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ABSTRACT
As new displays and cameras offer enhanced color capabilities, there is a need to extend

the precision of digital content. High Dynamic Range (HDR) imaging encodes images and

video with higher than normal 8 bit-per-color-channel precision, enabling representation of the

complete color gamut and the full visible range of luminance. However, to realize transition from

the traditional to HDR imaging, it is necessary to develop imaging algorithms that work with the

high-precision data. To make such algorithms effective and feasible in practice, it is necessary to

take advantage of the limitations of the human visual system by aligning the data shortcomings

to those of the human eye, thus limiting storage and processing precision. Therefore, human

visual perception is the key component of the solutions we discuss in this book.

This book presents a complete pipeline for HDR image and video processing from acqui-

sition, through compression and quality evaluation, to display. At the HDR image and video

acquisition stage specialized HDR sensors or multi-exposure techniques suitable for traditional

cameras are discussed. Then, we present a practical solution for pixel values calibration in terms

of photometric or radiometric quantities, which are required in some technically oriented ap-

plications. Also, we cover the problem of efficient image and video compression and encoding

either for storage or transmission purposes, including the aspect of backward compatibility

with existing formats. Finally, we review existing HDR display technologies and the associated

problems of image contrast and brightness adjustment. For this purpose tone mapping is em-

ployed to accommodate HDR content to LDR devices. Conversely, the so-called inverse tone

mapping is required to upgrade LDR content for displaying on HDR devices. We overview

HDR-enabled image and video quality metrics, which are needed to verify algorithms at all

stages of the pipeline. Additionally, we cover successful examples of the HDR technology

applications, in particular, in computer graphics and computer vision.

The goal of this book is to present all discussed components of the HDR pipeline

with the main focus on video. For some pipeline stages HDR video solutions are either not

well established or do not exist at all, in which case we describe techniques for single HDR

images. In such cases we attempt to select the techniques, which can be extended into temporal

domain. Whenever needed, relevant background information on human perception is given,

which enables better understanding of the design choices behind the discussed algorithms and

HDR equipment.

KEYWORDS
High Dynamic Range Imaging (HDRI), Tone Mapping, Tone Reproduction, Inverse Tone

Mapping, HDR Display Devices, HDR Camera Sensors, Multi-exposure HDR Image

Capture, HDR Image Acquisition, HDR Video Acquisition, Radiometric (Photometric)

Camera Calibration, HDR Image and Video Compression, Scalable Bit-depth Coding, HDR

Image File Formats, Image Quality Metrics, Image-Based Lighting, 3D Object Appearance

Acquisition.
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1

C H A P T E R 1

Introduction

1.1 LOW VERSUS HIGH DYNAMIC RANGE IMAGING
The majority of existing digital imagery and video material capture only a fraction of the visual

information that is visible to the human eye and are not of sufficient quality for reproduction

by the future generation of display devices. The limiting factor is not the resolution, since

most consumer level digital cameras can take images of higher number of pixels than most of

displays can offer. The problem is the limited color gamut and even more limited dynamic

range (contrast) captured by cameras and stored by the majority of image and video formats. To

emphasize these limitations of traditional imaging technology, it is often called low-dynamic

range or simply LDR.

For instance, each pixel value in the JPEG image encoding is represented using three

8-bit integer numbers (0–255) using the Y Cr Cb color space. This color space is able to store

only a small part of visible color gamut (although containing the colors most often encountered

in the real world), as illustrated in Fig. 1.1-left, and an even smaller part of the luminance

range that can be perceived by our eyes, as illustrated in Fig. 1.1-right. The reason for this is

that the JPEG format was designed to store as much information as can be displayed on the

majority of displays, which were at that time cathode ray tube (CRT) monitors or TV sets.

This assumption is no longer valid, as the new generations of LCD and Plasma displays can

depict a much broader color gamut and dynamic range than their CRT ancestors. Every new

generation of displays offers better color reproduction and requires higher precision of image

and video content. The traditional low contrast range and limited color gamut imaging (LDR

imaging), which is confined to three 8-bit integer color channels, cannot offer the precision that

is needed for the upcoming developments in image capture, processing, storage, and display

technologies.

High dynamic range imaging (HDRI) overcomes the limitation of traditional imaging

by performing operations on color data with much higher precision. Pixel colors are specified

in HDR images as a triple of floating point values (usually 32-bit per color channel), providing

accuracy that exceeds the capabilities of the human visual system under any viewing conditions.
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2 HDR VIDEO
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FIGURE 1.1: Left: the standard color gamut frequently used in traditional imaging (CCIR-705),

compared to the full visible color gamut. Right: real-world luminance values compared with the range of

luminance that can be displayed on CRT and LDR monitors. Most digital content is stored in a format

that at most preserves the dynamic range of typical displays.

By its inherent colorimetric precision, HDRI can represent all colors found in real world that

can be perceived by the human eye.

HDRI does not only provide higher precision, but also enables the synthesis, storage

and visualization of a range of perceptual cues that are not achievable with traditional imaging.

Most of the LDR imaging standards and color spaces have been developed to match the needs

of office or display illumination conditions. When viewing such scenes or images under such

conditions, our visual system operates in a mixture of day-light and dim-light vision state,

so-called the mesopic vision. When viewing outdoor scenes, we use day-light perception of

colors, so-called the photopic vision. This distinction is important for digital imaging as both

types of vision show different performance and result in different perception of colors. HDRI

can represent images of the luminance range fully covering both the photopic and the mesopic

vision, thus making distinction between them possible. One of the differences between mesopic

and photopic visions is the impression of colorfulness. We tend to regard objects more colorful

when they are brightly illuminated, which is the phenomenon that is called Hunt’s effect.

To render enhanced colorfulness properly, digital images must preserve information about the

actual level of luminance of the original scene, which is not possible in the case of traditional

imaging.

Real-world scenes are not only brighter and more colorful than their digital reproductions,

but also contain much higher contrast, both local between neighboring objects, and global
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between distant objects. The eye has evolved to cope with such high contrast and its presence

in a scene evokes important perceptual cues. Traditional imaging, unlike HDRI, is not able to

represent such high-contrast scenes. Similarly, traditional images can hardly represent common

visual phenomena, such as self-luminous surfaces (sun, shining lamps) and bright specular

highlights. They also do not contain enough information to reproduce visual glare (brightening

of the areas surrounding shining objects) and a short-time dazzle due to sudden increase of the

brightness of a scene (e.g., when exposed to the sunlight after staying indoors). To faithfully

represent, store and then reproduce all these effects, the original scene must be stored and

treated using high fidelity HDR techniques.

1.2 DEVICE- AND SCENE-REFERRED IMAGE
REPRESENTATIONS

To accommodate all discussed requirements imposed on HDRI, a common format of data is

required to enable their efficient transfer and processing on the way from HDR acquisition

to HDR display devices. Here again fundamental differences between image formats used in

traditional imaging and HDRI arise, which we address in this section.

Commonly used LDR image formats (JPEG, PNG, TIFF, etc.) contain data that are

tailored to particular display devices: cameras, CRT or LCD displays. For example, two JPEG

images shown using two different LCD displays may be significantly different due to dissimilar

image processing, color filters, gamma correction, and so on. Obviously, such representation

of images vaguely relates to the actual photometric properties of the scene it depicts, but it is

dependent on a display device. Therefore, those formats can be considered as device-referred (also

known as output-referred), since they are tightly coupled with the capabilities and characteristic

of a particular imaging device.

ICC color profiles can be used to convert visual data from one device-referred format

to another. Such profiles define the colorimetric properties of a device for which the image is

intended for. Problems arise if the two devices have different color gamuts or dynamic ranges,

in which case a conversion from one format to another usually involves the loss of some visual

information. The algorithms for the best reproduction of LDR images on the output media

of different color gamuts have been thoroughly studied [1] and CIE technical committee

(CIE Division 8: TC8-03) have been started to choose the best algorithm. However, as for

now, the committee has not been able to select a single algorithm that would give reliable

results in all cases. The problem is even more difficult when an image captured with an HDR

camera is converted to the color space of a low-dynamic range monitor (see a multitude of tone

reproduction algorithms discussed in Chapter 6). Obviously, the ICC profiles cannot be easily

used to facilitate interchange of data between LDR and HDR devices.
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Scene-referred representation of images offers a much simpler solution to this problem.

The scene-referred image encodes the actual photometric characteristic of a scene it depicts.

Conversion from such common representation, which directly corresponds to physical lumi-

nance or spectral radiance values, to a format suitable for a particular device is the responsibility

of that device. This should guarantee the best possible rendering of the HDR content, since

only the device has all the information related to its limitations and sometimes also viewing

conditions (e.g., ambient illumination), which is necessary to render the content properly. HDR

file formats are examples of scene-referred encoding, as they usually represent either luminance

or spectral radiance, rather than gamma corrected and ready to display “pixel values.”

The problem of accuracy of scene-referred image representation arises, for example the

magnitude of quantization error and its distribution for various luminance levels in the depicted

scene. For display-referred image formats the problem of pixel accuracy is easy to formulate

in terms of the reproduction capabilities of target display devices. For scene-referred image

representations, the accuracy should not be tailored to any particular imaging technology and,

if efficiency of storing data is required, should be limited only by the capabilities of the human

visual system.

To summarize, the difference between HDRI and traditional LDR imaging is that

HDRI always operates on device-independent and high-precision data, so that the quality of

the content is reduced only at the display stage, and only if a device cannot faithfully reproduce

the content. This is contrary to traditional LDR imaging, where the content is usually profiled

for particular device and thus stripped from useful information as early as at the acquisition

stage or latest at the storage stage. Figure 1.2 summarizes these basic conceptual differences

between LDR and HDR imaging.

1.3 HDR REVOLUTION
HDRI has recently gained momentum and is affecting almost all fields of digital imaging. One

of the breakthroughs responsible for this burst of interest in HDRI was the development of an

HDR display, which proved that the visualization of color and the luminance range close to

real-world scenes is possible [2]. One of the first to adopt HDRI was video game developers

together with graphics card vendors. Today most of the state-of-the art video game engines

perform rendering using HDR precision to deliver more believable and appealing virtual reality

imagery. Computer-generated imagery used in special effect production uses HDR techniques

to achieve the best match between synthetic and realistic objects. High-end cinematographic

cameras, both analog and digital, already provide significantly higher dynamic range than most

of the displays today. This dynamic range can be retained after digitalization only if a form of

HDR representation is used. HDRI is also a strong trend in digital photography, mostly due

to the multi-exposure techniques that allow an HDR image to be made using a consumer level

digital camera. HDR cameras that can directly capture the higher dynamic range are available,
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Camera Dynamic Range

Display Contrast

Image Representation

Fidelity

Quantization

50 dB 120 dB

1:200 1:15,000

floating point or variable8-bit or 16-bit

scene-referreddisplay-referred

display-limited as good as the eye can see

Standard (Low) Dynamic Range High Dynamic Range

FIGURE 1.2: The advantages of HDR compared to LDR from the applications point of view. The

quality of the LDR image has been reduced on purpose to illustrate a potential difference between the

HDR and LDR visual contents as seen on an HDR display. The given numbers serve as an example and

are not meant to be a precise reference.

for example SheroCamHDR from SpheronVR, HDRC from IMS Chips, Origin R©from Dalsa or

Viper FilmStream from Thomson. Also, major display vendors experiment with local dimming

technology and LED-based backlight devices, which significantly enhances the dynamic range

of offered by them LCD displays. To catch up with the HDR trend, many software vendors

announce their support of the HDRI, taking Adobe R© Photoshop R© CS3 and Corel R© Paint Shop

Pro R© Photo X2 as examples. Also, commercial packages supporting multi-exposure blending

and tone reproduction such as Photomatix or FDRTools targeted mostly for photographers

become available.

Besides its significant impact on existing imaging technologies that we can observe

today, HDRI has the potential to radically change the methods by which imaging data are

processed, displayed, and stored in several fields of science. Computer vision algorithms can

greatly benefit from the increased precision of HDR images, which do not have over- or under-

exposed regions and which are often the cause of the algorithms failure. Medical imaging
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has already developed image formats (e.g. the DICOM format) that partly cope with the

shortcomings of traditional images; however, they are supported only by specialized hardware

and software. HDRI gives the sufficient precision for medical imaging and therefore its capture,

processing, and rendering techniques can be used also in this field. HDR techniques can also

find applications in astronomical imaging, remote sensing, industrial design, and scientific

visualization.

All these exciting developments in HDRI as well as huge potential of this technology in

multiple applications suggest that imaging is on the verge of HDR revolution. This revolution

will have a profound impact on devices that are used for image capture and display, as well

as on image and video formats that are used to store and broadcast visual content. Obviously,

during the transition time some elements of imaging pipeline may still rely on traditional

LDR technology. This will require backward compatibility of HDR formats to enable their

use on LDR output devices such as printers, displays, and projectors. For some of such devices,

the format extensions to HDR should be transparent, and standard display-referred content

should be directly accessible. However, more advanced LDR devices may take advantage of

HDR information by adjusting scene-referred content to their technical capabilities through

customized tone reproduction. Finally, the legacy images and video should be upgraded when

displayed on HDR devices, so that the best possible image quality is achieved (the so-called

inverse tone mapping). In this book, we address all these important issues by focusing mostly on

the state-of-the-art techniques. An interesting account of historical developments on dynamic

range expansion in the art, traditional photography, and electronic imaging has been recently

presented by one of the pioneers in HDRI John McCann [3].

1.4 ORGANIZATION OF THE BOOK
The book presents a complete pipeline for HDR image and video processing from acquisition,

through compression and quality evaluation, to display (refer to Fig. 1.3). At the first stage

digital images are acquired, either with cameras or computer rendering methods. In the former

case, pixel values calibration in terms of photometric or radiometric quantities may be required

in some technically oriented applications. At the second stage, digital content is efficiently

compressed and encoded either for storage or transmission purposes. Here backward compati-

bility with existing formats is an important issue. Finally, digital video or images are displayed

on display devices. Tone mapping is required to accommodate HDR content to LDR devices,

and conversely LDR content upgrading (the so-called inverse tone mapping) is necessary for

displaying on HDR devices. Apart from considering technical capabilities of display devices,

the viewing conditions such as ambient lighting and amount of light reflected by the display

play an important role for proper determination of tone-mapping parameters. Quality metrics

are employed to verify algorithms at all stages of the pipeline.
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FIGURE 1.3: Imaging pipeline and available HDR technologies.

Additionally, the book includes successful examples of the use of HDR technology in

research setups and industrial applications involving computer graphics. Whenever needed short

background information on human perception is given, which enables better understanding of

the design choices behind the discussed algorithms and HDR equipment.

The goal of this book is to present all discussed components of the HDR pipeline with

the main focus on HDR video. For some pipeline stages HDR video solutions are not well

established or do not exist at all, in which case we describe techniques for single HDR images.

In such cases, we attempt to select the techniques, which can be extended into temporal domain.

1.4.1 Why HDR Video?
Our focus in this book on HDR video stems from the fact that while HDR images are visually

compelling and relatively common (over 125 000 photographs tagged as HDR is available on

Flickr), the key applications that will drive further HDRI development in coming years require

some form of HDR video or uncompressed temporal image sequences. It can be envisioned

that the entertainment industry with computer games, digital cinema, and special effects will

be such an important driving force. In games due to HDR-enabled (floating point) graphics

pipelines HDR image sequences can be readily generated as an output from modern GPU cards.

In the near future, games will use more often HDR video of real-world scenes for virtual scenes

relighting or as realistic video textures. In digital cinema applications, the lack of desirable

contrast and luminance range are the main current drawbacks, whose prompt improvement

can be expected in the quest for a better visual quality than it is possible with traditional film

projectors. In terms of HDR content for digital cinema, this does not look like a real problem.
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Modern movies have often been shot with cameras featuring a higher dynamic range, and legacy

movies can be upgraded even if manual intervention would be required for some frames (as this

happened in the past with black&white films’ upgrade to color). Also, special effects, especially

those in which real and synthetic footage are seamlessly mixed, require both HDR shooting

and rendering. HDR video is also required in all applications in which capturing temporal

aspects of changes in the scene is required with high accuracy. This is in particular important

in monitoring of some industrial processes such as welding, predictive driver assistance systems

in automotive industry, surveillance systems, to name just a few possible applications. HDR

video can be also considered to speed up the image acquisition in all applications, in which a

large number of static HDR images are required, as for example in image-based techniques

in computer graphics. Finally, with the spread of TV sets featuring enhanced dynamic range,

broadcasting of HDR video signal will be important, which may take long time before it actually

happens due to standardization issues. For this particular application, enhancing current LDR

video signal to HDR by intelligent TV sets seems to be a viable solution in the nearest future.

1.4.2 Chapter Overview
The book is organized as follows: Chapter 2 gives background information on the digital

representation of images and the photometric and colorimetric description of light and color.

Chapter 3 reviews the HDR image and video capture techniques and describes the procedure of

their photometric calibration, so that the pixel values are directly expressed in luminance units.

Chapter 4 presents a perception-based image quality metric, which enables the prediction of

differences between a pair of HDR images. Such metrics are important to judge the quality of

HDR content for example as the result of lossy compression. Chapter 5 discusses the issues of

HDR image and video compression. At first HDR pixel format and color spaces are reviewed

and then existing formats of HDR image and video encoding are presented. Special attention

is paid to backward-compatible compression schemes. Chapter 6 presents a synthetic overview

of state-of-the-art tone-mapping operators and discusses the problem of their evaluation using

subjective methods with human subjects and objective computational models. Also, temporal

aspects of tone reproduction are investigated. Chapter 7 briefly surveys HDR display and

projection technologies that appeared in recent years. The problem of upgrading legacy images

and video (inverse tone mapping), so that they can be displayed on HDR devices with the

best visual quality, is discussed in Chapter 8. Chapter 9 surveys cross-correlations between

developments in computer graphics and HDRI. At first, computer graphics rendering as a rich

source of high quality HDR content is presented. Then, HDR images and video captured in

the real world as the input data for image-based rendering and modeling are discussed. Finally,

Chapter 10 demonstrates software packages for processing of HDR images and video that have

been made available by the authors of this book as open-source projects.
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C H A P T E R 2

Representation of an HDR Image

This chapter explains several physical and perceptual quantities important for digital imaging,

such as radiance, luminance, luminance factor, and color. It does not give a complete or

exhaustive introduction to radiometry, photometry or colorimetry, since these are described in

full extent elsewhere [4,5,6]. The focus of this chapter is on the concepts that are confusing or

vary in terminology between disciplines, and also those that are used in the following chapters.

2.1 LIGHT
The physical measure of light that is the most appropriate for imaging systems is either luminance

(used in photometry) or spectral radiance (used in radiometry). This is because both measures

stay constant regardless of the distance from a light source to a sensor (assuming no influence

of the medium in which the light travels). The sensor can be either camera’s CCD chip or

a photoreceptor in the eye. The quantities measured by photoreceptors or digital sensors are

related to either of these measures.

Spectral radiance is a radiometric measure, defined by

L(λ) =
d 28(λ)

dω·d A· cos θ
, (2.1)

where L(λ) is spectral radiance for the wavelength λ, 8 is the radiant flux flowing through a

surface per unit time, ω is the solid angle, θ is the angle between the rays and the surface, and A

θ

dω

d A

8(λ)

FIGURE 2.1: Spectral radiance. Spectral radiance is a differential measure, defined for infinitely small

area d A, infinitely small solid angle dω, radiant flux 8 and an angle between the rays and the surface θ .
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FIGURE 2.2: CIE spectral luminous efficiency curve for photopic (day light) and scotopic (night)

vision. Data downloaded from http://www.cvrl.org/.

is the area of the surface, as illustrated in Fig. 2.1. Although spectral radiance is commonly used

in computer graphics, images are better defined with photometric units of luminance. Luminance

is spectral radiance integrated over the range of visible wavelengths with the weighting function

V (λ):

Y =

∫ 770 nm

380 nm

L(λ)V (λ)dλ. (2.2)

The function V (λ), which is called the spectral luminous efficiency curve [7], gives more weight

to the wavelengths, to which the human visual system (HVS) is more sensitive. This way

luminance is related (though non-nonlinearly) to our perception of brightness. The function

V for the daylight vision (photopic) and night vision (scotopic) is plotted in Fig. 2.2. The

temporal aspects of daylight and night vision will be discussed in more detail in Section 6.4.

Luminance, Y , is usually given in cd/m2 or equivalent nit units.

Since the most common multi-exposure technique for acquiring HDR images (refer to

Section 3.1.1) cannot assess the absolute luminance level but only a relative luminance values,

most HDR images do not contain luminance values but rather the values of luminance factor.

Such luminance factor must be multiplied by a constant number, which depends on a camera

and lens, to get actual luminance. Such constant number can be easily found if we can measure

the luminance of a photographed surface (refer to Section 3.2).

http://www.cvrl.org/
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2.2 COLOR
Colors are perceptual phenomena rather than physical. Although we can precisely describe

colors using physical units of spectral radiance, such description does not give immediate

answer whether the described color is green or red. Colorimetry is the field that numerically

characterizes colors and provides a link between the human color perception and the physical

description of the light. This section introduces the most fundamental aspects of colorimetry

and introduces color spaces, which will be used in later chapters. More detailed introduction to

colorimetry can be found in [8] and [6], while two handbooks, [5] and [4], are more exhaustive

source of information.

The human color perception is determined by three types of cones: L, M, and S, and

their sensitivity to wavelengths. The light in the visible spectrum is in fact multi-dimensional

variable, where each dimension is associated with particular wavelength. However, the visible

color is a projection of this multi-dimensional variable to three primaries, corresponding to three

types of cones. Such projection is mathematically described as a product of the spectral power

distribution, φ(λ), and the spectral response of the type of cones, CL(λ), CM(λ) and CS(λ):

R =

∫

λ

φ(λ)CL(λ)dλ (2.3)

G =

∫

λ

φ(λ)CM(λ)dλ (2.4)

B =

∫

λ

φ(λ)CS(λ)dλ. (2.5)
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FIGURE 2.3: Cone photocurrent spectral responsivities. Redrawn from [9].
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FIGURE 2.4: Color matching functions for the CIE matching stimuli R, G , and B and 2◦ standard

observer. Data downloaded from http://www.cvrl.org/.

The spectral responsivities of cones are shown in Fig. 2.3.

As the result of three-dimensional encoding of color in the HVS, the number of distin-

guishable colors is limited. Also, two stimuli of different spectral power distributions can be

seen as having the same color if only their R, G , and B projections match. The latter property

of the HVS is called metamerism.

To uniquely describe visible color gamut, CIE standardized in 1931 a set of primaries for

the standard colorimetric observer. Since the cone spectral responsivities were not known at that

time, the primaries were based on color matching experiment, in which monochromatic stimuli

of particular wavelength was matched with a mixture of the three monochromatic primaries

(435.6 nm, 546.1 nm, and 700 nm). The values of color-matching mixture of primaries for

each wavelength gave the R, G , and B primaries shown in Fig. 2.4. The drawback of this

procedure was that it resulted in negative value of R primary. The negative part represents out

of gamut colors, which are too saturated to be within visible or physically feasible range. To bring

those colors into the valid gamut, the colors must be desaturated by adding monochromatic

light. Since adding monochromatic light results in increasing the values of all R, G , and B

components, there is a certain amount of the added light that would make all components

positive.

http://www.cvrl.org/
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FIGURE 2.5: Color matching functions for the CIE matching stimuli X, Y , and Z and 2◦ standard

observer. Data downloaded from http://www.cvrl.org/.

To avoid negative primaries and to connect colorimetric description of the light with

photometric measure of luminance (see the previous section), CIE introduced XY Z primaries

in 1931. The primaries, shown in Fig. 2.5, were designed so that primary Y represents luminance

and its color matching function corresponds to the luminous efficiency function (see Fig. 2.2).

Although the standard has been established over 70 years ago, it is still commonly used today,

especially as a reference in color conversion formulas.

For a convenient two-dimensional representation of the color, chromaticity coordinates

are often used:

x =
X

X + Y + Z
(2.6)

y =
Y

X + Y + Z
. (2.7)

Such coordinates must be accompanied by the corresponding luminance value, Y , to fully

describe the color.

The visible differences between colors are not well described by chromaticity coordi-

nates x and y . For better representation of perceptual color differences, CIE defined uniform

http://www.cvrl.org/
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chromaticity scales (UCS) in 1976, which are known as CIE 1976 Uniform Chromacity Scales:

u ′ =
4X

X + 15Y + 3Z
(2.8)

v′ =
9Y

X + 15Y + 3Z
. (2.9)

Note that u ′, v′ chromaticity space only approximates perceptual uniformity and a unit Cartesian

distance may vary from 1 JND1 to 4 JND units.

The Uniform Chromacity Scales do not incorporate luminance level in their description

of color. This is a significant limitation, as color difference can strongly depend on the actual

luminance level. Uniform color spaces have been introduced to address this problem. The first

color space, CIE 1976 L∗a∗b∗, is defined by

L∗ = 116(Y/Yn)1/3 − 16 (2.10)

a∗ = 500
[

(X/Xn)1/3 − (Y/Yn)1/3
]

(2.11)

b∗ = 200
[

(Y/Yn)1/3 − (Z/Zn)1/3
]

(2.12)

and the second color space, CIE 1976 L∗u∗v∗, by

L∗ = 116(Y/Yn)1/3 − 16 (2.13)

u∗ = 13L∗(u ′ − u ′
n) (2.14)

v∗ = 13L∗(v′ − v′
n). (2.15)

The coordinates with the n subscript denote the color of the reference white, which is the color

that appears white in the scene. For color print, this is usually the color of a white paper under

given illumination. Both color spaces have been standardized as the studies did not show that

the one is definitely better over another and each one has its advantages.

Both CIE 1976 L∗a∗b∗ and CIE 1976 L∗u∗v∗ color spaces have been designed for low

dynamic range color range, available on print or typical CRT displays and cannot be used for

HDR images. In Section 5.1, we address this problem in more detail and in particular we derive

an (approximately) perceptually uniform color space for HDR pixel values.

The uniform color spaces are the simplest incarnations of color appearance models. Color

appearance models try to predict not only the colorimetric properties of the light, but also its

appearance under given viewing conditions (background color, surround ambient light, color

adaptation, etc.). CIECAM02 [10] is an example of such a model that has been standardized by

CIE. The discussion of color appearance models would go beyond scope of this book; therefore,

reader should refer to [4] and [8] for more information.

1JND—Just Noticeable Difference is usually defined as a measure of contrast at which a subject has 75% chance of

correctly detecting visual difference in a stimulus.
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TABLE 2.1: Measures of dynamic range and their context of application. The example column

illustrates the same dynamic range expressed in different units.

NAME FORMULA EXAMPLE CONTEXT

contrast ratio CR = 1 : (Ypeak/Ynoise) 1:500 displays

log exposure range D = log10(Ypeak) − log10(Ynoise) 2.7 orders HDR imaging,

L = log2(Ypeak) − log2(Ynoise) 9 f-stops photography

signal to noise ratio SNR = 20 · log10(Ypeak/Ynoise) 53[dB] digital cameras

2.3 DYNAMIC RANGE
In principle, the term dynamic range is used in engineering to define the ratio between the largest

and the smallest quantity under consideration. With respect to images, the observed quantity

is the luminance level and there are several measures of dynamic range in use depending on the

applications. They are summarized in Table 2.1.

The contrast ratio is a measure used in display systems and defines the ratio between the

luminance of the brightest color it can produce (white) and the darkest (black). In case the

luminance of black is zero, as for instance in HDR displays [2], the first controllable level above

zero is considered as the darkest to avoid infinity. The ratio is usually normalized by the black

level for clarity.

The log exposure range is a measure commonly adopted in high dynamic range imaging

to measure the dynamic range of scenes. Here the considered ratio is between the brightest and

the darkest parts of a scene given in luminance. The log exposure range is specified in orders of

magnitude, which permits the expression of such ratios in a concise form using the logarithm

base 10 and is usually truncated to one floating point position. It is also related to the measure

of allowed exposure error in photography—exposure latitude. The exposure latitude is defined as

the luminance range the film can capture minus the luminance range of the photographed scene

and is expressed using logarithm base 2 with precision up to 1/3. The choice of logarithmic

base is motivated by the scale of exposure settings, aperture closure (f-stops), and shutter

speed (seconds), where one step doubles or halves the amount of captured light. Thus the

exposure latitude tells the photographers how large a mistake they can make in setting the

exposure parameters while still obtaining a satisfactory image. This measure is mentioned here,

because its units, f-stop steps or f-stops in short, are often perhaps incorrectly used in HDR

photography to define the luminance range of a photographed scene alone.
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The signal-to-noise ratio (SNR) is most often used to express the dynamic range of a

digital camera. In this context, it is usually measured as the ratio of the intensity that just

saturates the image sensor to the minimum intensity that can be observed above the noise level

of the sensor. It is expressed in decibel [dB] using 20 times base-10 logarithm.

The actual procedure to measure dynamic range is not well defined and therefore the

numbers vary. For instance, display manufacturers often measure the white level and the black

level with a separate set of display parameters that are fine-tuned to achieve the highest possible

number which is obviously overestimated and no displayed image can show such a contrast. On

the other hand, HDR images often have very few light or dark pixels. An image can be low-pass

filtered before the actual dynamic range measure is taken to assure reliable estimation. Such

filtering averages the minimum luminance thus gives a reliable noise floor, and smoothes single

pixel with very high luminance thus gives a reasonable maximum amplitude estimate. Such a

measurement is more stable compared to the non-blurred maximum and minimum luminance.

The last remaining aspect is the dynamic range that can be perceived by the human

eye. The light scattering on the optic of the eye can effectively reduce the maximum luminance

contrast that can be projected onto to retina to 2–3 log-10 units. However, since the eye is in fact

a highly active sensor, which can rapidly change the gaze and locally adapt, people are believed

to be able to perceive simultaneously the scenes of 4 or even more log-10 units [6, Section 6.2]

of dynamic range.
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C H A P T E R 3

HDR Image and Video Acquisition

In recent years, several new techniques have been developed that are capable of capturing

images with a dynamic range of up to 8 orders of magnitude at video frame rates. Such a range

is practically sufficient to accommodate the full range of light present in the real world scenes.

Together with the concept of the scene-referred representation of HDR contents this motivates

that the HDR acquisition techniques output pixel intensities in well-calibrated photometric

values. The varied techniques used in HDR capture require, however, careful characterization.

In this chapter, we review the HDR capture techniques in the following section and describe

the procedure for characterization of such cameras in terms of luminance in Section 3.2.

3.1 CAPTURE TECHNIQUES CAPABLE OF HDR
In principle, there are two major approaches to capturing high dynamic range: to develop

new HDR sensors or to expose LDR sensors to light at more than one exposure level and

later recombine these exposures into one high dynamic range image by means of a software

algorithm. With respect to the second approach, the variation of exposure level can be achieved

in three ways. The exposure can change in time, meaning that for each video frame a sequence

of images of the same scene is captured, each with a different exposure. The exposure can

change in space, such that the sensitivity to light of pixels in a sensor changes spatially and

pixels in one image are non-uniformly exposed to light. Alternatively, an optical element can

split light onto several sensors with each having a different exposure setting. Such software and

hardware solutions to HDR capture are summarized in Sections 3.1.1–3.1.4.

3.1.1 Temporal Exposure Change
This is probably the most straightforward and the most popular method to capture HDR with

a single low dynamic range sensor. Although such a sensor captures at once only a limited

range of luminance in the scene, its operating range can encompass the full range of luminance

through the change of exposure parameters. Therefore, a sequence of images, each exposed in

such a way that a different range of luminance is captured, may together acquire the whole

dynamic range of the scene, see Fig. 3.1. Such captures can be merged into one HDR frame by
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Luminance [cd/m ]2

exposure t1 exposure t2 exposure t3 HDR frame 

1 100 10000

t1
t2

t3

HDR

FIGURE 3.1: Three consecutive exposures captured at immediate time steps t1, t2, t3 contain different

luminance ranges of a scene. The HDR frame merged from these exposures contains the full range of

luminance in this scene. HDR frame tone mapped for illustration using a lightness perception inspired

technique [14].

a simple averaging of pixel values across the exposures, after accounting for a camera response

and normalizing by the exposure change [11, 12, 13] (for details on the algorithm refer to

Section 3.2). Theoretically, this approach allows us to capture scenes of arbitrary dynamic

range, with an adequate number of exposures per frame, and exploits the full resolution and

capture quality of a camera.

HDR capture based on the temporal exposure change has, however, certain limitations

especially in the context of video. Correct reconstruction of HDR from multiple images requires

that each of the images captures exactly the same scene at a pixel level accuracy. This requirement

cannot be practically fulfilled, because of camera motion and motion of objects in a scene, and

pure merging techniques lead to motion artifacts and ghosting. To improve quality, such global

and local displacements in images within an HDR frame must be realigned using for instance

optical flow estimation. Furthermore, alignment of images that constitute one frame has to

be temporarily coherent with adjacent frames. A complete solution that captures two images

per frame and allows for real-time performance with 25 fps HDR video capture is described

in [15]. An alternative solution that captures a much wider dynamic range of about 140 dB,

but does not compensate for motion artifacts is available from [16].
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FIGURE 3.2: Single exposure using a standard image sensor cannot capture full dynamic range of the

scene (left). The mask with per pixel varying optical densities e3 = 4e2 = 16e1 = 64e0 (middle) can be

put in front of a sensor. Using such a mask at least one pixel per four is well exposed during the capture

(right). The right image is best viewed in the electronic version of the book.

The temporal exposure change requires a fast camera, because the effective dynamic range

depends on the amount of captures per frame. For instance a 200 Hz camera is necessary to

have a 25 fps video with 8 captures per frame that can give an approximate dynamic range

of 140 dB [16]. With such a short time per image capture, the camera sensor must have a

sufficiently high sensitivity to light to be able to operate in low light conditions. Unfortunately,

such a boosted sensitivity usually increases noise.

3.1.2 Spatial Exposure Change
To avoid potential artifacts from motion in the scene, the exposure parameters may also change

within a single capture [17], as an alternative to the temporal exposure change. The spatial

exposure change is usually achieved using a mask which has a per pixel variable optical density.

The number of different optical densities can be flexibly chosen and they can create a regular

or irregular pattern. Nayar and Mitsunaga [17] propose to use a mask with a regular pattern of

four different exposures as shown in Fig. 3.2. Such a mask can be then placed directly in front

of a camera sensor or in the lens between primary and imaging elements.

For the pattern shown in Fig. 3.2, the full dynamic range can be recovered either by

aggregation or by interpolation. The aggregation is performed over a small area which includes

a capture of that area through each optical density, thus at several different exposures. The

different exposures in the area are combined into one HDR pixel by means of a multi-exposure

principle explained in the previous section, at the cost of reduced resolution of the resulting
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HDR frame. To preserve the original resolution, HDR pixel values can also be interpolated

from adjacent pixels in a similar manner as colors from the Bayer pattern. Depending on the

luminance levels, aliasing and interpolation artifacts may appear.

The effective dynamic range in this approach depends on the number of different optical

densities available in the pattern. A regular pattern of four densities, as shown in Fig. 3.2, such

that e3 = 4e2 = 16e1 = 64e0 gives a dynamic range of about 85 dB for an 8-bit sensor [17].

The quantization step in the reconstructed HDR frame is non-uniform and increases for high

luminance levels. The size of the step is, however, acceptable because it follows the gamma

curve.

An alternative implementation of spatial exposure change, adaptive dynamic range imag-

ing (ADRI), utilizes an adaptive optical density mask instead of a fixed pattern element [18,19].

Such a mask adjusts its optical density per pixel informed by a feedback mechanism from the

image sensor. Thus saturated pixels increase the density of corresponding pixels in the mask,

and noisy pixels decrease. The feedback, however, introduces a delay which can appear as tem-

poral over- or under-exposure of moving high contrast edges. Such a delay, which is minimally

one frame, may be longer if the mask with adapting optical densities has high latency.

Another variation of spatial exposure change is implemented in a sensor whose pixels

are composed of more than one light sensing element each of which has a different sensitivity

to light [20]. This approach is, however, limited by the size of the sensing element per pixel,

and practically only two elements are used. Although in such a configuration, one achieves

only a minor improvement in the dynamic range, so far only this implementation is applied in

commercial cameras (Fuji Super CCD).

3.1.3 Multiple Sensors with Beam Splitters
Following the multi-exposure approach to extending dynamic range, one can capture several

exposures per video frame at once using beam splitters [21,22]. The idea, so-called split aperture

imaging, is to direct the light from the lens to more than one imaging sensor. Theoretically this

allows us to capture HDR without making any quality trade-offs and without motion artifacts.

In practice, however, the effective dynamic range depends on the number of sensors used in the

camera and such a solution may become rather costly when a larger dynamic range is desired.

Furthermore, splitting the light requires an increased sensitivity of the sensors.

3.1.4 Solid-State Sensors
There are currently two major approaches to extend the dynamic range of an imaging sensor.

One type of sensor collects charge generated by the photo current. The amount of charge

collected per unit of time is linearly related to the irradiance on the chip (similar to a standard
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CCD chip [23]), the exposure time is however varying per pixel (sometimes called “locally

auto-adaptive”) [24,25,26]. This can for instance be achieved by sequentially capturing multiple

exposures with different exposure time settings or by stopping after some time the exposure of

the pixels that would be overexposed during the next time step. A second type of sensor uses

the logarithmic response of a component to compute the logarithm of the irradiance in the

analog domain. Both types require a suitable analog–digital conversion and typically generate a

nonlinearly sampled signal encoded using 8–16 bits per pixel value. Several HDR video cameras

based on these sensors are already commercially available. Such cameras allow us to capture

dynamic scenes with high contrast, and compared to software approaches, offer considerably

wider dynamic range and quality independent of changes in the scene content as frame-to-

frame coherence is not required. The properties of two of such cameras: HDRC VGAx from

IMS-CHIPS [27] and Lars III from Silicon Vision are studied in detail in Section 3.2.4.

3.2 PHOTOMETRIC CALIBRATION OF HDR CAMERAS
Ideally, in a photometrically calibrated system the pixel value output by a camera would directly

inform about the amount of light that this camera was exposed to. However, in view of

display-referred representation it has become important to obtain a visually pleasant image

directly from a camera rather than such a photometric image. With the advance of high

dynamic range imaging, however, the shift of emphasis in requirements can be observed. Many

applications such as HDR video, capture of environment maps for realistic rendering, image-

based measurements require photometrically calibrated images with absolute luminance values

per pixel. For instance, the visually lossless HDR video compression (Chapter 5) is based

on a model of human vision performance in observing differences in absolute luminance. An

incorrect estimation of such performance due to the uncalibrated input may result in visible

artifacts or less efficient compression. The capture technologies, however, especially in the

context of HDR, are very versatile and a simple solution to obtain the photometric output from

all types of cameras is not possible.

This section explains how to perform the absolute photometric calibration of HDR

cameras and validates the accuracy of two HDR video cameras for applications requiring such

calibration. For camera response estimation, an existing technique by Robertson et al. [28] is

adapted to the specific requirements of HDR camera systems [29]. To obtain camera output

in luminance units, the absolute photometric calibration is further determined. The achieved

accuracy is estimated by comparing the measurements obtained with the absolute photometric

calibration to measurements performed with a luminance meter and is discussed in the light of

possible applications.
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3.2.1 Camera Response to Light
An image or a frame of a video is recorded by capturing the irradiance at the camera sensor.

At each pixel of the sensor, photons collected by a light sensitive area are transformed to an

analog signal (electric charge) which is in turn read and quantized by a controller. Such a

quantized signal is further processed to reduce noise, interpolate color information from the

Bayer pattern, or enhance image quality, and is finally output from a camera. The camera

response to irradiance, or light, describes the relation between incoming light and produced

output value. The details of the capture process are often unknown thus the camera response is

conveniently analyzed as a black box, which jointly describes the sensor response and built-in

signal processing. In principle, the estimation of a camera response can be thought of as reading

out the camera values for each single light quantity, although this is practically not feasible.

The camera response to light can be inversed to retrieve original irradiance value. Directly,

the inverse model produces values that are only proportional (linearly related) to the true

irradiance. The scale factor in this linear relation depends on the exposure settings and has to

be estimated by additional measurements.

The HDR cameras have a nonlinear and sometimes non-continuous response to light

and their output range exceeds 8 bit. Our choice of the framework for response estimation

explained in the following section is motivated by its generality and the lack of restricting

assumptions on the form of the response.

3.2.2 Mathematical Framework for Response Estimation
The camera response is estimated from a set of input images based on the expectation maxi-

mization approach [28]. The input images capture exactly the same scene, with correspondence

at the pixel level, but the exposure parameters are different for each image. The exposure pa-

rameters have to be known and the camera response is observed as a change in the output pixel

values with respect to a known change in irradiance. For the sake of clarity, in this section

the exposure time is assumed to be the only parameter, but in general case it is necessary to

know how many times more or less energy has been captured during each exposure. Since the

exposure time is proportional to the amount of light captured in an image sensor, it serves well

as the required factor. The mathematical formulas below follow the notation given in Table 3.1

and consider only images with one channel.

There are two unknowns in the estimation process. The primary unknown, the camera

response function I , models the relation between the camera output values and the irradiance

at the camera sensor, or luminance in the scene. The camera output values for a scene are

provided as input images, but the irradiance x coming from the scene is the second unknown.

The estimation process starts with an initial guess on the camera response function, which for

instance can be a linear response, and consists of two steps that are iterated. First, the irradiance
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TABLE 3.1: Symbols and notation in formulas for response estimation

i—image index

j—pixel position index

ti —exposure time of image i

yi j —pixel value of input image i at position j

I (·)—camera response function

x j —estimated irradiance at pixel position j

w(·)—weighting function from certainty model

m—pixel value from a set of possible camera output values

from the scene is computed from the input images based on the currently estimated camera

response. Second, the camera response is refined to minimize the error in mapping pixel values

from all input images to the computed irradiance. The process is terminated when the iteration

step no longer improves the camera response. The details of the process are explained below.

Estimation of Irradiance

Assuming that the camera response function I is correct, the pixel values in the input images

are mapped to the relative irradiance by using the inverse function I−1. Such relative irradiance

is proportional to the true irradiance from the scene by a factor influenced by the exposure

parameters (e.g., exposure time), and the mapping is called linearization of camera output.

The relative irradiance is further normalized by the exposure time ti to estimate the amount of

energy captured per unit of time in the input images i at pixel position j :

xi j =
I−1(yi j )

ti
. (3.1)

Each of the xi images contains a part of the full range of irradiance values coming from the

scene. This range is determined by the exposure settings and is limited by the dynamic range

of the camera sensor. The complete irradiance at the sensor is estimated from the weighted

average of this partial captures:

x j =

∑

i wi j · xi j
∑

i wi j
. (3.2)

The weights wi j are determined for camera output values by the certainty model discussed later

in this section. Importantly, the weights for the maximum and minimum camera output values

are equal to 0, because the captured irradiance is bound to be incorrect in the pixels for which

the sensor has been saturated or captured no energy.
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Refinement of Camera Response

Assuming that the irradiance at the sensor x j is correct, one can recapture the camera output

values y ′
i j in each of the input images i by using the camera response:

y ′
i j = I (ti · x j ). (3.3)

In the ideal case when the camera response I is perfectly estimated, the y ′
i j is equal to yi j .

During the estimation process, however, the camera response function needs to be optimized

for each camera output value m by averaging the recaptured irradiance x j for all pixels in the

input images yi j that are equal to m:

Em = {(i, j ) : yi j = m}, (3.4)

I−1(m) =
1

Card(Em)

∑

i, j∈Em

ti · x j . (3.5)

The Certainty Model

The presence of noise in the capture process is conveniently neglected in the capture model in

Eqs. (3.1), (3.3). A complete capture model would require characterization of possible sources

of noise and incorporation of appropriate noise terms to the equation. This would require

further measurements and analysis of particular capture technology in the camera, thus is not

practical. Instead, the noise term can be accounted for by an intuitive measure of confidence

in the accuracy of captured irradiance. In typical 8-bit cameras, for instance, one would expect

high noise in the low camera output values, quantization errors in the high values, and good

accuracy in the middle range. An appropriate certainty model can be defined by the following

Gaussian function:

w(m) = exp

(

−4 ·
(m − 127.5)2

127.52

)

. (3.6)

The certainty model can be further extended with knowledge about the capture process. Nor-

mally, longer exposure times, which allow us to capture more energy, tend to exhibit less

random noise than short ones. Therefore, an improved certainty model for input images yi j

can be formulated as follows:

wi j = w(yi j ) · t2
i . (3.7)

Such weighting function minimizes the influence of noise on the estimation of irradiance in

Eq. (3.2). This happens apart from noise reducing properties of the image averaging process

itself.
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Minimization of Objective Function

After the initial assumption on the camera response I , which is usually linear, the response is

refined by iteratively computing Eqs. (3.2) and (3.5). At the end of every iteration, the quality

of estimated camera response is measured with the following objective function:

O =
∑

i, j

w(yi j ) · (I−1(yi j ) − ti · x j )
2. (3.8)

The objective function measures the error in the estimated irradiance for input images yi j

when compared to the simulated capture of the true irradiance x j . The certainty model requires

that the camera output values in the range of high confidence give more accurate irradiance

estimates. The estimation process is terminated as soon as the objective function O falls below

the predetermined threshold.

The estimation process requires an additional constraint, because two dependent un-

knowns are calculated simultaneously. Precisely, the values of x j depend on the mapping of I

and the equations are satisfied by infinitely many solutions to I which differ by a scale factor.

Convergence to one solution is enforced, in each iteration, through normalization of the inverse

camera response I−1 by the irradiance causing the medium camera output value I−1(mmed).

3.2.3 Procedure for Photometric Calibration
In the following sections, a step-by-step procedure for photometric calibration of HDR cameras

is outlined.

Scene Setup for Calibration

The response estimation algorithm requires that each camera output value is observed in more

than one input image. Moreover, frequent observations of the value reduce the impact of noise.

Therefore, an ideal scene for calibration is static, contains a range of luminance wider than

the expected dynamic range of the camera, and smoothly changing illumination which gives a

uniform histogram of output values. Additionally, neutral colors in the scene can minimize the

possible impact of color processing in a color camera.

When calibrating HDR cameras, a static scene with a sufficiently wide dynamic range

may not be feasible to create. In such a case, it is advisable to prepare several scenes, each

covering a separate but partially overlapping luminance range, and stitch them together into a

single image.

Capture of Images for Calibration

Input images for the calibration process capture exactly the same scene with varying exposure

parameters. A steady tripod and remote control of a camera are essential requirements. A slight
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out-of-focus reduces edge aliasing due to sensor resolution and limits potential sharpening in

a camera, thus makes the estimation process more stable.

HDR cameras often do not offer any adjustment of exposure parameters or available

adjustments are not bound to have a linear influence on captured energy. The aperture value

cannot be changed to adjust the exposure because it modifies the depth-of-field, vignetting, and

diffraction pattern, thus practically changes the scene between input images. Instead, the optical

filters, such as neutral density (ND) filters, can be mounted in front of the lens to limit the

amount of irradiance at the sensor at a constant exposure time. The ND filters are characterized

by their optical density which defines the amount of light attenuation in logarithmic scale. In

the response estimation framework, such optical density can be used to calculate a simulated

exposure time of captured images:

ti = t0 · 10Di , (3.9)

where ti is simulated exposure time of image i captured through an optical filter of density

Di calculated with respect to the true exposure time t0. If t0 is not known from the camera

specifications, it can be assumed equal to 1. One should make sure that the optical filters are

spatially uniform and equally reduce the intensity of all captured wavelengths.

Following the analysis in [30], it can be suggested to acquire two images that are exposed

similarly and one that is considerably different. Additionally, when calibrating a video camera

one may capture a larger number of frames for each of the exposures. Such a superfluous number

of input images will reduce the influence of image noise on the response estimation.

Absolute Photometric Calibration

The images of the calibration scene are input to the estimation framework from Section 3.2.2

to obtain a camera response. For an RGB or multi-spectral camera, the camera response has

to be estimated for each color channel separately. Here, a camera that captures monochromatic

images with spectral efficiency corresponding to luminance is assumed. In the case of an RGB

camera, an approximation of luminance Y can be calculated from color channels using RGB to

XY Z color transform.

The relative luminance values obtained from the estimated response curve are linearly

proportional to the absolute luminance with a scale factor dependent on the exposure parameters

and the lens system. Absolute calibration is based on the acquisition of a scene containing

patches with known luminance Y . The scale factor f is determined by minimizing relative

error between known and captured luminance values:

Y = f · I−1(m). (3.10)
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FIGURE 3.3: Cameras used in our experiment: HDRC VGAx (lower left), Silicon Vision Lars III

(center), Jenoptik C14 (lower right), and Minolta LS-100 luminance meter (top).

3.2.4 Example Calibration of HDR Video Cameras
The photometric calibration is demonstrated in this section on two HDR video cameras: the

Silicon Vision Lars III camera and the HDRC VGAx camera. The Jenoptik C14, a high-end,

CCD based LDR camera (see Fig. 3.3), is also included for comparison purposes. The Lars III

sensor is an example of a locally auto-adaptive image sensor [26]: the exposure is terminated for

each individual pixel after one out of 12 possible exposure times (usually powers of 2). For every

pixel, the camera returns the amount of charge collected until the exposure was terminated as a

12-bit value and a 4-bit time-stamp. The HDRC sensor is a logarithmic-type sensor [31] and

the camera outputs 10-bit values per pixel [27].

Estimation of Camera Response

To cover the expected dynamic range of calibrated cameras, in the presented case it was

necessary to acquire three scene setups with varied luminance characteristic (see Fig. 3.4): a

scene with moderate illumination, the same scene with a strong light source, and a light source

with reflector shining directly toward the cameras. Stitching these three images together yields

an input for the response estimation algorithm covering a dynamic range of more than 8 orders

of magnitude. Each scene setup has been captured without any filter and with a ×1.5 ND filter

and a ×10 ND filter. The response of C14 camera was estimated using a series of 13 differently

exposed images of a GretagMacbeth ColorChecker.

The estimated responses of the three cameras are shown in Fig. 3.5. The certainty

functions have been modeled using Eq. (3.6) such that maximum confidence is assigned to the

middle of operational luminance range and limits to zero at the camera output levels dominated

by noise. A single response curve has been estimated for the monochromatic Lars III camera
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FIGURE 3.4: Three scene setups for the estimation of response curves (tone mapped for presentation).

The histogram shows the luminance distribution in the stitched images for acquisition without filter, and

using ND filters with ×1.5 and ×10 optical density. This setup covers 8 orders of luminance magnitude.

and separate curves have been determined for the three color channels of the other cameras. As

the raw sensor values of the HDRC camera before Bayer interpolation have been available, the

response curve for each channel has been directly estimated from corresponding pixels in order

to avoid possible interpolation artifacts.

Figure 3.5 shows that the response curves of the two HDR cameras both cover a consid-

erably wider range of luminance than the high-end LDR camera that covers a range of about

3.5 orders of magnitude. The different shapes of the HDR response curves are caused by their

respective sensor technology and the encoding. The logarithmic HDRC VGAx camera has the

highest dynamic range (more than 8 orders of magnitude), but an offset in the A/D conversion

makes the lower third of the 10-bit range unusable. The multiple exposure values of the locally

auto-adaptive Lars III camera are well visible as discontinuities in the response curve. Note that

the luminance range is covered continuously and gaps are only caused by the encoding. The

camera covers a dynamic range of about 5 orders of magnitude. Noise at the switching points

between exposure times is well visible.

Results of Photometric Calibration

The inverse of the estimated responses converts the camera output values into relative luminance

values. To perform an absolute calibration, the GretagMacbeth ColorChecker chart has been

acquired under six different illumination conditions. The luminance of the gray patches was
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FIGURE 3.5: The estimated response curves and corresponding weighting functions from the certainty

model (value 1.0 represents the full confidence in capture accuracy, 0.0 represents no confidence). The

peaks of the weighting functions are centered at the middle of the operational range of each camera.

measured using a Minolta LS-100 luminance meter yielding a total of 36 samples and an

optimal scale factor was determined for each camera. The accuracy of the absolute calibration

for the 36 patches can be seen in Fig. 3.6. The calibrated camera luminance values are well

aligned to the measured values proving that the response curve recovery was accurate. The
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FIGURE 3.6: The results of absolute calibration. The estimated response curves were fitted to the

measurements of six gray patches of GretagMacbeth ColorChecker chart under six different illumination

conditions.

average relative error for these data points quantifies the quality of the absolute calibration. For

the HDRC camera, relative error in the luminance range of 1−10 000 cd/m2 is 13% while

the relative error for the Lars III camera in the luminance range of 10–1000 cd/m2 amounts

to 9.5%. Note that these results can be obtained with a single acquisition. Using multiple

exposures, the C14 camera is capable of an average relative error of below 7% in the range

0.1−25 000 cd/m2, thus giving the most accurate results.

3.2.5 Quality of Luminance Measurement
The described procedure for photometric calibration of HDR cameras proved to be successful;

however, the accuracy obtained for example HDR cameras is not very high. Although one

should not expect to match the measurement quality of a luminance meter, still the relative

error of the LDR camera is lower than of HDR cameras. Besides, both HDR cameras keep the

error below 10% only in the range of luminance that is much narrower than their operational

range. The low accuracy in low illumination is mostly caused by noise in the camera and can

be hardly improved in the calibration process. On the other hand, the low accuracy in high

luminance range can be affected by the calibration process: a very bright scene was required

to observe high camera output values. The only possibility of getting a bright enough scene

was to directly capture a light source, but the intensity of the light source might not have

been stable during the capture and an additional noise has been introduced to the estimation

process.
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To improve the results, the estimated response can be fit to an a priori function appropriate

for the given HDR sensor. Thus, for the HDRC camera the parameters of a logarithmic

function y j = a ∗ log(x j ) + b are fit and for the decoded values1 of the Lars III camera a linear

function y j = a ∗ x j + b is used. The relative errors achieved by the pure response estimation

including absolute calibration and the function fit are compared in Fig. 3.7. The average relative

error is equal to about 6% for the HDRC camera and luminance values above 1 cd/m2. For

the Lars III camera, it is also about 6% for luminance values above 10 cd/m2. Especially for

high luminance values above 10 000 cd/m2, the calibration via function fitting provides more

accurate results. In addition, the fitting approach allows us to extrapolate the camera response

for values beyond the range of the calibration scene. To verify this, an extremely bright patch

(194 600 cd/m2 in the presented case) can be acquired using the calibrated response of the

HDR cameras and compared to the measurement of the light meter. Only the readout from

the HDRC camera derived via function fitting is reliable while the HDRC response curve

seems to be bogus in that luminance range. The Lars III camera reached the saturation level

and yielded arbitrary results. Likewise, this patch could not be recorded with the available

settings of the LDR camera.

3.2.6 Alternative Response Estimation Methods
In principle, three different approaches can be used to estimate the response of 8-bit cameras

( [6] provides a good survey, [32] gives a theoretical account of ambiguities arising in the recovery

of camera response from images taken at different exposures). The method of Robertson et

al. [28] has been selected because of its unconstrained applicability to varied types of sensors in

cameras. For completeness, the remaining two methods are briefly discussed in view of possible

application to photometric calibration of HDR cameras.

The algorithm developed by Debevec and Malik [12] is based on the concept that a

particular pixel exposure is defined as a product of the irradiance at the film and the exposure

time, transferred by the camera response function. This concept is embedded in an objective

function which is minimized to determine the camera response curve. The objective function is

additionally constrained by the assumption that the response curve is smooth, which is essential

for the minimization process. Whereas this assumption is generally true for LDR cameras

based on CCD technology, the response curve is normally not smooth in locally autoadaptive

HDR sensors. Furthermore, the process of recovering the response curve is based on solving

a set of linear equations. While the size of the matrix representing these linear equations is

1According to the data sheet, the 16-bit output value of Lars III camera is in fact a composite of a 12-bit mantissa

m and a 4-bit exponent value e ; i.e. y j = m · 2e .
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FIGURE 3.7: Comparison of the relative errors in luminance measurement achieved by the pure

response estimation including absolute calibration and by the function fit.

reasonable for 8-bit data, memory problems may occur for arbitrary precision data typical to

HDR acquisition so that extensive sub-sampling is required.

The method proposed by Mitsunaga and Nayar [13] computes a radiometric response

function approximated using a high-order polynomial without precise knowledge of the ex-

posures used. The refinement of the exposure times during the estimation process is major

advantage; however, the process itself is limited to computation of the order of the polynomial

and its coefficients. The authors state that it is possible to represent virtually any response curve

using a polynomial. This fact is true for LDR cameras based on a CCD sensor; however, it is

not possible to approximate the logarithmic response of some CMOS sensors in this manner.

Polynomial approximation also assumes that the response curve is continuous, which depends

on the encoding.

Grossberg and Nayar [32] show how the radiometric response function can be related

to the histograms of non-registered images with different exposures. This enables to deal with

the scene and camera motion while the images are captured, under the condition that the

distribution of scene radiance does not change significantly between images.

3.2.7 Discussion
The ability to capture HDR data has a strong impact on various applications because the

acquisition of dynamic sequences that can contain both very bright and dark luminance (such
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as sun and deep shadows) at the same moment is unprecedented. Photometrically calibrated

HDR contents offer further benefits. Perceptually enabled algorithms employed in compression

or tone mapping can appropriately simulate the behavior of human visual system. Dynamic

environment maps can be captured in real time to faithfully convey the illumination conditions

of the real world to rendering algorithms. Some of such applications are discussed in Section 9.2.

The results of global illumination solutions can than be directly compared to the real-world

measurements as illustrated in Fig. 9.1 in Section 9.1. The calibrated HDR video cameras can

further increase the efficiency of measuring appearance of complex materials in the form of

bi-directional reflectance distribution function (BRDF), Section 9.2.2.

With respect to the presented calibration methods, while the relative error achieved by

the function fitting approach is lower, the response estimation algorithm is useful to obtain the

exact shape of the camera response and to give confidence that the chosen a priori function

is correct. It can also help to understand the behavior of the sensor, especially if the encoding is

unknown. The low precision of the measurements in the luminance range below 10 cd/m2 is

a clear limitation which can be explained by the high noise level in the sensors. The quality of

a high-end CCD camera such as the Jenoptik C14 combined with traditional HDR recovery

algorithms still cannot be achieved consistently over the whole dynamic range of the HDR

cameras.

The function fitting approach has strong advantages in the quality of the results and the

ability to extrapolate from the calibration data. The confidence in extrapolated measurements

is however limited and the error cannot be predicted because the exact shape of the response

function in this range is unknown. Finally, the accuracy of the photometric calibration is not

the only important quality measure. Depending on the application, other issues such as the

quantization of the luminance values might have an important influence on the quality of the

measurements and need to be further investigated.

In Chapter 10, we provide more information on the pfscalibration software package [33],

which can be used for photometric calibration of both LDR and HDR cameras. The package

is available under the URL:

http://www.mpi-inf.mpg.de/resources/hdr/calibration/pfs.html

http://www.mpi-inf.mpg.de/resources/hdr/calibration/pfs.html
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C H A P T E R 4

HDR Image Quality

The performance of many imaging algorithms, such as image compression, is often a function

of visual quality. The visual quality can be most reliably measured in subjective studies, in which

a group of people assigns quality scores to the presented video or images. Such studies, however,

are both tedious and expensive and often result in high variance between observers. In many

areas, it is much more practical to use instead objective quality metrics, which can estimate

perceived quality without subjective judgements. This chapter gives a short classification of the

available metrics and describes in more detail a metric designed for comparing high dynamic

range images.

4.1 VISUAL METRIC CLASSIFICATION
Although numerous image comparison algorithms are classified as quality metrics, it does

not mean that they compute the same quality measure. Some metrics are better suited for

estimating quality of low-bandwidth video transmission, where large distortions are common

and acceptable, and other for compression of medical images, where visual distortions must be

avoided. Therefore, it is important to distinguish between all kinds of visual metrics and choose

the one that is appropriate for a particular application.

A high-level classification of the visual metrics is shown in Fig. 4.1. Depending whether

a metric requires a non-distorted reference image, some limited statistics of such an image

or no image at all, it can be classified as a full-reference, limited-reference, and no-reference.

Although there are extensive studies on the limited-reference and no-reference metrics, majority

of quality metrics require a reference image. No-reference metrics are usually limited to a single

type of distortion, such as JPEG blocky artifacts or blurring, and cannot match in accuracy the

full-reference metrics.

The simplest kind of the full-reference metrics are arithmetical measures, such as the

peak-signal-to-noise ratio (PSNR) or mean-squared error (MSE). Despite their simplicity

and known cases when they fail, these are the most commonly used metrics in estimating

performance of video compression. In fact the PSNR can give quite accurate estimates of quality

for video compression, comparable with much more complex perceptually weighted metrics,
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FIGURE 4.1: Classification of quality metrics.

mostly because video compression itself is driven by visual models. The structural similarity

metrics, such as SSIM [34], offer a trade-off between a complexity of the perceptually-weighted

metrics and the simplicity of the arithmetic metrics. They combine local statistical measures

of an image to compute a quality estimate that achieves a good correlation with the quality

measures found in subjective studies.

The potentially most accurate metrics are those that model the human visual system to

predict perceivable distortions. Most of them are quite accurate at predicting just noticeable

distortions which are near the discrimination threshold of the human visual system. The near-

threshold metrics, such as VDP [35] or HDR-VDP, can quite precisely predict whether a

human observer will spot any difference between two images shown, but they cannot make a

difference between the distortions that are far above the threshold. For example, they make

little distinction between poor and extremely poor quality video. This task is more suitable for

the supra-threshold metrics, which can estimate not only presence, but also the magnitude of

distortion [36, 37].

The metrics can be further divided into those that produce a single quality measure (e.g.,

a numerical value) for an image or a video sequence and those that produce a distortion map,

which estimates the local magnitude of distortion or probability of detection (usually for each

pixel). The performance of a metric that computes a single quality measure is usually evaluated
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in comparison with the subjective data, for example from the LIVE image quality assessment

database [38].

This chapter does not cover the area of quality metrics in general, but focus on a particular

metric designed especially for high dynamic range images.

4.2 A VISUAL DIFFERENCE PREDICTOR FOR HDR IMAGES
Most of the objective quality metrics have been designed to operate on video and images that are

to be displayed on CRT or LCD displays. While this assumption seems to be clearly justified

in the case of low dynamic range images, it poses problems as new applications that operate

on HDR data become more common. A perceptual HDR quality metric could be used for the

validation of the HDR image and video encodings. Another application may involve steering

the computation in a realistic image synthesis algorithm, where the amount of computation

devoted to a particular region of the scene would depend on the visibility of potential artifacts.

The HDR-VDP extends a well-known visual difference predictor [35] to better cope

with high contrast images and a broad range of luminance conditions. The extensions focus

on the accurate modeling of the visibility threshold under the assumption that an observer can

locally adapt to luminance levels of a scene. This makes the predictor more conservative but also

more reliable when scenes with significant differences of luminance are analyzed. Such local

adaptation is essential for a good reduction of contrast visibility in HDR images, as a single

HDR image can contain both dimly illuminated interior and strong sunlight.

The data-flow diagram of the HDR-VDP is shown in Fig. 4.2. The HDR-VDP receives

a pair of images as an input (original and distorted, for example by image compression) and

generates a map of probability values, which indicates how likely the differences between those

two images are perceived. Both images should be scaled in the units of luminance. In the case

of low-dynamic range images, pixel values should be inverse gamma corrected and calibrated

according to the maximum luminance of the display device. In the case of HDR images no

such processing is necessary, however luminance should be given in cd/m2.

FIGURE 4.2: Data-flow diagram of the high dynamic range visible difference predictor (HDR-VDP).
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FIGURE 4.3: Optical MTFs from the model of Deeley et al. [39] for different levels of adaptation to

luminance and pupil diameters (given in parentheses).

The first three stages of HDR-VDP model behavior of the optics and retina. Both a

reference and a test images are filtered by the optical transfer function (OTF), which simulates

light scattering in the cornea, lens, and retina. The OTF used in the HDR-VDP is shown in

Fig. 4.3. Figure 4.4 demonstrates the effect of the OTF on an HDR image with a relatively

bright regions. HDR images can contain high luminance objects (sun, lamps, brightly illumi-

nated windows) that can significantly affect contrast perception in the neighboring regions.

FIGURE 4.4: The result of filtering and image with the optical transfer function (OTF) of the human

eye. The Memorial Church image courtesy of Paul Debevec.
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FIGURE 4.5: Family of normalized Contrast Sensitivity Functions (CSF) for different adaptation

levels. The peak sensitivity shifts toward lower frequencies as the luminance of adaptation decreases.

To account for the nonlinear response of photoreceptors to light, the amplitude of the

signal is nonlinearly compressed and expressed in the units of just noticeable differences (JND).

Such nonlinearity is very similar to the JND-encoding discussed in Section 5.1.6, but is derived

from the contrast sensitivity function (CSF), used in the next processing step. Because the

HVS is less sensitive to low and high spatial frequencies, in the next step a JND-scaled image is

filtered by the CSF. Unlike the original VDP, the HDR-VDP locally adapts the CSF filtering

kernel depending on the adaptation luminance. The adaptation luminance shifts the CSF both

horizontally and vertically. Since the vertical shifts affecting the peak contrast sensitivity are

already modeled by the amplitude nonlinearity, the CSF is normalized so that the peak has

value 1, and only horizontal shifts must be taken into account. The horizontal shifts of the CSF

due to adaptation luminance are shown in Fig. 4.5.

The OTF, amplitude nonlinearity, and the CSF filtering steps are mostly responsible for

contrast reduction in the HVS. The next two computational blocks, the cortex transform and

visual masking, decompose the images into spatial and orientational channels and predict per-

ceivable differences in each channel separately. Phase uncertainty further refines the prediction

of masking by removing dependence of masking on the phase of the signal. In the final error

pooling stage, the probabilities of visible differences are summed up for all channels and a map

of detection probabilities is generated.



book MOCL004.cls July 22, 2008 18:46

40 HDR VIDEO

4.2.1 Implementation
The source code of HDR-VDP is available under the GPL license and can be downloaded

from the web page http://hdrvdp.sourceforge.net/. It is integrated with pfstools package

(refer to Chapter 10), which can read most of the HDR file formats. The software provides a

ready-to-use metric that can be used in a broad range of digital imaging applications, ranging

from validation of computer graphics algorithms to detection of artifacts in compressed images.

The detailed documentation of the HDR-VDP software can be found on the web page.

To give an impression how the software operates, the box below shows a typical usage scenario:

vdp original.exr distorted.exr prediction.png

Predict differences between an original original.exr and distorted distorted.exr images

and create the visualization of the prediction in prediction.png.

http://hdrvdp.sourceforge.net/
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C H A P T E R 5

HDR Image, Video, and
Texture Compression

The bit-depth precision of majority of image and video formats can soon become insufficient

for the new generation of displays. The traditional image and video formats, such as JPEG,

PNG, or MPEG, employ color spaces that fail to represent scenes of dynamic range over 2

or 3 orders of magnitude and extended color gamut. The 8-bit-per-color-channel encoding

was more than sufficient when such formats were designed, and the best CRT displays could

achieve contrast ratio of 1:200 and their peak luminance did not exceed 100 cd/m2. Now,

commercially available displays can show contrast of 1:30001. The prototypes of HDR displays

are capable of showing contrast 1:200 000 and have the peak luminance of 3000 cd/m2(refer to

Section 7.2). Moreover, the improvements of LED display backlight make it possible to achieve

more saturated colors and thus wider color gamut. These new advances in display technology

make essential that video and image compression formats are extended to support new displays.

Despite the diversity of display technologies (LCD, Plasma, DLP, etc.), the most popular

image and video file formats are still device dependent. The gamma correction nonlinearity,

employed in most color spaces used for compression, was originally designed for the CRT dis-

plays [40]. When technology changes rapidly, developing standards based on the characteristics

of the particular type of devices does not seem to be appropriate.

In typical imaging pipelines, it is commonly assumed that the decoded images or video

are directly displayed. As the complexity and diversity of displays increase, it can be expected

that the future displays will employ additional rendering step, in which the dynamic range and

color gamut is reduced to match the display capabilities (tone mapping), the content is adapted

to the viewing conditions (different rendering for bright and dark room), additional effects

and enhancements are applied. Figure 5.1 demonstrates some effects that simulate the human

visual system or a camera, that can be added in real-time to the video stream [41].

High dynamic range (HDR) imaging is a very attractive way of capturing real-world

appearance, since it assumes the preservation of complete and accurate luminance (or spectral

1For a single frame, as of 2007.
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FIGURE 5.1: A range of perceptual effects that can be simulated based on HDR data. From left to right:

visual glare (see light scattering at the edges of the objects); motion blur can be correctly simulated in

linear luminance domain (right half); given absolute luminance values, color deficiency of night (scotopic)

vision can be simulated. The source images courtesy of Paul Debevec, Spheron VR, and vr architects.

radiance) values that can be found in a scene. Each pixel is represented as a triple of floating

point values, which can range from 10−5 to 1010. Such a huge range of values is dictated by

both real-world luminance levels and the capabilities of the human visual system (HVS), which

can adapt to a broad range of luminance levels, ranging from scotopic (10−5 – 10 cd/m2)

to photopic (10 – 106 cd/m2) conditions. Obviously, floating point representation results in

huge memory and storage requirements and is impractical for storage and transmission of

images and video. Therefore, better techniques of encoding HDR pixel values are discussed in

Section 5.1.

This chapter is intended to give an overview of the current state-of-the-art in the high-

fidelity image, video, and texture coding. Section 5.2 gives an overview of the image and

Section 5.3 of the video formats that are intended to preserve higher fidelity. As HDR formats

have just started gaining popularity, it is important to provide backward-compatibility with the

existing LDR formats. The schemes for backward-compatible compression of HDR images and

video are described in Section 5.4. Finally, Section 5.5 reviews some recent texture compression

schemes.

5.1 HDR PIXEL FORMATS AND COLOR SPACES
Choice of the color space and the pixel encoding used for image or video compression has a

great impact on the compression performance and capabilities of the encoding format. While

representing pixel values as a triple of 32-bit floating point numbers gives more than sufficient

precision and good flexibility in data processing, such encoding does not use memory efficiently

and is not compatible with most image and video compression standards. For this reason,
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FIGURE 5.2: Red–green–blue component encoding using half-precision floating point numbers.

several HDR pixel encoding and color spaces are used in popular HDR image formats. This

section gives an overview of these pixel encodings.

5.1.1 Minifloat: 16-Bit Floating Point Numbers
Graphics cards from nVidia and ATI can use more compact representation for floating point

numbers, known as half-precision float, fp16, or S5E10. The S5E10 indicates that the floating

point number consist of one bit of sign, 5-bit exponent, and 10-bit mantissa, as shown in

Fig. 5.2. Such 16-bit floating point formats is also used in the OpenEXR image format (see

Section 5.2.2).

The half-precision float offers flexibility of the floating point numbers at the half storage

cost of the typical 32-bit floating point format. Floating point numbers are well suited for

encoding linear luminance and radiance values, as they can easily encompass large dynamic

ranges. One caveat of the half-precision float format is that it can represent numbers up to the

maximum value 65 504, which is less than for instance luminance of bright light sources. For

this reason, the HDR images given in absolute luminance or radiance units often need to be

scaled down by a constant factor before storing them in the half-precision float format.

5.1.2 RGBE: Common Exponent
The RGBE pixel encoding is used in the Radiance file format, which will be discussed in

Section 5.2.1. The RGBE pixel encoding represents colors using four bytes: the first three

bytes encode red, green, and blue color channels, and the last byte is a common exponent for

all channels (see Fig. 5.3). RGBE is essentially a custom floating point representation of pixel

values, which uses 8 bits to represent exponent and another 8 bits to represent mantissa (8E8).

RGBE encoding takes advantage of the fact that all color channels are strongly correlated in

the RGB color spaces and their values are at least of the same order of magnitude. Therefore,

there is no need to store a separate exponent for each color channel.
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FIGURE 5.3: 32-bit per pixel RGBE encoding.

The conversion between from (R, G, B, E) bytes to red, green, and blue trichromatic

color values (r, g , b) is done using the formulas:

(r, g , b) =







(R, G, B) + 0.5

256
2E−128 exposure

Ew

if E 6= 0

(0, 0, 0) if E = 0
(5.1)

where per image “exposure” parameter can be used to adjust absolute values, and Ew is the

efficacy of the white constant equal to 179. Both these terms are used in the Radiance file

format but are often omitted in other implementations.

The inverse transformation is given by

E =

{⌈

log2 (max{r, g , b}) + 128
⌉

if (r, g , b) 6= 0

0 if (r, g , b) = 0

(R, G, B) =

⌊

256 r

2E−128

⌋

(5.2)

where ⌈·⌉ denotes rounding up to the nearest integer and ⌊·⌋ rounding down to the nearest

integer.

5.1.3 LogLuv: Logarithmic Encoding
One shortcoming of floating point numbers is that they are not optimal for image compression

methods. This is partly because additional bits are required to encode mantissa and exponent

separately, instead of a single integer value. Such representation, although flexible, is not

necessary for color data. Furthermore, precision error of floating point numbers varies across

the full range of possible values and is different from the “precision” of our visual system.

Therefore, better compression can be achieved when integer numbers are used to encode HDR

pixels.

The LogLuv pixel encoding [42] requires only integer numbers to encode the full range

of luminance and color gamut that is visible to the human eye. It is an optional encoding in the

TIFF library. This encoding benefits from the fact that the human eye is not equally sensitive

to all luminance ranges. In the dark, we can see a luminance difference of a fraction of 1 cd/m2,

while in the sunlight we need a difference of tens of cd/m2 to see a difference. This effect is often

called luminance masking. But if, instead of luminance, a logarithm of luminance is considered,
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FIGURE 5.4: 32-bit per pixel LogLuv encoding.

the detectable threshold values do not vary so much and a constant value can be a plausible

approximation of the visible threshold. Therefore, if a logarithm of luminance is encoded using

integer numbers, quantization errors roughly correspond to the visibility thresholds of the

human visual system, which is a desirable property for pixel encoding.

The 32-bit LogLuv encoding uses two bytes to encode luminance and another two bytes

to represent chrominance (see Fig. 5.4). Chrominance is encoded using the CIE 1976 Uniform

Chromacity Scales u ′ v′:

u ′ =
4X

X + 15Y + 3Z
v′ =

9Y

X + 15Y + 3Z
(5.3)

which can be encoded using 8-bits:

u8bit = u ′ · 410 v8bit = v′ · 410. (5.4)

Note that the u ′ and v′ chromatices are used rather than u∗ and v∗ of the L∗u∗v∗ color space.

Although u∗ and v∗ give better perceptual uniformity and predict loss of color sensitivity at

low light, they are strongly correlated with luminance. Such correlation is undesired in image

or video compression. Besides, the u∗ and v∗ chromatices could reach high values for high

luminance, which would be difficult to encode using only eight bits. It is also important to note

that the CIE 1976 Uniform Chromacity Scales are only approximately perceptually uniform,

and in fact the 8-bit encoding given in Eq. (5.4) may lead to just visible quantization errors,

especially for blue and pink hues. However, such artifacts should be hardly noticeable in complex

images.

The LogLuv encoding has a variant which uses only 24 bits per pixel and still offers

sufficient precision. However, this format can be ineffective to compress using arithmetic

coding, due to discontinuities resulting from encoding two chrominance channels with a single

lookup value.

5.1.4 RGB Scale: Low-Complexity RGBE Coding
The RGB Scale or the RGBS encoding simplifies the RGBE format (Section 5.1.2) to avoid

expensive exponential functions:

(r, g , b) = (R, G, B) · 16S. (5.5)
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The encoding was used in Valve’s game engine to store HDR textures and buffers using 8-bit

RGBA (three channels + alpha buffer) textures [43]. The disadvantage of this approach is a

limited dynamic range of about 6 log10 units.

5.1.5 LogYuv: Low-Complexity LogLuv
For the applications, where the complexity of the CIE 1976 Uniform Chromacity Scales is not

acceptable, a simplified version of the LogLuv encoding (Section 5.1.3) can be used:

(Y , u, v) =

(

log2 Y, wb
b

Y
, wr

r

Y

)

, (5.6)

where Y is the luminance term computed as

Y = wr r + wg g + wbb, (5.7)

and the constants are equal wr = 0.299, wg = 0.587, wb = 0.114. With nonzero and positive

input r , g , and b values in the range from 2−16 to 216, the log-luminance Y is in the range

[−16,16], and the chroma components are in the range [0,1] with u + v ≤ 1. Unlike LogLuv,

this simplified encoding cannot be used to store color values outside the red–green–blue color

triangle given by the primaries. Such encoding was used for high dynamic range texture

compression [44].

5.1.6 JND Steps: Perceptually Uniform Encoding
Most of the low dynamic range image or video formats use so-called gamma correction to

convert luminance or RGB spectral color intensity into integer numbers, which can be latter

encoded. Gamma correction is usually given in a form of the power function intensity =

signalγ (or signal = intensity(1/γ ) for an inverse gamma correction), where the value of γ is

between (1.8) and (2.2). Gamma correction was originally intended to reduce camera noise

and to control the current of the electron beam in CRT monitors (for details on gamma

correction, see [45]). Accidentally, light intensity values, after being converted into signal using

the inverse gamma correction formula, correspond usually well with our perception of lightness.

Therefore, such values are also well suited for image encoding since the distortions caused by

image compression are equally distributed across the whole scale of signal values. In other

words, altering signal by the same amount for both small values and large values of signal

should result in the same magnitude of visible changes. Unfortunately, this is only true for a

limited range of luminance values, in practice up to 100 cd/m2. This is because the response

characteristics of the human visual system (HVS) to luminance2 changes considerably above

2HVS use both types of photoreceptors, cones and rods, in the range of luminance approximately from 0.01 to

10 cd/m2. Above 100 cd/m2only cones contribute to the visual response.
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FIGURE 5.5: 28-bit per pixel JND encoding.

100 cd/m2. This is especially noticeable for HDR images, which can span the luminance range

from 10−5 to 1010 cd/m2. An ordinary gamma correction is not sufficient in such case and a

more elaborate model of luminance perception is needed. This problem is solved by the JND

encoding, described below.

The JND encoding is a further improvement over the LogLuv encoding (see Sec-

tion 5.1.3), which takes into account more accurate characteristic of the human eye. The

JND encoding can also be regarded as an extension of gamma correction to HDR pixel values.

The name JND encoding is motivated by its design, which makes the encoded values correlate

with the just noticeable differences (JND) of luminance.

The JND encoding requires two bytes to represent color and 12 bits to encode luminance

(see Fig. 5.5). Similar to LogLuv encoding, chroma is represented using the u ′ and v′ chro-

maticities as recommended by CIE 1976 Uniform Chromacity Scales (UCS) diagram. Luma,

l , is found from absolute luminance values, y [cd/m2], using the following formula:

lhdr(y) =











a · y if y < yl

b · y c + d if yl ≤ y < yh

e · log(y) + f if y ≥ yh .

(5.8)

There is also a formula for the inverse conversion, from 12-bit luma to luminance:

y(lhdr) =











a ′ · lhdr if lhdr < ll

b ′(lhdr + d ′)c ′

if ll ≤ lhdr < lh

e ′ · exp( f ′ · lhdr) if lhdr ≥ lh .

(5.9)

The constants are given in the following table.

a = 17.554 e = 209.16 a ′ = 0.056968 e ′ = 32.994

b = 826.81 f = −731.28 b ′ = 7.3014e − 30 f ′ = 0.0047811

c = 0.10013 yl = 5.6046 c ′ = 9.9872 ll = 98.381

d = −884.17 yh = 10469 d ′ = 884.17 lh = 1204.7

The above formulas have been derived from the luminance detection thresholds is such

a way that the same difference of values l , regardless whether in a bright or in a dark region,
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corresponds to the same visible difference3. Neither luminance nor the logarithm of luminance

has this property, since the response of the human visual system to luminance is complex and

nonlinear. The values of l lay in the range from 0 to 4095 (12 bit integer) for the corresponding

luminance values from 10−5 to 1010 cd/m2, which is the range of luminance that the human

eye can effectively see (although the values above 106 would mostly be useful for representing

the luminance of bright light sources). If desired, the values of l can be rescaled to lower range,

in order to encode luminance using 10 or 11 bits. Such lower bit encodings should still offer

quantization errors below the visibility thresholds, especially for video encoding.

A useful property of the function given in Eq. (5.8) is that it is smooth (C1-continuous)

and defined for the full positive range of luminance values, including the point y = 0, in which

l = 0.

Function l(y) (Eq. (5.8)) is plotted in Fig. 5.6 and labeled JND encoding. Note that both

formula and shape of the JND encoding are very similar to the nonlinearity (transfer function)

used in the sRGB color space [48]. Both the JND encoding and the sRGB nonlinearity follow

similar curve on the plot, but the JND encoding is more conservative (a steeper curve means

that a luminance range is projected on a larger number of discrete luma values, V , thus lowering

quantization errors). sRGB nonlinearity consists of two segments: a linear and a power function.

So does the JND encoding, but it additionally includes a logarithmic segment for the luminance

values greater than 1420.7 (see Eq. (5.8)).

For comparison, Fig. 5.6 also shows the log luminance encoding, used in the LogLuv

TIFF format. The shape of the logarithmic function is significantly different from both the

sRGB nonlinearity and the JND encoding. Although the logarithmic function is a simple and

often used approximation of the HVS response to the full range of luminance, which adheres to

the Weber–Fechner law, it is clear that such approximation is very coarse and does not predict

the loss of sensitivity for the low light conditions.

One difficulty that arises from the JND luminance encoding is that the luminance must

be given in absolute units of cd/m2. This is necessary since the performance of the HVS is

affected by the absolute luminance levels and the contrast detection thresholds are significantly

higher for low light conditions. The major source of this problem is the existing HDR capture

techniques, such as multi-exposure methods, which give a measurement of relative luminance

(luminance factor), but give no information on absolute luminance levels. The conversion from

relative to absolute luminance units is however very simple and requires multiplication of all

XY Z color coordinates by a single constant. Such a constant needs to be measured only once

for a camera. The measurement can be done by capturing a scene containing a uniform light

source of known luminance or a surface of measured luminance [29]. If such a measurement

3Derivation of this function can be found in [46]. The formulas are derived from the threshold versus intensity

characteristic measured for human subjects and fitted to the analytical model [47].
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FIGURE 5.6: Functions mapping physical luminance y to encoded luma values l . JND Encoding—

perceptual encoding of luminance; sRGB—nonlinearity (gamma correction) used for the sRGB color

space; logarithmic compression—logarithm of luminance, rescaled to 12-bit integer range. Note that

encoding high luminance values using the sRGB nonlinearity (dashed line) would require significantly

larger number of bits than the perceptual encoding.

is not possible, an approximate calibration of an image to absolute units, by assuming typical

luminance levels of some objects (e.g., the sky or a daylight illuminated wall), is usually sufficient.

The maximum quantization errors for all luminance encodings described in this chapter

are shown in Fig. 5.7. All but the JND encoding have approximately uniform maximum
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FIGURE 5.7: Comparison of the maximum quantization errors for different luminance to luma encod-

ings: JND encoding (12-bit integer) is given by Eq. (5.8); RGBE is an encoding used in the Radiance

HDR format; 16-bit half is a 16-bit floating point format used in OpenEXR; 32-bit LogLuv is a

logarithmic luminance encoding used in LogLuv TIFF format.
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quantization error across all visible luminance values. The edgy shape of both RGBE and

16-bit half encodings is caused by rounding of the mantissa. The JND encoding varies the

maximum quantization error across the range to mimic loss of sensitivity in the HVS for low

light levels. This not only makes better use of the available range of luma values, but also reduces

invisible noise in very dark scenes, which would otherwise be encoded. Such noise reduction

can significantly improve image or video compression.

5.2 HIGH FIDELITY IMAGE FORMATS
The need for image formats capable of encoding higher dynamic ranges was recognized very

early in several fields, such as computer graphics, medical imaging, or film scanning in the

motion picture production. These led to several image formats, which can be classified into

three following groups.

r Formats originally designed for high dynamic range images. The quantities they store

are usually floating point values of a linear radiance or luminance factor4. There are sev-

eral high-precision formats, such as Radiance’s RGBE, logLuv TIFF, and OpenEXR.

These formats are lossless up to the precision of their pixel representation.

r Formats designed to store as many bits as a particular sensor can provide, for example

12-bit for a film scanner. This group includes Digital Picture Exchange DPX format

used in the movie industry to store scanned negatives, DICOM format for medical

images, and a variety of so-called RAW formats used in digital cameras. All these

formats use more than eight bits to store luminance, but they are usually not capable

of storing such an extended dynamic range as the HDR formats.

r Formats that store larger number of bits but are not necessary intended for HDR

images. Twelve or more bits can be stored in JPEG-2000 and TIFF files. All these

formats can easily encode HDR if they take advantage of a pixel encoding that can

represent full visible range of luminance and color gamut, such as those described in

Section 5.1.

Variety of formats and lack of standards hinders the transition from traditional output-

referred LDR formats to scene-referred HDR formats. The HDR formats (Radiance’s RGBE,

logLuv TIFF, and OpenEXR) have not gained widespread acceptance mainly because they

offer only lossless compression resulting in huge files sizes. The most successful OpenEXR

format has been however integrated with several Open Source and commercial applications,

such as Adobe R© Photoshop R© starting from the release CS2. Other specialized formats, such

4For the explanation of luminance factor, refer to Section 2.1.
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as DPX, DICOM, and cameras’ RAW formats, usually do not allow storing as high dynamic

range as the HDR formats. Since they are designed to be used for a specific application, it is

unlikely that they will evolve into general purpose image formats.

The following subsections describe the two most popular HDR image formats: the

Radiance HDR and the OpenEXR format.

5.2.1 Radiance’s HDR Format
One of the first HDR image formats, which gained much popularity, was introduced in 1989

into the Radiance rendering package5. Therefore, it is known as the Radiance picture format

and can be recognized by the file extensions .hdr or .pic. The file consists of a short text header,

followed by run-length encoded pixels. Pixels are encoded using the XYZE or RGBE pixel

formats, discussed in Section 5.1.2. The difference between both formats is that the RGBE

format uses red, green, and blue primaries, while the XYZE format uses the CIE 1931 XYZ

primaries. As a result, the XYZE format can encode the full visible color gamut, while the

RGBE is limited to the chromaticities that lie within the triangle formed by the red, green,

and blue color primaries. For more details on this format, the reader should refer to [49]

and [6, Sec. 3.3.1].

5.2.2 OpenEXR
The OpenEXR format or (the Extended Range format), recognized by the file name extension

.exr, was made available with an open source C++ library in 2002 by Industrial Light and Magic

(see http://www.openexr.org/ and [50]). Before that date the format was used internally by

Industrial Light and Magic for the purpose of special effect production. The format is currently

promoted as a special-effect industry standard and many software packages already support it.

Some features of this format include the following.

r Support for 16-bit floating-point, 32-bit floating-point, and 32-bit integer pixels.

r Multiple lossless image compression algorithms. Some of the included codecs can

achieve 2:1 lossless compression ratios on images with film grain.

r Extensibility. New compression codecs and image types can easily be added by extending

the C++ classes included in the OpenEXR software distribution. New image attributes

(strings, vectors, integers, etc.) can be added to OpenEXR image headers without

affecting backward-compatibility with existing OpenEXR applications.

5Radiance is an open source light simulation and realistic rendering package. Home page:

http://radsite.lbl.gov/radiance/.

http://www.openexr.org/
http://radsite.lbl.gov/radiance/
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Although the OpenEXR file format offers several data types to encode channels, color

data are usually encoded with 16-bit floating point numbers, known as half-precision floating

point, discussed in Section 5.1.1.

5.3 HIGH FIDELITY VIDEO FORMATS
The developments in the display and digital projection technologies motivated work on high

fidelity video formats. This section reviews recent advancements in this area.

5.3.1 Digital Motion Picture Production
Digital motion picture production involves processing higher dynamic range images than

normally found in standard imaging setups. Cinematographic cameras capture the dynamic

range up to 12 f-stops and the films are scanned to the 12-bit logarithmic DPX format.

Computer-generated sequences are rendered in linear-luminance units and stored using HDR

file formats.

To standardize the formats used to exchange materials involved in the motion picture

production, the Science and Technology Council of the Academy of Motion Picture Arts and

Sciences formed an Image Interchange Framework committee. The committee is to define a

conceptual framework, file formats, and recommended practices related to color management

and exchange of digital images during motion picture production and archiving. As of 2007, the

standardization is an ongoing process and an early overview of the proposal can be found in [51].

The proposed framework employs the OpenEXR HDR image format (refer to Section 5.2.2)

for storage and the Color Transformation Language for color profiling. Since this is going to

be the first device independent framework, which does not rely on output-referred formats, this

section mentions its major concepts.

The image interchange framework assumes that all original material, including scanned

film negatives, images from digital cameras, and 3D computer graphics are imported into a

common pixel format called “Academy Color Encoding Space” or ACES. The ACES assumes

unlimited color gamut and dynamic range. It is neither output-referred, nor strictly scene-

referred representation. It assumes that pixel values are approximately linear to radiance and

luminance (as for most HDR file formats), but it does not require that these values correspond

to the actual physical color values found in the original scenes. This is dictated by the common

practices of film making, where the colors of the original scene are intentionally altered.

To display ACES images, two color transform needs to be applied: the rendering transform

gives desired “look,” while the output device transform accounts for differences between output

devices, such as preview monitors or film printers. Image editing and compositing visual effects

is performed on the ACES images, stored in OpenEXR files. All color transforms are specified

using the Color Transformation Language (CTL).
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While the framework is still under development, it introduces several appealing concepts.

The output device transform eliminates the dependence on the output device. The rendering

transform introduces a flexible “tone-mapping” step, which can be altered to change the desired

“look” of images. Finally, the ACES file format ensures that no information is lost due to gamut

clamping or insufficient precision of the pixel format.

5.3.2 Digital Cinema
High fidelity image formats are required not only in the motion picture production process, but

also when the final version of a movie is distributed and shown in movie theaters. Analog movie

projectors, which still offer outstanding resolution and larger dynamic range than traditional

displays, are being replaced with their digital counterparts, mostly because of much lower costs

of movie distribution. The quality of digital projection is found to be comparable with the

highest quality analog projection, but does not require expensive process of printing thousands

of film copies.

A consortium of movie studios formed Digital Cinema Initiatives or DCI with a goal

to establish a standard framework for digital movie distribution and projection. In 2007,

the DCI released an updated version of the specification (v1.1). The specification assumes

that single frames are encoded at the resolution 2048×1080 (2K) at 24 Hz or 48 Hz, or

4096×2160 (4K) at 24 Hz using JPEG2000. Pixels are represented as the CIE 1931 XYZ

absolute trichromatic color values, so that Y value corresponds to luminance. Each trichromatic

color value is normalized by the constant 52.37, compressed with the power function of the

γ = 2.6 and encoded on 12-bit. The value 52.37 is slightly higher than the peak luminance of

a typical projector and sets the upper threshold on the luminance that can be represented.

The specification takes great care of color data handling and making sure that the

experience of digital cinema does not differ much from analog projection. This is manifested

in quite moderate frame-rate of 24 Hz, which is typical to an analog film. This assumption

however, and in particular the choice of the peak luminance of 52.37 cd/m2 and the steep

gamma function, makes the framework less suitable for high dynamic range movie projection.

5.3.3 MPEG for High-Quality Content
The need for encoding high fidelity video has been recently the focus of the Joint Video Team

(JVT), which works on the family of popular MPEG standards. The JVT has recently added

five new profiles intended for high-quality content to the MPEG4-AVC/H.264 video coding

standard [52]. The new profiles offer chroma channels encoding without subsampling and

with the same precision as the luma channel, so-called 4:4:4 video format coding, bit depths

up to 14 bits per sample and a set of supplemental enhancement information (SEI) messages
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FIGURE 5.8: Simplified pipeline for the standard MPEG video encoding (black, solid) and proposed

extensions (italic, dashed) for encoding High Dynamic Range video. Note that edge blocks are encoded

together with DCT data in the HDR flow.

that describes the tone-mapping curve to map higher bit-depth content to lower number of

bits.

The new profiles offer possibility of using the extended gamut color spaces, defined

by IEC 61966-2-4 (xvY CC601 and xvY CC709) and ITU-R BT.1361. These color spaces

are also optional encodings for the high-definition multimedia interface (HDMI v1.3). They

can encode highly saturated colors, while maintaining backward-compatibility with the color

spaces used for video coding (BT.601 and BT.709). This was possible since both BT.601 and

BT.709 recommended using only the values within the range from 16 to 235, thus allowing for

undershoot and overshoot found in analog TV signaling. Since such code-value margins are not

necessary for digital video, they can be used to encode extended color gamut. Unfortunately,

the new color space extends color gamut only toward more saturated colors, while offering the

same dynamic range as the BT.601 and BT.709; therefore, it is not suitable for encoding HDR

content.

5.3.4 HDR Extension of MPEG-4
It was demonstrated [53] that the MPEG encoding standard, both the Advanced Simple

Profile (ISO/IEC 14496-2) [54] and the Advanced Video Coding (ISO/IEC 14496-10) [55],

can be extended to handle HDR data. The scope of required changes to MPEG-4 encoding

is surprisingly modest. Figure 5.8 shows a simplified pipeline of MPEG-4 encoding, together

with proposed extensions. While a standard MPEG-4 encoder takes as input three 8-bit RGB

color channels, the HDR encoder must be provided with pixel values in the absolute XY Z

color space [7]. Such color space can represent the full color gamut and the complete range

of luminance the eye can adapt to. Next pixel values are transformed to the color space that

improves the efficiency of encoding. MPEG-4 converts pixel values to one of the family of

Y CBCR color spaces, which exhibit low correlation between color channels for natural images.

The proposed extension uses instead the perceptually uniform HDR pixel encoding, described
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in Section 5.1.6. The 11-bit, instead of 12-bit, encoding of luma is used as it turns out to be

both conservative and easy to introduce to the existing MPEG-4 architecture.

Due to quantization of DCT coefficients, noisy artifacts may appear near edges of high-

contrast objects. This problem is especially apparent for HDR video, in particular for synthetic

sequences, where the contrast tends to be higher than in natural LDR video. This can be

alleviated by encoding sharp-contrast edges in each 8×8 block separately from the rest of the

signal. An algorithm for such hybrid encoding can be found in [53].

Additional examples and the demonstration video can be found on the project web page:

http://www.mpi-inf.mpg.de/resources/hdrvideo/index.html.

5.4 BACKWARD-COMPATIBLE COMPRESSION
Since the standard low dynamic range (LDR) file formats for images and video, such as

JPEG or MPEG, have become widely adapted standards supported by almost all software and

hardware equipment dealing with digital imaging, it cannot be expected that these formats

will be immediately replaced with their HDR counterparts. To facilitate transition from the

traditional to HDR imaging, there is a need for backward-compatible HDR formats, that

would be fully compatible with existing LDR formats and at the same time would support

enhanced dynamic range and color gamut. Moreover, if such a format is to be successful and

adopted by large part of the market, the overhead of HDR information must be very low,

preferably below 30% of the LDR file size. This is because very few consumers will have access

to HDR technology, such as HDR displays, at the beginning and the rest of the consumers

will not accept doubling the size of the file for the sake of the data they cannot take advantage

of. Such backward-compatible encoding would also require that the original LDR content is

not modified. Although the compression of HDR can be improved if an LDR image can be

slightly altered, this would also be unacceptable for majority of applications where it is crucial

to preserve the original appearance of LDR content.

The following subsections present an overview of both existing and potential solutions

for backward-compatible image and video encoding.

5.4.1 JPEG HDR
Spaulding et al. [56] showed that the dynamic range and color gamut of typical sRGB images

can be extended using residual images. Their method is backward-compatible with the JPEG

standard, but only considers images of moderate dynamic range. Ward and Simmons [57] have

proposed a backward-compatible extension of JPEG, which enables compression of images of

much higher dynamic range (JPEG HDR). JPEG HDR is the extension of the JPEG format

for storing HDR images that is backward-compatible with an ordinary 8-bit JPEG. A JPEG

HDR file contains a tone-mapped version of an HDR image and additionally a ratio (subband)

http://www.mpi-inf.mpg.de/resources/hdrvideo/index.html
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FIGURE 5.9: Data flow of subband encoding in JPEG HDR format.

image, which contains information needed to restore the HDR image from the tone-mapped

image. The ratio image is stored in the user-data space of JPEG markers, which are normally

ignored by applications. This way, a naive application will always open the tone-mapped version

of an image, whereas an HDR-aware application can retrieve the HDR image.

A data flow of the subband encoding is shown in Fig. 5.9. An HDR image is first tone

mapped and compressed as an ordinary JPEG file. The same image is also used to compute the

ratio image, which stores a ratio between HDR and tone-mapped image luminance for each

pixel. To improve encoding efficiency, the ratio image is subsampled and encoded at lower

resolution using the ordinary JPEG compression. The compressed sub-band image is stored in

the JPEG markers. To reduce the loss of information due to subsampling the ratio image, two

correction methods have been proposed: enhancing edges in a tone-mapped image (so-called

pre-correction) and synthesizing high frequencies in the ratio image during up-sampling (so-

called post-correction). Further details on the JPEG HDR compression can be found in [57]

and [58].

5.4.2 Wavelet Compander
Li et al. [59] propose that HDR images can be encoded using only 8-bits, if they undergo a

reversible companding operation. They propose a multiscale wavelet architecture, which can

compress an HDR image to a lower bit-depth and later expand it to obtain a result that is close

to the original HDR image. The information loss is reduced by amplifying low amplitudes and

high frequencies at the compression stage, so that they survive the quantization step to the 8-bit

LDR image. Such technique is conceptually similar to the pre-correction in JPEG HDR. Since

the expansion is a fully symmetric inverted process, the amplified signals are properly suppressed

to their initial level in the companded HDR image. To further reduce the information loss,

the compressed image is iteratively modified to improve the correlation of its subbands with

respect to the original HDR image. The authors observe a good visual quality of both the

compressed and companded images, but they admit that any guarantee concerning their fidelity

to tone mapped (i.e., undergoing just one compression iteration) and original HDR images

cannot be given. The obtained PNSR for the companded HDR image is even worse than for
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ordinary LUT (Look-Up-Table) companding; however, the results of the multi-scale wavelet

companding look visually better.

Given the requirements for a backward-compatible image and video compression, the

lack of fidelity of tone-mapped images is often not acceptable, since the original material quality

cannot be compromised. Another limitation of this technique is fixed tone-mapping operator.

The emphasis on high frequencies at the compression step makes the proposed framework less

suitable for standard JPEG and MPEG techniques, which use the quantization matrices that

are perceptually tuned to discard visually non-important high frequencies. This is confirmed by

relatively poor compression rates reported the authors when they attempted to combine JPEG

with their companding. It is not clear, how the compander approach can be adopted for lossy

HDR video compression, in which temporal coherence and computation efficiency must be

guaranteed.

5.4.3 Backward-Compatible HDR MPEG
Encoding of movies in high fidelity format is becoming more important as the quality of

consumer-level displays is starting to exceed the quality of available DVD or broadcast content.

As discussed in Section 5.3.1, high fidelity content is available at the movie production stage.

However, to encode motion pictures using traditional MPEG compression, the movie must

undergo processing called color grading. Part of this process is the adjustment of tones (tone

mapping) and colors (gamut mapping), so that they can be displayed on majority of TV sets

(refer to Fig. 5.10). Although such processing can produce high quality content for typical CRT

and LCD displays, the high-quality information, from which advanced HDR displays could

benefit, is lost.

The HDR-MPEG encoding, similarly as the JPEG-HDR (refer to Section 5.4.1), com-

presses both LDR and HDR video stream and stores them in the same backward-compatible

movie file (see Fig. 5.10). Depending on the capabilities of the display and playback hardware

FIGURE 5.10: The proposed backward-compatible HDR DVD movie-processing pipeline. The high

dynamic range content, provided by advanced cameras and CG rendering, is encoded in addition to

the low dynamic range (LDR) content in the video stream. The files compressed with the proposed

HDR MPEG method can play on existing and future HDR displays.
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FIGURE 5.11: A data flow of the backward-compatible HDR MPEG encoding. See text for details.

or software, either LDR or HDR content is displayed. This way HDR content can be added

to the video stream at the moderate cost of about 30% of the LDR stream size.

The complete data flow of the HDR-MPEG compression algorithm is shown in

Fig. 5.11. The encoder takes two sequences of HDR and LDR frames as input. The LDR

frames, intended for LDR devices, usually contain a tone-mapped or gamut-mapped version

of the original HDR sequence. The LDR frames are compressed using a standard MPEG

encoder (MPEG encode in Fig. 5.11) to produce a backward-compatible LDR stream. The

LDR frames are then decoded to obtain a distorted (due to lossy compression) LDR sequence,

which is later used as a reference for the HDR frames (see MPEG decode in Fig. 5.11).
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Both the LDR and HDR frames are then converted to compatible color spaces, which

minimize differences between LDR and HDR colors. For the HDR pixels, the JND encoding

discussed in Section 5.1.6 is used. For the LDR pixels, the CIE 1976 Uniform Chromacity

Scales (Eqs. (5.3) and (5.4)) are used for chrominance and the sRGB nonlinear transfer function

is used to encode luminance.

The reconstruction function (see Find reconstruction function in Fig. 5.11) reduces the

correlation between LDR and HDR pixels by giving the best prediction of HDR pixels based

on the values of LDR pixels. The residual frame is introduced to store a difference between the

original HDR values and the values predicted by the reconstruction function.

To improve compression, invisible luminance, and chrominance variations are removed

from the residual frame (see Filter invisible noise in Fig. 5.11). Such filtering simulates the visual

processing that is performed by the retina to predict the contrast detection threshold at which

the eye does not see any differences. The contrast magnitudes that are below this threshold are

set to zero. An example of such filtering is shown in Fig. 5.12.

Finally, the pixel values of the residual frame are quantized (see Quantize residual frame

in Fig. 5.11) and compressed using a standard MPEG encoder into a residual stream. Both the

FIGURE 5.12: Residual frame before (left) and after (center) filtering invisible noise. Such filtering

removes invisible information, while leaving important high-frequency details that are lost if ordinary

low-pass filtering (downsampling) is used (right). Green color denotes negative and gray positive values.

The Memorial Church image courtesy of Paul Debevec.
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FIGURE 5.13: Comparison of lossy HDR compression algorithms. Metrics: VDP 75%—HDR-VDP

percentage of visibly different pixels at P = 75%; UQI—universal quality index [60]; SNR—signal-

to-noise-ratio for the JND-encoded luma (refer to Section 5.1.6). The results are averaged for a set of

images.

reconstruction function and the quantization factors are compressed using a lossless arithmetic

encoding and stored in an auxiliary stream.

The encoding scheme was tested with a number of tone-mapping operators, with and

without invisible noise filtering step, and compared to other HDR compression methods. The

best performance was achieved for global tone-mapping operators, which do not amplify high

frequencies. As shown in Fig. 5.13, the HDR-MPEG compression performed worse than the

HDR extension of MPEG-4 (refer to Section 5.3.4), labeled as HDRV. This is because the

HDRV encoding is not backward-compatible and therefore does not need to encode any infor-

mation on an LDR stream. For the HDR VDP and the UQI metrics, the JPEG HDR (refer
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to Section 5.4.1) performs almost the same as the HDR MPEG for the pre-correction and the

post-correction approach, but is worse for the full-sampling, even though the HDR MPEG

does not involve subsampling. JPEG HDR performs slightly worse than the HDR-MPEG for

the SNR metric.

More information on this project as well as the demonstration video can be found on the

project web page: http://www.mpii.mpg.de/resources/hdr/hdrmpeg/.

5.4.4 Scalable High Dynamic Range Video Coding from the JVT
The JVT, responsible for the family of MPEG standards, considers several proposals for

the scalable bit-depth coding. The scalable bit-depth coding is equivalent to the backward-

compatible coding (hence scalability) that can store HDR data (hence enhanced bit-depth).

This naming convention is taken from the spatial scalable coding that provides higher resolution

and the temporal scalable coding that offers higher frame-rate. The proposed extensions are

conceptually similar to the JPEG HDR introduced in Section 5.4.1 and the HDR MPEG

described in Section 5.4.3. They encode a tone-mapped sequence using a backward-compatible

8-bit coding, a series of coefficient for predicting HDR frames based on tone-mapped frames

(inter-layer prediction), and a residual stream that encodes prediction errors. In contrast to

JPEG HDR and HDR MPEG, the proposed schemes focus on computational efficiency;

therefore, they use simplified color transforms and avoid expensive arithmetic operations.

One of the proposals [61] suggests using the following transform to predict the high

dynamic range pixel chroma and luma components based on a tone-mapped pixel value:

YHDR = α YLDR + offset,

CbHDR = α CbLDR + offset ·
CbLDR,DC

YLDR,DC
,

CrHDR = α CrLDR + offset ·
CrLDR,DC

YLDR,DC

(5.10)

where the α and “offset” are prediction coefficients stored for each block and YLDR,DC,

CbLDR,DC, CrLDR,DC are the DC portion (mean) of the luma and chroma components in

the LDR image block. The non-intuitive part of this transform is the presence of luma compo-

nent in the prediction of CbHDR and CrHDR. Such normalizing luma factor is necessary, since

most color spaces utilized for video coding are not iso-luminant, which means that they contain

some luma information in their chroma components. The division by the YLDR,DC reduces the

variance in chroma due to luma component. The HDR MPEG coding solves this problem

by employing approximately iso-luminant CIE 1976 Uniform Chromacity Scales (Eqs. (5.3)

and (5.4)).

http://www.mpii.mpg.de/resources/hdr/hdrmpeg/
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5.5 HIGH DYNAMIC RANGE TEXTURE COMPRESSION
High dynamic range textures can significantly enhance realism in real-time rendering using

graphics hardware. This is, however, achieved at the cost of higher memory footprint, which can

affect rendering performance. The bottleneck is both graphics card memory and the bandwidth

available for sending textures from external to graphics card memory. Both these problems

can be reduced if textures are efficiently compressed prior to sending them to graphics card

memory.

There exist several common techniques for compressing low dynamic range textures.

The S3TC texture compression scheme, also known as DXTC [62], has became a de facto

standard that is often implemented on graphics cards. It divides a texture into 4×4 blocks,

then encodes each block using 64 bits, resulting in 4 bits per pixel. Two colors are selected

as base colors and stored in 16 bits (red—5 bits, green—6 bits, blue—5 bits). Then each

pixel is encoded in 2 bits, which are used to linearly interpolate between the two base colors.

Unlike video or image compression, texture compression schemes are always fixed-rate to

allow random access to texels. They must be also simple enough to offer very fast decoding

and to be suitable for hardware implementation. Unfortunately, a straightforward extension

of the S3TC to larger number of bits that could encode HDR textures results in visible

quantization and blocking artifacts [63]; therefore, more elaborate compression schemes are

necessary.

Munkberg et al. [44] extended the S3TC scheme for high dynamic range luminance data

and proposed an interesting approach to chroma encoding. The pixels are initially transformed

to the logY uv color space, described in Section 5.1.5. The luminance is coded similarly as in

the S3TC scheme, using two base log-luminance values encoded in 8 bits and 16 (for a 4×4

block) 4-bit indexes used to interpolate between the base values. The interpolation can be both

uniform or non-uniform with smaller steps close to the base values. The chroma channel is

subsampled either horizontally or vertically, halving the number of pixels to encode. Two base

chroma colors are coded in 15 bits each (8 bits for u and 7 bits for v) together with eight
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FIGURE 5.14: Shapes used for coding chroma in a 4×4 texture block. Redrawn from [44].
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FIGURE 5.15: Shape transforms can fit better to color distribution in a block than linear interpolation.

Images courtesy of Jacob Munkberg, Petrik Clarberg, Jon Hasselgren, and Tomas Akenine-Möller of

the Lund University [44]. © 2006 ACM, Inc. Reprinted by permission.

2-bit indexes. Then instead of using a straight line for interpolating between the two base

colors, Munkberg et al. suggest to use one of the predefined shapes, shown in Fig. 5.14. The

two base colors are used to fix the position of two vertices (solid vertices in the figure), thus

allowing for shifting, scaling, and rotation of the predefined shapes in the uv coordinates. Then

each chroma index indicates the vertex that should be used to decode chroma. An example

illustrating the difference between linear interpolation and shape transform coding is shown

in Fig. 5.15. In overall, the Munkberg’s et al. compression scheme requires 128 bits per 4×4

block, thus 8 bits per pixel, instead of 48 bits required for the half precision floating point

buffers (see Section 5.1.1).

Roimela et al. [63] propose to abandon the S3TC scheme and use the properties of the

floating point numbers in their HDR texture compression method. Similarly as Munkberg’s

et al. scheme, the proposed encoding operates on 4×4 blocks, each encoded in 128 bits or 8

bits per pixel. The first 72 bits are used to encode luminance. The luminance of each pixel is

encoded separately using 4 bits, with a common exponent (5 bits) and the number of leading

zeros (3 bits) shared for each pixel in a block. To compute chroma pixels, red and blue color

components are divided by luminance values. Then, the chroma pixels are subsampled both

horizontally and vertically, reducing the number of color samples to 4. Each color component
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is quantized into seven bits, so that 4 color samples × 2 color components × 7 bits can be

encoded into the remaining 56 bits. Roimela’s et al. texture compression scheme locally adapts

to the dynamic range of a block, resulting in coarser quantization for high contrast blocks and

lower quantization for the blocks in smooth regions. Another useful property is relatively low

complexity and decoding to the half-precision floating point numbers, which are supported by

graphics cards.

Both Munkberg’s et al. and Roimela’s et al. texture compression schemes require modi-

fications of the graphics hardware for the best performance. Therefore, it can be expected that

future work on HDR texture compression will focus on the schemes that allow for efficient

decoding on existing hardware using fragment programs.

5.6 CONCLUSIONS
It is quite surprising that the well-studied and improved over years general image and video

compression standards may turn out to be inadequate for new content and displays in the com-

ing years. Although increasing the bit-depth of encoded images seems to be the most apparent

solution to this problem, it does not address the major issue: how the encoded code-values

should be mapped to the luminance levels produced by a display. The ICC color profiles,

commonly used for this purpose in low dynamic range images, have been designed for reflective

print colorimetry and are not suitable for high contrast displays. The problem is even more

difficult if the output device is unknown and may vary from a low-contrast mobile display to

a high-end large screen display. To fully address this issue, not only the compression algo-

rithms, but the entire imaging pipeline, from acquisition to display-adaptive tone-mapping,

must be redesigned. High dynamic range pixel encodings (Section 5.1) offer a general pur-

pose intermediate storage format, which can represent the colorimetrically calibrated images

with no display limitations. Such images could be displayed only on an ideal display, ca-

pable of producing all physically feasible colors, which is unlikely to ever exist. Therefore,

the high dynamic range images must be adjusted to the actual display capabilities by com-

pressing its dynamic range, clipping excessively bright pixels, choosing the right brightness

level, so that all colors fit into the display color gamut. The tone-mapping algorithms de-

signed for that purpose are discussed in Chapter 6 of this book. Since making such radical

changes in the imaging pipeline would render the existing software and hardware obsolete,

it is important to ensure backward-compatibility of image and video formats, as discussed in

Section 5.4.

The specialized application areas that require higher image and video fidelity than offered

by a general purpose compression formats have already come up with custom formats, such

as Radiance RGBE or OpenEXR for computer graphics animation, or DICOM for medical

images, as discussed in Section 5.2. The proposals of the Image Interchange Framework
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committee (Section 5.3.1) work on defining not only image format, but also the entire imaging

pipeline employed for digital motion picture production. Another specialized area is texture

compression (Section 5.5), which have different requirements (fixed-rate coding, fast decoding)

than general purpose image compression. It can be expected that some advanced ideas from these

specialized compression formats will be incorporated in the future general purpose standards,

such as the family of MPEG or JPEG formats.
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C H A P T E R 6

Tone Reproduction

The contrast and brightness range in typical HDR images exceeds capabilities of current display

devices or print. Thus, these media are inadequate to directly reproduce the full range of captured

light. Tone mapping is a technique for the purpose of reducing contrast and brightness in HDR

images to enable their depiction on LDR devices. The process of tone mapping is performed

by a tone-mapping operator.

Particular implementations of a tone-mapping operator are varied and strongly depend

on a target application. A photographer, computer graphics artist, or a general user will most

probably like to simply obtain nice looking images. In such cases, one most often expects a

good reproduction of appearance of an original HDR scene on a display device. In simulations

or predictive rendering, the goals of tone mapping may be stated more precisely: to obtain

a perceptual brightness match between HDR scene and tone-mapped result, or to maintain

equivalent object detection performance. In visualization or inspection applications often the

most important is to preserve as much of fine detailed information in an image as possible.

Such a plurality of objectives leads to a large number of different tone-mapping operators.

In this chapter, we present at first short overview of existing tone-mapping operators.

Then we discuss the problem of tone-mapping evaluation using subjective and objective meth-

ods. Finally, we discuss tone-mapping extensions into temporal domain as required to handle

HDR video.

6.1 TONE-MAPPING OPERATORS
Various tone-mapping operators developed in recent years can be generalized as a transfer

function which takes luminance or color channels of an HDR scene as input and processes it

to output pixel intensities that can be displayed on LDR devices. The input HDR image can

be calibrated so that its luminance is expressed in SI units cd/m2 or it may contain relative

values which are linearly related to luminance (Section 3.2). The transfer function may be the

same for all pixels in an image (global operator) or its shape may depend on the luminance of

neighboring pixels (local operator). In principle, all operators reduce the dynamic range of input

data. Since most of the algorithms process only luminance, color images have to be converted to
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a color space that decouples luminance and chrominance, e.g. Y xy (refer to Section 2.2). After

tone mapping, the Y xy color space is converted to the original color space of the image. In such

an inverse transform, the tone-mapped intensities are used instead of the original luminance as

the Y channel, while the chrominance is left unchanged.

6.1.1 Luminance Domain Operators
The most naı̈ve approach to tone mapping is to “window” a part of luminance range in an

HDR image. That is to map a selected range of luminance using a linear transfer function to a

displayable range. Such an approach, however, renders dark parts of image black and saturates

light areas to white, thus removing the image details in the areas. A basic sigmoid function,

L =
Y

Y + 1
, (6.1)

maps the full range of scene luminance Y in the domain [0, inf ) to displayable pixel intensities

L in the range of [0, 1). Such a function assures that no image areas are saturated or black,

although contrast may be strongly compressed. Since the mapping in Eq. (6.1) is the same for

all pixels, it is an example of a global tone-mapping operator. Other global operators include

adaptive logarithmic mapping [64], the sigmoid function derived from photographic process:

photographic tone reproduction (global) [65], a mapping inspired by the response of photoreceptors

in the human eye: photoreceptor [66], a function derived through histogram equalization [67].

The subtle differences in tone-mapped images using these operators are illustrated in Fig. 6.1.

Usually, one obtains a good contrast mapping in the medium light levels and low contrast in the

dark and light areas of an image. Therefore, intuitively, the most interesting part of an image in

terms of its contents should be mapped using the good contrast range. The appropriate medium

brightness level for the mapping is in many cases automatically determined as a logarithmic

average of luminance values in an image:

YA = exp

(
∑

log(Y + ǫ)

N

)

− ǫ, (6.2)

where Y denotes luminance, N is the number of pixels in an image, and ǫ denotes a small

constant representing the minimum luminance value to prevent 0 in logarithm. The YA value is

then used to normalize image luminance prior to mapping with a transfer function. For example,

in Eq. (6.1) such a normalization would map the luminance equal to YA to 0.5 intensity which is

usually displayed as middle-gray (before the gamma correction). YA is often called the adapting

luminance, because such a normalization is similar to the process of adaptation to light in

human vision.
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linear
 logarithmic


sigmoid
 histogram eq.


FIGURE 6.1: Comparison of global transfer functions with linear mapping (standard gamma correction

with dynamic range clipping) given as the reference. The plot illustrates how luminance values are mapped

to the pixel intensities on a display. The steepness of the curve determines the contrast in a selected

luminance range. Luminance values for which display intensities are close to 0 or 1 are not transferred.

The HDR image courtesy of Industrial Light & Magic.

6.1.2 Local Adaptation
While global transfer functions are simple and efficient methods of tone mapping, the low

contrast reproduction in dark and light areas is a disadvantage. To obtain a good contrast

reproduction in all areas of an image, the transfer function can be locally adjusted to a medium

brightness in each area:

L =
Y ′

Y ′
L + 1

, (6.3)

where Y ′ denotes HDR image luminance normalized by the globally adapting luminance

Y ′ = Y/YA and Y ′
L is the locally adapting luminance. The value of globally adapting luminance

YA is constant for the whole image, while the locally adapting luminance Y ′
L is an average

luminance in a predefined area centered around each tone-mapped pixel. Practically, Y ′
L is

computed by convolving the normalized image luminance Y ′ with a Gaussian kernel. The

standard deviation of the kernel σ defines the size of an area influencing the local adaptation

and usually corresponds in pixels to 1◦ of visual angle. The mechanism of local adaptation

is again inspired by similar processes occurring in the human eyes. Figure 6.2 illustrates the

improvement in tone-mapping result through introduction of the local adaption.

The details are now well visible in dark and light areas of the image. However, along high

contrast edges one can notice a strong artifact visible as dark and light outlines—the halo. The

reason why such artifact appears is illustrated in Fig. 6.3. Along a high contrast edge the area of
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uniform global adaptation map YA global Y  and local   YÕ  adaptationA L

Gaussian blur of
the HDR image with
kernel size ~1deg 
of visual angle.

Logarithmic average
of luminance in  

the HDR image.

FIGURE 6.2: Tone-mapping result with global, Eq. (6.1), and local adaptation, Eq. (6.3). The local

adaptation (right) improves the reproduction of details in dark and light image areas, but introduces halo

artifacts along high contrast edges.

local adaptation includes both high and low luminance; therefore, the computed average in the

area is inadequate for any of them. On the side of high luminance, the local adaptation is more

and more underestimated as the tone-mapped pixels are closer to the edge; therefore, Eq. (6.3)

gradually computes much higher intensities than appropriate. The reverse happens on the side

of low luminance. A larger blur kernel spreads the artifact over a larger area, while a smaller

blur kernel reduces the artifact but also reduces the reproduction of details.

bright outlin
e


dark outline


FIGURE 6.3: The halo artifact along a high contrast edge (left) and the plots illustrating the marked

vertical line in tone-mapped image (middle) and HDR image (right). Gaussian blur (under-) overesti-

mates the local adaptation (red) near a high contrast edge (green). Therefore, the tone-mapped image

(blue) gets too bright (too dark) closer to such an edge.
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6.1.3 Prevention of Halo Artifacts
Many image-processing techniques have been researched to prevent the halo artifacts out of

which the notable solutions are automatic dodging and burning (photographic tone reproduction

(local) [65]) and the use of bilateral filtering instead of Gaussian blur [68].

The automatic dodging and burning technique derives intuitively from the observation

that a halo is caused by a too large adaptation area, Fig. 6.3, but also a large area is desired

for a good reproduction of details. Therefore, the size of the local adaptation area is adjusted

individually for each pixel location such that it is as large as possible but does not introduce

halo. The halo artifact appears as soon as both very high and very low luminance values exist

in an adaptation area and significantly change the estimated local adaptation. Therefore, by

progressively increasing the adaptation area for each pixel, the following test can detect the

appearance of halo:

|YL(x, y, σi ) − YL(x, y, σi+1)| < ǫ. (6.4)

For each pixel, the size of the adaptation area, defined by the standard deviation of the Gaussian

kernel σi , is progressively increased until the difference between the two successive estimates

is larger than a predefined threshold ǫ. The result of the Gaussian blur for the largest σi that

passed the test is then used for given pixel in Eq. (6.3). The example of estimated adaptation

areas is illustrated in Fig. 6.4. The whole process can be very efficiently implemented using the

Gaussian pyramid structure as described in [65].

FIGURE 6.4: Estimated adaptation areas for pixels marked as blue cross. In each case, the green circle

denotes the largest, thus the most optimal adaptation area. A slightly larger areas denoted as red circles

would change the local adaptation estimate YL more than acceptable threshold in Eq. (6.4) and would

introduce a halo artifact.
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Bilateral filtering is an alternative technique to prevent halos [68]. The reason for halos,

Fig. 6.3, can also be explained by the fact that the local adaptation for a pixel of high luminance

is incorrectly influenced by pixels of low luminance. Therefore, excluding pixels of significantly

different luminance from local adaptation estimation prevents the appearance of halo in a

similar way as in Eq. (6.4). The bilateral filter [69] is a modification of the Gaussian filter

which includes an appropriate penalizing function:

Y
p

L =
∑

q∈N(P )

fσs
(‖p − q‖) · Y q · gσr

(|Y p − Y q |). (6.5)

In the above equation, p denotes the location of the tone-mapped pixel, q denotes pixel

locations in the neighborhood N(p) of p. The first two terms of equation, fσs
· Y q , define

Gaussian filtering with spatial σs . The last term, gσr
, practically excludes from the convo-

lution those pixels whose luminance value differs from the tone-mapped one by more than

σr . Both f and g are Gaussian functions, and luminance is usually expressed in the log-

arithmic space for the purpose of such filtering. The bilateral filtering process is shown in

Fig. 6.5.

Compared to the automatic dodging and burning, the bilateral filter better reproduces

details at the edges, because in most cases a relatively larger area is used for estimation of local

adaptation. Although the exact computation of Eq. (6.5) is very expensive, a good approximation

can be computed very efficiently [68, 70].

FIGURE 6.5: Bilateral filtering of a similar scanline as in Fig. 6.3, here marked in magenta (left). The

penalizing function g (right plot) improves the estimation of the local adaptation (red) by excluding

pixels in the neighborhood f (magenta) whose luminance value is outside the defined range (orange).

Thus, the local adaptation for the pixel marked with a cross (left image) is estimated only from the pixels

in the area outlined in green, while the Gaussian blur would also include pixels in the area outlined in

red. The middle plot illustrates tone-mapped pixel intensities resulting from bilateral filtering.
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6.1.4 Segmentation-Based Operators
An alternative approach to tone mapping, which is in a sense similar to the local adaptation

techniques, is based on a fuzzy segmentation of an HDR image into areas of common and

distinct illumination. Such algorithms focus on optimizing the relations of contrast or luminance

between the segments while leaving the relations of pixel intensities within the segments

unchanged or very simply transformed. The reduction of dynamic range can be accomplished

by optimizing the whole segments because the information within a segment is usually of low

dynamic range, while the differences of luminance level between the segments contribute to the

high dynamic range. Unlike in local adaptation approaches which are inspired by the behavior of

photoreceptors in the human eyes, the motivation here comes from the psychophysical theories

of perception, mainly Gestalt.

One example of such an approach is the lightness perception tone mapping [14]. The

algorithm is inspired by an anchoring theory of lightness perception [71] which comprehensively

explains many characteristics of a human visual system such as lightness constancy and its

spectacular failures which are important in the perception of images. The principal concept

of this theory is the perception of complex scenes in terms of groups of consistent areas

(frameworks). Such areas, following the Gestalt theorists, are defined by the regions of common

illumination. The key aspect of the image perception is the estimation of lightness within

each framework through the anchoring to the luminance perceived as white, followed by the

computation of the global lightness. Lightness is a perceptual quantity that assigns brightness

to the perceived shades of gray, and is judged relative to the brightness of a similarly illuminated

area that appears to be white.

In such segmentation approaches, the frameworks can be identified with an automatic

method for image decomposition [14] which derives from the principles of the anchoring

theory of lightness perception, or alternatively by a user guidance [72]. Correspondingly, the

local mapping of luminance to perceived scale of grays can be automatically adjusted with a

brightness adjustment method [14, 73] or manually.

The segmentation approaches mostly do not affect the local contrast and preserve the

natural colors of an HDR image due to the linear handling of luminance. The fuzzy definition

of segments assures that artifacts do not appear in the areas where distinct illuminations mix.

The strength of such operators is especially evident for difficult shots of real-world scenes which

involve distinct regions with significantly different luminance levels, Fig. 6.6.

6.1.5 Contrast Domain Operators
The tone-mapping methods discussed so far perform the dynamic range-reducing operations

directly on luminance or on color channel intensities. However, one can observe that an

image with a wide range of luminance also contains a large range of contrast. Therefore,
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FIGURE 6.6: The lightness perception tone-mapping operator reduces the contrast in HDR image (left)

by decomposing the image into the areas of consistent illumination (middle) and optimizing the contrast

ratio between these areas (right). In the middle image, blue and magenta illustrate the influence of

two distinct frameworks and the transition between the two colors mark fuzzy areas influenced by both

frameworks. The HDR image courtesy of SpheronVR.

as an alternative to luminance range compression, contrast magnitudes in the image can be

reduced. Since contrast conveys semantical information in images, such a control over contrast

can be advantageous. For instance, small contrast usually represents the reflectance properties

of surfaces, such as texture, medium contrast often defines the outlines of objects, and large

contrast represents changes in illumination. Particularly, large contrasts are in most cases the

cause of a high dynamic range. By preserving small and medium contrasts, and reducing large

contrasts, one can reduce the dynamic range of illumination and at the same time preserve

good visibility of details from the original HDR image. Such a contrast-based processing gives

a better control over transferred image information than the luminance-based operators. The

latter, however, give a better control over brightness mapping. In fact, it is hard to impose a

target luminance range for contrast-based compression.

A typical contrast-based tone-mapping operator includes the following steps. First,

the input luminance is converted to a contrast representation. The magnitudes of contrasts are

then modulated using a transfer function for contrast—the tone-mapping step. Next, the mod-

ulated contrast representation is integrated to recover the luminance information, and such

luminance is then scaled to fit the available dynamic range. Finally, since the result of in-

tegration is calculated with an unknown offset, the brightness of the tone-mapped image is

adjusted.

Contrast in tone-mapping applications is most often measured as a logarithmic ratio of

luminance:

C = log
Y p

Y q
, (6.6)
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(a) HDR image, clipped
 (b) contrast representation
 (c) contrast transfer map
 (d) tone mapping resul
t


FIGURE 6.7: Contrast domain tone mapping [74]. The HDR image (a) is transformed to a contrast

representation (b) which is multiplied by a contrast transfer function (c). The contrast representation

is then integrated to obtain a tone-mapped image (d). In (b), white denotes strong local contrast and

black no contrast. In (c), black denotes strong contrast attenuation and white marks no change in local

contrast.

where Y p and Y q denote luminance of adjacent pixel location. The contrast representation of

an image is computed as a gradient of log Y , since the logarithm of division is equal to the

difference of logarithms. For the tone mapping, such a representation is often multi-resolution

to measure contrasts between adjacent pixels (full resolution) and adjacent areas in an HDR

image (coarser resolutions). The contrasts are then modulated by a transfer function as for

example in gradient domain compression [74]:

T(C) =
α

|C |
·

(

|C |

α

)β

. (6.7)

Given that β ∈ (0, 1), such a function attenuates gradients that are stronger than α and amplifies

smaller ones. Thus, if α is equal to medium contrasts in an image, Eq. (6.7) reduces the

dynamic range caused by large differences in illumination and enhances fine scale details.

More complex transfer functions are also possible including for instance contrast equalization

[75]. As the final step, the modulated contrast representation of an HDR image has to be

integrated in order to obtain intensities in a tone-mapped image. The integration step is

performed by solving the Poisson equation and the brightness adjustment step is left for manual

setting by a user. The stages of the contrast domain tone mapping process are illustrated in

Fig. 6.7.
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6.2 TONE-MAPPING STUDIES WITH HUMAN SUBJECTS
The previous sections provide only an introduction to the general ideas behind the tone-

mapping problem and the reader is referred to [6] for detailed descriptions of specific

algorithms. Existing tone-mapping operators can be further generalized to a transfer func-

tion in form of a “black box” which converts scene luminance to displayable pixel intensities.

While the universal goal of such a transfer function is to reduce the original dynamic range and

at the same time preserve the original appearance of HDR, a particular realization of it can be

versatile and depends on the objectives of a target application. In many cases, one may wish

to simply obtain nice looking images that resemble the original HDRs, but the requirements

may also be more precise: perceptual brightness match, good visibility of details, equivalent

object detection performance in the tone-mapped and corresponding HDR image, and so on.

In view of the technical limitations imposed by standard displays and other constraints related

to particular image observation conditions (ambient lighting, the screen resolution, the observer

distance), such requirements can only be met at the cost of other image properties. For instance,

if an available dynamic range is assigned to enable good visibility of details (local contrasts),

there may not be enough dynamic range left to depict global contrast variations in the scene

(refer to Fig. 6.8). The tradeoff between these conflicting goals is often balanced through an

FIGURE 6.8: Different levels of detail visibility in tone-mapping results.The increase in detail visibility

is obtained at the cost of contrasts between larger image areas. The image (a) is the adaptive logarithmic

mapping [64], (b) is the lightness perception tone mapping [14], and (c) is the contrast domain tone

mapping [75]. The HDR image courtesy of Byong Mok Oh.
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optimization process, but sometimes the design of an algorithm is focused on the require-

ments and is oblivious to the side-effects. In the end, the overall impact of image-processing

operations on the perceived image quality or fidelity to the real world appearance is not thor-

oughly understood.

Evaluation of tone-mapping operators is an active research area [76,77,78,79], which at

the current stage is more focused on choosing correct psychophysical techniques than on pro-

viding clear guidance as to how existing operators should be improved to produce consistently

high-quality images. Many existing evaluation methods treat each tested operator as a “black

box” transfer function and compare its performance with respect to images produced by other

operators, without explaining the reasons underlying human judgments. While some evalua-

tion methods go one step further and attempt to analyze the reproduction quality of overall

brightness, global contrast, and details (in dark and light image regions) [78, 79], but again

they are focused on comparing which operator is better for each of these tasks. Those studies

do not provide any deeper analysis as to how pixels of an HDR image have been transformed

and what the impact of such a transformation is on desired tone-mapped image characteris-

tics [80]. Another important question is how the outcome of the transformation depends on

the particular HDR image content.

In a vast majority of perceptual experiments with tone mapping only one set of parameters

per operator and per HDR image is considered in order to reduce the number of images that

must be compared by subjects. The choice of the parameters may strongly affect the appearance

of tone-mapped images and thus the operator performance in the experiment [81]. Another

common problem is averaging the experimental results across subjects based on low-cross

subject variability. This lack of variability can often be caused by the choices imposed on the

subjects by the experiment design, which does not offer any possibility of adjusting the image

appearance to subject’s real preferences. The net result of published studies is that they often

present contradictory results even if the same HDR images are used. Clearly, this suggests that

the tone-mapping evaluation methodology should be improved.

Instead of the “black box” tone-mapping evaluation, there are some recent attempts of

“bottom-up” approach in which the goal is to identify the low-level tone-mapping charac-

teristics that lead to perceptually attractive images [81, 82]. For this purpose, the subjective

preference and fidelity with respect to the real-world images is measured on an HDR dis-

play for images produced by a generic operator, whose characteristic and parameters are well

understood. The goal of such research is to find some universal rules that facilitate a design

of the operator that consistently produces preferred image appearance. For example, Seet-

zen et al. [82] found that for a given display peak luminance, there is a preferred level of

contrast, which when exceeded leads to less preferred image appearance. The level of such

optimal contrast increases with the display peak luminance. However, the preferred peak
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luminance should be below 6000–7000 cd/m2, regardless of contrast, due to discomfort glare in

dim ambient environments (the average surrounding luminance of 400–1200 cd/m2 have been

considered).

The correlation between image brightness and preferred contrast level has also been

confirmed by Yoshida et al. [81], which also suggests that the use of these parameters to

control tone mapping may be difficult for the user. Based on this observation, Yoshida et

al. propose a better parameterization of a linear operator in logarithmic domain, in which

parameters are more intuitive and can be partly estimated from image characteristics. Their

operator is controlled by two parameters: anchor white and contrast. The anchor white parameter

is approximately consistent across subjects and depends on images—it is set to a lower value if

an image contains large self-luminous objects. The contrast parameter is more subjective, and

therefore users should be allowed to adjust it. Yoshida et al. have shown that the parameters

can be automatically estimated for their operator based on an image characteristic to obtain

a “best guess” result. The contrast parameter can be predicted from the dynamic range of

an image (images of higher dynamic range must be reproduced with lower contrast), and

the anchor white parameter is related to the image key value (although the prediction can be

unreliable if an image contains large self-luminous objects). The drawback of this approach

is that the studied operator is very simple and does not deliver the image quality obtained

using the state-of-the-art algorithms discussed in Section 6.1. Therefore, it remains to be seen

whether the advanced operators can benefit from the proposed selection of parameters and

an automatic estimation of their values as postulated in [81]. The problems of anchor white

selection and overall image brightness control in terms of user preferences have been further

addressed in [73].

Yoshida et al. have also investigated how the dynamic range and brightness of a display

affects the preference for tone reproduction. For 14 simulated monitors of varying brightness

and dynamic range, they did not find any major difference in the strategy the subjects use to

adjust images for LDR and HDR displays. However, they noticed that the resulting images

depend on a given task. If the goal is to find the best-looking image (preference), subjects tend

to strongly enhance contrast (up to four times that of the original image contrast), even at the

cost of clipping a large portion of the darkest pixels. On the other hand, when the task is to

achieve the best fidelity with respect to a real-world scene, the subjects avoid clipping both in

the dark and light parts of an image and they do not extend contrast much above the contrast

of an original image. In both tasks, there is a tendency toward brighter images, which are

achieved by over-saturating the brightest pixels belonging to self-luminous objects. Yoshida

et al. have also compared the user’s preference for displays of varying luminance ranges. The

subjects prefer in the first order the displays that are bright, and in the second order, the displays

that have low minimum luminance. Again, while such findings give useful insights how basic
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image display parameters affect the perceived image fidelity and preference, their integration

to advanced tone-mapping operators is still an open research question.

6.3 OBJECTIVE EVALUATION OF TONE MAPPING
In this section, instead of subjective analysis, an objective perceptual metric is considered to

help in understanding how particular image characteristics, such as contrast or brightness, are

distorted by tone mapping with respect to the original HDR image. While objective metrics are

usually less precise than data derived directly in psychophysical experiments, their big advantage

is that a huge volume of images can be efficiently analyzed. This is particularly important in

tone mapping where image characteristics affect the tone-mapped image appearance even if

the same operator is used with consistently selected parameters [81].

The metric presented in this section is concerned with one well-defined suprathreshold

distortion: contrast compression due to tone mapping, and uses the knowledge of human visual

system to determine the perceived amount of such compression and to estimate the impact of

such distortions on perceived image quality. In the following section, contrast distortions due

to tone mapping are characterized and then the analysis of such distortions is presented for

selected tone-mapping operators discussed in Section 6.1.

6.3.1 Contrast Distortion in Tone Mapping
All successful tone-mapping operators balance the tradeoff between plausible reproduction

of the luminance range and preservation of details. One can argue that the photographic tone

reproduction operator [65] best reproduces global contrast, while the gradient domain compression

[74] operator best preserves details. However, the accuracy of such statements may depend on

the particular HDR image, and as concluded by evaluations of tone-mapping operators [79,78],

it is difficult for a tone-mapping operator to be well suited to all types of images. Regardless of

technique, each tone-mapping operator introduces a degree of distortion into the resulting LDR

tone-mapped image. Drawing conclusions from previous evaluations and general observations,

two major contrast distortions can be identified that result from tone mapping:

Global contrast change. The ratio between lightest and darkest areas of the HDR is reduced in

the LDR,

Detail visibility change. (Textures and contours) the high-frequency contrast of the HDR image

becomes less prominent, disappears, or becomes exaggerated in the LDR.

A significant global contrast change is undesirable not only for esthetic reasons, but

also because of changes in image understandability, despite good detail visibility. Certain
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FIGURE 6.9: Physical contrast information in an LDR image (left) includes both visible and invisible

details (middle). To discern only perceived contrast in the real-world conditions the detail visibility scaling

into the Just Noticeable Differences (JND) units is required (right).

specialized tone-mapping operators assign a wider dynamic range to detail regions to preserve

textures and contours, which results in a narrower dynamic range available for global luminance

changes, decreasing the ratio between lightest and darkest areas. Detail visibility change occurs

either because a region becomes entirely saturated or because an area is mapped to very few or

very low brightness levels. The second case is especially interesting from the perceptual point

of view, because the physical contrasts still exist in the LDR image, however the details are

invisible to the human observer (refer to Fig. 6.9).

The goal of the objective metric is to determine the apparent distortion in detail vis-

ibility and global contrast change, that were introduced during the tone mapping of the

HDR image, with the focus on the luminance compression aspect of the operators. In-

stead of analyzing particular algorithms one by one, the tone mapping is considered as an

unknown transformation applied to the luminance of an HDR image, resulting in an LDR

image. The output of the metric consists of a single value representing the global contrast

change factor and a map representing the magnitude of change in detail visibility. The units

of the detail visibility map are JND, which allows us to consider the visibility in the ar-

eas of an image and also permits us to use this information for potential perceptually-based

corrections [83, 84].

For the details on the metric design, the readers are referred to [83].

6.3.2 Analysis of Tone-Mapping Algorithms
In this section, the aforementioned objective metric is used to analyze the performance

of eight tone-mapping methods in terms of global contrast change and detail visibility
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FIGURE 6.10: The influence of various tone-mapping operators on the change of the global contrast.

The negative values denote the decrease in global contrast and 0 means no change. The red bars show

the median, whiskers denote 25th and 75th percentile of data, and the red crosses are outliers.

change. The analysis was performed on a set of 18 HDR images with an average dynamic

range of approximately 4 orders of magnitude and a resolution between 0.5 and 4 mega-

pixels. The set contained a variety of scenes under different lighting conditions and included

panoramic images. The following tone-mapping algorithms have been tested: global (spa-

tially uniform)—gamma correction (γ = 2.2), adaptive logarithmic mapping [64], photographic

tone reproduction (global) [65], photoreceptor [66] (Section 6.1.1); and local (detailed preserving

algorithms)—photographic tone reproduction (local) [65] (Section 6.1.3), bilateral filtering [68]

(Section 6.1.3), lightness perception [14] (Section 6.1.4), gradient domain compression [74]

(Section 6.1.5). The tone-mapped LDR images were obtained either from the authors of

these methods or by using publicly available implementations pfstmo (refer to Chapter 10).

Tone-mapping parameters were fine tuned whenever default values did not produce satisfactory

images.

The results of the global contrast change analysis are summarized in Fig. 6.10. There is an

apparent advantage of the photographic tone reproduction (local & global) methods in conveying

the global contrast impression almost without any change. These methods were also among

the top rated in other studies [78, 79]. In contrast, the gradient domain compression causes a

severe decrease in the global contrast. Other local methods perform moderately. Particularly,

in the case of the lightness perception model the decrease of global contrast is caused by the

optimization of difference in luminance between the frameworks. The superior performance of

the global methods is traded for less efficient reproduction of details as observed in the further

analysis.

The detail visibility change has been analyzed for two cases: the loss of detail visibility

and the change in the magnitude of the detail visibility. The loss of detail visibility describes

the situation in which details have been visible in the HDR image but are not perceivable in
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FIGURE 6.11: The influence of various tone-mapping operators on the loss of the detail visibility. The

analysis is split into dark (left) and light (right) image areas. The percentage denotes the part of the

dark/light image area in which details have been visible in the HDR image but are not perceivable in the

tone-mapped image.

the tone-mapped image. The change in the magnitude of the detail visibility is considered only

in the areas in which the details are visible both in the HDR and in the tone-mapped image.

The average decrease and increase of the visibility are calculated separately. Following previous

studies [79], the analysis has been further split into the dark and light image areas. To segment

these areas, 33% of the darkest pixels in an image has been assigned to the dark area, and 33%

of the brightest pixels to the light area. The results are summarized in Figs. 6.11 and 6.12. The

results of the increase in detail visibility are not shown because they can be only observed for

the gradient domain compression.

The analysis of Fig. 6.12 indicates that the dynamic range compression and the change

in luminance levels lead to a decreased perception of details in the case of all operators. The

magnitude of change, however, is in most cases below 1 JND. This means that the loss of

detail visibility, largely observed in Fig. 6.11, is unlikely caused by the stark luminance range

compression, but rather even a minor compression causes the magnitudes of details to drop

below the visibility threshold. This would suggest that a minimal correction is sufficient to

restore the visibility. The detail preserving tools implemented in local tone-mapping methods

seem to perform well in light image areas; however, the dark image areas are often not well

reproduced with the exception of the gradient domain compression and the adaptive logarithmic

mapping. Notably, the adaptive logarithmic mapping, which is a global operator, preserves details

exceptionally well in dark image areas. This advantage comes at the cost of a slightly higher loss

of details in light areas. The lightness perception tone mapping performs on par with other local

methods, being slightly advantageous in light image areas. The gradient domain compression is

particularly interesting because the results of this detail preserving method indicate both the
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FIGURE 6.12: The average decrease of the magnitude of detail visibility caused by the analyzed tone-

mapping operators. The analysis is split into dark (left) and light (right) image areas. The average is

calculated over the parts where details are visible both in the HDR and in the tone-mapped image. 0

denotes no change in visibility and 1 JND denotes a visible change.

increase and decrease in detail visibility while at the same time the visibility of any details is

not lost. Such behavior indicates good performance of the contrast transfer function which

attenuates large contrasts and increases the small ones as explained in Section 6.1.5.

Overall, the better performance of the global tone-mapping operators in the analysis

of global contrast change is not surprising. However, the performance of the algorithms in

terms of detail visibility change is very unstable across the test images, and there is no obvious

winner of the evaluation. Interestingly, the enhancements required to improve the results do not

necessarily need to be strong. While the discovery of a new universal operator seems unlikely,

such analysis motivates the development of enhancement algorithms that could restore the

missing information in tone-mapped images based on their HDR originals. Such enhancements

can be obtained using colors [83] or carefully shaped countershading profiles [84].

6.4 TEMPORAL ASPECTS OF TONE REPRODUCTION
The tone-mapping algorithms discussed so far have been designed for static images, what in

principle means that the illumination conditions and luminance levels are assumed constant. In

the HDR video, as also in the natural world, the illumination changes. The human eyes adapt

their response range to the current ambient light level. Normally, the adaptation processes are

mostly not noted because the changes in the illumination during the course of day and night

are very slow. Sudden changes, however, cause visible loss in the sensitivity as illustrated in

Fig. 6.13. For instance, when on a sunny day one immediately enters a dark theater, the interior
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adapted state adaptation to light
adaptation to dark

sudden change in illumination

adapted state

FIGURE 6.13: Visual experience in certain time intervals during the temporal adaptation to light and to

dark caused by a sudden change in illumination. The visibility improves with time because the response

range of photoreceptors adjusts to the medium illumination in the scene.

is at first dark and no details can be discerned—only after several seconds the silhouettes of

objects start to appear.

The adaptation of human eyes to light is a temporal process. The precise time course of

adaptation can be measured and is shown in Fig. 6.14. The plots start with a sudden change

in illumination which results in loss of sensitivity. The sensitivity of both rods and cones
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FIGURE 6.14: Time course of dark adaptation (a) and light adaptation (b,c) as a function of sensitivity.

Higher threshold values indicate that the eyes are not well adapted; thus, the sensitivity is low. Dark

adaptation was to complete darkness, light adaptation to the specified luminance levels. Redrawn from

[85].
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progresses asymptotically. During the dark adaptation, the process of cones is faster but cones

soon reach their maximum sensitivity. The sensitivity level is for a moment constant because

the rods still have not recovered from the strong illumination. With time, rods dominate the

vision and continue the adaptation process until the maximum sensitivity. The light adaptation

in the scotopic range is extremely rapid and nearly 75% of the process is accomplished in

first 400 ms. The cone system adapts to light much slower and requires about 3 min to reach

the maximum sensitivity which then slightly decreases. Due to their asymptotic nature, the

adaptation processes are often approximated with the exponential function.

Similarly as in the natural world, the luminance values in the HDR video can significantly

change from frame to frame and cause unnatural brightness changes in the tone-mapping

results. To prevent this, tone-mapping operators for video implement mechanisms that are

similar to the adaptation processes in human eyes. The goal of these mechanisms is twofold: in

principle they guarantee natural appearance of light changes in the video stream, but also they

assure the temporal coherence between frames. The temporal coherence is an important issue

because small changes in the luminance distribution between video frames often influence the

brightness of tone-mapping result what in turn causes undesired brightness oscillations in the

displayed HDR video stream. While the first goal may require faithful modeling of temporal

adaptation processes in human vision, the temporal coherence can be achieved even by simple

models [86].

In the luminance-based tone-mapping algorithms, the light adaptation is usually modeled

using the adapting luminance term given in Eq. (6.2). To achieve temporal coherence for video,

instead of using the actual adapting luminance YA for the displayed frame, a filtered value ȲA

is used. In most implementations, the value of ȲA changes approximately according to the

adaptation processes in human vision, eventually reaching the actual value if the adapting

luminance is stable for some time. The adapting luminance is filtered using an exponential

decay function [87]:

Ȳ new
A = ȲA + (YA − ȲA) · (1 − e− T

τ ), (6.8)

where T is the discrete time step between the display of two frames, and τ is the time constant

describing the speed of the adaptation process. Depending on the required faithfulness to the

actual adaptation processes, the time constant can be one for all light conditions, or can be

different for rods and for cones, or even may depend on the pre-adaptation processes [88].

Commonly chosen values for adaptation of rods and cones are as follows:

τrods = 0.4 s τcones = 0.1 s, (6.9)
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and if only the temporal coherence is required, the τcones constant is used. Furthermore, the

time required to reach the fully adapted state also depends whether the observer is adapting to

light or dark conditions. The values in Eq. (6.9) describe the adaptation to light. For practical

reasons, the adaptation to dark is not simulated because the full process takes up to tens of

minutes as shown in Fig. 6.14. Instead, the adaptation is most often performed symmetrically

neglecting the case of a longer adaptation to dark conditions. The complete tone mapping

solution for HDR video can be found in [41] and in [27].

6.5 CONCLUSIONS
In view of the increasing availability of the HDR contents, the problem of their presentation

on conventional display devices is highly recognized. Different goals and approaches led to

the development of versatile algorithms. These algorithms have different properties which

correspond to the specific requirements and applications. Furthermore, due to the temporal

incoherence certain methods cannot be used for the tone mapping of video streams. A universal

method has not been found so far; therefore, the choice of the tone-mapping method should

be based on the application requirements. It is also not clear how to evaluate tone-mapping

operators in terms of image quality because their performance depends strongly on the choice

of parameter values and the actual HDR image content. The development of robust methods

that could be used for the automatic parameter tuning to obtain desirable image appearance is

still an open research question. Also, the problem of color appearance, which depends a great

deal on luminance level, has not been researched too deeply.

With respect to the HDR video streams, the choice of an appropriate tone-mapping

method is usually a tradeoff between the computational intensity and the quality of dynamic

range compression. The quality here is mainly assessed by a good local detail visibility. The

global tone-mapping methods are very fast, but often leads to the loss of local details due to an

intensive dynamic range compression. Such methods should be used whenever high efficiency

is the main requirement of the target application. The adaptation mechanisms can be used to

select the range of luminance values which should obtain the best mapping. However when the

quality is insufficient, local tone-mapping methods are necessary. The local detail enhancement

methods provide a good improvement to the global tone-mapping methods still achieving good

computational performance.

The photometrically calibrated HDR video streams allow for the prediction of the per-

ceptual effects such as reduced visual acuity and lack of color vision for the rod vision, motion

blur, and glare (see Fig. 9.2 and refer to Section 9.1). Such effects are typical to everyday

perception of real-world scenes, but do not appear when observing a display showing a tone-

mapped HDR video. Prediction of such effects and their simulation can increase the realism of

the presentation of HDR contents. On the other hand, such a prediction may also be used to
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identify situations when a real-world observation of scene would be impaired and to hint the

tone-mapping algorithm to focus on the good detail reproduction there.

In Chapter 10, we provide more information on the pfstmo software package [33] con-

taining implementations of many state-of-the-art tone mapping described in this chapter. The

package is available under the URL:

http://www.mpi-inf.mpg.de/resources/tmo/

http://www.mpi-inf.mpg.de/resources/tmo/
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C H A P T E R 7

HDR Display Devices

In recent years, we witness important developments in HDR display and projection technology.

In this chapter, we discuss basic requirements imposed on this technology from the standpoint

of selected characteristics of the human visual system (HVS), which are important in image per-

ception. We also give examples of selected technical solutions used in HDR display technology

and we discuss their merits and limitations.

7.1 HDR DISPLAY REQUIREMENTS
An ideal display device should not introduce any visible image quality degradation with respect

to the observation conditions for the real-world scenes. This means that technical capabilities

of such an ultimate display device should outperform the limitations imposed by the HVS. The

following characteristics of the HVS are important in image perception.

r The contrast sensitivity function (CSF), which determines the HVS ability to resolve

image patterns of various spatial frequencies. The display resolution should enable us

to reproduce all spatial frequencies that can be seen by the human eye. The CSF for

luminance and chrominance patterns should be considered, but in practice the former

one is the limiting factor because of higher the HVS sensitivity to luminance.

r The threshold-versus-intensity (tvi) function, which describes the just noticeable dif-

ference (JND) of luminance and chrominance that can be detected in the image for

given luminance adaptation conditions. In fact the tvi-function can be derived by

extracting the maximum sensitivity values from the family of CSFs, which are mea-

sured for various background luminances. The quantization step in luminance and

chrominance encoding in the display should be below one JND to avoid contouring

(banding) artifacts that are visible in particular when reproducing smoothly changing

image patterns.

r The luminance range that can be simultaneously seen by the HVS for given adaptation

conditions. The display dynamic range determined by the minimum and maximum
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luminance values should match the HVS capabilities. The dynamic range decides about

the maximum global contrast that can be reproduced by the display.

r Color gamut seen by the HVS. The display primaries determine the actual gamut that can

be reproduced in displayed images. The gamut also changes with the display dynamic

range.

r The field of view which affects the immersion experience and decides upon adaptation

conditions. The visual field measured for binocular human vision extends over 200◦

(width) × 135◦ (height).

An important question arises what are the limitations of current display technology in

terms of matching the just listed HVS characteristics that are important in image perception?

The best match can be observed between the CSF and display resolution. Image patterns

of spatial frequency up to 50 cycles-per-degree (cpd) can be still reproduced on the high-

definition (HD) displays featuring the image resolution of 1920 × 1080 pixels for the observer

distance larger than 5 screen heights. Since even the high-contrast luminance patterns of this

spatial frequency are barely visible by the human eye, it can be considered that the HD display

technology matches the HVS capabilities in terms of spatial pattern reproduction. In practical

TV viewing conditions with significant ambient lighting, it is often assumed that only patterns

up to 30 cycles-per-degree (cpd) can be seen and thus 3 screen heights is the recommended

watching distance to take the full advantage the HD image resolution. Note that the watching

distance effectively defines the field of view covered by the display. The HD resolution is also

sufficient for brighter displays that might be available in the future because the shape of CSF

does not change significantly for adaptation luminance above 1000 cd/m2 (refer to Fig. 4.5).

The quantization step in encoding physical luminance and chrominance values, which

can be reproduced by the display, obviously depends on its dynamic range. As we discussed

in Section 2.3 the HVS can simultaneously see the luminance range up to 4–5 orders of

magnitude. For natural scenes, which feature even wider dynamic range, an appropriate subset

is selected through complex adaptation mechanisms. Under display observation conditions,

such adaptation strongly depends on ambient light in the surrounding environment as well as

light emitted by the display itself. The resulting adaptation anchors the range of simultaneously

visible luminance and determines the minimum and maximum luminance values that can be

seen. Seetzen et al. [82] have found for a darkened room the maximum luminance values that

can be comfortably seen is of the order 6000–7000 cd/m2. Under such conditions, the minimum

luminance that can be seen is of the order of 0.01 cd/m2. In practice, the display black level

is affected by the ambient light reflected in the display screen. As predicted by the JND-space

encoding (refer to Section 5.1.6) for such bright displays the quantization artifacts are easier

to see, which means that 8-bit encoding of such wide luminance range is not sufficient, and at
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least 10-bit encoding may be required (in fact it is safer to assume even smaller quantization

error as offered by 12–16-bit encoding). More than 8 bits is also required for chrominance

encoding, in particular, for blue and purple colors for the highest luminance levels.

For such a display specification and assumed dark environment the HVS performance will

be close to optimal and further increase of the display luminance range and as well as reduction

of the quantization error cannot improve this performance. In practice, modern displays rarely

meet such requirements: 8-bit quantization is predominant and the ANSI contrast numbers as

measured for black and white checkerboard are of the order from 1:50 to 1:500, which is far

from desirable 4–5 orders of magnitude. The contrast specification provided by many display

manufacturers is based on luminance measurements for the full-on and full-off screens, which

leads to strongly exaggerated contrast values because light leakage from neighboring bright to

dark regions is not accounted for.

Recently, the so-called HDR display devices have been developed whose specification

approaches limits imposed by the HVS in terms of reproduced contrast and quantization

error. Two basic technologies have been used to achieve this goal: dual modulation and laser

projection. Dual modulation relies on optical multiplication of two independently modulated

representations of the same image. Effectively, the resulting image contrast is a product of

contrast achieved for each component image, while only standard 8-bit drivers are used to

control pixel values. In laser projectors, the laser light is scanned over the screen surfaces with

light intensity directly modulated using 12–16-bit drivers. In the following sections, we briefly

describe both technologies.

7.2 DUAL-MODULATION DISPLAYS
In the basic design of a dual-modulation display, the input HDR image is decomposed into

low-resolution backlight image and high-resolution compensation image as shown in Figure 7.1.

The requirement of precise alignment of pixels between the two images can be relaxed due

to blur in the backlight image, which does not contain high spatial frequencies. Therefore, as

the result of optical multiplication between backlight and compensation images, the achieved

global contrast (low spatial frequency) is a product of contrasts in both images, while the local

pixel-to-pixel contrast (high spatial frequency) arises only from the compensation image. While

this is not a problem for low contrast image patterns, which are successfully reproduced even

on traditional single-modulator LDR displays, local pixel-to-pixel contrast reproduction in the

proximity of high-contrast edges may not be precise. Fortunately, the veiling glare effect caused

by imperfections of the human eye optics leads to polluting retinal photoreceptors, which

represent dark image regions with parasite light coming from bright regions. Thus, the veiling

glare makes impossible to see sharply such local patterns of high contrast, which effectively
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FIGURE 7.1: Decomposition of the source image (left) into the low-resolution backlight image (middle)

and the high-resolution compensation image. Images courtesy of Gerwin Damberg, Helge Seetzen,

Greg Ward of Dolby Canada and Wolfgang Heidrich and Lorne Whitehead of the University of British

Columbia. Reproduced from [89] with permission by The Society for Information Display.

means that they do not have to be reproduced by the display. Obviously, high contrast between

more distant image regions, which can readily be seen be the eye, is faithfully reproduced.

The backlight and compensation images require special image processing so that their

multiplication results in the reconstruction of the original HDR image. The goal of such

image processing is to account for different image resolutions and the optical blur in the

backlight image. For this purpose, the point-spread function (PSF) characterizing this blur

should be modeled for all pixels of the backlight image. The overall flow of image processing

in the dual-modulation display architecture is shown in Fig. 7.2. At first the square-root

function is used to compress the luminance contrast in the input HDR image and then the

resulting luminance image is downsampled to obtain the low-resolution backlight image. In

the following step, the PSF is modeled for every pixel of the backlight image, which simulates

the light field (LFS) that effectively illuminates the high-resolution modulator. By dividing the

input HDR image by the LFS the high-resolution compensation image is computed. Since the

compensation image is 8-bit encoded, some of its regions may be saturated, which results in

undesirable detail loss. Such saturation errors are analyzed and a close-loop control system is

used to locally increase the intensity of pixels in the backlight image to prevent such saturation.

Figure 7.1 shows an example of backlight and compensation images resulting from such image

processing.
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FIGURE 7.2: Image processing flow required to drive low- and high-resolution modulators in

HDR projection/display system. Image courtesy of Gerwin Damberg, Helge Seetzen, Greg Ward of

Dolby Canada and Wolfgang Heidrich and Lorne Whitehead of the University of British Columbia.

Reproduced from [89] with permission by The Society for Information Display.

The dual-modulation technology has been successfully used to build HDR projection [89]

and display systems [2], [27, Chapter 14]. In both cases standard 8-bit LCD panels have been

used for modulation of the compensation image, and major construction differences come from

realization of the backlight modulator. For the projection system developed by Damberg et al.

[89] a passive low-resolution LCD modulators with a fixed light source has been used. Figure 7.3

illustrates extensions introduced to a standard projection system with three transmissive LCD

panels modulating RGB channels. Three low-resolution transmissive LCD panels have been

placed next to the existing high-resolution panels. Such a design enables very faithful color

reproduction and the amount of blur can be controlled by changing the distances between each

pair of low- and high-resolution RGB panels. The low resolution of the backlight modulator

leads also to a better efficiency of light transmission because density of electronic components

and other blocking elements can be reduced [89]. Damberg et al. reported that in their projection

system they achieved 2,695:1 contrast, which is only by 5% lower than the theoretical product

of contrast reproduced by the low (1:18) and high (1:155)resolution modulators. The authors

experimented also with other projector architectures by changing the order of high and low-

resolution panels, or using just a single low-resolution luminance modulator, which is placed

between the X-Prism and the lens system i.e., after the recombination of light modulated by

the three high-resolution RGB channels. The generic HDR projector architecture as proposed

in [89] can be also used for other projection technologies based on digital micro-mirror devices

(DMD) and liquid crystal on silicon (LCoS).
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FIGURE 7.3: Example of implementation of a three-LCD projector augmented with three low-

resolution backlight modulators for RGB color channels. Image courtesy of Gerwin Damberg, Helge

Seetzen, Greg Ward of Dolby Canada and Wolfgang Heidrich and Lorne Whitehead of the University

of British Columbia. Reproduced from [89] with permission by The Society for Information Display.

For HDR displays passive modulators have been used as well, but much better energy effi-

ciency has been achieved using active backlight modulators based on a matrix of independently

modulated light emitting diodes (IMLED) [2]. Interestingly, such spatially-varying backlit

device is 3–5 times power efficient than uniform light employed in conventional LCD displays

of similar brightness [27, Chapter 14]. Also, the color gamut can be significantly expanded

if different color LED (e.g., integrated RGB LED packages) are used instead of white light

commonly used in conventional LCD displays. Brightside Technologies developed a number of

prototype HDR displays, and their recent DR37-P model features the maximum luminance up

to 3000 cd/m2 and almost perfect black level of 0.015 cd/m2, which is limited only by parasite

lighting that may leak from neighboring active LEDs. This gives remarkable 1:200 000 global

contrast while the measured ANSI contrast for the black and white checkerboard pattern reaches

1:25 000. BrightSide DR37-P is the full HD 1920 × 1080 display with 37′′ screen diagonal.

For the backlight device 1200 LEDs have been used, which form a symmetric hexagonal grid.

The use of IMLED matrices as backlight devices becomes more and more popular in

modern LCD TV sets. Just recently LG Philips introduced on the market a novel Local Area

Luminance Control in their 47′′ TV sets with LED backlight. Also, Samsung developed Local

Dimming LED technology. For these technologies, the cooling problem is the main issue

that prevents installing more powerful LEDs in these displays and making them full-fledged
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HDR displays. However, given that the number of lumens per watt [lm/W] in modern LEDs

increases at a higher rate than the Moore’s law, upgrading Philips and Samsung technology to

the specification (in terms of contrast and luminance range) similar to the BrightSide’s HDR

display may be a matter of relatively short time. Also, it can be envisioned that with progressing

miniaturization of small high power light source arrays the active backlight technology will also

be employed for future projection systems.

Overall the dual-modulation technology offers an inexpensive way of doubling the bit-

depth controlling the luminance or color channels, and achieving remarkable global contrast

and the maximum luminance specifications for HDR projection and display systems.

7.3 LASER PROJECTION SYSTEMS
Laser projection technology is a promising alternative for displaying HDR images. For example,

the Scanning Laser Display Technology developed by JENOPTIK GmbH [90] (refer to

Fig. 7.4) employs 12–16 bit image encoding and directly reproduces bright and dark pixels

through modulating the amplitude of RGB laser beams. Acousto-optical modulators are used

to transform the RGB video signal into optical information. Then the three modulated laser

beams are combined into one collinear beam, which is transferred to the projection head (scanner

unit) using an optical fiber, whose length can be up to 30 m. This separation of large laser system

from the compact scanner unit is very convenient for many applications. The modulated light

arriving to the scanner unit is deflected in the horizontal direction using a rotating head with

FIGURE 7.4: Scanning laser projection display developed by JENOPTIK GmbH. Redrawn from [90].
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25 mirror facets, which results in the scan angle of about 26◦. The vertical deflection of image

scanlines is performed using a galvanometer mirror, which allows a full deflection angle of

about 20◦. The flying spot of the laser beam results in the very smooth transition between

neighboring pixels (absence of visible pixel boundaries). The image resolution can easily be

enhanced, motion blur is practically invisible due to fast line scan time, and native bit depth of

amplitude modulation is very high. The image can be easily projected on curved surfaces because

of large depth of sharpness ranging from 5 to 50 m and good color convergence. The full on/full

off contrast ratio is higher than 1:100 000, which in simulation applications enables day and

night simulation with the same equipment. Another advantage of laser projection technology

is enlarged color gamut due to more saturated primaries determined by the wavelengths of

lasers. With extended contrast offered by the projector this leads to more saturated and vivid

colors. The fixed laser wavelengths and power control enables good temporal stability in color

reproduction.

The main disadvantage of laser projection technology is moderate peak luminance level,

which is limited by the power of laser diodes. Another limiting factor is the high cost of major

system components such as lasers and light modulators. There is some hope that the cost barriers

will be overcome with increasing interests in laser television (TV). In recent years, the rapid

progress in the development of 1-W and higher power RGB lasers can be observed. Also, after

a successful application of digital micromirror device (DMD) technology in projection systems,

new generation of microelectro-mechanical systems (MEMS) have been successfully tested as

linear light modulator arrays. Grating light valve (GLV) and grating electro-mechanical system

(GEMS) technologies are much cheaper in manufacturing than the DMD devices and much

faster (× 1000) in switching between their states. Effectively this enables to build just a high-

resolution column of pixels which through laser scanning and deflection of the reflected beam

can reconstruct an image of very high resolution. For example, the GLV switching speed of 20 ns

is sufficient to build even four such images during a conventional video frame, which enables

to improve the bit-depth for color channels using temporal dithering approach (effectively a

smaller quantization step can be achieved through averaging of subsequently displayed images

by the HVS). For example, GEMS-based laser projection system demonstrated by the Eastman

Kodak Company featured superb image quality with wide color gamut, reduced motion artifacts,

HD resolution, and high native bit depth [91].

7.4 CONCLUSIONS
In this chapter, we have outlined recent developments in HDR display technology. In coming

years, a rapid development of such technology can be anticipated and virtually every month

brings some announcements from the industry on launching on the market new HDR projection

and display devices. Digital cinema applications are the driving force for the professional
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market of HDR projectors. For the consumer market, the dual-modulation technology with

LCD displays becomes particularly attractive with dropping prices of high-power LEDs and

improving their luminous efficiency. Also, integrated circuits (IC), which are capable of steering

larger and larger LED matrices, are actively developed due to increasing demands from other

industries e.g., automotive. It seems that at the current stage every major manufacturer is

preparing for launching LCD displays based on some form of local dimming technology to

deepen the black level of the display. The availability of energy efficient LEDs, which feature

high luminous power, will improve the image reproduction in bright regions without imposing

excessive demands on the display cooling system. In such situation, the main problem, which

we discuss in the next chapter, is to deliver HDR content that fully can exploit the capabilities

of modern display technology.
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C H A P T E R 8

LDR2HDR: Recovering Dynamic
Range in Legacy Content

Historically CRT display devices have been predominantly used to render digital content, and

their capabilities in terms of reproduced contrast (typically up to 1:100) and luminance range

(typically 1–100 cd/m2) have a profound impact on image and video formats, which have been

specifically tailored for these capabilities. In such display-referred LDR formats information

for every pixel is encoded directly in a ready-to-use format with the goal that reproduced

images should “look good” on any device and should not require any further processing. This

strategy of digital content storage turned out to be far from optimal with increasing diversity

of display and projection technologies, which are capable of reproducing wider contrast ranges

(typically up to 1:400 for modern LCD and plasma displays), feature more profound black

levels and maximum luminance values, and improve image sharpness. For these technologies,

the precision deficiency in the existing image and video formats may result in visually disturbing

quantization artifacts, which modern LCD displays can practically eliminate through on-line

decontouring and bit-depth expansion (refer to Section 8.1).

Such simple means are not sufficient any more for full-fledged HDR displays such as

Brightside DR37-P (refer to Section 7.2). For such displays recovering HDR information

in legacy LDR images and video is required, which is often called inverse tone mapping or

simply LDR2HDR. The main problem here is to find nonlinearity of contrast compressing

function applied to each LDR image and to overcome the quantization errors in the recovered

HDR image. Another important problem is restoring (inpainting) image details in highlights,

light sources, and deep shadows, which are typically clipped in LDR images, but can easily be

displayable on HDR displays.

The LDR2HDR problem can formally be stated as the reproduction of real-world

luminance values for every pixel in an LDR image. Such stated problem without making extra

assumptions concerning the image capturing system as well as captured scene itself is ill-posed

and in general case cannot be solved in an automatic way. The first unknown factor on the way

of light from the scene toward the camera sensor is the lens system. The direct illumination in
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the scene that should be registered for each sensor pixel is polluted through indirect lighting

scattered in the camera optics due to veiling glare and lens flare effects. Another important

factor is the camera sensor response, which can be a complex-shaped function that is difficult to

recover faithfully from a single LDR image. The captured image is polluted by the sensor noise,

which makes dark pixels less reliable. Information is lost completely for excessively exposed

and thus saturated pixels. Finally, the raw sensor image usually undergoes sophisticated image

enhancing, sharpening, and tone mapping (possible further pixel clipping both in dark and light

image regions) using proprietary and generally unknown algorithms before its encoding in any

standard format. All these factors make the task of precise scene luminance map reconstruction

very difficult. In practice, the goal of LDR2HDR processing is formulated less strictly in terms

of achieving visually plausible image appearance on an HDR display. We summarize existing

solutions, which can contribute to dynamic range expansion and are suitable for legacy video

and images.

r Bit-depth expansion and decontouring techniques (Section 8.1),

r Reversing tone-mapped curve in LDR images (Section 8.2),

r Recovering camera response curve from a single LDR image (Section 8.3),

r Recovering (inpainting) image details in saturated shadow, highlight, and light source

regions (Section 8.4),

r Handling video on-the-fly (Section 8.5),

r Taking advantage of image artifacts due to acquisition problems for recovering useful

HDR information (Section 8.6).

In the following sections, we discuss the problem of upgrading the existing LDR image

and video content to make it suitable for HDR display and projection systems such as those

discussed Chapter 7. We focus mostly on restoring luminance component. We do not cover

another important problem of extending color gamut, e.g., extending chromaticity values toward

higher saturation, without changing the hue as required for projectors and displays with color

primaries based on lasers and LEDs. Such problems are partially discussed in the literature on

gamut expansion. Also, we do not address the problem of quantized colors restoration, which

is in particular a difficult task when the quantization method is not known a priori [92].

8.1 BIT-DEPTH EXPANSION AND DECONTOURING
TECHNIQUES

In many traditional LDR imaging pipelines, usually based on 24 bits/pixel, there are often some

components which impose limitations on the number of bits per pixel. For example, in DVD
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applications tailored for the CRT displays the compressed image quality is effectively equivalent

to 6-bit signal because information from the two least significant bits in the original 8-bit

encoding is usually removed due to the quantization errors. Note that for new generation LCDs,

which are very bright and feature little noise, 10-bit accuracy of internal processing is often

required so that the analog signal, which steers the liquid crystals can reproduce the smallest

contrast details that the human eye can perceive. It should be noted that this conservative

requirement concerns only the spatial frequencies of 4–8 cpd and for other spatial frequencies

a lower number bits is sufficient (e.g., 4 bits for spatial frequencies greater than 27 cpd) [93].

This is an important change with respect to the CRT technology, which required only 6–8-bit

accuracy due to lower luminance levels (lower eye sensitivity for contrast), more blurry and noisy

pixels (more visual masking suppressing the visibility of low contrast details). Excessively limited

bit-depth obviously results in loss of low amplitude details that are below the corresponding

quantization error, but could be potentially visible on a high-quality display device. Another

visual consequence of limited bit-depth is contouring, which forms false contours (also called

banding artifacts) in smooth gradient regions (such contouring for chromatic channels is often

called posterization). We discuss two types of techniques designed to reduce these artifacts.

r Pre-processing techniques in which the high-bit depth reference image is available and

it can be used to modify the low bit-depth image version by adding noise or amplifying

its low amplitude features, so that this information can survive the image quantization

and can be recovered at the display stage. We describe briefly bit-depth expansion (BDE)

and compander techniques, which belong to this category.

r Post-processing techniques for which the only available information is the low bit-depth

image and the main goal is removing existing contouring artifacts (decontouring). We

outline adaptive filtering, coring, and predictive cancellation techniques, which are

examples of post-processing techniques. These techniques are often implemented in

hardware installed in modern LCD and plasma TVs to achieve real-time performance.

BDE techniques are designed specifically to achieve higher perceived bit depth quality than

it is physically available. As in dithering techniques, usually the BDE techniques rely on

adding imperceptible spatiotemporal noise to an image prior to the quantization step. Intensity

averaging in the optics of display and human eye leads to recovering information below the

quantization step. Modern BDE techniques tune a micro-dither amplitude to obtain a low-

spatial frequency flicker from mutually high-pass spatial and temporal noise and achieve 10-bit

perceived quality on 8 bit-driver LCDs [94]. In designing power spectral density and amplitude

characteristics of the noise, it is important to take into account the knowledge of human visual

system, so that the noise remains invisible. Otherwise, perceptible noise would not only degrade
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the visual quality, but additionally could mask the low amplitude image details, which is just

the opposite effect to the fundamental goal of BDE techniques. The noise visibility can be kept

under control by setting the noise amplitude below thresholds predicted by spatio-temporal

contrast sensitivity function (CSF). Also, the spectral density noise characteristics can be

effectively pushed to higher, less perceptible spatial, and temporal frequencies. Another factor

that should be considered in evaluation of noise visibility is increasing the eye sensitivity to

contrast for modern display devices due to much brighter images with respect to CRT devices.

Li et al. [59] propose a wavelet multiband technique for the compression of an high

bit-depth image into an low bit-depth image and then the expansion of its dynamic range back

(the so-called compander). The information loss is reduced by amplifying (pre-distorting) low

amplitudes and high frequencies at the compression stage, so that they survive the quantization

step to the 8-bit LDR image. Since the bit-depth expansion is a fully symmetric inverted process,

the amplified signals are suppressed back to their initial level in the companded high bit-depth

image. The authors observe that their compander leads to a good quality reconstruction of HDR

images based just on 8-bit LDR images, whose visual quality is also acceptable. However, it

seems that this technique has more potential for HDR image compression rather than pure

bit-depth expansion. We discuss the compression aspect of this technique in more detail in

Section 5.4.2.

When higher bit-depth information is no longer available, which is often the case for

legacy content, low-amplitude details cannot be reconstructed, and post-processing is focused

on removing false contours [93, 95]. Adaptive filtering relies on smoothing contouring artifacts

without introducing excessive blur to an image. For example bilateral filtering can be used for

this purpose by removing from the image information of high frequency and low amplitude.

This can be achieved by setting the intensity domain parameters of Gaussian filter tuned to

expected contouring contrast and limiting the spatial Gaussian filter support to few neighboring

pixels. Coring techniques are essentially based on the same principle, but offer more control

over high-frequency details filtering through multiband image representation [96]. Filtering is

applied only to a couple of high-frequency bands and its strength smoothly decreases towards

lower frequency bands. In adaptive filtering and coring methods details of low amplitude and

high frequency may be lost, which may affect the visual image quality. For example, excessive

smoothing of the human skin texture may lead to its unnatural plastic appearance, which is

highly undesirable effect for any commercial broadcasting and display system.

In predictive cancelation, the idea is to estimate the quantization error based on input

low bit-depth image and compensating for this error prior to the image display. To achieve

this goal, the low bit-depth image P undergoes low-pass filtering, which results in low-spatial

frequency image L whose pixels have higher precision than in P due to averaging (refer to

Fig. 8.1). Of course, this precision gain in L is obtained only for slowly changing signals, at
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FIGURE 8.1: Predictive cancelation flowchart. Thick lines denote a higher-bit precision in the image

representation. The de-contoured image P is submitted to a display device.

expense of original spatial resolution at P . Now, when the quantization operator Q with the

same bit-depth accuracy as in P is applied to L, the difference E =Q(L) − L approximates the

quantization error inherent for P , but only for low spatial frequencies. Then, by subtracting the

error E from P the most objectionable contouring due to slowly changing image gradients is

removed. At the same time, potential contouring at higher spatial frequencies remains intact,

but here the eye sensitivity to contrast is lower as predicted by the CSF. Also, in the high contrast

image regions with significant high spatial frequency content (e.g., some texture patterns) visual

masking can further help in hiding contouring artifacts.

Recently, Bhagavathy et al. [95] have proposed a multi-scale probabilistic dithering

method, which comprises two main steps. At first, a multi-scale analysis on the neighborhood

of each pixel determines the likelihood of banding for this pixel. A pixel is assumed to be a part

of banding artifact, when the likelihood of banding is larger than a predefined threshold value at

least one scale. Then banding reduction is performed for such a pixel by computing a local mean

(floating-point) intensity in the pixel neighborhood, which is then probabilistically dithered

and quantized as required for the new bit depth. The proposed method is less dependent

on the proximity between adjacent false contours than methods relying on smoothing filters

with predefined support such as predictive cancelation. On the other hand, the proposed

method is sensitive on the preset threshold of banding likelihood, which is used to detect pixels

contributing to banding artifacts.

All discussed BDE and decontouring techniques are optimized for much lower bit-depth

expansion than required to accommodate HDR image and video content, so their adaptation

to the LDR2HDR problem is an open research question. An exception is the compander

technique, which has been successfully applied for dynamic range compression and expansion,

but only in the context of static HDR images. Also, this method requires the HDR reference

and strongly enhances low-contrast information in the compressed image, which may not

be acceptable in some applications for which the fidelity of compressed image appearance
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is important. The decontouring techniques may have some potential for contrast boosting

techniques described in the following section in particular for lower quality and low bit-depth

legacy video and images.

8.2 REVERSING TONE-MAPPING CURVE
For high quality LDR images with a small amount of under- and over-exposed pixels, which

do not contain visible quantization and compression artifacts, deriving inverse tone-mapping

function, then transforming all pixel values using this function, and finally contrast expansion

seems to be an easiest recipe to reconstruct the corresponding HDR images. A number of

solutions presented in the literature adopted such a procedure [97, 98, 99, 100], and they differ

mostly in the precision of inverse tone-mapping function derivation and the actual contrast

expansion approach.

Akyüz et. al. [97] conducted a psychophysical study on an HDR display, in which they

ranked the general preference for high quality HDR images and the corresponding LDR images

with linearly/nonlinearly scaled contrast and brightness to fully exploit the dynamic range of

an HDR display. Each source LDR image, which has been submitted for such scaling, has

been selected as the best-exposed image from the pool of images merged through a multi-

exposure technique into the corresponding high-quality HDR image. It turned out that the

subjects similarly ranked the LDR images with linear contrast scaling as the corresponding

HDR images. This may suggest that for a good quality LDR image simple contrast boosting

may be sufficient for many scenes.

In another psychophysical study, Meylan et al. [98, 101] confirmed this observation

for scenes featuring lower dynamic range. However, they argued that just a linear rescaling

of images that are tone mapped for standard displays may lead to too bright images when

displayed on an HDR display. They found that usually better results can be obtained by

taking into account the actual image content and by diversifying contrast boosting for diffuse

regions and highlights. In their inverse tone-mapping algorithm, they segment the diffuse and

highlights image parts, which are then independently rendered with two different linear scaling

functions r1 and r2. This way the lower part of display dynamic range is used to render the

scene and the remaining part is allocated for visualization of highlights and light sources (refer

to Fig. 8.2). The splitting point between these parts is decided based on the maximum diffuse

white Win in the input LDR image and assigned to this point display luminance value Wout.

Parameter Wout should be adjusted on the basis of the image content to control the overall image

brightness impression and can be a function of the size of highlight regions. In [98] Meylan

et al. describe a psychophysical experiment in which they investigate the subject preference for

various Wout choices. They found that for outdoor scenes the subjects preferred to allocate a

rather small part of the dynamic range to specular highlights to achieve overall brighter image
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FIGURE 8.2: Display dynamic range allocation between diffuse and specular image parts. Win refers

to the maximum diffuse white in the input LDR image and Wout denotes the corresponding intensity

in the output dynamic range enhanced image. Figure courtesy of Laurence Meylan of General Electric,

Scott Daly of Sharp Laboratories of America, and Sabine Süsstrunk of Ecole Polytechnique Fédérale de

Lausanne (EPFL). Reprinted from [102] with permission from SPIE.

appearance. For indoor scenes, better visual results were obtained when more dynamic range

was allocated for highlights. Also, the percentage of specular pixels can be important (e.g., the

sun reflecting in the water surface), in which case the subjects prefer dimmer images. In all

tested cases boosting brightness of specular highlights led to more natural impression, which

indicates that content-dependent inverse tone mapping may be favorable (refer to Fig. 8.3).

In the follow-up paper Meylan et al. [102] investigate an automatic algorithm for high-

light detection and determination of the maximum diffuse white Win. They observe that the

highlight regions contain more high spatial frequency content than diffuse image parts due to

quick changes in the surface shading. They proposed a set of low-pass filters combined with

morphological operations, which can automatically detect highlights (refer to Fig. 8.4). The

Gilchrist theory of lightness perception [71] may provide some insight toward an automatic

selection of Win and Wout parameters. This theory relies on the notion of the reference white

point, which is conceptually similar to the concept of Win. The Gilchrist theory has already

been employed for tone mapping [14], which is also based on linear contrast scaling within

segmented image regions (frameworks) with clearly different luminance levels.

Banterle et al. [99] investigate nonlinear contrast scaling by inverting simple tone-

mapping operators based on exponential and sigmoid functions. Visually the most compelling

results have been obtained by inverting the photographic tone-mapping operator [65]. The
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FIGURE 8.3: The view of an image with enhanced dynamic range as it would appear on an HDR display

is simulated. The dynamic range has been enhanced using linear scaling (left) and the approach proposed

in [98] with Wout = 67% (right). Because of dynamic range limitation on print only the appearance of

the diffuse image part is simulated and the highlights can be properly seen only on an HDR display. The

original image appearance as tone mapped for reproduction on an LDR display can be seen in Fig. 8.4.

Note that the linear scaling may lead to overall too bright image appearance. Images courtesy of Laurence

Meylan of General Electric, Scott Daly of Sharp Laboratories of America, and Sabine Süsstrunk of Ecole

Polytechnique Fédérale de Lausanne (EPFL). Reprinted from [102] with permission from SPIE.

authors observed that when using this approach, they cannot expand the dynamic range to

arbitrarily high values due to quantization errors manifesting in contouring artifacts in par-

ticular in bright image regions, in which the sigmoid function strongly compresses contrast.

(The authors do not report any problem with saturated dark pixels.) To address the contouring

problem they create an interpolation map, which is used to smooth shading of pixels that belong

to the high luminance areas (refer to Fig. 8.5). The interpolation map is built in two steps.

At first importance sampling over the pixel intensity distribution in the input LDR image is

performed to find a set of virtual light sources that energy-wise represent the whole image and

are concentrated mostly in high luminance regions (Fig. 8.5(center)). In the second step, density

estimation over these light sources is performed for every pixel to obtain a smooth interpolation

map (Fig. 8.5(right)). The interpolation map is finally used to blend between the original LDR

image and the range-expanded image obtained though the sigmoid function inversion.

The authors validate their approach by comparing the reference HDR images against

their range-expanded counterparts using the HDR VDP (refer to Section 4.2). A vast majority

of perceivable differences reported by the metric come from the highlight and light source

regions in which the luminance values of reconstructed pixels are selected in an ad hoc manner

(refer to Fig. 8.6). This is a general problem for all discussed so far methods that focus on

enhancing contrast and suppressing contouring artifacts, but do not pay much attention to

clipped pixels both in dark and light image regions. In Section 8.4, we discuss solutions aimed

at this problem.
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FIGURE 8.4: Highlight and light source detection in LDR images using a segmentation algorithm as

proposed in [102]. The detected highlight and self-luminous objects are marked in red. Images courtesy

of Laurence Meylan of General Electric, Scott Daly of Sharp Laboratories of America, and Sabine

Süsstrunk of Ecole Polytechnique Fédérale de Lausanne (EPFL). Reprinted from [102] with permission

from SPIE.

In all LDR2HDR techniques discussed in this section, the goal of applying inverted

tone mapping was to obtain visually plausible results. These methods do not give any insight

what are the actual scene radiance values, which can be considered as an ultimate goal of any

solid-grounded LDR2HDR reconstruction. In the following section we discuss techniques

aiming at this goal.

8.3 SINGLE IMAGE-BASED CAMERA RESPONSE
APPROXIMATION

The camera response function relates the scene luminance values to image pixel intensities

captured in an image. Thus, if the inverse camera response function is known, the scene radiance

map can easily be reconstructed. The problem of recovering the camera response function

based on multiple, differently exposed images of the same mostly static scene is relatively

well researched (refer to Section 3.2). A challenging question arises how to reconstruct the

response function based on a single image without any knowledge of camera used for capturing,
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FIGURE 8.5: Interpolation map construction. Tone-mapped image (left) is importance sampled to

a set of virtual light sources (center), which through density estimation process is converted in to the

final interpolation map (right). Images created by Francesco Banterle. Copyright: Warwick Digital

Laboratory, University of Warwick.

exposition parameters, and the captured scene characteristic? This is a typical situation for

legacy images and video.

The camera response function should compensate for camera optic imperfections and

sensor response nonlinearity, as well as image enhancement and tone mapping intentionally

performed by camera firmware altogether. In many practical applications, the camera response

function is often approximated by a simple gamma correction curve in which case some standard

gamma value, e.g., 2.2 is usually assumed. Farid [103] proposes a more principled approach

in which the gamma value can be blindly estimated in the absence of any camera calibration

information based on the single image (the so-called blind inverse gamma correction). It turns

out that gamma correction introduces to the image several new harmonics whose frequencies

are correlated to the original harmonics in the image. There is also a strong dependence between

the amplitudes of the original and newly created harmonics.

It can be shown that such higher order correlations in the frequency domain monotonically

increase with increasing nonlinearity of gamma correction. Tools from the polyspectral analysis

can be used to detect such correlations, and by searching for the inverse gamma, which minimizes

such correlations, the actual gamma correction originally applied to the image can be found.

In practice, the gamma function is only a crude approximation of the camera response

and by applying a simple inverse gamma correction to an image the accuracy of reconstructed
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FIGURE 8.6: Radiance maps for the original HDR image (left) and its LDR image-based reconstruc-

tion (center). Pseudo-color encoding is used to depict radiance values with blue, green, and red roughly

corresponding to 10, 100, and 700 cd/m2. HDR VDP is used to predict perceivable differences (right)

between the radiance maps shown in (left) and (center). In the perceivable difference map (right) red

color denotes pixels for which the difference is over 1 just noticeable difference (JND) unit. Images

created by Francesco Banterle. Copyright: Warwick Digital Laboratory, University of Warwick.

radiance map can be affected. Lin et al. [104] show that for a single LDR image the camera

response curve can be more precisely reconstructed based on the distribution of color pixels in

the proximity of object edges. The most reliable information for such reconstruction is provided

by edges separating the scene regions of uniformly distributed and significantly different color

(radiance values) R1 and R2 (refer to Fig. 8.7(a)). For a digitized image of the scene using

a camera featuring the linear response, the color Ip of pixel representing precisely the edge

location should be then a linear combination I1 and I2 (refer to Fig. 8.7(b)). The partial

coverage of pixel area by each of the two regions decides about the contribution of I1 and I2

values into the pixel color Ip . However, due to the nonlinearity in the camera response the actual

measured color Mp may be significantly different from such a linear combination of measured

colors M1 and M2 (refer to Fig. 8.7(c)), which correspond to I1 and I2. By identifying a number

of such 〈 M1, M2, MP 〉 triples and based on the prior knowledge of typical real-world camera

responses a Bayesian framework can be used to estimate the camera response function. By

applying inverse of this function to each triple 〈 M1, M2, MP 〉, the corresponding 〈 I1, I2, IP 〉

should be obtained such that Ip should be a linear combination of I1 and I2. Applying such

inverse response function to all image pixels results in reconstruction of the scene radiance map.
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FIGURE 8.7: Color distortions in edge regions due to nonlinearity in the camera response. (a) Two

regions in the scene, which are separated by an object edge, feature distinct spectral radiance R1 and R2

values. (b) Hypothetical linear image sensor maps R1 and R2 values into I1 and I2 values in the RGB

color space. Due to the scene radiance digitization by the sensor, the color of each pixel on the edge is a

linear combination of I1 and I2 with weights proportional to the covered area on the left and right sides of

the edge. (c) A nonlinear camera response f warps these colors resulting in their nonlinear distribution.

Redrawn from [104].

The authors observe that their method leads to a good accuracy in reconstruction the radiance

map. The best accuracy is achieved when the selected edge color 〈 M1, M2, MP 〉 triples cover a

broader range of brightness values for each color channel. The method may not be very accurate

for images that exhibit a limited range of colors. By using 〈 M1, M2, MP 〉 triples from additional

images captured with the same camera, the accuracy of the camera response reconstruction can

be further improved. Obviously, the radiance information in saturated image regions cannot be

recovered, and we address this problem in the following section.

8.4 RECOVERING CLIPPED PIXELS
Another problem with legacy images are image regions completely saturated due to intensity

clipping of brightest and darkest images regions. The problem of lost information reconstruction

is clearly under-constrained with a number of possible solutions that lead to the same appearance

of an LDR image. Since under- and over-exposed image regions may contain only sparse

information, learning approaches that rely on finding correspondences in a predefined database

of LDR and HDR image pairs seems to be a very difficult task. The most promising results have

been obtained so far using inpainting and texture synthesis techniques specialized in repairing

damaged images or removing unwanted objects.



book MOCL004.cls July 22, 2008 18:46

LDR2HDR: RECOVERING DYNAMIC RANGE IN LEGACY CONTENT 111

It can be observed that many LDR images, which are difficult cases for tone-mapping

inversion approaches, may contain similar textures whose details remain intact in some

image regions while they are clipped in very dark or bright image regions. Wang et al. [105]

investigate texture transferring from such well-exposed regions by drawing from the texture

synthesis literature. The authors call their approach HDR hallucination. The texture transfer

in the LDR2HDR setting is actually more complex due to diversity of lighting conditions,

which is usually not the case for traditional texture synthesis. To simplify this problem, the au-

thors employ bilateral filtering to decompose inverse-gamma corrected LDR image (a roughly

reconstructed radiance map of the scene) into a low-frequency illumination component and

a high-frequency texture component [68]. Then saturated illumination component is recon-

structed via interpolation from a linear combination of elliptical Gaussian kernels, which are

fitted to non-saturated pixels around the over-exposed region. If needed, the fitted illumination

function can be further manually adjusted. The high-frequency texture component is recon-

structed via constrained texture synthesis [106] based on the source texture and destination

location, which are manually indicated by the user. To correct for perspective shortening or

properly align texture structure or semantic information the user draws a pair of strokes in

the source texture and destination image region, and then the source texture is automatically

warped to the required size and orientation. Poisson editing is performed [107] to smooth out

transitions between the synthesized textures and the original image. Overall the proposed tech-

nique works remarkably well and its failure cases are mostly related to the lack of appropriate

source textures in the image to be transferred. In such a case, another image can also be used to

successfully transfer originally missing texture.

8.5 HANDLING VIDEO ON-THE-FLY
Rempel et al. [100] proposed on-the-fly solution to handle legacy video, which combines

altogether all important elements of LDR2HDR processing such as reverse tone mapping, de-

contouring, contrast enhancement, and separate handling of highlight and light source regions.

All these elements have been discussed in Sections 8.1–8.4, but in the proposed solution the

emphasis is on its robustness (should not produce disturbing artifacts), automatic operation for

preset parameters based on the HDR display characteristics, high computational performance

and good temporal coherence of employed image processing algorithms.

Figure 8.8 shows the algorithm overview. At first an input LDR image is transformed

from the ready-to-display, perceptually uniform, nonlinear representation (luma) to a linear

space, which approximates luminance in the original space. For this purpose simple inverse

gamma operation is performed and a gamma curve of 2.2 is used, which is standard in video



book MOCL004.cls July 22, 2008 18:46

112 HDR VIDEO

FIGURE 8.8: Overview of LDR2HDR processing. Image courtesy of Allan Rempel et al. [100].

© 2007 ACM, Inc. Used by permission.

and television formats. In the next step, contrast is stretched by simple mapping of linearized

pixel values to absolute luminance values reproduced by the target HDR display. The authors

limit contrast stretching to up to 5000:1, which always leads to improved image quality without

causing artifacts that may arise for some images. Of course, even higher contrast stretching

could lead to visually better results for some images, but the algorithm robustness and automatic

operation requirements justify this hard limit on the maximum contrast. The contrast stretching

may magnify noise and compression artifacts as well as may lead to visible contouring artifacts

(refer to Section 8.1) in particular for poorer quality footage. In this case optionally bilateral

filtering is performed, which is tuned to the possible artifact level while preventing blurring

image features. Since filtering is performed in the perceptually non-uniform luminance domain

the variance of the photometric Gaussian factor in the filter is adjusted for each luminance level

to the quantization thresholds.

As found in [82, 81] to achieve good appearance of HDR images both luminance and

brightness should be simultaneously increased. For this reason, in the next processing step,

as shown in Fig. 8.8, smooth brightness enhancement is performed in the neighborhood of

saturated image regions. At first such bright regions are identified by simple thresholding of

pixels with RGB values over 230 (for video) and 254 (for photographs) in at least one color

channel. The resulting bright pixel mask is strongly blurred with a filter, whose parameters

are tuned to remove most of energy with spatial frequencies higher than 0.5 cpd from the

mask signal (Fig. 8.9(upper-right) shows an example of brightness enhancement mask in red).

For the remaining low spatial frequencies, the human eye is not very sensitive as predicted by

the contrast sensitivity function (CSF), which effectively means that such smooth brightness

enhancement proportional to the intensity of pixels in the mask should not introduce visible

artifacts. An edge-stopping function is introduced to the blurred mask to prevent brightness

enhancement in neighboring darker regions which are separated from the bright pixels by

strong edges. An efficient implementation of mask blurring and edge-stopping filters are

achieved using Gaussian image pyramids. Figure 8.9 shows the results obtained using this

method.
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FIGURE 8.9: On-the-fly video LDR2HDR processing: (upper-left) input LDR image, (upper-right)

brightness enhancement mask, (lower-left) two virtual exposures of the reconstructed HDR image

featuring contrast 9300:1, and (lower-right) the same HDR image shown on a Brightside DR37-P

HDR display partially covered by a 10% neutral density filter to demonstrate details in bright image

regions. Images courtesy of Allan Rempel et al. [100]. © 2007 ACM, Inc. Used by permission.

8.6 EXPLOITING IMAGE CAPTURING ARTIFACTS FOR
UPGRADING DYNAMIC RANGE

Scattering of light inside the lens is very apparent in the capture of high dynamic range images,

defining a limit to the dynamic range that can be captured with a camera [108]. Such scattering

can be modeled with point spread functions (PSF) and removed using deconvolution [109].

However, precise estimation of the PSF is not trivial especially that its shape is non-uniform

across the image. Deconvolution may also lead to high quantization noise in strongly veiled

image regions, due to insufficient precision of real scene information. Recently, Talvala et al.

[110] have demonstrated that by placing a structured occlusion mask between the scene and

the camera, direct and indirect (scattered) light falling on the camera sensor can be separated.

For a given position of the mask, the sensor elements, which are occluded by the mask, are

illuminated by only scattered light. By jittering the mask position and capturing HDR images

for each such position the amount of scattered light can be estimated for each pixel and then

removed from the final HDR image. A practical problem with this technique is that the scene

must be static, and the mask must be placed near the scene in order to be in camera focus so

that its contribution to the intensity of non-occluded by the mask pixels is reduced.
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8.7 CONCLUSIONS
As we discussed in Chapter 7 in coming years rapid development of HDR display technology

can be anticipated. The process of standardization for lossy HDR image and video formats

is just initiated (refer to Chapter 5), however, a number of years will be required before

standards accepted by the industry will emerge. For this reason, the problem of legacy content

enhancement is so urgent. In this respect, robust on-the-fly solutions as presented in Section 8.5

are of particular importance, since they can be embedded in the new generation of displays

and tuned to obtain the best performance for a given display type. This solution enables

to enjoy HDR content without waiting for painful format standardization and broadcasting

HDR-enabled video signal. However, such dynamic range enhancement is ill-posed problem in

which precise reconstruction of original HDR content is difficult and often not possible. For this

reason, the development of algorithms enabling blind reconstruction of tone mapping will be

important research topic in coming years. Also, robust detection of highlights and light sources

in the original LDR footage and then restoration of missing information in saturated image

regions is another challenge. In professional applications off-line dynamic range restoration,

perhaps involving the user interaction for selected frames, and then propagation of restored

information for the remaining frames, can be envisioned. In this chapter, we did not discuss

the problem of color gamut enhancement, which will be important with constantly improving

display technologies enabling wider gamuts, and thus enabling more saturated and vivid colors.
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C H A P T E R 9

HDRI in Computer Graphics

Recent developments in computer graphics and HDR imaging demonstrate strong mutual

dependence. Computer graphics is a continuous source of an HDR image and video content.

Synthetized HDR images are a natural outcome of more engineering oriented aspects of

computer graphics such as physically-based image rendering, but recently also entertainment

applications such as cinematography and computer games greatly benefit from more precise

HDR pixel representations. On the other hand, the HDR images and video captured in the

real-world are a precious source of the input data for image-based rendering and modeling in

graphics. In this chapter, we discuss these important aspects of convergence between graphics

and HDR imaging. To be aligned with the main topic of this book, whenever possible we

focus on HDR video applications, but in some cases only static HDR images have been used so

far. It can be envisioned that with quickly progressing HDR video cameras technology, image

sequences will effectively replace static images in many of the discussed here applications.

9.1 COMPUTER GRAPHICS AS THE SOURCE OF
HDR IMAGES AND VIDEO

At present, multi-exposure techniques and specialized HDR cameras are the main source

of HDR images and video (refer to Chapter 3). While the multi-exposure techniques have

been invented and applied first for the traditional film technology [12, 111], they gained real

popularity when digital cameras with manually controlled exposures have been available. The

development of full-fledged HDR cameras is just a matter of recent years. However, historically

the first HDR images resembling photographs have been obtained in lighting engineering and

realistic rendering communities. While these two communities have been working mostly

independently aiming at different goals, they have had common interests in physically-based

lighting simulation. Such simulation was always important in lighting engineering, but often

limited to the estimation of numerical values of illumination at selected points in the designed

environments, e.g., workspace. The progress made in the meantime in graphics had a significant

impact on lighting engineers and designers, who showed more and more interest in realistic

image synthesis as well. In particular, the work of Greg Ward and his publicly available
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RADIANCE system [112, 113] popularized image synthesis in the lighting community. In

computer graphics, image synthesis has always been one of the major goals, but just in the mid-

eighties researchers started to combine realistic image synthesis with physically-based lighting

simulation [114, 115, 116]. The first inspiration on how to deal with this problem came to

graphics from the heat transfer literature (mostly finite element methods [117]) and lighting

engineering (also Monte Carlo methods [118, 119]).

Physically-based lighting simulation required valid input data expressed in radiometric

or photometric units. It was relatively easy to acquire such data describing light sources, be-

cause high-profile manufacturers of lighting equipment measured, and often made available

directional emissive characteristics of their luminaires (the so-called goniometric diagrams).

It was far more difficult to obtain valid reflectance characteristics of materials (the so-called

bi-directional reflectance distribution function—BRDF). However, the assumption of Lam-

bertian (perfectly diffuse) reflectance model has been predominant at early days of lighting

engineering and realistic graphics, which greatly simplified the computation. It was relatively

easy to estimate the surface albedo (a single scalar value), which fully characterizes the re-

flectance for Lambertian surfaces. In the nineties, lighting simulation methods progressed to

handle more general environments efficiently, and more advanced BRDFs have been measured

(refer to Section 9.2.2) or expressed using physically-valid analytical models.

Physically-based lighting simulation with the use of physically-valid data, which describe

the rendered scenes, resulted in a good approximation of illumination distribution with respect

to the corresponding real-world environments. Also, pixels in rendered images were naturally

expressed in terms of radiance or luminance values, which is the distinct characteristic of

HDR images. To store such images efficiently first compact HDR image formats have been

developed, such as the RGBE format (refer to Section 5.1.2) proposed by Ward as a part of

his RADIANCE package [49]. Also, early tone-mapping techniques appeared to enable image

display on devices with a limited dynamic range [120,121,122]. Figure 9.1(left) shows a typical

example of realistic image rendered using Monte Carlo methods. Figure 9.1(right) shows the

corresponding HDR image that was captured in the actual real-world scene.

While realistic rendering software is a source of HDR images and video for almost

two decades, recently available graphics processing units (GPU) and major game consoles

upgraded their rendering pipelines to the floating point precision, which effectively enabled

HDR image rendering. Thus, in the years to come computer games and other real-time

applications running on these platforms will be an important source of HDR image sequences.

In the simplest case, such HDR-enabled platforms could be directly connected to an HDR

display offering even more immersive game experience. In fact, due to lack of standardization

such a direct connection, could require some engineering efforts to accommodate specific signal

requirements e.g., Brightside DR37-P requires special steering of an LED array in its backlit
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FIGURE 9.1: Atrium of the University of Aizu: (left) rendered image, and (right) HDR photo-

graph. Accompanying web page http://www.mpi-inf.mpg.de/resources/atrium/ provides with

the complete data set required to render this image. Also, the results of lighting simulation have been

compared to the measurement data in the actual scene.

device [2]. This problem has been successfully solved by Ghosh et al. [123], who additionally

enhanced the immersive game experience by adding surround lighting that can be seen be in

the user’s peripheral field of view. However, even without having the access to an HDR display,

computer games benefit greatly from many HDR visual effects which are difficult to model

convincingly using LDR game pipelines:

r Glare (dazzling) effects around strong lights and bright highlights, which are modeled

using an image-processing approach by applying a pyramid of carefully tuned low-pass

filters with different spatial support to every bright pixel. The filter pyramid effectively

spreads bright pixel intensity in the neighborhood causing characteristic blooming

pattern, which reduces contrast and thus detail visibility in the proximity of bright

image regions. An alternative, cheaper, but less general way of glare modeling is to

impose sprites (pre-computed bit maps with the bloom pattern) around strong light

sources (light reflections are more difficult to handle). The sprites apart from the
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FIGURE 9.2: Real-time GPU rendering with HDR effects. (left) Realistic reflection with Fresnel’s

effects on the surface of the white plastic ball. Visually correct motion blur, depth of field, and glare effects.

(right) Interesting volumetric refraction and reflection effects inside the foggy box. All computation

performed for HDR pixel intensities. Real-time tone mapping applied prior to the image display.

Images courtesy of Ivo Ihrke, Gernot Ziegler, Art Tevs, Christian Theobalt, Hans-Peter Seidel of MPI

Informatik and Marcus Magnor of Technische Universität Braunschweig.

blooming appearance can add camera-triggered effects such light streaks (stars) caused

by diffraction over the diaphragm blades and ghosts caused by internal reflection in the

multiple-lens optical system. The sprites are feasible only for a small number of bright,

regularly shaped, and small light sources such as the sun, car headlights, lamps, and so

on.

r Exposure control with dark and light adaptation using a tone-mapping technique for

dynamic sequences.

r Depth-of-field effect with the shape of aperture stop.

r Motion blur performed for HDR pixels to avoid intensity clamping typical for LDR

approaches.

r Bright reflections (refractions) of strong light sources (e.g., the sun) in the surfaces of

low reflectance (transmission), which cannot be reproduced in the LDR setting due to

light intensity clamping.

Figure 9.2 presents some of discussed effects as rendered on a modern GPU with real-time

performance. In game applications, the main goal of modeling these effects is to improve the

visual attractiveness and believability of images, while their physical correctness is of secondary

importance. Some of the discussed effects such as glare are presented in the computer graphic

literature as an integral part of widely understood tone mapping (refer to Chapter 6).
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9.2 HDR IMAGES AND VIDEO AS THE INPUT DATA FOR
COMPUTER GRAPHICS

Machine vision and computer graphics are rapidly converging disciplines. Image-based render-

ing is a prominent example of such convergence, where computer graphics techniques enable

changes in the scene viewpoint, lighting conditions, object appearance, or even image content.

When video is used as an input, all these modifications can be performed in temporal domain,

and additionally kinematics and dynamics can be manipulated. Image-based rendering still

outperforms traditional 3D rendering in terms of achieved realism, and obviously acquiring

images is much easier than building scene model using standard 3D graphics tools. Vision and

graphics coupling is even more obvious in augmented reality applications in which real-world

images and video must be seamlessly mixed with rendered objects. Finally, image-based model-

ing can be used for efficient acquisition of data required in graphics such as 3D scene geometry

or material reflectance characteristics.

HDRI technology has great potential in all discussed image-based techniques used in

graphics, because it is less sensitive under extreme lighting conditions. This means that virtually

all pixels convey potentially useful information, while using traditional cameras such information

can be lost in under- and over-exposed image regions. The HDR camera has also great potential

as a radiometrically (photometrically) correct measurement device (refer to Section 3.2), which

in single image provides millions of independent measurements acquired at once for all pixels.

Such physical correctness is required in particular in realistic image synthesis, which is one of the

mainstream applications in 3D graphics. In the following sections, we present applications of

HDR imaging for acquisition of scene lighting and surface reflectance, which greatly contribute

to the final appearance of rendered objects.

9.2.1 HDR Video-Based Lighting
Traditionally, in realistic 3D image synthesis lighting is modeled by specifying a certain num-

ber of directional, point, or area (usually rectangular or circular shape is assumed) light sources

distributed in the scene. In physically-based rendering, the computation of interreflection is ad-

ditionally performed to account for indirect lighting illuminating the scene. In cinematography

more control over lighting distribution may be required for artistic reasons, and indirect light-

ing is often replaced by inserting into the scene a huge number of individually-controlled local

lights. Another important reason for such a non-physical approach is huge costs to compute

the interreflection given the complexity of scenes in modern computer-generated movies. Only

recently one bounce of indirect lighting has been used in high profile productions like Shrek

2. Game industry relies mostly on direct lighting and lack of interreflection compensates using

ambient lighting, which in more advanced cases may be modulated based on purely geometrical
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FIGURE 9.3: Realistic rendering of the dragon model with measured bi-directional texture function

(BTF) of leather [124]. Captured real-world lighting, which is visible at background, is used to illuminate

the model. Image courtesy of Gero Müller, Ralf Sarlette, and Reinhard Klein of the University of Bonn.

visibility considerations (the so-called ambient occlusion technique). However, in all discussed

cases resulting images have usually a synthetic look, which can be easily distinguished from

photographs. The exception are cinematographic applications in which more realistic effects

are achieved through time consuming tweaking of local lighting parameters.

Much better realism can be achieved when a synthetic 3D scene model is illuminated

by camera-captured real-world lighting (refer to Fig. 9.3). The technique is called image-based

lighting (IBL), and the problem of costly interreflection computation is less-pronounced for

this technique since images capture both direct and indirect lighting simultaneously. The only

problem is to account for interreflection between the illuminated object and the scene, but

this is often negligible, e.g., in the game scenario moving characters usually do not contribute

much into indirect lighting of the whole scene. However, what makes the IBL so compelling

comes from the side of human visual system (HVS), which is strongly adapted to real-world

lighting conditions and makes many implicit assumptions about statistical regularities in such

a lighting [125]. The geometrical structure and other statistics of real-world lights are often

needed to disambiguate information about surrounding objects. Note that the same amount of

light may fall onto the human eye retina when reflected from strongly illuminated surfaces that

are poor reflectors and identically-shaped surfaces that are good light reflectors located in a dim

environment. The human visual system can easily distinguish both situations by discounting

the illuminants, which computationally is an ill-posed problem of lightness determination
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that requires some assumptions about the scene lighting to be solved [126, 127]. Through

psychophysical experiments with computer-generated images, Fleming et al. [125] have shown

that the human observer ability to notice even subtle differences in the material appearance

(surface reflectance characteristics) is much better under real-world lighting conditions than

commonly used point light sources. Realistic lighting improves also the ability to discriminate

between rendered objects, whose shape is only slightly different [128]. This observation has

strong implications in the industrial design practices, and for example images of new car models

used for advertisement purposes are predominantly rendered as illuminated by captured real-

world lighting (e.g., using the SpheroCam HDR camera [129]). On the other hand, the HVS

sensitivity to the differences in reflectance properties strongly depends on the object shape [130].

Clearly, real-world lighting is desirable in many engineering applications and would

improve the believability of virtual reality systems notoriously lacking realism in rendering.

Real-world lighting is indispensable in many mixed reality applications, in which virtual objects

should be seamlessly merged with a real-world scene [131].

Traditionally, real-world lighting is captured into the environment map (EM), which

represents distant illumination incoming to a point from thousands or even millions of di-

rections that are distributed over a sphere (hemisphere). HDR technology is required for the

environment map acquisition to accommodate high contrasts in the real-world lighting. Under

static conditions low dynamic range cameras and a multi-exposure technique can be used to

capture two HDR images, which fully cover a spherically-shaped mirror light probe [12]. For

dynamic light capture an HDR video camera with a fish-eye lens is the best solution to obtain

hemispherical environment map, which we call the video environment maps (VEM). Existing

multi-exposure techniques for video are limited just to two exposures [15], which may not offer

sufficient dynamic range for robust capturing of high contrast lighting.

An important question concerning visually tolerable distortions in captured HDR EM

and VEM arises due to the limitations in camera resolution and geometry distortions introduced

by a fish eye lens. Ramanarayanan et al. [132] conducted a psychophysical study in which they

investigated the impact of these two factors on the visual equivalence in object material and

shape perception. It turned out that even significant amount of blur in EM lighting still

leads to visually equivalent images, in particular for less glossy objects, which act as low-pass

filters for reflected lighting [133]. Lighting geometry distortions may be more objectionable,

which means that stronger warps of environment maps can be wrongly interpreted as change

in the object shape. In this case, the HVS would expect that perceivable distortions in the

EM reflection come rather from imperfections in the object surface than deformed shapes

of light sources, which is less likely scenario in the real-world environments. However, these

problems are negligible for lens distortions and image resolutions offered by existing HDR video

cameras.
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Two rendering techniques: precomputed radiance transfer (PRT) and environment map

importance sampling are prevailing solutions in interactive rendering with EM lighting. Both

techniques naturally support rotations of EM and can easily be extended to handle VEM. We

briefly characterize these techniques and then we focus on their successful applications with

the use of VEM. For more general discussion of IBL techniques, which concerns mostly static

lighting, please refer to an excellent survey in [6] Chapter 9.

Video Environment Maps in Precomputed Radiance Transfer

Interactive rendering of realistic objects illuminated by large light sources is a difficult prob-

lem, in particular, if such light transport effects as shadows, interreflections, and sub-surface

scattering are taken into account. For scenes that are illuminated by the EM the most costly

computation comes from testing visibility and integrating incoming lighting over all hemi-

spherical directions (spherical for non-opaque objects). PRT techniques relegate these costly

computation to preprocessing, which dramatically reduces the computation load at the render-

ing stage [134].

Essentially PRT computes the illumination of each point in the scene (often mesh vertices

are only considered) as a linear combination of incident lighting, which may come from all

directions over the sphere, but at the same time it is assumed that light source (environment

map) is far away from the scene. A direct consequence of this assumption is that for all non-

occluded points in the scene, the same incident lighting always comes from a given direction,

which greatly simplifies the computation and bookkeeping of incident lighting. This is also

a realistic assumption for outdoor scenes illuminated by sky lighting, but may fail for some

indoor scenes with spatially varying direct lighting (at the end of this section we discuss how to

overcome this limitation).

To encode incoming lighting an efficient spherical basis function such as spherical har-

monics (SH) is commonly used in PRT techniques. The SH basis has a very powerful property:

The integral over a product of two spherical functions reduces to the dot product of the SH

coefficients of these two functions. Let us recall that the global illumination problem is es-

sentially equivalent to the solution of such an integral, but for the product of three functions:

reflectance (BRDF), visibility, and incoming lighting [135]. For this reason, the reflectance

(for Lambertian surfaces just a scalar value) and visibility information is usually concatenated

into a single function called the transfer function. The transfer function encapsulates the whole

light transport information from the directional light sources (represented by pixels in the EM)

to each point in the scene, and it is computed at the pre-processing stage and stored as SH

coefficients. The transfer function includes the direct EM visibility/occlusion information for

each point in the scene, as well as directional visibility and energy attenuation information for

indirect light transport. The lighting function is projected on the SH basis functions on-the-fly
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for each VEM frame, which enables dynamic lighting simulation. Such a projection is very fast

and can be easily done at interactive speeds (e.g., for the VGA-resolution video of 640 × 480

pixels per frame).

Lighting and transfer functions for Lambertian surfaces are usually projected into 25 SH

basis functions for each sample point. In general, this leads to good visual results, but only

slowly changing and smooth lighting can be reproduced, e.g., soft shadows. Thus, lighting

details that require high spatial frequency patterns, cannot be reproduced, e.g., sharp shadow

boundaries. For more general reflectance functions (BRDF) for which the incoming lighting

directions are important, a matrix of spherical harmonic coefficients with the transfer vectors

for each of those directions must be considered. In practice, matrices of 25 × 25 coefficients are

commonly used [134]. Since the transfer vectors (matrices) are stored densely over the scene

surfaces (usually for each mesh vertex) an important issue is the data compression, which can

be efficiently performed using standard tools such as principal component analysis (PCA) and

clustering [136]. Recently, the limitation of low-frequency lighting, which is inherent for the

SH basis, has been lifted using the wavelet basis functions [135]. Using the approach proposed

by Ng et al. both soft and sharp shadows can be rendered, but very dense mesh is required to

reconstruct the lighting function precisely and it is not clear how to include interreflections into

this framework.

Another serious drawback of PRT techniques is the assumption that the scene is static for

the transfer function computation at the preprocessing stage. If the interreflection computation

is not required, this assumption can be relaxed using the SH exponentiation approach [137],

which can efficiently handle soft shadows for deformable objects. However, PRT techniques

are useful in many technical applications in which scenes with static geometry and dynamic

lighting are considered and global illumination at interactive rates is important.

We present an example of such an application in which PRT techniques have been used

in a virtual reality (VR) system aimed at simulation of lighting in the car interior. The interior

can be illuminated by VEMs that have been captured under various driving conditions and

are visible through the car windows. Figure 9.4 shows the acquisition system mounted on the

roof of a car, which is composed from two HDR video cameras with fish-eye lenses for the

windshield view and sky lighting capturing. The main goal of the VR system is to study the

impact of such dynamic real-world lighting, which is captured for the actual driving conditions,

on the visibility of information displayed on the LCD panel mounted in the car cockpit. This

application scenario is similar to the simulation of free driving in an environment in which

buildings, trees, and other occluders change the amount lighting penetrating the car interior.

This requires that a global illumination solution responds interactively to lighting changes for an

arbitrary position of the driver head (virtual camera position), which can be easily achieved using

PRT. Figure 9.5(left) shows a snapshot of interactive PRT rendering. Figure 9.5(right) shows
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FIGURE 9.4: HDR video environment maps (VEM) acquisition system equipped with two

photometrically-calibrated HDRC VGAx (IMS CHIPS) cameras for the sky lighting and windshield

view capturing.

the result of off-line rendering using a more precise path-tracing method, which also employs

the captured VEM to model input lighting. To improve the immersion experience the CAVE

environment with five stereo-projected screens is used for displaying the car interior. Also, a

head tracking system is employed to monitor the driver’s head position, which is important

to properly warp the car interior images projected on the CAVE screens. The head-tracking

system enables also to model light reflections in the LCD panel as seen from the drivers’ point

of view.

Figure 9.6 shows the appearance of LCD panel under the global illumination conditions

for dynamic VEM lighting as displayed on an HDR monitor. All rendered images are inherently

HDR because physically-correct car model and calibrated VEM lighting have been used for the

global illumination computation, which is performed with the floating-point precision. Since

the dynamic range of an HDR monitor is significantly higher than that of a typical LCD panel

that is mounted in the car cockpit, the visibility of information displayed for the driver can be

tested under many external lighting conditions. Through the calibration of the HDR display

the real-world luminance values can be reproduced for the LCD panel by taking into account

both the panel emissivity as well as reflected lighting resulting from the global illumination

simulation.
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FIGURE 9.5: Snapshots of the car interior (left) rendered at interactive speeds using PRT techniques,

and (right) computed off-line using the physically-accurate path tracing algorithm. Calibrated HDR

VEMs have been used to model input lighting. Notice the cockpit reflections in the windshield for the

path-tracing image. Images courtesy of Tom Annen of MPI Informatik.

Importance Sampling for Video Environment Maps

Many practical rendering algorithms achieve the best performance for very simple directional

and point light sources. Such types of light are well suited for the shadow computation and

shading using graphics hardware and ray tracing. In fact, more advanced area light sources are

usually decomposed into a set of such simple lights. The same approach can be applied for the

EM lighting, which is decomposed into a set of representative directional light sources due

to the infinite light source distance assumption. Such a set should be equivalent to the source

EM in terms of lighting energy, but also resulting shadows should be visually equivalent to the

outcome of brute force integration of incoming lighting over all pixels in the EM. The human

perception helps to achieve the latter goal, because under typical display observation conditions

FIGURE 9.6: The LCD panel appearance as a result of the global illumination computation for VEM

lighting: (left) full global illumination, (center) display emitted light only, and (right) reflected light. To

compute the reflected light, BRDF-driven importance sampling and PRT lighting querying has been

performed. Images courtesy of Tom Annen of MPI Informatik.
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it is safe to assume that the just discriminable change in contrast must be over 1%. In case

all directional lights carry the same energy, which is the optimal condition in terms of image

variance (noise) reduction, having more than 100 light sources that illuminate each point in the

scene, makes the influence of each light undiscriminable. This leads to smooth shading without

banding or contouring artifacts. The practical number of light sources to achieve this goal is

roughly 200–300 because some lights can be occluded, and then the relative contribution of

each non-occluded light sources could be greater than the discriminability threshold. This larger

number of light sources is also required because the full EM contains all possible directions over

the sphere, and each point in the scene, which represents an opaque surface, can be illuminated

only by lighting coming from the upper hemisphere with the pole determined by the normal

vector direction.

A number of techniques for the EM decomposition into visually equivalent set of di-

rectional light sources have been developed in recent years. However, a vast majority of these

techniques have been designed for static EM, and they do not generalize well for the VEM case.

The main problem is the computation performance, which is far from interactive and precludes

the VEM frames processing on-the-fly directly for captured light. Another serious problem

is lack of temporal coherence, which means that significantly different set of directional light

can be selected even for moderate and local changes between the VEM frames. This results in

severe flickering artifacts that are not acceptable.

Havran et al. [138] have proposed an algorithm specifically designed for on-the-fly VEM

processing. To reduce temporal flickering, they use the same set of initial samples over the unit

2D square for each VEM frame. The samples are generated using the quasi-random 2D Halton

sequence, which means that they are well stratified over the unit square surface. The Halton

sampling enables adding new samples without affecting the position of existing samples, while

good sample stratification properties are always preserved. This is important for the progressive

image quality refinement and maintaining constant frame rate by adjusting the number of

directional lights on-the-fly. In order to improve light sampling properties Lloyd’s relaxation

over the initial sample positions is performed at the pre-processing stage, which results in the

blue noise properties of the sampling pattern [139,140]. Figure 9.7(left) illustrates the resulting

position of samples as mapped from the unit square to the hemi-sphere, which would be close

to the optimal sampling pattern in terms of visible noise reduction for the uniform energy EM.

In practice, the position of directional light sources is adjusted accordingly to the local energy

distribution in the EM. As shown in Fig. 9.7(right) the directional lights are more densely

concentrated in brighter EM regions, in particular around the sun location, while darker regions

are represented only sparsely. This is achieved using the importance sampling procedure, which

is well established in the Monte Carlo literature [141]. The pixel luminance values in the EM

are treated as a discrete 2D probability density function (PDF). Then stratified Halton samples

are transformed to samples drawn from the discrete PDF and mapped to spherical coordinates.
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FIGURE 9.7: Distribution of samples for uniform intensity (left) and real-world captured (right)

environment maps. The left image demonstrates a good stratification and blue noise properties of the

initial sample distribution. These properties are partially maintained in the distribution of samples in

the right image, which is a warped version of the sample positions in the left image. The importance

sampling applied to the samples in the right image prevents folding and preserves neighborhood relations

between samples as imposed by their initial position in the left image.

This procedure is described in detail in [142]. In fact, Havran et al. used slightly more involved

sample transform method [143], which exhibits unique continuity and uniformity properties.

The method guarantees the bi-continuity property for any non-negative PDF, which means

that a small change in the input sample position over the unit square is always transformed into

a small change in the resulting position of light source over the EM hemisphere. This property

greatly improves temporal coherence.

Havran et al. [138] have built a complete system, which enables the HDR VEM ac-

quisition and rendering with captured lighting at interactive speeds (refer to Fig. 9.8). A

photometrically-calibrated HDRC VGAx (IMS CHIPS) camera with a fish-eye lens is used

for the VEM acquisitions [144]. The inverse camera response (refer to Section 3.2) is used to

transform captured RGB values into the luminance map. This luminance map is submitted

to the importance sampling procedure to reconstruct a representative set of directional light

source. Since even local changes in the VEM frame lead to global changes of the PDF, the

direction of virtually all light sources may change from frame to frame, which causes unpleasant

flickering in the rendered images. Havran et al. apply a perception-inspired, low-pass FIR

filtering to the trajectory of each light motion over the hemisphere as a function of time. Since

the energy in the environment map can fluctuate, in particular for scenes with incandescent

lighting, filtering over all environment map energy is performed as well. A better stabiliza-

tion of temporal artifacts is achieved, when a certain number of frames from the future are

considered. For this reason, a delay of four VEM frames is introduced, which is essentially

not objectionable because frame grabbing in their system works asynchronously in respect to
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FIGURE 9.8: The HDR video capture and rendering system pipeline illustrating the distribution of

tasks between CPU and GPU.

usually slower rendering. All computation discussed so far is performed on the CPU side of

their system.

The GPU part is responsible for rendering. The luminance map acquired by the camera

is at first displayed as the background and then all objects in the scene are rendered. Directional

lights decomposed in CPU from each HDR VEM frame along with the shadow-mapping

technique are used to illuminate the scene. The stratification and progressiveness properties

of the Halton sequence permit adding more lights for selected angular regions in the EM

without affecting the directions of already distributed lights. The directional light sources,

which represent strong emitters such as the sun, can be clustered to reduce the cost of computing

shadows. Finally, rendered GPU frames are tone mapped (refer to Section 6.1) and displayed.

The system presented by Havran et al. does not require any costly preprocessing, can

handle fully dynamic geometry and arbitrary reflectance models evaluated on a GPU (refer

to Fig. 9.9). The system does not support interreflection, but it seems that the instant global

illumination algorithm [145] fits well its architecture. The main use of the proposed system

can be envisioned in augmented reality applications in which real and synthetic objects are

illuminated by consistent lighting at interactive frame rates (refer to Fig. 9.10).
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FIGURE 9.9: A snapshot obtained using the Havran et al. system. Left: distribution of directional

lights (marked as the green dots) over a VEM frame as captured using the fish-eye lens (top) and shown

in polar projection (bottom). Right: Stanford BUNNY illuminated by the 72 directional lights.

Grosch et al. [146] have built such an augmented reality system capable of the diffuse

interreflection computation (refer to Fig. 9.11). As in [138] an HDR video camera is used

to capture dynamic lighting and at the same time another HDR video camera captures the

scene view. The latter view is augmented in real time by adding virtual objects, which are

illuminated by direct and indirect lighting components from the real scene (the influence of the

FIGURE 9.10: Comparison of the fidelity in the shadow and lighting reconstruction for the real-world

and synthetic angel statuette illuminated by dynamic lighting. Real-world lighting is captured by the

HDR video camera located in the front of the round table with an angel statuette placed atop (the right

image side). The captured lighting is used to illuminate the synthetic model of the angel statuette shown

in the display (the left image side).
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FIGURE 9.11: Virtual Bunny illuminated by daylight as captured by an external HDR video camera

and indirect lighting simulated for the Cornell Box interior. It is assumed that the interior geometry and

its reflectance properties are known to perform such a simulation. Image courtesy of Thorsten Grosch.

Copyright the University of Koblenz-Landau.

virtual objects on the scene illumination is ignored). Direct lighting is computed using impor-

tance sampling of VEM, which additionally takes into account the visibility of virtual objects.

Figure 9.12 summarizes the indirect lighting computation, which is performed for digitized

geometry and material reflectance properties of the real-world scene. The hemisphere with

captured lighting (effectively VEM as in [138]) is decomposed into a number of angular sectors

and for each such a sector a basis irradiance volume (i.e., directional distribution of incoming

lighting at the nodes of a uniform grid in the scene [147]) is pre-computed using the radiosity

method. To find the actual indirect lighting at a given node, contributions from all basis irradi-

ance volumes are re-scaled based on the captured VEM lighting and summed up at interactive

speeds. The indirect lighting at any point at the virtual object is trilinearly interpolated based

on illumination stored for neighboring nodes. Figure 9.13 shows the comparison of the Cornell

Box scene augmented with the virtual teapot with respect to the ground-truth real-world view

with the teapot obtained using a 3D printer. As can be seen, the system proposed by Grosch et

al. can faithfully model virtual objects illuminated by distant direct and spatially varying indirect

lighting at interactive framerates.

Wan et al. [148] proposed another algorithm suitable to handle VEM. They introduce a

quad-tree over the sphere based on the adaptive subdivision of spherical quadrilaterals, which

they call the Q2-tree structure. They adaptively sample the EM based on an importance

metric, which leads to finer quad-tree subdivision in brighter EM regions (refer to Fig. 9.14).

A directional light source is created for every quad (stratum), which is a leaf-node in the

Q2-tree. The radiance emitted by all pixels in a given quad is summed and assigned to the

corresponding light source, whose direction is jittered with respect to the quad centroid. To

maintain temporal coherence, the authors adjust the Q2-tree from the previous frame by
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FIGURE 9.12: Combining basis illumination. For each solid angle sector of the fisheye lens an irradi-

ance volume basis is computed using the radiosity method. The directional illumination distribution is

computed for each node of the uniform grid and compressed using spherical harmonics for more efficient

storage and access. The actual indirect lighting is obtained by combining basis illumination scaled by

the actual lighting captured for each sector of the fisheye lens. Image courtesy of Thorsten Grosch.

Copyright the University of Koblenz-Landau.

splitting leaf-node quads, which gain radiance (thus importance) with respect to the previous

frame. Analogously, leaf-node quads are merged in the regions that become darker. A certain

number of such merge-and-split iterations are considered, so that lighting changes are mirrored

by the current Q2-tree structure, and at the same time coherence with the previous frames is

preserved whenever possible. The number of iterations decides whether lighting represented by

Q2-tree is more up-to-date, or more temporally coherent. The authors show that using their

approach low-discrepancy sampling patterns are generated.

The distant lighting assumption inherent for traditional EM lighting holds well for many

outdoor situations, but often fails for indoor scenes. In the latter case, when captured lighting

is represented just by a single environment map and decomposed into a set of directional lights,

the appearance of shadows cast by dynamic objects may look unrealistic. In environments
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FIGURE 9.13: Comparison of virtual teapot appearance (left) as illuminated by captured direct and

simulated indirect lighting with respect to its real-world counterpart printed using a 3D printer (right).

Image courtesy of Thorsten Grosch. Copyright the University of Koblenz-Landau.

with dominant directional lights the resulting shadows are casted always in the same direction

irrespectively of the dynamic object position. This problem can be significantly ameliorated

when the directional lights are replaced with a representative set of point light sources with

their fixed position in the scene. Korn et al. [149] have built an augmented reality system aimed

toward achieving such goal1. In their system, they use two photometrically-calibrated HDRC

VGAx (IMS CHIPS) cameras with fisheye lenses [144] as shown in Fig. 9.15. The HDR

cameras are attached to the table and their fisheye lenses are upward directed. Additionally, a

webcam camera can be seen, which is directed towards a marker on the table, where a virtual

object is to be placed. The display shown in Fig. 9.15 presents the EM images captured by

the cameras as well as the view from the webcam augmented with a virtual object, which is

illuminated by captured lighting.

FIGURE 9.14: Adaptive sphere subdivision using the Q2-tree technique. Redrawn from [148].

1 Good background information concerning the lighting reconstruction using a stereo-camera pair, and then the

scene augmentation with virtual objects is provided by Sato et al. [150]. However, their system is off-line and only

static scenes are considered.
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FIGURE 9.15: Light capturing system with stereo HDR video cameras (attached to the table). The

webcam captures the scene view with the marker, which tracks position of the virtual object. The resulting

augmented scene is shown on the display as well as two environment maps used to illuminate the scene.

Image courtesy of Thorsten Grosch. Copyright the University of Koblenz-Landau.

The decomposition of VEM captured by the two video cameras into a set of point light

sources is performed as follows. In one of the captured EM bright pixels are selected, and their

corresponding positions in the second EM are found using the epipolar geometry. This narrows

the search space to pixels located along the corresponding epipolar line. In fact, the epipolar

lines are distorted into curves due to the image geometry imposed by the fisheye lenses. In

practice, Korn et al. precomputed 500 epipolar curves and stored them in a look-up table to

improve the correspondence search efficiency. When the corresponding light sources are found

in the captured EM, then based on the known camera parameters and the distance between

the cameras, 3D light source positions can be derived by means of simple triangulation. The

light positions are tracked from frame to frame and updated along with changes in lighting

as captured by the cameras. Figure 9.16 shows the real-world scene and the corresponding

augmented scene with added a virtual box. Note a good match of shadows, which is achieved

automatically due to real-world lighting capture.

9.2.2 HDR Imaging in Reflectance Measurements
High-quality modeling of surface reflectance properties contributes greatly to the realistic

appearance of rendered objects. At present, analytical reflectance models are still predominant

in low-end applications due to their compactness, but their use is often difficult due to non-

intuitive and perceptually non-uniformly scaled parameters [151], which often do not have any

physical meaning and cannot be measured for real-world materials. Also, the class of real-world
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FIGURE 9.16: Real-world scene (left) and its augmented counterpart (right). The box floating over the

table is a virtual object, which augments the video stream captured by the webcam (refer to Fig. 9.15).

The box is illuminated by lighting captured by the two HDR cameras. Images courtesy of Thorsten

Grosch. Copyright the University of Koblenz-Landau.

materials that can be convincingly represented using the analytical reflectance models is limited.

For this reasons, many industrial and cinematographic applications, which require high fidelity

or at least plausibility in the appearance of complex materials, relies on measured bi-directional

reflectance distribution function (BRDF).

Bi-Directional Reflectance Distribution Function Acquisition

The BRDF is a 4D function, which is defined as the ratio of radiance outgoing in the direction

(θo , φo ) to irradiance (the radiant power per unit area) incident onto a material sample from

the direction (θi , φi ). For opaque surfaces, the BRDF is measured for all combinations of

incoming and outgoing light directions over the hemisphere. Specialized gonioreflectometers

with robotically controlled positions of the light source and detector with respect to the flat

material sample are used for the high-quality BRDF measurement. Such a measurement

can be performed much faster using a calibrated camera, which captures a curved material

sample [152, 153]. In this case each pixel, which represents the material sample, effectively

provides measurement data. Instead of capturing the spherical material probe, the appearance

of real-world curved objects with spatially varying BRDF can be captured using a relatively small

number of HDR images [154]. Sparse BRDF sampling over (θi , φi ) and (θo , φo ) direction pairs

for each point on the object surface is compensated by exploiting the spatial coherence of BRDF

for neighboring regions, and by fitting the measured data to an analytical reflectance model

whose parameters change over the object surface. Figure 9.17 shows the acquisition setup used

by Lensch et al. Figure 9.18 presents an object, whose geometry and spatially varying reflectance

has been captured, as it is rendered under arbitrary lighting conditions.
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FIGURE 9.17: Photograph of a setup used for capturing spatially varying BRDF [154]. In a photo

studio covered with dark felt the following setup elements can be seen (from left to right): an HMI

metal halide bulb serving as a point light source, metal spheres whose highlight configuration serves to

track the light source position, object whose BRDF is acquired, and a Kodak DCS 560 camera used for

multi-exposure HDR images acquisition. Image courtesy of Hendrik P. A. Lensch, Jan Kautz, Michael

Goesele, and Hans-Peter Seidel of MPI Informatik and Wolfgang Heidrich of the University of British

Columbia. © 2003 ACM, Inc. Used by permission.

Bi-Directional Texture Function Acquisition

All BRDF measurement techniques discussed so far are suitable for materials, which do not

exhibit complex spatial structure. While such structure must be rendered to convey the material

look-and-feel, it is usually impractical to include such fine scale details into the geometrical

model. Also, complex light interactions within the fine structure due to light sub-surface

scattering and self-shadowing cannot be captured by global illumination simulation due to

excessive costs. These effects can be captured in the bi-directional texture function (BTF),

which is a 6D texture representation that generalizes the BRDF by adding information on the

sample point 2D position (u, v) over the surface A. Effectively each BTF sample is parametrized

by its position (u, v) at A, and the incoming and outgoing light directions (θi , φi ) and (θo , φo ).

Figure 9.3 shows an example of realistic rendering of dragon model covered with a leather BTF

and illuminated by a captured HDR EM. Figure 9.19 shows a BTF measurement setup, in

which a CCD camera is used to capture the material sample hold by a robot. Kodak DCS Pro

14N has been used in this system to capture 12-bit RGB images with a resolution 4500 × 3000,

but for more glossy material samples capturing HDR images could be required. A practical

problem here is the capture time of over 6500 images, which must be multi-fold increased when

a multi-exposure technique is used. This problem could be alleviated, when an HDR camera
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FIGURE 9.18: Digitalization of the Max Planck bust using the acquisition setup [154] shown in

Fig. 9.17: (upper left) photograph, (upper right) acquired 3D geometric model, (lower left) rendered

image based on the acquired geometry model and spatially varying BRDF distribution for the same

viewpoint as the photograph in (upper left), and (lower right) rendered image based on the same

acquired model as in (lower right), but illuminated by different lighting and seen from a different

viewpoint. Images courtesy of Hendrik P. A. Lensch, Jan Kautz, Michael Goesele, and Hans-Peter

Seidel of MPI Informatik and Wolfgang Heidrich of the University of British Columbia. © 2003 ACM,

Inc. Used by permission.
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FIGURE 9.19: Acquisition setup for bi-directional texture function capturing [155]. A planar

10 cm×10 cm texture sample is attached to the robot’s sampleholder which may change its orienta-

tion with respect to a fixed HMI bulb and a rail-mounted CCD camera (Kodak DCS Pro 14N). Images

courtesy of Gero Müller, Jan Meseth, Mirko Sattler, Ralf Sarlette, and Reinhard Klein of the University

of Bonn.

would be used, which for this particular application should offer very high resolution as well.

For more information on BTF acquisition and rendering refer to an excellent survey on this

topic by Müeller et al. [155].

Reflectance Field Acquisition

The reflectance field as introduced by Debevec et al. [156] is an 8D function, which relates

incoming lighting from the direction (θi , φi ) at any point (u i , vi ) at the surface A to outgoing

lighting in the direction (θo , φo ) at any point (uo , vo ) at A. The reflectance field dimensionality

can be reduced to 6D by assuming that lighting is distant (a similar assumption as for the

environment map lighting in Section 9.2.1), which effectively means that incoming lighting does

not vary over the surface of A for each point (u i , vi ). By making another simplifying assumption

that the camera viewpoint is fixed, only a single outgoing lighting direction (θo , φo ) is considered

for each point (uo , vo ) at A, what further reduces the reflectance field dimensionality to more

tractable 4D. Note that even such a 4D slice over the general 8D reflectance field still provides

information on important aspects of light transfer within the material including subsurface

scattering. In cinematography and game applications, the human skin is an important example

of material, which without modeling of the sub-surface scattering effect has an unnatural plastic

look. Debevec et al. [156] demonstrated that the 4D reflectance field of a human face can be

reconstructed from a set of images with light rotating around the face at various heights.

Essentially a set of basis images for various light directions has been created, which then by

their linear combination with different weights enables to render the image of face under
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FIGURE 9.20: Photograph of a setup used for capturing of the 4D reflectance field [160]. Spotlight

projectors placed on the floor illuminate a tent made of black cloth and indirectly illuminate the captured

scene, which is arranged on top of the boxes. A camera mounted on the tripod records the HDR

sequences with dynamically changing lighting due to computer-controlled changes in the orientation

of the spotlight projectors. Image courtesy of Martin Fuchs, Volker Blanz, Hendrik P. A. Lensch, and

Hans-Peter Seidel of MPI Informatik. © 2007 ACM, Inc. Used by permission.

arbitrary lighting and the sub-surface scattering effect is properly considered. Since during the

acquisition the human face must remain static it is desirable to use high speed camera. The

follow-up research has been focused on lifting the restriction of dimensionality for the captured

reflectance fields by allowing arbitrary camera position [157], spatially varying lighting [158],

or even full 8D reflectance field [159]. Fuchs et al. [160] showed how to reduce the number of

basis images and still achieve the good quality in the scene re-lighting for 4D reflectance fields

(with the fixed camera and distant lighting assumptions as in [156]). HDR image capture has

been commonly used as it is required to handle strongly glossy objects and improves the overall

acquisition accuracy. Figure 9.20 shows the acquisition setup from [160] in which a multi-

exposure technique [111] is employed to capture HDR sequences using Jenoptik CEcool or

C14plus cameras (refer to Section 3.2 for more details on the C14plus camera). Figure 9.21(left)
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FIGURE 9.21: Rendering of the bottle containing a colored liquid (right) as re-lighted by a real-world

environment map (left) [160]. The image has been reconstructed using 1024 HDR images captured for

different lighting conditions using the setup from Fig. 9.20. Images courtesy of Martin Fuchs, Volker

Blanz, Hendrik P. A. Lensch, and Hans-Peter Seidel of MPI Informatik. © 2007 ACM, Inc. Used by

permission.

shows an environment map used to relight the scene with the bottle containing a colored liquid

Fig. 9.21(right). Notice subtle light transport effects including anisotropy in the reflectance

field due to the interplay of cylindrical bottle’s shape with glossy surface material.

Translucent Objects Acquisition

Another important category of real-world materials is translucent objects characterized by

complex light scattering inside the material. This multiple light scattering enables us to see

light shining through the object and washes out visible surface details by reducing contrast of

reflected light. The latter effect is similar to the ambient term in simple reflectance models, but

sub-surface scattering may add significant spatially varying and usually low spatial frequency

lighting component. Apart from the human skin other examples of translucent materials include

milk, marble, and many organic objects such as some fruits. Jensen et al. [162] were the first

to address the problem of physics-based translucency modeling and rendering. They proposed

an approximation to a diffusion model suitable for rendering of homogeneous materials, and

they measured physical parameters required by this model. In their measurement setup, they

illuminate material with strong narrow beam of light and capture HDR images using a multi-

exposure technique, which is necessary to capture the exponential fall off of scattered light

intensity away from the point of illumination (they reported up to five orders of magnitude in

the measured light fall-off). Goesele et al. [161] have proposed a measurement setup to capture

inhomogeneous translucent object appearance (refer to Fig. 9.22). In their system, they use

a narrow laser beam to sequentially illuminate a dense set of locations on the object surface,

and the resulting scattered light distribution is captured using an HDR video camera (refer to

Fig. 9.23 to see captured sample images for various objects). The use of HDR video camera is

mandatory in this application given the amount of images to be captured as well as extremely

high dynamic range in scattered lighting. The authors used a Silicon Vision Lars III HDR
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FIGURE 9.22: Acquisition setup for measuring the appearance of inhomogeneous translucent materials

[161]. A narrow laser beam, deflected by a high precision 2D galvanometer scanner, sweeps over the

object’s surface with a sample spacing of about 1 mm. The distribution of scattered lighting for each laser

illumination sample is captured by an HDR video camera. For a given camera position all sides of the

object are captured using a turntable. This process is repeated for manually changed camera positions, so

that the full 360◦ range of relative laser and camera positions is covered. The two spotlights visible on

both sides of the HDR video camera in the right image are used only for object geometry acquisition,

which is not discussed here. Images courtesy of Michael Goesele, Hendrik P. A. Lensch, Jochen Lang,

Christian Fuchs, and Hans-Peter Seidel of MPI Informatik. © 2004 ACM, Inc. Used by permission.

video camera of resolution 768 × 496 equipped with a high-quality lens to reduce flare effects

(refer to Section 3.2 for more details on this camera). The captured data are re-sampled over the

vertices of dense mesh, which describes the object geometry, and are used to compute scattered

and reflected lighting under arbitrary illumination.

9.3 CONCLUSIONS
In this chapter, we have discussed cross-correlations between developments in computer graph-

ics and HDRI. Realistic graphics and more recently the movie industry relying on digital tech-

nology are rich sources of high quality HDR content. In coming years, the role of modern GPUs

and game consoles will be increasing in on-line HDR content generation, which will be even

more important with the improving availability of HDR display devices (refer to Chapter 7).

HDRI contributes to graphics as well by providing captured lighting and object appearance.

HDRI-based lighting dominates now in special effects, mixed reality applications, and car ad-

vertisement due to much better visual quality of resulting images, good match of virtual and real

part of scenography as well as freedom concerning the place and time of HDR light capturing.

It can envisioned that soon virtual TV studios, driving simulators, and games will benefit to a

greater extent from this technology. In all these applications, the role of HDR video will be

increasing since the dynamic aspect of lighting is important in many discussed applications. In
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FIGURE 9.23: Translucent Objects Acquisition: (top row) the test objects used to capture their

translucent appearance under indoor illumination and (bottom row) the same objects illuminated by

a spot-shaped laser beam as captured by an HDR video camera using the acquisition setup shown in

Fig. 9.22 [161]. Images courtesy of Michael Goesele, Hendrik P. A. Lensch, Jochen Lang, Christian

Fuchs, and Hans-Peter Seidel of MPI Informatik. © 2004 ACM, Inc. Used by permission.

surface reflectance or even more general reflectance field capturing HDRI becomes a standard

practice. Here the use of HDR video camera can lead to shortening of the acquisition time

which is in particular important when humans or animals are captured. In acquisition setups

that require higher sample density such as bi-directional texture function HDR still cameras

could be a better choice because at least at present they provide higher image resolution at much

lower costs.
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Software

To facilitate the work with HDR images and video, Mantiuk et al. [33] have developed a set

of software tools that provide a wide range of image and video processing functionality. The

tools share a common design pattern based on system pipes which permits to combine them in

the form of filters in a processing pipeline, similar to the netpbm toolkit. Such a pipeline starts

with an input program that reads a list of images and forwards the data in a uniform manner to

the next tool. The subsequent tools can perform certain image-processing operations including

cropping, rotating, and tone mapping. The last tool in the pipeline usually stores the processed

content.

The communication in the pipeline is facilitated by a generic protocol pfs whose imple-

mentation is offered as a C++ library. The protocol is also straightforward to implement in

other languages. The tools exchange data using the pipes commonly supported by many operat-

ing systems. Such a design eases the implementation of new tools and permits to transparently

combine programs written in various programming languages including MATLAB R© and

GNU Octave scripts, Perl, Python, and many others. The design principles, including the

choice of data representation in the pipeline, are described in more detail in [33].

The main package of the software is pfstools and it is currently extended with pfstmo,

pfscalibration, and HDR Visible Differences Predictor (VDP). The whole software is Open Source

and can be compiled on several operating systems. It is supported by an active news-group that

gathers users and developers.

10.1 PFSTOOLS
pfstools is the main package of the software. It implements the generic communication protocol

in the stand-alone library libpfs, and contains numerous basic image-processing tools including

an HDR capable viewer. pfstools supports many HDR and standard file formats including:

Radiance RGBE, OpenEXR, Tiff, LogLuv, PFM, PPM, RAW formats of digital cameras,

and practically all 8-bit formats through ImageMagick R©.

Project page:

http://www.mpi-inf.mpg.de/resources/pfstools/

http://www.mpi-inf.mpg.de/resources/pfstools/
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10.2 PFSCALIBRATION
pfscalibration package provides an implementation of the method developed by Robertson et

al. [28] for the recovery of the response curve of arbitrary cameras. Tools provided in this

package can be used for photometric calibration of both off-the-shelf digital cameras and HDR

cameras as described in Section 3.2, and for the recovery of high dynamic range images from

the set of low dynamic range exposures as explained in Section 3.1.1.

Project page:

http://www.mpi-inf.mpg.de/resources/hdr/calibration/pfs.html

10.3 PFSTMO
pfstmo package contains implementations of the state-of-the-art tone-mapping operators, in-

cluding those described in Section 6.1. The implementations are suitable for convenient pro-

cessing of both static images and animations.

Project page:

http://www.mpi-inf.mpg.de/resources/tmo/

10.4 HDR VISIBLE DIFFERENCES PREDICTOR
HDR Visible Differences Predictor (VDP) belongs to the category of visual metrics, which can

predict whether differences between two images are visible to the human observer or not (refer

to Chapter 4). Such metrics are used for testing either visibility of information (whether we

can see important visual information) or visibility of noise (to make sure we do not see any

distortions in images, e.g., due to lossy compression). The unique feature of the HDR VDP

is that it can work with the full range of luminance that can be seen by the human eye in the

real-world scenes, which effectively means that visual differences between any pair of HDR

images can be predicted.

Project page:

http://www.mpi-inf.mpg.de/resources/hdr/vdp

http://www.mpi-inf.mpg.de/resources/hdr/calibration/pfs.html
http://www.mpi-inf.mpg.de/resources/tmo/
http://www.mpi-inf.mpg.de/resources/hdr/vdp
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[158] V. Masselus, P. Peers, P. Dutré, and Y. D. Willems. Relighting with 4D in-

cident light fields. ACM Trans. Graph. (Proc. SIGGRAPH), 22(3):613–620, 2003.

doi:10.1145/882262.882315

[159] G. Garg, E.-V. Talvala, M. Levoy, and H. P. A. Lensch, “Symmetric photography:

Exploiting data-sparseness in reflectance fields,” in 17th Eurographics Symposium on

Rendering, 2006, pp. 251–262.

[160] M. Fuchs, V. Blanz, H. P. A. Lensch, and H.-P. Seidel. Adaptive sam-

pling of reflectance fields. ACM Trans. Graph., 26(2), 2007. Article 10.

doi:10.1145/1243980.1243984

[161] M. Goesele, H. P. A. Lensch, J. Lang, C. Fuchs, and H.-P. Seidel. DISCO: acqui-

sition of translucent objects. ACM Trans. Graph. (Proc. SIGGRAPH), 23(3):835–844,

2004. doi:10.1145/1015706.1015807

[162] H. W. Jensen, S. R. Marschner, M. Levoy, and P. Hanrahan, “A practical model for

subsurface light transport,” in Proc. ACM SIGGRAPH 2001, (Computer Graphics Proc.,

Annual Conf. Ser.), 2001, pp. 511–518.

http://dx.doi.org/10.1145/882262.882315
http://dx.doi.org/10.1145/1243980.1243984
http://dx.doi.org/10.1145/1015706.1015807


book MOCL004.cls July 22, 2008 18:46

157

Author Biography

Karol Myszkowski is a senior researcher in the Computer Graphics Group of Max-Planck-

Institut für Informatik. From 1993 to 2000 he served as a tenured Associate Professor at the

University of Aizu, Japan, and from 1985 to 1993 he worked as a Research Associate and then

an Assistant Professor at the Szczecin University of Technology, Poland.

In the period 1986-1992 he collaborated with Japanese company Integra, Inc. develop-

ing rendering software for such customers as Toshiba Lighting, Shiseido, Matsushita Electric,

Kandenko, and others. He received his MSc degree in control engineering from the Szczecin

University of Technology in 1983, and his PhD and habilitation degrees in computer science

from Warsaw University of Technology (Poland) in 1991 and 2001, respectively. His research

interests include perception issues in graphics, high-dynamic range imaging, global illumina-

tion, rendering and animation. Myszkowski has written over 80 refereed publications on these

subjects and has served on numerous program committees. He was the Program Committee

co-chair of Eurographics Rendering Symposium in 2001, ACM Applied Perception in Graph-

ics and Visualization in 2008, and Spring School of Computer Graphics in 2008. Myszkowski

has supervised over 30 graduate and undergraduate research projects.

Rafal Mantiuk (PhD from the Max-Planck-Institut for Computer Science, Germany;

Msc in Computer Science from the Szczecin University of Technology, Poland) is postdoctoral

fellow at the University of British Columbia, Canada. He combines in his research the aspects

of human perception, color appearance, image processing, and computer graphics to address

the problems of future imaging systems, in which the human eye rather than technology is the

major limiting factor. During the last five years he has been involved in research at Max-Planck-

Institut for Computer Science, Sharp Laboratories of America, and BrightSide Technologies

(Dolby Canada). Rafal authored several patents and papers on high-dynamic range (HDR)

image and video compression (Proc. of SIGGRAPH’04 and ’06), tone-mapping (ACM TAP,

EG’06), developed a fidelity metric for HDR images (HDR-VDP) and co-maintains popular

software for HDR processing—pfstools. In 2006 he was granted the Heinz Billing Award for

his work.

Grzegorz Krawczyk received PhD from the Max-Planck-Institut for Computer Science,

Germany and MSc in Computer Science from the Szczecin University of Technology, Poland.

During the last five years he has been involved in the research projects in collaboration with the



book MOCL004.cls July 22, 2008 18:46

158 HDR VIDEO

University of British Columbia and BrightSide Technologies (Dolby Canada). His research

focuses on the insightful application of knowledge about human visual system to assure high

fidelity in high dynamic range (HDR) images and video. Grzegorz authored several papers

on HDR tone mapping (Eurographics ’05, ’06, and ’07) and HDR video compression (ACM

Siggraph ’04). He also co-maintains a popular software for HDR processing, capture and tone

mapping—pfstools, pfscalibration and pfstmo.


	MOCL004-Book-web.pdf
	book-web-1-4.pdf
	Introduction
	LOW VERSUS HIGH DYNAMIC RANGE IMAGING
	DEVICE- AND SCENE-REFERRED IMAGE REPRESENTATIONS
	HDR REVOLUTION
	ORGANIZATION OF THE BOOK
	Why HDR Video?
	Chapter Overview


	Representation of an HDR Image
	LIGHT
	COLOR
	DYNAMIC RANGE

	HDR Image and Video Acquisition
	CAPTURE TECHNIQUES CAPABLE OF HDR
	Temporal Exposure Change
	Spatial Exposure Change
	Multiple Sensors with Beam Splitters
	Solid-State Sensors

	PHOTOMETRIC CALIBRATION OF HDR CAMERAS
	Camera Response to Light
	Mathematical Framework for Response Estimation
	Procedure for Photometric Calibration
	Example Calibration of HDR Video Cameras
	Quality of Luminance Measurement
	Alternative Response Estimation Methods
	Discussion


	HDR Image Quality
	VISUAL METRIC CLASSIFICATION
	A VISUAL DIFFERENCE PREDICTOR FOR HDR IMAGES
	Implementation


	HDR Image, Video, and Texture Compression
	HDR PIXEL FORMATS AND COLOR SPACES
	Minifloat: 16-Bit Floating Point Numbers
	RGBE: Common Exponent
	LogLuv: Logarithmic Encoding
	RGB Scale: Low-Complexity RGBE Coding
	LogYuv: Low-Complexity LogLuv
	JND Steps: Perceptually Uniform Encoding

	HIGH FIDELITY IMAGE FORMATS
	Radiance's HDR Format
	OpenEXR

	HIGH FIDELITY VIDEO FORMATS
	Digital Motion Picture Production
	Digital Cinema
	MPEG for High-Quality Content
	HDR Extension of MPEG-4

	BACKWARD-COMPATIBLE COMPRESSION
	JPEG HDR
	Wavelet Compander
	Backward-Compatible HDR MPEG
	Scalable High Dynamic Range Video Coding from the JVT

	HIGH DYNAMIC RANGE TEXTURE COMPRESSION
	CONCLUSIONS

	Tone Reproduction
	TONE-MAPPING OPERATORS
	Luminance Domain Operators
	Local Adaptation
	Prevention of Halo Artifacts
	Segmentation-Based Operators
	Contrast Domain Operators

	TONE-MAPPING STUDIES WITH HUMAN SUBJECTS
	OBJECTIVE EVALUATION OF TONE MAPPING
	Contrast Distortion in Tone Mapping
	Analysis of Tone-Mapping Algorithms

	TEMPORAL ASPECTS OF TONE REPRODUCTION
	CONCLUSIONS

	HDR Display Devices
	HDR DISPLAY REQUIREMENTS
	DUAL-MODULATION DISPLAYS
	LASER PROJECTION SYSTEMS
	CONCLUSIONS

	LDR2HDR: Recovering Dynamic Range in Legacy Content
	BIT-DEPTH EXPANSION AND DECONTOURING TECHNIQUES
	REVERSING TONE-MAPPING CURVE
	SINGLE IMAGE-BASED CAMERA RESPONSE APPROXIMATION
	RECOVERING CLIPPED PIXELS
	HANDLING VIDEO ON-THE-FLY
	EXPLOITING IMAGE CAPTURING ARTIFACTS FOR UPGRADING DYNAMIC RANGE
	CONCLUSIONS

	HDRI in Computer Graphics
	COMPUTER GRAPHICS AS THE SOURCE OFHDR IMAGES AND VIDEO
	HDR IMAGES AND VIDEO AS THE INPUT DATA FOR COMPUTER GRAPHICS
	HDR Video-Based Lighting
	HDR Imaging in Reflectance Measurements

	CONCLUSIONS

	Software
	pfstools
	pfscalibration
	pfstmo
	HDR Visible Differences Predictor


	book-web-5-6.pdf
	book-web-7-8.pdf
	book-web-9-11.pdf




