rate, three-color marker, 122–123
SLAs. See Service level agreements
Slot, 215
SMI. See Structure of management infor-

mation
SNMP, 39–40, 62–63, 81, 216, 250

advantages of, 53
application components, 196–198, 197f
command generator, 197t
commands, 64
components of, 63–64
CORBA and, 178–180
development of, 187
dual-role entity, 198–199
encoding of, 183
interfaces, 77
managed devices, 64
managers, 196, 198f
MBI, 63–64, 178, 188, 190–193, 216
message format, 205f
network management using, 62–64, 81–82,

88–89
notifi cations, 40–41, 54, 162, 199
object identifi ers, 194–196
objects in, 191–194
parameters accessible via, 95
protocol data unit, 41
requests and responses, 40–41
security of, 69, 199–200
SMI, 187–188
summary of, 208–209
transport protocols, 200–205
variables, 195
Version 1, 41–42, 53, 62, 66–67, 158, 187,

205–206
Version 2, 67–69, 158, 187, 205–206
Version 3, 69–70, 95, 158, 187, 205–206,

250
SNMP agent, 62, 64, 196, 198f
snmpget, 82
snmpset, 82
snmptrap, 82
SOAP. See Simple Object Access Protocol
Software distribution, 12
Specifi cation, 318f, 319
SSH. See Secure shell
Statistics

classifi cation, 121–122
collection of, 54–56
importance of, 80–81

384 Index

Statistics (cont’d)
per-link, 121–127
polling of, 121

Storage archives, 96
Strategic level, 28
Stratifi ed random sampling, 131
Stratum-1 time, 145–146
Structure of management information (SMI),

38–39, 39t, 66
modules, 68
object defi nitions, 187
SNMP, 187–188
textual conventions, 187–188
versions, 188, 189t, 196

Subcarrier modulated overhead, 229–230
Subrate multiplexing, 239
System drops, 127–128
System Network Architecture (SNA), 300–301

Tabular objects, 64–65, 191
Tags, 43
Tail drop, 125

weighted, 125–127
TCP/IP, 52, 62

CMIP over, 95
Telecommunications management network,

216–217, 361
TeleManagement Forum’s shared information

and data model, 271–273
Telnet server, 31, 170
TE MIB, 258–260
Tertiary data storage, 96
Test duration and frequency, 133–134
Test stream, 129–135
Text-based CLIs, 76, 82
Textual conventions, 38, 40f, 187–188
Threat analysis, 21
Threshold-exceeded count, 136
Throughput, 139
Time-critical functions, 301–302
Time horizons, 26–28
Time tick, 67
TimeTicks, 39t, 189t
Time-to-live fi eld, 150
Topologies

active monitoring, 140–144
management of, 235
optical network, 236–237

Trade-offs, 114–115
Traffi c

H.323, 300
handling of, 301
intelligent handling of, 301
System Network Architecture, 300–301
types of, 355

Traffi c conditioning agreement, 122
Traffi c engineering (TE) link MIB module, 260
Traffi c scaling, 107–108
Traffi c shaping, 75
Transaction Language-1 (TL1), 216, 251, 294
Transparency, 222–223, 244
Transport element management system, 214
TRAP, 41
Trap, 64, 95, 216

Trap operation, 67
Traversal operations, 64
Trend analysis, 98
Trivial File Transfer Protocol (TFTP), 31–32,

99
Troubleshooting, 101
Trouble ticket systems, 7–9
Trunk inventory and recordkeeping system,

214
Two-rate, three-color marker, 123–124

UDP packets, 134
Unifi ed Modeling Language (UML), 274, 307,

313
UNIX network fi le system, 185
UNIX shell scripts, 173
Unsigned32, 39t, 189t
Unsigned integer, 67
Uptime, 80
User administration, 19–20
User Datagram Protocol (UDP), 182
User interfaces, 246–247
User network interface, 236

Vertical partitioning, 212
Vertical quality of service, 18
Virtual object store, 190
Virtual private networks (VPNs), 30, 154
Voice over IP traffi c, 134, 136, 154

Wavelength division multiplexed line systems,
214, 221

Web-based interfaces, 88
CLIs, 77

Web management, 251–252
Weighted random early detection, 127
Weighted tail drop, 125–127
Wide area network, 108
Workfl ow processes, 357–358
Write command, 64

XML, 42, 43, 180, 250
advantages of, 53
domains, 43
encoding managed information using,

183–184
extensibility of, 43
functions of, 42–43
network management applicability of, 44, 46
remote procedure calls, 43–44, 183
SOAP for, 44, 45f

XML documents, 42, 180, 208
advantages of, 208
document type defi nition, 43, 181–182
entities, 180
markup data, 43
markup in, 180–181
non-well-formed, 181
records, 182
transfer of, 44
well-formed, 181

XML elements, 43, 208
XML parsers, 182
XML-RPC, 183

	Network Management
	Copyright page
	Contents

	Preface
	Contributing Authors
	CHAPTER 1: Requirements for the Management of Networked Systems
	1.1 MANAGEMENT SCENARIOS
	1.2 MANAGEMENT FUNCTIONS
	1.3 ORGANIZATIONAL ASPECTS OF MANAGEMENT
	1.4 TIME ASPECTS OF MANAGEMENT

	CHAPTER 2: IP Network Management
	2.1 CHOOSING TO MANAGE YOUR NETWORK
	2.2 CHOOSING A CONFIGURATION METHOD
	2.3 MANAGEMENT INFORMATION BASE
	2.4 SIMPLE NETWORK MANAGEMENT PROTOCOL
	2.5 EXTENSIBLE MARKUP LANGUAGE
	2.6 COMMON OBJECT REQUEST BROKER ARCHITECTURE
	2.7 CHOOSING A CONFIGURATION PROTOCOL
	2.8 CHOOSING TO COLLECT STATISTICS
	2.9 POLICY CONTROL

	CHAPTER 3: IP-Based Service Implementation and Network Management
	3.1 SIMPLE NETWORK MANAGEMENT PROTOCOL
	3.2 IP-BASED SERVICE IMPLEMENTATION—OSS
	3.3 PROVISIONING ISSUES
	3.4 NETWORK MANAGEMENT ISSUES
	3.5 OSS ARCHITECTURE
	3.6 SUMMARY

	CHAPTER 4: Network Management Architecture
	4.1 BACKGROUND
	4.2 DEFINING NETWORK MANAGEMENT
	4.3 NETWORK MANAGEMENT MECHANISMS
	4.4 ARCHITECTURAL CONSIDERATIONS
	4.5 SUMMARY

	CHAPTER 5: SLA and Network Monitoring
	5.1 APPROACHES FOR NETWORK MONITORING
	5.2 PASSIVE NETWORK MONITORING
	5.3 ACTIVE NETWORK MONITORING

	CHAPTER 6: MPLS Network Management: An Introduction
	6.1 A BRIEF INTRODUCTION TO MPLS
	6.2 MPLS APPLICATIONS
	6.3 KEY ASPECTS OF MPLS NETWORK MANAGEMENT
	6.4 MANAGEMENT INFORMATION BASE MODULES FOR MPLS
	6.5 SUMMARY

	CHAPTER 7: MPLS Management Interfaces
	7.1 THE BASICS OF MANAGEMENT INTERFACES
	7.2 COMMAND-LINE INTERFACE
	7.3 CORBA
	7.4 XML
	7.5 BULK FILE TRANSFER
	7.6 SIMPLE NETWORK MANAGEMENT PROTOCOL
	7.7 SUMMARY

	CHAPTER 8: Optical Networks: Control and Management
	8.1 NETWORK MANAGEMENT FUNCTIONS
	8.2 OPTICAL LAYER SERVICES AND INTERFACING
	8.3 LAYERS WITHIN THE OPTICAL LAYER
	8.4 MULTIVENDOR INTEROPERABILITY
	8.5 PERFORMANCE AND FAULT MANAGEMENT
	8.6 CONFIGURATION MANAGEMENT
	8.7 OPTICAL SAFETY
	8.8 SUMMARY

	CHAPTER 9: GMPLS Provisioning and Management
	9.1 PROVISIONING AND MANAGEMENT SYSTEMS
	9.2 GMPLS MIB MODULES

	CHAPTER 10: The Foundation of Policy Management
	10.1 INTRODUCTION—A RETROSPECTIVE
	10.2 WHERE WE ARE
	10.3 DEFINITION OF POLICY MANAGEMENT
	10.4 INTRODUCTION TO AND MOTIVATION FOR POLICY MANAGEMENT
	10.5 THE NEED FOR A NEW SHARED INFORMATION MODEL
	10.6 THE BENEFITS OF PBNM
	10.7 SUMMARY

	CHAPTER 11: Policy-Based Network Management Fundamentals
	11.1 INTRODUCTION
	11.2 THE NEED FOR OOA, DESIGN, AND MODELING IN PBNM SYSTEMS
	11.3 CONCEPTUAL POLICY MODEL
	11.4 DEFINITION OF A PBM SYSTEM
	11.5 POLICY TERMINOLOGY—AN APPROACH
	11.6 ESSENTIAL TERMINOLOGY FOR PBM SYSTEMS
	11.7 NEW TERMINOLOGY NOT COVERED IN RFC 3198
	11.8 DEFINITION OF POLICY-BASED MANAGEMENT
	11.9 DEFINITION OF POLICY-BASED NETWORK MANAGEMENT
	11.10 HIGH-LEVEL REQUIREMENTS OF A PBNM SYSTEM
	11.11 USING MODELING TO SOLVE INFORMATION OVERLOAD
	11.12 POLICY USED TO EXPRESS BUSINESS REQUIREMENTS
	11.13 SUMMARY

	References and Further Reading
	Index

