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MEN OF MATHEMATICS

VOLUME ONE

CHAPTER ONE

INTRODUCTION

T r1s section is headed Introduction rather than Prefate (which
it really is) in the hope of decoying habitual preface-skippers
into reading — for their own comfort — at least the following
paragraphs down to the row of stars before going on to meet
some of the great mathematicians. I should like to emphasize
first that this book is not intended, in any sense, to be a history
of mathematics, or any section of such a history.

The lives of mathematicians presented here are addressed to
the general reader and to others who may wish to see what sort
of human beings the men were who created modern mathe-
matics. Our object is to lead up to some of the dominating ideas
governing vast tracts of mathematics as it exists to-day and to
do this through the lives of the men responsible for those ideas.

Two criteria have been applied in selecting names for inclu-
sion: the importance for modern mathematics of a man’s
work; the human appeal of the man’s life and character. Some
qualify under both heads, for example Pascal, Abel, and
Galois; others, like Gauss and Cayley, chiefly under the first,
although both had interesting lives. When these criteria clash
or overlap in the case of several claimants to remembrance for
a particular advance, the second has been given precedence, as
we are primarily interested here in mathematicians as human
beings.

Of recent years there has been a tremendous surge of general
interest in science, particularly physical science, and its bearing
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on our rapidly changing philosophical outlook on the universe.
Numerous excellent accounts of current advances in science,
written in as untechnical language as possible, have served to
lessen the gap between the professional scientist and those who
must make their livings at something other than science. In
many of these expositions, especially those concerned with
relativity and the modern quantum theory, names occur with
which the general reader cannot be expected to be familiar —
Gauss, Cayley, Riemann, and Hermite, for instance. With a
knowledge of who these men were, their part in preparing for
the explosive growth of physical science since 1900, and an
appreciation of their rich personalities, the magnificent achieve-
ments of science fall into a truer perspective and take on a new
significance.

The great mathematicians have played a part in the evolu-
tion of scientific and philosophic thought comparable to that of
the philosophers and scientists themselves. To portray the
leading features of that part through the lives of master mathe-
maticians, presented against a background of some of the
dominant problems of their times, is the purpose of the follow-
ing chapters. The emphasis is wholly on modern mathematics,
that is, on those great and simple guiding ideas of mathematical
thought that are still of vital importance in living, creative
science and mathematics.

It must not be imagined that the sole function of mathe-
matics ~ ‘the handmaiden of the sciences’ — is to serve science.
Mathematies has also been called ‘the Queen of the Sciences.’
If occasionally the Queen has seemed to beg from the sciences
she has been a very proud sort of beggar, neither asking nor
accepting favours from any of her more affluent sister sciences.
What she gets she pays for. Mathematics has a light and
wisdom of its own, above any possible application to science,
and it will richly reward any intelligent human being 1o catch
a glimpse of what mathematics means to itself. This is not the
old doctrine of art for art’s sake; it is art for humanity’s sake.
After 2ll, the whole purpose of science is not technology ~ God
knows we have gadgets enough already; science also explores
depths of a universe that will never, by any stretch of the
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imagination, be visited by human beings or affect our material
existence. So we shall attend also to some of the things which
the great mathematicians have considered worthy of loving
understanding for their intrinsic beauty.

Plato is said to have inseribed ‘Let no man ignorant of geo-
metry enter here’ above the entrance to his Academy. No
similar warning need be posted here, but a word of advice may
save some over-conscientious reader unnecessary anguish. The
gist of the story is in the lives and personalities of the creators
of modern mathematics, not in the handful of formulas and
diagrams scattered through the text. The basic ideas of modern
mathematics, from which the whole vast and intricate com-
plexity has been woven by thousands of workers, are simple, of
boundless scope, and well within the understanding of any
human being with normal intelligence. Lagrange (whom we
shall meet later) believed that a mathematician has not
thoroughly understood his own work till he has made it so clear
that he can go out and explain it effectively to the first man he
meets on the street.

This of course is an ideal and not always attainable. But it
may be recalled that only a few years before Lagrange said this
the Newtonian ‘law’ of gravitation was an incomprehensible
mystery to even highly educated persons. Yesterday the New-
tonian ‘law’ was a commonplace which every educated persom
accepted as simple and true; to-day Einstein’s relativistic-
theory of gravitation is where. Newton’s ‘law’ was in the early
decades of the eighteenth century; to-morrow or the day after
Einstein’s theory will seem as ‘natural’ as Newton’s ‘law”
seemed yesterday. With the help of time Lagrange’s ideal is
not unattainable.

Another great French mathematician, conscious of his own
difficulties no less than his readers’, counselled the conscientious
not to linger too long over anything hard but to ‘Go on, and
faith will come to you.’ In brief, if occasionally a formula, a
diagram, or a paragraph seems too technical, skip it. There is
ample in what remains.

Students of mathematics are familiar with the phenomenon
of ‘slow development’, or subconscious assimilation: the first
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time something new is studied the details seem too numerous
and hopelessly confused, and no coherent impression of the
whole is left on the mind. Then, on returning after a rest, it is
found that everything has fallen into place with its proper.
emphasis — like the development of a photographic film. The
majority of those who attack analytical geometry seriously for
the first time experience sometlﬁng of the sort. The calculus on
the other hand, with its aims clearly stated from the beginning,
is usually grasped quickly. Even professional mathematicians
often skim the work of others to gain a broad, comprehensive
view of the whole before concentrating on the details of interest
to them. Skipping is not a vice, as some of us were told by eur
puritan teachers, but a virtue of common sense.

As to the amount of mathematical knowledge necessary to
understand everything that some will wisely skip, I believe it
may be said honestly that a high school course in mathematics
is sufficient. Matters far beyond such a course are frequently
mentioned, but wherever they are, enough description has been
given to enable anyone with high school mathematics to follow.
For some of the most important ideas discussed in connexion
with their originators — groups, space of many dimensions, non-
Euclidean geometry, and symbolic logie, for example — less than
a high school course is ample for an understanding of the basic
concepts. All that is needed is interest and an undistracted
head. Assimilation of some of these invigorating ideas of
modern mathematical thought will be found as refreshing as a
drink of cold water on a hot day and as inspiring as any art.

To facilitate the reading, important definitions have been
repeated where necessary, and frequent references to earlier
chapters have been included from time to time.

The chapters need not be read consecutively. In fact, those
with 2 speculative or philosophical turn of mind may prefer to
read the last chapter first. With a few trivial displacements to
fit the social background the chapters follow the chronological
order.

It would be impossible to describe all the work of even the
least prolific of the men considered, nor would it be profitable
in an account for the general reader to attempt to do so.
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Moreover, much of the work of even the greater mathematicians
of the past is now of only historical interest, having been
included in more general points of view. Accordingly only some
of the conspicuously new things each man did are described,
and these have been selected for their originality and import-
ance in modern thought.

Of the topics selected for description we may mention the
following (among others) as likely to interest the general
reader: the modern doctrine of the infinite (chapters 2, 29); the
origin of mathematical probability (chapter 5); the concept and
importance of a group (chapter 15); the meanings of invariance
(chapter 21); non-Euclidean geometry (chapter 16 and part of
14); the origin of the mathematics of general relativity (last
part of chapter 26); properties of the common whole numbers
(chapter 4), and their modern generalization (chapter 25); the
meaning and usefulness of so-called imaginary numbers — like
v -1 (chapters 14, 19); symbolic reasoning (chapter 23). But
anyone who wishes to get a glimpse of the power of the mathe-
matical method, especially as applied to science, will be repaid
by seeing what the calculus is 2about (chapters 2, 6).

Modern mathematics began with two great advances,
analytical geometry and the calculus. The former took definite
shape in 1687, the latter about 1666, although it did not become
public property till a decade later. Though the idea behind it
all is childishly simple, yet the method of analytical geometry is
so powerful that very ordinary boys of seventeen can use it to
prove results which would have baffled the greatest of the Greek
geometers — Euclid, Archimedes, and Apollonius. The man,
Descartes, who finally crystallized this great method, had a
particularly full and interesting life.

In saying that Descartes was responsible for the creation of
analytical geometry we do not mean to imply that the new
method sprang full-armed from his mind alone. Many before
him had made significant advances toward the new method,
but it remained for Descartes to take the final step and actually
to put out the method as a definitely workable engine of geo-
metrical proof, discovery, and invention. But even Descartes
must share the honour with Fermat.
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Similar remarks apply to most of the other advances of
modern mathematics. A new concept may be ‘in the air’ for
generations until some one man - occasionally two or three
together — sees clearly the essential detail that his predecessors
missed, and the new thing comes into being. Relativity, for
example, is sometimes said to have been the great invention
reserved by time for the genius of Minkowski. The fact is,
however, that Minkowski did not create the theory of relativity
and that Einstein did. It seems rather meaningless to say that
So-and-so might have done this or that if circumstances had
been other than they were. Any one of us no doubt could jump
over the moon if we and the physical universe were different
from what we and it are, but the truth is that we do not make
the jump.

In ‘other instances, however, the credit for some great
advance is not always justly placed, and the man who first used
a new method more powerfully than its inventor sometimes gets
more than his due. This seems to be the case, for instance, in
the highly important matter of the calculus. Archimedes had
the fundamental notion of limiting sums from which the inte-
gral calculus springs, and he had not only had the notion but
showed that he could apply it. Archimedes also used the method
of the differential calculus in one of his problems. As we
approach Newton and Leibniz in the seventeenth century the
history of the calculus becomes extremely involved. The new
method was more than merely ‘in the air’ before Newton and
Leibniz brought it down to earth; Fermat actually had it. He
also invented the method of Carlesian geometry independently
of Descartes. In spite of indubitable facts such as these we shall
follow tradition and ascribe to each great leader what a majo-
rity vote says he should have, even at the risk of giving him a
little more than his just due. Priority after all gradually loses
its irritating importance as we recede in time from the men to
whom it was a hotly contested cause of verbal battles while
they and their partisans lived.

Those who have never known a professional mathematician
6
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may be rather sur‘iarised on meeting some, for mathematicians
as a class are probably less familiar to the general reader than
any other group of brain workers. The mathematician is a much
rarer character in fiction than his cousin the scientist, and when
he does appear in the pages of a novel or on the screen he is only
too apt to be a slovenly dreamer totally devoid of common
sense — comic relief. What sort of mortal is he in real life? Only
by seeing in detail what manner of men some of the greal
mathematicians were and what kind of lives they lived, can we
recognize the ludicrous untruth of the traditional portrait of a
mathematician.

Strange as it may seem, not all of the great mathematicians
have been professors in colleges or universities. Quite a few
were soldiers by profession; others went into mathematics
from theology, the law, and medicine, and one of the greatest
was as crooked a diplomat as ever lied for the good of his
country. A few have had no profession at all. Stranger yet, not
all professors of mathematies have been mathematicians. But
this should not surprise us when we think of the gulf between
the average professor of poetry drawing a comfortable salary
and the poet starving to death in his garret.

The lives that follow will at least suggest that a mathema-
tician can be as human as anybody else — sometimes distress-
ingly more so. In ordinary social contacts the majority have
been normal. There have been eccentrics in mathematics, of
course; but the percentage is no higher than in commerce or the
professions. As a group the great mathematicians have been
men of all-round ability, vigorous, alert, keenly interested in
many things outside mathematics and, in a fight, men with
their {ull share of backbone. As a rule mathematicians have
been bad customers to persecute; they have usually been
capable of returning what they received with compound
interest. For the rest they were geniuses of tremendous accom-
plishment marked off from the majority of their gifted fellow-
men only by an irresistible impulse to do mathematics. On
occasion mathematicians have been (and some still are in
France) extremely able administrators.

In their politics the great mathematicians have ranged over

7
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the whole spectrum from reactionary conservatism to radical
liberalism. It is probably correct to say that as a class they have
tended slightly to the left in their political opinions. Their
religious beliefs have included everything from the narrowest
orthodoxy — sometimes shading into the blackest bigotry — to
complete scepticism. A few were dogmatic and positive in their
assertions concerning things about which they knew nothing,
but most have tended to echo the great Lagrange’s ‘I do not
know’.

Another characteristic calls for mention here, as several
writers and artists (some from Hollywood) have asked that it
be treated — the sex life of great mathematicians. In particular
these inquirers wish to know how many of the great mathe-
maticians have been perverts — a somewhat indelicatle question,
possibly, but legitimate enough to merit a serious answer in
these times of preoccupation with such topics. None. Some
lived.celibate lives, usually on account of economic disabilities,
but the majority were happily married and brought up their
children in a civilized, intelligent manner. The children, it may
be noted in passing, were often gifted far above the average.
A few of the great mathematicians of bygone centuries kept
mistresses when such was the fashionable custom of their times.
The only mathematician discussed here whose life might offer
something of interest to a Freudian is Pascal.

Returning for 2 moment to the movie ideal of a mathemati-
cian, we note that sloppy clothes have not been the invariable
attire of great mathematicians. All through the long history of
mathematics about which we have fairly detailed knowledge,
mathematicians have paid the same amount of attention to
their personal appearance as any other equally numerous group
of men. Some have been fops, others slovens; the majority,
decently inconspicuous. If to-day some earnest individual
affecting spectacular clothes, long hair, a black sombrero, or
any other mark of exhibitionism, assures you that he is a
mathematician, you may safely wager that he is a psychologist
turned numerologist.

The psychological peculiarities of great mathematicians are
another topic in which there is considerable interest. Poincaré

8
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will tell us something about the psychology of mathematical
creation in a later chapter. But on the general question not
much can be said till psychologists call a truce and agree
among themselves as to what is what. On the whole the great
mathematicians have lived richer, more virile lives than those
that fall to the lot of the ordinary hard-working mortal. Nor
has this richness been wholly on the side of intellectual adven-
turesomeness. Several of the greater mathematicians have had
more than their share of physical danger and excitement, and
some of them have been implacable haters — or, what is ulti-
mately the same, expert controversialists. Many have known
the last of battle in their prime, reprehensibly enough, no
doubt, but still humanly enough, and in knowing it they have
experienced something no jellyfish has ever felt: ‘Damn braces,
Bless relaxes’, as that devout Christian William Blake put it in
his Proverbs of Hell.

This brings us to what at first sight (from the conduct of
several of the men considered here) may seem like a significant
trait of mathematicians — their hair-trigger quarrelsomeness.
Following the lives of several of these men we get the impression
that a great mathematician is more likely than not to think
others are stealing his work, or disparaging it, or not doing him
sufficient honour, and to start a row to recover imaginary rights.
Men who should have been above such brawls seem to have
gone out of their way to court battles over priority in discovery
and to accuse their competitors of plagiarism. We shall see
enough dishonesty to discount the superstition that the pursuit
of truth necessarily makes a man truthful, but we shall not find
indubitable evidence that mathematics makes 2 man bad-
tempered and quarrelsome.

Another ‘psychological’ detail of a similar sort is more dis-
turbing. Envy is carried up to a higher level. Narrow nation-
alism and international jealousies, even in impersonal pure
mathematies, have marred the history of discovery and inven-
tion to such an extent that it is almost impossible in some
important instances to get at the facts or to form a just estimate
of the significance of a particular man’s work for modermn
thought. Racial fanaticism — especially in recent times — has
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also complicated the task of anyone who may attempt to give
an unbiased account of the lives and work of scientific men
outside his own race or nation.

An impartial account of western mathematics, including the
award to each man and to each nation of its just share in the
intricate development, could be written only by a Chinese
historian. He alone would have the patience and the detached
cynicism necessary for disentangling the curiously perverted
pattern to discover whatever truth may be concealed in our
variegated occidental boasting.

Even in restricting our attention to the modern phase of
mathematics we are faced with a problem of selection that must
be solved somehow. Before the solution adopted here is indi-
cated it will be of interest to estimate the amount of labour
that would be required for a detailed history of mathematics
on a scale similar to that of a political history for any important
epoch, say that of the French Revolution or the American Civil
War.

‘When we begin unravelling a particular thread in the history
of mathematics we soon get a discouraged feeling that mathe-
matics itself is like a vast necropolis to which constant additions
are being made for the eternal preservation of the newly dead.
The recent arrivals, like some of the few who were shelved for
perpetual remembrance 5,000 years ago, must be so displayed
that they shall seem to retain the full vigour of the manhood in
which they died; in fact the illusion must be created that they
have not yet ceased living. And the deception must be so
natural that even the most sceptical archaeologist prowling
through the mausoleums shall be moved to exclaim with living
mathematicians themselves that mathematical truths are
immortal, imperishable; the same yesterday, to-day, and for-
ever; the very stuff of which eternal verities are fashioned and
the one glimpse of changelessness behind all the recurrent cycles
of birth, death, and decay our race has ever caught. Such may
indeed be the fact; many, especially those of the older genera-
tion of mathematicians, hold it to be no less.

But the mere spectator of mathematical history is soon over
whelmed by the appalling mass of mathematical inventions that
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still maintain their vitality and importance for modern work,
as discoveries of the past in any other field of scientific endea-
vour do not, after centuries and tens of centuries.

A span of less than a hundred years covers everything of
significance in the French Revolution or the American Civil
War, and less than five hundred leaders in either played parts
sufficiently memorable to merit recording. But the army of
those who have made at least ope definite contribution to
mathematics as we know it soon becomes a mob as we look back
over history; 6,000 or 8,000 names press forward for some word
from us to preserve them from oblivion, and once the bolder
leaders have been recognized it becomes largely a matter of
arbitrary, illogical legislation to judge who of the clamouring
multitude shall be permitted to survive and who be condemned
to be forgotten.

This problem scarcely presents itself in describing the deve-
lopment of the physical sciences. They also reach far back into
antiquity; yet for the most of them 850 years is a sufficient span
to cover everything of importance to modern thought. But
whoever attempts to do full, human justice to mathematics and
mathematicians will have a wilderness of 6,000 years in which
to exercise such talents as he may have, with that mob of 6,000
to 8,000 claimants before him for discrimination and attempted
justice.

The problem becomes more desperate as we approach our
own times. This is by no means due to our closer proximity to
the men of the two centuries immediately preceding our own,
but to the universally acknowledged fact (among professional
mathematicians) that the nineteenth century, prolonged into
the twentieth, was, and is, the greatest age of mathematics the
world has ever known. Compared to what glorious Greece did
in mathematics the nineteenth century is a bonfire beside a
penny candle.

‘What threads shall we follow to guide us through this laby-
rinth of mathematical inventions? The main thread has already
been indicated: that which leads from the half-forgotten past
to some of those dominating concepts which now govern bound-
less empires of mathematics — but which may themselves be

11
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dethroned to-morrow to make room for yet vaster generaliza-
tions. Following this main thread we shall pass by the developers
in favour of the originators.

Both inventors and perfectors are necessary to the progress
of any science. Every explorer must have, in addition to his
scouts, his followers to inform the world as to what he has dis-
covered. But to the majority of human beings, whether justly
or not is beside the point, the explorer who first shows the new
way is the more arresting personality, even if he himself
stumbles forward but half a step. We shall follow the originators
in preference to the developers. Fortunately for historical jus-
tice the majority of the great originators in mathematics have
also been peerless developers.

Even with this restriction the path from the past to the
present may not always be clear to those who have nct already
followed it. So we may state here briefly what the main guiding
clue through the whole history of mathematics is.

From the earliest times two opposing tendencies, sometimes
helping one another, have governed the whole involved deve-
lopment of mathematics. Roughly these are the discrefe and the
continuous.

The discrete struggles to describe all nature and all mathe-
matics atomistically, in terms of distinet, recognizable indivi-
dual elements, like the bricks in a wall, or the numbers 1,2,8,
... The continuous seeks to apprehend ndtural phenomena —
the course of a planet in its orbit, the flow of a current of elec-
tricity, the rise and fall of the tides, and a2 multitude of other
appearances which delude us into believing that we know
nature — in the mystical formula of Heraclitus: ‘All things
flow’. To-day (as will be seen in the concluding chapter), ‘Aow’,
or its equivalent, ‘continuity’, is so unclear as to be almost
devoid of meaning. However, let this pass for the moment.

Intuitively we feel that we know what is meant by ‘continuous
motion’ — as of a bird or a bullet through the air, or the fall of 2
raindrop. The motion is smooth; it does not proceed by jerks; it is
unbroken. In continuous motion or, more generally, in the con-
cept of continuity itself, the individualized numbers 1,2,8, ...,
are not the appropriate mathematical image. 4l the points on
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a segment of a straight line, for instance, have no such clear-cut
individualities as have the numbers of the sequence 1,2,3, ...,
where the step from one member of the sequence to the next is the
same (namely 1 : 1 4+ 2 = 8,1 4 8 = 4, and so on); for between
any two poiats on the line segment, no matter how close
together the points may be, we can always find, or at least
tmagine, another point: there is no ‘shortest’ step from one point to
the ‘next’. In fact there is no next point at all.

The last — the conception of continuity, ‘no nextness’ — when
developed in the manner of Newton, Leibniz, and their succes-
sors leads out into the boundless domain of the calculus and its
innumerable applications to science and technology, and to ali
that is to-day called mathematical analysis. The other, the
discrete pattern based on 1,2,3, ..., is the domain of algebra,
the theory of numbers, and symbolic logic. Geometry partakes
of both the continuous and the discrete.

A major task of mathematics to-day is to harmonize the con-
tinuous and the discrete, to include them in one comprehensive
mathematics, and to eliminate obscurity from both.

It may be doing our predecessors an injustice to emphasize
modern mathematical thought with but little reference to the
pioneers who took the first and possibly the most difficult steps.
But nearly everything useful that was done in mathematics
before the seventeenth century has suffered one of two fates:
either it has been so greatly simplified that it is now part of
every regular school course, or it was long since absorbed as a
detail in work of greater generality.

Things that now seem as simple as common sense — our way
of writing numbers, for instance, with its ‘place systém’ of
value and the introduction of 2'symbol for zero, which put the
essential finishing touch to the place system — cost incredible
labour to invent. Even simpler things, containing the very
essence of mathematical thought — abstractness and generality,
must have cost centuries of struggle to devise; yet their origi-
nators have vanished leaving not a trace of their lives and
personalities. For example, as Bertrand Russell observed, ‘It
must have taken many ages to discover that a brace of phea-
sants and a couple of days were both instances of the number
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two.” And it took some twenty-five centuries of civilization to
evolve Russell’s own logical definition of ‘two’ or of any car-
dinal number (reported in the concluding chapter of Volume
Two). '

Again, the conception of a point, which we (erroneously)
think we fully understand when we begin school geometry, must
have come very late in man’s career as an artistic, cave-painting
animal. Horace Lamb, an English mathematical physicist,
would ‘erect a monument to the unknown mathematical inven-
tor of the mathematical point as the supreme type of that
abstraction which has been a necessary condition of scientific
work from the beginning.’

‘Who, by the way, did invent the mathematical point? In one
sense Lamb’s forgotten man; in another, Euclid with his defini-
tion ‘a point is that which has no parts and which has no mag-
nitude’; in yet a third sense Descartes with his invention of the
‘co-ordinates of a point’; until finally in geometry as experts
practise it to-day the mysterious ‘point’ has joined the forgotten
man and all his gods in everlasting oblivion, to be replaced by
something more usable — a set of numbers written in a definite
order.

The last is a modern instance of the abstractness and preci-
sion toward which mathematics strives constantly, only to
realize when abstractness and precision are attained that a
higher degree of abstractness and a sharper precision are
demanded for clear understanding. Our own conception of a
‘point’ will no doubt evolve into something yet more abstract.
Indeed the ‘numbers’ in terms of which points are described
to-day dissolved about the beginning of this century into the
shimmering blue of pure logie, which in its turn seems about to
vanish in something rarer and even less substantial.

It is not necessarily true then that a step-by-step following
of our predecessors is the sure way to understand either their
conception of mathematics or our own. Such a retracing of the
path that has led up to our present outlook would undoubtedly
be of great interest in itself. But it is quicker to glance back
over the terrain from the hilltop on which we now stand. The
false steps, the crooked trails, and the roads that led nowhere
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fade out in the distance, and only the broad highways are seen
leading straight back to the past, where we lose them in the
mists of uncertainty and conjecture. Neither space nor number,
nor even time, have the same significance for us that they
had for the men whose great figures appear dimly through the
mist.

A Pythagorean of the sixth century before Christ could
intone ‘Bless us, divine Number, thou who generatest gods and
men’; 2 Kantian of the nineteenth century could refer confi-
dently to ‘space’ as a form of ‘pure intuition’; 2 mathematical
astronomer could announce a decade ago that the Great Archi-
tect of the Universe is a pure mathematician. The most remark-
able thing about all of these profound utterances is that human
beings no stupider than ourselves once thought they made
sense.

To a modern mathematician such all embracing generalities
mean less than nothing. Yet in parting with its claim to be the
universal generator of gods and men mathematics has gained
something more substantial, a faith in itself and in its ability
to create human values.

Our point of view has changed — and is still changing. To
Descartes’ ‘Give me space and motion and I will give you a
world,” Einstein to-day might retort that altogether too much
is being asked, and that the demand is in faet meaningless:
without 2 ‘world’ — matter — there is neither ‘space’ nor
‘motion’. And to quell the turbulent, muddled mysticism of
Leibniz in the seventeenth century, over the mysterious 4/ — 1:
“The Divine Spirit found 2 sublime outlet in that wonder of
analysis, the portent of the ideal, that mean between being and
not-being, which we call the imaginary [square] root of negative
unity’, Hamilton in the 1840’s constructed a number-couple
which any intelligent child can understand and manipulate, and
which does for mathematics and science all that the misnamed
‘imaginary’ ever did. The mystical ‘not-being’ of the seven-
teenth century Leibniz is seen to have a ‘being’ as simple as
ABC.

Is this a loss? Or does a modern mathematician lose anything
of value when he seeks through the postulational method to
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track down that elusive ‘feeling’-described by Heinrich Hertz,
the discoverer of wireless waves: ‘One cannot escape the feeling
that these mathematical formulas have an independent exist-
ence and an intelligence of their own, that they are wiser than
we are, wiser even than their discoverers, that we get more out
of them than was originally put into them’?

Any competent mathematician will understand Hertz’s
feeling, but he will also incline to the belief that whereas conti-
nents and wireless waves are discovered, dynamos and mathe-
matics are invented and do what we make them do. We can still
dream but we need not deliberately court nightmares. If it is
true, as Charles Darwin asserted, that ‘Mathematics seems to
endow one with something like a new sense’, that sense is the
sublimated common sense which the physicist and engineer
Lord Kelvin declared mathematics to be.

Is it not closer to our own habits of thought to agree tem-
porarily with Galileo that ‘Nature’s great book is written in
mathematical symbols’ and let it go at that, than to assert with
Plato that ‘God ever geometrizes’, or with Jacobi that ‘God
ever arithmetizes’? If we care to inspect the symbols in nature’s
great book through the critical eyes of modern science we soon
perceive that we ourselves did the writing, and that we used the
particular script we did because we invented it to fit our own
understanding. Some day we may find a more expressive short-
hand than mathematics for correlating our experiences of the
physical universe — unless we accept the creed of the scientific
mystics that everything ¢s mathematics and is not merely
described for our convenience in mathematical language. If
‘Number rules the universe’ as Pythagoras asserted, Number is
merely our delegate to the throne, for we rule Number.

When a modern mathematician turns aside for a moment
from his symbols to communicate to others the feeling that
mathematics inspires in him, he does not echo Pythagoras and
Jeans, but he may quote what Bertrand Russell said about a
quarter of a century ago: ‘Mathematics, rightly viewed, pos-
sesses not only truth but supreme beauty — a beauty cold and
austere, like that of sculpture, without appeal to any part of
our weaker nature, without the gorgeous trappings of painting
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or music, yet sublimely pure, and capable of a stern perfection
such as only the greatest art can show.’

Another, familiar with what has happened to our conception
of mathematical ‘truth’ in the years since Russell praised the
beauty of mathematics, might refer to the ‘iron endurance’
which some acquire from their attempt to understand what
mathematics means. And if some devotee is reproached for
spending his life on what to many may seem the selfish pursuit
of 2 beauty having no immediate reflection in the lives of his
fellow men, he may repeat Poincaré’s ‘Mathematics for mathe-
matics’ sake. People have been shocked by this formula and yet
it is as good as life for life’s sake, if life is but misery.’

To form an estimate of what modern mathematics compared
to ancient has accomplished, we may first look at the mere bulk
of the work in the period after 1800 compared to that before
1800. The most extensive history of mathematics is that of
Moritz Cantor, Geschichte der Mathematik, in three large closely
printed volumes (a fourth, by collaborators, supplements the
three). The four volumes total about 8,600 pages. Only the out-
line of the development is given by Cantor; there is no attempt
to go into details concerning the contributions described, nor
are technical terms explained so that an outsider could under-
stand what the whole story is about, and biography is cut to the
bone; the history is addressed to those who have some technical
training. This history ends with the year 1799 — just before
modern mathematics began to feel its freedom. What if the
outline history of mathematics in the nineteenth century alone
were atternpted on a similar scale? It has been estimated that
nineteen or twenty volumes the size of Cantor’s would be
required to tell the story, say about 17,000 pages. The nine-
teenth century, on this scale, contributed to mathematical
knowledge about five times as much as was done in the whole of
preceding history.

The beginningless period before 1800 breaks quite sharply
into two. The break occurs about the year 1700, and is due
mainly to Isaac Newton (1642-1727). Newton’s greatest rival
in mathematics was Leibniz (1646-1716). According to Leibniz,
of all mathematics up to the time of Newton, the more impor-
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tant half is due to Newton. This estimate refers to the power of
Newton’s general methods rather than to the bulk of his work;
the Principia is still rated as the most massive addition to
scientific thought ever made by one man.

Continuing back into time beyond 1700 we find nothing
comparable till we reach the Golden Age of Greece — a step of
nearly 2,000 years. Farther back than 600 B.c. we quickly pass
into the shadows, coming out into the light again for 2 moment
in ancient Egypt. Finally we arrive at the first great age of
mathematies, about 2000 B.c., in the Euphrates Valley.

The descendants of the Sumerians in Babylon appear to have
been the first ‘moderns’ in mathematics; certainly their attack
on algebraic equations is more in the spirit of the algebra we
know than anything done by the Greeks in their Golden Age.
More important than the technical algebra of these ancient
Babylonians is their recognition — as shown by their work — of
the necessity for proof in mathematics. Until recently it had
been supposed that the Greeks were the first to recognize that
proof is demanded for mathematical propositions. This was one
of the most important steps ever taken by human beings.
Unfortunately it was taken so long ago that it led nowhere in
particular so far as our own civilization is concerned — unless
the Greeks followed consciously, which they may well have
done. They were not particularly generous to their predecessors.

Mathematics then has had four great uges: the Babylonian,

. the Greek, the Newtonian (to give the period around 1700 a
name), and the recent, beginning about 1800 and continuing to
the present day. Competent judges have called the last the
Golden Age of Mathematics.

To-day mathematical invention (discovery, if you prefer) is
going forward more vigorously than ever. The only thing,
apparently, that can stop its progress is 2 general collapse of
what we have been pleased to call civilization. If that comes,
mathematics may go underground for centuries, as it did after
the decline of Babylon; but if history repeats itself, as it is said
to do, we may count on the spring bursting forth again, fresher
and clearer than ever, long after we and all our stupidities shall
have been forgotten.



CHAPTER TWO

MODERN MINDS IN ANCIENT BODIES

Zeno, Eudorus, Archimedes

To appreciate our own Golden Age of mathematics we shall do
well to have in mind a few of the great, simple guiding ideas
of those whose genius prepared the way for us long ago, and
we shall glance at the lives and works of three Greeks: Zeno
(495-435 B.C.), Eudoxus (408-855), and Archimedes (287-212).
Euclid will be noticed much later, where his best work comes
into its own.

Zeno and Eudoxus are representative of two vigorous oppos-
ing schools of mathematical thought which flourish to-day, the
critical-destructive and the critical-constructive. Both had
minds as penetratingly critical as their successors in the nine-
teenth and twentieth centuries. This statement can of course
be inverted: Kronecker (1828-91) and Brouwer (1881— )
the modern critics of mathematical analysis — the theories of
the infinite and the continuous — are as ancient as Zeno; the
creators of the modern theories of continuity and the infinite,
Weierstrass (1815-97), Dedekind (18381-1916), and Cantor
(1845-1918), are intellectual contemporaries of Eudoxus.

Archimedes, the greatest intellect of antiquity, is modern to
the core. He and Newton would have understood one another
perfectly, and it is just possible that Archimedes, could he come
to life long enough to take a post-graduate course in mathe-
matics and physics, would understand Einstein, Bobr, Heisen-
berg, and Dirac better than they understand themselves. Of
all the anclents Archimedes is the only one who habitually
thought with the unfettered freedom that the greater mathe-
maticians permit themselves to-day with all the hard-won gains
of twenty-five centuries to smooth their way, for he alone of all
the Greeks had sufficient stature and strength to stride clear
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over the obstacles thrown in the path of mathematical progress
by frightened geometers who had listened to the philosophers.

Any list of the three ‘greatest’ mathematicians of all history
would include the name of Archimedes. The other two usually
associated with him are Newton (1642-1727) and Gauss (1777~
1855). Some, considering the relative wealth — or poverty — of
mathematics and physical science in the respective ages in
which these giants lived, and estimating their achievements
against the background of their times, would put Archimedes
first. Had the Greek mathematicians and scientists followed
Archimedes rather than Euclid, Plato, and Aristotle, they
might easily have anticipated the age of modern mathematics,
which began with Descartes (1596-1650) and Newton in the
seventeenth century, and the age of modern physical science
inaugurated by Galileo (1564-1642) in the same century, by
2,000 years.

Behind all three of these precursors of the modern age looms
the half-mythical figure of Pythagoras (569?7-500? B.c.),
mystic, mathematician, investigator of nature to the best of his
self-hobbled ability, ‘one-tenth of him genius, nine-tenths sheer
fudge’. Mis life has become a fable, rich with the incredible
accretions of his prodigies; but only this much is of importance
for the development of mathematics as distinguished from the
bizarre number-mysticism in which he clothed his cosmic
speculations: he travelled extensively in Egypt, learned much
from the priests and believed more; visited Babylon and
repeated his Egyptian experiences; founded a secret Brother-
hood for high mathematical thinking and nonsensical physical,
mental, moral, and ethical speculation at Croton in southern
Italy; and, out of all this, made two of the greatest contribu-
tions to mathematics in its entire history. He died, according
to one legend, in the flames of his own school fired by political
and religious bigots who stirred up the masses to protest against
the enlightenment which Pythagoras sought to bring them. Sic
transit gloria mundi.

Before Pythagoras it had not been clearly realized that proof
must proceed from assumptions. Pythagoras, according to per-
sistent tradition, was the first European to insist that the
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axioms, the postulaies, be set down first in developing geometry
and that the entire development, thereafter shall proceed by
applications of close deductive reasoning to the axioms.
Following current practice we shall use ‘postulate’, instead of
‘axiom’, hereafter, as ‘axiom’ has a pernicious historical associa-
tion of ‘self-evident, necessary truth’ which ‘postulate’ does not
have; a postulate is an arbitrary assumption laid down by the
mathematician himself and not by God Almighty.

Pythagoras then imported proof into mathematics. This is his
greatest achievement. Before him geometry had been largely a
collection of rules of thumb empirically arrived at without any
clear indication of the mutual connexions of the rules, and with-
out the slightest suspicion that all were deducible from a com-
peratively small number of postulates. Proof is now so com-
monly taken for granted as the very spirit of mathematics that
we find it difficult to imagine the primitive thing which must
have preceded mathematical reasoning.

Pythagoras® second outstanding mathematical contribution
brings us abreast of living problems. This was the discovery,
which humiliated and devastated him, that the common whole
numbers 1,2,8, ... are insufficient for the construction of
mathematics even in the rudimentary form in which he knew it.
Before this capital discovery he had preached like an inspired
prophet that all nature, the entire universe in fact, physical,
metaphysical, mental, moral, mathematical — everything — is
built on the discrete pattern of the integers 1,2,3, ... and is
interpretable in terms of these God-given bricks alone; God, he
declared indeed, ¢s ‘number’, and by that he meant common
whole number. A sublime conception, no doubt, and beautifully
simple, but as unworkable as its echo in Plato — ‘God ever
geometrizes’, or in Jacobi — ‘God ever arithmetizes’, or in Jeans
— “The Great Architect of the Universe now begins to appear as
a mathematician.’ One obstinate mathematical discrepancy
demolished Pythagoras” discrete philosophy, mathematics, and
metaphysics. But, unlike some of his successors, he finally
accepted defeat — after struggling unsuccessfully to suppress the
discovery which abolished his creed.

This was what knocked his theory flat: it is impossible to find
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two whole numbers such that the square of one of them is equal
to twice the square of the other. This can be proved by a simple
argument* within the reach of anyone who has had a few weeks
of algebra, or even by anyone who thoroughly understands
elementary arithmetic. Actually Pythagoras found his stum-
bling-block in geometry: the ratio of the side of a square to one
of its diagonals cannot be expressed as the ratio of any two
whole numbers. This is equivalent to the statement above about
squares of whole numbers. In another form we would say that
the square root of 2 is irrational, that is, is not equal to any
whole number or decimal fraction, or sum of the two, got by
dividing one whole number by another. Thus even so simple a
geometrical concept as that of the diagonal of a square defies
the integers 1,2,8, ... and negates the earlier Pythagorean
philosophy. We can easily construct the diagonal geometrically,
but we cannot measure it in any finite number of steps. This
impossibility sharply and clearly brought irrational numbers
and the infinite (non-terminating) processes which they seem
to imply to the attention of mathematicians. Thus the square
root of two can be caleulated to any required firite number of
decimal places by the process taught in school or by more
powerful methods, but the decimal never ‘repeats’ (as that for
1/7 does, for instance), nor does it ever terminate. In this disco-
very Pythagoras found the taproot of modern mathematical
analysis.

Issues were raised by this simple problem which are not yet
disposed of in a manner satisfactory to all mathematicians,
These concern the mathematical concepts of the infinite (the
unending, the uncountable), limits, and continuity, concepts
which are at the root of modern analysis. Time after time the
paradoxes-and sophisms which crept into mathematics with
these apparently indispensable concepts have been regarded as

* Let a® = 2b%, where, without loss of generality, a, b are whole
numbers without any common factor greater than 1 (such a factor
could be cancelled from the assumed equation). If a is odd, we have
an immediate contradiction, since 282 is even; 1f « is even, say 2¢, then
4¢% = 2b2, or 2¢® = b? so b is even, and hence a, b have the common
factor 2, again a contradiction.
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finally eliminated, only to reappear a generation or two later,
changed but yet the same. We shall come across them, livelier
than ever, in the mathematics of our time. The following is an
extremely simple, intuitively obvious picture of the situation.

4 % %

% e

Consider a straight line two inches long, and imagine it to
have been traced by the ‘continuous’ ‘motion’ of a ‘point’. The
words in quotes are those which conceal the difficulties. With-
out analyzing them we easily persuade ourselves that we picture
what theysignify. Nowlabel theleft-hand end of the line 0 and the
right-hand end 2. Half-way between 0 and 2 we naturally put 1;
half-way between 0 and 1 we put }; half-way between 0 and 3
we put %, and so on. Similarly, between 1 and 2 we mark the
place 1}, between 1} and 2, the place 1%, and so on. Having
done this we may proceed in the same way to mark %, %, 14, 13,
and then split each of the resulting segments into smaller equal
segments. Finally, ‘in imagination’, we can conceive of this
process having been carried out for all the common fractions
and common mixed numbers which are greater than 0 and
less than 2; the conceptual division-points give us all the rational
numbers between 0 and 2. There are an infinity of them. Do they
completely ‘cover’ the line? No. To what point does the square
root of 2 correspond? No point, because this square root is not
obtlainable by dividing any whole number by another. But the
square root of 2 is obviously a ‘number’ of some sort*; its repre-
sentative point lies somewhere between 1-41 and 1-42, and we
can cage it down as closely as we please. To cover the line com-
pletely we are forced to imagine or to invent infinitely more
‘numbers’ than the rationals. That is, if we accept the line as
being continuous, and postulate that to each point of it corre-
sponds one, and only one, ‘real number’. The same kind of
imagining can be carried on to the entire plane, and farther, but
this is sufficient for the moment.

Simple problems such as these soon lead to very serious

* The inherent viciousness of such an assumption is obvious.
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difficulties. With regerd to these difficulties the Greeks were
divided, just as we are, into two irreconcilable factions; one
stopped dead in its mathematical tracks and refused to go on to
analysis ~ the integral calculus, at which we shall glance when
we come to it; the other attempted to overcome the difficulties
and succeeded in convincing itself that it had done so. Those
who stopped committed but few mistakes and were compara;
tively sterile of truth no less than of error; those who went on
discovered much of the highest interest to mathematics and
rational thought in general, some of which may be open to
destructive criticism, however, precisely as has happened in
our own generation. From the earliest times we meet these two
distinct and antagonistic types of mind: the justifiably cautious
who hang back because the ground quakes under their feet, and
the bolder pioneers who leap the chasm to find treasure and
comparative safety on the other side. We shall look first at one
of those who refused to leap. For penetrating subtlety of
thought we shall not meet his equal till we reach the twentieth
century and encounter Brouwer.

Zeno of Elea (495435 B.c.) was a friend of the philosopher
Parmenides, who, when he visited Athens with his patron,
shocked the philosophers out of their complacency by inventing
four innocent paradoxes which they could not dissipate in
words. Zeno is said to have been a self-taught country boy.
‘Without attempting to-decide what was his purpose in invent-
ing his paradoxes — authorities hold widely divergent opinions —
we shall merely state them. With these before us it will be fairly
obvious that Zeno would have objected to our ‘infinitely con-
tinued’ division of that two-inch line a moment ago. This will
appear from the first two of his paradoxes, the Dichofomy and
the Achilles. The last two, however, show that he would have
objected with equal vehemence to the opposite hypothesis,
namely that the linc is not ‘infinitely divisible’ but is composed
of a discrete set of points that can be counted off 1,2,3, ... All
four together constitute an iron wall beyond which progress
appears to be impossible.

First, the Dichotomy. Motion is impossible, because whatever
moves must reach the middle of its course before it reaches the
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end; but before it has reached the middle it must have reached
the quarter-mark, and so on, indefinitely. Hence the motion can
never even start.

Second, the Achilles. Achilles running to overtake a crawling
tortoise ahead of him can never overtake it, because he must
first reach the place from which the tortoise started; when
Achilles reaches that place, the tortoise has departed and so is
still ahead. Repeating the argument we easily see that the
tortoise will always be ahead.

Now for the other side.

The 4rrow. A moving arrow 2t any instant is either at rest or
not at rest, that is, moving. If the instant is indivisible, the
arrow cannot move, for if it did the instant would immediately
be divided. But time is made up of instants. As the arrow can-
not move in any one instant, it cannot move in any time.
Hence it always remains at rest.

The Stadium. “To prove that half the time may be equal to
double the time. Consider three rows of bodies.

First Position Second Position
(A) 0 0 0 O (A) 0 0 0 O
B) 0 0 00 B) 6 0 0 0
(C) 0 0 0 O ©) 0 0 0 O

one of which (A) is at rest while the other two (B), (C) are
moving with equal velocities in opposite directions. By the time
they are all in the same part of the course (B) will have passed
twice as many of the bodies in (C) as in (A). Therefore the time
which it takes to pass (A) is twice as long as the time it takes to
pass (C). But the time which (B) and (C) take to reach the
position of (A) is the same. Therefore double the time is equal
to half the time.’ (Burnet’s translation.) It is helpful to imagine
(A) as a circular picket fence.

These, in non-mathematical language, are the sort of diffi-
culties the early grapplers with continuity and infinity encoun-
tered. In books written twenty years or so ago it was said that
‘the positive theory of infinity’ created by Cantor, and the like
for ‘irrational’ numbers, such as the square root of 2, invented
by Eudoxus, Weierstrass, and Dedekind, had disposed of all
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these difficulties once and forever. Such a statement would
not be accepted to-day by all schools of mathematical thought.
So in dwelling upon Zeno we have in fact been discussing our-
selves, Those who wish to see any more of him may consult
Plato’s Parmenides. We need remark only that Zeno finally lost
his head for treason or something of the sort, and pass on to
those who did not lose their heads over his arguments. Those
who stayed behind with Zeno did comparatively little for the
advancement of mathematics, although their successors have
done much to shake its foundations.

Eudoxus (408-355 B.c.) of Cnidus inherited the mess which
Zeno bequeathed the world and not much more, Like more than
one man who has left his mark on mathematics, Eudoxus
suffered from extreme poverty in his youth. Plato was in his
prime while Eudoxus lived and Aristotle was about thirty when
Eudoxus died. Both Plato and Aristotle, the leading philo-
sophers of antiquity, - were much concerned over the doubts
which Zeno had injected into mathematical reasoning and
which Eudoxus, in his theory of proportion — ‘the crown of
Greek mathematics’ — was to allay till the last quarter of the
nineteenth century.

As a young man Eudoxus moved to Athens from Tarentum,
where he had studied with Archytas (428-347 B.c.), a first-rate
mathematician, administrator, and soldier. Arriving in Athens,
Eudoxus soon fell in with Plato. Being too poor to live near the
Academy, Eudoxus trudged back and forth every day from the
Piraeus where fish and olive oil were cheap and lodging was to
be had for a smile in the right place.

Although he himself was not a mathematician in the tech-
nical sense, Plato has been called ‘the maker of mathemati-
cians’, and it cannot be denied that he did irritate many
infinitely better mathematicians than himself into creating
some real mathematics. As we shall see, his total influence on
the development of mathematics was probably baneful. But he
did recognize what Eudoxus was and became his devoted
friend until he began to exhibit something like jealousy towards
his brilliant protégé. It is said that Plato and Eudoxus made a
journey to Egypt together. If so, Eudoxus seems to have been
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less credulous than his predecessor Pythagoras; Plato, however,
shows the effects of having swallowed vast quantities of the
number-mysticism of the East. Finding himself unpopular in
Athens, Eudoxus finally settled and taught at Cyzicus, where
he spent his last years. He studied medicine and is said to have
been a practising physician and legislator on itop of his mathe-
matics. As if all this were not enough to keep one man busy he
undertook 2 serious study of astronomy, to which he made
outstanding contributions. In his scientific outlook he was
centuries ahead of his verbalizing, philosophizing contem-
poraries. Like Galileo and Newton he had a contempt for
speculations about the physical universe which could not be
checked by observation and experience. If by getting to the
sun, he said, he could ascertain 1ts shape, size, and nature, he
would gladly share the fate of Phaéthon, but in the meantime
he would not guess.

Some idea of what Eudoxus did can be seen from a very
simple problem. To find the area of a rectangle we multiply the
length by the breadth. Although this sounds intelligible it
presents serious difficulties unless both sides are measurable by
rational numbers. Passing these particular difficulties we see
them in a more evident form in the next simplest type of
problem, that of finding the length of a curved line, or the area
of a curved surface, or the volume enclosed by curved surfaces.

Any young genius wishing to test his mathematical powers
may try to devise 2 method for doing these things. Provided he
has never seen it done in school, how would he proceed to give a
rigorous proof of the formula for the circumference of a circle
of any given radius? Whoever does that entirely on his own
initiative may justly claim to be 2 mathematician of the first
rank. The moment we pass from figures bounded by straight
lines or flat surfaces we run slap into all the problems of con-
tinuity, the riddles of the infinite and the mazes of irrational
numbers. Eudoxus devised the first logically satisfactory
method, which Euclid reproduced in Book V of his Elements,
for handling such problems. In his method of exhaustion, applied
to the computation of areas and volumes, Eudoxus showed that
we need not assume the ‘existence’ of ‘infinitely small quan-
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tities’. It is sufficient for the purposes of mathematics to be able
to reach a magnitude as small as we please by the continued
division of a given magnitude.

To finish with Eudoxus we shall state his epochal definition
of equal ratios which enabled mathematicians to treat irra-
tional numbers as rigorously as the rationals. This was, essen-
tially, the starting-point of one modern theory of irrationals.

“The first of four magnitudes is said to have the same ratio to
the second that the third has to the fourth when, any whatever
equimultiples [the same multiples] of the first and third being
taken, and any other equimultiples of the second and fourth, the
multiple of the first is greater than, equal to, or less than the
multiple of the second, according as the multiple of the third is
greater than, equal to, or less than the multiple of the
fourth.’

Of the Greeks not yet named whose work influenced mathe-
matics after the year 1600 only Apollonius need be mentioned
here. Apollonius (260?-200? B.c.) carried geometry in the
manner of Euclid — the way it is still taught to hapless beginners
—~ far beyond the state in which Euclid (83072757 B.C.) left it.
As a geometer of this type — a synthefic, ‘pure’ geometer —
Apollonius is without a peer till Steiner in the nineteenth
century.

If a cone standing on a circular base and extending indefi-
nitely in both directions through its vertex is cut by a plane,
the curve in which the plane intersects the surface of the cone
is called a conic section. There are five possible kinds of conic
sections: the ellipse; the hyperbola, consisting of two branches;
the parabola, the path of a projectile in a vacuum; the circle;
and a pair of intersecting straight lines. The ellipse, parabola,
and hyperbola are ‘mechanical curves’ according to the
Platonic formula; that is, these curves cannot be constructed
by the use of straightedge and compass alone, although it is
easy, with these implements, to construct any desired number
of points lying on any one of these curves. The geometry of the
conic sections, worked out to 2 high degree of perfection by
Apollonius and his successors, proved to be of the highest
importance in the celestial mechanics of the seventeenth and
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succeeding centuries. Indeed, had not the Greek geometers run
ahead of Kepler it is unlikely that Newton could ever have
come upon his law of universal gravitation, for which Kepler
had prepared the way with his laboriously ingenious caleula-
tions on the orbits of the planets.

Two intersectng Circle Llpse
straght lines

parabola Flyperbola

Among the later Greeks and the Arabs of the Middle Ages
Archimedes seems to have inspired the same awe and reverence
that Gauss did among his contemporaries and followers in the
nineteenth century, and that Newton did in the seventeenth
and eighteenth. Archimedes was the undisputed chieftain of
them all, ‘the old man’, ‘the wise one’, ‘the master’, ‘the great
geometer.” To recall his dates, he lived in 287-212 B.c. Thanks
to Plutarch more is known about his death than his life, and it
is perhaps not unfair to suggest that the typical historical
biographer Plutarch evidently thought the King of Mathema-
ticians a less important personage historically than the Roman
soldier Marcellus, into whose Life the account of Archimedes is
slipped like a tissue-thin shaving of ham in a bull-choking sand-
wich. Yet Archimedes is to-day Maxrcellus’ chief title to remem-
brance — and execration. In the death of Archimedes we shall
see the first impact of a crassly practical civilization upon the
greater thing which it destroyed — Rome, having half-
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demolished Carthage, swollen with victory and imperially
purple with valour, falling upon Greece to shatter its fine
fragility.

In body and mind Archimedes was an aristocrat. The son of
the astronomer Pheidias, he was born at Syracuse, Sicily, and
is said to have been related to Hieron II, tyrant (or king) of
Syracuse. At any rate he was on inlimate terms with Hieron
and his son Gelon, both of whom had a high admiration for the
king of mathematicians. His essentially aristocratic tempera-
ment expressed itself in his attitude to what would to-day be
called applied science. Although he was one of the greatest
mechanical geniuses of all time, if not the greatest when we’
consider how little he had to go on, the aristocratic Archimedes
had a sincere contempt for his own practical inventions. From
one point of view he was justified. Books could be written on
what Archimedes did for applied mechanics; but great as this
work was from our own mechanically biased point of view, it is
completely overshadowed by his contributions to pure mathe-
matics. We look first at the few known facts about him and the
legend of his personality.

According to tradition Archimedes is a perfect museum
specimen of the popular conception of what a great mathe-
matician should be. Like Newton and Hamilton he left his
meals untouched when he was deep in his mathematics. In the
matter of inattention to dress he even surpasses Newton, for on
making his famous discovery that a floating body loses in
weight an amount cqual to that of the liquid displaced, he
leaped from the bath in which he had made the discovery by
observing his own floating body, and dashed through the streets
of Syracuse stark naked, shouting ‘Eureka, eureka!” (I have
found it, I have found it!) What he had found was the first law
of hydrostatics. According to the story a dishonest goldsmith
had adulterated the gold of a crown for Hieron with silver and
the tyrant, suspecting fraud, had asked Archimedes to put his
mind on the problem. Any high school boy knows how it is
solved by a simple experiment and some easy arithmetic on
specific gravity; ‘the principle of Archimedes’ and its numerous
practical applications are meat for youngsters and naval engi-
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neers to-day, but the man who first saw through them had more
than common insight. It is not definitely known whether the
goldsmith was guilty; for the sake of the story it is usually
assumed that he was.

Another exclamation of Archimedes which has come down
through the centuries is ‘Give me a place to stand on and I will
move the earth’ (wd Bd kal kiwd Ty ydy, 2s he said it in Dorie).
He himself was strongly moved by his discovery of the laws of
levers when he made his boast. The phrase would make a
perfect motto for a modern scientific institute; it seems strange
that it has not been appropriated. There is another version in
better Greek but the meaning is the same.

In one of his eccentricities Archimedes resembled another
great mathematician, Weierstrass. According to a sister of
Weierstrass, he could not be trusted with 2 pencil when he was
a young school teacher if there was a square foot of clear wall-
paper or a clean cuff anywhere in sight. Archimedes beats this
record. A sanded floor or dusted hard smooth earth was a
common sort of ‘blackboard’ in his day. Archimedes made his
own ocecasions. Sitting before the fire he would rake out the
ashes and draw in them. After stepping from the bath he would
anoint himself with olive oil, according to the custom of the
time, and then, instead of putting on his clothes, proceed to lose
himself in the diagrams which he traced with a finger-pail on
his own oily skin.

Archimedes was a lonely sort of eagle. As a young man he had
studied for a short time at Alexandria, Egypt, where he made
two life-long {riends, Conon, a gifted mathematician for whom
Archimedes had a high regard both personal and intellectual,
and Eratosthenes, also 2 good mathematician but quite a fop.
These two, particularly Conon, seem to have been the only men
of his contemporaries with whom Archimedes felt he could
share his thoughts and be assured of understanding. Some of his
finest work was communicated by letters to Conon. Later, when
Conon died, Archimedes corresponded with Dositheus, 2 pupil
of Conon.

Leaving aside his great contributions to astronomy and
mechanical invention we shall give a bare and inadequate sum-.
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mary of the principal additions which Archimedes made to pure
and applied mathematics.

He invented general methods for finding the areas of curvi-
linear plane figures and volumes bounded by curved surfaces,
and applied these methods to many special instances, including
the circle, sphere, any segment of a parabola, the area enclosed
between two radii and two successive whorls of a spiral, seg-
ments of spheres, and segments of surfaces generated by the
revolution of rectangles (cylinders), triangles (cones), parabolas
(paraboloids), hyperbolas (hyperboloids), and ellipses (sphe-
roids) about their principal axes. He gave a method for calcu-
lating = (the ratio of the circumference of a circle to its
diameter), and fixed = as lying between 3 1/7 and 8 10/71; he
also gave methods for approximating to square roots which
show that he anticipated the invention by the Hindus of what
amount to periodic continued fractions. In arithmetic, far sur-
passing the incapacity of the unscientific Greek method of
symbolizing numbers to write, or even to describe, large
numbers, he invented 2 system of numeration capable of hand-
ling numbers as large as desired. In mechanics he laid
down some of the fundamental postulates, discovered the
laws of levers, and applied his mechanical principles (of
levers) to calculate the areas and centres of gravity of several
flat surfaces and solids of various shapes. He created the
whole science of hydrostatics and applied it to find the posi-~
tions of rest and of equilibrium of floating bodies of several
kinds.

Archimedes composed not one masterpiece but many. How
did he do it all? His severely economical, logical exposition
gives no hint of the method by which he arrived at his wonderful
results. But in 1906, J. L. Heiberg, the historian and scholar
of Greek mathematics, made the dramatic discovery in Con-
stantinople of 2 hitherto ‘lost’ treatise of Archimedes addressed
to his friend Eratosthenes: On Mechanical Theorems, Method,
In it Archimedes explains how by weighing, in imagination, a
figure or solid whose area or volume was unknown against a
known one, he was led to the knowledge of the fact he sought;
the fact being known it was then comparatively easy (for him)
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to prove it mathematically. In short he used his mechanics to
advance his mathematics. This is one of his titles to a modern
mind: he used anything and everything that suggested itself as a
weapon o attack his problems.

To a modern 2ll is fair in war, love, and mathematics; to
many of the ancients, mathematics was a stultified game to be
played according to the prim rules imposed by the philosophi-
cally-minded Plato. According to Plato only a straight-edge and
a pair of compasses were to be permitted as the implements of
construction in geometry. No wonder the classical geometers
hammered their heads for centuries against ‘the three problems
of antiquity’: to trisect an angle; to construct a cube having
double the volume of a given cube; to construct 2 square equal
to a circle. None of these problems is possible with only straighi-
edge and compass, although it is hard to prove that the third is
not, and the impossibility was finally proved only in 1882. All
constructions effected with other implements were dubbed
‘mechanical’ and, as such, for some mystical reason known only
to Plato and his geometrizing God, were considered shockingly
vulgar and were rigidly taboo in respectable geometry. Not
till Descartes, 1,985 years after the death of Plato, published
his analytical geometry, did geometry escape from its Platonic
straightjacket. Plato of course had been dead for sixty years or
more before Archimedes was born, so he cannot be censured for
not appreciating the lithe power and freedom of the methods of
Archimedes. On the other hand, only praise is due to Archi-
medes for not appreciating the old-maidishness of Plato’s
rigidly corseted conception of what the muse of geometry
should be.

The second claim of Archimedes to modernity is also based
upon his methods. Anticipating Newton and Leibniz by more
than 2,000 years he invented the integral calculus and in one of
his problems anticipated their invention of the differential
calculus. These two calculuses together constitute what is
known as the calculus, which has been described as the most
powerful instrument ever invented for the mathematical
exploration of the physical universe. To take a simple example,
suppose we wish to find the area of a circle. Among other ways
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of doing this we may slice the circle into any number of parallel
strips of equal breadth, cut off the curved ends of the strips, so
that the discarded bits shall total the least possible, by cuts
perpendicular to the strips, and then add up the areas of all the
resulting rectangles. This gives an approximation to the area
sought. By increasing the number of strips indefinitely and
.taking the limit of the sum, we get the area of the circle. This
(crudely described) process of taking the limit of the sum is
called integration; the method of performing such summations
is called the integral calculus. It was this calculus which
Archimedes used in finding the area of a segment of a parabola
and in other problems.

AT T

N 7

The problem in which he used the differential calculus was
that of constructing a tangent at any given point of his spiral.
If the angle which the tangent makes with any given line is
known, the tangent can easily be drawn, for there is a simple
construction for drawing a straight line through a given point
parallel to a given straight line. The problem of finding the
angle mentioned (for any curve, not merely for the spiral) is,
in geometrical language, the main problem of the differential
calculus. Archimedes solved this problem for his spiral. His
spiral is the curve traced by a point moving with uniform speed
along a straight line which revolves with uniform angular speed
about a fixed point on the line. If anyone who has not studied
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the calculus imagines Archimedes’ problem an easy one he may
time himself doing it.

The life of Archimedes was as tranquil as 2 mathematician’s
should be if he is to accomplish all that is in him. All the action
and tragedy of his life were crowded into its end. In 212 B.c. the
second Punic war was roaring full blast. Rome and Carthage
were going at one another hammer and tongs, 2nd Syracuse, the
city of Archimedes, lay temptingly near the path of the Roman
fleet. Why not lay siege to it? They did.

Puffed up with conceit of himself (‘relying on his own great
fame’, as Plutarch puts it), and trusting in the splendour of his
‘preparedness’ rather than in brains, the Roman leader,
Marcellus, anticipated a speedy conquest. The pride of his con-
fident heart was a primitive piece of artillery on a lofty harp-
shaped platform supported by eight galleys lashed together.
Beholding all this fame and miscellaneous shipping descending
upon them the timider citizens would have handed Marcellus
the keys of the city. Not so Hieron. He too was prepared for
war, and in a fashion that the practical Marcellus would never
have dreamed of.

It seems that Archimedes, despising applied mathematics
himself, had nevertheless yielded in peace time to the importu-
nities of Hieron, and had demonstrated to the tyrant’s satisfac-
tion that mathematics can, on occasion, become devastatingly
practical. To convince his friends that mathematics is capable
of more than abstract deductions, Archimedes had applied his
laws of levers and pulleys to the manipulation of a fully loaded
ship, which he himself launched single-handed. Remembering
this feat when the war clouds began to gather ominously near,
Hieron begged Archimedes to prepare a suitable welcome for
Marcellus. Once more desisting from his researches to oblige his
friend, Archimedes constituted himself a reception committee
of one to trip the precipitate Romans. When they arrived his
ingenious devilries stood grim]y waiting to greet them.

The harp-shaped turtle affair on the eight quinqueremes
lasted no longer than the fame of the conceited Marcellus. A
succession of stone shots, each weighing over a quarter of a ton,
hurled from the super-catapults of Archimedes, demolished the
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unwieldy contraption. Cranelike beaks and iron claws reached
over the walls for the approaching ships, seized them, spun
them round, and sank or shattered them against the jutting
cliffs. The land forces, mowed down by the Archimedean artil-
lery, fared no better. Camouflaging his rout in the official
bulletins as a withdrawal to a previously prepared position in
the rear, Marcellus backed off to confer with his staff. Unable to
rally his mutinous troops for an assault on the terrible walls, the
famous Roman leader retired.

At last evincing some slight signs of military common sense,
Marecellus issued no further ‘backs against the wall’ orders of the
day, abandoned all thoughts of a frontal attack, captured
Megara in the rear, and finally sneaked up on Syracuse from
behind. This time his luck was with him. The foolish Syracusans
were in the middle of a bibulous religious celebration in honour
of Artemis. War and religion have always made a bilious sort of
cocktail; the celebrating Syracusans were very sick indeed.
They woke up to find the massacre in full swing. Archimedes
participated in. the blood-letling.

His first intimation that the city had been taken by theft was
the shadow of 2 Roman soldier falling across his diagram in the
dust. According to one account the soldier had stepped on the
diagram, angering Archimedes to exclaim sharply, ‘Don’t dis-
turb my circles!’ Another states that Archimedes refused to
obey the soldier’s order that he accompany him to Marcellus
until he had worked out his problem. In any event the soldier
flew into a passion, unsheathed his glorious sword, and dis-
patched the unarmed veteran geometer of seventy-five. Thus
died Archimedes. '

As Whitehead has observed, ‘No Roman lost his life because
he was absorbed in the contemplation of a mathematical
diagram.’



CHAPTER THREE

GENTLEMAN, SOLDIER, AND
MATHEMATICIAN

Descartes

‘I pEsirE only tranquillity and repose.” These are the words
of the man who was to deflect mathematics into new channels
and change the course of scientific history. Too often in his
active life René Descartes was driven to find the tranquillity he
sought in military camps and to seek the repose he craved for
meditation in solitary retreat from curious and exacting
friends. Desiring only tranquillity and repose, he was born on
31 March, 1596 at La Haye, near Tours, France, into a Europe
given over to war in the throes of religious and political
reconstruction.

His times were not unlike our own. An old order was rapidly
passing; the new was not yet established. The predatory barons,
kings, and princelings of the Middle Ages had bred a swarm of
rulers with the political ethics of highway robbers and, for the
most part, the intellects of stable boys. What by common
justice should have been thine was mine provided my arm was
strong enough to take it away from thee. This may be an unflat-

- tering picture of that glorious period of European history
known as the late Renaissance, but it accords fairly well with
our own changing estimate, born of intimate experience, of
what should be what in a civilized society.

On top of the wars for plunder in Descartes’ day there was
superimposed a rich deposit of religious bigotry and intolerance
which incubated further wars and made the dispassionate pur-
suit of science a highly hazardous enterprise. To all this was
added a comprehensive ignorance of the elementary rules of
common cleanliness. From the point of view of sanitation the
rich man’s mansion was likely to be as filthy as the slums
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where the poor festered in dirl and ignorance, and the recurrent
plagues which aided the epidemic wars in keeping the prolific
population below the famine limit paid no attention to bank
accounts. So much for the good old days.

On the immaterial, enduring side of the ledger the account is
brighter. The age in which Descartes lived was indeed one of the
great intellectual periods in the spotted history of civilization.
To mention only a few of the outstanding men whose lives
partly overlapped that of Descartes, we recall that Fermat and
Pascal were his contemporaries in mathematics; Shakespeare
died when Descartes was twenty; Descartes outlived Galileo by
eight years, and Newton was eight when Descartes died;
Descartes was twelve when Milton was born, and Harvey, the
discoverer of the circulation of the blood, outlived Descartes
by seven years, while Gilbert, who founded the science of elec-
tromagnetism, died when Descartes was seven.

René Descartes came from an old noble family. Although
René’s father was not wealthy his circumstances were a little
better than easy, and his sons were destined for the careers of
gentlemen — noblesse oblige — in the service of France. René was
the third and last child of his father’s first wife, Jeanne Bro-
chard, who died a few days after René’s birth. The father
appears to have been a man of rare sense who did everything in
his power to make up to his children for the loss of their
mother. An excellent nurse took the mother’s place, and the
father, who married again, kept a constant, watchful, intelli-
gent eye on his ‘young philosopher’ who always wanted to
know the cause of everything under the sun and the reason for
whatever his nurse told him about heaven. Descartes was not
exactly a precocious child, but his frail health forced him to
expend what vitality he had in intellectual curiosity.

Owing to René’s delicate health his father let lessons slide.
The boy however went ahead on his own initiative and his
father wisely let him do as he liked. When Descartes was eight
his father decided that formal education could not be put off
longer. After much intelligent inquiry he chose the Jesuit
college at La Fléche as the ideal school for his son. The rector,
Father Charlet, took an instant liking to the pale, confiding
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little boy and made 2 special study of his case. Seeing that he
must build up the boy’s body if he was to educate his mind, and
noticing that Descartes seemed to require much more rest than
normal boys of his age, the rector told him to lie in bed as late
as he pleased in the mornings and not to leave his room till he
felt like joining his companions in the classroom. Thereafter, all
through his life except for one unfortunate episode near its
close, Descartes spent his mornings in bed when he wished to
think. Looking back in middle age on his schooldays at La
Fléche, he averred that those long, quiet mornings of silent
meditation were the real source of his philosophy and mathe-
matics.

His work went well and he became a proficient classicist. In
line with the educational tradition of the time much attention
was put on Latin, Greek, and rhetoric. But this was only a part
of what Descartes got. His teachers were men of the world
themselves and it was their job to train the boys under their
charge to be ‘gentlemen’ — in the best sense of that degraded
word — for their role in the world. When he left the school in
August 1612, in his seventeenth year, Descartes had made a
life-long friend in Father Charlet and was almost ready to hold
his own in society. Charlet was only one of the many friends
Descartes made at La Fléche; another, Mersenne (later Father)
the famous amateur of science and mathematics, had been his
older chum and was to become his scientific agent and protector-
in-chief from bores.

Descartes’ distinctive talent had made itself evident long
before he left school. As early as the age of fourteen, lying medi-
tating in bed, he had begun to suspect that the ‘humanities’ he
was mastering were comparatively barren of human signifi-
cance and certainly not the sort of learning to enable human
beings to control their environment and direct their own destiny.
The authoritative dogmas of philosophy, ethics, and morals
offered for his blind acceptance began to take on the aspect of
baseless superstitions. Persisting in his childhood habit of
accepting nothing on mere authority, Descartes began unosten-
tatiously questioning the alleged demonstrations and the
casuistical logic by which the good Jesuits sought to gain the
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assent of his reasoning faculties. From this he rapidly passed to
the fundamental doubt which was to inspire his life-work: how
do we know anything? And further, perhaps more importantly,
if we cannot say definitely that we know anything, how are we
ever to find out those things which we may be capable of
knowing? .

On leaving school Descartes thought longer, harder, and more
desperately than ever. As a first fruit of his meditations he
apprehended the heretical truth that logic of itself — the great
method of the schoolmen of the Middle Ages which still hung
on tenaciously in humanistic education — is as barren as a mule
for any creative human purpose. His second conclusion was
closely allied to his first: compared to the demonstrations of
mathematics — to which he took like a bird to the air as soon as
he found his wings — those of philosophy, ethics, and morals are
tawdry shams and frauds. How then, he asked, shall we ever
find out anything? By the scientific method, although Descartes
did not call it that: by controlled experiment and the application
of rigid mathematical reasoning to the results of such
experiment.

It may be asked what he got out of his rational scepticism.
One fact, and only one: ‘I exist.” As he put it, ‘Cogito ergo sum’
(I think, therefore I am).

By the age of eighteen Descartes was thoroughly disgusted
with the aridity of the studies into which he had put so much
hard labour. He resolved to see the world and learn something
of life as it is lived in flesh and blood and not in paper and
printers’ ink. Thanking God that he was well enough off to do
as he pleased he proceeded to do it. By an understandable over-
correction of his physically inhibited childhood and youth he
now fell upon the pleasures appropriate to normal young men
of his age and station and despoiled them with both hands.
‘With several other young blades hungering for life in the raw he
quit the depressing sobriety of the paternal estate and settled
in Paris. Gambling being one of the accomplishments of a
gentleman in that day, Descartes gambled with enthusiasm —
and some success. Whatever he undertook he did with his
whole soul.
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This phase did not last long. Tiring of his bawdy companions,
Descartes gave them the slip and took up his quarters in plain,
comfortable lodgings in what is now the suburb of Saint-Ger-
main where, for two years, he buried himself in incessant
mathematical investigation. His gay deeds at last found him
out, however, and his hare-brained friends descended whooping
upon him. The studious young man looked up, recognized his
friends, and saw that they were one and all intolerable bores.
To get a little peace Descartes decided to go to war.

Thus began his first spell of soldiering. He went first to Breda,
Holland, to learn his trade under the brilliant Prince Maurice of
Orange. Being disappointed in his hopes for action under the
Prince’s colours, Descartes turned 2 disgusted back on the
peaceful life of the camp, which threatened to become as exact-
ing as the hurly-burly of Paris, and hastened to Germany. At
this point of his career he first showed symptoms of an amiable
weakness which he never outgrew. Like a small boy trailing a
circus from village to village Descartes seized every favourable
opportunity to view a gaudy spectacle. One was now about to
come off at Frankfurt, where Ferdinand II was to be crowned.
Descartes arrived in time to take in the whole rococo show.
Considerably cheered up he again sought his profession and
enlisted under the Elector of Bavaria, then waging war against
Bohemia.

The army was lying inactive in its winter quarters near the
little village of Neuburg on the banks of the Danube. There
Descartes found in plenty what he had been seeking, tran-
quillity and repose. He was left to himself and he found himself.

The story of Descartes’ ‘conversion’ — if it may be called that
—is extremely curious. On St Martin’s Eve, 10 November 1619,
Descartes experienced three vivid dreams which, he says,
changed the whole current of his life. His biographer (Baillet)
records the fact that there had been considerable drinking in
celebration of the saint’s feast and suggests that Descartes had
not fully recovered from the fumes of the wine when he retired.
Descartes himself attributes his dreams to quite another source
and states emphatically that he had touched no wine for three
months before his elevating experience. There is no reason to
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doubt his word. The dreams are singularly coherent and quite
unlike those (according to experts) inspired by a debauch,
especially of stomach-filling wine. On ihe surface they are easily
explicable as the subconscious resolution of a conflict between
the dreamer’s desire to lead an intellectual life and his realiza-
tion of the futility of the life he was actually living. No doubt
the Freudians have analysed these dreams, but it seems
unlikely that any analysis in the classical Viennese manner
could throw further light on the invention of analytical geometry,
in which we are chiefly interested here. Nor do the several
mystic or religious interpretations seem likely to be of much
assistance in this respect.

In the first dream Descartes was blown by evil winds from the
security of his church or college towards a third party which the
wind was powerless to shake or budge; in the second he found
himself observing a terrific storm with the unsuperstitious eyes
of science, and he noted that the storm, once seen for what it
was, could do him no harm; in the third he dreamed that he was

. reciting the poem of Ausonius which begins, ‘Quod vitae sec-
tabor iter?” (What way of life shall T follow?)

There was much more. Out of it all Descartes says he was
filled with ‘enthusiasm’ (probably intended in a mystic sense)
and that there had been revealed to him, as in the second
dream, the magic key which would unlock the treasure house of
nature and put him in possession of the true foundation, at
least, of 21l the sciences.

‘What was this marvellous key? Descartes himself does not
seem to have told anyone explicitly, but it is usually believed to
have been nothing less than the application of algebra to geo-
metry, analytic geometry in short and, more generally, the
exploration of natural phenomena by mathematics, of which
mathematical physics to-day is the most highly developed
example.

November 10th, 1619, then, is the official birthday of analytic
geometry and therefore also of modern mathematics. Eighteen
years were to pass before the method was published. In the
meantime Descartes went on with his soldiering. On his behalf
mathematics may thank Mars that no half-spent shot knocked
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his head off at the battle of Prague. A score or so of promising
young mathematicians a few years short of three centuries later
were less lucky, owing to the advance of that science which
Descartes’ dream inspired.

As never before the young soldier of twenty-two now realized
that if he was ever to find truth he must first reject absolutely
all ideas acquired from others and rely upon the patient ques-
tioning of his own mortal mind to show him the way. All the
knowledge he had received from authority must be cast aside;
the whole fabric of his inherited moral and intellectual ideas
must be destroyed, to be refashioned more enduringly by the
primitive, earthy strength of human reason alone. To placate
his conscience he prayed the Holy Virgin to help him in his
heretical project. Anticipating her assistance he vowed a pil-
grimage to the shrine of Our Lady of Loreto and proceeded
forthwith to subject the accepted truths of religion to a scorch-
ing, devastating criticism. However, he duly discharged his
part of the contract when he found the opportunity.

In the meantime he continued his soldiering, and in the
spring of 1620 enjoyed some very real fighting at the battle of
Prague. With the rest of the victors Descartes entered the city
chanting praises to God. Among the terrified refugees was the
four-years-old Princess Elisabeth,* who was Iater to become
Descartes’ favourite disciple. )

At last, in the spring of 1621, Descartes got his bellyful of
war. With several other gay gentlemen soldiers he had accom-
panied the Austrians into Transylvania, seeking glory and find-
ing it — on the other side. But if he was through with war for the
moment he was not yet ripe for philosophy. The plague in Paris
and the war against the Huguenots made France even less
attractive than Austria. Northern Europe was both peaceful
and clean; Descartes decided to pay it a visit. Things went well
enough till Descartes dismissed 2ll but one of his bodyguard
before taking boat for east Frisia. Here was a Heaven-sent
opportunity for the cut-throat crew. They decided to knock
their prosperous passenger on the head, loot him, and pitch his

* Daughter of Frederick, Elector Palatine of the Rhine, and King
of Bohemia, and a granddaughter of James I of England.
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carcase to the fish. Unfortunately for their plans, Descartes
understood their language. Whipping out his sword he com-
pelled them to row him back to the shore, and once again
analytical geometry escaped the accidents of battle, murder, and
sudden death.

The following year passed quietly enough in visits to Holland
and Rennes, where Descartes’ father lived. At the end of the
year he returned to Paris, where his reserved manner and some-
what mysterious appearance immediately got him accused of
being a Rosicrucian. Ignoring the gossip, Descartes philoso-
phized and played politics to get himself a commission in the
army. He was not really disappointed when he failed, as he was
left free to visit Rome where he enjoyed the most gorgeous
spectacle he had yet witnessed, the ceremony celebrated every
quarter of a century by the Catholic Church. This Italian inter-
lude is of importance in Descartes’ intellectual development for
two reasons. His philosophy, so far as it fails to touch the com-
mon man, was permanently biased against that lowly indivi-
dual by the fill which the bewildered philosopher got of
unwashed humanity gathered from all corners of Europe to
receive the papal benediction. Equally important was Des-
cartes’ failure to meet Galileo. Had the mathematician been
philosopher enough to sit for a week or two at the feet of the
father of modern science, his own speculations on the physical
universe might have been less fantastic. All that Descartes got
out of his Italian journey was a grudging jealousy of his incom-
parable contemporary.

Immediately after his holiday in Rome, Descartes enjoyed
another bloody spree of soldiering with the Duke of Savoy, in
which he so distinguished himself that he was offered a lieu-
tenant-generalship. He had sense enough to decline. Returning
to the Paris of Cardinal Richelieu and the swashing D’Artagnan
— the latter near-fiction, the former less credible than 2 melo-
drama — Descartes settled down to three years of meditation.
In spite of his lofty thoughts he was no grey-bearded savant in
a dirty smock, but a dapper, well-dressed man of the world, clad
in fashionable taffeta and sporting a sword as befitted his
gentlemanly rank. To put the finishing touch to his elegance he

44



GENTLEMAN, SOLDIER, AND MATHEMATICIAN

crowned himself with a sweeping, broad-brimmed, ostrich-
plumed hat. Thus equipped he was ready for the cut-throats
infesting church, state, and street. Once when 2 drunken lout
insulted Descartes’ lady of the evening, the irate philosopher
went after the rash fool quite in the stump-stirring fashion of
D’Artagnan, and having flicked the sot’s sword out of his hand,
spared his life, not because he was 2 rotten swordsman, but
because he was too filthy to be butchered before a beautiful
lady.

Having mentioned one of Descartes’ lady friends we may dis-
pose of all but two of the rest here. Descartes liked women well
enough to have a daughter by one. The child’s early death
affected him deeply. Possibly his reason for never marrying
may have been, as he informed one expectant lady, that he
preferred truth to beauty; but it seems more probable that he
was too shrewd to mortgage his tranquillity and repose to some
fat, rich, Dutch widow. Descartes was only moderately well off,
but he knew when he had enough. For this he has been called
cold and selfish. It seems juster to say that he knew where he
was going and that he realized the importance of his goal.
Temperate and abstemious in his habits he was not mean,
never inflicting on his household the Spartan regimen he occa-
sionally prescribed for himself. His servants adored him, and
he interested himself in their welfare long after they had left his
service. The boy who was with him at his death was inconsol-
able for days at the loss of his master. All this does not sound
like selfishness.

Descartes also has been accused of atheism. Nothing could be
farther from the truth. His religious beliefs were unaffectedly
simple in spite of his rational scepticism. He compared his
religion, indeed, to the nurse from whom he had received it, and
declared that he found it as comforting to lean upon one as on
the other. A rational mind is sometimes the queerest mixture of
rationality and irrationality on earth.

Another trait affected all Descartes’ actions till he gradually
outgrew it under the rugged discipline of soldiering. The neces-
sary coddling of his delicate childhood infected him with a deep
tinge of hypochondria, and for years he was chilled by an
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oppressive dread of death. This, no doubt, is the origin of his
biological researches. By middle age he could say sincerely that
nature is the best physician and that the secret of keeping well
is to lose the fear of death. He no longer fretted to discover
means of prolonging existence.

His three years of peaceful meditation in Paris were the hap-
piest of Descartes’ life. Galileo’s brilliant discoveries with his
crudely constructed telescope had set half the natural philo-
sophers of Europe pottering with lenses. Descartes amused
himself in this way, but did nothing of striking novelty. His
genius was essentially mathematical and abstract. One disco-
very which he made at this time, that of the principle of virtual
velocities in mechanics, is still of scientific importance. This
really was first-class work. Finding that few understood or
appreciated it, he abandoned abstract matters and turned to
what he considered the highest of all studies, that of man. But,
as he dryly remarks, he soon discovered that the number
of those who understand man is negligible in comparison
with the number of those who think they understand geo-
metry.

Up till now Descartes had published nothing. His rapidly
mounting reputation again attracted a horde of fashionable
dilettantes, and once more Descartes sought tranquillity and
repose on the battlefield, this time with the King of France at
the siege of La Rochelle. There he met that engaging old rascal
Cardinal Richelieu, who was later to do him a good turn, and
was impressed, not by the Cardinal’s wiliness, but by his holi-
ness. On the victorious conclusion of the war Descartes returned
with a whole skin to Paris, this time to suffer his second con-
version and abandon futilities forever.

He was now (1628) thirty-two, and only his miraculous luck
had preserved his body from destruction and his mind from
oblivion. A stray bullet at La Rochelle might easily have
deprived Descartes of all claim to remembrance, and he realized
at last that if he was ever to arrive it was high time that he be
on his way. He was aroused from his sterile state of passive
indifference by two Cardinals, De Bérulle and De Bagné, to the
first of whom in particular the scientific world owes an ever-
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lasting debt of gratitude for having induced Descartes to
publish.

The Catholic clergy of the time cultivated and passionately
loved the sciences, in grateful contrast to the fanatical Protes-
tants whose bigotry had extinguished the sciences in Germany.
On becoming acquainted with De Bérulle and De Bagné, Des-
cartes blossomed out like a rose under their genial encourage-
ment. In particular, during soirées at De Bagné’s, Descartes
spoke freely of his new philosophy to a M. de Chandoux (who
was later hanged for counterfeiting — not a result of Descartes’
lessons in casuistry, let us hope). To illustrate the difficulty of
distinguishing the true from the false Descartes undertook to
produce twelve irrefutable arguments showing the falsity of any
incontestable truth and, conversely, to do the like for the truth
of any admitted falsehood. How then, the bewildered listeners
asked, shall meré human beings distinguish truth from false-
hood? Descartes confided that he had (what he considered) an
infallible method, drawn from mathematics, for making ‘the
required distinction. He hoped and planned, he said, to show
how his method could be applied to science and human welfare
through the medium of mechanical invention.

De Bérulle was profoundly stirred by the vision of all the
kingdoms of the earth with which Descartes had tempted him
from the pinnacle of philosophic speculation. In no uncertain
terms he told Descartes that it was his duty to God to share his
discoveries with the world, and threatened him with hell-fire —
or at least the loss of his chance of heaven — if he did not. Being
a devout practising Catholic Descartes could not possibly resist
such an appeal. He decided to publish. This was his second
conversion, at the age of thirty-two. He straightway retired to
Holland, where the colder climate suited him, to bring his
decision to realization. ’

For the next twenty years he wandered about all over
Holland, never settling for long in any one place, a silent recluse
in obscure villages, country hotels and out-of-the-way corners
of great cities, methodically carrying on a voluminous scientific
and philosophical correspondence with the leading intellects of
Europe, using as intermediary the trusted friend of his school
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days at La Fléche, Father Mersenne, who alone knew the secret
at any time of Descartes’ address. The parlour of the cloister of
the Minims, not far from Paris, became the exchange (through
Mersenne) for questions, mathematical problems, scientific and
philosophiezal theories, objections, and replies.

During his long vagabondage in Holland Descartes occupied
himself with a number of studies in addition to his philosophy
and mathematics. Optics, chemistry, physics, anatomy, embry-
ology, medicine, astronomical observations, and meteorology,
including a study of the rainbow, all claimed their share of his
restless activity. Any man to-day spreading his effort over so
diversified a miscellany would write himself down a fiddling
dilettante. But it was not so in Descartes’ age; a man of talent
might still hope to find something of interest in almost any
science that took his fancy. Everything that came Descartes’
way was grist to his mill. A brief visit to England acquainted
him with the mystifying behaviour of the magnetic needle;
forthwith magnetism had to be included in his comprehensive
philosophy. The speculations of theology also called for his
attention. All through his theorizing his mind was shadowed by
the incubus of his early training. He would not have shaken it
off if he could.

All of what Descartes had gathered and excogitated was to be
incorporated into an imposing treatise, Le Monde. In 1634,
Descartes being then thirty-eight, the treatise was undergoing
its final revision. It was to have been a New Year’s gift to
Father Mersenne. All learned Paris was agog to see the master-
piece. Mersenne had been granted many previews of selected
portions but as yet he had not seen the completed, dovetailed
wark. Without irreverence Le Monde may be described as what
the author of the Book of Genesis might have written had he
known as much science and philosophy as Descartes did.
Descartes intended his account of God’s creation of the universe
to supply the lack which some readers had felt in the Bible story
of the six days’ creation, namely, an element of rationality.
From the distance of 300 years there-seems but little to choose
between Genesis and Descartes, and it is somewhat diffieult for
us to realize that such a book as Le Monde could ever have
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caused a bishop or a pope to fly into 2 cold, murderous rage. As
a matter of fact none did; Descartes saw to that.

Descartes was aware of the judgements of ecclesiastical jus-
tice. He also knew of the astronomical researches of Galileo and
of that fearless man’s championship of the Copernican system.
In fact he was impatiently waiting to see Galileo’s latest book
before putting the final touches to his own. Instead of receiving
the copy a friend had promised to send him, he got the stunning
news that Galileo, in the seventieth year of his age, and in spite
of the sincere friendship that the powerful Duke of Tuscany had
for him, had been given up to the Inquisition and had been
forced (22 June 1688) on his knees to abjure as a heresy the
Copernican doctrine that the Earth moves round the Sun. What
would have happened to Galileo had he refused to forswear his
scientific knowledge Descartes could only conjecture, but the
names of Bruno, Vanini, and Campanella recurred to his mind.

Descartes was crushed. In his own book he had expounded
the Copernican system as a matter of course. On his own
account he had been far more daring then Copernicus or
Galileo had ever had occasion to be, because he was interested
in the theology of science whereas they were not. He had proved
to his own satisfaction the necessity of the cosmos as it exists,
and he thought he had shown that if God had created any
number of distinct universes they must all, under the action of
‘natural law’, sooner or later have fallen into line with necesszty
and have evolved into the universe as it actually is. Descartes,
in short, professed with his scientific knowledge to know a great
deal more about the nature and ways of God than either the
author of Genesis or the theologians had ever dreamed of. If
Galileo had been forced to get down on his knees for his mild
and conservative heresy, what could Descartes expect?

To say that fear alone stopped Descartes from publishing Le
Monde is to miss the more important part of the truth. He was
not only afraid — as any sane man might well have been; he was
deeply hurt. He was as convinced of the truth of the Copernican
system as he was of his own existence. But he was also con-
vineed of the infallibility of the Pope. Here now was the Pope
making a silly ass of himself by contradicting Copernicus. This
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was his first thought. His casuistical schooling came to his aid.
In some way, through the mystical incomprehensibilities of
some superhuman synthesis, the Pope and Copernicus would
yet both be proved right. From this as yet unrevealed Pisgah
height Descartes confidently hoped and expected some day to
look down in philosophic serenity on the apparent contradiction
and see it vanish in a glory of reconciliation. It was simply
impossible for him to give up either the Pope or Copernicus. So
he suppressed hisbook and kept bothhis belief in the infallibility
of the Pope and the truth of the Copernican system. As a sop to
his subconscious self-respect he decided that Le Monde should
be published after his death. By that time perhaps the Pope too
would be dead and the contradiction would have resolved
itself.

Descartes’ determination not to publish extended to all his
work. But in 1687, when Descartes was forty-one, his friends
overcame his reluctance and induced him to permit the printing
of his masterpiece, of which the title is translated as 4 Discourse
on the Method of rightly conducting the Reason and seeking Truth
in the Sciences. Further, the Diopiric, Meteors, and Geometry,
essays in this Method. This work is known shortly as the Method.
1t was published on 8 June 1687. This is the day, then, on which
analytical geometry was given to the world. Before describing
wherein that geometry is superior to the synthetic geometry of
the Greeks we shall finish with the life of its author.

After having given the reasons for Descartes’ delay in publi-
cation it is only fair to tell now the other and brighter side of
the story.

The Church which Descartes had feared but which had never
actually opposed him now came most generously to his aid.
Cardinal Richelieu gave Descartes the privilege of publishing
either in France or abroad anything he cared to write. (In
passing we may ask, however, by what right, divine, or other,
did Cardinal Richelieu, or any other human being, dictate to a
philosopher and man of science what he should or should not
publish?) But in Utrecht, Holland, the Protestant theologians
savagely condemned Descartes’ work as atheistic and dangerous
to that mystic entity known as “The State’. The liberal Prince
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of Orange threw his great weight on Descartes’ side and backed
him to the limit.

Since the autumn of 1641 Descartes had been living 2t a quiet
little village near The Hague in Holland, where the exiled Prin-
cess Elisabeth, now a young woman with a penchant for learn-
ing, rusticated with her mother. The Princess does indeed seem
to have been a prodigy of learning. After mastering six lan-
guages and digesting much literature she had turned to
mathematics and science, hoping to find more nourishing fare.
One theory to account for this remarkable young woman’s
unusual appetite ascribes her hunger for knowledge to a disap-
pointment in love. Neither mathematics nor science satisfied
her. Then Descartes’ book came her way and she knew that she
had found what she needed to fill her aching void — Descartes.
An interview was arranged with the somewhat reluctant
philosopher.

It is very difficult to understand exactly what happened
thereafter. Descartes was a gentleman with all the awe and
reverence of a gentleman of those gallant, royalty-ridden times
for even the least potent prince or princess. His letters are
models of courtly discretion, but somehow they do not always
ring quite true. One spiteful little remark, quoted in a moment,
probably tells more of what he really thought of the Princess
Elisabeth’s intellectual capacity than do all the reams of subtle
flattery he wrote to or about his eager pupil with one eye on his
style and the other on publication after his death.

Elisabeth insisted upon Descartes giving her lessons.
Officially he declared that ‘of all my disciples she alone has
understood my works completely.” There is no doubt that he
was genuinely fond of her in a fatherly, cat-looking-at-a-king’s-
female-relative sort of way, but to believe that he meant what
he said as a scientific statement of fact is to stretch credulity to
the limit, unless, of course, he meant it as a wry comment on
his own philosophy. Elisabeth may have understood too much,
for it seems to be a fact that only a philosopher thoroughly
understands his own philosophy, although any fool can think
he does. Anyhow, he did not propose to her nor, so far as is
known, did she propose to him.
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Among other parts of his philosophy which he expounded to
her was the method of analytical geometry. Now thereis a certain
problem in elementary geometry which can be quite simply
solved by pure geometry, and which looks easy enough, but
which is a perfect devil for analytical geometry to handle in the
strict Cartesian form. This is to construct a circle which shall
touch (be tangent to) any three circles given at random whose
centres do not all lie on one straight line. There are eight solu-
tions possible. The problem is a fine specimen of the sort that
are not adapted to the crude brute force of elementary Cartesian
geometry. Elisabeth solved it by Descartes’ methods. It was rather
cruel of him to let her do it. His comment on seeing her solution
gives the whole show away to any mathematician. She was
quite proud of her exploit, poor girl. Descartes said he would
not undertake to carry out her solution and actually construct
the required tangent circle in 2 month. If this does not convey
his estimate of her mathematical aptitude it is impossible to put
the matter plainer. It was an unkind thing to say, especially as
she missed the point and he knew that she would.

When Elisabeth left Holland she corresponded with Des-
cartes to almost the day of his death. His letters contain much
that is fine and sincere, but we could wish that he had not been
so dazzled by the aura of royalty.

In 1646 Descartes was living in happy seclusion at Egmond,
Holland, meditating, gardening in a tiny plot, and carrying on
a correspondence of incredible magnitude with the intellectuals
of Europe. His greatest mathematical work lay behind him, but
he still continued to think about mathematics, always with
penetration and originality. One problem io which he gave
some attention was Zeno’s of Achilles and the tortoise. His
solution of the paradox would not be universally accepted to-
day but it was ingenious for its era. He was now fifty and
world-famous, far more famous in fact than he would ever have
cared to be. The repose and tranquillity he had longed for all his
life still eluded him. He continued to do great work, but he
was not to be left in peace to do all that was in him. Queen
Christine of Sweden had heard of him.

This somewhat masculine young woman was then nineteen,
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already a capable ruler, reputedly a good classicist (of this,
more later), a wiry athlete with the physical endurance of Satan
himself, a ruthless huntress, an expert horsewoman who
thought nothing of ten hours in the saddle without once getting
off, and finally a tough morsel of femininity who was as
hardened to cold as 2 Swedisb lumberjack. With all this she
combined a certain thick obtuseness toward the frailties of less
thick-skinned beings. Her own meals were sparing; so were
those of her courtiers. Like a hibernating frog she could sit for
hours in an unheated library in the middle of a Swedish winter;
her hangers-on begged her through their chattering teeth to
throw all the windows wide open and let the merry spow in.
Her cabinet, she noted without a qualm, always agreed with
her. She knew everything there was to be known; her ministers
and tutors told her so. As she got 2long on only five hours’ sleep
she kept her toadies hopping through the hoop nineteen hours
a day. The very hour this holy terror saw Descartes’ philosophy
she decided she must annex the poor sleepy devil as her private
instructor. All her studies so far had left her empty and hun-
gering for more. Like the erudite Elisabeth she knew that only
copious douches of philosophy from the philosopher himself
could assuage her raging thirst for knowledge and wisdom.

But for that unfortunate streak of snobbery in his make-up
Descartes might have resisted Queen Christine’s blandishments
till he was ninety and sans teeth, sans hair, sans philosophy,
sans everything. Descartes held out till she sent Admiral
Fleming in the spring of 1649 with a ship to fetch him. The
whole outfit was generously placed at the reluctant philoso-
pher’s disposal. Descartes temporized till October. Then, with
a last regretful look round his little garden, he locked up and
left Egmond for ever.

His reception in Stockholm was boisterous, not to say royal.
Descartes did not live at the Palace; that much was spared him.
Importunately kind friends, however, the Chanutes, shattered
his last remaining hope of reserving a little privacy. They
insisted that he live with them. Chanute was a fellow-country-
man, in fact the French ambassador. All might have gone well,
for the Chanutes were really most considerate, had not the
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obtuse Christine got it into her immovable head that five
o’clock in the morning was the proper hour for a busy, hard-
boiled young woman like herself to study philosophy. Descartes
would gladly have swapped all the headstrong queens in Chris-
tendom for a2 month’s dreaming abed at La Fléche with the
enlightened Charlet unobtrusively near to see that he did not
get up too soon. However, he dutifully crawled out of bed at
some ungodly hour in the dark, climbed into the carriage sent
to collect him, and made his way across the bleakest, windiest
square in Stockholm to the palace where Christine sat in the icy
library impatiently waiting for her lesson in philosophy to begin
promptly at five a.m.

The oldest inhabitants said Stockholm had never in their
memory suffered so severe a winter. Christine appears to have
iacked a normal human skin as well as nerves. She noticed
nothing, but kept Descartes unflinchingly to his ghastly rendez-
vous. He tried to make up his rest by lying down in the after-
noons. She soon broke him of that. A Royal Swedish Academy
nf Sciences was gestating in her prolific activity; Descartes was
hauled out of bed to deliver her.

It soon became plain to the courtiers that Descartes and their
Queen were discussing much more than philosophy in ‘these
interminable conferences. The weary philosopher presently
realized that he had stepped with both feet into a populous and
busy hornets’ nest. They stung him whenever and wherever
they could. Either the Queen was too thick to notice what was
happening to her new favourite or she was clever enough to
sting her courtiers through her philosopher. In any event, to
silence the malicious whisperings of ‘foreign influence’, she
resolved to make a Swede of Descartes. An estate was set aside
for him by royal decree. Every desperate move he made to get
out of the mess only bogged him deeper. By 1 January 1650,
he was up to his neck with only a miracle of rudeness as his one
dim hope of ever freeing himself. But with his inbred respect
for royalty he could not bring himself to speak the magic words
which would send him flying back to Holland, although he said
plenty, with courtly politeness, in a letter to his devoted Elisa-
beth. He had chanced to interrupt one of the lessons in Greek.
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To his amazement Descartes learned that the vaunted classicist
Christine was struggling over grammatical puerilities which, he
says, he had mastered by himself when he was a little boy. His
opinion of her mentality thereafter appears to have been
respectful but low. It was not raised by her insistence that he
produce a ballet for the delectation of her guests at 2 court
function when he resolutely refused to make a mountebank of
himself by attempting at his age to master the stately capers of
the Swedish lancers.

Presently Chanute fell desperately ill of inflammation of the
lungs. Descartes nursed him. Chanute recovered; Descartes fell
ill of the same disease. The Queen, alarmed, sent doctors.
Descartes ordered them out of the room. He grew steadily
worse. Unable in his debility to distinguish friend from pest he
consented at last to being bled by the most persistent of the
doctors, a personal friend, who all the time had been hovering
about awaiting his chance. This almost finished him, but not
quite.

His good friends the Chanutes, seeing that he was a very sick
man, suggested that he might enjoy the last sacrament. He had
expressed a desire to see his spiritual counsellor. Commending
his soul to the mercy of God, Descartes faced his death calmly,
saying the willing sacrifice of his life which he was making
might possibly atone for his sins. La Fléche gripped him to the
last. The counsellor asked him to signify whether he wished the
final benediction. Descartes opened his eyes and closed them.
He was given the benediction. Thus he died on 11 February
1650, aged 54, a sacrifice to the overweening vanity of a head-
strong girl,

Christine lamented. Seventeen years later when she had long
since given up her crown and her faith, the bones of Descartes
were returned to France (all except those of the right hand,
which were retained by the French Treasurer-Generzl as a
souvenir for his skill in engineering the transaction) and were
re-entombed in Paris in what is now the Panthéon. There was
to have been a public oration, but this was hastily forbidden
by order of the crown, as the doctrines of Descartes were
deemed to be still too hot for handling before the people. Com-
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menting on the return of Descartes’ remains to his native
France, Jacobi remarks that ‘It is often more convenient to
possess the ashes of great men than to possess the men them-
selves during their lifetime.’

Shortly after his death Descartes’ books were listed in the
Index of that Church which, accepting Cardinal Richelieu’s
enlightened suggestion during the author’s lifetime, had per-
mitted their publication. ‘Consistency, thou art 2 jewel!” But
the faithful were not troubled by consistency, ‘the bugbear of
little minds’ — and the ratbane of inconsistent bigots.

‘We are not concerned here with the monumental additions
which Descartes made to philosophy. Nor can his brilliant part
in the dawn of the experimental method detain us. These things
fall far outside the field of pure mathematics in which, perhaps,
his greatest work lies. It is given to but few men to renovate a
whole department of human thought. Descartes was one of
those few. Not to obscure the shining simplicity of his greatest
contribution, we shall briefly describe it alone and leave aside
the many beautiful things he did in algebra and particularly in
algebraic notation and the theory of equations. This one thing
is of the highest order of excellence, marked by the sensuous
simplicity of the half dozen or so greatest contributions of all
time to mathematics. Descartes remade geometry and made
modern geometry possible.

The basic idea, like all the really great things in mathematies,
is simple to the point of obviousness. Lay down any two inter-
secting lines on a plane. Without loss of generality we may
assume that the lines are at right angles to one another.
Imagine now a city laid out on the American plan, with
avenues running north and south, streets east and west. The
whole plan will be laid out with respect to one avenue and one
street, called the awes, which intersect in what is called the
origin, {from which street-avenue numbers are read consecu-
tively. Thus it is clear without a diagram where 1002 West 126
Street is, if we note that the fen aqvenues summarized in the
number 1002 are stepped off to the west, that is, on the map, to
the left of the origin. This is so familiar that we visualize the
position of any particular address instantly. The avenue-
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number and street-number, with the necessary supplements of
smaller numbers (as in the ‘2’ in ‘1002’ above) enable us to fix
definitely and uniquely the position of any point whatever with
respect to the awes, by giving the pair of numbers which
measure its east or west and its north or south from the awes; this
pair of numbers is called the coordinales of the point (with
respect to the axes).

Now suppose a point to wander over the map. The coordinates
(2, y) of all the points on the curve over which it wanders will
be connected by an equaiion (this must be taken for granted by
the reader who has never plotted a graph to fit data), which is

N, +

=ttt

S -
called the equation of the curve. Suppose now for simplicity that
our curve is a circle. We have ils equation. What can be done
with it? Instead of this particular equation, we can write down
the most general one of the same kind (for example, here, of the
second degree, with no cross-product term, and with the coeffi-
cients of the highest powers of the coordinates equal), and then
proceed to manipulate this equation algebraically. Finally we
put back the results of all our algebraic manipulations into their
equivalents in terms of coordinates of points on the diagram
which, all this time, we have been deliberately forgetting.
Algebra is easier to see through than a cobweb of lines in the
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Greek manner of eleméntary geometry. What we have done has
been to use our algebra for the discovery and investigation of
geometrical theorems concerning circles.

For straight lines and circles this may not seem very exciting;
we knew how to do it all before in another, a Greek way. Now
comes the real power of the method. We start with equations of
any desired or suggested degree of complexity and interpret their
algebraic and analytic properties geometrically. Thus we have not
only dropped geometry as our pilot; we have tied a sackful of
bricks to his neck before pitching him overboard. Henceforth
algebra and analysis are to be our pilots to the uncharted seas of

Y+
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‘space’ and its ‘geometry’. All that we have done can be extended,
at one stride, to space of any number of dimensions; for the
plane we need iwo co-ordinates, for ordinary ‘solid’ space three,
for the geometry of mechanics and relativity, four co-ordinates,
and finally, for ‘space’ as mathematicians like it, either n co-
ordinates, or as many co-ordinates as there are of all the
numbers 1, 2, 8, ... , or as many as there are of all the points
on a line. This is beating Achilles and the tortoise in their own
race.

Descartes did not revise geometry; he created it.

It seems fitting that an eminent living mathematical fellow-
countryman of Descartes should have the last word, so we shall
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quote Jacques Hadamerd. He remarks first that the mere
invention of co-ordinates was not Descartes’ greatest merit,
because that had already been done ‘by the ancients’ — a state-
ment which is exact only if we read the unexpressed intention
into the unaccomplished deed. Hell is paved with the half-
baked ideas of ‘the ancients® which they could never quite cook
through with their own steam.

‘It is quite another thing to recognize [as in the use of co-
ordinates] a general method and to follow to the end the idea
which it represents. It is exactly this merit, whose importance
every real mathematician knows, that was pre-eminently Des-
cartes’ in geometry; it was thus that he was led to what ... is
his truly great discovery in the matter; namely, the application
of the method of co-ordinates not only to translate into equa-
tions curves already defined geometrically, but, looking at the
question from an exactly opposite point of view, to the a priori
definition of ‘more and more complicated curves and, hence,
more and more general. ...

‘Directly, with Descartes himself, later, indirectly, in the
return which the following century made in the opposite
direction, it is the entire conception of the object of mathe-
matical science that was revolutionized. Descartes indeed
understood thoroughly the significance of what he had done,
and he was right when he boasted that he had as far surpassed
all geometry before him as Cicero’s rhetoric surpasses the
ABC.



CHAPTER FOUR

THE PRINCE OF AMATEURS

Fermat

Nor all of our ducks can be swans; so after having exhibited
Descartes as one of the leading mathematicians of all time, we
shall have to justify the assertion, frequently made and seldom
contradicted, that the greatest mathematician of the seven-
teenth century was Descartes’ contemporary Fermat (1601?-
65). This of course leaves Newton (1642-1727) out of considera-
tion. But it can be argued that Fermat was af least Newton’s
equal as a pure mathematician, and anyhow nearly a third of
Newton’s life fell into the eighteenth century, whereas the
whole of Fermat’s was lived out in the seventeenth.

Newton appears to have regarded his mathematics princi-
pally as an instrument for scientific exploration and put his
main effort on the latter. Fermat on the other hand was more
strongly attracted to pure mathematics although he also did
notable work in the applications of mathematics to science,
particularly optics.

Mathematics had just entered 1ts modern phase with Des-
cartes’ publication of analytical geometry in 1637, and was still
for many years to be of such modest extent that a gifted man
could reasonably hope to do good work in both the pure and
applied divisions.

As a pure mathematician Newton reached his climax in the
invention of the calculus, an invention also made independently
by Leibniz. More will be said on this later; for the present it
may be remarked that Fermat conceived and applied the lead-
ing idea of the differential calculus thirteen years before
Newton was born and seventeen before Leibniz was born,
although he did not, like Leibniz, reduce his method to a set of
rules of thumb that even a dolt can apply to easy problems.
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As for Descartes and Fermat, each of them, entirely indepen-
dently of the other, invented analytical geometry. They corre-
sponded on the subject, but this does not affect the preceding
assertion, The major part of Descartes’ effort went to miscel-
laneous scientific investigations, the elaboration of his philo-
sophy, and his preposterous ‘vortex theory’ of the solar system
- for long a serious rival, even in England, to the beautifully
simple, unmetaphysical Newtonian theory of universal gravi-
tation. Fermat seems never to have been tempted, as both
Descartes and Pascal were, by the insidious seductiveness of
philosophizing about God, man, and the universe as a whole;
s0, after having disposed of his part in the calculus and analytical
geometry, and having lived a serene life of hard work all the
while to earn his living, he still was free to devote his remaining
energy to his favourite amusement - pure mathematics, and to
accomplish his greatest work, the foundation of the theory of
numbers, on which his undisputed and undivided claim to
immortality rests.

It will be seen presently that Fermat shared with Pascal the
creation of the mathematical theory of probability. If all these
first-rank achievements are not enough to put him at the head
of his contemporaries in pure mathematics we may ask who did
more. Fermat was a born originator. He was also, in the
strictest sense of the word, so far as his science and mathematics
were concerned, an amateur. Without doubt he is one of the
foremost amateurs in the history of science, if not the very first.

Fermat's life was quiet, laborious, and uneventful, but he got
a tremendous lot out of it. The essential facts of his peaceful
career are quickly told. The son of the leather-merchant
Dominique Fermat, second consul of Beaumont, and Claire de
Long, daughter of a family of parliamentary jurists, the mathe-
matician Pierre Fermat was born at Beaumont-de-Lomagne,
France, in August 1601 (the exact date is unknown; the baptis-
mal day was 20 August). His earliest education was received at
home in his native town; his later studies, in preparation for the
magistracy, were continued at Toulouse. As Fermat lived
temperately and quietly all his life, avoiding profitless disputes,
and as he lacked a doting sister like Pascdl’s Gilberte to record
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his boyhood prodigies for posterity, singularly little appears to
have survived of his career as a student. That it must have been
brilliant will be evident from the achievements and accomplish-
ments of his maturity; no man without a solid foundation of
exact scholarship could have been the classicist and littérateur
that Fermat became. His marvellous work in the theory of
numbers and in mathematics generally cannot be traced to his
schooling; for the fields in which he did his greatest work, not
having been opened up while he was a student, could scarcely
have been suggested by his studies.

The only events worth noting in his material career are his
installation at Toulouse, at the age of 30 (14 May 1631), as
commissioner of requests; his marriage on 1 June of the same
year to Louise de Long, his mother’s cousin, who presented him
with three sons, one of whom, Clément-Samuel, became his
father’s scientific executor, and two daughters, both of whom
took the veil; his promotion in 1648 to a King’s councillorship
in the local parliament of Toulouse, a position which he filled
with dignity, integrity, and great ability for seventeen years —
his entire working life of thirty-four years was spent in the
exacting service of the state; and finally, his death at Castres
on 12 January 1665, in his sixty-fifth year, two days after he
had finished conductling a case in the town of his death.
‘Story?’ he might have said: ‘Bless you, sir! I have none.’ And
yet this tranquilly-living, honest, even-tempered, serupulously
just man has one of the finest stories in the history of mathe-
matics.

His story is his work — his recreation, rather — done for the
sheer love of it, and the best of it is so simple (to state, but not
to carry through or imitate) that any schoolboy of normal
intelligence can understand its nature and appreciate its
beauty. The work of this prince of mathematical amateurs has
had an irresistible appeal to amateurs of mathematics in all
civilized countries during the past three centuries. This, the
theory of numbers as it is called, is probably the one field of
mathematics in which a talented amateur to-day may hope to
turn up something of interest. We shall glance at his other
contributions first after a passing mention of his ‘singular
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erudition’ in what many call the humanities. His knowledge of
the chief European languages and literatures of Continental
Europe was wide and accurate, and Greek and Latin philology
are indebted to him for several important corrections. In the
composition of Latin, French, and Spanish verses, one of the
gentlemanly accomplishments of his day, he showed great skill
and 2 fine taste. We shall understand his even, scholarly life if
we picture him as an affable man, not touchy or huffy under
criticism (as Newton in his later years was), without pride, but
having a certain vanity which Descartes, his opposite in alk
respects, characterized by saying, ‘Mr de Fermat is a Gascon; I
am not.” The allusion to the Gascons may possibly refer to an
amiable sort of braggadocio which some French writers (for
example Rostand in Cyrano de Bergerac, Act II, Scene VII)
ascribe to their men of Gascony. There may be some of this in
Fermat’s letters, but it is always rather naive and inoffensive,
and nothing to what he might have justly thought of his work
even if his head had been as big as 2 balloon. And as for Des-
cartes it must be remembered that he was not exactly an
impartial judge. We shall note in a moment how his own
soldierly obstinacy caused him to come off a bad second-best in
his protracted row with the ‘Gascon’ over the extremely
important matter of tangents.

Considering the exacting nature of Fermat's official duties
and the large amount of first-rate mathematics he did, some
have been puzzled as to how he found time for it all. A French
critic suggests a probable solution: Fermat’s work as a King’s
councilloxr was an aid rather than a detriment to his intellectual
activities. Unlike other public servants — in the army for
instance — parliamentary councillors were expected to hold
themselves aloof from their fellow townsmen and to abstain
from unnecéssary social activities lest they be corrupted by
bribery or otherwise in the discharge of their office. Thus
Fermat found plenty of leisure.

‘We now briefly state Fermat’s part in the evolution of, the
caleulus. As was rémarked in the chapter on Archimedes, a
geometrical equivalent of the fundamental problem of the
differential calculus is to draw the straight line tangent to a
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given, unlooped, continuous arc of a curve at any given point.
A sufficiently close description of what ‘continuous’ means here
is ‘smooth, without breaks or sudden jumps’; to give an exact,
mathematical definition would require pages of definitions and
subtle distinctions which, it is safe to say, would have puzzled
and astonished the inventors of the calculus, including Newton
and Leibniz. And it is also a fair guess that if all these subtleties
which modern students demand had presented themselves to
the originators, the calculus would never have got itself
invented.

The creators of the calculus, including Fermat, relied on geo-
metric and physical (mostly kinematical and dynamical) intui-
tion to get them ahead: they looked at what passed in their
imaginations for the graph of a ‘continuous curve’, pictured the
process of drawing a straight line tangent to the curve at any
point P on the curve by taking another point @, also on the
curve, drawing the straight line PQ joining P and Q, and then,

Y
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in imagination, letting the point @ slip along the arc of the
curve from Q to P, till @ coincided with P, when the chord PQ,
in the limiting position just described, became the tangent PP
to the curve at the point P — the very thing they were looking
for.

The next step was to translate all this into algebraical or
analytical language. Knowing the co-ordinates z, y of the point
P on the graph, and those, say z 4+ a, y + b, of @, before @
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started to slip along to coincidence with P, they inspected the
graph and saw that the slope of the chord PQ was equal to b/a ~
obviously a measure of the ‘steepness’ of the chord with relation
to the z-axis (the line along which z-distances are measured);
this ‘steepness’ is precisely what is meant by slope. From this
it was evident that the required slope of the tangent at P (after
Q had slipped into coincidence with P) would be the limiting
value of b/a as both b and a approached the value zero simul-
taneously; for 2 4 @, y + b, the co-ordinates of @, ultimately
become z, y, the co-ordinates of P. This limiting value is the
required slope. Having the slope and the point P they could
now draw the tangent.

This is not exactly Fermat’s process for drawing tangents, but
his own process was, broadly, equivalent to what has been
described.

‘Why should all this be worth the serious attention of any
rational or practical man? It is a long story, only a hint of
which need be given here; more will be said when we discuss
Newton. One of the fundamental ideas in dynamies is that of
the velocity (speed) of a moving particle. If we graph the number
of units of distance passed over by the particle in 2 unit of time
against the number of units of time, we get a line, straight or
curved, which pictures at a glance the motion of the particle,
and the steepress of this line at any given point of it will
obviously give us the velocity of the particle at the instant
corresponding to the point; the faster the particle is moving,
the steeper the slope of the tangent line. This slope does in fact
measure the velocity of the particle at any point of its path.
The problem in motion, when translated into geometry, is
exactly that of finding the slope of the tangent line at a given
point of 2 curve. There are similar problems in connexion with
tangent planes to surfaces (which also have important inter-
pretations in mechanics and mathematical physics), and all are
attacked by the differential calculus — whose fundamental
problem we have attempted to describe as it presented itself to
Fermat and his successors.

Another use of this caleulus can be indicated from what has
already been said. Suppose some quantity y is a ‘function’ of
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another, £, written y = f(¢), which means that when any definite
number, say 10, is substituted for #, so that we get f(10) -
‘function f of 10’ - we can calculate, from the algebraical expres-
sion of f, supposed given, the corresponding velue of y, here y =
f(10). To be explicit, suppose f(?) is that particular ‘function’ of
t which is denoted in algebra by #2, or ¢ X ¢. Then, when ¢ = 10,
we get y = f(10), and hence here y = 102, = 100, for this value
of ; when t = 4, y = }, and so on, for any value of &

All this is familiar to anyone whose grammar-school educa-
tion ended not more than thirty or forty years ago, but some
may have forgotten what they did in arithmetic as children,
just as others could not decline the Latin mensa to save their
souls. But even the most forgetful will see that we could plot
the graph of y = f() for any particular form of f (when [(2) is 2
the graph is a parabola like an inverted arch). Imagine the

y=t?

-y
graph drawn. If it has on it maaima (highest) or minima (lowest)
points — points higher or lower than those in their immediate
neighbourhoods — we observe that the tangent at each of these
mazxima or minima is parallel to the {-axis. That is, the slope of
the tangent at such an extremum (maximum or minimum) of
the f(f) we are plotting is zero. Thus if we were seeking the
extrema of a given function f(f) we should again have to solve
our slope problem for the particular curve y = f(¢) and, having
found the slope for the general point 2, ¥y, equate to zero the
algebraical expression of this slope in order to find the values
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of ¢ corresponding to the extrema. This is substantially what
Fermat did in his method of maxima and minima invented in
1628-9, but not made semi-public till ten years later when
Fermat sent an account of it through Mersenne to Descartes.

y

v

The scientific applications of this simple device — duly ela-
borated, of course, to take account of far more complicated
problems than that just described — are numerous and far-
reaching. In mechanics, for instance, as Lagrange discovered,
there is a certain ‘function’ of the positions (co-ordinates) and
velocities of the bodies concerned in a problem which, when
made an extremum, furnishes us with the ‘equations of motion’
of the system considered, and these in turn enable us to deter-
mine the motion —~ to describe it completely — at any given
instant. In physics there are many similar functions, each of
which sums up most of an extensive branch of mathematical
physics in the simple requirement that the function in question
must be an extremum;* Hilbert in 1916 found one for general
relativity. So Fermat was not fooling away his time when he
amused himself in the leisure left from a laborious legal job by
attacking the problem of maxima.and minima. He himself

* This statement is sufficiently accurate for the present account.
Actually, the values of the variables (co-ordinates and velocities)
which make the function in question stationary (neither increasing
nor decreasing, roughly) are those required. An exéremusm is station-
ary; but a stationary is not necessarily an extremum.
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made one beautiful and astonishing application of his principles
to optics. In passing it may be noted that this particular dis-
covery has proved to be the germ of the newer quantum theory
— in its mathematical aspect, that of ‘wave mechanics’ -
elaborated since 1926. Fermat discovered what is usually called
‘the principle of least time’. It would be more accurate to say
‘extreme’ (least or greatest) instead of ‘least’.*

According to this principle, if a ray of light passes from a
point 4 to another point B, being reflected and refracted
(‘refracted’, that is, bent, as in passing from air to water, or
through a jelly of variable density) in any manner during the
passage, the path which it must take can be calculated — all its
twistings and turnings due to refraction, and all its dodgings
back and forth due to reflections — from the single requirement
that the time taken to pass from 4 to B shall be an extremum
(but see the preceding footnote).

From this principle Fermat deduced the familiar laws of
reflection and refraction: the angle of incidence (in reflection)
is equal to the angle of reflection; the sine of the angle of inci-
dence (in refraction) is a constant number times the sine of the
angle of refraction in passing from one medium to another.

The matter of analytical geometry has already been men-
tioned; Fermat was the first to apply it to space of three dimen-
sions. Descartes contented himself with two dimensions. The
extension, familiar to all students to-day, would not be self-
evident to even 2 gifted man from Descartes’ developments.
It may be said that there is usually greater difficulty in finding
a significant extension of a particular kind of geometry from
space of two dimensions to three than there is in passing from
three to four or five ... , or n. Fermat corrected Descartes in
an essential point (that of the classification of curves by their
degrees). It seems but natural that the somewhat touchy Des-
cartes should have rowed with the imperturbable ‘Gascon’
Fermat. The soldier was frequently irritable and acid in his
controversy over Fermat’s method of tangents; the equable
jurist was always unaffectedly courteous. As usually happens
the man who kept his temper got the better of the argument.

* See footnote on page 67.
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But Fermat deserved to win, not because he was a more skilful
debater, but because he was right.

In passing, we should suppose that Newton would have
heard of Fermat’s use of the calculus and would have acknow-
ledged the information. Until 1934 no evidence to this effect
had been published, but in that year Professor L. T. More
recorded in his biograpby of Newton a hitherto unnoticed letter
in which Newton says explicitly that he got the hint of the
method of the differential calculus from Fermat’s method of
drawing tangents.

We now turn to Fermat’s greatest work, that which is intel-
ligible to all, mathematicians and amateurs alike. This is the
so-called ‘theory of numbers’, or ‘the higher arithmetie’, or
finally, to use the unpedantic name which was good enough for
Gauss, arithmetic.

The Greeks separated the miscellany which we lump together
under the name ‘arithmetic’ in elementary textbooks into two
distinct compartments, logistica and arithmetica, the first of
which concerned the practical applications of reckoning to trade
and daily life in general, and the second, arithmetic in the sense
of Fermat and Gauss, who sought to discover the properties of
numbers as such.

Arithmetic in its ultimate and probably most difficult pro-
blems investigates the mutual relationships of those common
whole numbers 1, 2, 8, 4, 5, ... which we utter almost as soon
as we learn to talk. In striving to elucidate these relationships,
mathematicians have been driven to the invention of subtle and
abstruse theories in algebra and analysis, whose forests of tech-
nicalities obscure the initial problems — those concerning 1, 2,
8, ... but whose real justification will be ihe solution of those
problems. In the meantime the by-products of these apparently
useless investigations amply repay those who undertake them
by suggesting numerous powerful methods applicable to other
fields of mathematics having direct contact with the physical
universe. To give but one instance, the latest phase of algebra,
that which is cultivated to-day by professional algebraists and
which is throwing an entirely new light on the theory of alge-
braic equations, traces its origin directly to attempts to settle
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Fermat’s simple Last Theorem (which will be stated when the
way has been prepared for it).

We begin with a famous statement Fermat made about
prime numbers. A positive prime number, or briefly a prime, is
any number greater than 1 which has as its divisors (without
remainder) only 1 and the number itself; for example 2, 8, 5, 7,
13, 17 are primes, and so are 257, 65537. But 4294967297 is not
a prime, because it has 641 as a divisor, nor is the number
18446744078709551617, because it is exactly divisible by
274177; both 641 and 274177 are primes. When we say in
arithmetic that one number has as divisor another number, or
is divisible by another, we mean exactly divisible, without
remainder. Thus 14 is divisible by 7, 15 is not. The two large
numbers were displayed above with malice aforethought for a
reason that will be apparent in a moment. To recall another
definition, the nth power of a given number, say N, is the result
of multiplying together n N’s, and is written N”; thus 52 =
5 X 5 =25;8t=8 X 8 X 8 X8 = 4096. For uniformity
N itself may be written as N Again, such a pagoda as 23°
means that we are first to calculate 35 (= 2438), and then ‘raise’
2 to this power, 22¢%; the resulting number has seventy-four
digits.

The next point is of great importance in the life of Fermat,
also in the history of mathematics. Consider the numbers
8, 5, 17, 257, 65587. They all belong to one ‘sequence’ of a
specific kind, because they are all generated (from 1 and 2) by
the same simple process, which will be seen from

8=241, 5=22+41, 17=24+1, 257=2541, 65587 =210}1;
and if we care to verify the calculation we easily see that the
two large numbers displayed above are 232 4 1 and 28¢ 4 1,
also numbers of the sequence. We thus have seven numbers
belonging to this sequence and the first five of these numbers are
primes, but the last two are not primes.

Observing how the sequence is composed, we note the ‘expo-
nents’ (the upper numbers indicating what powers of 2 are
taken), namely 1, 2, 4, 8, 16, 32, 64, and we observe that these
are 1 (which can be written 29 as in algebra, if we like, for
uniformity), 2%, 22, 23, 24, 23, 2%, Namely, our sequence is 22" 41,
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where n ranges over 0, 1, 2, 3, 4, 5, 6. We need not stop with
n = 6; takingn =7, 8,9, ... , we may continue the sequence
indefinitely, getting more and more enormous numbers.

Suppose we wish now to find out if a particular number of
this sequence is a prime. Although there are many short cuts,
and whole classes of trial divisors can be rejected by inspection,
and although modern arithmetic limits the kinds of trial divi-
sors that need be tested, our problem is of the same order of
laboriousness as would be the dividing of the given number in
succession by the primes 2, 8, 5, 7 ... which are less than the
square root of the number. If none of these divides the number,
the number is prime. Needless to say the labour involved in
such a test, even using the known short cuts, would be prohi-
bitive for even so small a value of n as 100. (The reader may
assure himself of this by trying to settle the case n = 8.)

Fermat asserted that he was convinced that all the numbers
of the sequence are primes. The displayed numbers (correspond-
ing to n = 5, 6) contradict him, as we have seen. This is the
point of historical interest which we wished to make: Fermat
guessed wrong, but he did not claim to have proved his guess. Some
years later he did make an obscure statement regarding what
he had done, from which some critics infer that he had deceived
himself. The importance of this fact will appear as we proceed.

As a psychological curiosity it may be mentioned that Zerah
Colburn, the American lightning-calculating boy, when asked
whether this sixth number of Fermat’s (4294967297) was
prime or not, replied after a short mental calculation that it
was not, as it had the divisor 641. He was unable to explain the
process by which he reached his correct conclusion. Colburn will
oceur again (in connexion with Hamilton).

Before leaving ‘Fermat’s numbers® 22" -- 1 we shall glance
ahead to the last decade of the eighteenth century where these
mysterious numbers were partly responsible for one of the two
or three most important events in all the long history of mathe-
matics. For some time a young man in his eighteenth year had
been hesitating — according to the tradition — whether to devote
his superb talents to mathematics or to philology. He was
equally gifted in both. What decided him was a beautiful diseo-
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very in connexion with a simple problem in elementary geo-
metry familiar to every schoolboy.

A regular polygon of n sides has all its n sides equal and all its
n angles equal. The ancient Greeks early found out how to
construct regular polygons of 8, 4, 5, 6, 8, 10 and 15 sides by
the use of straight-edge and compass alone, and it is an easy
matter, with the same implements, to construct from a regular
polygon having a given number of sides another regular polygon
having twice that number of sides. The next step then would be
to seek straight-edge and compass constructions for regular
polygons of 7, 9, 11, 18, ... sides. Many sought, but failed to
find, because such constructions are impossible, only they did
not know it. After an interval of over 2200 years the young man
hesitating between mathematics and philology took the next
step — a long one ~ forward.

As has been indicated it is sufficient to consider only polygons
having an odd number of sides. The young man proved that a
straight-edge and compass construction of a regular polygon
having an odd number of sides is possible when, and only when,
that number is either 2 prime Fermat number (that is a prime
of the form 22" 4 1), or is made up by multiplying together
different Fermat primes. Thus the construction is possible for
8, 5, or 15 sides as the Greeks knew, but not for 7, 9, 11 or 18
sides, and is also possible for 17 or 257 or 65537 or — for what
the next prime in the Fermat sequence 8, 5, 17, 257, 65587, ...
may be, +f there is one — nobody yet (1936) knows ~ and the con-
struction is also possible for 8 X 17, or 5 X 257 X 65587 sides,
and so on. It was this discovery, announced on 1 June 1796,
but made on 30 March, which induced the young man to choose
mathematics instead of philology as his life work. His name was
Gauss.

As a discovery of another kind which Fermat made con-
cerning numbers we state what is known as ‘Fermat’s Theorem’
(nof his ‘Last Theorem’). If n 1s any whole number and p any
prime, then n? — n is divisible by p. For example, taking p = 3,
n = 5, we get 53 — 5, or 125 — 5, which is 120 and is 8 X 40;
forn = 2, p = 11, we get 211 — 2,70or 2048 — 2, which is
2046 = 11 x 186.
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It is difficult if not impossible to state why some theorems in
arithmetic are considered ‘important’ while others, equally
difficult to prove, are dubbed trivial. One criterion, although
not necessarily conclusive, is that the theorem shall be of use
in other fields of mathematics. Another is that it shall suggest
researches in arithmetic or in raathematics generally, and a
third that it shall be in some respect universal. Fermat’s
theorem just stated satisfies all of these somewhat arbitrary
demands: it is of indispensable use in many departments of
mathematics, including the theory of groups (see Chapter 15),
which in turn is at the root of the theory of algebraic equations;
it has suggested many investigations, of which the entire sub-
ject of primitive roots may be recalled to mathematical readers
as an important instance; and finally it is universal in the sense
that it states a property of all prime numbers — such general
statements are extremely difficult to find and very few are
known.

As usual, Fermat stated his theorem about n? — n without
proof. The first proof was given by Leibniz in an undated manu-
seript, but he appears to have known a proof before 1683. The
reader may like to test his own powers on trying to devise a
proof. All that is necessary are the following facts, which can
be proved but may be assumed for the purpose in hand: a given
whole number can be built up in one way only — apart from
rearrangements of factors — by multiplying together primes; if
a prime divides the product (result of multiplying) of two whole
numbers, it divides at least one of them. To illustrate: 24 =
2 X 2 X 2 X 8, and 24 cannot be built up by multiplication of
primes in any essentially different way — we consider 2 X2 X2 X
8,2 X2 X8X22xXx8x2x2and8 X2 X2 X2as
the same; 7 divides 42, and 42 = 2 X 21 =8 X 14 =6 X 7,
in each of which 7 divides at least one of the numbers multiplied
together to give 42; again, 98 is divisible by 7, 2nd 98 = 7 X 14,
in which case 7 divides both 7 and 14, 2nd hence at least one of
them. From these two facts the proof can be given in less than
half a page. It is within the understanding of any normal
fourteen-year-old, but it is safe to wager that out of a million
human beings of normal intelligence of any or all ages, less than
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ten of those who had had no more mathematics than grammar-
grade arithmetic would succeed in finding a proof within a
reasonable time — say a year.

This seems to be an appropriate place to quote some famous
remarks of Gauss concerning the favourite field of Fermat’s
interests and his own. The translation is that of the Irish
arithmetician H. J. S. Smith (1826-83), from Gauss’ introdue-
tion to the collected mathematical papers of Eisenstein pub-
lished in 1847.

‘The higher arithmetic presents us with an inexhaustible
store of interesting truths — of truths, too, which are not iso-
lated, but stand in a close internal connexion, and between
which, as our knowledge increases, we are continually disco-
vering new and sometimes wholly unexpected ties. A great part
of its theories derives an additional charm from the peculiarity
that important propositions, with the impress of simplicity
upon them, are often easily discoverable by induction, and yet
are of so profound a character that we cannot find their demon-
stration till after many vain attempts; and even then, when we
do succeed, it is often by some tedious and artificial process,
while the simpler methods may long remain concealed.’

One of these interesting truths which Gauss mentions is
sometimes considered the most beautiful (but not the most
important) thing about numbers that Fermat discovered: every
prime number of the form 4n - 1 is a sum of two squares, and
is such a sum in only one way. It is easily proved that no
number of the form 4n — 1 is a sum of two squares. As all
primes greater than 2 are readily seen to be of one or other of
these forms, there is nothing to add. For an example, 37 when
divided by 4 yields the remainder 1, so 37 must be the sum of
two squares of whole numbers. By trial (there are better ways)
we find indeed that 87 = 1 4 86, = 12 4 62, and that there are
no other squares 2 and y? such that 87 = a? + y* For the
prime 101 we have 1% 4 10%; for 41 we find 4% 4 52. On the
other hand 19, = 4 X 5 — 1, is not a sum of two squares.

As in nearly all of his arithmetical work, Fermat left no proof
of this theorem. It was first proved by the great Euler in 1749
after he had struggled, off and on, for seven years to find 2
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proof. But Fermat does describe the ingenious method, which
he invented, whereby he proved this and some others of his
wonderful results. This is called ‘infinite descent’, and is infi-
nitely more difficult to accomplish than Elijah’s ascent to
Heaven. His own account is both concise and clear, so we shall
give a free translation from his letter of August 1659 to
Carcavi.

‘For a long time I was unable to apply my method to affirm-
ative propositions, because the twist and the trick for getting
at them is much more troublesome than that which I use for
negative propositions. Thus, when I had to prove that every
prime ber which ds a multiple of 4 by 1 is composed of
two squares, I found myself in a fine torment. But at last a
meditation many times repeated gave me the light I lacked,
and now affirmative propositions submit to my method, with
the aid of certain new principles which necessarily must be
adjoined to it. The course of my reasoning in affirmative propo-
sitions is such: if an arbitrurily chosen prime of the form 4n <4 1
is not a sum of two squares, [I prove that] there will be another
of the same nature, less than the one chosen, and [therefore]
next a third still less, and so on. Making an infinite descent in
this way we finally arrive at the number 5, the least of all the
numbers of this kind [4n + 1]. [By the proof mentioned and the
preceding argument from it], it follows that 5 is not a sum of
two squares. But it is. Therefore we must infer by a reductio ad
absurdum that all numbers of the form 4n + 1 are sums of two
squares.’

All the difficulty in applying descent to a new problem lies in
the first step, that of proving that ¢f the assumed or conjectured
proposition is true of any number of the kind concerned chosen
at random, then it will be true of a smaller number of the same
kind. There is no general method; applicable to all problems,
for taking this step. Something rarer than grubby patience or
the greatly overrated ‘infinite capaecity for taking pains’ is
needed to find a way through the wilderness. Those who
imagine genijus is nothing more than the ability to be a good
bookkeeper may be recommended to exert their infinite
patience on Fermat’s Last Theorem. Before stating the theorem
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we give one more example of the deceptively simple problems
Fermat attacked and solved. This will introduce the topic of
Diophantine analysis, in which Fermat excelled.

Anyone playing with numbers might well pause over the
curious fact that 27 = 25 + 2. The point of interest here is that
both 27 and 25 are exact powers, namely 27 = 8% and 25 = 52,
Thus we observe that y® = 2® 4 2 has a solution in whole
numbers z, y; the solution is y = 8, # = 5. As a sort of super-
intelligence test the reader may now prove thaty = 8,z = 5
are the only whole numbers which satisfy the equation. It is not
easy. In fact it requires more innate intellectual capacity to
dispose of this apparently childish thing than it does to grasp
the theory of relativity.

The equation Yy = a2 + 2, with the resiriction that the solution
Y, & 18 fo be in whole numbers, is indeterminate (because there are
more unknowns, namely two, z and y, than there are equations,
namely one, connecting them) and Diophantine, after the
Greek who was one of the first to insist upon whole number
solutions of equations or, less stringently, on rational (frac-
tional) solutions. There is no difficulty whatever in describing
an infinity of solutions without the restriction to whole numbers:
thus we may give & any value we please and then determine y
by adding 2 to this 2* and extracting the cube root of the result.
But the Diophantine problem of finding all the whole number
solutions is quite another matter. The solutiony = 8,2 = 5 is
seen ‘by inspection’; the difficulty of the problem is to prove
that there are no other whole numbers y, 2 which will satisfy the
equation. Fermat proved that there are none but, as usyal,
suppressed his proof, and it was not until many years after his
death that a proof was found.

This time he was not guessing; the problem is hard; he
asserted that he had a proof; a proof was later found. And so
for all of his positive assertions with the one exception of the
seemingly simple one which he made in his Last Theorem and
which mathematicians, struggling for nearly 800 years, have
been unable to prove; whenever Fermat asserted that he had
proved anything, the statement, with the one exception noted,
has subsequently been proved. Both his serupulously honest
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character and his unrivalled penetration as an arithmetician
substantiate the claim made for him by some, but not by all,
that he knew what he was talking about when he asserted that
he possessed a proof of his theorem.

It was Fermat’s custom in reading Bachet’s Diophantus to
record the results of his meditations in brief marginal notes in
his copy. The margin was not suited for the writing out of
proofs. Thus, in commenting on the eighth problem of the
Second Book of Diophantus’ Arithmetie, which asks for the
solution in rational numbers (fractions or whole numbers) of the
equation 2% 4 y* = a% Fermat comments as follows: .

‘On the contrary, it is impossible to separate a cube into two
cubes, a fourth power into two fourth powers, or, generally, any
power above the second into two powers of the same degree: I
have discovered a truly marvellous demonstration [of this
general theorem] which this margin is too narrow to contain’
(Fermat, Oeuvres, II1, p. 241). This is his famous Last Theorem,
which he discovered about the year 1637.

To restate this in modern language: Diophantus’ problem is
to find whole numbers or fractions z, ¥, a such that #? + y2 =
a?; Fermat asserts that no whole numbers or fractions exist
such that a® 4 y® = a3, or 2* + y* = a4, or, generally, such that
a® 4+ y® = a"if n is a whole number greater than 2.

Diophantus’ problem has an infinity of solutions; specimens
arex = 8,y = 4,a = 5;x =5,y = 12, a = 18. Fermat himself
gave a proof by his method of infinite descent for the impossi-
bility of @#* 4 y* = a®. Since his day 2™ 4 y" = a” has been
proved impossible in whole numbers (or fractions) for a great
many numbers n (up to all primes* less than n = 14,000 if
none of the numbers @, ¥, a is divisible by n), but this is not
what is required. A proof disposing of all n’s greater than 2
is demanded. Fermat said he possessed a ‘marvellous’ proof.

After all that has been said, is it likely that he had deceived
himself? It may be left up to the reader. One great arithmeti

* The reader can easily see that it suffices to dispose of the case
where » is an odd prime, since, in algebra, u® = (u“)b, where u, a, b
are any numbers.

kg



MEN OF MATHEMATICS

cian, Gauss, voted against Fermat. However, the fox who
could not get at the grapes declared they were sour. Others
have voted for him. Fermat was a mathematician of the first
rank, a man of unimpeachable honesty, and an arithmetician
without a superior in history*.

* In 1908 the late Professor Paul Wolfskehl (German) left 100,000
marks to be awarded to the first person giving a complete proof of
Fermat’s Last Theorem. The inflation after the World War reduced
this prize to a fraction of a cent, which is what the mercenary will
now get for a proof.



CHAPTER FIVE

‘GREATNESS AND MISERY OF MAN?

Pascal

YouxceEr by twenty-seven years than his great contemporary
Descartes, Blaise Pascal was born at Clermont, Auvergne,
France, on 19 June 1623, and outlived Descartes by twelve
years. His father, Ktienne Pascal, president of the court of aids
at Clermont, was a man of culture and had some claim to intel-
Jectual distinction in his own times; his mother, Antoinette
Bégone, died when her son was four. Pascal had two beautifu}
and talented sisters, Gilberte, who became Madame Périer, and
Jacqueline, both of whom, the latter especially, played impor-
tant parts in his life.

Blaise Pascal is best known to the general reader for his two
literary classics, the Pensées and the Lettres écrites par Louis de
Montalte & un provincial de ses amis commonlyreferred to as the
‘Provincial Letters’, and it is customary to condense his mathe-
matical career Lo a few paragraphs in the display of his religious
prodigies. Here our point of view must necessarily be somewhat
oblique, and we shall consider Pascal primarily as 2 highly
gifted mathematician who let his masochistic proclivities for
self-torturing and profitless speculations on the sectarian con-
troversies of his day degrade him to what would now be called
a religious neurotic. :

On the mathematical side Pascal is perhaps the greatest
might-have-been in history. He had the misfortune to precede
Newton by only a few years and to be a contemporary of
Descartes and Fermat, both more stable men than himself. His
most novel work, the creation of the mathematical theory of
probability, was shared with Fermat, who could easily have
done it alone. In geometry, for which he is famous as a sort of
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infant prodigy, the creative idea was supplied by a man —
Desargues — of much less celebrity.

In his outlook on experimental science Pascal had a far
clearer vision than Descartes — from a modern point of view —
of the scientific method. But he lacked Descartes’ singleness of
aim, and although he did some first-rate work, allowed himself
to be deflected from what he might have done by his morbid
passion for religious subtleties.

It is useless to speculate on what Pascal might have done.
Let his life tell what he actually did. Then, if we choose, we can
sum him up as a mathematician by saying that he did what was
in him and that no man can do more. His life is a running com-
mentary on two of the stories or similes in that New Testament
which was his constant companion and unfailing comfort: the
parable of the talents, and the remark about new wine bursting
old bottles (or skins). If ever a wonderfully gifted man buried
his talent, Pascal did; and if ever 2 medieval mind was cracked
and burst asunder by its attempt to hold the new wine of
seventeenth-century science, Pascal’s was. His great gifts were
bestowed upon the wrong person.

At the age of seven Pascal moved from Clermont with his
father and sisters to Paris. About this time the father began
teaching his son. Pascal was an extremely precocious child.
Both he and his sisters appear to have had more than their
share of nature’s gifts. But poor Blaise inherited (or acquired)
a wretched physique along with his brilliant mind, and Jacque-
line, the more gifted of his sisters, seems to have been of the
same stripe as her brother, for she too fell 2 victim to morbid
religiosity.

At first everything went well enough. Pascal senior, aston-
ished at the ease with which his son absorbed the stock classical
education of the day, tried to hold the boy down to a reasonable
pace to avoid injuring his health. Mathematics was taboo, on
the theory that the young genius might overstrain himself by
using his head. His father was an excellent drillmaster but a
poor psychologist. His ban on mathematics naturally excited
the boy’s curiosity. One day when he was about twelve Pascal
demanded to know what geometry was about. His father gave

80



‘GREATNESS AND MISERY OF MAN’

him a clear description. This set Pascal off like a hare after his
true vocation. Contrary to his own opinion in later life he had
been called by God, not to torment the Jesuits, but to be a great
mathematician. But his hearing was defective at the time and
he got his orders confused.

‘What happened when Pascal began the study of geometry
has become one of the legends of mathematical precocity. In
passing it may be remarked that infant prodigies in mathe-
matics do not invariably blow up as they are sometimes said to
do. Precocity in mathematics has often been the first flush of a
glorious maturity, in spite of the persistent superstition to the
contrary. In Pascal’s case early mathematical genius was not
extinguished as he grew up but stifled under other interests.
The ability to do first-class mathematics persisted, as will be
seen from the episode of the cycloid, late into his all too brief
life, and if anything is to be blamed for his comparatively early
mathematical demise it is probably his stomach. His first
spectacular feat was to prove, entirely on his own initiative,
and without a hint from any book, that the sum of the angles
of a triangle is equal to two right angles. This encouraged him
to go ahead at a terrific pace.

Realizing that he had begotten a mathematician, Pascal
senior wept with joy and gave his son a copy of Euclid’s Ele-
ments. This was quickly devoured, not as a task, but as play.
The boy gave up his games to geometrize. In connexion with
Pascal’s rapid mastery of Euclid, sister Gilberte permits herself

an over-appreciative fib. It is true that Pascal had found out
" and proved several of Euclid’s propositions for himself before
he ever saw the book. But what Gilberte romances about her
brilliant young brother is less probable than a throw of a billion
aces in succession with one die, for the reason that it is infinitely
improbable. Gilberte declared that her brother had redisco-
vered for himself the first thirty-two propositions of Euclid, and
that he had found them ¢n the same order as that in which
Euclid sets them forth. The thirty-second proposition is indeed
the famous one about the sum of the angles of a triangle which
Pascal rediscovered. Now, there may be only one way of doing
a thing right, but it seems more likely that there are an infinite
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number of ways of doing it wrong. We know to-day that Euclid’s
allegedly rigorous demonstrations, even in the first four of his
propositions, are no proofs at all. That Pascal faithfully dupli-
cated all of Euclid’s oversights on his own account is an easy
story to tell but a hard one to believe. However, we can forgive
Gilberte for bragging. Her brother was worth it. At the age of
fourteen he was admitted to the weekly scientific discussions,
conducted by Mersenne, out of which the French Academy of
Sciences developed.

While young Pascal was fast making a geometer of himself,
old Pascal was making a thorough nuisance of himself with the
authorities on account of his honesty and general uprightness.
In particular he disagreed with Cardinal Richelieu over 2 little
matter of imposing taxes. The Cardinal was incensed; the
Pascal family went into hiding till the storm blew over. It is
said that the beautiful and talented Jacqueline rescued the
family and restored her father to the light of the Cardinal’s
countenance by her brilliant acting, incognito, in a play pre-
sented for Richelieu’s entertainment. On inquiring the name of
the charming young artiste who had captivated his clerical
faney, and being told that she was the daughter of his minor
enemy, Richelieu very handsomely forgave the whole family
and planted the father in a political job at Rouen. From what
is known of that wily old serpent, Cardinal Richelieu, this
pleasing tale is probably a fish story. Anyhow, the Pascals once
more found a job and security at Rouen. There young Pascal
met the tragic dramatist Corneille, who was duly impressed
with the boy’s genius. At the time Pascal was all mathemati-
cian, so probably Corneille did not suspect that his young friend
was to become one of the great creators of French prose.

All this time Pascal was studying incessantly. Before the age
of sixteen (about 1639)* he had proved one of the most beautiful
theorems in the whole range of geometry. Fortunately it can be

* Authorities differ on Pascal’s age when this work was done, the
estimate varying from fifteen to seventeen. The 1819 edition of
Pascal’s works contains a brief résumé of the statements of certain
propositions on conics, but this is not the completed essay which
Leibniz saw.
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described in terms comprehensible to anyone. Sylvester, a
mathematician of the nineteenth century whom we shall meet
later, called Pascal’s great theorem a sort of ‘cat’s cradle’. We
state first a special form of the general theorem that can be
constructed with the use of a ruler only.

Label two intersecting straight lines [ and I’. On [ take any
three distinct points 4, B,C,and on I’ any three distinct points
A’, B, C’. Join up these points by straight lines, crisscross, as
follows: A and B’, A’ and B, B and C’, B’ and C, C and A/, C’
and A. The two lines in each of these pairs intersect in a point.
‘We thus get three points. The special case of Pascal’s theorem
which we are now describing states that these three points lie
on one straight line.

4 A

2" A 8 c’

Before giving the general form of the theorem we mention
another result like the preceding. This is due to Desargues
(1593-1662). If the three straight lines joining corresponding
vertices of two triangles XY Z and ayz meet in a point, then the
three intersections of pairs of corresponding sides lie on one
straight line. Thus, if the straight lines joining X and z, ¥ and
Y, Z and 2 meet in a point, then the inter-sections of XY and ay,
Y Z and yz, ZX and 2z lie in one straight line (see fig. on p. 84).

In Chapter 2 we stated what a conic section is. Imagine any
conic section, for definiteness say an ellipse. On it mark any six
points, 4, B, C, D, E, F, and join them up, in this order, by
straight lines. We thus have a six-sided figure inscribed in the
conic section, in which AB and DE, BC and EF, CD and FA
are pairs of opposite sides. The two lines in each of these three
pairs intersect in a point; the three points of intersection lie on
one straight line (see figure in Chapter 13, page 288). This is
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number of ways of doing it wrong. We know to-day that Euclid’s
allegedly rigorous demonstrations, even in the first four of his
propositions, are no proofs at all. That Pascal faithfully dupli-
cated all of Buclid’s oversights on his own account is an easy
story to tell but a hard one to believe. However, we can forgive
Gilberte for bragging. Her brother was worth it. At the age of
fourteen he was admitted to the weekly scientific discussions,
conducted by Mersenne, out of which the French Academy of
Sciences developed.

‘While young Pascal was fast making a geometer of himself,
old Pascal was making a thorough nuisance of kimself with the
authorities on account of his honesty and general uprightness.
In particular he disagreed with Cardinal Richelieu over a little
matter of imposing taxes. The Cardinal was incensed; the
Pascal family went into hiding till the storm blew over. It is
said that the beautiful and talented Jacqueline rescued the
family and restored her father to the light of the Cardinal’s
countenance by her brilliant acting, incognito, in a play pre-
sented for Richelieu’s entertainment. On inquiring the name of
the charming young artiste who had captivated his clerical
fancy, and being told that she was the daughter of his minor
enemy, Richelieu very handsomely forgave the whole family
and planted the father in a political job at Rouen. From what
is known of that wily old serpent, Cardinal Richelieu, this
pleasing tale is probably a fish story. Anyhow, the Pascals once
more found a job and security at Rouen. There young Pascal
met the tragic dramatist Corneille, who was duly impressed
with the boy’s genius. At the time Pascal was all mathemati-
cian, so probably Corneille did not suspect that his young friend
was to become one of the great creators of French prose.

All this time Pascal was studying incessantly. Before the age
of sixteen (about 1639)* he had proved one of the most beautiful
theorems in the whole range of geometry. Fortunately it can be

* Authorities differ on Pascal’s age when this work was done, the
estimate varying from fifteen to seventeen. The 1819 edition of
Pascal’s works contains a brief résumé of the statements of certain
propositions on conics, but this is not the completed essay which
Leibniz saw.
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described in terms comprehensible to anyone. Sylvester, a
mathematician of the nineteenth century whom we shall meet
later, called Pascal’s great theorem a sort of ‘cat’s cradle’. We
state first a special form of the general theorem that can be
constructed with the use of a ruler only.

Label two intersecting straight lines / and 7’. On [ take any
three distinct points A4, B, C, and on I any three distinct points
A’y B/, C’. Join up these points by straight lines, crisscross, as
follows: A and B’, A’ and B, B and C’, B’ and C, C and A’, C’
and A. The two lines in each of these pairs intersect in 2 point.
We thus get three points. The special case of Pascal’s theorem
which we are now describing states that these three points lie
on one straight line.

I'4 A

2" A B c’

Before giving the general form of the theorem we mention
another result like the preceding. This is due to Desargues
(1598-1662). If the three straight lines joining corresponding
vertices of two triangles XY Z and ayz meet in a point, then the
three intersections of pairs of corresponding sides lie on one
straight line. Thus, if the straight lines joining X and #, ¥ and
¥, Z and z meet in a point, then the inter-sections of XY and ay,
Y Z and yz, ZX and zz lie in one straight line (see fig. on p. 84).

In Chapter 2 we stated what a conic section is. Imagine any
conic section, for definiteness say an ellipse. On it mark any six
points, 4, B, C, D, E, F, and join them up, in this order, by
straight lines. We thus have a six-sided figure inscribed in the
conic section, in which AB and DE, BC and EF, CD and FA
are pairs of opposite sides. The two lines in each of these three
pairs intersect in a point; the three points of intersection lie on
one straight line (see figure in Chapter 138, page 238). This is
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Pascal’s theorem; the figure which it furnishes is what he called
the ‘mystic hexagram’. He probably first proved it true for 2
circle and then passed by projection to any conic section. Only
a straight-edge and a pair of compasses are required if the
reader wishes to see what the figure looks like for 2 circle.
There are several amazing things about this wonderful pro-
position, not the least of which is that it was discovered and
proved by 2 boy of sixteen. Again, in his Essai pour les Coniques
(Essay on Conics), written around his great theorem by this
extraordinarily gifted boy, no fewer than 400 propositions on
conic sections, including the work of Apollonius and others,
were systematically deduced as corollaries, by letting pairs of
the six points move into coincidence, so that a chord became a

% = <

tangent, and other devices. The full Essai itself was never
published and is apparently lost irretrievably, but Leibniz saw
and inspected a copy of it. Further, the kind of geometry which
Pascal is doing here differs fundamentally from that of the
Greeks; it is not meirical, but descriptive, or projective. Magni-
tudes of lines or angles cut no figure in either the statement or
the proof of the theorem. This one theorem in jtself suffices to
abolish the stupid definition of mathematics, inherited from
Aristotle and still sometimes reproduced in dictionaries, as the
science of ‘quantity’. There are no ‘quantities’ in Pascal’s
geometry.

To see what the projectivity of the theorem means, imagine a
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(circular) cone of light issuing from a point and pass a flat sheet
of glass through the cone in varying positions. The boundary
curve of the figure in which the sheet cuts the cone is a conic
section. If Pascal's ‘mystic hexagram’ be drawn on the glass for
any given position, and another flat sheet of glass be passed
through the cone so that the shadow of the hexagram falls on
it, the shadow will be another ‘mystic hexagram’ with its three
points of intersection of opposite pairs of sides lying on one
straight line, the shadow of the ‘three-point-line’ in the original
hexagram. That is, Pascal’s theorem is invariant (unchanged)
under conical projection. The metrical properties of figures
studied in common elementary geometry are nof invariant
under projection; for example, the shadow of a right angle is
not a right angle for all positions of the second sheet. It is
obvious that this kind of projective, or descriptive geometry, is
one of the geometries naturally adapted to some of the problems
of perspective. The method of projection was used by Pascal in
proving his theorem, but had been applied previously by
Desargues in deducing the result stated above concerning two
triangles ‘in perspective’. Pascal gave Desargues full credit for
his great invention.

All this brilliance was purchased at a price. From the age of
seventeen to the end of his life at thirty-nine, Pascal passed but
few days without pain. Acute dyspepsia made his days a tor-
ment and chronic insomnia his nights half-waking nightmares.
Yet he worked incessantly. At the age of eighteen he invented
and made the first calculating machine in history — the ancestor
of all the arithmetical machines that have displaced armies of
clerks from their jobs in our own generation. We shall see
farther on what became of this ingenious device. Five years
later, in 1646, Pascal suffered his first ‘conversion’. It did not
take deeply, possibly because Pascal was only twenty-three and
still absorbed in his mathematics. Up to this time the family
had been decently enough devout; now they all seem to have
gone mildly insane.

It is difficult for a modern to recreate the intense religious
passions which inflamed the seventeenth century, disrupting
families and hurling professedly Christian countries and sects
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at one another’s throats. Among the would-be religious
reformers of the age was Cornelius Jansen (1585-1638), a flam-
boyant Dutchman who became bishop of Ypres. A cardinal
point of his dogma was the necessity for ‘conversion’ as 2 means
to ‘grace’, somewhat in the manner of certain flourishing sects
to-day. Salvation, however, at least to an unsympathetic eye,
appears to have been the lesser of Jansen’s ambitions. God, he
was convinced, had especially elected him to blast the Jesuits
in this life and toughen them for eternal damnation in the next.
This was his call, his mission. His creed was neither Catholicism
nor Protestantism, although it leaned rather toward the latter.
Tts moving spirit was, first, last and all the time, a rabid hatred
of those who disputed its dogmatic bigotries. The Pascal family
now (1646) ardently — but not too ardently at first — embraced
this unlovely creed of Jansenism. Thus Pascal, at the early age
of twenty-three, began to die off at the top. In the same year
his whole digestive tract went bad and he suffered a temporary
paralysis. But he was not yet dead intellectually.

His scientific greatness flared up again in 1648 in an entirely
new direction. Carrying on the work of Torricelli (1608—47) on
atmospheric pressure, Pascal surpassed him and demonstrated
that he understood the scientific method which Galileo, the
teacher of Torricelli, had shown the world. By experiments with
the barometer, which he suggested, Pascal proved the familiar
facts now known to every beginner in physics regarding the
pressure of the atmosphere. Pascal’s sister Gilberte had married
a M. Périer. At Pascal’s suggestion, Périer performed the
experiment of carrying a barometer up the Puy de Déme in
Auvergne and noting the fall of the column of mercury as the
atmospheric pressure decreased. Later Pascal, when he moved
to Paris with his sister Jacqueline, repeated the experiment on
his own account.

Shortly after Pascal and Jacqueline had returned to Paris
they were joined by their father, now fully restored to favour
as a state councillor. Presently the family received a somewhat
formal visit from Descartes. He and Pascal talked over many
things, including the barometer. There was little love lost
between the two. For one thing, Descartes had openly refused
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to believe the famous Essai pour les coniques had been writien
by a boy of sixteen. For another, Descartes suspected Pascal of
having filched the idea of the barometric experiments from
himself, as he.had discussed the possibilities in letters to
Mersenne. Pascal, as has been mentioned, had been attending
the weekly meetings at Father Mersenne’s since he was four-
teen. A third ground for dislike on both sides was furnished by
their religious antipathies. Descartes, having received nothing
but kindness all his life from the Jesuits, loved them; Pascal,
following the devoted Jansen, hated a Jesuit worse than the
devil is alleged to hate holy water. And finally, according to the
candid Jacqueline, both her brother and Descartes were
intensely jealous, each of the other. The visit was rather a frigid
success.

The good Descartes however did give his young friend some
excellent advice in 2 truly Christian spirit. He told Pascal to
follow his own example and lie in bed every day till eleven, For
poor Pascal’s awful stomach he prescribed a diet of nothing but
beef tea. But Pascal ignored the kindly meant advice, possibly
because it came from Descartes. Among other things which
Pascal totally lacked was a sense of humour.

Jacqueline now began to drag her genius of 2 brother down —
or up; it all depends upon the point of view. In 1848, at the
impressionable age of twenty-three, Jacqueline declared her
intention of moving to Port Royal, near Paris, the main hang-
out of the Jansenists in France, to become a nun. Her father sat
down heavily on the project, and the devoted Jacqueline con-
centrated her thwarted efforts on her erring brother. She sus-
pected he was not yet so thoroughly converted as he might have
been, and apparently she was right. The family now returned
to Clermont for two years.

During these two swift years Pascal seems to have become
almost helf human, in spite of sister Jacqueline’s fluttering
admonitions that he surrender himself utterly to the Lord.
Even the recalcitrant stomach submitted to rational discipline
for a few blessed months.

It is said by some and hotly denied by others that Pascal
during this sane interlude and later for a few years discovered
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the predestined uses of wine and women. He did not sing. But
these rumours of a basely human humanity may, after all, be
nothing more than rumours. For after his death Pascal quickly
passed into the Christian hagiocracy, and any attempts to get
at the facts of his life as a human being were quietly but rigidly
suppressed by rival factions, one of which strove to prove that
he was a devout zealot, the other a sceptical atheist, but both
of which declared that Pascal was a saint not of this earth.

During these adventurous years the morbidly holy Jacque-
line continued to work on her frail brother. By 2 beautiful freak
of irony Pascal was presently to be converted — for good, this
time —and it was to be his lot to turn the tables on his too pious
sister and drive her into the nunnery which now, perhaps,
seemed less desirable. This, of course, is not the orthodox inter-
pretation of what happened; but to anyone other than a blind
partisan of one sect or the other — Christian or Atheist —itis a
more rational account of the unhealthy relationship between
Pascal and his unmarried sister than that which is sanctioned
by tradition.

Any modern reader of the Pensées must be struck by a certain
something or another which either completely escaped our more
reticent ancestors or was ignored by them in their wiser charity.
The letters, too, reveal a great deal which should have been
decently buried. Pascal’s ravings in the Pensées about ‘lust’ give
him away completely, as do also the well-attested facts of his
unnatural frenzies at the sight of his married sister Gilberte
naturally caressing her children.

Modern psychologists, no less than the ancients with ordinary
common sense, have frequently remarked the high correlation
between sexual repression and morbid religious fervour. Pascal
suffered from both, and his immortal Pensées are a brilliant if
occasionally incoherent testimonial to his purely physiological
eccentricities. If only the man could have been human enough
to let himself go when his whole nature told him to cut loose, he
might have lived out everything that was in him, instead of
smothering the better half of it under a mass of meaningless
mysticism and platitudinous observations on the misery and
dignity of man.
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Always shifting about restlessly the family returned to Paris
in 1650. The next year the father died. Pascal seized the occa-
sion to write Gilberte and her husband a lengthy sermon on
death in general. This letter has been much admired. We need
not reproduce any of it here; the reader who wishes to form his
own opinion of it can easily locate it. Why this priggish effusion
of pietistic and heartless moralizing on the death of a presum-
ably beloved parent should ever have excited admiration
instead of contempt for its author is, like the love of God which
the letter in part dwells upon ad nauseam, 2 mystery that
passeth all understanding. However, there is no arguing about
tastes, and those who like the sort of thing that Pascal’s much-
quoted letter is, may be left to their undisturbed enjoyment of
what is, after all, one of the masterpieces of self-conscious self-
revelation in French literature.

A more practical result of Pascal senior’s death was the
opportunity which it offered Pascal, as, administrator of the
estate, of returning to normal intercourse with his fellow-men.
Encouraged by her brother, sister Jacqueline now joined Port
Royal, her father being no longer capable of objecting. Her
sweet concern over her brother’s soul was now spiced by a quite
human quarrel over the division of the estate.

A letter of the preceding year (1650) reveals another facet of
Pascal’s reverent character, or possibly his envy of Descartes.
Dazzled by the transcendent brilliance of the Swedish Christine,
Pascal humbly begged to lay his calculating machine at the feet
of ‘the greatest princess in the world’, who, he declares in liquid
phrases dripping strained honey and melted butter, is as
eminent intellectually as she is socially. What Christine did with
the machine is not known. She did not invite Pascal ta replace
the Descartes whom she had done in.

At last, on 28 November 1654, Pascal was really converted.
According to some accounts he had been living a fast life for
three years. The best authorities seem to agree that there is not
much in this tradition and that his life was not so fast after all.
He had merely been doing his poor suffering best to Live like a
normal human being and to get something more than mathe-
matics and piety out of life. On the day of his conversion he was
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driving a four-in-hand when the horses bolted. The leaders
plunged over the parapet of the bridge at Neuilly, but the traces
broke, and Pascal remained on the road.

To aman of Pascal’s mystical temperament this lucky escape
from a violent death was a direct warning from Heaven to pull
himself up sharply on the brink of the moral precipice over
which he, the victim of his morbid self-analysis, imagined he
was about to plunge. He took a small piece of parchment,
inscribed on it some obscure sentiments of mystical devotion,
and thenceforth wore it next to his heart as an amulet to pro-
tect him from temptation and remind him of the goodness of
God which had snatched him, a miserable sinner, from the very
mouth of hell. Only once thereafter did he fall from grace (in his
own pitiable opinion), although all the rest of his life he was
haunted by hallucinations of a precipice before his feet.

Jacqueline, now a postulant for the nunnery at Port Royal,
came to her brother’s aid. Partly on his own account, partly
because of his sister’s persuasive pleadings, Pascal turned his
back on the world and took up his residence at Port Royal, to
bury his talent thenceforth in contemplation on ‘the greatness
and misery of man.” This was in 1654, when Pascal was thirty-
one. Before for ever quitting things of the flesh and the mind,
however, he had completed his most important contribution to
mathematics, the joint creation, with Fermat, of the mathe-
matical theory of probability. Not to interrupt the story of his
life we shall defer an account of this for the moment.

His life at Port Royal was at least sanitary if not exactly as
sane as might have been wished, and the quiet, orderly routine
benefited his precarious health considerably. It was while at
Port Royal that he composed the famous Provincial Letters,
which were inspired by Pascal’s desire to aid in acquitting
Arnauld, the leading light of the institution, of the charge of
heresy. These famous letters (there were eighteen, the first of
which was printed on 23 January 1656) are masterpieces of
controversial skill, and are said to have dealt the Jesuits a blow
from which their Society -has never fully recovered. However,
as a commonplace of objective observation which anyone with
eyes in his head can verify for himself, the Society of Jesus still
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flourishes; so it may be reasonably doubted whether the Pro-
vincial Letters had in them the deadly potency ascribed to them
by sympathetic critics.

In spite of his intense preoccupation with matters pertaining
to his salvation and the misery of man, Pascal was still capable
of doing excellent mathematics, although he regarded the pur-
suit of all science as a vanity to be eschewed for its derogatory
effects on the soul. Nevertheless he did fall from grace once
more, but only once. The occasion was the famous episode of
the cycloid.

This beautifully proportioned curve (it is traced out by the
motion of a fixed point on the circumference of a wheel rolling
‘along a straight line on a flat pavement) seems to have turned
up first in mathematical literature in 1501, when Charles

Bouvelles described it in connexion with the squaring of the
circle. Galileo and his pupil Viviani studied it and solved the
problem of constructing a tangent to the curve at any point (a
problem which Fermat solved at once when it was proposed to
him), and Galileo suggested its use as an arch for bridges. Since
reinforced concrete has become common, cycloidal arches are
frequently seen on highway viaducts. For mechanical reasons
(unknown to Galileo) the cycloidal arch is superior to any other
in construction. Among the famous men who investigated the
cycloid was Sir Christopher Wren, the architect of St Paul’s’
Cathedral, who determined the length of any arc of the curve
and its ceutre of gravity, while Huygens, for mechanical rea-
sons, introduced it into the construction of pendulum clocks.
One of the most beautiful of all the discoveries of Huygens
(1629-95) was made in connexion with the e¢ycloid. He proved
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that it is the fautochrone, that is, the curve (when turned upside
down like a bowl) down which beads placed anywhere on it will
all slide to the lowest point under the influence of gravity in the
same time. On account of its singular beauty, elegant properties,
and the endless rows which it stirred up between quarrelsome
mathematicians challenging one another to solve this or that
problem in connexion with it, the cycloid has been called ‘the
Helen of Geometry’, after the Graeco-Trojan lady whose mere
face is said to have ‘launched a thousand ships’.

Among the miseries which afflicted the wretched Pascal were
persistent insomnia and bad teeth — in a day when such dentis-
try as was practised was done by the barber with a strong pair
of forceps and brute force. Lying awake one night (1658) in the
tortures of toothache, Pascal began to think furiously about the
cycloid to take his mind off the excruciating pain. To his
surprise he noticed presently that the pain had stopped. Inter-
preting this as a signal from Heaven that he was not sinning in
thinking about the cycloid rather than his soul, Pascal let him-
self go. For eight days he gave himself up to the geometry of the
cycloid and succeeded in solving many of the main problems in
connexion with it. Some of the things he discovered were issued
under the pseudonym of Amas Dettonville as challenges to the
French and English mathematicians. In his treatment of his
rivals in this matter Pascal was not always as scrupulous as he
might have been. It was his last flicker of mathematical activity
and his only contribution to science after his entry into Port
Royal.

The same year (1658) he fell more seriously ill than he had
yet been in all his tormented life. Racking and incessant head-
aches now deprived him of all but the most fragmentary
snatches of sleep. He suffered for four years, living ever more
ascetically. In June 1662 he gave up his own house to a poor
family suffering from smallpox, as an act of self-denial, and
went to live with his married sister. On 19 August 1662 his
tortured existence came to an end in convulsions. He died at
the age of thirty-nine. .

The post-mortem revealed what had been expected regarding
the stomach and vital organs; it also disclosed a serious lesion
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of the brain. Yet in spite of all this Pascal had done great work
in mathematics and science and had left 2 name in literature
that is still respected after nearly three centuries.

The beautiful things Pascal did in geometry, with the pos-
sible exception of the ‘mystic hexagram’, would 21l have been
done by other men had he not done them. This holds in
particular for the investigations on the cycloid. After the inven-
tion of the calculus all such things became incomparably easier
than they had been before and in time passed into the text-
books as mere exercises for young students. But in the joint
creation with Fermat of the mathematical theory of proba-
bilities Pascal made a new world. It seems quite likely that
Pascal will be remembered for his part in this great and ever-
increasingly more important invention long after his fame as a
writer has been forgotten. The Pensées and the Provincial
Letiers, apart from their literary excellences, appeal principally
to a type of mind that is rapidly becoming extinct. The argu-
ments for or against a particular point strike 2 modern mind as
either trivial or unconvincing, and the very questions to which
Pascal addressed himself with such fervent zeal now seem
strangely ridiculous. If the problems which he discussed on the
greatness and misery of man are indeed as profoundly impor-
tant as enthusiasts have claimed, and not mere pseudo-pro-
blems mystically stated and incapable of solution, it seems
unlikely that they will ever be solved by platitudinous moral-
izing. But in his theory of probabilities Pascal stated and
solved a genuine problem, that of bringing the superficial law-
lessness of pure chance under the domination of law, order, and
regularity, and to-day this subtle theory appears to be at the
very roots of human knowledge no less than at the foundation
of physical science. Its ramifications are everywhere, from the
quantum theory to epistemology.

The true founders of the mathematical theory of probability
were Pascal and Fermat, who developed the fundamental
principles of the subject in an intensely interesting correspond-
ence during the year 1654. This correspondence is now readily
available in the Buvres de Fermat (edited by P. Tannéry and
C. Henry, vol. 2, 1904). The letters show that Pascal and
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Fermat participated equally in the creation of the theory.
Their correct solutions of problems differ in details but not in
fundamental principles. Because of the tedious enumeration of
possible cases in a certain problem on ‘points’ Pascal tried to
take a short cut and fell into error. Fermat pointed out the mis-
take, which Pascal acknowledged. The first letter of the series
has been lost but the occasion of the correspondence is well
attested.

The initial problem which started the whole vast theory was
proposed to Pascal by the Chevalier de Méré, more or less of a
professional gambler. The problem was that of ‘points’: each
of two players (at dice, say) requires a certain number of points
to win the game; if they quit the game before it is finished, how
should the stakes be divided between them? The score (number
of points) of each player is given at the time of quitting, and the
problem amounts to determining the probability which each
player has at a given stage of the game of winning the game. It
is assumed that the players have equal chances of winning a
single point. The solution demands nothing more than sound
common sense; the mathematics of probability enters when we
seek a method for enumerating possible cases without actually
counting them off. For example, how many possible different
hands each consisting of three deuces and three other cards,
none a deuce, are there in a common pack of fifty-two? Or, in
how many ways can a throw of three aces, five twos, and two
sixes occur when ten dice are tossed? A third trifle of the same
sort: how many different bracelets can be made by stringing
ten pearls, seven rubies, six emeralds, and eight sapphires, if
stones of one kind are considered as undistinguishable?

This detail of finding the number of ways in which a pre-
seribed thing can be done or in which a completely specified
event can happen, belongs to what is called combinatorial
analysis. Its application to probability is obvious. Suppose, for
example, we wish to know the probability of throwing two aces
and one deuce in a single throw with three dice. If we know the
total number of ways (6 X 6 X 6 or 216) in which the three dice
can fall, and also the number of ways (say n, which the reader
may find for himself) in which two aces and one deuce can fall,
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the required probability is n/216. (Here n is three, so the proba-
bility is 8/216.) Antoine Gombaud, Chevalier de Méré, who
instigated all this, is described by Pascal as a man having a very
good mind but no mathematics, while Leibniz, who seems to
have disliked the gay Chevalier, dubs him a man of penetrating
mind, & philosopher, and a gambler — quite an unusual com-
bination.

In connexion with problems in combinatorial analysis and
probability Pascal made extensive use of the arithmetical
triangle.

in which the numbers in any row after the first two are obtained
from those in the preceding row by copying down the terminal
1’s and adding together the successive pairs of numbers from
left to right to give the new row; thus 5 = 1 4+ 4,10 = 4 + 6,
10 = 6 -~ 4,5 = 4 + 1. The numbers in the nth row, after the
1, are the number of different selections of one thing, two
things, three things, ... that can be chosen from n distinct
things. For example, 10 is the number of different pairs of
things that can be selected from five distinct things. The
numbers in the nth row are also the coefficients in the expansion
of (1 + )" by the binomial theorem, thus for n = 4, (1 + 2)* =
1 4 4@ + 6x* + 4a® 4 a4 The triangle has numerous other
interesting properties. Although it was known before the time
of Pascal, it is usually named after him on account of the
ingenious use he made of it in probabilities.

The theory which originated in a gamblers’ dispute is now at
the base of many enterprises which we consider more important
than gambling, including all kinds of insurance, mathematical
statistics and thewr application to biology and educational
measurements, and much of modern theoretical physics. We
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no longer think of an electron being ‘at’ a given place at a given
instant, but we do calculate its probability of being in a given
region. A little reflection will show that even the simplest
measurements we make (when we attempt to measure anything
accurately) are statistical in character.

The humble origin of this extremely useful mathematical
theory is typical of many: some apparently trivial problem,
first solved perhaps out of idle curiosity, leads to profound
generalizations which, as in the case of the new statistical
theory of the atom in the quantum theory, may cause us to
revise our whole conception of the physical universe or, as has
happened with the application of statistical methods to intelli-
gence tests and the investigation of heredity, may induce us to
modify our traditional beliefs regarding the ‘greatness and
misery of man’. Neither Pascal nor Fermat of course foresaw
what was to issue from their disreputable child. The whole
fabric of mathematics is so closely interwoven that we cannot
unravel and eliminate any particular thread which happens to
offend our individual taste without danger of destroying the
whole pattern.

Pascal however did make one application of probabilities (in
the Pensées) which for his time was strictly practical. This was
his famous ‘wager’. The ‘expectation’ in a gamble is the value
of the prize multiplied by the probability of winning the prize.
According to Pascal the value of eternal happiness is infinite.
He reasoned that even if the probability of winning eternal
happiness by leading a religious life is very small indeed,
nevertheless, since the expectation is infinite (any finite fraction
of infinity is itself infinite) it will pay anyone to lead such a life.
Anyhow, he took his own medicine. But just as if to show that
he had not swallowed the bottle too, he jots down in another
place in the Pensées this thoroughly sceptical query, ‘Is proba-
bility probable?” ‘It is annoying’, as he says in another place,
‘to dwell upon such trifles; but there is a time for trifling.’
Pascal’s difficulty was that he did not always see clearly when
he was trifling, as in his wager against God, or when, as in the
clearing up of the Chevalier de Méré’s gambling difficulties for
him, he was being profound.



CHAPTER SIX

ON THE SEASHORE

Newton

‘I po not know what I may appear to the world; but to myself
I seem to have been only like a boy playing on the seashore, and
diverting myself in now and then finding a smoother pebble or
a prettier shell than ordinary, whilst the great ocean of truth
lay all undiscovered before me.’

Such was Isaac Newton’s estimate of himself towards the
close of his long life. Yet his successors capable of appreciating
his work almost without exception have pointed to Newton as
the supreme intellect that the human race has produced — ‘he
who in genius surpassed the human kind.’

Isaac Newton, born on Christmas Day (‘old style’ of dating),
1642, the year of Galileo’s death, came of a family of small but
independent farmers, living in the manor house of the hamlet
of Woolsthorpe, about eight miles south of Grantham in the
county of Lincoln, England. His father, also named Isaac, died
at the age of thirty-seven before the birth of his son. Newton
was a premature child. At birth he was so frail and puny that
two women who had gone to a neighbour’s to get ‘a tonic’ for
the infant expected to find him dead on their return. His
mother said he was so undersized at birth that a quart mug
could easily have contained all there was of him.

Not enough of Newton’s ancestry is known to interest stu-
dents of heredity. His father was described by neighbours as ‘a
wild, extravagant, weak man’; his mother, Hannah Ayscough,
was thrifty, industrious, and a capable manageress. After her
husband’s death Mrs Newton was recommended as a prospec-
tive wife to an old bachelor as ‘an extraordinary good woman’.
The cautious bachelor, the Reverend Barnabas Smith, of the

_ neighbouring parish of North Witham, married the widow on
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this testimonial. Mrs Smith left her three-year-old son to the
care of his grandmother. By her second marriage she had three
children, none of whom exhibited any remarkable ability. From
the property of his mother’s second marriage and his father’s
estate Newton ultimately acquired an income of about £80 a
year, which of course meant much more in the seventeenth
century than it would now. Newton was not one of the great
mathematicians who had to contend with poverty.

As a child Newton was not robust and was forced to shun the
rough games of boys his own age. Instead of amusing himself
in the usual way, Newton invented his own diversions, in which
his genius first showed up. It is sometimes said that Newton
was not precocious. This may be true so far as mathematics is
concerned, but if it is so in other respects a2 new definition of
precocity is required. The unsurpassed experimental geniu$
which Newton was to exhibit as an explorer in the mysteries of
light is certainly evident in the ingenuity of his boyish amuse-
ments. Kites with lanterns to scare the credulous villagers at
night, perfectly constructed mechanical toys which he made
entirely by himself and which worked — waterwheels, a mill that
ground wheat into snowy flour, with a greedy mouse (who
devoured most of the profits) as both miller and motive power,
workboxes and toys for his many little girl friends, drawings,
sundials, and a wooden clock (that went) for himself —such
were some of the things with which this ‘un-precocious’ boy
sought to divert the interests of his playmates into ‘more philo-
sophical’ channels. In addition to these more noticeable evi-
dences of talent far above the ordinary, Newton read exten-
sively and jotted down all manner of mysterious recipes and
out-of-the-way observations in his notebook. To rate such a
boy as merely the normal, wholesome lad he appeared to his
village friends is to miss the obvious.

The earliest part of Newton’s education was received in the
common village schools of his vicinity. A maternal uncle, the
Reverend William Ayscough, seems to have been the first to
recognize that Newton was something unusual. A Cambridge
graduate himself, Ayscough finally persuaded Newton’s mother
to send her son to Cambridge instead of keeping him at home,
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as she had planned, to help her manage the farm on her return
to Woolsthorpe after her husband’s death when Newton was
fifteen,

Before this, however, Newton had crossed his Rubicon on his
own initiative. On his uncle’s advice he had been sent to the
Grantham Grammar School. While there, in the lowest form but
one, he was tormented by the school bully who one day kicked
Newton in the stomach, causing him much physical pain and
mental anguish. Encouraged by one of the schoolmasters,
Newton challenged the bully to a fair fight, thrashed him, and,
as & final mark of humiliation, rubbed his enemy’s cowardly
nose on the wall of the church. Up to this young Newton had
shown no great interest in his lessons. He now set out to prove
his head as good as his fists and quickly rose to the distinction
of top boy in the school. The Headmaster and Uncle Ayscough
agreed that Newton was good enough for Cambridge, but the
decisive die was thrown when Ayscough caught his nephew
reading under a hedge when he was supposed to be helping a
farmhand to do the marketing.

While 2t the Grantham Grammar School, and subsequently
while preparing for Cambridge, Newton lodged with a Mr
Clarke, the village apothecary. In the apothecary’s attic
Newton found a parcel of old books, which he devoured, and in
the house generally, Clarke’s stepdaughter, Miss Storey, with
whom he fell in love and to whom he became engaged before
leaving Woolsthorpe for Cambridge in June 1661, at the age of
nineteen. But although Newton cherished a warm affection for
his first and only sweetheart all her life, absence and growing
absorption in his work thrust romance into the background,
and Newton never married. Miss Storey became Mrs
Vincent.

Before going on to Newton’s student career at Trinity College
we may take a short look at the England of his times and some
of the scientific knowledge to which the young man fell heir.
The bull-headed and bigoted Scottish Stuarts had undertaken
to rule England according to the divine rights theyjclaimed
were vested in them, with the not uncormmon result that mere
human beings resented the assumption of celestial authority
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and rebelled against the sublime conceit, the stupidity, and the
incompetence of their rulers. Newton grew up in an atmosphere
of civil war — political and religious — in which Puritans and
Royalists alike impertially looted whatever was needed to keep
their ragged armies fighting. Charles I (born in 1600, beheaded
in 1649) had done everything in his power to suppress Parlia-
ment; but in spite of his ruthless extortions and the villainously
able backing of his own Star Chamber through its brilliant per-
versions of the law and common justice, he was no match for the
dour Puritans under Oliver Cromwell, who in his turn was to
back his butcheries and his roughshod march over Parliament
by an appeal to the divine justice of his holy cause.

All this brutality and holy hypocrisy had a most salutary
effect on young Newton’s character: he grew up with a fierce
hatred of tyranny, subterfuge, and oppression, and when King
James later sought to meddle repressively in University affairs,
the mathematician and natural philosopher did not need to
learn that a resolute show of backbone and a united front on the
part of those whose liberties are endangered is the most effective
defence against a coalition of unscrupulous politicians; he knew
it by observation and by instinct.

To Newton is attributed the saying ‘If I have seen a little
farther than others it is because I have stood on the shoulders
of giants.” He had. Among the tallest of these giants were Des-
cartes, Kepler, and Galileo. From Descartes, Newton inherited
analytical geometry, which he found difficult at first; from
Kepler three fundamental laws of planetary motion, discovered
empirically after twenty-two years of inhuman calculation;
while from Galileo he acquired the first two of the three
laws of motion which were to be the cornerstone of his own
dynamics. But bricks do not make a building; Newton was the
architect of dynamics and celestial mechanics.

As Kepler’s laws were to play the role of hero in Newton’s
development of his law of universal gravitation they may be
stated here.

L. The planets move round the Sun in ellipses; the Sun is at one
Jocus of these ellipses.

[If S, 8" are the foci, P any position of 2 planet in its orbit,
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SP + S'P is always equal to AA’, the major axis of the ellipse:
fig. below.]

II. The line joining the Sun and a planet sweeps out equal areas
in equal times.

III. The square of the time for one complete revolution of each
planet is proportional to the cube of its mean [or average] distance
from the Sun.

These laws can be proved in a page or two by means of the
calculus applied to Newton’s law of universal gravitation:

Any two particles of matter in the universe atiract one another
with a force which is directly proportional to the product of their
masses and inversely proportional to the square of the distance
between them. Thus if m, M are the masses of the two particles
and d the distance between them (all measured in appropriate
ExmxM

dz ?
where k is some constant number (by suitably choosing the units
of mass and distance k may be taken equal to 1, so that the
m X M
)

units), the force of attraction between them is

attraction is simply

A

For completeness we state Newton’s three laws of motion.

1. Every body will continue in its state of rest or of uniform
[unaccelerated] motion in a straight line except in so far as it is
compelled to change that state by impressed force.

II. Rate of change of momentum [‘mass times velocity’, mass
and velocity being measured in appropriate units] is propor-
tional to the impressed force and takes place in the line in which
the force acts.

60
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III. Action and reaction [as in the collision on a frictionless
table of perfectly elastic billiard balls] are equal and opposite
[the momentum one bzll loses is gained by the other].

The most important thing for mathematics in all this is the
phrase opening the statement of the second law of motion, rate
of chunge. What is a rate, and how shall it be measured? Momen-
tum, as noted, is ‘mass times velocity’. The masses which
Newton discussed were assumed to remain constant during
their motion — not like the electrons and other particles of
current physics whose masses increase appreciably as their
velocity approaches a measurable fraction of that of light.
Thus, to investigate ‘rate of change of momentum?’, it sufficed
Newton to clarify velocity, which is rate of change of position.
His solution of this problem — giving a workable mathematical
method.for investigating the velocity of any particle moving in
any continuous manner, no matter how erratic — gave him the
master key to the whole mystery of rates and their measure-
ment, namely, the differential calculus.

A similar problem growing out of rates put the integral
calculus into his hands. How shall the total distance passed
over in a given time by a moving particle whose velocity is
varying continuously from instant to instant be calculated?
Answering this or similar problems, some phrased geometri-
cally, Newton came upon the integral calculus. Finally,
pondering the two types of problem together, Newton made a
capital discovery: he saw that the differential calculus and the
integral calculus are intimately and reciprocally related by
what is to-day called ‘the fundamental theorem of the calculus’
— which will be described in the proper place.

In addition-to what Newton inherited from his predecessors
in science and mathematics he received from the spirit of his
age two further gifts, a passion for theology and an unquench-
able thirst for the mysteries of alchemy. To censure him for
devoting his unsurpassed intellect to these things, which would
now be considered unworthy of his serious effort, is to censure
oneself. For in Newton’s day alchemy was chemistry and it had
not been shown that there was nothing much in it — except
what was to come out of it, namely modern chemistry; and
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Newton, as 2 man of inborn scientific spirit, undertook to find
out by experiment exactly what the claims of the alchemists
amounted to.

As for theology, Newton was an unquestioning believer in an
all-wise Creator of the universe and in his own inability — like
that of the boy on the seashore — to fathom the entire ocean of
truth in all its depths. He therefore believed that there were
not only many things in heaven beyond his philosophy but
plenty on earth as well, and he made it his business to under-
stand for himself what the majority of intelligent men of his
time accepted without dispute (to them it was as patural as
common sense) — the traditional account of creation.

He therefore put what he considered his really serious efforts
into attempts to prove that the prophecies of Daniel and the
poetry of the Apocalypse malke sense, and into chronological
researches whose object was to harmonize the dates of the Old
Testament with those of history. In Newton’s day theology was
still queen of the sciences and she sometimes ruled her cbstre-
perous subjects with a rod of brass and a head of cast iron.
Newton however did permit his rational science to influence his
beliefs to the extent of making him what would now be called a
Unitarian.

In June 1661 Newton entered Trinity College, Cambridge, as
a subsizar — a student who (in those days) earned his expenses
by menial service. Civil war, the restoration of the monarchy in
1661, and uninspired toadying to the Crown on the part of the
University had all brought Cambridge to one of the low-water
marks in its history as an educational institution when Newton
took up his residence. Nevertheless young Newton, lonely at
first, quickly found himself and became absorbed in his work.

In mathematics Newton’s teacher was Dr Isaac Barrow
(1680-77), a theologian and mathematician of whom it has been
said that brilliant and original as he undoubtedly was in mathe-
matics, he had the misfortune to be the morning star heralding
Newton’s sun. Barrow gladly recognized that a greater than
himself had arrived, and when (in 1669) the strategic moment
came he resigned the Lucasian Professorship of Mathematics
(of which he was the first holder) in favour of his incomparable
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pupil. Barrow’s geometrical lectures dealt among other things
with his own methods for finding areas and drawing tangents
to curves — essentially the key problems of the integral and the
differential calculus respectively, and there can be no doubt
that these lectures inspired Newton to his own attack.

The record of Newton’s undergraduate life is disappointingly
meagre. He seems to have made no very great impression on his
fellow-students, nor do his brief, perfunctory letters home tell
anything of interest. The first two years were spent mastering
elementary mathematics. If there is any reliable account of
Newton’s sudden maturity as a discoverer, none of his modern
biographers seems to have located it. Beyond the fact that in
the three years 1664-6 (age twenty-one to twenty-three) he
laid the foundation of all his subsequent work in science and
mathematics, and that incessant work and late hours brought
on an illness, we know nothing definite. Newton’s tendency to
secretiveness about his discoveries has also played its part in
deepening the mystery.

On the purely human side Newton was normal enough as an
undergraduate to relax occasionally, and there is 2 record in his
account book of several sessions at the tavern and two losses at
cards. He took his B.A. degree in January 1664.

The Great Plague (bubonic plague) of 1664~5, with its milder
recurrence the following year, gave Newton his great if forced
opportunity. The University was closed, and for the better part
of two years Newton retired to meditate at Woolsthorpe. Up
till then he had done nothing remarkable — except make himself
ill by too assiduous observation of a comet and lunar halos — or,
if he had, it was a secret. In these two years he invented the
method of fluxions (the calculus), discovered the law of uni-
versal gravitation, and proved experimentally that white light
is composed of light of all the colours. All this before he was
twenty-five.

A manuscript dated 20 May 1665 shows that Newton at the
age of twenty-three had sufficiently developed the principles
of the calculus to be able to find the tangent and curvature at
any point of any continuous curve. He called his method
‘fluxions’ — from the idea of ‘flowing’ or variable quantities and
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their rates of ‘flow’ or ‘growth’. His discovery of the binomial
theorem, an essential step towards a fully developed calculus,
preceded this.
The binomial theorem generalizes the simple results like
(@ + b)* = a® + 2ab + b, (a + b)® = a® + 3a% + Sab® -+ b?,
and so on, which are found by direct calculation; namely,

- (n —1)

@+ 0 =a +Zamb + "1 o

n(n — 1) (n — 2)
1X2x8
where the dots indicate that the series is to be continued accord-

ing to the same law as that indicated for the terms written; the
next term is

a”—3ps -~

n(n — 1) (n — 2) (n — 8)
1X2X8X4
If n is one of the positive integers 1, 2, 8 ... , the series auto-
matically terminates after precisely » 4 1 terms. This much is
eagily proved (as in the school algebras) by mathematical
induction.

But if n is not a positive integer, the series does not termin-
ate, and this method of proof is inapplicable. As a proof of the
binomial theorem for fractional and negative values of n (also
for more general values), with a statement of the necessary
restrictions on a,b, came only in the nineteenth century, we
need merely state here that in extending the theorem to these
values of n Newton satisfied himself that the theorem was
correct for such values of a,b as he had occasion to consider in
his work.

If all modern refinements are similarly ignored in the manner
of the seventeenth century it is easy to see how the calculus
finally got itself invented. The underlying notions are those of
variable, function, and limit. The last took long to clarify.

A letter, say s, which can take on several different values
during the course of a mathematical investigation is called a
variable; for example s is a variable if it denotes the height of a
falling body above the earth.

The word function (or its Latin equivalent) seems to have
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been introduced into mathematics by Leibniz in 1694; the con-
cept now dominates much of mathematics and is indispensable
in science. Since Leibniz’ time the concept has been made
precise. Xf y and & are two variables so related that whenever a
numerical value 1s assigned to @ there 1s determined a numerical
value of , then y is called a (one-valued, or uniform) function
of z, and this 1s symbolized by wniting y = f().

Instead of attempting to give a modern definition of a limit
we shall content ourselves with one of the simplest examples of
the sort which led the followers of Newton and Lerbmz (the
former especially) to the use of limits mn discussing rates of
change To the early developers of the calculus the notions of
variables and limits were mntuitive; to us they are extremely
subtle concepts hedged about with thickets of semi-meta-
physical mysteries concerming the nature of numbers, both
rational and irrational.

Let y be a function of @, say y = f(z). The rate of change of y
weth respect to @, or, as 1t 1s called, the derwative of y with respect
to &, is defined as follows. To 2 is given any increment, say Az
(read, ‘increment of «’), so that @ becomes z + Az, and f(x), or
¥y, becomes f(z + Az). The corresponding mncrement, Ay, of y
18 its new value minus 1ts initial value; namely, Ay = f(z + Az)
— f(z). As a crude approximation to the rate of change of y
with respect to # we may take, by our intuitive notion of a rate
as an ‘average’, the result of dividing the merement of y by the

. . Dy
increment of a, that is, —.
Az

But this obviously 1s too crude, as both # and y are varying
and we cannot say that this average represents the rate for any
particular value of z. Accordingly, we decrease the increment
Az indefinitely, till, ‘in the limit’, Az approaches zero, and follow

A
the ‘average’ zAiz: all through the process: Ay similarly decreases

. . A
indefinitely and ultimately approaches zero; but A—Z does not,

0
thereby, present us with the meaningless symbol o but with a
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definite limiting value, which is the required rate of change of y
with respect to 2.

To see how it works out, let f(x) be the particular function 22,
so that y = a2 Following the above outline we get first

Ay (x4 Az)? — a2
Aw Aw
Nothing is yet said about limits. Simplifying the algebra we

find Ay
— = 2r 4 Aa.
Az

Having simplified the algebra as far as possible, we now let Az
A
approach zero and see that the limiting value of A—y is 2. Quite
2
A
generally, in the same way, if y = 2", the limiting value of 2y

is na"~1, as may be proved with the aid of the binomial theorem.

Such an argument would not satisfy 2 student to-day, but
something not much better was good enough for the inventors
of the calculus and it will have tb do for us here. If y = f(z), the

A
limiting value of Z‘% (provided such a value exists) is called the
d
derivative of y with respect to x, and is denoted by ZZ This sym-

bolism is due (essentially) to Leibniz and is the one in common
use to-day; Newton used another (¥) which is less convenient.

The simplest instances of rates in physics are velocity and
acceleration, two of the fundamental notions of dynamiecs.
Velocity is rate of change of distance (or ‘position’, or ‘space’)
with respect to time; acceleration is rate of change of velocity
with respect to fime.

If s denotes the distance traversed in the time { by a moving
particle (it being assumed that the distance is a function of the

ds
time), the velocity at the time ¢ is P Denoting this velocity by
d

o
v, we have the corresponding acceleration, E
This introduces the idea of a rate of a rate, or of a second

derivative. For in accelerated motion the velocity is not constant
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but variable, and hence it has a rate of change: the acceleration
is the rate of change of the rate of change of distance (both
rates with respect to time); and to indicate this'second rate, or

d%s
‘rate of a rate’, we wmte for the acceleration. This itself may

have a rate of change w1th respect to the time; this third rate is
3,

dss
written — s And so on for fourth, fifth, ... rates, namely for

fourth, fifth, ... derivatives. The most important derivatives
in the applications of the calculus to science are the first and
second.

If now we look back at what was said concerning Newton’s
second law of motion and compare it with the like for accelera-
tion, we see that ‘forces’ are proportional to the accelerations
they produce. With this much we can ‘set up’ the differential
equation for a problem which is by no means trivial — that of
‘central forces’: a particle is attracted toward a fixed point by a
force whose direction always passes through the fixed point.
Given that the force varies as some function of the distance s,
say as F(s), where s is the distance of the particle at the time ¢
from the fixed point O,

o] F(s) t

it is required to describe the motion of the particle. A little
consideration will show that

aw=" F(s),
the minus sign being taken because the attraction diminishes
the velocity. This is the differential equation of the problem, so
called because it involves a rate (the acceleration), and rates (or
derivatives) are the object of investigation in the differential
caleulus.

Having translated the problem into a differential equation
we are now required to solve this equation, that is, to find the
relation between s and ¢, or, in mathematical language, to solve
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the differential equation by expressing s as a- function of .
This is where the difficulties begin. It may be quite easy to
translate 2 given physical situation into a set of differential
equations which no mathematician can solve. In general every
essentially new problem in physics leads to types of differential
equations which demand the creation of new branches of
mathematics for their solution. The particular equation above
can however be solved quite simply in terms of elementary

1
functions if F(s) =g a8 in Newton’s law of gravitational

attraction. Instead of bothering with this particular equation,
we shall consider a2 much simpler one which will suffice to bring
out the point of importance:
dy
de
We are given that y is a function of 2 whose derivative is
equal to a; it is required to express y as a function of . More
generally, consider in the same way

= .

& @

This asks, what is the function y (of ) whose derivative (rate of
change) with respect to z is equal to f(x)? Provided we can find
the function required (or provided such a function exists), we
call it the anti-derivative of f(z) and denote it by [ f(z)dx — for a
reason that will appear presently. For the moment we need note
only that [ f(z)dz symbolizes a function (if it exists) whose
dertvative is equal to f(a).

By inspection we see that the first of the above equations has
the solution x? 4+ ¢, where ¢ is 2 constant (number not depend-
ing on the variable x); thus [ @ dz = a2 + c.

Even this simple example may indicate that the problem of
evaluating | f(x)dz for comparatively innocent-looking func-
tions f(x) may be beyond our powers. It does not follow that an
‘answer’ exists at all in terms of known functions when an f(z) is
chosen at random ~ the odds against such a chance are an
infinity of the worst sort (‘non-denumerable’) to one. When a
physical problem leads to one of these nightmares approximate
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methods are applied which give the result within the desired
accuracy.

d;
With the two basic notions, —Z and [ f(x)dz, of the calculus

d.
we can now describe the fundamental theorem of the calculus
connecting them. For simplicity we shall use a diagram,
although this is not necessary and is undesirable in an exact
account.

Consider a continuous, unlooped curve whose equation is
y = f(«) in Cartesian co-ordinates. It is required to find the area
included between the curve, the z-axis and the two perpendi-
culars 44’, BB’ drawn to the a-axis from any two points 4, B
on the curve. The distances O4’, OB’ are a,b respectively —
namely, the co-ordinates of 4’, B’ are (¢,0), (b,0). We proceed
as Archimedes did, cutting the required area into parallel strips

¥

N
£&!
’gé

Alao) B(6,9

of equal breadth, treating these strips as rectangles by disve-
garding the top triangular bits (one of which is shaded in the
figure), adding the areas of all these rectangles, and finally
evaluating the limit of this sum as the number of rectangles is
increased indefinitely. This is all very well, but how are we to
calculate the limit? The answer is surely one of the most
astonishing things a mathematician ever discovered.

First, find [ f(x)dz. Say the result is F(z). In this substitute a
and b, getting F(a) and F(b). Then subtract the first from the
second, F(b) — F(a). This is the required area.
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Notice the connexion between y = f(2), the equation of the
d;
given curve; E—Z, which (as seen in the chapter on Fermat) gives

the slope of the tangent line to the curve at the point (z,y); and
[ f(®)dz, or F(x), which is the function whose rate of change with
respect to @ is equal to f(z). We have just stated that the area
required, which is a limiting sum of the kind described in con-
nexion with Archimedes, is given by F(b) — F(a). Thus we have
connected slopes, or derivatives, with limiting sums, or, as they
are called, definite integrals. The symbol [ is an old-fashioned S,
the first letter of the word Summa.

Summing all this up in symbols, we write for the area in
question [ ’f(z)dx; a is the lower limit of the sum, b the upper
limit; and

2 f(@)de = F(b) — F(a),

in which F(b), F(a) are calculated by evaluating the ‘indefinite
integral’ [ f(z)da, namely, by finding that function F(z) such

. P dF(x) .
that its derivative with respect to z, el equal to f(x).

This is the fundamental theorem of the calculus as it presented
itself (in its geometrical form) to Newton and independently
also to Leibniz. As a caution we repeat that numerous refine-
ments demanded in a modern statement have been ignored.

Two simple but important matters may conclude this sketch
of the leading notions of the calculus as they appeared to the
pioneers. So far only functions of a single variable have been
considered. But nature presents us with functions of several
variables and even of an infinity of variables.

To teke 2 very simple example, the volume, ¥, of a gas is a
function of its temperature, 7', and the pressure, P, on it; say
V = F (T,P) - the actual form of the function F need not be
specified here. As T, P vary, V varies. But suppose only one of
T, P varies while the other is held constant. We are then back
essentially with a function of one variable, and the derivative
of F(T,P) can be calculated with respect to this variable. If T
varies while P is held constant, the derivative of F(T,P) with
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respect to T is called the partial derivative (with respect to T'),
and to show that the variable P is being held constant, a
. . . . .. OF(T,P)
different symbol, 9, is used for this partial derivative, T
oF(T,P)
oP
Precisely as in the case of ordinary second, third, . . deriva-
2F(T,P)
oT?

Similarly, if P varies while T'is held constant, we get

tives, we have the like for partial dérivatives; thus

F(T,P)
oT
The great majority of the important equations of mathe-
matical physics are partial differential equations. A famous
example is Laplace’s equation, or the ‘equation of continuity’,
which appears in the theory of Newtonian gravitation, electri-
city and magnetism, fluid motion, and elsewhere:
2w o 0w
t + ay? + 22
In fluid motion this is the mathematical expression of the fact
that a ‘perfect’ fluid, in which there are no vortices, is inde-
structible. A derivation of this equation would be out of place
here, but a statement of what it signifies may make it seem less
mysterious. If there are no vortices in the fluid, the three com-
ponent welocities parallel to the axes of a,y,z of any particle in
the fluid are calculable as the partial derivatives
ou ou ou
- Fmﬁ - ?y; - —a—;
of the same function % — which will be determined by the
particular type of motion. Combining this fact with the obvious
remark that if the fluid is incompressible and indestructible, as
much fluid must flow out of any small volume in one second as
flows into it; and noting that the amount of flow in one second
across any smell area is equal to the rate of flow multiplied by
the area; we see (on combining these remarks and calculating
the total inflow and total outflow) that Laplace’s equation is
more or less of a platitude.
112
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The really astonishing thing about this and some other
equations of mathematical physics is that a physical platitude,
when subjected to mathematical reasoning, should furnish
unforeseen information which is anything but platitudinous.
The ‘anticipations’ of physical phenomena mentioned in later
chaptersarose from such commonplacestreatedmathematically.

Two very real difficulties, however, arise in this type of
problem. The first concerns the physicist, who must have a
feeling for what complications can be lopped off his problem,
without mutilating it beyond all recognition, so that he can
state it mathematically at all. The second concerns the mathe-
matician, and this brings us to a matter of great importance —
the last we shall mention in this sketch of the calculus — that of
what are called boundary-value problems.

Science does not fling an equation like Laplace’s at a mathe-
matician’s head and ask him to find the general solution. What
it wants is something (usually) much more difficult to obtain, a
particular solution which will not only satisfy the equation but
which in addition will satisfy certain auxiliary conditions depend-
ing on the particular problem to be solved.

The point may be simply illustrated by a problem in the con-
duction of heat. There is a general equation (Fourier’s) for the
‘motion’ of heat in a conductor similar to Laplace’s for fluid
motion. Suppose it is required to find the final distribution of
temperature in a cylindrical rod whose ends are kept at one
constant temperature and whose curved surface is kept at
another; ‘final’ here means that there is a ‘steady state’ — no
further change in temperature — at all points of the rod. The
solution must not only satisfy the general equation, it must
also fit the surface-temperatures, or the initial boundary con-
ditions.

The second is the harder part. For a cylindrical rod the pro-
blem is quite different from the corresponding problem for a bar
of rectangular cross section. The theory of boundary-value
problems deals with the fitting of solutions of differential equa-
tions to prescribed initial conditions. It is largely a creation of
the past eighty years. In a sense mathematical physies is co-
extensive with the theory of boundary-value problems.
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The second of Newton’s great inspirations which came to him
as a youth of twenty-three or four in 1666 at Woolsthorpe was
his law of universal gravitation (already stated). In this con-
nexion we shall not repeat the story of the falling apple. To
vary the monotony of the classical account we shall give
Gauss’ version of the legend when we come to him.

Most authorities agree that Newton did make some rough
calculations in 1666 (he was then twenty-four) to see whether
his law of universal gravitation would account for Kepler's
laws. Many years later (in 1684) when Halley asked him what
law of attraction would account for the elliptical orbits of the
planets Newton replied at once ‘the inverse square’.’

‘How do you know?’ Halley asked — he had been prompted by
Sir Christopher Wren and others to put the question, as a great
argument over the problem had been going on for some time in
London,

‘Why, I have calculated it,’ Newton replied. On attempting
to restore his calculation (which he had mislaid) Newton made a
slip, and believed he was in error. But presently he found his
mistake and verified his original conclusion.

Much has been made of Newton’s twenty years’ delay in the
publication of the law of universal gravitation as an undeserved
setback due to inaccurate data. Of three explanations a less
romantic but more mathematical one than either of the others
is to be preferred here.

Newton’s delay was rooted in his inability to solve a certain
problem in the integral calculus which was crucial for the whole
theory of universal gravitation as expressed in the Newtonian
law. Before he could account for the motion of both the apple
and the Moon Newton had to find the total attraction of a solid
homogeneous sphere on any mass particle outside the sphere.
For every particle of the sphere attracts the mass particle out-
side the sphere with a force varying directly as the product of
the masses of the two particles and inversely as the square of
the distance between them: how are all these separate attrac-
tions, infinite in number, to be compounded or added into one
resultant attraction?

This evidently is a problem in the integral calculus. To-day
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it is given in the textbooks as an example which young students
dispose of in twenty minutes or less. Yet it held Newton up for
twenty years. He finally solved it, of course: the attraction is
the same as if the entire mass of the sphere were concentrated
in a single point at its centre. The problem is thus reduced to
finding the attraction between two mass particles at a given
distance apart, and the immediate solution of this is as stated
in Newton’s law. If this is the correct explanation for the
twenty years’ delay, it may give us some idea of the enormous
amount of labour which generations of mathematicians since
Newton’s day have expended on developing and simplifying the
calculus to the point where very ordinary boys of sixteen can
use it effectively.

Although our principal interest in Newton centres about his
greatness as a mathematician we cannot leave him with his
undeveloped masterpiece of 1666. To do so would be to give no
idea of his magnitude, so we shall go on to a brief outline of his
other activities without entering into detail (for lack of space)
on any of them.

On his return to Cambridge Newton was elected a Fellow of
Trinity in 1667 and in 1669, at the age of twenty-six, succeeded
Barrow as Lucasian Professor of Mathematics. His first lectures
were on optics. In these he expounded his own discoveries and
sketched his corpuscular theory of light, according to which
light consists in an emission of corpuscles and is not a wave
phenomenon as Huygens and Hooke asserted. Although the two
theories appear to be contradictory both are useful to-day in
correlating the phenomena of light and are, in a purely mathe-
matical sense, reconciled in the modern quantum theory. Thus
it is not now correct to say, as it may have been a few years
ago, that Newton was entirely wrong in his corpuscular theory.

The following year, 1668, Newton constructed a reflecting
telescope with his own hands and used it to observe the satel-
lites of Jupiter. His object doubtless was to see whether
universal gravitation really was universal by observations on
Jupiter’s satellites. This year is also memorable in the history
of the calculus. Merecator’s calculation by means of infinite
series of an area connected with a hyperbola was brought to
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Newton’s attention. The method was practically identical with
Newton’s own, which he had not published, but which he now
wrote out, gave to Dr Barrow, and permitted to circulate
among a few of the better mathematicians.

On his election to the Royal Society in 1672 Newton com-
muniecated his work on telescopes and his corpuscular theory of
light. A commission of three, including the cantankerous
Hooke, was appointed to report on the work on optics. Exceed-
ing his authority as a referee Hooke seized the opportunity to
propagandize for the undulatory theory and himself at New-
ton’s expense. At first Newton was cool and scientific under
criticism, but when the mathematician Lucas and the physician
Linus, both of Liége, joined Hooke in adding suggestions and
objections which quickly changed from the legitimate to the
carping and the merely stupid, Newton gradually began to lose
patience.

A reading of his correspondence in this first of his irritating
controversies should convince anyone that Newton was not by
nature secretive and jealous of his discoveries. The tone of his
letters gradually changes from one of eager willingness to clear
up the difficulties which others found, to one of bewilderment
that scientific men should regard science as a battleground for
personal quarrels. From bewilderment he quickly passes to cold
anger and a hurt, somewhat childish resolution to play by him-
self in future. He simply could not suffer malicious fools gladly.

At last, in a letter of 18 November 1676 he says, ‘I see I have
made myself a slave to philosophy, but if I get free of Mr
Lucas’s business, I will resolutely bid adieu to it eternally,
excepting what I do for my private satisfaction, or leave to
come out after me; for I see a man must either resolve to put
out nothing new, or become a2 slave to defend it.’ Almost
identical sentiments were expressed by Gauss in connexion
with non-Euclidean geometry.

Newton’s petulance under criticism and his exasperation at
futile controversies broke out again after the publication of the
Principia. Writing to Halley on 20 June 1688 he says, “Philo-
sophy [science] is such an impertinently litigious Lady, that a
man had as good be engaged to lawsuits, as to have to do with
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her. I found it so formerly, and now I am no sooner come near
her again, but she gives me warning.” Mathematics, dynamies,
and celestial mechanies were in fact — we may as well admit it —
secondary interests with Newton. His heart was in his alchemy,
his researches in chronology, and his theological studies.

It was only because an inner compulsion drove him that he
turned as 2 recreation to mathematics. As early as 1679, when
be was thirty-seven (but when also he had his major discoveries
and inventions securely locked up in his head or in his desk), he
writes to the pestiferous Hooke: ‘I had for some years past been
endeavouring to bend myself from philosophy to other studies
in so much that I have long grutched the time spent in that
study unless it be perhaps at idle hours sometimes for diver-
sion.” These ‘diversions’ occasionally cost him more incessant
thought than his professed labours, as when he made himself
seriously ill by thinking day and night about the motion of the
Moon, the only problem, he says, that ever made his head ache.

Another side of Newton’s touchiness showed up in the spring
of 1678 when he wrote to Oldenburg resigning his membership
in the Royal Society. This petulant action has been variously
interpreted. Newton gave financial difficulties and his distance
from London as his reasons. Oldenburg took the huffy mathe-
matician at his word and told him that under the rules he could
retain his membership without paying. This brought Newton
to his senses and he withdrew his resignation, having recovered
his temper in the meantime. Nevertheless Newton thought he
was about to be hard pressed. However, his finances presently
straightened out and he felt better. It may be noted here that
Newton was no absent-minded dreamer when it came to a
question of money. He was extremely shrewd and he died 2 rich
man for his times. But if shrewd and thrifty he was also very
liberal with his money and was always ready to help a friend in
need as unobtrusively as possible. To young men he was parti-
cularly generous.

The years 1684—6 mark one of the great epochs in the history
of all human thought. Skilfully coaxed by Halley, Newton at
last consented to write up his astronomical and dynamical
discoveries for publication. Probably no mortal has ever
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thought as hard and as continuously as Newton did in com-
posing his Philosophiae Naturalis Principia Mathematica
(Mathematical Principles of Natural Philosophy). Never careful
of his bodily health, Newton seems to have forgotten that he
had a body which required food and sleep when he gave himself
up to the composition of his masterpiece. Meals were ignored
or forgotten, and on arising from a snatch of sleep he would sit
on the edge of the bed half-clothed for hours, threading the
mazes of his mathematics. In 1686 the Principia was presented
to the Royal Society, and in 1687 was printed at Halley’s
expense,

A description of the contents of the Principia is out of the
question herg, but a small handful of the inexhaustible treasures
it contains may be briefly exhibited. The spirit animating the
whole work is Newton’s dynamics, his law of universal gravita-
tion, and the application of both to the solar system — ‘the
system of the world’. Although the calculus has vanished from
the synthetic geometrical demonstrations, Newton states (in a
letter) that he used it to discover his results and, having done so,
proceeded to rework the proofs furnished by the calculus into
geometrical shape so that his contemporaries might the more
readily grasp the main theme — the dynamical harmony of the
heavens.

First, Newton deduced Kepler’s empirical laws from his own
law of gravitation, and he showed how the mass of the Sun can
be calculated, also how the mass of any planet having a satellite
can be determined. Second, he initiated the extremely impor-
tant theory of perturbations: the Moon, for example, is attracted
not only by the Earth but by the Sun also; hence the orbit of
the Moon will be perturbed by the pull of the Sun. In this
menner Newton accounted for two ancient observations due to
Hipparchus and Ptolemy. Our own generation has seen the
now highly developed theory of perturbations applied to
electronic orbits, particularly for the helium atom. In addition
to these ancient observations, seven other irregularities of the
Moon’s motion observed by Tycho Brahe (1546-1601), Flam-
steed (1646-1719), and others, were deduced from the law of
gravitation.
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So much for lunar perturbations. The like applies also to the
planets. Newton began the theory of planetary perturbations,
which in the nineteenth century was to lead to the discovery
of the planet Neptune and, in the twentieth, to that of
Pluto. ~

The ‘lawless’ comets — still warnings from an angered heaven
to superstitious eyes — were brought under the universal law as
harmless members of the Sun’s family, with such precision that
we now calculate and welcome their showy return (unless
Jupiter or some other outsider perturbs them unduly), as we
did in 1910 when Halley’s beautiful comet returned promptly
on schedule after an absence of seventy-four years.

He began the vast and still incomplete study of planetary
evolution by calculating (from his dynamies and the universal
law) the flattening of the earth at its poles due to diurnal rota-
tion, and he proved that the shape of a planet determines the
length of its day, so that if we knew accurately how flat Venus
is at the poles, we could say how long it takes her to turn com-
pletely once round the axis joining her poles. He calculated the
variation of weight with latitude. He proved that a hollow shell,
bounded by concentric spherical surfaces, and homogeneous,
exerts no force on a small body anywhere inside it. The last has
important consequences in electrostatics — also in the realm of
fiction, where it has been used as the motif for amusing fantasies.

The precession of the equinoxes was beautifully accounted for
by the pull of the Moon and the Sun on the equatorial bulge of
the Earth causing our planet to wobble like a top. The mys-
terious tides also fell naturally into the grand scheme — both the
lunar and the solar tides were calculated, 2nd from the observed
heights of the spring and neap tides the mass of the Moon was
deduced. The First Book laid down the principles of dynamics;
the Second, the motion of bodies in resisting media, and fluid
motion; the Third was the famous ‘System of the World.?

Probably no other law of nature has so simply unified any
such mass of natural phenomena as has Newton’s law of uni-
versal gravitation in his Principia. It is to the credit of New-
ton’s contemporaries that they recognized at least dimly the
magnitude of what had been done, although but few of them
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could follow the reasoning by which the stupendous miracle of
unification had been achieved, and made of the author of the
Principia a demigod. Before many years had passed the
Newtonian system was being taught at Cambridge (1699) and
Oxford (1704). France slumbered on for half a century, still
dizzy from the whirl of Descartes’ angelic vortices. But pre-
sently mysticism gave way to reason and Newton found his
greatest successor not in England but in France, where Laplace
set himself the task of continuing and rounding out the
Principia.

After the Principia the rest is anticlimax. Although the lunar
theory continued to plague and ‘divert’ him, Newton was
temporarily sick of ‘philosophy’ and welcomed the opportunity
to turn to less celestial affairs. James II, obstinate Scot and
bigoted Catholic that he was, had determined to force the
University to grant a master’s degree to 2 Benedictine over the
protests of the academic authorities. Newton was one of the
delegates who in 1687 went to London to present the Univer-
sity’s case before the Court of High Commission presided over
by that great and blackguardly lawyer the Lord High Chan-
cellor George Jeffreys — ‘infamous Jeffreys’ as he is known in
history. Having insulted the leader of the delegates in masterly
fashion, Jeffreys dismissed the rest with the injunction to go
and sin no more. Newton apparently held his peace. Nothing
was to be gained by answering a man like Jeffreys in his own
kennel. But when the others would have signed a disgraceful
compromise it was Newton who put backbone into them and
kept them from signing. He won the day; nothing of any value
was lost — not even honour. ‘An honest courage in these mat-
ters,” he wrote later, ‘will secure all, having law on our
sides.’

Cambridge evidently appreciated Newton’s courage, for in
January 1689 he was elected to represent the University at the
Convention Parliament after James IT had fled the country to
make room for William of Orange and his Mary, and the faithful
Jeffreys was burrowing into dunghills to escape the ready
justice of the mob. Newton sat in Parliament till its dissolution
in February 1690. To his credit he never made a speech in the
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place. But he was faithful to his office and not averse to
politics; his diplomacy had much to do with keeping the
turbulent University loyal to the decent King and Queen.

Newton’s taste of ‘real life’ in London proved his scientific
undoing. Influential and officious friends, including the philo-
sopher John Locke (1632-1704) of Human Understanding fame,
convinced Newton that he was not getting his share of the
honours. The crowning imbecility of the Anglo-Saxon breed is
its dumb belief in public office or an administrative position as
the supreme honour for a man of intellect. The English finally
(1699) made Newton Master of the Mint to reform and super-
vise the coinage of the Realm. For utter bathos this ‘elevation’
of the author of the Principia is surpassed only by the jubila-
tion of Sir David Brewster in his life of Newton (1860) over the
‘well-merited recognition’ thus accorded Newton’s genius by
the English people. Of course if Newton really wanted anything
of the sort there is nothing to be said; he had earned the right
millions of times over to do anything he desired. But his busy-
body friends need not have egged him on.

It did not happen all at once. Charles Montagu, later Earl of
Halifax, Fellow of Trinity College and a close friend of Newton,
aided and abetted by the everlastingly busy and gossipy
Samuel Pepys (1633-1703) of diary notoriety, stirred up by
Locke and by Newton himself, began pulling wires to get
Newton some recognition ‘worthy’ of him.

The negotiations evidently did not always run smoothly and
Newton’s somewhat suspicious temperament caused him to
believe that some of his friends were playing fast and loose with
him — as they probably were. The loss of sleep and the indiffer-
ence to food which had enabled him to compose the Principia
in eighteen months took their revenge. In the autumn of 1692
(when he was nearly fifty and should have been at his best)
Newton fell seriously ill. Aversion to all food and an almost
total inability to sleep, aggravated by a temporary persecution
mania, brought on something dangerously close to a total
mental collapse. A pathetic letter of 16 September 1698
to Locke, written after his recovery, shows how ill he had
been.
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Sir,

Being of opinion that you endeavoured to embroil me
with women and by other means,* I was so much affected
with it that when one told me you were sickly and would
not live, I answered, *twere better if you were dead. I
desire you to forgive me for this uncharitableness. For I
am now satisfied that what you have done is just, and I
beg your pardon for having hard thoughts of you for it,
and for representing that you struck at the root of mor-
ality, in a principle you laid down in your book of ideas,
and designed to pursue in another book, and that I took
you for a Hobbist. I beg your pardon also for saying or
thinking that there was a design to sell me an office, or to
embroil me.

I am your most humble
And unfortunate servant,
Is. NEWTON.

The news of Newton’s illness spread to the Continent where,
naturally, it was greatly exaggerated. His friends, including one
who was to become his bitterest enemy, rejoiced at his recovery.
Leibniz wrote to an acquaintance expressing his satisfaction
that Newton was himself again. But in the very year of his
recovery (1693) Newton heard for the first time that the
calculus was becoming well known on the Continent and that
it was commonly attributed to Leibniz.

The decade after the publication of the Principia was about
equally divided between alchemy, theology, and worry, with
more or less involuntary and headachy excursions into the
lunar theory. Newton and Leibniz were still on cordial terms.
Their respective ‘friends’, ignorant as Kaffirs of all mathematics
and of the calculus in particular, had not yet decided to pit one
against the other with charges of plagiarism in the invention of
the caleulus, and even grosser dishonesty, in the most shameful
squabble over priority in the history of mathematics. Newton,
recognized Leibniz’ merits, Leibniz recognized Newton’s, and
at this peaceful stage of their acquaintance neither for a mo-

* There had been gossip that Newton’s favourite niece had used
her charms to further Newton’s advancement.
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ment suspected that the other had stolen so much as a single
idea of the calculus from the other.

Later, in 1712, when even the man in the street — the zealous
patriot who knew nothing of the facts — realized vaguely that
Newton had done something tremendous in mathematics
(more, probably, as Leibniz said, than had been done in all
history before him), the question as to who had invented the
calculus became a matter of acute national jealousy, and all
educated England rallied behind its somewhat bewildered
champion, howling that his rival was a thief and a liar.

Newton at first was not to blame. Nor was Leibniz. But as the
British sporting instinct presently began to assert itself, New-
ton acquiesced in the disgraceful attack and himself suggested
or consented to shady schemes of downright dishonesty
designed to win the international championship at any cost ~
even that of national honour. Leibniz and his backers did like-
wise. The upshot of it all was that the obstinate British prac-
tically rotted mathematically for a whole century after New-
ton’s death, while the more progressive Swiss and French,
following the lead of Leibniz, and developing his incomparably
better way of merely wrifing the calculus, perfected the subject
and made it the simple, easily applied implement of research’
that Newton’s immediate successors should have had the
honour of making it.

In 1696, at the age of fifty-four, Newton became Warden of
the Mint. His job was to reform the coinage. Having done so, he
was promoted in 1699 to the dignity of Master. The only satis-
faction mathematicians can take in this degradation of the
supreme intellect of ages is the refutation which it afforded of
the silly superstition that mathematicians have no practical
sense. Newton was one of the best Masters the Mint ever had.
He took his job seriously.

In 1701-2 Newton again represented Cambridge University
in Parliament, and in 1703 was elected President of the Royal
Society, an honourable office to which he was re-elected time
after time till his death in 1727. In 1705 he was knighted by
good Queen Anne. Probably this honour was in recognition of
his services as a money-changer rather than in acknowledge-
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ment of his pre-eminence in the temple of wisdom. This is all as
it should be: if ‘a riband to stick in his coat’ is the reward of a
turncoat politician, why should a man of intellect and integrity
feel flattered if his name appears in the birthday list of honours
awarded by the King? Caesar may be rendered the things that
are his, ungrudgingly; but when a man of science, as a man of
science, snaps up the droppings from the table of royalty he
joins the mangy and starved dogs licking the sores of the
beggars at the feast of Dives. It is to be hoped that Newton was
knighted for his services to the money-changers and not for his
science.

Was Newton’s mathematical genius dead? Most emphatically
no. He was still the equal of Archimedes. But the wiser old
Greek, born aristocrat that he was — fortunately, cared nothing
for the honours of a position which had always been his; to the
very last minute of his long life he mathematicized as power-
fully as he had in his youth. But for the accidents of prevent-
able disease and poverty, mathematicians are a long-lived race
intellectually; their creativeness outlives that of poets, artists,
and even of scientists, by decades. Newton was still as virile of
intellect as he had ever been. Had his officious friends but let
him alone Newton might easily have created the calculus of
variations, an instrument of physical and mathematical disco-
very second only to the calculus, instead of leaving it for the
Bernoullis, Euler, and Lagrange to initiate. He had already
given a hint of it in the Principia when he determined the shape
of the surface of revolution which would cleave through a fluid
with the least resistance. He had it in him to lay down the
broad lines of the whole method. Like Pascal when he forsook
this world for the mistier if more satisfying kingdom of heaven,
Newton was still a mathematician when he turned his back on
his Cambridge study and walked into a more impressive sanc-
tum at the Mint.

In 1696 Johann Bernoulli and Leibniz between them con-
cocted two devilish challenges to the mathematicians of
Europe. The first is still of importance; the second is not in the
same class. Suppose two points to be fixed at random in 2
vertical plane. What is the shape of the curve down which a
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particle must slide (without friction) under the influence of
gravity so as to pass from the upper point to the lower in the
least time? This is the problem of thebrachistochrone (= ‘shortest
time’). After the problem had baffled the mathematicians of
Europe for six months, it was proposed again, and Newton
heard of it for the first time on 29 January 1696 when a friend
communicated it to him. He had just come home, tired out,
from a long day at the Mint. After dinner he solved the problem
(and the second as well), and the following day communicated
his solutions to the Royal Society anonymously. But for all his
caution he could not conceal his identity — while at the Mint
Newton resented the efforts of mathematicians and scientists
to entice him into discussions of scientific interest. On seeing the
solution Bernoulli at once exclaimed, ‘Ah! I recognize the lion
by his paw.” (This is not an exact translation of B.’s Latin.)
They all knew Newton when they saw him, even if he did have
a money-bag over his head and did not announce his name.

A second proof of Newton’s vitality was to come in 1716
when he was seventy-four. Leibniz had rashly proposed what
appeared to him a difficult problem as a challenge to the mathe-
maticians of Europe and aimed at Newton in particular.*
Newton received this at five o’clock one afternoon on returning
exhausted from the blessed Mint. He solved it that evening.
This time Leibniz somewhat optimistically thought he had
trapped the Lion. In 2all the history of mathematics Newton has
had no superior (and perhaps no equal) in the ability to con-
centrate all the forces of his intellect on a difficulty at an
instant’s notice.

The story of the honours that fall to a man’s lot in his lifetime
makes but trivial reading to his successors. Newton got all that
were worth having to a living man. On the whole Newton had
as fortunate a life as any great man has ever had. His bodily
health was excellent up to his last years; he never wore glasses
and he lost only one tooth in all his life. His hair whitened at
thirty but remained thick and soft till his death.

* The problem was to find the orthogonal trajectories of any one-
parameter family of curves (in modern language).
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The record of his last days is more human and more touching.
Even Newton could not escape suffering. His courage and en-
durance under almost constant pain during the last two or three
years of his life add but another laurel to his crown as a human
being. He bore the tortures of ‘the stone’ without flinching,
though the sweat rolled from him, and always with a word of
sympathy for those who waited on him. At last, and mercifully,
he was seriously weakened by ‘a persistent cough’, and finally,
after having been eased of pain for some days, died peacefully
in his sleep between one and two o’clock on the morning of
20 March 1727, in his eighty-fifth year. He is buried in West-
minster Abbey.



CHAPTER SEVEN

MASTER OF ALL TRADES

Leibniz

‘JACK OF ALL TRADES, master of none’ has its spectacular
exceptions like any other folk proverb, and Gottfried Wilhelm
Leibniz (1646-1716) is one of them._

Mathematics was but one of the many fields in which Leibniz
showed conspicuous genius: law, religion, statecraft, history,
literature, logic, metaphysics, and speculative philosophy all
owe to him contributions, any one of which would have secured
his fame and have preserved his memory. ‘Universal genius’ can
be applied to Leibniz without hyperbole, as it cannot to New-
ton, his rival in mathematics and his infinite superior in natural
philosophy.

Even in mathematics Leibniz’ universality contrasts with
Newton's undeviating direction to a unique end, that of apply-
ing mathematical reasoning to the phenomena of the physical
universe: Newton imagined one thing of absolutely the first
magnitude in mathematics; Leibniz, two. The first of these was
the calculus, the second, combinatorial analysis. The calculus
is the natural language of the continuous; combinatorial analysis
does for the discrete (see Chapter 1) what the calculus does for
the continuous. In combinatorial analysis we are confronted
with an assemblage of distinet things, each with an indivi-
duality of its own, and we are asked, in the most general
situation, to state what relations, if any, subsist between these
completely heterogeneous individuals. Here we look, not at the
smoothed-out resemblances of our mathematical population,
but at whatever it may be that the individuals, as individuals,
have in common — obviously not much. In fact it seems as if,
in the end, all that we can say combinatorially, comes down to a
matter of counting off the individuals in different ways, and
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comparing the results. That this apparently abstract and seem-
ingly barren procedure should lead to anything of importance
is in the nature of a miracle, but it is a fact. Leibniz was a
pioneer in this field, and he was one of the first to perceive that
the anatomy of logic — ‘the laws of thought’ — is a matter of
combinatorial analysis. In our own day the entire subject is
being arithmetized.

In Newton the mathematical spirit of his age took definite
form and substance. It was inevitable after the work of
Cavalieri (1598-1647), Fermat (1601-65), Wallis (1616-1703),
Barrow (1630-77), and others that the calculus should presently
get itself organized as an autonomous discipline. Like a crystal
being dropped into a saturated solution at the critical instant,
Newton solidified the suspended ideas of his time, and the
calculus took definite shape. Any mind of the first rank might
equally well have served as the crystal. Leibniz was the other
first-rate mind of the age, and he too crystallized the calculus.
But he was more than an agent for the expression of the
spirit of his times, which Newton, in mathematics, was not.
In his dream of a ‘universal characteristic’ Leibniz was well
over two centuries ahead of his age, again only as concerns
mathematies and logic. So far as historical research has yet
shown, Leibniz was alone in his second great mathematical
dream.

The union in one mind of the highest ability in the two
broad, antithetical domains of mathematical thought, the
analytical and the combinatorial, or the continuous and the
discrete, was without precedent before Leibniz and without
sequent after him. He is the one man in the history of mathe-
moatics who has had both qualities of thought in a superlative
degree. His combinatorial side was reflected in the work of his
German successors, largely in trivialities, and it was only in the
twentieth century, when the work of Whitehead and Russell,
following that of Boole in the nineteenth, partly realized the
Leibnizian dream of a universal symbolic reasoning, that the
supreme importance for all mathematical and scientic thought
of the combinatorial side of mathematics became as significant
as Leibniz had predicted that it must. To-day Leibniz’ combin-
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atorial method, as developed in symbolic logic and its exten-
sions, is as important for the analysis that he and Newton
started toward its present complexity as analysis itself is; for
the symbolic method offers the only prospect in sight of clearing
mathematical analysis of the paradoxes and antinomies that
have infested its foundations since Zeno.

Combinatorial analysis has already been mentioned in con-
nexion with the work of Fermat and Pascal in the mathematical
theory of probability. This, however, is only a detail in the
‘universal characteristic’ which Leibniz had in mind and towards
which (as will appear) he took a considerable first step. But the
development and applications of the calculus offered an irre-
sistible attraction to the mathematicians of the eighteenth
century, and Leibniz’ programme was not taken up seriously
till the 1840’s. Thereafter it was again ignored except by a few
nonconformists to mathematical fashion until 1910, when the
modern movement in symbolic reasoning originated in another
Principta, that of Whitehead and Russell, Principia
Mathematica.

Since 1910 the programme has become one of the major
interests of modern mathematics. By a curious sort of ‘eternal
recurrence’ the theory of probability, where combinatorial
analysis in the narrow sense (as applied by Pascal, Fermat, and
their successors) first appeared, has recently come under
Leibniz’ programme in the fundamental revision of the basic
concepts of probability which experience, partly in the new
quantum mechanics, has shown to be desirable; and to-day the
theory of probability is on its way to becoming a province in the
empire of symbolic logic — ‘combinatoric’ in the broad sense of
Leibniz.

The part Leibniz played in the creation of the calculus was
noted in the preceding chapter, also the disastrous controversy
to which that part gave rise. For long after both Newton and
Leibniz were dead and buried (Newton in Westminster Abbey,
a relic to be reverenced by the whole English-speaking race;
Leibniz, indifferently cast off by his own people, in an obscure
grave where only the men with shovels and his own secretary
heard the dirt thudding down on the coffin), Newton carried off
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all the honours — or dishonours, at least wherever English is
spoken.

Leibniz did not himself elaborate his great project of reducing
all exact reasoning to a symbolical technique. Nor, for that
matter, has it been done yet. But he did imagine it all, and he
did make a significant start. Servitude to the princelings of his
day to earn worthless honours and more money than he needed,
the universality of his mind, and exhausting controversies
during his last years, all militated against the whole creation of
a masterpiece such as Newton achieved jn his Principia. In
the bare summary of what Leibniz accomplished, his multi-
farious activities and his restless curiosity, we shall see the
familiar tragedy of frustration which has prematurely withered
more than one mathematical talent of the highest order —
Newton, pursuing a popular esteem not worthy his spitting on,
and Gauss seduced from his greater work by his necessity to
gain the attention of men who were his intellectual inferiors.
Only Archimedes of all the greatest mathematicians never
wavered. He alone was born into the social class to which the
others strove to elevate themselves; Newton crudely and
directly; Gauss indirectly and no doubt subconsciously, by
seeking the approbation of men of established reputation and
recognized social standing, although he himself was the simp-
lest of the simple. So there may after all be something to be said
for aristocracy: its possession by birthright or other social
discrimination is the one thing that will teach its fortunate
possessor its worthlessness.

In the case of Leibniz the greed for money which he caught
from his aristocratic employers contributed to his intellectual
dalliance: he was forever disentangling the genealogies of the
semi-royal bastards whose descendants paid his generous wages,
and proving with his unexcelled knowledge of the law their
legitimate claims to duchies into which their careless ancestors
had neglected to fornicate them. But more disastrously than
his itch for money his universal intellect, capable of anything
and everything had he lived a thousand years instead of a
meagre seventy, undid him. As Gauss blamed him for doing,
Leibniz squandered his splendid talent for mathematics on a
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diversity of subjects in all of which no human being could hope
to be supreme, whereas — according to Gauss — he had in him
supremacy in mathematics. But why censure him? He was what
he was, and willy-nilly he had to ‘dree his weird’. The very diffu-
sion of his genius made him capable of the dream which
Archimedes, Newton, and Gauss missed — the ‘universal charae-
teristic’. Others may bring it to realization; Leibniz did his part
in dreaming it to be possible.

Leibniz may be said to have lived not one life but several. As
a diplomat, historian, philosopher, and mathematician he did
enough in each field to fill one ordinary working life. Younger
than Newton by about four years, he was born at Leipzig on
1 July 1646, and living only seventy years against Newton’s
eighty-five, died in Hanover on 14 November 1716. His father
was a professor of moral philosophy and came of a good family
which had served the government of Saxony for three genera-
tions. Thus young Leibniz’ earliest years were passed in an
atmosphere of scholarship heavily charged with politics.

At the age of six he lost his father, but not before he had
acquired from him a passion for history. Although he attended
a school in Leipzig, Leibniz was largely self-taught by incessant
reading in his father’s library. At eight he began the study of
Latin and by twelve had mastered it sufficiently 1o compose
creditable Latin verse. From Latin he passed on to Greek
which he also learned largely by his own efforts.

At this stage his mental development parallels that of Des-
cartes: classical studies no longer satisfied him and he turned to
logic. From his attempts as a boy of less than fifteen to reform
logic as presented by the classicists, the scholastics, and the
Christian fathers, developed the first germs of his Characteristica
Universalis or Universal Mathematics, which, as has been
shown by Couturat, Russell, and others, is the clue to his meta-
physics. The symbolic logic invented by Boale in 1847-54 (to
be discussed in a later chapter) is only that part of the Charac-
teristica which Leibniz called calculus raticinator. His own
description of the universal characteristic will be quoted
presently. ' ‘

At the age of fifteen Leibniz entered the University of Leipzig
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as a student in law. The law, however, did not occupy all his
time. In his first two years he read widely in philosophy and for
the first time became aware of the new world which the modern,
or ‘natural’ philosophers, Kepler, Galileo, and Descartes had
discovered. Seeing that this newer philosophy could be under-
stood only by one acquainted with mathematies, Leibniz
passed the summer of 1668 at the University of Jena, where he
attended the mathematical lectures of Erhard Weigel, a man
of considerable local reputation but scarcely a mathematician.,

On returning to Leipzig he concentrated on law. By 1666, at
the age of twenty, he was thoroughly prepared for his doctor’s
degree in law. This is the year, we recall, in which Newton began
the rustication at Woolsthorpe that gave him the calculus and
his Jaw of universal gravitation. The Leipzig faculty, bilious
with jealousy, refused Leibniz his degree, officially on account
of his youth, actually because he knew more about law than the
whole dull lot of them.

Before this he had taken his bachelor’s degree in 1663 at the
age of seventeen with a brilliant essay foreshadowing one of the
cardinal doctrines of his mature philosophy. We shall not take
space to go into this, but it may be mentioned that one possible
interpretation of Leibniz’ essay is the doctrine of ‘the organism
as a whole’, which one progressive school of biologists and
another of psychologists has found attractive in our own time.

Disgusted at the pettiness of the Leipzig faculty Leibniz left
his native town for good and proceeded to Nuremberg where,
on 5 November 1666, at the affiliated University of Altdorf, he
was not only granted his doctor’s degree at once for his essay
on a new method (the historical) of teaching law, but was
begged to accept the University professorship of law. But, like
Descartes refusing the offer of a lieutenant-generalship because
he knew what he wanted out of life, Leibniz declined, saying
he had very different ambitions. What these may have been he
did not divulge. It seems unlikely that they could have been the
higher pettifogging for princelets into which fate presently
kicked him. Leibniz’ tragedy was that he met the lawyers
before the scientists,

His essay on the teaching of the law and its proposed recodifi-

182



MASTER OF ALL TRADES

cation was composed on the journey from Leipzig to Nurem-
berg. This illustrates a lifelong characteristic of Leibniz, his
ability to work anywhere, at any time, under any conditions.
He read, wrote, and thought incessantly. Much of his mathe-
matics, to say nothing of his other wonderings on everything
this side of eternity and beyond, was written out in the jolting,
draughty rattletraps that bumped him over the cow trails of
seventeenth-century Europe as he sped hither and thither at
his employers’ erratic bidding. The harvest of all this ceaseless
activity was a mass of papers, of all sizes and all qualities, as big
as a young haystack, that has never been thoroughly sorted,
much less published. To-day most of it lies baled in the royal
Hanover library waiting the patient labours of an army of
scholars to winnow the wheat from the straw.

It seems incredible that one head could have been respon-
sible for all the thoughts, published and unpublished, that
Leibniz committed 1o paper. As an item of interest to phreno-
logists and anatomists it has been stated (whether reliably or
not I don’t know) that Leibniz’ skull was dug up, measured,
and found to be markedly under the normal adult size. There
may be something in this, as many of us have seen perfect idiots
with noble brows bulging from heads as big as broth pots.

Newton’s miraculous year 1666 was also the great year for
Leibniz. In what he called a ‘schoolboy’s essay’, De arte combi-
natoria, the young man of twenty aimed to create ‘a general
method in which all truths of the reason would be reduced to a kind
of calculation. At the same time this would be a sort of universal
language or script, but infinitely different from all those projected
hitherto; for the symbols and even the words in it would direct the
reason; and errors, excepl those of fact, would be mere mistakes in
caleulation. It would be very difficult to form or invent this language
or characteristic, but very easy ito understand it without any
dictionaries.’ In a later description he confidently (and optimis-
tically) estimates how long it would take to carry out his
project: ‘I think a few chosen men could turn the trick within
five years.” Toward the end of his life Leibniz regretted that he
had been too distracted by other things ever to work out his
idea. If he were younger himself or had competent young assis-
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tants, he says, he could still do it — a common alibi for a talent
squandered on snobbery, greed, 2and intrigue.

To anticipate slightly, it may be said that Leibniz’ dream
struck his mathematical and scientific contemporaries as a
dream and nothing more, to be politely ignored as the fixed idea
of an otherwise sane and universally gifted genius. In a letter
of 8 September 1679 Leibniz (speaking of geometry in particular
but of all reasoning in general) tells Huygens of a ‘new charac-
teristic, entirely different from Algebra, which will have great
advantages for representing exactly and naturally to the mind,
and without figures, everything that depends on the
imagination.’

Such a direct, symbolic way of handling geometry was
invented in the nineteenth century by Hermann Grassmann
(whose work in algebra generalized that of Hamilton). Leibniz
goes on to discuss the difficulties inherent in the project, and
presently emphasizes what he considers its superiority over the
Cartesian analytic geometry.

‘But its principal utility consists in the consequences and
reasonings which can be performed by the operations of char-
acters [symbols], which could not be expressed by diagrams (or
even by models) without too great elaboration, or without
confusing them by an excessive number of points and lines, so
that one would be obliged to make an infinity of useless trials:
in contrast this method would lead surely and simply [to the
desired end]. I believe mechanics could be handled by this
method almost like geometry.’

Of the definite things that Leibniz did in that part of his
universal characteristic which is now called symbolic logic, we
may cite his formulation of the principal properties of logical
addition and logical multiplication, negation, identity, the null
class, and class inclusion. For an explanation of what some of
these terms mean and the postulates of the algebra of logic we
must refer ahead to the chapter on Boole. All this fell by the
wayside. Had it been picked up by able men when Leibniz
scattered it broadcast, instead of in the 1840's, the history of
mathematics might now be quite a different story from what
it is. Almost as well never as too soon.
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Having dreamed his universal dream at the age of twenty,
Leibniz presently turned to something more practical, and he
became a sort of corporation lawyer and glorified commercial
traveller for the Elector of Mainz. Taking one last spree in the
world of dreams before plunging up to his chin into more or less
filthy politics, Leibniz devoted some months to alchemy in the
company of the Rosicrucians infesting Nuremberg.

It was his essay on a new method of teaching law that undid
him. The essay came to the attention of the Elector’s right-
hand statesman, who urged Leibniz to have it printed so that a
copy might be laid before the august Elector. This was done,
and Leibniz, after a personal interview, was appointed to revise
the code. Before long he was being entrusted with important
commissions of all degrees of delicacy and shadiness. He became
a diplomat of the first rank, always pleasant, always open and
above-board, but never scrupulous, even when asleep. To his
genius is due, at least partly, that unstable formula known as
the ‘balance of power’. And for sheer cynical brilliance, it
would be hard to surpass, even to-day, Leibniz’ great dream of
a holy war for the conquest and civilization of Egypt. Napoleon
was quite chagrined when he discovered that Leibniz had anti-
cipated him in this sublime vision.

Up till 1672 Leibniz knew but little of what in his time was
modern mathematics. He was then twenty-six when his real
mathematical education began at the hands of Huygens, whom
he met in Paris in the intervals between one diplomatic plot
and another. Christian Huygens (1629-95), while primarily a
physicist, some of whose best work went into horology and the
undulatory theory of light, was an accomplished mathemati-
cian. Huygens presented Leibniz with a copy of his mathemat-
ical work on the pendulum. Fascinated by the power of the
mathematical method in competent hands, Leibniz begged
Huygens to give him lessons, which Huygens, seeing that
Leibniz had a first-class mind, gladly did. Leibniz had already
drawn up an impressive list of discoveries he had made by
means of his own methods — phases of the universal charac-
teristic. Among these was a calculating machine far superior to
Pascal’s, which handled only addition and subtraction; Leibniz’
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machine did also multiplication, division, and the extraction of
roots. Under Huygens’ expert guidance Leibniz quickly found
himself. He was a born mathematician.

The lessons were interrupted from January to March 1673
during Leibniz’ absence in London as an attaché for the
Elector. While in London, Leibniz met the English mathemati-
cians and showed them some of his work, only to learn that it
was already known. His English friends told him of Mercator’s
quadrature of the hyperbola ~ one of the clues which Newton
had followed to his invention of the caleulus. This introduced
Leibniz to the method of infinite series, which he carried on.
One of his discoveries (sometimes ascribed to the Scotch
mathematician James Gregory, 1638-75) may be noted: if = is
the ratio of the circumference of a circle to its diameter,

T 11 1 1 1
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the series continuing in the same way indefinitely. This is not a
practical way of calculating the numerical value of = (3.1415926
... ), but the simple connexion between = and all the odd
numbers is striking.

During his stay in London Leibniz attended meetings of the
Royal Society, where he exhibited his calculating machine. For
this and his other work he was elected a foreign member of the
Society before his return to Paris in March 1678. He and
Newton subsequently (1700) became the first foreign members
of the French Academy of Sciences.

Greatly pleased with what Leibniz had done while away,
Huygens urged him to continue. Leibniz devoted every spare
moment to his mathematjcs, and before leaving Paris for Han-
over in 1676 to enter the service of the Duke of Brunswick-
Luneburg, had worked out some of the elementary formulas of
the calculus and had discovered ‘the fundamental theorem of
the calculus’ (see preceding chapter) — that is, if we accept his
own daile, 1675. This was not published till 11 July 1677, eleven
years after Newton’s unpublished discovery, which was not
made public by Newton till after Leibniz’ work had appeared.
The controversy started in earnest, when Leibniz, diplomati-
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cally shrouding himself in editorial omniscience 2and anonymity,
wrote a severely critical review of Newton’s work in the Acta
Eruditorum, which Leibniz himself had founded in 1682 and of
which he was editor in chief. In the interval between 1677 and
1704 the Leibnizian calculus had been developed into an instru-
ment of real power and easy applicability on the Continent,
largely through the efforts of the Swiss Bernoullis, Jacob and
his brother Johann, while in England, owing to Newton’s
reluctance to share his mathematical discoveries freely, the
calculus was still a relatively untried curiosity.

One specimen of things that are now easy for beginnersin the
calculus, but which cost Leibniz (and possibly also Newton)
much thought and many trials before the right way was found,
may indicate how far mathematics has travelled since 1675.
Instead of the infinitesimals of Leibniz we shall use the rates
discussed in the preceding chapter. If u, v are functions of z,
how shall the rate of change of wv with respect to 2 be expressed
in terms of the respective rates of change of w and v with

. d(uv) | du d09
respect to 27 In symbols, what is o terms of p and ot
do

du
Leibni thought it should be —
ibniz once thought it should be o i

, which is nothing

like the correct

d(uv) do du
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The Elector died in 1678 and Leibniz was more or less free
during the last of his stay in Paris. On leaving Paris in 1676 to
enter the service of the Duke John Frederick of Brunswick-
Limneburg, Leibniz proceeded to Hanover by way of London
and Amsterdam. It was while in the latter city that he engi-
neered one of the shadiest transactions in all his long career as
a philosophic diplomat. The history of Leibniz’ commerce with
‘the God-intoxicated Jew’ Benedict de Spinoza (1682-77) may
be incomplete, but as the account now stands it seems that for
once Leibniz was grossly unethical over a matter — of all things
—of ethics. Leibniz seems to have believed in applying his ethics
to practical ends. He carried off copious extracts from Spinoza’s
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unpublished masterpiece Ethica (Ordine Geometrica Demon-
strata) —a treatise on ethics developed in the manner of Euclid’s
geometry. When Spinoza died the following year Leibniz
appears to have found it convenient to mislay his souvenirs of
the Amsterdam visit. Scholars in this field seem to agree that
Leibniz’ own philosophy wherever it touches ethics was appro-
priated without acknowledgement from Spinoza.

It would be rash for anyone not an expert in ethics to doubt
that Leibniz was guilty, or to suggest that his own thoughts on
ethics were independent of Spinoza’s. Nevertheless there are at
least two similar instances in mathematics (elliptic functions,
non-Euclidean geometry) where all the evidence at one time
was sufficient to convict several men of dishonesty grosser than
that attributed to Leibniz. When unsuspected diaries and
correspondence were brought to light years after the death of
all the accused it was seen that all were entirely innocent. It
may pay occasionally to believe the best of human beings
instead of the worst until all the evidence is in — which it can
never be for a man who is tried after his death.

The remaining forty years of Leibniz’ life were spent in the
trivial service of the Brunswick family. In all he served three
masters as librarian, historian, and general brains of the family.
It was a matter of great importance to such a family to have an
exact history of all its connexions with other families as highly
favoured by heaven as itself. Leibniz was no mere cataloguer of
books in his function as family librarian, but an expert genealo-
gist and searcher of mildewed archives as well, whose function
it was to confirm the claims of his employers to half the thrones
of Europe or, failing confirmation, to manufacture evidence by
judicious suppression. His historical researches took him all
through Germany and thence to Austria and Italy in 1687-90.

During his stay in Italy Leibniz visited Rome and was urged
by the Pope to accept the position of librarian at the Vatican.
But as a prerequisite to the job was that Leibniz should become
2 Catholic he declined ~ for once scrupulous. Or was he? His
reluctance to throw up one good post for another may have
started him off on the next application of his ‘universal charac-
teristic’, the most fantastically ambitious of 2ll his universal
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dreams. Had he pulled this off he could have moved into the
Vatican without leaving his face outside.

His grand project was no less than that of reuniting the Pro-
testant and Catholic churches. It was then not so long since the
first had split off from the second, so the project was not so
insane as it now sounds. In his wild optimism Leibniz over-
looked a law which is as fundamental for human nature as the
second law of thermodynamics is for the physical universe —
indeed it is of the same kind: all creeds tend to split into two,
each of which in turn splits into two more, and so on, until after
a certain finite number of generations (which can be easily
calculated by logarithms) there are fewer human beings in any
given region, no matter how large, than there are creeds, and
further attenuations of the original dogma embodied in the
first creed dilute it to a transparent gas too subtle to sustain
faith in any human being, no matter how small.

A quite promising conference at Hanover in 1683 failed to
effect a reconciliation as neither party could decide which was
to be swallowed by the other, and both welcomed the bloody
row of 1688 in England between Catholics and Protestants as a
legitimate ground for adjourning the conference sine die.

Having learned nothing from this farce Leibniz immediately
organized another. His attempt to unite merely the two Pro-
testant sects of his day succeeded only in making a large
number of excellent men more obstinate and sorer at one
another than they were before. The Protestant Conference
dissolved in mutual recriminations and curses.

It was about this time that Leibniz turned to philosophy as
his major consolation. In an endeavour to assist Pascal’s old
Jansenist friend Arnauld, Leibniz composed 2 semi-casuistical
treatise on metaphysics destined to be of use to Jansenists and
others in need of something more subtle than the too subtle
logic of the Jesuits. His philosophy occupied the remainder of
Leibniz’ life (when he was not engaged on the unending history
of the Brunswick family for his employers), in 21l about a
quarter of a century. That a mind like Leibniz’ evolved a vast
cloud of philosophy in twenty-five years need hardly be stated.
Doubtless every reader has heard something of the ingenious
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theory of monads — miniature replicas of the universe out of
which everything in the universe is composed, 2s a sort of one in
all, all in one — by which Leibniz explained everything (except
the monads) in this world and the next.

The power of Leibniz’ method when applied to philosophy
cannot be denied. As 2 specimen of the theorems proved by
Leibniz in his philosophy, that concerning the existence of God
may be mentioned. In his attempt to prove the fundamental
theorem of optimism ~ ‘everything is for the best in this best of
all possible worlds’ — Leibniz was less successful, and it was only
in 1759, forty-three years after Leibniz had died neglected and
forgotten, that a conclusive demonstration was published by
Voltaire in his epoch-making treatise Candide. One further
isolated result may be mentioned. Those familiar with general
relativity will recall that ‘empty space’ — space totally devoid
of matter — is no longer respectable. Leibniz rejected it as
nonsensical.

The list of Leibniz’ interests is still far from complete.
Economics, philology, international law (in which he was a
pioneer), the establishment of mining as a paying industry in
certain parts of Germany, theology, the founding of academies,
and the education of the young Electress Sophie of Branden-
burg (a relative of Descartes’ Elisabeth), all shared his atten-
tion, and in each of them he did something notable. Possibly
his least successful ventures were in mechanies and physical
science, where his occasional blunders show up glaringly against
the calm, steady light of men like Galileo, Newton, and Huy-
gens, or even Descartes.

Only one item in this list demands further attention here. On
being called to Berlin in 1700 as tutor to the young Electress,
Leibniz found time to organize the Berlin Academy of Sciences.
He became its first president. The Academy was still one of the
three or four leading learned bodies in the world till the Nazis
‘purged’ it. Similar ventures in Dresden, Vienna, and St Peters-
burg came to nothing during Leibniz’ lifetime, but after his
death the plans for the St Petersburg Academy of Sciences
which he had drawn up for Peter the Great were carried out.
The attempt to found a Viennese Academy was frustrated by
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the Jesuits when Leibniz visited Austria for the last time, in
1714. Their opposition was only to have been expected after
what Leibniz had done for Arnauld. That they got the better
of the master diplomat in an affair of petty academic politics
shows how badly Leibniz had begun to slip at the age of sixty-
eight. He was no longer himself, and indeed his last years were
but a wasted shadow from his former glory.

Having served princes all his life he now received the usual
wages of such service. Ill, fast ageing, and harassed by contro-
versy, he was kicked out.

Leibniz returned to Brunswick in September 1714, to learn
that his employer the Elector George Louis — ‘the honest block-
head’, as he is known in English history — having packed up his
duds and his snuff, had left for London to become the first
German King of England. Nothing would have pleased Leibniz
better than+to follow George to London, although his enemies
at the Royal Society and elsewhere in England were now
numerous and vicious enough owing to the controversy with
Newton. But the boorish George, now socially a gentleman, had
no further use for Leibniz’ diplomacy, and curtly ordered the
brains that had helped to lift him into civilized society to stick
in the Hanover library and get on with their everlasting history
of the illustrious Brunswick family.

‘When Leibniz died two years later (1716) the diplomatically
doctored history was still incomplete. For all his hard labour
Leibniz had been unable to bring the history down beyond the
year 1005, and at that had covered less than three hundred
years. The family was so very tangled in its marital adventures
that even the universal Leibniz could not supply them all with
unblemished scutcheons. The Brunswickers showed their
appreciation of this immense labour by forgetting all about it
till 1843, when it was published, but whether complete or
expurgated will not be known until the rest of Leibniz’ manu-
scripts have been sifted.

To-day, over 800 years after his death, Leibniz’ reputation as
a mathematician is higher than it was for many, many years
after his secretary followed him to the grave, and it is still
rising.
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As a diplomat and statesman Leibniz was as good as the
cream of the best of them in any time or any place, and far
brainier than all of them together. There is but one profession
in the world older than his, and until that is made respectable
it would be premature to try any man for choosing diplomacy
as his means of livelihood.



CHAPTER EIGHT
NATURE OR NURTURE?
The Bernoullis

S1NCE the great depression began deflating western civilization
eugenists, geneticists, psychologists, politicians, and dictators —
for very different reasons —have taken a renewed interest in the
still unsettled controversy of heredity versus environment. At
one extreme the hundred-percenter proletarians hold that
anyone can be a genius given the opportunity; while at the
other, equally positive Tories assert that genius is inborn and
will out even in a London slum. Between the two stretches a
whole spectrum of belief. The average opinion holds that
nature, not nurture, is the determining factor in the emergence
of genius, but that without deliberate or accidental assistance
genius perishes. The history of mathematics offers abundant
material for a study of this interesling problem. Without taking
sides — to do so at present would be premature — we may say
that the evidence furnished by the life histories of mathemati-
cians seems to favour the average opinion,

Probably the most striking case history is that of the Ber-
noulli family, which in three generations produced eight
mathematicians, several of them outstanding, who in turn
produced a swarm of descendants about half of whom were
gifted above the average and nearly all of whom, down to the
present day, have been superior human beings. No fewer than
120 of the descendants of the mathematical Bernoullis have
been traced genealogically, and of this considerable posterity
the majority achieved distinction — sometimes amounting to
eminence — in the law, scholarship, science, literature, the
learned professions, administration, and the arts. None were
failures, The most significant thing about the majority of the
mathematical members of this family in the second and third
generations is that they did not deliberately choose mathe-
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matics as a profession but drifted into it in spite of themselves
as a dipsomaniac returns to alcohol.

As the Bernoulli family played a leading part in developing
the calculus and its applications in the seventeenth and eigh-
teenth centuries, they must be given more than a passing
mention in even the briefest account of the evolution of modern
mathematics. The Bernoullis and Euler were in fact the leaders
above all others who perfected the calculus to the point where
quite ordinary men could use it for the discovery of results
which the greatest of the Greeks could never have found. But
the mere volume of the Bernoulli family’s work is too vast for
detailed description in an account like the present, so we shall
treat them briefly together.
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The Bernoullis were one of many Protestant families who
fled from Antwerp in 1583 to escape massacre by the Catholics
(as on St Bartholomew’s Eve) in the prolonged persecution of
the Huguenots. The family sought refuge first in Frankfort,
moving on presently to Switzerland, where they settled at
Basle. The founder of the Bernoulli dynasty married into one
of the oldest Basle families and became 2 great merchant.
Nicolaus senior, who heads the genealogical table, was also a
great merchant, as his grandfather and great-grandfather had
been. All these men married daughters of merchants, and with
one exception ~ the great-grandfather mentioned — accumulated
large fortunes. The exception showed the first departure from
the family tradition of trade by following the profession of
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medicine. Mathematical talent was probably latent for genera-
tions in this shrewd mercantile family, but its actual emergence
was explosively sudden.

Referring now to the genealogical table we shall give a very
brief summary of the chief scientific activities of the eight
mathematicians descended from Nicolaus senior before con-
tinuing with the heredity.

Jacob I mastered the Leibnizian form of the calculus by him-
self. From 1687 to his death he was professor of mathematics at
Basle. Jacob I was one of the first to develop the calculus signi-
ficantly beyond the state in which Newton and Leibniz left it
and to apply it to new problems of difficulty and importance.
His contributions to analytical geometry, the theory of proba-
bility, and the calculus of variations were of the highest import-
ance. As the last will recur frequently (in the work of Euler,
Lagrange, and Hamilton), we may describe the nature of some
of the problems attacked by Jacob I in this subject. We have
already seen a specimen of the type of problem handled by the
calculus of variations in Fermat’s principle of least time.

The calculus of variations is of very ancient origin. According
to one legend,* when Carthage was founded the city was
granted as much land as a man could plough a furrow com-
pletely around in a day. What shape should the furrow be
given that a man can plough a straight furrow of a certain
length in a day? Mathematically stated, what is the figure
which has the greatest area of all figures having perimeters of
the same length? This is an d{soperimetrical problem; the
answer here is a circle. This seems obvious, but it is by no means
easy to prove. (The elementary ‘proofs’ sometimes given in
school geometries are rankly fallacious.) The mathematics of
the problem comes down to making a certain integral a maxi-
mum subject to one restrictive condition. Jacob I solved this
problem and generalized it.}

* Actually, here, I have combined fwo legends. Queen Dido was

given a bull’s hide to ‘enclose’ the greatest area. She cut it into one
thong and enclosed a semicircle.

+ Historical notes on this and other problems of the calculus of
variations will be found in the book by G.A. Bliss, Calculus of
Variations, Chicago, 1925. The Anglicized form of Jacob is James.
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The discovery that the brachistochrone is a cyeloid has been
noted in previous chapters. This fact, that the cycloid is the
curve of quickest descent, was discovered by the brothers
Jacob I and Johannes I in 1697, and almost simultaneously by
several others. But the eycloid is also the tautochrone. This
struck Johannes I as something wonderful and admirable:
“With. justice we may admire Huygens because he first disco-
vered that a heavy particle falls on a cycloid in the same time
always, no matter what the starting-point may be. But you will
be petrified with astonishment when I say that exactly this
same cycloid, the tautochrone of Huygens, is the brachisto-
chrone we are seeking’ (Bliss, loc. ¢it., p. 54). Jacob also waxes
enthusiastic. These again are instances of the sort of problem
attacked by the calculus of variations. Lest they seem trivial,
we repeat once more that a whole province of mathematical
physics is frequently mapped into a simple variational principle
— like Fermat's of least time in optics, or Hamilton’s in
dynamies. .

After Jacob’s death his great treatise on the theory of proba-
bility, the Ars Conjectandi, was published in 1718, This contains
much that is still of the highest usefulness in the theory of
probabilities and its applications to insurance, statistics, and
the mathematical study of heredity.

Another research of Jacob’s shows how far he had developed
the differential and integral calculus: continuing the work of
Leibniz, Jacob made a fairly exhaustive study of catenaries —
the curves in which a uniform chain hangs suspended between
two points, or in which loaded chains hang. This was no mere
curiosity. To-day the mathematics developed by Jacob I in this
connexion finds its use in applications to suspension bridges and
high-voltage transmission lines. When Jacob I worked all this
out it was new and difficult; to-day it is an exercise in the first
course in the caleulus or mechanics.

Jacob I and his brother Johannes I did not always get on well
together. Johannes seems to have been the more quarrelsome
of the two, and it is certain that he treated his brother with
something pretty close to dishonesty in the matter of isoperi-
metrical problems. The Bernoullis took their mathematics in
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deadly earnest. Some of their letters about mathematies bristle
with strong language that is usually reserved for horse thieves.
For his part Johannes I not only attempted to steal his
brother’s ideas but threw his own son out of the house for
having won a prize from the French Academy of Sciences for
which Johannes himself had competed. After all, if rational
human beings get excited about a game of cards, wh.y should
they not blow up over mathematics, which is infinitely more
exciting?

Jacob I had a mystical strain which is of some significance in
the study of the heredity of the Bernoullis. It cropped out once
in an interesting way toward the end of his life. There is 2 cer-
tain spiral (the logarithmic or equiangular) which is reproduced
in a similar spiral after each of many geometrical transforma-
tions. Jacob was fascinated by this recurrence of the spiral,
several of whose properties he discovered, and directed that a
spiral be engraved on his tombstone with the inscription Eadem
mutata resurgo (Though changed I shall arise the same).

Jacob’s motlo was Invito paire sidera verso (Against my
father’s will'I study the stars) — in ironic memory ‘of his father’s
futile opposition to Jacob’s devoting his talents to mathematics
and astronomy. This detail favours the ‘nature’ view of genius
over the ‘nurture’. If his father had prevailed Jacob would have
been a theologian.

Johannes I, brother of Jacob I, did not start as a mathemati-
cian but as a doctor of medicine. His dispute with the brother
who had generously taught him mathematics has already been
mentioned. Johannes was 2 man of violent likes and dislikes:
Leibniz and Euler were his gods; Newton he positively hated
and greatly under-estimated, as a bigoted champion of Leibniz
was almost bound to do from envy or spite. The obstinate father
attempted to cramp his younger son into the family business,
but Johannes I, following the lead of his brother Jacob I,
rebelled and went in for medicine and the humanities, unaware
that he was fighting against his heredity. At the age of eighteen
he took his M.A. degree. Before long he realized his mistake in
choosing medicine and turned to mathematics. His first acade-
mic appointment was at Groningen in 1695 as professor of
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mathematics; on the death of Jacob I in 1705 Johannes I
succeeded to the professorship at Basle.

Johannes I was even more prolific than his brother in mathe-
matics and did much to spread the calculus in Europe. His
range included physics, chemistry, and astronomy in addition
to mathematics. On the applied side Johannes I contributed
extensively to optics, wrote on the theory of the tides and the
mathematical theory of ship sails, and enunciated the principle
of virtual displacements in mechanics. Johannes I was a man
of unusual physical and intellectual vigour, remaining active
till within a few days of his death at the age of eighty.

Nicolaus I, the brother of Jacob I and Johannes I, was also
gifted in mathematics. Like his brothers he made a false start.
At the age of sixteen he took his doctor’s degree in philosophy
at the University of Basle, and at twenty earned the highest
degree in law. He was first a professor of law at Bern before
becoming one of the mathematical faculty at the Academy of
St Petersburg. At the time of his death he was so highly thought
of that the Empress Catherine gave him a public funeral at
state expense. '

Heredity came out curiously in the second generation.
Johannes I tried to force his second son, Daniel, into business.
But Daniel thought he preferred medicine and became a physi-
cian before landing, in spite of himself, in mathematics. At the
age of eleven Daniel began taking lessons in mathematics from
his elder brother Nicolaus III, only five years older than him-
self. Daniel and the great Euler were intimate friends and at
times friendly rivals. Like Euler, Daniel Bernoulli has the dis-
tinction of having won the prize of the French.Academy ten
times (on a few occasions the prize was shared with other
successful competitors). Some of Daniel’s best work went into
hydrodynamies, which he developed uniformly from the single
principle - that later came to be called the conservation of
energy. All who work to-day in pure or applied fluid motion
know the name of Daniel Bernoulli.

In 1725 (at the age of twenty-five) Daniel became professor of
mathematics at St Petersburg, where the comparative bar-
barity of the life irked him so greatly that he returned at the
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‘

first opportunity, eight years later, to Basle, where he became
professor of anatomy and botany, and finally of physics. His
mathematical work included the calculus, differential equations,
probability, the theory of vibrating strings, an attempt at a
kinetic theory of gases, and many other problems in applied
mathematics. Daniel Bernoulli has been called the founder of
mathematical physies.

From the standpoint of heredity it is interesting to note that
Daniel had a marked vein of speculative philosophy in his
nature — possibly a refined sublimation of the Huguenot religion
of his ancestors. The like cropped out in numerous later descen=~
dants of the illustrious refugees from religious intolerance.

The third mathematician in the second generation, Johannes
II, brother of Nicolaus III and Daniel, also made a false start
and was pulled back into line by his heredity — or possibly by
his brothers. Starting out in law he became professor of elo-
quence at Basle before succeeding his father in the chair of
mathematics. His work was principally in physics and was
sufficiently distinguished to capture the Paris prize on three
occasions (once is usually enough to satisfy a good mathemati-
cian — provided he is good enough).

Johannes III, a son of Johannes II, repeated the family tra-
dition of making a wrong start, and like his father began with
law. At the age of thirteen he took his doctor’s degree in philo-
sophy. By nineteen Johannes III had found his true vocation
and was appointed astronomer royal at Berlin. His interests
embraced astronomy, geography, and mathematics.

Jacob II, another son of Johannes 1I, carried on the family
blunder by starting in law, only to change over at twenty-one
to experimental physics. He also turned to mathematics,
becoming a member of the St Petersburg Academy in the sec-
tion of mathematics and physics. His early death (at the age of
thirty) by accidental drowning cut short a very promising
career, and we do not know what Jacob II really had in him.
He was married.to a granddaughter of Euler.

- The list of Bernoullis who showed mathematical talent is not
yet exhausted, but the rest were less distinguished. It is some-
times asserted that the strain had worn thin. Quite the contrary
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seems to be the case. When mathematics was the most promis-
ing field for superior talent to cultivate, as it was immediately
after the invention of the calculus, the gifted Bernoullis culti-
vated mathematics. But mathematics and science are only two
of innumerable fields of human endeavour, and for gifted men
to swarm into either when both are overcrowded with high
ability indicates a lack of practical sense. The Bernoulli talent
was not expended; it merely spent itself on things of equal — or
perhaps greater — social importance than mathematics when
that field began to resemble Epsom Downs on Derby Day.

Those interested in the vagaries of heredity will find plenty
of material in the history of the Darwin and Galton families.
The case of Francis Galton (a cousin of Charles Darwin) is
particularly interesting, as the mathematical study of heredity
was founded by him. To rail at the descendants of Charles
Darwin because some of them have achieved eminence in
mathematics or mathematical physics rather than in biology
is slightly silly. The genius is still there, and one expression of
it is not necessarly ‘better’ or ‘higher’ than another — unless we
are the sort of bigots who insist that everything should be
mathematics, or biology, or sociology, or bridge and golf. It
may be that the abandonment of mathematics as the family
trade by the Bernoullis was just one more instance of their
genius.

Many legends and anecdotes have grown up round the
famous Bernoullis, as is only natural in the case of a family as
gifted and as violent in their language as the Bernoullis some-
times were. One of these ripe old chestnuts may be retailed
again as it is one of the comparatively early authentic instances
of a story which must be at least as old as ancient Egypt, and
of which we daily see variants pinned on to 2ll sorts of promi-
pent characters from Einstein down. Once when travelling as a
young man Daniel modestly introduced himself to an interest-
ing stranger with whom he had been conversing: ‘I am Daniel
Bernoulli’. ‘And I’, said the other sarcastically, ‘am Isaac
Newton.’ This delighted Daniel to the end of his days as the
sincerest tribute he had ever received.



CHAPTER NINE

ANALYSIS INCARNATE
Euler

‘EuLER calculated without apparent effort, as men breathe, or
as eagles sustain themselves in the wind’ (as Arago said), is not
an exaggeration of the unequalled mathematical facility of
Léonard Euler (1707-83), the most prolific mathematician in
history, and the man whom his contemporaries called ‘analysis
incarnate’. Euler wrote his great memoirs as easily as a fluent
writer composes a letter to an intimate friend. Even total
blindness during the last seventeen years of his life did not
retard his unparalleled productivity; indeed, if anything, the
loss of his eyesight sharpened Euler’s perceptions in the inner
world of his imagination.

The extent of Euler’s work was not accurately known even in
1936, but it has been estimated that sixty to eighty large quarto
volumes will be required for the publication of his collected
works. In 1909 the Swiss Association for Natural Science
undertook the collection and publication of Euler’s scattered
memoirs, with financial assistance from many individuals and
mathematical societies throughout the world — rightly claiming
that Euler belongs to the whole civilized world and not only to
Switzerland. The careful estimates of the probable expense
(about $80,000 in the money of 1909) were badly upset by the
discovery in St Petersburg (Leningrad) of an unsuspected mass
of Euler’s manuscripts.

Euler’s mathematical career opened in the year of Newton’s
death. A more propitious epoch for a genius like that of Euler’s
could not have been chosen. Analytical geometry (made publie
in 1637) had been in use ninety years, the calculus about fifty,
and Newton’s law of universal gravitation, the key to physical
astronomy, had been before the mathematical public for forty
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years. In each of these fields 2 vast number of isolated problems
had been solved, with here and there notable attempts at unifi-
cation; but no systematic attack had yet been launched against
the whole of mathematics, pure and applied, as it then existed.
In particular the powerful analytical methods of Descartes,
Newton, and Leibniz had not yet been exploited to the limit of
what they were then capable of, especially in mechanics and
geometry.

On a lower level algebra and trigonometry were then in shape
for systematization and extension; the latter particularly was
ready for essential completion. In Fermat’s domain of Diophan-
tine analysis and the properties of the common whole numbers
no such ‘temporary perfection’ was possible (it is not even yet);
but even here Euler proved himself the master. In fact one of
the most remarkable features of Euler’s universal genius was
its equal strength in both of the main currents of mathematics,
the continuous and the discrete.

As an algorist Euler has never been surpassed, and probably
never even closely approached, unless perhaps by Jacobi. An
algorist is a mathematician who devises ‘algorithms’ (or
‘algorisms’) for the solution of problems of special kinds. As a
very simple example, we assume (or prove) that every positive
real number has a real square root. How shall the root be
calculated? There are many ways known; an algorist devises
practical methods. Or again, in Diophantine analysis, also in
the integral calculus, the solution of a problem may not be
forthcoming until some ingenious (often simple) replacement of
one or more of the variables by functions of other variables has
been made; an algorist is a mathematician to whom such
ingenious tricks come naturally. There is no uniform mode of
procedure — algorists, like facile rhymesters, are born, not made.

It is fashionable to-day to despise the ‘mere algorist’; yet,
when 2 truly great one like the Hindu Ramanujan arrives
unexpectedly out of nowhere, even expert analysts hail him as
a gift from Heaven: his all but supernatural insight into
apparently unrelated formulas reveals hidden trails leading
from one territory to another, and the analysts have new tasks
provided for them in clearing the trails. An algorist is a
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‘formalist’ who loves beautiful formulas for their own sake.

Before going on to Euler’s peaceful but interesting life we
must mention two circumstances of his times which furthered
his prodigious activity and helped to give it a direction.

In the eighteenth century the universities were not the prin-
cipal centres of research in Europe. They might have become
such sooner than they did but for the classical tradition and its
understandable hostility to science. Mathematics was close
enough to antiquity to be respectable, but physics, being more
recent, was suspect. Further, 2 mathematician in a university
of the time would have been expected to put much of his effort
into elementary teaching; his research, if any, would have been
an unprofitable luxury, precisely as in the average American
institution of higher learning to-day. The Fellows of the British
universities could do pretty well as they chose. Few, however,
chose to do anything, and what they accomplished (or failed to
accomplish) could not affect their bread and butter. Under
such laxity or open hostility there was no good reason why the
universities should have led in science, and they did not.

The lead was taken by the various royal academies supported
by generous or far-sighted rulers. Mathematics owes an undis-
chargeable debt to Frederick the Great of Prussia and Catherine
the Great of Russia for their broadminded liberality. They
made possible a full century of mathematical progress in one of
the most active periods in scientific history. In Euler’s case
Berlin and St Petersburg furnished the sinews of mathematical
creation. Both of these foci of creativity owed their inspiration
to the restless ambition of Leibniz. The academies for which
Leibniz had drawn up the plans gave Euler his chance to be the
most prolific mathematician of all time; so, in a sense, EKuler
was Leibniz’ grandson.

The Berlin Academy had been slowly dying of brainlessness
for forty years when Euler, at the instigation of Frederick the
Great, shocked it into life again; and the St Petersburg Aca-
demy, which Peter the Great did not live to organize in
accordance with Leibniz’ programme, was firmly founded by
his successor.

These Academies were not like some of thoge to-day, whose
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chief function is to award membership in recognition of good
work well done; they were research organizations which paid
their leading members to produce scientific research. Moreover
the salaries and perquisites were ample for 2 man to support
himself and his family in decent comfort. Euler’s household at
one time consisted of no fewer than eighteen persons; yet he
was given enough to support them all adequately. As a final
touch of attractiveness to the life of an'academician in the
eighteenth century, his children, if worth anything at all, were
assured of a fair start in the world.

This brings us to a second dominant influence on Euler’s vast
mathematical output. The rulers who paid the bills naturally
wanted something in addition to abstract culture for their
money. But it must be emphasized that when once the rulers
had obtained a reasonable return on their investment, they did
not insist that their employees spend the rest of their time on
‘productive’ labour; Euler, Lagrange, and the other academi-
cians were free to do as they pleased. Nor was any noticeable
pressure brought to bear to squeeze out the few immediately
practical results which the state could use. Wiser in their
generation than many a director of a research institute to-day,
the rulers of the eighteenth century merely suggested occa-
sionally what they needed at once, and let science take its
course. They seem to have felt instinctively that so-called ‘pure’
research would throw off as by-products the instantly practical
things they desired if given a hint of the right sort now and
then.

To this general statement there is one important exception
which neither proves nor disproves the rule. It so happened that
in Euler’s time the outstanding problem in mathematical
research chanced also to coincide with what was probably the
first practical problem of the age — control of the seas. That
nation whose technique in navigation surpassed that of all its
competitors would inevitably rule the waves. But navigation
is ultimately an affair of accurately determining one’s position
at sea hundreds of miles from land, and of doing it so much
better than one’s competitors that they can be outsailed to the
seene, unfavourable only for them, of a naval battle. Britannia,
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as everyone knows, rules the waves. That she does so is due in
no small measure to the practical application which her navi-
gators were able to make of purely mathematical investigations
in celestial mechanics during the eighteenth century.

One such application concerned Euler directly — if we may
anticipate slightly. The founder of modern navigation is of
course Newton, although he himself never bothered his head
about the subject and never (so far as seems to be known)
planted his shoe on the deck of a ship. Position at sea is deter-
mined by observations on the heavenly bodies (sometimes
including the satellites of Jupiter in really fancy navigation);
and after Newton’s universal law had suggested that with
sufficient patience the positions of the planets and the phases
of the Moon could be calculated for a century in advance if
necessary, those who wished to govern the seas set their com-
puters on the nautical almanac to grinding out tables of future
positions.

In such a practical enterprise the Moon offers a particularly
vicious problem, that of three bodies attracting one another
according to the Newtonian law. This problem will recur many
times as we proceed to the twentieth century; Euler was the
first to evolve a calculable solution for the problem of the Moon
(‘the lunar theory’). The three bodies concerned are the Moon,
the Earth, and the Sun. Although we shall defer what can be
said here on this problem to later chapters, it may be remarked
that the problem is one of the most difficult in the whole range
of mathematics. Euler did not solve it, but his method of approx-
imative calculation (superseded to-day by better methods) was
sufficiently practical to enable an English computer to calculate
the lunar tables for the British Admiralty. For this the com-
puter received £5,000 (quite a sum for the time), and Euler was
voted a bonus of £300 for the method.

Léonard (or Leonhard) Euler, a son of Paul Euler and his
wife Marguerite Brucker, is probably the greatest man of
science that Switzerland has produced. He was born at Basle
on 15 April 1707, but moved the following year with his
parents to the nearby village of Riechen, where his father
became the Calvinist pastor. Paul Euler himself was an accom-
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plished mathematician, having been a pupil of Jacob Bernoulli.
The father intended Léonard to follow in his footsteps and
succeed him in the village church, but fortunately made the
mistake of teaching the boy mathematics.

Young Euler knew early what he wanted to do. Nevertheless
he dutifully obeyed his father, and on entering the University
of Basle studied theology and Hebrew. In mathematics he was
sufficiently advanced to attract the attention of Johannes
Bernoulli, who generously gave the young man one private
lesson 2 week. Euler spent the rest of the week preparing for the
next lesson so as to be able to meet his teacher with as few
questions as possible. Soon his diligence and marked ability
were noticed by Daniel and Nicolaus Bernoulli, who became
Euler’s fast friends.

Léonard was permitted to enjoy himself till he took his
master’s degreein 1724 at the age of seventeen, when his father in-
sisted that he should abandon mathematics and give all his time
to theology. But the father gave in when the Bernoullis told him
that his son was destined to be a great mathematician and not
the pastor of Riechen. Although the prophecy was fulfilled
Euler’s early religious training influenced him all his life and he
never discarded a particle of his Calvinistic faith. Indeed as he
grew older he swung round in a wide orbit toward the calling of
his father, conducting family prayers for his whole household
and usually finishing off with a sermon.

Euler’s first independent work was done at the age of nine-
teen. It has been said that this first effort reveals both the
strength and the weakness of much of Euler’s subsequent
work. The Paris Academy had proposed the masting of ships as
a prize problem for the year 1727; Euler’s memoir failed to win
the prize but received an honourable mention. He was later to
recoup this loss by winning the prize twelve times. The strength
of the work was the analysis — the technical mathematics — it
contained; its weakness the remoteness of the connexion, if any,
with practicality. The last is not very surprising when we
remember the traditional jokes about the non-existent Swiss
navy. Euler might have seen a boat or two on the Swiss lakes,
but he had not yet seen a ship. He has been criticized, some-
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times justly, for letting his mathematics run away with his
sense of reality. The physical universe was an occasion for
mathematics to Euler, scarcely a thing of much interest in
itself; and if the universe failed to fit his analysis it was the
universe which was in error.

Knowing that he was a born mathematician, Euler applied
for the professoxship at Basle. Failing to get the position, he
continued his studies, buoyed up by the hope of joining Daniel
and Nicolaus Bernoulli at St Petersburg. They had generously
offered to find a place for Euler in the Academy and kept him
well posted.

At this stage of his career Euler seems to have been curiously
indifferent as to what he should do, provided only it was some-
thing scientific. When the Bernoullis wrote of a prospective
opening in the medical section of the St Petersburg Academy,
Euler flung himself into physiology at Basle and attended the
lectures on medicine. But even in this field he could not keep
away from mathematics: the physiology of the ear suggested a
mathematical investigation of sound, which in turn led out into
another on the propagation of waves, and so on — this early
work kept branching out like a tree gone mad in a nightmare
all through Euler’s career.

The Bernoullis were fast workers. Euler received his call to
St Petersburg in 1727, officially as an associate of the medical
section of the Academy. By a wise provision every imported
member was obliged to take with him two pupils — actually
apprentices to be trained. Poor Euler’s joy was quickly dashed.
The very day he set foot on Russian soil the liberal Catherine I
died.

Catherine, Peter the Great’s mistress before she became his
wife, seems to have been a broadminded woman in more ways
than one, and it was she who in her reign of only two years
carried out Peter’s wishes in establishing the Academy. On
Catherine’s death the power passed into the hands of an
unusually brutal faction during the minority of the boy tsar
(who perhaps fortunately for himself died before he could begin
his reign). The new rulers of Russia looked upon the Academy
as a dispensable luxury and for some anxious months céntem-
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plated suppressing it and sending all the foreign members home,
Such was the state of affairs when Euler arrived in St Peters-
burg. Nothing was said in the confusion about the medical
position to which he had been called, and he slipped into the
mathematical section, after having almost accepted a naval
lieutenancy in desperation.

Thereafter things went better and Euler settled down to
work. For six years he kept his nose to the grindstone, not
wholly because he was absorbed in his mathematics but partly
because he dared not lead a normal social life on account of the
treacherous spies everywhere.

In 1788 Daniel Bernoulli returned to free Switzerland, having
had enough of holy Russia, and Euler, at the age of twenty-six,
stepped into the leading mathematical position in the Academy.
Feeling that he was to be stuck in St Petersburg for the rest of
his life, Euler decided to marry, settle down, and make the best
of things. The lady was Catharina, 2 daughter of the painter
Gsell, whom Peter the Great had taken back to Russia with
him. Political conditions became worse, and Euler longed more
desperately than ever to escape. But with the rapid arrival of
one child after another Euler felt more securely tied than
before and took refuge in incessant work. Some biographers
trace Euler’s unmatched productivity to this first sojourn in
Russia; common prudence forced him into an unbreakable
habit of industry.

Euler was one of several great mathematicians who could
work anywhere under any conditions. He was very fond of
children (he had thirteen of his own, 2ll but five of whom died
very young), and would often compose his memoirs with a baby
in his lap while the older children played all about him. The
ease with which he wrote the most difficult mathematics is
incredible.

Many legends of his constant outflow of ideas have survived.
Some no doubt are exaggerations, but it is said that Euler
would dash off a mathematical paper in the half hour or so
before the first and second calls to dinner. As soon as a paper
was finished it was laid on top of the growing stack awaiting the
printer. When material to fill the transactions of the Academy
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was needed, the printer would gather up a sheaf from the top of
the pile. Thus it happened that the dates of publication
frequently ran counter to those of composition. The crazy effect
was heightened by Euler’s habit of returning many times to 2
subject in order to clarify or extend what he had already done,
so that occasionally 2 sequence of papers on 2 given topic is
seen in print through the wrong end of the telescope.

When the boy tsar died, Anna Ivanovna (niece of Peter)
became Empress in 1730, and so far as the Academy was con-
cerned, things brightened up considerably. But under the
indirect rule of Anna’s paramour, Ernest John de Biron, Russia
suffered one of the bloodiest reigns of terror in its history, and
Euler settled down to a spell of silent work that was to last ten
years. Halfway through he suffered his first great misfortune.
He had set himself to win the Paris prize for an astronomical
problem for which some of the leading mathematicians had
asked several months’ time. (As 2 similar problem occurs in
connexion with Gauss we shall not describe it here.) Euler
solved it in three days. But the prolonged effort brought on an
illness in which he lost the sight of his right eye.

It should be noted that the modern higher criticism which
has been so effective in discrediting all the interesting anecdotes
in the history of mathematics has shown that the astronomical
problem was in no way responsible for the loss of Euler’s eye.
But how the scholarly critics (or anyone else) come to know so
much about the so-called law of cause and effect is a mystery
for David Hume’s (2 contemporary of Euler) ghost to resolve.
With this caution we shall tell once more the famous story of
Euler and the atheistic (or perhaps only pantheistic) French
philosopher Denis Diderot (1718-84). This is slightly out of its
chronological order, as it happened during Euler’s second stay
in Russia.

Invited by Catherine the Great to visit her Court, Diderot
earned his keep by trying to convert the courtiers to atheism.
Fed up, Catherine commissioned Euler to muzzle the windy
philosopher. This was easy because all mathematics was Chinese
to Diderot. De Morgan tells what happened (in his classic
Budget of Paradoxes, 1872): ‘Diderot was informed that a
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learned mathematician was in possession of an algebraical
demonstration of the existence of God, and would give it before
all the Court, if he desired to hear it. Diderot gladly consented.
... Euler advanced toward Diderot, and said gravely, and in a

tone of perfect conviction:
‘2

“Sir, ax

It sounded like sense to Diderot. Humiliated by the unre-
strained laughter which greeted his embarrassed silence, the
poor man asked Catherine’s permission to return at once to
France. She graciously gave it.

Not content with this masterpiece, Euler in all seriousness
painted his lily with solemn proofs, in deadly earnest, that God
exists and that the soul is not a material substance. It is
reported that both proofs passed into the treatises on theology
of his day. These are probably the choicest flowers of the
mathematically unpractical side of his genius.

Mathematics alone did not absorb all of Euler's energies
during his stay in Russia. Wherever he was called upon to exer-
cise his mathematical talents in ways not too far from pure
mathematics he gave the government its full money’s worth.
Euler wrote the elementary mathematical textbooks for the
Russian schools, supervised the government department of
geography, helped to reform the weights and measures, and
devised practical means for testing scales. These were but some
of his activities. No matter how much extraneous work he did,
Euler continued to pour out mathematics.

One of the most important works of this period was the
treatise of 1786 on mechanics. Note that the date of publication
lacks but a year of marking the centenary of Descartes’ publi-
cation of analytical geometry. Euler’s treatise did for mechanics
what Descartes’ had done for geometry — freed it from the
shackles of synthetic demonstration and made it analytical.
Newton’s Principia might have been written by Archimedes;
Euler’s mechanics could not have been written by any Greek.
For the first time the full power of the calculus was directed
against mechanics and the modern era in that basic science
began. Euler was to be surpassed in this direction by his friend
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Lagrange, but the credit for having taken the decisive step is
Euler’s. .

On the death of Anna in 1740 the Russian government
became more liberal, but Euler had had enough and was glad
to accept the invitation of Frederick the Great to join the
Berlin Academy. The Dowager Queen took 2 great fancy to
Euler and tried to draw him out. All she got was monosyllables.

‘Why don’t you want to speak to me?’ she asked.

‘Madame,” Euler replied, ‘I come from a country where, if you
speak, you are hanged.’

The next twenty-four years of his life were spent in Berlin,
not altogether happily, as Frederick would have preferred a
polished courtier instead of the simple Euler. Although
Frederick felt it his duty to encourage mathematics he despised
the subject, being no good at it himself. But he appreciated
Euler’s talents sufficiently to engage them in practical problems
—the coinage, water conduits, navigation canals, and pension
systems, among others.

Russia never let go of Euler completely and even while he was
in Berlin paid part of his salary. In spite of his many depen-
dents Euler was prosperous, owning a farm near Charlottenburg
in addition to his house in Berlin. During the Russian invasion
of the March of Brandenburg in 1760 Euler’s farm was pillaged.
The Russian general, declaring that he was ‘not making war on
the sciences’, indemnified Euler for considerably more than the
actual damage. When the Empress Elizabeth heard of Euler’s
loss she sent him a handsome sum in addition to the more than
sufficient indemnity. ‘

One cause of Euler’s unpopularity at Frederick's court was
his inability to keep out of arguments on philosophical ques-
tions about which he knew nothing. Voltaire, who spent much
of his time toadying to Frederick, delighted with the other
brilliant verbalists surrounding Frederick in tying the hapless
Euler into metaphysical knots. Euler took it all good-naturedly
and joined the others in roaring with laughter at his own
ridiculous blunders. But Frederick gradually became irritated
and cast about for a more sophisticated philosopher to head his
Academy and entertain his Court.
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D’Alembert (whom we shall meet later) was invited to Berlin
to look over the situation. He and Euler had had a slight cool-
ness over mathematics. But D’Alembert was not the man to let
a personal difference cloud his judgement, and he told Frederick
bluntly that it would be an outrage to put any other mathema-
tician over Euler. This only made Frederick more stubborn and
angrier than ever, and conditions became intolerable for Euler,
His sons, he felt, would have no chance in Prussia. At the age
of fifty-nine (in 1766) he pulled up his stakes once more and
migrated .back to St Petersburg at the cordial invitation of
Catherine the Great.

Catherine received the mathematician as if he were royalty,
setting aside a fully furnished house for Euler and his eighteen
dependents, and donating one of her own cooks to run the
kitchen.

It was at this time that Euler began to lose the sight of his
remaining eye (by a cataract), and before long he was totally
blind. The progress of his oncoming darkness is followed with
alarm and sympathy in the correspondence of Lagrange,
D Alembert, and other leading mathematicians of the time.
Euler himself watched the approach of blindness with equani-
mity. There can be no doubt that his deep religious faith helped
himn to face what was ahead of him. But he did not ‘resign’
himself to silence and darkness. He immediately set about
repairing the irreparable. Before the last light faded he
accustomed himself to writing his formulas with chalk on
a large slate. Then, his sons (particularly Albert) acting as ama-
nuenses, he would dictate the words explaining the formulas.
Instead of diminishing, his mathematical productivity in-
creased.

All his life Euler had been blessed with a phenomenal
memory. He knew Virgil’s 4eneid by heart, and although he
had seldom looked at the book since he was a youth, could
always tell the first and last lines on any page of his copy. His
memory was both visual and aural. He also had a prodigious
power for mental calculation, not only of the arithmetical kind
but also of the more difficult type demanded in higher algebra
and the caleulus. All the leading formulas of the whole range of
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mathematics as it existed in his day were accurately stowed
away in his memory.

As one instance of his prowess, Condorcet tells how two of
Euler’s students had summed a complicated convergent series
(for a particular value of the variable) to seventeen terms, only
to disagree by a unit in the fiftieth place of the result. To decide
which was right Euler performed the whole calculation men-
tally; his answer was found to be correct. All this now came to
his aid and he did not greatly miss the light. But even at that,
one feat of his seventeen blind years almost passes belief. The
lunar theory — the motion of the Moon, the only problem
which had ever made Newton’s head ache ~ received its first
thorough workout at Euler’s hands. All the complicated
analysis was done entirely in his head.

Five years after Euler’s return to St Petersburg another dis-
aster overtook him. In the great fire of 1771 his house and all
its furnishings were destroyed, and it was only by the heroism
of his Swiss servant (Peter Grimm, or Grimmon) that Euler
escaped with his life. At the risk of his own life Grimm carried
his blind and eailing master through the flames to safety. The
library was burned, but thanks to the energy of Count Orloff all
of Euler’s manuscripts were saved. The Empress Catherine
promptly made good 2ll the loss and soon Euler was back at
work again.

In 1776 (when he was sixty-nine) Euler suffered a greater loss
in the death of his wife. The following year he married again.
The second wife, Salome Abigail Gsell, was a half-sister of the
first. His greatest tragedy was the failure (through surgical
carelessness, possibly) of an operation to restore the sight of his
left eye — the only one for which there was any hope. The opera-
tion was ‘successful’ and Euler’s joy passed all bounds. But
presently infection set in, and after prolonged suffering which
he described as hideous, he lapsed back into darkness.

In looking back over Euler’s enormous output we may be
inclined at the first glance to believe that any gifted man could
have done a large part of it almost as easily as Euler. But an
inspection of mathematics as it exists to-day soon disabuses us.
For the present state of mathematics with its jungles of theories
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is relatively no more complicated, when we consider the power
of the methods now at our disposal, than what Euler faced.
Mathematics is ripe for a second Euler. In his day he systema-
tized and unified vast tracts cluttered with partial results and
isolated theorems, clearing the ground and binding up the
valuable things by the easy power of his analytical machinery.
Even to-day much of what is learned in a college course in
mathematics is practically as Euler left it — the discussion of
conic sections and quadrics in three-space from the unified
point of view provided by the general equation of the second
degree, for example, is Euler’s. Again, the subject of annuities
and all that grows out of it (insurance, old-age pensions, and
so on) were put into the shape now familiar to students of the
‘mathematical theory of investment’ by Euler.

As Arago points out, one source of Euler’s great and imme-
diate success as a teacher through his writings was his total lack
of false pride. If certain works of comparatively low intrinsic
merit were demanded to clarify earlier and more impressive
works, Euler did not hesitate to write them. He had no fear of
lowering his reputation.

Even on the creative side Euler combined instruction with
discovery. His great treatises of 1748, 1755, and 1768-70 on the
caleulus . (Introductio in analysin enfiniforum; Institutiones
calculi differentialis; Institutiones calculi integralis) instantly
became classic and continued for three-quarters of a century to
inspire young men who were to become great mathematicians.
But it was in his work on the calculus of variations (Methodus
inveniendi lineas curvas maxims minimive proprietate gaudentes,
1744) that Euler first revealed himself as a mathematician of
the first rank. The importance of this subject has been noted in
previous chapters.

Euler’s great step forward when he made mechanics analy-
tical has already been remarked; every student of rigid dyna-
mics is familiar with Euler’s analysis of rotations, to cite but
one detail of this advance. Analytical mechanics is a branch of
pure mathematics, so that Euler was not tempted here, as in
some of his other flights toward the practical, to fly off on the
first tangent he saw leading into the infinite blue of pure calcu-
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lation. The severest criticism which Euler’s contemporaries
made of his work was his uncontrollable impulse to calculate
merely for the sake of the beautiful analysis. He may occa-
sionally have lacked a sufficient understanding of the physical
situations he attempted to reduce to calculation without seeing
what they were all about. Nevertheless, the fundamental
equations of fluid motion, in use to-day in hydrodynamics, are
Euler’s. He could be practical enough when it was worth his
trouble.

One peculiarity of Euler’s analysis must be mentioned in
passing, as it was largely responsible for one of the main cur-
rents of mathematics in the nineteenth century. This was his
recognition that unless an infinite series is convergent it is unsafe
to use. For example, by long division we find

1

z—1

1 1 1 1
~m+m2+;"+m4+ cees
the series continuing indefinitely. In this put 2 = 1. Then

—2=24 2428 L2404 ..,
=2+44+8+16+....

The study of convergence (to be discussed in the chapter on
Gauss) shows us how to avoid absurdities like this. (See also the
chapter on Cauchy.) The curious thing is that, although Euler
recognized the necessity for caution in dealing with infinite
processes, he failed to observe it in much of his own work. His
faith in analysis was so great that he would sometimes seek a
preposterous ‘explanation’ to make a patent absurdity
respectable.

But when 2ll this is said, we must add that few have equalled
or approached Euler in the mass of sound and novel work of the
first importance which he put out. Those who love arithmetic -
not a very ‘important’ subject, possibly — will vote Euler a
palm in Diophantine analysis of the same size and freshness as
those worn by Fermat and Diophantus himself. Euler was the
first and possibly the greatest of the mathematical universalists.

Nor was he merely 2 narrow mathematician: in literature and
all of the sciences, including the biological, hé was at least well
read. But even while he was enjoying his deneid Euler could
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not help seeing a problem for his mathematical genius to attack.
The line ‘The anchor drops, the rushing keel is stay’d’ set him
to working out the ship’s motion under such circumstances. His
omnivorous curiosity even swallowed astrology for a time, but
he showed that he had not digested it by politely declining to
cast the horoscope of Prince Ivan when ordered to do so in
1740, pointing out that horoscopes belonged in the province of
the court astronomer. The poor astronomer had to do it.

One work of the Berlin period revealed Euler as a graceful (if
somewhat too pious) writer, the celebrated Letters fo a German
Princess, composed to give lessons in mechanies, physical
optics, astronomy, sound, ete., to Frederick’s niece, the Princess
of Anhalt-Dessau. The famous letters became immensely
popular and circulated in book form in seven languages. Public
interest in science is not the recent development we are some-
times inclined to imagine it is.

Euler remained virile and powerful of mind to the very
second of his death, which occurred in his seventy-seventh
year, on 18 September 1788. After having amused himself one
afternoon calculating the laws of ascent of balloons — on his
slate, as usual — he dined with Lexell and his family. ‘Herschel’s
Planet’ (Uranus) was a recent discovery; Euler outlines the
calculation of its orbit. A little later he asked that his grandson
be brought in. While playing with the child and drinking tea he
suffered a stroke. The pipe dropped from his hand, and with the
words ‘I die’, ‘Euler ceased to live and calculate.” *

* The quotation is from Condorcet’s Eloge.



CHAPTER TEN

A LOFTY PYRAMID

Lagrange

‘LAGRANGE is the lofty pyramid of the mathematical
sciences.” This was Napoleon Bonaparte’s considered estimate
of the greatest and most modest mathematician of the eigh-
teenth century, Joseph-Louis Lagrange (1736-1818), whom he
had made a Senator, a Count of the Empire, and a Grand
Officer of the Legion of Honour. The King of Sardinia and
Frederick the Great had also honoured Lagrange, but less
lavishly than the imperial Napoleon.

Lagrange was of mixed French and Italian blood, the French
predominating. His grandfather, a French cavalry captain, had
entered the service of Charles Emmanuel I, King of Sardinia,
and on settling at Turin had married into the illustrious Conti
family. Lagrange’s father, once Treasurer of War for Sardinia,
married Marie-Thérése Gros, the only daughter of a wealthy
physician of Cambiano, by whom he had eleven children. Of
this numerous brood only the youngest, Joseph-Louis, born on
25 January 1736, survived beyond infancy. The father was rich,
both in his own right and his wife’s. But he was also an incorri-
gible speculator, and by the time his son was ready to inherit
the, family fortune there was nothing worth inheriting. In later
life Lagrange looked back on this disaster as the luckiest thing
that had ever happened to him: ‘If I had inherited a fortune I
should probably not have cast my lot with mathematics.’

At school Lagrange’s first interests were in the classics, and
it was more or less of an accident that he developed a passion
for mathematics. In line with his classical studies he early
became acquainted with the geometrical works of Euclid and
Archimedes. These do not seem to have impressed him greatly.
Then an essay by Halley (Newton’s friend) extolling the superi-
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ority of the calculus over the synthetic geometrical methods of
the Greeks fell into young Lagrange’s hands. He was captivated
and converted. In an incredibly short time he had mastered
entirely by himself what in his day was modern analysis. At the
age of sixteen (according to Delambre there may be a slight
inacecuracy here) Lagrange became professor of mathematics at
the Royal Artillery School in Turin. Then began one of the
most brilliant careers in the history of mathematics.

From the first Lagrange was an analyst, never a geometer.
In him we see the first conspicuous example of that specializa-
tion which was to become almost a necessity in mathematical
research. Lagrange’s analytical preferences came out strongly
in his masterpiece, the Meécanique analytique (Analytical
Mechanics), which he had projected as a boy of nineteen at
Turin, but which was published in Paris only in 1788 when
Lagrange was fifty-two. ‘No diagrams will be found in this
work’, he says in the preface. But with a half-humorous libation
to the gods of geometry he remarks that the science of
mechanics may be considered as the geometry of a space of four
dimensions —~ three Cartesian co-ordinates with one time-co-
ordinate sufficing to locate a moving particle in both space and
time, a way of looking at mechanics that has become popular
since 1915 when Einstein exploited it in his general relativity.

Lagrange’s analytical attack on mechanics marks the first
complete break with the Greek tradition. Newton, his contem-
poraries, and his immediate successors found diagrams helpful
in their study of mechanical problems; Lagrange showed that
greater flexibility and incomparably greater power are attained
if general analytical methods are employed from the beginning.

At Turin the boyish professor lectured to students all older
than himself. Presently he organized the more able into a
research society from which the Turin Academy of Sciences
developed. The first volume of the Academy’s memoirs was
published in 1759, when Lagrange was twenty-three. It is
usually supposed that the modest and unobtrusive Lagrange
was responsible for much of the fine mathematics in these early
works published by others, One paper by Foncenex was so good
that the King of Sardinia put the supposed author in charge of
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the Department of the Navy. Historians of mathematies have
sometimes wondered why Foncenex never lived up to his first
mathematical success.

Lagrange himself contributed 2 memoir on maxima and
minima (the celculus of varigtions, described in Chapters 4, 8)
in which he promises to treat the subject in a work from which
he will deduce the whole of mechanics, of both solids and fluids.
Thus at twenty-three — actually earlier — Lagrange had
imagined his masterpiece, the Mécanique analytique, which does
for general mechanics what Newton’s law of universal gravita-
tion did for celestial mechanics. Writing ten years later to the
French mathematician D’Alembert (1717-88), Lagrange says
he regards his early work, the calculus of variations, thought
out when he was nineteen, as his masterpiece. It was by means
of this calculus that Lagrange unified mechanics and, as
Hamilton said, made of it ‘@ kind of scientific poem.’

When once understood the Lagrangian method is almost 2
platitude. As some have remarked, the Lagrangian equations
dominating mechanics are the finest example in all science of
the art of getting something out of nothing. But if we reflect a
moment we see that any scientific principle which is general to
the extent of uniting a2 whole vast universe of phenomena must
be simple: only a principle of the utmost simplicity can domi-
nate a multitude of diverse problems which on even a close
inspection appear to be individual and distinct.

In the same volume of Turin memoirs Lagrange took another
long step forward: he applied the differential calculus to the
theory of probability. As if this were not enough for the young
giant of twenty-three he advanced beyond Newton with a
radical departure in the mathematical theory of sound, bringing
that theory under the sway of the mechanics of systems of
elastic particles (rather than of the mechanics of fluids), by
considering the behaviour of all the air particles in one straight
line under the action of a shock transmitted along the line from
particle to particle. In the same general direction he also settled
a vexed controversy that had been going on for years between
the leading mathematicians over the correct mathematical
formulation of the problem of a vibrating string — 2 problem of
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fundamental importance in the whole theory of vibrations. At
twenty-three Lagrange was acknowledged the equal of the
greatest mathematicians of the age — Euler and the Bernoullis.

Euler was always generously appreciative of the work of
others. His treatment of his young rival Lagrange is one of the
finest pieces of unselfishness in the history of science. When as a
boy of nineteen Lagrange sent Euler some of his work the
famous mathematician at once recognized its merit and encour-
aged the brilliant young beginner to continue. When four years
later Lagrange communicated to Euler the true method for
attacking the isoperimetrical problems (the calculus of varia-
tions, described in connexion with the Bernoullis), which had
baffled Euler with his semi-geometrical methods for many
years, Euler wrote to the young man saying that the new
method had enabled him to overcome his difficulties. And
instead of rushing into print with the long-sought solution,
Euler held it back till Lagrange could publish his first, ‘so as
not to deprive you of any part of the glory which is your due.’

Private letters, however flattering, could not have helped
Lagrange. Realizing this, Euler went out of his way when he
published his work (after Lagrange’s) to say how he had been
held up by difficulties which, till Lagrange showed the way over
them, were insuperable. Finally, to clinch the matter, Euler got
Lagrange elected as a foreign member of the Berlin Academy
(2 October 1759) at the unusually early age of twenty-three.
This official recognition abroad was a great help to Lagrange at
home. Euler and D’Alembert schemed to get Lagrange to
Berlin. Partly for personal reasons they were eager to see their
brilliant young friend installed as court mathematician at
Berlin, After lengthy negotiations they succeeded, and the
great Frederick, slightly outwitted in the whole transaction,
was childishly (but justifiably) delighted.

Something must be said in passing about D’Alembert,
Lagrange’s devoted friend and generous admirer, if only for the
grateful contrast one aspect of his character offers to that of the
snobbish Laplace, whom we shall meet later.

Jean le Rond d’Alembert took his name from the little chapel
of St-Jean-le-Rond hard by Notre-Dame in Paris. An illegiti-
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mate son of the Chevalier Destouches, D’Alembert had been
abandoned by his mother on the steps of St-Jean-le-Rond. The
parish authorities turned the foundling over to the wife of a poor
glazier, who reared the child as if he were her own. The Che-
valier was forced by law to pay for his bastard’s education.
D’Alembert’s real mother knew where he was, and when the
boy early gave signs of genius, sent for him, hoping to win him
over.

“You are only my stepmother’, the boy told her (a good pun
in English, but not in French); ‘the glazier’s wife is my true
mother.” And with that he abandoned his own flesh and blood
as she had abandoned hers.

‘When he became famous and a great figure in French science
D’Alembert repaid the glazier and his wife by seeing that they
did not fall into want (they preferred to keep on living in their
humble quarters), and he was always proud to claim them as
his parents. Although we shall not have space to consider him
apart from Lagrange, it must be mentioned that D’Alembert
was the first to give a complete solution of the outstanding
problem of the precession of the equinoxes. His most important
purely mathematical work was in partial differential equations,
particularly in connexion with vibrating strings.

D’Alembert encouraged his modest young correspondent to
attack difficult and important problems. He also took it upon
himself to make Lagrange take reasonable care of his health —
his own was not good. Lagrange had in fact seriously impaired
his digestion by quite unreasonable application between the
ages of sixteen and twenty-six, and all his life thereafter he was
forced to discipline himself severely, especially in the matter of
overwork. In one of his letters D’Alembert lectures the young
man for indulging in tea and coffee to keep awake; in another
he lugubriously calls Lagrange’s attention to a recent medical
book on the diseases of scholars. To all of which Lagrange
blithely replies that he is feeling fine and working like mad.
But in the end he paid his tax.

In one respect Lagrange’s career is a ‘curious parallel to
Newton’s. By middle age prolonged concentration on problems
of the first magnitude had dulled Lagrange’s enthusiasm, and
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although his mind remained as powerful as ever, he came to
regard mathematics with indifference, When only forty-five he
wrote to D’Alembert, ‘I begin to feel the pull of my inertia
increasing little by little, and I cannot say that X shall still be
doing mathematics ten years from now. It also seems to me that
the mine is already too deep, and that unless new veins are
discovered it will have to be abandoned.’

When he wrote this Lagrange was ill and melancholic.
Nevertheless it expressed the truth so far as he was concerned.
D’Alembert’s last letter (September 1783), written a month
before his death, reverses his early advice and counsels work as
the only remedy for Lagrange’s psychic ills: ‘In God’s name do
not renounce work, for you the strongest of all distractions.
Good-bye, perhaps for the last time. Keep some memory of the
man who of all in the world cherishes and honours you the
most.’

Happily for mathematics Lagrange’s blackest depression,
with its inescapable corollary that no human knowledge is
worth striving for, was twenty glorious years in the future when
D’Alembert and Euler were scheming to get Lagrange to
Berlin. Among the great problems Lagrange attacked and
solved before going to Berlin was that of the libration of the
Moon. Why does the Moon always present the same face to the
Earth —~ within certain slight irregularities that can be
accounted for? It was required to deduce this fact from the
Newtonian law of gravitation. The problem is an instance of the
famous ‘Problem of Three Bodies’ — here the Earth, Sun, and
Moon — mutually attracting one another according to the law
of the inverse square of the distances between their centres of
gravity. (More will be said on this problem when we come to
Poincaré.)

For his solution of the problem of libration Lagrange was
awarded the Grand Prize of the French Academy of Sciences in
1764 — he was then only twenty-eight.

Encouraged by this brilliant success the Academy proposed
a yet more difficult problem, for which Lagrange again won the
prize in 1766. In Lagrange’s day only four satellites of Jupiter
had been discovered. Jupiter’s system (himself, the Sun, and
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his satellites) thus made a six-body problem. A complete mathe-
matical solution is beyond our powers even to-day (1936) in a
shape adapted to practical computation. But by using methods
of approximation Lagrange made a notable advance in
explaining the observed inequalities.

Such applications of the Newtonian theory were one of
Lagrange’s major interests all his active life. In 1772 he again
captured the Paris prize for his memoir on the three-body
problem, and in 1774 and 1778 he had similar successes with the
motion of the Moon and cometary perturbations.

The earlier of these spectacular successes induced the King of
Sardinia to pay Lagrange’s expenses for a trip to Paris and
London in 1766. Lagrange was then thirty. It had been planned
that he was to accompany Caraccioli, the Sardinian minister to
England, but on reaching Paris Lagrange fell dangerously ill —
the result of an over-generous banquet of rich Italian dishes in
his honour — and he was forced to remain ip Paris. While there
he met all the leading intellectuals, including the Abbé Marie,
who was later to prove an invaluable friend. The banquet cured
Lagrange of his desire to live in Paris and he eagerly returned
to Turin as soon as he was able to travel.

At last, on 6 November 1766, Lagrange was welcomed, at the
age of thirty, to Berlin by Frederick, ‘the greatest King in
Hurope’, as he modestly styled himself, who would be honoured
to have at his court ‘the greatest mathematician’. The last, at
least, was true. Lagrange became director of the physico-
mathematical division of the Berlin Academy, and for twenty
years crowded the transactions of the Academy with one great
memoir after another. He was not required to lecture.

At first the young director found himself in a somewhat
. delicate position. Naturally enough the Germans rather
resented foreigners being brought in over their heads and were
inclined to treat Frederick’s importations with a little less than
cool civility. In fact they were frequently quite insulting. But
in addition to being 2 mathematician of the first rank Lagrange
was a considerate, gentle soul with the rare gift of knowing
when to keep his mouth shut. In letters to trusted friends he
could be outspoken enough, even about the Jesuits, whom he
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and D’Alembert seem to have disliked, and in his official reports
to academies on the scientific work of others he could be quite
blunt. But in his social contacts he minded his own business
and avoided giving even justifiable offence. Until his colleagues
got used to his presence he kept out of their way.

Lagrange’s constitutional dislike of 21l disputes stood him in
good stead at Berlin. Euler had blundered from one religious or
philosophical controversy to another; Lagrange, if cornered and
pressed, would always preface his replies with his sincere
formula ‘I do not know.” Yet when his own convictions were
attacked he knew how to put up a spirited, reasoned defence.

On the whole Lagrange was inclined to sympathize with
Frederick, who had sometimes been irritated by Euler’s tilting
at philosophical problems about which he knew nothing. ‘Our
friend Euler’, he wrote to D’Alembert, ‘is a great mathemati-
cian, but a bad enough philosopher.” And on another occasion,
referring to Euler’s effusion of pious moralizing in the celebrated
Letters to a German Princess, he dubs the classic ‘Euler’s com-
mentary on the Apocalypse’ — incidentally a backhand allusion
to the indiscretion which Newton permitted himself when he
had lost his taste for natural philosophy. ‘It is incredible’,
Lagrange said of Euler, ‘that he could have been so flat and
childish in metaphysics.” And for himself, ‘I have a great
aversion to disputes.” When he did philosophize in his letters it
was with an unexpected touch of cynicism which is wholly
absent from the works he published, as when he remarks, ‘I
have always observed that the pretensions of all people are in
exact inverse ratio to their merits; this is one of the axioms of
morals.” In religious matters Lagrange was, if anything at all,
agnostic. '

Frederick was delighted with his prize and spent many
friendly hours with Lagrange, expounding the advantages of a
regular life. The contrast Lagrange offered to Euler was parti-
cularly pleasing to Frederick. The King had been irritated by
Euler’s too obvious piety and lack of courtly sophistication.
He had even gone so far as to call poor Euler a ‘lumbering
cyclops of a mathematician’, because Euler at the time was
blind in only one of his eyes. To D’Alembert the grateful
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Frederick overflowed in both prose and verse. ‘To your trouble
and to your recommendation,’ he wrote, ‘I owe the replacement
in my Academy of a2 mathematician blind in one eye by 2
mathematician with two eyes, which will be especially pleasing
to the anatomical section.’ In spite of sallies like this Frederick
was not a bad sort.

Shortly after settling in Berlin Lagrange sent to Turin for
one of his young lady relatives and married her. There are two
accounts of how this happened. One says that Lagrange had
lived in the same house with the girl and her parents and had
taken an interest in her shopping. Having an economical streak
in his cautious nature, Lagrange was scandalized by what he
considered the girl’s extravagance and bought her ribbons
himself. From there on he was dragooned into marrying her.

The other version can be inferred from one of Lagrange’s
letters — certainly the strangest confession of indifference ever
penned by a supposedly doting young husband. D’Alembert
had joked to his friend: ‘Y understand that you have taken what
we philosophers call the fatal plunge. ... A great mathemati-
cian should know above all things how to calculate his happi-
ness. I do not doubt then that after having performed this
calculation you found the solution in marriage.’

Lagrange either took this in deadly earnest or set out to beat
D’Alembert at his own game — and succeeded. D’Alembert had
expressed surprise that Langrange had not mentmned his
marriage in his letters.

‘I don’t know whether I calculated ill or well,” Lagrange
replied, ‘or rather, I don’t believe I calculated at all; for I might
have done as Leibniz did, who, compelled to reflect, could
never make up his mind. I confess to you that I never had a
taste for marriage. ... but circumstances decided me to engage
one of my young kinswomen to take care of me and all my
affairs. If I neglected to inform you it was because the whole
thing seemed to me so inconsequential in itself that it was not
worth the trouble of informing you of it.’

The marriage was turning out happily for both when the wife
declined in a lingering illness. Lagrange gave up his sleep to
nurse her himself and was heartbroken when she died.
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He consoled himself in his work. ‘My occupations are reduced
to cultivating mathematics, tranquilly and in silence.” He then
tells D’Alembert the secret of the perfection of all his work
which has been the despair of his hastier successors. ‘As I am
not pressed and work more for my pleasure than from duty, I
am like the great lords who build: I make, unmake, and re-
make, until I am passably satisfied with my results, which
happens only rarely.’ And on another occasion, after complain-
ing of illness brought on by overwork, he says it is impossible
for him to rest: ‘My bad habit of rewriting my memoirs several
times till I am passably satisfied is impossible for me to break.’

Not all of Lagrange’s main efforts during his twenty years at
Berlin went into celestial mechanics and the polishing of his
masterpiece. One digression — into Fermat’s domain — is of
particuler interest as it may suggest the inherent difficulty of
simple-looking things in arithmetic. We see even the great
Lagrdange puzzled over the unexpected effort his arithmetical
researches cost him.

‘I have been occupied these last few days’, he wrote to
D’Alembert on 15 August 1768, ‘in diversifying my studies a
little with certain problems of Arithmetic, and I assure you, I
found many more difficulties than I had anticipated. Here is
one, for example, at whose solution I arrived only with great
trouble. Given any positive integer n which is not a square, to
find a square integer, 2, such that nax® 4 1 shall be a square,
This problem is of great importance in the theory of squares
[to-day, quadratic forms, to be described in connexion with
Gauss] which [squares] are the principal object in Diophantine
analysis. Moreover I found on this occasion some very beautiful
theorems of Arithmetic, which I will communicate to you
another time if you wish.’

The problem Lagrange describes has a long history going
back to Archimedes and the Hindus. Lagrange’s classic memoir
on making na? 4+ 1 a square is a landmark in the theory of
numbers. He was also the first to prove some of Fermat’s
theorems and that of John Wilson (1741-98), who had stated
that if p is any prime number, then if all the numbers 1, 2, ...
up to p — 1 are multiplied together and 1 be added to the
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result, the sum is divisible by p. The like is not true if p is not
prime. For example, if p = 5,1 X 2 X 8 X 4 4+ 1 = 25. This
can be proved by elementary reasoning and is another of those
arithmetical super-intelligence tests.*

In his reply D’Alembert states his belief that Diophantine
analysis may be useful in the integral calculus, but does not go
into detail. Curiously enough, the prophecy was fulfilled in the
1870’s by the Russian mathematician, G. Zolotarev.

Laplace also became interested in arithmetic for 2 while and
told Lagrange that the existence of Fermat’s unproved
theorems, while one of the greatest glories of French mathe-
matics, was 2lso its most conspicuous blemish, and it was the
duty of French mathematicians to remove the blemish. But he
prophesied tremendous difficulties. The root of the trouble, in
his opinion, is that discrete problems (those dealing ultimately
with 1, 2, 8, ...) are not yet attackable by any general weapon
such as the calculus provides for the continuous. D’Alembert
also remarks of arithmetic that he found it ‘more difficult than
it seems at first.’ These experiences of mathematicians like
Lagrangeand hisfriendsmayimply thatarithmeticreally is hard.

Another letter of Lagrange’s (28 February 1769) records the
conclusion of the matter. ‘The problem I spoke of has occupied
me much more than I anticipated at first; but finally I am
happily finished and I believe I have left practically nothing to
be desired in the subject of indeterminate equations of the
second degree in two unknowns.” He was too optimistic here;
Gauss had yet to be heard from — his father and mother had
still seven years to go before meeting one another. Two years
before the birth of Gauss (in 1777), Lagrange looked back over
his work in a pessimistic mood: “The arithmetical researches are
those which have cost me most trouble and are perhaps the
least valuable.’

* A ridiculous ‘proof’ by a Spanish gentleman is funny enough to
be quoted. The customary abbreviationfor1 X 2 X ... X nisn!
Nowp — 1 + 1 = p, which is divisible by p. Put exclamation points
throughout: (p — 1)! + 1! = p!. The right side is again divisible by p;,
hence (p — 1)! -+ 1is divisible by p. Unfortunately this works equally
well if p is not prime.
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‘When he was feeling well Lagrange seldom lapsed into the
error of estimating the ‘importance’ ¢f his work. ‘I have always
regarded mathematics’, he wrote to Laplace in 1777, ‘as an
object of amusement rather than of ambition, and I can assure
you that I enjoy the works of others much more than my own,
with which I am always dissatisfied. You will see by that, if you
are exempt from jealousy by your own success, I am none the
less so by my disposition.” This was in reply to a somewhat
pompous declaration by Laplace that he worked at mathe-
matics only to appease his own sublime curiosity and did not
give a hang for the plaudits of ‘the multitude’ — which, in his
case, was partly balderdash.

A letter of 15 September 1782 to Laplace is of great historical
interest as it tells of the finishing of the Mécanique analytique:
‘I have almost completed a Treatise on Analytical Mechanics,
founded solely on the principle or formula in ihe first section of
the accompanying memoir; but as I do not know when or
where I can get it printed, I am not hurrying with the finishing
touches.’

Legendre undertook the editing of the work for the press and
Lagrange’s old friend the Abbé Marie finally persuaded a Paris
publisher to risk his reputation. This canny individual con-
sented to proceed with the printing only when the Abbé agreed
to purchase all stock remaining unsold after a certain date.
The book did not appear until 1788, after Lagrange had left
Berlin. A copy was delivered into his hands when he had grown
so indifferent to all science and all mathematics that he did not
even bother to open the book. For all he knew at the time the
printer might have got it out in Chinese. He did not care.

One investigation of Lagrange’s Berlin period is of the
highest importance in the development of modern algebra, the
memoir of 1767 On the Solution of Numerical Equations and the
subsequent additions dealing with the general question of the
algebraic solvability of equations. Possibly the greatest import-
ance of Lagrange’s researches in the theory and solution of
equations is the inspiration they proved to be to the leading
algebraists of the early nineteenth century. Time after time we
shall see the men who finally disposed of a problem which had
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baffled algebraists for three centuries or more returning to
Lagrange for ideas and inspiration. Lagrange himself did not
resolve the central difficulty —~ that of stating necessary and
sufficient conditions that a given equation shall be solvable
algebraically, but the germ of the solution is to be found in his
work. 3

As the problem is one of those major things in all algebra
which can be simply described we may glance at it in passing;
it will recur many times as a leading motive in the work of some
of the great mathematicians of the nineteenth century —
Cauchy, Abel, Galois, Hermite, and Kronecker, among others.

First it may be emphasized that there is no difficulty what-
ever in solving an algebraic equation with numerical coeffi-
cients. The labour may be excessive if the equation is of high
degree, say

310 — 17.82"° 4 2 — 11 = 0,

but there are many straightforward methods known whereby a
root of such a numerical equation can be found to any pre-
scribed degree of accuracy. Some of these are part of the regular
school course in algebra. But in Lagrange’s day uniform
methods for solving numerical equations to a preassigned
degree of accuracy were not commonplace — if known at all.
Lagrange provided such a method. Theoretically it did what
was required, but it was not practical. No engineer faced with
a numerical equation to-day would dream of using Lagrange’s
method.

The really significant problem arises when we seek an
algebraic solution of an equation with lieral coefficients, say
ax® + bz + ¢ = 0, or ax® + bx? + ca@ + d = 0, and so on for
degrees higher than the third. What is required is a set of
formulas expressing the unknown z in terms of the given a, b,
¢, ..., such that if any one of these expressions for 2 be put in
the left-hand side of the equation, that side shall reduce to zero.
For an equation of degree » the unknown 2 has precisely n
values. Thus for the above quadratic (second degree) equation,

1 1 I
5 (— b+ Vb —dac), 5. (— b — Vb — dac)
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are the two values which when substituted for 2 will reduce
ax? 4 bx 4~ ¢ to zero. The required values of @ in any case are to
be expressed in terms of a, b, ¢, ... by means of only a FINITE
number of additions, subtractions, multiplications, divisions, and
extractions of roots. This is the problem. Is it solvable? The
answer to this was not given till about twenty years after
Lagrange’s death, but the clue is easily traced to his work.

As a first step towards a comprehensive theory Lagrange
made an exhaustive study of all the solutions given by his pre-
decessors for the general equations of the first four degrees, and
succeeded in showing that all the dodges by which solutions
had been obteained could be replaced by a uniform procedure.
A detail in this general method contains the clue mentioned.
Suppose we are given an algebraic expression involving letters
a, b, ¢, ... how many different expressions can be derived from
the given one if the letters in it are interchanged in all possible
ways? For example, from ab + cd we get ad + ¢b by inter-
changing b and d. This problem suggests another closely related
one, also part of the clue Lagrange was seeking. What inter-
changes of letters will leave the given expression invariant
(unaltered)? Thus ab + cd becomes ba 4 cd under the inter-
change of @ and b, which is the same as ab + cd since ab = ba.
From these questions the theory of finite groups originated. This
was found to be the key to the question of algebraic solvability.
It will reappear when we consider Cauchy and Galois.

Another significant fact showed up in Lagrange’s investiga-
tion. For degrees 2, 3, and 4 the general algebraic equation is
solved by making the solution depend upon that of 2n equation
of lower degree than the one under discussion. This works beauti-
fully and uniformly for equations of degrees 2, 8, and 4, but
when a precisely similar process is attempted on the general
equation of degree 5,

az® + but + cr® + da® + ex + f =0,

the resolvent equation, instead of being of degree less than 5 turns

out to be of degree 6. This has the effect of replacing the given

equation by 2 harder one. The method which works for 2, 8, 4

breaks down for 5, and unless there is some way round the
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awkward 6 the road is blocked. As a matter of fact we shall see
that there is no way of avoiding the difficulty. We might as well
try to square the circle or trisect an angle by Euclidean
methods.

After the death of Frederick the Great (17 August 1786)
resentment against non-Prussians and indifference to science
made Berlin an uncomfortable spot for Lagrange and his
foreign associates in the Academy, and he sought his release.
This was granted on condition that he continue to send memoirs
to the proceedings of the Academy for a period of years, to
which Lagrange agreed. He gladly accepted the invitation of
Louis XVI to continue his mathematical work in Paris as a
member of the French Academy. On his arrival in Paris in 1787
he was received with the greatest respect by the royal family
and the Academy. Comfortable quarters were assigned him in
the Louvre, where he lived till the Revolution, and he became
a special favourite of Marie Antoinette — then less than six years
from the guillotine. Marie was about nineteen years younger
than Lagrange, but she seemed to understand him and did what
she could to lighten his overwhelming depression.

At the age of fifty-one Lagrange felt that he was through.
It was a clear case of nervous exhaustion from long-continued
and excessive overwork. The Parisians found him gentle and
agreeable in conversation, but he never took the lead. He spoke
but little and appeared distrait and profoundly melancholy. At
Lavoisier’s gatherings of scientific men Lagrange would stand
staring absently out of a window, his back to the guests who
had come to do him honour, a picture of sad indifference. He
said himself that his enthusiasm was extinct and that he had
lost the taste for mathematics. If he were told that some mathe-
matician was engaged on an important research he would say
‘So much the better; I began it; I shall not have to finish it.’
The Mécanique analytique lay unopened on his desk for two
years.

Sick of everything smelling of mathematics Lagrange now
turned to what he considered his real interests — as Newton had
done after the Principia: metaphysics, the evolution of human
thought, the history of religions, the general theory of lan-
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guages, medicine, and botany. In this strange miscellany he
surprised his friends with his extensive knowledge and the
penetrating quality of his mind on matters alien to mathe-
matics. Chemistry at the time was fast becoming a science — in
distinction to the alchemy which preceded it, largely through
the efforts of Lagrange’s close friend Lavoisier (1743-94). In a
sense which any student of elementary chemistry will appre-
ciate Lagrange declared that Lavoisier had made chemistry ‘as
easy as algebra.’

As for mathematics, Lagrange considered that it was finished
or at least passing into a period of decadence. Chemistry,
physics, and science generally he foresaw as the future fields of
greatest interest to first-class minds, 2nd he even predicted that
the chairs of mathematics in academies and universities would
presently sink to the undistinguished level of those for Arabic.
In a sense he was right. Had not Gauss, Abel, Galois, Cauchy,
and others injected new ideas into mathematics the surge of the
Newtonian impulse would have spent itself by 1850. Happily
Lagrange lived long enough to see Gauss well started on his
great career and to realize that his own forebodings had been
unfounded. We may smile at Lagrange’s pessimism to-day,
thinking of the era before 1800 at its brightest as only the dawn
of the modern mathematies in the first hour of whose morning
we now stand, wondering what the noon will be like — if there is
to be any; and we may learn from his example to avoid
prophcey.

The Revolution broke Lagrange’s apathy and galvanized
him once more into a living interest in mathematics. As a con-
venient point of reference we may remember 14 July 1789, the
day on which the Bastille fell.

When the French aristocrats and men of science at last
rezlized what they were in for, they urged Lagrange to return
to Berlin where a welcome awaited him. No objection would
have been raised to his departure. But he refused to leave Paris,
saying he would prefer to stay and see the ‘experiment’
through. Neither he nor his friends foresaw the Terror, and
when it came Lagrange bitterly regretted having stayed until
it was too late to escape. He had no fear for his own life. In the
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first place as a half-foreigner he was reasonably safe, and in the
second he did not greatly value his life. But the revolting
cruelties sickened him and all but destroyed what little faith he
had left in human nature and common sense. ‘Tu las vouluw’
(*You wished it’, or “You would do it’), he would keep reminding
himself as one atrocity after another shocked him into 2 realiza-
tion of his error in staying to witness the inevitable horrors of a
revolution.

The grandiose schemes of the revolutionists for'the regenera-
tion of mankind and the reform of human nature left him cold.
‘When Lavoisier went to the guillotine — as he no doubt would
have deserved had it been merely a question of social justice —
Lagrange expressed his indignation at the stupidity of the
execution: ‘It took them only 2 moment to cause this head to
fall, and a hundred years perhaps will not suffice to produce its
like.” But the outraged and oppressed citizens had assured the
tax-farmer Lavoisier that ‘the people have no need of science’
when the great chemist’s contributions to science were urged
as a common-sense reason that his head be left on his shoulders.
They may have been right. Without the science of chemistry
soap is impossible.

Although practically the whole of Lagrange’s working life
had been spent under the patronage of royalty his sympathies
were not with the royalists. Nor were they with the revolu-
tionists. He stood squarely and unequivocally on the middle
ground of civilization which both sides had ruthlessly invaded.
He could sympathize with the people who had been outraged
beyond human endurance and wish them success in their struggle
to gain decent living conditions. But his mind was too realistic
to be impressed by any of the chimerical schemes put forth by
the leaders of the people for the amelioration of human misery,
and he refused to believe that the fabrication of such schemes
was indubitable evidence of the greatness of the human mind as
claimed by the enthusiastic guillotineers. ‘If you wish to see the
human mind truly great,” he said, ‘enter Newton’s study when he
is decomposing white light or unveiling the system of the world.’

They treated him with remarkable tolerance. A special decree
granted him his ‘pension’, and when the inflation by paper
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money reduced the pension to nothing, they appointed him on
the committee of inventions to eke out his pay, and again on
the committee for the mint. When the Ecole Normsale was
established in 1795 (for an ephemeral first existence), Lagrange
was appointed professor of mathematics. When the Normale
closed and the great Ecole Polytechnique was founded in 1797,
Lagrange mapped out the course in mathematics and was the
first professor. He had never taught before he was called upon
to lecture to ill-prepared students. Adapting himself to his raw
material, Lagrange led his pupils through arithmetic and alge-
bra to analysis, seeming more like one of his pupils than their
teacher. The greatest mathematician of the age became a great
teacher of mathematics — preparing Napoleon’s fierce young
brood of military engineers for their part in the conquest of
Europe. The sacred superstition that a man who knows anything
is incapable of teaching was shattered. Advancing far beyond
the elements Lagrange developed new mathematics before his
pupil’s eyes and presently they were taking part in the develop-
ment themselves.

Two works thus developed were to exercise a great influence
on the analysis of the first three decades of the nineteenth
century. Lagrange’s pupils found difficulty with the concepts of
the infinitely small and the infinitely great permeating the
traditional form of the calculus. To remove these difficulties
Lagrange undertook the development of the calculus without
the use of Leibniz’ ‘infinitesimals’ and without Newton’s
peculiar conception of a limit. His own theory was published
in two works, the Theory of Analytw Functions (1797), and the
Lessons on the Calculus of Functions (1801). The importance of
these works is not in their mathematics but in the impulse they
gave Cauchy and others to construct a satisfactory calculus.
Lagrange failed completely. But in saying this we must
remember that even in our own day the difficulties with which
Lagrange grappled unsuccessfully have not been completely
overcome. His was a notable attempt and, for its epoch, satis-
factory. If our own lasts as long as his did we shall have done
well enough.

Lagrange’s most important work during the period of the
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Revolution was his leading part in perfecting the metric system
of weights and measures. It was due to Lagrange’s irony and
common sense that 12 was not chosen as a base instead of 10.
The ‘advantages’ of 12 are obvious and continue to the present
day to be set forth in impressive treatises by earnest propa-
gandists who escape the circle-squaring fraternity only by a
hairbreadth. A base of 12 superimposed on the 10 of our
number-system would be a hexagonal peg in a pentagonal hole.
To bring home the absurdity of 12 even to the cranks, Lagrange
proposed 11 as better yet — any prime number would have the
advantage of giving all fractions in the system the same deno-
minator. The disadvantages are numerous and obvious enough
to anyone who understands short division. The committee saw
the point and stuck to 10.

Laplace and Lavoisier were members of the committee as
first constituted, but after three months they were ‘purged’ out
of their seats with some others. Lagrange remained as president.
‘I do not know why they kept me’, he remarked, modestly
unaware that his gift for silence had saved not only his seat but
his head.

In spite of all his interesting work Lagrange was still lonely
and inclined to despondency. He was rescued from this twilight
between life and death at the age of fifty-six by a young girl
nearly forty years his junior, the daughter of his friend the
astronomer Lemonnier. She was touched by Lagrange’s unhap-
piness and insisted on marrying him. Lagrange gave in, and
contrary to all the laws of whatever it may be that governs the
way of a2 man with a maid, the marriage turned out ideal. The
young wife proved not only devoted but competent. She made
it her life to draw her husband out and reawaken his desire to
live. For his part Lagrange gladly made many concessions and
accompanied his wife to balls where he would never have
thought of going alone. Before long he could not bear to have
her out of his sight for long, and during her brief absences -
shopping — he was miserable.

Even in his new happiness Lagrange retained his curiously
detached attitude to life and his perfect honesty about his own
wishes. ‘I had no children by my first marriage’, he said; ‘I
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don’t know whether I shall have any by my second. I scarcely
desire any.’ Of all his successes the one he prized most highly,
he said simply and sincerely, was having so tender and devoted
a companion as his young wife.

Honours were showered on him by the French. The man who
had been a favourite of Marie Antoinette now became an idol
of the people who had put her to death. In 1796 when France
annexed Piedmont, Talleyrand was ordered to wait in state on
Lagrange’s father, still living in Turin, to tell him that ‘“Your
son, whom Piedmont is proud to have produced and France to
possess, has done honour to all mankind by his genius.” When
Napoleon turned to civil affairs between his campaigns he often
talked with Lagrange on philosophical questions and the func-
tion of mathematics in a modern state, and conceived the
highest respect for the gently-spoken man who always thought
before he spoke and who was never dogmatic.

Beneath his calm reserve Lagrange concealed an ironic wit
which flashed out unexpectedly on occasion. Sometimes it was
so subtle that coarser men — Laplace for one — missed the point
when it was directed at themselves. Once in defence of experi-
ment and observation against mere woolgathering and vague
theorizing Lagrange remarked, ‘These astronomers are queer;
they won’t believe in a theory unless it agrees with their obser-
vations.” Noticing his rapt forgetfulness at a musicale, someone
asked him why he liked musie. ‘I like it because'it isolates me,’
he replied. ‘I hear the first three measures; at the fourth X
distinguish nothing; I give myself up to my thoughts; nothing
interrupts me; and it is thus that I solved more than one diffi-
cult problem.’ Even his sincere reverence for Newton has a faint
flavour of the same gentle irony. ‘Newton’, he declared, ‘was
assuredly the man of genius par excellence, but we must agree
that he was also the luckiest: one finds only once the system of
the 'world to be established.” And again: ‘How lucky Newton
was that in his time the system of the world still remained to
be discovered!’

Lagrange’s last scientific effort was the revision and extension
of the Mécanique analytique for a second edition. All his old
power returned to him although he was past seventy. Resuming
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his former habits he worked incessantly, only to discover that
his body would no longer obey his mind. Presently he began
to have fainting spells, especially on getting out of bed in the
morning. One day his wife found him unconscious on the floor,
his head badly cut by a fall against the edge of a table. There-
after he moderated his pace but kept on working. His illness,
which he knew to be grave, did not disturb his serenity; all his
life Lagrange lived as a philosopher would like to live, indifferent
to his fate.

Two days before Lagrange died Monge and other friends
called, knowing that he was dying and that he wished to tell
them something of his life. They found him temporarily better,
except for lapses of memory which obliterated what he had
wished to tell them.

‘I was very ill yesterday, my friends,’ he said. ‘I felt I was
going to die; my body grew weaker little by little; my intel-
lectual and physical faculties were extinguished insensibly; I
observed the well-graduated progression of the diminution of
my strength, and I came to the end without sorrow, without
regrets, and by a very gentle decline. Oh, death is not to be
dreaded, and when it comes without pain, it is a last function
which is not unpleasant.’

He believed that the seat of life is in all the organs, in the
whole of the bodily machine, which, in his case, weakened
equally in all its parts.

‘In a few moments there will be no more functions anywhere,
death will be everywhere; death is only the absolute repose of
the body.

‘I wish to die; yes, I wish to die, and I find a pleasure in it.
But my wife did not wish it. In these moments I should have
preferred a wife less good, less eager to revive my strength, who
would have let me end gently. I have had my career; I have
gained some celebrity in Mathematics. I never hated anyone, I
have done nothing bad, and it would be well to end; but my
wife did not wish it.’

He soon had his wish. A fainting spell from which he never
awoke came on shortly after his friends had left. He died early
on the morning of 10 April, 1813, in his seventy-sixth year.



CHAPTER ELEVEN
FROM PEASANT TO SNOB

Laplace

THE Marquis Pierre-Simon de Laplace (1749-1827) was not
born a peasant nor did he die a snob. Yet to within small
quantities of the second order his illustrious career is comprised
within the limits indicated, and it is from this approximate
point of view that he is of greatest interest as a specimen of
humanity.

As a mathematical astronomer Laplace has justly been called
the Newton of France; as a mathematician he may be regarded
as the founder of the modern phase of the theory of probability.
On the human side he is perhaps the most conspicuous refuta-
tion of the pedagogical superstition that noble pursuits neces-
sarily ennoble a man’s character. Yet in spite of all his amusing
foibles — his greed for titles, his political suppleness, and his
desire to shine in the constantly changing spotlight of public
esteem — Laplace had elements of true greatness in his char-
acter. We may not believe all that he said about his unselfish
devotion to truth for truth’s sake, and we may smile at the care
with which he rehearsed his sententious last words — ‘What we
know is not much; what we do not know is immense’ — in an
endeavour to telescope Newton’s boy playing on the seashore
into a neat epigram, but we cannot deny that Laplace in his
generosity to unknown beginners was anything but a shifty and
ungrateful politician. To give one young man a helping hand up
Laplace once cheated himself.

Very little is known of Laplace’s early years. His parents
were peasants living in Beaumont-en-Auge, Department of
Calvados, France, where Pierre-Simon was born on 23 March
1749. The obscurity surrounding Laplace’s childbirth and youth
is due to his own snobbishness: he was thoroughly ashamed of
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his humble parents and did everything in his power to conceal
his peasant origin.

Laplace got his chance through the friendly interest of
wealthy neighbours on the occasion, presumably, of his having
shown remarkable talent in the village school. It is said that his
first success was in theological disputations. If this is true it is
an interesting prelude to the somewhat aggressive atheism of
his maturity. He took to mathematics early. There was a
military academy at Beaumont, which Laplace attended as an
externe, and in which he is said to have taught mathematics for
a time. One dubious legend states that the young man’s prodi-
gious memory attracted more attention than his mathematical
ability and was responsible for the cordial recommendations
from influential people which he carried with him to Paris when,
at the age of eighteen, he wiped the mud of Beaumont off his
boots for ever and set out to seek his fortune. His own estimate
of his powers was high, but not too high. With justified self-
confidence young Laplace invaded Paris to conquer the
mathematical world.

Arriving in Paris, Laplace called on D’Alembert and sent in
his recommendations. He was not received. D’Alembert was not
interested in young men who came recommended only by
prominent people. With remarkable insight for so young a man
Laplace sensed what the trouble was. He returned to his lodg-
ings and wrote D’Alembert a wonderful letter on the general
principles of mechanies. This did the trick. In his reply inviting
Laplace to call, D’ Alembert wrote: ‘Sir, you see that I paid little
enough attention to your recommendations: you don’t need-
any. You have introduced yourself better. That is enough for
me; my support is your due.’ A few days later, thanks to
D’Alembert, Laplace was appointed professor of mathematics
at the Military School of Paris.

Laplace now threw himself into his life work — the detailed
application of the Newtonian law of gravitation to the entire
solar system. If he had done nothing else he would have been
greater than he was. The kind of man Laplace would have liked
to be is described in 2 letter of 1777, when he was twenty-seven,
to D’Alembert. The picture Laplace gives of himself is one of
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the strangest mixtures of fact and fancy a man ever perpetrated
in the way of self-analysis.

‘I have always cultivated mathematics by taste rather than
from the desire for a vain reputation,’ he declares. ‘My greatest
amusement is to study the march of the inventors, to see their
genius at grips with the obstacles they have encountered and
overcome. I then put myself in their place and ask myself how
I should have gone about surmounting these same obstacles,
and although this substitution in the great majority of instances
has only been humiliating to my self-love, nevertheless the
pleasure of rejoicing in their success has amply repaid me for
this little humiliation. If I am fortunate enough to add some-
thing to their works, I attribute all the merit to their first
efforts, well persuaded that in my position they would have
gone much farther than I. ...°
. He may be granted the first sentence. But what about the
rest of his smug little essay which might have been handed in
by a priggish youngster of ten to his gullible Sunday-school
teacher? Notice particularly the generous attribution of his
own ‘modest’ successes to the preliminary work of his prede-
cessors. Nothing could be farther from the truth than this frank
avowal of indebtedness. To call a spade a spade, Laplace stole
outrageously, right and left, wherever he could lay his hands on
anything of his contemporaries and predecessors which he
could use. From Lagrange, for example, he lifted the funda-
mental concept of the potential (to be described presently);
from Legendre he took whatever he needed in the way of
analysis; and finally, in his masterpiece, the Mécanique céleste,
he deliberately omits references to the work of others incor-
porated in his own, with the intention of leaving posterity to
infer that he alone created the mathematical theory of the
heavens. Newton, of course, he cannot avoid mentioning
repeatedly. Laplace need not have been so ungenerous. His own
colossal contributions to the dynamies of the solar system easily
overshadow the works of others whom he ignores.

The complications and difficulties of the problem Laplace
attacked cannot be conveyed to anyone who has never seen
anything similar attempted. In discussing Lagrange we men-
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tioned the problenn of three bodies. What Laplace undertook
was similar, bukt omaa grander scale. He had to work out from
the Newtonian law the combined effects of the perturbations —
cross-pulling arad Thauling - of all the members of the Sun’s
family of plametsomoneanother and on the Sun. Would Saturn,
in spite of am apparntly steady decrease of his mean motion,
wander offinto spauce, or would he continue as a member of the
Sun’s family’? Or wowld the acceleration of Jupiter and the
Moon ultimately cause one to fall into the Sun and the other to
smash down on the Earth? Were the effects of these perturba-
tions cumulativeand dissipative, or were they periodic and con-
servative? Theseand similar riddles were details of the grand
problem: is the soarsystem stable or is it unstable? Itis assumed
that the Newtonian bw of gravitation is indeed universal
and the only ore controlling the motions of the planets.

Laplace’s firstirmportant step towards the general problem
was taken in X773, when he was twenty-four, in which he
proved that the mean distances of the planets from the Sun
are invariable towithin certain slight periodic variations.

‘When Laplace attacked the problem of stability expert
opinion was at best neutral. Newton himself believed that
divine interventiora might be necessary from time to time to put
the solar systenaback in order and prevent it from destruction
or dissolution, Othiers , like Euler, impressed by the difficulties
of the lunax theory (motion of the Moon), rather doubted
whether the motioms of the planets and their satellites could be
accounted for o the Newtonian hypothesis. The forces
involved wexetoo murmerous, and their mutual interactions too
complicated for anyreasonably fair guess. Until Laplace proved
the stability of the sokarsystem one man’s guess was as good as
another’s.

To dispose here of an objection which the reader doubtless
has already mised, it may be stated that Laplace’s solution of
the problem of stability is good only for the highly idealized
solar system which INewton and he imagined. Tidal friction
(acting like & br-ake onx diurnal rotation) among other things was
ignored. Since the Méanique céleste was published we have
learned a great dealalbout the solar system and everything in it
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of which Laplace was ignorant. It is probably not too radical to
say that the problem of stability for the actual solar system —
as opposed to Laplace’s ideal — is still open. However, the
experts on celestial mechanics might disagree, and a competent
opinion can be obtained only from them.

As a matter of temperament some find the Laplacian concep-
tion of an eternally stable solar system repeating the compli-
cated cycle of its motions time after time for ever and ever as
depressing as an endless nightmare. For these there is the recent
comfort that the Sun will probably explode some day as 2 nova.
Then stability will cease to trouble us, for we shall all quite
suddenly become perfect gases.

For this brilliant start Laplace was rewarded with the first
substantial honour of his career when he was barely twenty-
four, associate membership in the Academy of Sciences. His
subsequent scientific life is summarized by Fourier: ‘Laplace
gave to all his works a fixed direction from which he never
deviated; the imperturbable constancy of his views was always
the principal feature of his genius. He was already [when he
began his attack on the solar system] at the extreme of mathe-
matical analysis, knowing all that is most ingenious in this, and
no one was more competent than he to extend its domain. He
had solved a capital problem of astronomy [that communicated
to the Academy in 1778], and he decided to devote all his talents
to mathematical astronomy, which he was destined to perfect.
He meditated profoundly on his great project and passed his
whole life perfecting it with a perseverance unique in the history
of science. The vastness of the subject flattered the just pride
of his genius. He undertook to compose the Almagest of his age —
the Mécanique céleste; and his immortal work carries him as far
beyond that of Ptolemy as the analytical science [mathematical
analysis] of the moderns surpasses the Elements of Euclid.’

This is no more than just. Whatever Laplace did in mathe-
matics was designed as an aid to the solution of the grand
problem. Laplace is the great example of the wisdom — for a
man of genius — of directing all one’s efforts to a single central
objective worthy of the best that a man has in him. Occasion-
ally Laplace was tempted to turn aside, but not for lJong. Once
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he was strongly attracted by the theory of numbers, but
quickly abandoned it on realizing that its puzzles were likely to
cost him more time than he could spare from the solar system.
Even his epochal work in the theory of probabilities, although
at first sight off the main road of his interests, was inspired by
his need for it in mathematical astronomy. Once well into the
theory he saw that it is indispensable in all exact science and
felt justified in developing it to the limit of his powers.

The Mécanique céleste, which bound all Laplace’s astrono-
mical work into a reasoned whole, was published in parts over
a period of twenty-six years. Two volumes appeared in 1799,
dealing with the motions of the planets, their shapes (as rotat-
ing bodies), and the tides; two further volumes in 1802 and
1805 continued the investigation, which was finally completed
in the fifth volume, 1823-25. The mathematical exposition is
extremely concise and occasionally awkward. Laplace was
interested in results, not in how he got them. To avoid con-
densing 2 complicated mathematical argument to a brief, intel-
ligible form he frequently omits everything but the conclusion,
with the optimistic remark “II est aisé & voir® (It is easy to see).
He himself would often be unable to restore the reasoning by
which he had ‘seen’ these easy things without hours ~ some-
times days—of hard labour. Even gifted readers soon acquired the
habit of groaning whenever the famous phrase appeared, know-
ing that as likely as not they were in for a week’s blind work.

A more readable account of the main results of the Mécanique
céleste appeared in 1796, the classic Exposition du sysiéme du
monde (Exposition of the System of the World), which has been
described as Laplace’s masterpiece with all the mathematics
left out. In this work, as in the long non-mathematical intro-
duction (1538 quarto pages) to the treatise on probabilities (third
edition, 1820), Laplace revealed himself as almost as great a
writer as he was 2 mathematician. Anyone wishing to glimpse
the scope and fascination of the theory of probability, without
being held up by technicalities intelligible only to mathema-
ticians, could not do better than to read Laplace’s introduction.
Much has been done since Laplace wrote, especially in recent
years and particularly in the foundations of the theory of
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probability, but his exposition is still classic and a perfect
expression of at least one philosophy of the whole subject. The
theory, it need scarcely be said, is not yet complete. Indeed it
is beginning to seem as if it has not yet been begun — the next
generation may have it all to do over again.

One interesting detail of Laplace’s astronomical work may be
mentioned in passing, the famous nebular hypothesis of the
origin of the solar system. Apparently unaware that Kant had
anticipated him, Laplace (only half seriously) proposed the
hypothesis in a note. His mathematics was inadequate for a
systematic attack, and it was not till Jeans in the present
century resumed the discussion that it had any scientific
meaning.

Lagrange and Laplace, the two leading French men of science
of the eighteenth century, offer an interesting contrast, and one
typical of a difference which was to become increasingly sharp
with the expansion of mathematics: Laplace belongs to the
tribe of mathematical physicists, Lagrange to that of pure
mathematicians. Poisson, himself a mathematical physicist,
seems to favour Laplace as the more desirable type:

‘There is a profound difference between Lagrange and Lap-
lace in all their work, whether in 2 study of numbers or the
libration of the Moon. Lagrange often appeared to see in the
questions he treated only mathematics, of which the questions
were the occasion — hence the high value he put upon elegance
and generality. Laplace saw in mathematics principally a tool,
which he modified ingeniously to fit every special problem as it
arose. One was a great mathematician; the other a great philo-
sopher who sought to know nature by making higher mathe-
matics serve it.’

Fourier (whom we shall consider later) was also struck by the
radical difference between Lagrange and Laplace. Himself
Tather narrowly ‘practical’ in his mathematical outlook,
Fourier was yet capable — at one time — of estimating Lagrange
at his true worth: ‘

‘Lagrange was no less a philosopher than he was a great
mathematician. By his whole life he proved, in the moderation
of his desires, his immovable attachment to the general interests
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of humanity, by the noble simplicity of his manners and the
elevation of his character, and finally by the accuracy and the
depth of his scientific works.’

Coming from Fourier this statement is remarkable. It may
smack of the bland rhetoric we are accustomed to expect in
French funeral orations, yet it is true, at least to-day.
Lagrange’s great influence on modern mathematics is due to
‘the depth and accuracy of his scientific works’, qualities which
are sometimes absent from Laplace’s masterpieces.

To the majority of his contemporaries and immediate fol-
lowers Laplace ranked higher than Lagrange. This was due
partly to the magnitude of the problem Laplace attacked — the
grandiose project of demonstrating that the solar system is a
gigantic perpetual motion machine. A sublime project in itself,
no doubt, but essentially illusory: not enough about the actual
physical universe was known in Laplace’s day — or even in our
own — to give the problem any real significance, and it will
probably be many years before mathematics is sufficiently
advanced to handle the complicated mass of data we now
have. Mathematical astronomers will doubtless continue to
play with idealized models of ‘the universe’, or even of the
infinitely less impressive solar system, and will continue to
flood us with inspiring or depressing bulletins regarding the
destiny of mankind; but in the end the by-products of their
investigations — the perfection of the purely mathematical tools
they have devised — will be their fairly permanent contribution
to the advancement of science (as opposed to the propagation
of guessing), precisely as has happened in the case of Laplace.

If the foregoing seems too strong, consider what bhas hap-
pened to the Mécanique céleste. Does anyone but an academic
mathematician really believe to-day that Laplace’s conclusions
about the stability of the solar system are a reliable verdict on
the infinitely complicated situation which Laplace replaced by
an idealized dream? Possibly many do; but no worker in mathe-
matical physics doubts the power and utility of the mathema-
tical methods developed by Laplace to attack his ideal.

To take but one instance, the theory of the potential is more
significant to-day than Laplace ever dreamed it would become.
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‘Without the mathematics of this theory we should be halted
almost at the beginning of our attempt to understand electro-
magnetism. Out of this theory grew one vigorous branch of the
mathematics of boundary-value problems, to-day of greater
significance for physical science than the whole Newtonian
theory of gravitation. The concept of the potential was a
mathematical inspiration of the first order — it made possible
an attack on physical problems which otherwise would have
been unapproachable.

The potential is merely the function u described in connexion
with fluid motion and Laplace’s equation in the chapter on
Newton. The function u is there a ‘velocity potential’; if it is a
question of the force of Newtonian gravitational attraction, u
is a ‘gravitational potential’. The introduction of the potential
into the theories of fluid motion, gravitation, electromagnetism,
and elsewhere was one of the longest strides ever taken in
mathematical physics. It had the effect of replacing partial
differential equations in two or three unknowns by equations
in one unknown.

In 1785, at the age of thirty-six, Laplace was promoted to
full membership in the Academy. Important as this honour was
in the career of 2 man of science, the year 1785 stands out as a
landmark of yet greater significance in Laplace’s career as a
public character. For in that year Laplace had the unique dis-
tinction of examining a singular candidate of sixteen at the
Military School. This youth was destined to upset Laplace’s
plans and deflect him from his avowed devotion to mathematics
into the muddy waters of politics. The young man’s name was
Napoleon Bonaparte (1769-1821).

Laplace rode through the Revolution on horseback, as it
were, and saw everything in comparative safety. But no man
of his prominence and restless ambition could escape danger
entirely. If De Pastoret knew what he was talking about in his
eulogy, both Lagrange and Laplace escaped the guillotine only
because they were requisitioned to calculate trajectories for the
artillery and to help in directing the manufacture of saltpetre
for gunpowder. Neither was forced to eat grass as some less
necessary savants were driven to do, nor was either so careless
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as to betray himself, as their unfortunate friend Condorecet did,
by ordering an aristocrat’s omelet. Not knowing how many eggs
go into 2 normal omelet Condorcet ordered a dozen. The good
cook asked Condorcet his trade. ‘Carpenter.’ — ‘Let me see your
hands. You're no carpenter.’ That was the end of Laplace’s
close friend Condorcet. They either poisoned him in prison or
let him commit suicide.

After the Revolution Laplace went in heavily for politics,
possibly in the hope of beating Newton’s record. The French
refer politely to Laplace’s ‘versality’ as a politicien. This is too
modest. Laplace’s alleged defects as a politicien are his true
greatness in the slippery game. He has been criticized for his
inability to hold public office under successive regimes without
changing his politics. It would seem that a man who is sharp
enough to convince opposing parties that he is a loyal supporter
of whichever one happens to be in power at the moment is a
politician of no mean order. It was his patrons who played the
game like amateurs, not Laplace. What would we think of a
Republican Postmaster-General who gave all the fattest jobs to
.undeserving Democrats? Or the other way about? Laplace got a
better job every time the government flopped. It cost him nothing
to switch overnight from rabid republicanism to ardent royalism.

Napoleon shoved everything Laplace’s way, including the
portfolio of the Interior — about which more later. All the
Napoleonic orders of any note adorned the versatile mathema-
tician’s chest — including the Grand Cross of the Legion of
Honour and the Order of the Reunion, and he was made a
Count of the Empire. Yet what did he do when Napoleon fell?
Signed the decree which banished his benefactor.

After the restoration Laplace had no difficulty in transferring
his loyalty to Louis XVIII, especielly as he now sat in the
Chamber of Peers as the Marquis de Laplace. Louis recognized
his supporter’s merits and in 1816 appointed Laplace president
of the committee to reorganize the Ecole Polytechnique.

Perhaps the most perfect expressions of Laplace’s political
genius are those found in his scientific writings. It takes real
genius to doctor science according to fluctuating political
opinion and get away with it. The first edition of the Exposition
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du systéme du monde, dedicated to the Council of Five Hundred,
closes with these noble words: “The greatest benefit of the
astronomical sciences is to have dissipated errors born of
ignorance of our true relations with nature, errors all the more
fatal since the social order must rest solely on these relations.
Truth and justice are its immutable bases. Far from us be the
dangerous maxim that it may sometimes be useful to deceive or
to enslave men the better to ensure their happiness! Fatal
experiences have proved in all ages that these sacred laws are
never infringed with impunity.” In 1824 this is suppressed and
the Marquis de Laplace substitutes: ‘Let us conserve with care
and increase the store of this advanced knowledge, the delight
of thinking beings. It has rendered important services to navi-
gation and geography; but its greatest benefit is to have
dissipated the fears produced by celestial phenomena and to
have destroyed the errors born of ignorance of our true relations
with nature, errors which will soon reappear if the torch of the
sciences is extinguished.’ In loftiness of sentiment there is but
little to choose between these two sublime maxima.

This is enough on the debit side of the ledger. The last
extract does indeed suggest one trait in which Laplace over-
topped all courtiers — his moral courage where his true convic-
tions were questioned. The story of Laplace’s encounter with
Napoleon over the Mécanique céleste shows the mathematician
as he really was. Laplace had presented Napoleon with 2 copy
of the work. Thinking to get a rise out of Laplace, Napoleon
took him to task for an apparent oversight. ‘You have written
this huge book on the system of the world without once men-
tioning the author of the universe.’ ‘Sire’, Laplace retorted, ‘I
had no need of that hypothesis.” When Napoleon repeated this
to Lagrange, the latter remarked, ‘Ah, but that is a fine
hypothesis. It explains so many things.’

It took nerve to stand up to Napoleon and tell him the truth.
Once at a session of the Institut when Napoleon was in one of
his most insultingly bad tempers he caused poor old Lamarck
to burst into tears with his deliberate brutality.

Also on the credit side was Laplace’s sincere generosity to
beginners. Biot tells how as 2 young man he read a paper before
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the Academy when Laplace was present, and was drawn aside
afterward by Laplace who showed him the identical discovery
'in a yellowed old manuscript of his own, still unpublished.
Cautioning Biot to secrecy, Laplace told him to go ahead and
publish his work. This was but one of several such acts. Begin-
ners in mathematical research were his stepchildren, Laplace
liked to say, but he treated them as well as he did his own son.

As it is often quoted as an instance of the unpracticality of
mathematicians we shall give Napoleon’s famous estimate of
Laplace, of which he is reported to have delivered himself while
he was 2 prisoner at St Helena.

‘A mathematician of the first rank, Laplace quickly revealed
himself as only a mediocre administrator; from his first work
we saw that we had been deceived. Laplace saw no question
from its true point of view; he sought subtleties everywhere,
had only doubtful ideas, and finally carried the spirit of the
infinitely small into administration.’

This sarcastic testimonial was inspired by Laplace’s short
tenure — only six weeks — of the Ministry of the Interior. How-
ever, as Lucien Bonaparte needed a job at the moment and
succeeded Laplace, Napoleon may have been rationalizing his
well-known inclination to nepotism. Laplace’s testimonial for
Napoleon has not been preserved. It might have run somewhat
as follows.

‘A soldier of the first rank, Napoleon quickly revealed himself
as only a mediocre politician; from his first exploits we saw that
he was deceived. Napoleon saw all questions from the obvious
point of view; he suspected treachery everywhere but where it
was, had only a childlike faith in his supporters, and finally
carried the spirit of infinite generosity into a den of thieves.’

Which, after all, was the more practical administrator? The
man who could not hang on to his gains and who died a prisoner
of his enemies, or the other who continued to gather wealth 4nd
honour to the day of his death?

Laplace spent his last days in comfortable retirement at his
country estate at Arcueil, not far from Paris. After a short
illness he died on 5 March 1827, in his seventy-eighth year. His
last words have already been reported.



CHAPTER TWELVE
FRIENDS OF AN EMPEROR

Monge and Fourier

TaE careers of Gaspard Monge (1746-1818) and Joseph Fourier
(1768-1880) are curiously parallel and may be considered
together. On the mathematical side each made one funda-
mental contribution: Monge invented descriptive geometry
(not to be confused with the projective geometry of Desargues,
Pascal, and others); Fourier started the current phase of
mathematical physics with his classic investigations on the
theory of heat-conduction.

Without Monge’s geometry — originally invented for use in
military engineering — the wholesale spawning of machinery in
the nineteenth century would probably have been impossible.
Descriptive geometry is the root of all the mechanical drawing
and graphical methods that help to make mechanical engineer-
ing a fact.

The methods inaugurated by Fourier in his work on the con-
duction of heat are of a similar importance in boundary-value
problems —~ a trunk nerve of mathematical physics.

Monge and Fourier between them are thus responsible for a
considerable part of our own civilization, Monge on the practical
and industrial side, Fourier on the purely scientific. But even
on the practical side Fourier’s methods are indispensable to-
day; they are in fact a commonplace in all electrical and
acoustical engineering (including wireless) beyond the rule of
thumb and handbook stages.

A third man must be named with these mathematicians,
although we shall not take space to tell his life: the chemist
Count Claude-Louis Berthollet (1748-1822), a close friend of
Monge, Laplace, Lavoisier, and Napoleon. With Lavoisier,
Berthollet is regarded as one of the founders of modern chemis-
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try. He and Monge became so thick that their admirers gave up
trying to distinguish between them in their non-scientific-
lebours and called them simply Monge-Berthollet.

Gaspard Monge, born on 10 May 1746, at Beaune, France,
was a son of Jacques Monge, a peddler and knife grinder who
had a tremendous respect for education 2and who sent his three
sons through the local college. All the sons had successful
careers; Gaspard was the genius of the family. At the college
(run by a religious order) Gaspard regularly captured the first
prize in everything and earned the unique distinction of having
puer qureus inscribed after his name.

At the age of fourteen Monge’s peculiar combination of
talents showed up in the construction of a fire engine. ‘How
could you, without a guide or 2 model, carry through such an
undertaking successfully?” he was asked by the astonished
citizens. Monge's reply is a summary of the mathematical part
of his career and of much of the rest. ‘I had two infallible means
of success: an invineible tenacity, and fingers which translated
my thought with geometric fidelity.” He was in fact a born
geometer and engineer with an unsurpassed gift for visualizing
complicated space-relations.

At the age of sixteen he made 2 wonderful map of Beaune
entirely on his own initiative, constructing his own surveying
instruments for the purpose. This map got him his first great
chance.

Impressed by his obvious genius, Monge’s teachers recom-
mended him for the professorship of physics at the college in
Lyons run by their order. Monge was appointed at the age of
sixteen. His affability, patience, and lack of zall affectation,
added to his sound knowledge, made him a great teacher. The
order begged him to take their vows and cast his lot for life
with them. Monge consulted his father. The astute knife
grinder advised caution.

Some days later, on a visit home, Monge met an officer of
engineers who had seen the famous map. The officer begged
Jacques to send his son to the military school at Méziéres.
Perhaps fortunately for Monge’s future career the officer
omitted to state that on account of his humble birth Monge
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could never get a commission. Not knowing this, Monge eagerly
accepted and proceeded to Méziéres.

Monge quickly learned where he stood at Mézieres. There
were only twenty pupils at the school, of whom ten were
graduated each year as lieutenants in engineering. The rest
were destined for the ‘practical’ work — the dirty jobs. Monge
did not complain. He rather enjoyed himself, as the routine work
in surveying and drawing left him plenty of time for mathe-
matics. An important part of the regular course was the theory
of fortification, in which the problem was to design the works
so that no part should be exposed to the direct fire of the
enemy. The usual calculations demanded endless arithmetic.
One day Monge handed in his solution of a problem of this sort.
It was turned over a to a superior officer for inspection.

Sceptical that anyone could have solved the problem in the
time, the officer declined to check the solution. ‘Why should I
give myself the trouble of subjecting a supposed solution to
tedious verifications? The author has not even taken the time
to group his figures. I can believe in a great facility in calcula-
tion, but not in miracles!” Monge persisted, saying he had not
used arithmetic. His tenacity won; the solution was checked
and found correct.

This was the beginning of descriptive geometry. Monge was
at once given a minor teaching position to instruct the future
military engineers in the new method. Problems which had
been nightmares before — sometimes solved only by tearing
down what had been built and beginning all over again — were
now as simple as ABC. Monge was sworn not to divulge his
method, and for fifteen years it was a jealously guarded military
secret. Only in 1794 was he allowed to teach it publicly, at the
¥cole Normale in Paris, where Lagrange was among the
auditors. Lagrange’s reaction to descriptive geometry was like
M. Jourdain’s when he discovered that he had been talking
prose all his life. ‘Before hearing Monge,’ Lagrange said after a
lecture, ‘I did not know that I knew descriptive geometry.’

The idea behind it 2ll now seems as ridiculously simple to us
as it did to Lagrange. Descriptive geometry is a2 method for
representing solids and other figures in ordinary three-dimen-
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sional space on one plane. Imagine first two planes at right
angles to one another, like two pages of a thin book opened at
a 90 degree angle; one plane is horizontal, the other vertical.
The figure to be represented is projected on to each of these
planes by rays perpendicular to the plane. There are thus #wo
projections of the figure; that on the horizontal plane is called
a plan of the figure, that on the vertical plane an elevation.
The vertical plane is now turned down (‘rabbatted’) till it and
the horizontal plane lie in one plane (that of the horizontal
plane) — as if the book were now opened out flat on a table.

The solid or other figure in space is now represented by two
projections on one plane (that of the drawing board). A plane,
for instance, is represented by its races — the straight lines in
which it cut the vertical and horizontal planes before the former
was rabbatted; a solid, say 2 cube, is represented by the projec-
tions of its edges and vertices. Curved surfaces cut the vertical
and horizontal planes in curves; these curves, or iraces of the
surface, represent the surface on the one plane.

When these and other equally simple remarks are develaped
we have a descripiive method which puts on one flat sheet of
paper what we ordinarily visualize in space of three dimensions.
A short training enables the draughtsman to read such repre-
sentations as easily as others read good photographs — and to
get a great deal more out of them. This was the simple invention
that revolutionized military engineering and mechanical design.
Like many of the first-rate things in applied mathematies its
most conspicuous feature is its simplicity. There are many ways
in which descriptive geometry can be developed or modified,
but they 2ll go back to Monge. The subject is now so thoroughly
worked out that it is not of much interest to professional
mathematicians.

To finish with Monge’s eontributions to mathematics before
continuing with his life, we recall that his name is familiar to
every student in the second course in the calculus to-day in
connexion with the geometry of surfaces. Monge’s great step
forward was a systematic (and brilliant) application of the
calculus to the investigation of the curvature of surfaces. In his
general theory of curvature Monge prepared the way for Gauss,
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who in his turn was to inspire Riemann, who again was to
develop the geometry known by his name in the theory of
relativity.

It seems rather a pity that a born geometer like Monge should
have lusted after the fleshpots of Egypt, but so he did. His
work in differential equations, closely connected with that in
geometry, also showed what he had in him. Years after he left
Mézieres, where these great things were done, Monge lectured
on his discoveries to his colleagues at the Ecole Polytechnique.
Lagrange again was an auditor. ‘My dear colleague’, he told
Monge after the lecture, ‘you have just explained some very
elegant things; I should have liked to have done them myself.’
And on another occasion: ‘With his application of analysis to
geometry this devil of a man will make himself immortal!’ He
did; and it is interesting to note that although more urgent calls
on his genius distracted him from mathematics, he never lost
his talent. Like all the great mathematicians Monge was a
mathematician to the last.

In 1768, at the age of twenty-two, Monge was promoted to
the professorship of mathematics at Méziéres, and three years
later, on the death of the professor of physics, stepped into his
place 2lso. The double work did not bother him at all. Power-
fully built and as strong of body as he was of mind, Monge was
always capable of doing three or four men’s work and frequently
did.

His marriage had a touch of eighteenth-century romance. At
a reception Monge heard some noble bounder slandering a
young widow to get even with her for having rejected him.
Shouldering his way through the cackling crowd, Monge
demanded to know whether he had heard aright. ‘What is it to
you?’ Monge demonstrated with a punch on the jaw. There was
no duel. A few months later at another reception Monge was
very much taken by a charming young woman. On being intro-
duced he recognized her name — Madame Horbon — as that of
the unknown lady he had tried to fight a duel for. She was the
widow, only twenty, and somewhat reluctant to marry before
her late husband’s affairs were straightened out. ‘Never mind
all that,” Monge reassured her, ‘I’ve solved lots of more difficult
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problems in my time.” Monge and she were married in 1777.
She survived him and did what she could to perpetuate his
memory - unaware that her husband had raised his own monu-
ment long before he ever met her. Monge’s wife was the one
human being who stuck to him through everything. Even
Napoleon at the very last would have let him down on account
of his age.

At about this time Monge began corresponding with D’Alem-
bert and Condorcet. In 1780 these two had induced the Govern-
ment to found an institute at the Louvre for the study of
hydraulics. Monge was called to Paris to take charge, on the
understanding that he spend half his time at Méziéres. He was
then thirty-four. Three years later he was relieved of his duties
at Méziéres and appointed examiner of candidates for commis-
sions in the navy, 2 position which he held till the outbreak of
the Revolution in 1789.

In looking back over the careers of all these mathematicians
of the Revolutionary period we cannot help noticing how blind
they and everyone else were to what now seems so obvious to
us. Not one of them suspected that he was sitting on 2 mine and
that the train was already sputtering. Possibly our successors
in 2036 will be saying the same about us.

For the six years he held the naval job Monge proved himself
an incorruptible public servant. Disgruntled aristocrats threa-
tened him with dire penalties when he unmercifully disqualified
their incompetent sons, but Monge never gave in. ‘Get someone
else to run the job if you don’t like the way I am doing it.” As a
congequence the navy was ready for business in 1789.

His birth and his experiences with snobs seeking unmerited
favours made Monge a natural revolutionist. By first-hand
experience he knew the corruption of the old order and the
economic disabilities of the masses, and he believed that the
time had come for a new deal. But like the majority of early
liberals Monge did not know that a mob which has once tasted
blood is not satisfied till no more is forthcoming. The early
revolutionists had more faith in Monge than he had in himself.
Against his better judgement they forced him into the Ministry
of the Navy and the Colonies on 10 August 1792. He was the
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man for the position, but it was not healthy to be a public
official in the Paris of 1792.

The mob was already out of hand; Monge was put on the
Provisional Executive Council to attémpt some measure of
control. A son of the people himself, Monge felt that he under-
stood them better than did some of his friends — Condoreet, for
instance, who had wisely declined the naval job to save his
head.

But there are people and people, all of whom together com-
prise ‘the people’. By February 1793 Monge found himself
suspect of being not quite radical enough, and on the 18th he
resigned, only to be re-elected on the 18th to a job which stupid
political interference, ‘liberty, equality, and fraternity’ among
the sailors, and approaching bankruptcy of the state had made
impossible. Any day during this difficult time Monge might
have found himself on the scaffold. But he never truckled to
ignorance and incompetence, telling his critics to their faces
that he knew what was what while they knew nothing. His only
anxiety was that dissension at home would lay France open to
an attack which would nullify all the gains of the Revolution.

At last, on 10 April 1798, Monge was allowed to resign in
order to undertake more urgent work. The anticipated attack
was now plainly visible.

With the arsenals almost empty the Convention began raising
an army of 900,000 men for defence. Only a tenth of the neces-
saTy munitions existed and there was no hope of importing the
requisite materials ~ copper and tin for the manufacture of
bronze cannon, saltpetre for gunpowder, and steel for firearms.
‘Give us saltpetre from the earth and in three days we shall be
loading our cannon,” Monge told the Convention. All very well,
they retorted, but where were they to get the saltpetre? Monge
and Berthollet showed them.

The entire nation was mobilized. Under Monge’s direction
bulletins were sent to every town, farmstead, and village in
France telling the people what to do. Led by Berthollet the
chemists invented new and better methods for refining the raw
material and simplified the manufacture of gunpowder. The
whole of France became a vast powder factory. The chemists
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also showed the people where to find tin and copper — in clock
metal and church bells. Monge was the soul of it all. With his
prodigious capacity for work he spent his days supervising the
foundries and arsenals, and his nights writing bulletins for the
direction of the workers, and throve on it. His bulletin on The
Art of Manufacturing Cannon becare the factory handbook.

Monge was not without enemies as the Revolution continued
to fester. One day Monge’s wife heard that Berthollet and her
husband were to be denounced. Frantic with fear she ran to the
Tuileries to learn the truth. She found Berthollet sitting quietly
under the chestnut trees. Yes; he had heard the rumour, but
believed nothing would happen for a week. ‘Then’, he added
with his habitual composure, ‘we shall certainly be arrested,
tried, condemned, and executed.’

‘When Monge came home that evening his wife told him
Berthollet’s prediction. ‘My word!” Monge exclaimed; ‘I know
nothing of all that. What I do know is that my cannon factories
are going forward marvellously!

Shortly after this Citizen Monge was denounced by the porter
at his lodgings. This was too much, even for Monge. He
prudently left Paris till the storm blew over.

The third stage of Monge’s career opened in 1796 with a letter
from Napoleon. The two had already met in 1792, but Monge
was unaware of the fact. Monge at the time was fifty, Napoleon
twenty-three years younger.

‘Permit me’, Napoleon wrote, ‘to thank you for the cordial
welcome that 2 young artillery officer, little in favour, received
from the Minister of the Navy in 1792; he has preciously pre-
served its memory. You see this officer in the present general of
the Army [of invasion] of Italy; he is happy to extend you a
hand of recognition and friendship.’

Thus began the long intimacy between Monge and Napoleon.
Commenting on this singular alliance, Arago* reports Napo-
leon’s words ‘Monge loved me as one loves a mistress.” On the
other side Monge seems to have been the only man for whom
Napoleon ever had an unselfish and abiding friendship.

*F. J. D. Arago, 1786-1858, astronomer, physicist, and scientific
biographer.
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Napoleon knew of course that Monge had helped to make his
career possible; but that was not the root of his affection for the
older man.

The ‘recognition’ mentioned in Napoleon’s letter was the
appointment of Monge and Berthollet by the Directory as
comumissioners sent to Italy to select the paintings, sculpture,
and other works of art ‘donated’ by the Italians (after being
bled white of money) as part of their contribution to the
expenses of Napoleon’s campaign. In picking over the loot
Monge developed a keen appreciation of art and became quite
a connoisseur.

The practical implications of the looting, however, disturbed
him somewhat, and when enough to furnish the Louvre half a
dozen times over had been lifted and shipped to Paris, Monge
counselled moderation. It would not do, he said, in governing
a people either for their own good or for that of the conquerors
to beggar them completely. His advice was heeded, and the
goose continued laying its golden eggs.

After the Ttalian adventure Monge joined Napoleon at his
chateau near Udine. The two became great cronies, Napoleon
revelling in Monge’s conversation and inexhaustible fund of
interesting information, and Monge basking in the commander-
in-chief’s genial humour. At public banquets Napoleon always
ordered the band to strike up the Marseillaise — ‘Monge is an
enthusiast for it!’ Indeed he was, shouting it at the top of his
lungs before sitting down to meals.

Allons, enfants de la patrie,
Le jour de gloire est arrivé!

It will be our special privilege to see the day of glory arriving in
the company of another great Napoleonic mathematician —
Poncelet.

In December 1797 Monge made a second trip to Italy, this
time as a member of the commission to investigate the ‘great
crime’ of General Duphot’s assassination. The General had been
shot down in Rome while standing near Lucien Bonaparte. The
commission (rudely anticipated by one of the martyred
General’s brothers-in-arms) somewhat lameiy prescribed a
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republic modelled on the French for the obstreperous Italians.
‘There must be an end of everything, even of the rights of
conquest,” as one of the negotiators remarked when the matter
of further extortions came up.

How right this canny diplomat was came out eight months
later when the Italians scrapped their republic to the great
embarrassment of Napoleon, then in Cairo, and to the greater
embarrassment of Monge and Fourier who happened to be with
him.

Monge was one of the dozen or so to whom Napoleon in 1798
confided his plen for the invasion, conquest, and civilization of
Egypt. As Fourier enters naturally here we shall go back and
pick him up.

Jean-Baptiste-Joseph Fourier, born on 21 March 1768, at
Auxerre, France, was the son of a tailor. Orphaned at the age of’
eight, he was recommended to the Bishop of Auxerre by a.
charitable lady who had been captivated by the boy’s good-
manners and serious deportment — little did she dream what he:
was to become. The Bishop got Fourier into the local military
college run by the Benedictines, where the boy soon proved his
genius. By the age of twelve he was writing magnificent
sermons for the leading church dignitaries of Paris to palm off
as their own. At thirteen he was a problem child, wayward,
petulant, and full of the devil generally. Then, at his first
encounter with mathematics, he changed as if by magic. He
knew what had ailed him and cured himself. To provide light
for his mathematical studies after he was supposed to be asleep
he collected candle-ends in the kitchen and wherever he could
find them in the college. His secret study was an inglenook
behind a screen.

The good Benedictines prevailed upon the young genius to
choose the priesthood as his profession, and he entered the
abbey of Saint-Benoit to become a novice. But before
Fourier could take his vows 1789 arrived. He had always
wanted to be a soldier and had chosen the priesthood only
because commissions were not given to sons of tailors. The
Revolution set him free. His old friends at Auxerre were broad-
minded enough to see that Fourier would never make a monk,
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They took him back and made him professor of mathematics.
This was the first step — a long one — toward his ambition.
Fourier proved his versatility by teaching his colleagues’ .
classes when they were ill, usually better than they did them-
selves, in everything from physics to the classics.

In December 1789 Fourier (then twenty-one) went to Paris
to present his researches on the solution of numerical equations
before the Academy. This work advanced beyond Lagrange,
and is still of value, but as it is overshadowed by Fourier’s
methods in mathematical physics, we shall not discuss it
further; it may be found in elementary texts on the theory of
equations. The subject became one of his life-long interests.

On returning to Auxerre Fourier joined the people’s party
and used his natural eloquence, which had enabled him as a
small boy to compose stirring sermons, to stir up the people to
put an end to mere sermonizers (among others).

From the first Fourier was an enthusiast for the Revolution —
till it got out of hand. During the Terror, ignoring the danger
to himself, he protested against the needless brutality. If he
were living to-day Fourier would probably belong to the intelli-
gentsja, blissfully unaware that such are among the first to be
swept into the gutter when the real revolution begins. He was
all for the masses and the renaissance of science and culture
which the intellectuals imagined they foresaw. Instead of the
generous encouragement of the sciences which he had predicted,
Fourier presently saw men of science riding in the tumbrils or
fleeing the country, and science itself fighting for its life in a
rapidly rising tide of barbarism.

It is to Napoleon’s everlasting credit that he was one of the
first to see with cold-blooded clarity that ignorance of itself can
do nothing but destroy. His own remedy in the end may not
have been much better, but he did recognize that such a thing
as civilization might be possible. To check the mere blood-
letting Napoleon ordered or encouraged the creation of schools.
But there were no teachers. All the brains that might have been
pressed into immediate service had long since fallen into the
buckets. It became imperative to train a new teaching corps of
1,500, and for this purpose the Ecole Normale was created in
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1794. As a reward for his recruiting in Auxerre Fourier was
called to the chair of mathematics.

With this appointment a new era in the teaching of French
mathematics began. Remembering the deadly lectures of
defunct professors, memorized and delivered verbatim the same
year after dreary year, the Convention called in creafors of
mathematics to do the feaching, and forbade them to lecture
from any notes at all. The lectures were to be delivered standing
(not sitting half-asleep behind a desk), and were to be a free
interchange of questions and explanations between the pro-
fessor and his class. It was up to the lecturer to prevent a
session from degenerating into a profitless debate. '

The success of this scheme even surpassed expectations and
led to one of the most brilliant periods in the history of French
mathematics and science. Both at the short-lived Normale and
the enduring Polytechnique Fourier demonstrated his genius
for teaching. At the Polytechnique he enlivened his lectures on
mathematics by out-of-the-way historical allusions (many of
which he was the first to trace to their sources), and he skilfully
tempered abstractions with interesting applications.

Fourier was still turning out engineers and mathematicians
at the Polytechnique when Napoleon in 1798 decided to take
him along as one of the Legion of Culture to civilize Egypt —
‘to offer a succouring hand to unhappy peoples, to free them
from the brutalizing yoke under which they have groaned for
centuries, and finally to endow them without delay with all the
benefits of European civilization.’

Incredible as it may seem, the quotation is not from Signor
Mussolini in 1985 justifying an invasion of Ethiopia, but from
Arago in 1838 setting forth the lofty and humane aims of
Napoleon’s assault on Egypt. It will be interesting to see how
the unregenerate inhabitants of Egypt received ‘all the benefits
of European civilization’ which MM. Monge, Berthollet, and
Fourier strove to ram down their throats, and what those three
musketeers of European culture themselves got out of their
unselfish missionary work. )

The French fleet of five hundred ships arrived at Malta on
9 June 1798, and three days later captured the place. As a first
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step toward civilizing the East, Monge started fifteen elemen-
tary schools and a higher school somewhat on the lines of the
Polytechnique. A week later the fleet was on its way again, with
Monge aboard Napoleon’s flagship, I'Orient. Every morning
Napoleon outlined a programme for discussion after dinner in
the evening. Needless to say, Monge was the star of these
soirées. Among the topics solemnly debated were the age of the
earth, the possibility of the world coming to an end by fire or
water, and ‘Are the planets inhabited?’ The last suggests that
even at this comparatively early stage of his career Napoleon’s
ambitions outran Alexander’s.

The fleet reached Alexandria on 1 July 1798. Monge was one
of the first to leap ashore, and it was only by exercising his
authority as Commander-in-Chief that Napoleon restrained the
Marseillaising geometer from participating in the assault on the
city. It would never do to have the Legion of Culture annihi-
lated in the first skirmish before the work of civilization could
begin; so Napoleon sent Monge and the rest of them up the Nile
by boat to Cairo.

While Monge and company lolled like Cleopatra and her
court under their sunshade, Napoleon marched resolutely along
the bank, civilizing the uncultured (and poorly armed) inhabi-
tants with shot and flame. Presently the intrepid General
heard a devil of a cannonade from the direction of the river.
Guessing the worst he abandoned the battle in which he was
engaged at the moment and galloped to the rescue. The blessed
boat was hard aground on a sand bar. There was Monge serving
the cannon like a veteran. Napoleon arrived just in the nick of
time to chase the attackers up the bank and give Monge his
well-merited decoration for eonspicuous bravery. So Monge
after all had his way and got his sniff of powder. Napoleon was
50 overjoyed at having saved his friend that he did not regret
the decisive victory Monge’s rescue had cost him.

Following the victory of 20 July 1798, at the Battle of the
Pyramids, the triumphant army whooped into Cairo. Every-
thing went off like fireworks, precisely as that great idealist
Napoleon had dreamed, but for one trifling fizzle. The obtuse
Egyptians cared not a single curse for the cultural banquet
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which MM. Monge, Fourier, and Berthollet spread before
them at the Egyptian Institute (founded, 27 August 1798, in
parody of the Institut de France), but sat like rnummies through
the great chemist’s scientific legerdemain, the enthusiastic
Monge’s concerts, and the historical disquisitions of the
scholarly Fourier on the glories of their own mummified eivili-
zation. The sweating savants shed their sangfroid, damning
their prospective enlightenees as tasteless cattle incapable of
relishing the rich hash of French erudition offered for their
spiritual nourishment, but to no avail. Once more the wily,
‘unsophisticated’ native made a complete ass of his determined
uplifters by holding his peace and waiting for the plague of
locusts to be blown away in the scavenging winds. To keep his
self-respect till the breezes blew, the uncivilized Egyptian
criticized the superior civilization of his conquerors in the one
language they could understand. Three hundred of Napoleon’s
bravest had their hairy throats cut at one swipe in a street
brawl. Monge himself saved his own windpipe and those of his
beleaguered companions only by an exhibition of heroism for
which any Boy Scout to-day in the English-speaking world
might well receive a medal.

This ingratitude on the part of the unregenerate Egyptians
cut Napoleon to the quick. His suspicion that it was his moral
duty to desert his companions in arms was strengthened by
disturbing news from Paris. During his absence things on the
Continent had been going from purgatory to damnation; and
now he must hurry back to preserve the honour of France and
his own skin. Monge shared the General’s confidence; the less
beloved Fourier did not. Fourier, however, had the satisfaction
of knowing that he was considerable enough in his commander’s
masterful eyes to be left in Cairo to educate Egypt or have his
throat cut, when Napoleon, accompanied by the complaisant
Monge, took secret passage for France without so much as an
adieu to the troops who had suffered hell for him in the desert.
Not being a Commander-in-Chief, Fourier was not entitled to
take to his heels in the face of danger. He stayed, perforce.
Only in 1801, when the French after Trafalgar finally acknow-
ledged that the British, not they, were to regenerate the

218



MEN OF MATHEMATICS

Egyptians, did the devoted — but disillusioned ~ Fourier return
to France.

The return trip of Monge 2nd Napoleon was less amusing for
both of them than the voyage out. Instead of speculating about
the end of the world Napoleon spent much anxious thought on
his own probable end should the British sailors bag him. The
reward for desertion in the field, he recalled, was a strictly
private interview with a firing squad. Would the British treat
him as a deserter for having run away from his army? If he must
die he would die theatrically.

‘Monge,’ he said one day, ‘if we are attacked by the British,
our ship must be blown up the instant they board us. I charge
you to carry it out.’

The very next day a sail topped the horizon and all hands
stood to their posts to repel the expected attack. But it turned
out to be a French ship after all.

‘Where’s Monge?’ somebody asked when 2ll the excitement
was over.

They found him in the powder magazine with a lighted lamp
in his hand. If only that had been 2 British ship — . They always
blow in fifteen minutes or fifteen years too late.

Berthollet and Monge arrived home looking like a pair of
tramps. Neither had had a change of clothes since he left, and
it was only with difficulty that Monge got by his wife’s porter.

The friendship with Napoleon continued unmarred. Probably
Monge was the only man in France who dared to stand up to
Napoleon and tell him the truth in the days of his greatest
arrogance. When Napoleon crowned himself Emperor the
young men of the Polytechnique revolted. They were Monge’s
pride.

‘Well, Monge,” Napoleon remarked one day, ‘your pupils are
nearly all in revolt against me; they have decidedly declared
themselves my enemies.’

‘Sire,” Monge replied, ‘we have had trouble enough to make
republicans out of them; give them time to become imperialists.
Moreover, permit me to say, you have turned rather abruptly?!’

Little spats like this meant nothing between old lovers. In
1804 Napoleon showed his appreciation of Monge’s merits by
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creating him Count of Péluse (Pelusium). For his part Monge
accepted the honour gratefully and lived up to the title with all
the usual trappings of nobility, forgetting that he had once
voted for the abolition of all titles.

And so it went, in an ever more dazzling blaze of splendour
till the year 1812, which was to have ushered in the day of glory,
but which brought instead the retreat from Moscow. Too old
(he was sixty-six) to accompany Napoleon into Russia, Monge
had stayed behind in France at his country estate, eagerly
following the progress of the Grand Army through the official
bulletins. When he read the fatal ‘Bulletin 29’ announcing the
disaster to French arms, Monge suffered a stroke of apoplexy.
On recovering he said, ‘A little while ago I did not know some-
thing that I know now; I know how I shall die.’

Monge was to be spared for the final curtain; Fourier helped
to lower it. On his return from Egypt Fourier was appointed
(2 January 1802) prefect of the Department of Isére, with head-
quarters at Grenoble. The district was then in political turmoil;
Fourier’s first task was to restore order. He was met by a
curious opposition which he subdued in a ludicrous fashion.
While in Egypt Fourier had taken a leading part in adminis-
tering the archaeological research of the Institute. The good
citizens of Grenoble were much upset by the religious implica-
tions of some of the Institute’s discoveries, particularly the
great age assigned to the older monuments, which conflicted
(they imagined) with the chronology of the Bible. They were
quite satisfied however and took Fourier to their bosoms, when
as the result of some further archaeological researches nearer
home, he dug up a saint in his own family, the blessed Pierre
Fourier, his great-uncle, whose memory was hallowed because
he had founded 2 religious order. His respectability established,
Fourier accomplished a vast amount of useful work, draining
marshlands, stamping out malaria, and otherwise lifting his
district out of the Middle Ages.

It was while at Grenoble that Fourier composed the immortal
Théorie analytigue de la chaleur (The Mathematical Theory of
Heat), a landmark in mathematical physics. His first memoir
on the conduction of heat was submitted in 1807. This was so
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promising that the Academy encouraged Fourier to continue
by setting a contribution to the mathematical theory of heat as
its problem for the Grand Prize in 1812. Fourier won the prize,
but not without some criticism which he resented deeply but
which was well taken.

Laplace, Lagrange, and Legendre were the referees. While
admitting the novelty and importance of Fourier’s work they
pointed out that the mathematical treatment was faulty,
leaving much to be desired in the way of rigour. Lagrange him-
self had discovered special cases of Fourier’s main theorem but
had been deterred from proceeding to the general result by the
difficulties which he now pointed out. These subile difficulties
were of such a nature that their removal at the time would
probably have been impossible. More than a century was to
elapse before they were satisfactorily met.

In passing it is interesting to observe that this dispute
typifies a radical distinction between pure mathematicians and
meathematical physicists. The only weapon at the disposal of pure
mathematicians is sharp and rigid proof, and unless an alleged
theorem can withstand the severest criticism of which its epoch
is capable, pure mathematicians have but little use for it.

The applied mathematician and the mathematical physicist,
an the other hand, are seldom so optimistic as to imagine that
the infinite complexity of the physical universe can be described
fully by any mathematical theory simple enough to be under-
stood by human beings. Nor do they greatly regret that Airy’s
beautiful (or absurd) picture of the universe as a sort of inter-
minable, self-solving system of differential equations has turned
out to be an illusion born of mathematical bigotry and Newton-
ian determinism; they have something more real to appeal to
at their own back door — the physical universe itself. They can
experiment and check the deductions of their purposely imper-
fect mathematics against the verdict of experience — which, by
the very nature of mathematics, is impossible for a pure mathe-
meatician. If their mathematical predictions are contradicted by
experiment they do not, as 2 mathematician might, turn their
backs on the physical evidence, but throw their mathematical
tools away and look for a better kit.
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This indifference of scientists to mathematics for its own sake
is as enraging to one type of pure mathematician as the omission
of a doubtful iota subscript is to another type of pedant. The
result is that but few pure mathematicians have ever made a
significant contribution to science — apart, of course, from
inventing many of the tools which scientists find useful (perhaps
indispensable). And the curious part of it all is that the very
purists who object to the boldly imaginative attack of the
scientists are the loudest in their insistence that mathematics,
contrary to a widely diffused belief, is not all an affair of grub-
bing, meticulous accuracy, but is as creatively imaginative, and
sometimes as loose, as great poetry or music can be on occasion.
Sometimes the physicists beat the mathematicians at their own
game in this respect: ignoring the glaring lack of rigour in
Fourier’s classic on the analytical theory of heat, Lord Kelvin
called it ‘2 great mathematical poem’.

As has already been stated Fourier’s main advance was in the
direction of boundary-value problems (described in the chapter
on Newton) — the fitting of solutions of differential equations to
prescribed initial conditions, probably the central problem of
mathematical physics. Since Fourier applied this method to the
mathematical theory of heat conduction a crowded century of
splendidly gifted men has gone farther than he would ever have
dreamed possible, but his step was decisive. One or two of the
things he did are simple enough for description here.

In 2lgebra we learn to plot the graphs of simple algebraic
equations and soon notice that the curves we get, if continued
sufficiently far, do not break off suddenly and end for good.
What sort of an equation would result in a graph like that of
the heavy line segment (finite length, terminated at both ends)
repeated indefinitely as in the figure onp. 218? Such graphs, made
up of disjointed fragments of straight or curved lines, recur repea-
tedly in physics, for example in the theories of heat, sound, and
fluid motion. It can be proved that it is impossible to represent
them by finite, closed, mathematical expressions; an infinity of
terms occur in their equations. ‘Fourier’s Theorem’ provides a
means for representing and investigating such graphs mathema-
tically: it expresses (within certain limitations) a given function
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continuous within a certain interval, or with only a finite number
of discontinuities in the interval, and having in the interval
only a finite number of turning-points, as an infinite sum of
sines or cosines, or both. (This is only a rough description.)

Vo4
SN

Having mentioned sines and cosines we shall recall their most
important property, periodicity. Let the radius of the circle in
the figure be 1 unit in length. Through the centre O draw
rectangular axes as in Cartesian geometry, and mark off 4B
equal to 27 units of length; thus 4B is equal in length to the
circumference of the circle (since the radius is 1). Let the point

c

p
)
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P start from 4 and trace out the circle in the direction of the
arrow. Drop PN perpendicular to O4. Then, for any position
of P, the length of NP is called the sine of the angle 40P, and
ON the cosine; NP and ON are to have their signs as in Carte-
sian geometry (NP is positive above 04, negative below; ON
is positive to the right of OC, negative to the left).

For any position of P, the angle 40P will be that fraction of

218




FRIENDS OF AN EMPEROR

four right angles (860°) that the arc AP is of the whole circum-
ference of the circle. So we may scale off these angles 40P by
marking along 4B the fractions of 2« which correspond to the
arcs AP. Thus, when P is at C, } the whole circumference has
been traversed; hence, corresponding to the angle 40C we have
the point K at } of 4B from 4.

At each of these points on 4 B we erect a perpendicular equal
in length to the sine of the corresponding angle, and above or
below A B according as the sine is positive or negative.The ends
of these perpendiculars not on 4B lie on the continuous curve
shown, the sine curve. When P returns to 4 and begins retracing
the circle the curve is repeated beyond B, and so on indefinitely.
If P revolves in the opposite direction, the curve is repeated to
the left. After an interval of 2« the curve repeats: the sine of an
angle (here A0 P) is a periodic function, the period being 2. The
word ‘sine’ is abbreviated to ‘sin’; and, if » is any angle, the
equation

sin ( + 27) = sin
expresses the fact that sin 2 is a function of # having the period
27r.

1t is easily seen that if the whole curve in the figure is shifted
to the left a distance equal to 4K, it now graphs the cosine of
AOP. As before

cos (z + 27) = cos @,
‘cos’ being the short for ‘cosine’.

Inspection of the figure shows that sin 22 will go through its
complete period ‘Lwice as fast’ as sin 2, and hence that the
graph for 2 complete period will be one half as long as that for
sin 2. Similarly sin 8z will require only 2x/3 for its complete
period, and so on. The same holds for cos , cos 2, cos 8z, ... .

Fourier's main mathematical result can now be described
roughly. Within the restrictions already mentioned in con-
nexion with ‘broken’ graphs, any function having a well-deter-
mined graph can be represented by an equation of the type

Y = ay -+ a; cos @ + a, cos 2z 4 az cos 8z + ...

+ b, sinz 4 b, sin 22 + by sin 8z + ...
where the dots indicate that the two series are to continue inde-
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finitely according to the rule shown, and the coefficients a,, a,,
Ggs +vv 5 by, Dy, by, ... are determinable when y, any given
function of @, is known. In other words, any given function of a,
say f(2), can be expanded in a series of the type stated above, a
trigonometric or Fourier series. To repeat, all this holds only
within certain restrictions which, fortunately, are not of much
importance in mathematical physics; the exceptions are more
or less freak cases of little or no physical significance. Once
more, Fourier’s was the first great attack on boundary value
problems. The specimens of such problems given in the chapter
on Newton are solved by Fourier's method. In any given
problem it is required to find the coefficients ay, a,, ..., b,
by, ... in a form adapted to computation. Fourier’s analysis
provides this.

The concept of periodicity (simple periodicity) as deseribed
above is of obvious importance for natural phenomena; the
tides, the phases of the Moon, the seasons, and a multitude of
other familiar things are periodic in character. Sometimes a
periodic phenomenon, such for example as the recurrence of
sunspots, can be closely approximated by superposition of a
certain number of graphs having simple periodicity. The study
of such situations can then be simplified by analysing the indi-
vidual periodic phenomena of which the original is the resultant.

The process is the same mathematically as the analysis of a
musical sound into its fundamental and successive harmoniecs.
As a first very crude approximation to the ‘quality’ of the sound
only the fundamental is considered; the superposition of only a
few harmonics usually suffices to produce a sound indistinguish-
able from the ideal (in which there is an infinity of harmonies).
The like holds for phenomena attacked by ‘harmonic’ or
‘Fourier’ analysis. Attempts have even been made to detect
long periods (the fundamentals) in the recurrence of earth-
quakes and annual rainfall. The notion of simple periodicity is
as important in pure mathematics as it is in applied, and we
shall see it being generalized to multiple periodicity (in con-
nexion with elliptic functions and others), which in its turn
reacts on applied mathematics.

Fully aware that he had done something of the first magni-
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tude Fourier paid no attention to his critics. They were right,
he wrong, but he had done enough in his own way to entitle him
to independence.

‘When the work begun in 1807 was completed and collected
in the treatise on heat-conduction in 1822, it was found that the
obstinate Fourier had not changed a single word of his original
presentations, thus exemplifyiﬁg the second part of Francis
Galton’s advice to all authors: ‘Never resent criticism, and
never answer it.’ Fourier's resentment was rationalized in
attacks on pure mathematicians for minding their own proper
business and not blundering about in mathematical physics.

All was going well with Fourier and France in general when
Napoleon, having escaped from Elba, landed on the French
coast on 1 March 1815. Veterans and all were just getting com-
fortably over their headache when the cause of it popped up
again to give them a worse one. Fourier was at Grenoble at the
time. Fearing that the populace would welcome Napoleon back
for another spree, Fourier hastened to Lyons to tell the Bour-
bons what was about to happen. With their usual stupidity
they refused to believe him. On his way back Fourier learned
that Grenoble had capitulated. Fourier himself was taken
prisoner and brought before Napoleon at Bourgoin. He was
confronted by the same old commander he had known so well
in Egypt and had learned to distrust with his head but not with
his viscera. Napoleon was bending over a map, a pair of com-
passes in bis hand. He looked up.

“Well, Monsieur Prefect! You too; you have declared war
against me?’

‘Sire,” Fourier stammered, ‘my oaths made it a duty.’

‘A duty, do you say? Don’t you see that nobody in the
country is of your opinion? And don’t let yourself imagine that
your plan of campaign frightens me much. I suffer only at
seeing amongst my adversaries an Egyptian, a man who has
eaten the bread of the bivouac with me, an old friend! How,
moreover, Monsieur Fourier, have you been able to forget that
I made you what you are?’

That Fourier, remembering Napoleon’s callous abandon-
ment of him in Egypt, could swallow such tripe and like it says a
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great deal for the goodness of his heart and the toughness
of his stomach'but precious little for the soundness of his
head.

Some days later Napoleon asked the now loyal Fourier:

‘What do you think of my plan?’

‘Sire, I believe you will fail. You will meet a fanatic on your
road, and everything will be over.’

‘Bah! Nobody is for the Bourbons — not even a fanatie. As for
that, you have read in the papers that they have put me outside
the law. I myself will be more indulgent: I shall content myself
with putting them outside the Tuileries!’

The leopard’s spots and Napoleon’s swellhead should be
wedded in one proverb instead of pining apart in two.

The second restoration found Fourier in Paris pawning his
effects to keep alive. But before he could starve to death old
friends took pity on him and got him appointed director of the
Bureau of Statistics for the Seine. The Academy tried to elect
him to membership in 1816, but the Bourbon government
ordered that no friend of their late kicker was to be honoured
in any way. The Academy stuck to its guns and elected Fourier
the following year. This action of the Bourbons against Fourier
may seem petty, but beside what they did to poor old Monge it
was princely. Noblesse oblige!

Fourier’s last years evaporated in clouds of talk. As Perma-
nent Secretary of the Academy he was always able to find
listeners. To say that he bragged of his achievements under
Napoleon is putting it altogether too mildly. He became an
insufferable, shouting bore. And instead of continuing with his
scientific work he entertained his audience with boastful
accounts of what he was going to do. However, he had done far
more than his share for the advancement of science, and if any
human work merits immortality, Fourier’s does. He did not
need to boast or bluff.

Fourier’s experiences in Egypt were responsible for a curious
habit which may have hastened his death. Desert heat, he
believed, was the ideal condition for health. In addition to
swathing himself like a mummy he lived in rooms which his
uncooked friends said were hotter than hell and the Sahara
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desert combined. He died of heart disease (some say an
aneurism) on 16 May 1880, in the sixty-third year of his life.
Fourier belongs to that select company of mathematicians
whose work is so fundamental that their names have become
adjectives in every civilized language.

Monge’s decline was slower and more distressing. After the
first restoration Napoleon felt embittered and vindictive to-
ward the snobocracy of his own creation which, naturally, had
let him down the moment his power waned. Once more in the
saddle Napoleon was inclined 1o use the butt end of his crop on
the skulls of the ungrateful. Monge, good old plebeian that he
was, counselled mercy and common sense: Napoleon might
some day find himself with his back to the wall (after an earth-
quake had cut off all means of flight), and be grateful for the
support of the ingrates. Cooling off, Napoleon wisely tempered
injustice with mercy. For this gracious dispensation Monge
alone was responsible.

After Napoleon had run away from Waterloo, leaving his
troops to get out of the mess as best they could, he returned to
Paris. Fourier’s devotion cooled then; Monge’s boiled.

The school histories often tell of Napoleon’s last dream — the
conquest of America. The Mongian version differs and is on a
much higher — in fact, incredibly high ~ plane. Hemmed in by
enemies and appalled at the thought of enforced idleness for
lack of further European conquest, Napoleon turned his eagle
eye West, and in one flashing glance surveyed America from
Alaska to Cape Horn. But, like the sick devil he was, Bonaparte
longed to become a monk. The sciences alone could satisfy him,
he declared; he would become a second and infinitely greater
Alexander von Humboldt.

‘I wish,” he confessed to Monge, ‘in this new career to leave
works, discoveries, worthy of me.’

What, precisely, are the works which could be worthy of a
Napoleon? Continuing, the fallen eagle outlined his dream.

‘I need a companion,’ he admitted, ‘to first put me abreast of
the present state of the sciences. Then you [Monge] and I will
traverse the whole continent, from Canada to Cape Horn; and
in this immense journey we shall study all those prodigious
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phenomena of terrestrial physies on which the scientific world
has not pronounced its verdict.” Paranoia?

‘Sire,” Monge exclaimed ~ he was nearly sixty-seven - ‘your
collaborator is already found; I will go with you!

His old self once more, Napoleon curtly dismissed the thought
of the willing veteran hampering his lightning marches from
Baffin Bay to Patagonia.

“You are too old, Monge. I need a2 younger man.’

Monge tottered off to find ‘a2 younger man’. He approached
the fiery Arago as the ideal travelling companion for his ener-
getic master. But Arago, in spite of all his eloquent rhetoric on
the gloriousness of glory, had learned his lesson. A general who
could desert his troops as Napoleon had done at Waterloo,
Arago pointed out, was no leader to follow anywhere, even in
easy America.

Further negotiations were rudely halted by the British. By
the middle of October Napoleon was exploring St Helena. The
hoard of money which had been put aside for the conquest of
America found its way into deeper pockets than those of the
scientists, and no ‘American Institute’ rose on the banks of the
Mississippi or the Amazon to match its fantastic twin over-
looking the Nile.

Having enjoyed the bread of imperialism Monge now tasted
the salt. His record as a revolutionist and favourite of the
upstart Corsican made his head an extremely desirable object
to the Bourbons, and Monge dodged from one slum to another
in an endeavour to keep his head on his shoulders. For sheer
human pettiness the treatment accorded Monge by the sancti-
fied Bourbons would take a lot of beating. Small enough for
anything they stripped the old man of his last honour ~ one
with which the generosity of Napoleon had had nothing what-
ever to do. In 1816 they commanded that Monge be expelled
from the Academy. The academicians, tame as rabbits now,
obeyed.

The final touch of Bourbon pettiness graced the day of
Monge’s funeral. As he had foreseen he died after a prolonged
stupor following a stroke. The young men at the Polytechnique,
whom he had protected from Napoleon’s domineering inter-
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ference, were the pride of Monge's heart, and he was their idol.
‘When Monge died on 28 July 1818, the Polytechnicians asked
permission to attend the funeral. The King denied the request.

Well disciplined, the Polytechnicians observed the ban. Bi
they were more resourceful or more courageous than the timi
academicians. The King’s order covered only the funeral. Tt
following day they marched in a body to the cemetery and lai
2 wreath on the grave of their master and friend, Gaspar
Monge.



CHAPTER THIRTEEN
THE DAY OF GLORY

Poncelet

Mo=zE than once during the World War when the French troops
were hard pressed and reinforcements non-existent, the high
command saved the day by routing some prima donna out of
her boudoir, rushing her to the front, draping her from neck
to heels in the tricolour, and ordering her to sing the Marseil-
laise to the exhausted men, Having sung her piece the lady
rolled back to Paris in her limousine; the heartened troops
advanced, and the following morning a cynically censored
press once more unanimously assured a gullible public that ‘the
day of glory has arrived’ — with unmentioned casualties,

In 1812 the day of glory was still on its way. Prima donnas
did not accompany Napoleon Bonaparte’s half-million troops
on their triumphal march into Russia. The men did their own
singing as the Russians retreated before the invincible Grand
Army, and the endless plains rang to the stirring chant which
had swept tyrants from their thrones and elevated Napoleon to
their place.

All was going as gloriously as the most enthusiastic singer
could have wished: six days before Napoleon crossed the
Niemen his brilliant diplomatic strategy had indirectly exas-
perated President Madison into hurling the United States into
a distracting war on England; the Russians were running harder
than ever on their race back to Moscow, and the Grand Army
was doing its valiant best to keep up with the reluctant enemy.
At Borodino the Russians turned, fought, and retired. Napo-
leon continued without opposition — except from the erratic
weather — to Moscow, whence he notified the Tsar of his willing-
ness to consider an unconditional surrender of all the Russian
forces. The competent inhabitants of Moscow, led by the
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Governor, took matters into their own hands, fired their city,
burned it to the ground, and smoked Napoleon and all his men
out into the void. Chagrined but still master of the situation,
Napoleon disregarded this broad hint — the second or third so
far vouchsafed to his military obstinacy — that ‘who killeth
with the sword must perish by the sword’, presently ordered his
driver to give the horses the lash, and dashed back post-haste
over the now frozen plains to prepare for his rendezvous with
Bliicher at Leipzig, leaving the Grand Army to walk home or
freeze as it should see fit.

With the deserted French army was a young officer of
engineers, Jean-Victor Poncelet (1 July 1788 —23 December
1867) who, as a student at the Ecole Polytechnique in Paris,
later at the military academy at Metz, had been inspired by the
new descriptive geometry of Monge (1746-1818) and the
Géoméirie de position (published in 1808) of the elder Carnot
(Lazare-Nicolas-Marguerite Carnot, 13 May 1753-2 August
1823), whose revolutionary if somewhat reactionary programme
was devised ‘to free geometry from the hieroglyphics of
analysis.’

In the preface to his classic Applications d’anclyse et de
géoméirie (second edition 1862, of the work first published in
1822), Poncelet recounts his experiences in the disastrous
retreat from Moscow. On 18 November 1812 the exhausted
remnant of the French army under Marshal Ney was over-
whelmed at Krasnoi. Among those left for dead on the frozen
battlefield was young Poncelet. His uniform as an officer of
engineers saved his life. A searching party, discovering that he
still breathed, took him before the Russian staff for questioning.

As a prisoner of war the young officer was forced to march for
nearly five months across the frozen plains in the tatters of his
uniform, subsisting on a meagre ration of black bread. In a cold
so intense that the mercury of the thermometer frequently
froze, many of Poncelet’s companions in misery died in their
tracks, but his more rugged strength pulled him through, and in
March 1813 he entered his prison at Saratov on the banks of
the Volga. At first he was too exhausted to think. But when ‘the
splendid April sun’ restored his vitality, he remembered that he

M.M.~—~VOL. I. 227



MEN OF MATHEMATICS

had received a good mathematical education, and to soften the
rigours of his exile he resolved to reproduce as much as he could
of what he had learned. It was thus that he created projective
geometry.

‘Without books and with only the scantiest writing materials
at first, he retraced all that he had known of mathematics from
arithmetic to higher geometry and the calculus. These first
labours were enlivened by Poncelet’s efforts to coach his fellow
officers for the examinations they must take should they ever
see France again. One legend states that at first Poncelet had
only scraps of charcoal, salvaged from the meagre brazier which
kept him from freezing to death for drawing his diagrams on
the wall of his cell. He makes the interesting observation that
practically all details and complicated developments of the
mathematics he had been taught had evaporated, while the
general, fundamental principles remained as clear as ever in
his memory. The same was true of physics and mechanics.

In September 1814 Poncelet returned to France, carrying
with him ‘the material of seven manusecript notebooks written
at Saratov in the prisons of Russia (1818-14), together with
divers other writings, old 2and new’, in which he, as a young man
of twenty-four, had given projective geometry its strongest
impulse since Desargues and Pascal initiated the suhject in the
seventeenth century. The first edition of his classic, as already
mentioned, was published in 1822. It lacked the intimate
‘apology for his life’ which has been used above, but it started
a tremendous nineteenth-century surge forward in projective
geometry, modern synthetic geometry generally, and the geo-
metric interpretation of the ‘imaginary’ numbers that present
themselves in algebraic manipulations, giving to such ‘imagi-
naries’ geometrical interpretations as ‘ideal’ elements of space.
It also proposed the powerful and (for a time) controversial
‘doctrine of continuity’, to be described presently, which greatly
simplified the study of geometric configurations by unifying
apparently unrelated properties of figures into uniform, self-
contained complete wholes. Exceptions and awkward special
cases appeared under Ponvelet’s broader point of view as merely
different aspects of things already familiar. The classic treatise
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also made full use of the creative ‘principle of duality’ and
introduced the method of ‘reciprocation’ devised by Poncelet
himself. In short, 2 whole arsenal of new weapons was added
to geometry by the young military engineer who had been left
for dead on the field of Krasnoi, and who might indeed have
died before morning had not his officer’s uniform distinguished
him as a likely candidate for questioning by the Russian staff.

For the next decade (1815-25) Poncelet’s duties as a military
engineer left him only odd moments for his real ambition — the
exploitation of his new methods in geometry. Relief was not to
come for many years. His high sense of duty and his fatal effi-
ciency made Poncelet an easy prey for short-sighted superiors.
Some of the tasks he was set could have been done only by 2
man of his calibre, for example the creation of the school of
practical mechanics at Metz and the reform of mathematical
education at the Polytechnique. But the reports on fortifica-
tions, his work on the Committee of Defence, and his presidency
of the mechanical sections at the international expositions of
London and Paris (1852-58), to mention only a few of his
numerous routine jobs, could all have been done by lesser men.
His high scientific merits, however, were not unappreciated.
The Academy of Sciences elected him (1831) as successor to
Laplace. For political reasons Poncelet declined the honour till
three years later.

Poncelet’s whole mature life was one long internal conflict
between that half of him which was born to do lasting work and
the other half which accepted all the odd or dirty jobs short-
sighted politicians and obtuse militarists shoved in its way.
Poncelet himself longed to escape, but a mistaken sense of duty,
drilled into his very bones in Napoleon’s armies, impelled him
to serve the shadow and turn his back on the substance. That
he did not suffer an early and permanent nervous breakdown
is a remarkable testimonial to the ruggedness of his physique.
And that he retained his creative abilities almost to his death
at the age of seventy-nine is a shining proof of his unquenchable
genius. When they could think of nothing better for this
splendidly endowed man to do with his time they sent him
traipsing about France to inspect cotton mills, silk mills, and
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linen mills. They did not need a Poncelet to do that sort of
thing, and he knew it. He would have been the last man in
France to object had his unique talents been indispensable in
such affairs, for he was anything but the sort of intellectual
prude who holds that science loses her perennial virginity every
time she shakes hands with industry. But he was not the only
man available for the work, as possibly Pasteur was in the
equally important matters of the respective diseases of beer,
silkworms, and human beings.

‘We now glance at one or two of the weapons either devised or
remodelled by Poncelet for the conquest of projective geo-
metry. First there is his ‘principle of continuity’, which refers
to the permanence of geometrical properties as one figure
shades, by projection or otherwise, into another. This no doubt
is rather vague, but Poncelet’s own statement of the principle
was never very exact and, as a matter of fact, embroiled him in
endless controversies with more conservative geometers whom
he politely designated as old fossils — always in the dignified
diction suitable to an officer and a gentleman, of course. With
the caution that the principle is of great heuristic value but
does not always of itself provide proofs of the theorems which
it suggests, we may see something of its spirit from a few simple
examples.

Imagine two intersecting circles. Say they intersect in the
points 4 and B. Join 4 and B by a straight line. The figure
presents ocular evidence of two real points 4, B, and the com-
mon chord .4 B of the two circles. Now imagine the two circles
pulled gradually apart. The common chord presently becomes
a common tangent to the two circles at their point of contact.
At any stage so far the following theorem (usually set as an
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exercise in school geometry) is true: if any point P be taken on
the common chord, four tangent lines may be drawn from it to
the two circles, and if the points in which these tangent lines
touch the circles are Ty, 7'y, T, T,, then the segments PT,,
PT,, PT, PT,areall equal in length. Conversely, if it is asked
where do all the points P lie such that the four tangent-seg-
ments to the two circles shall all be equal, the answer is on the
common chord. Stating all this briefly in the usual language, we
say that the locus (which merely means place) of a point P
which moves so that the lengths of the tangent-segments from
it to two inferseciing circles are equal, is the common chord of
the two circles.* All this is familiar and straightforward; there
is no element of mystery or incomprehensibility as some may
say there is in the next where the ‘principle of continuity’
enters.

Pull the circles completely apart. Their two intersections (or
in the last moment their one point of contact) are no longer
visible on the paper and the ‘common choxd’ is left suspended
between the two circles, cutting neither visibly. But it is known
that there is still a locus of equal tangent-segments, and it is
easily proved that this locus is a straight line perpendicular to
the line joining the centres of the two circles, just as the original
locus (the common chord) was. Merely as a manner of speaking,
if we object to ‘imaginaries’, we continue to say that the two
circles intersect in two points in the infinite part of the plane,
even when they have been pulled apart, and we say also that
the new straight-line locus is still the common chord of the
circles: the points of intersection are ‘imaginary’ or ‘ideal’, but
the straight line joining them (the new ‘common chord’) is ‘real’
— we actually draw it on the paper.

If we write the equations of the circles and lines algebraically
in the manner of Descartes, 2all that we do in the algebra of
solving the equations for the intersections has its unique corre-
late in the enlarged geometry, whereas if we do not first expand
our geometry — or at least increase its vocabulary, to take

* In what precedes the tangents are real (visible) if the point P
lies outside the circles; if P is inside, the tangents are ““maginary’.
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account of ‘ideal’ elements — much of the meaningful algebra is
geometrically meaningless.

All this of course requires logical justification. Such justifica-
tion has been given so far as is necessary, that is, up to the stage
which includes the applications of the ‘principle of continuity’
useful in geometry.

A more important instance of the principle is furnished by
parallel straight lines. Before describing this we may repeat the
remark a venerable and distinguished judge relieved himself of
recently when the matter was revealed to him. The judge
had been under the weather; an amateur mathematician,
thinking to cheer the old fellow up, told him something of the
geometrical concept of infinity. They were strolling through the
judge’s garden at the time. On being informed that ‘parallel
lines meet at infinity’, the judge stopped dead. ‘Mr Blank,” he
said with great emphasis, ‘any man who says parallel lines meet
at infinity, or anywhere else, simply hasn’t got good sense.’ To
obviate an argument we may say as before that it is all a way
of speaking to avoid irritating exceptions and separations into
exasperating distinct cases. But once the language has been
agreed upon, logical consistency demands that it be followed
to the end without traversing the rules of logical grammar and
syntax, and this is what is done.

To see the reasonableness of the language, imagine a fixed
straight line ! and fixed point P not on I. Through P draw any
straight line I’ intersecting [ in P’, and imagine I’ to rotate about
P, so that P’ recedes along I. When does P’ stop receding? We
say it stops when [, I’ become parallel or, if we prefer, when the
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point of intersection P’ is at infinity. For reasons already indi-
cated this language is convenient and suggestive — not of a
lunatic asylum, as the judge might think, but of interesting and
sometimes highly practical things to do in geometry.

In a similar.manner the visualizable, finite parts of lines,
planes, and three-dimensional space (also of higher space) are
enriched by the adjunction of ‘ideal’ points, lines, planes, or
‘regions’ at infinity. If the judge happens to see this he may
enjoy the following shocking example of the behaviour of the
infinite in geometry: any fwo circles in a plane intersect in four
points, two of which are imaginary and at infinity. If the circles
are concentrie, they touch one another in two points lying on
the line at infinity. Further, all circles in a plane go through the
same two points at infinity — they are usually denoted by I and
J, and are sometimes called Ysaac and Jacob by irreverent
students.

In the chapter on Pascal we described what is meant by
projective properties in distinction to metrical properties in
geometry. At this point we may glance back at Hadamard’s
remarks on Descartes’ analytic geometry. Hadamard observed
among other things that modern synthetic geometry repaid the
debt of geometry in general to algebra by suggesting important
researches in algebra and analysis. This modern synthetic
geometry was the object of Poncelet’s researches. Although all
this may seem rather involved at the moment, we shall close
the chain by taking 2 link from the 1840’s, as the matter really
is important, not only for the history of pure mathematies but
for that of recent mathematical physics as well.

The link from the 1840’s is the creation by Boole, Cayley,
Sylvester and others, of the algebraic theory of invariance
which (as will be explained in a later chapter) is of fundamental
importance in current theoretical physics. The Projective geo-
metry of Poncelet and his school played a very important part .
in the development of the theory of invariance: the geometers
had discovered a whole continent of properties of figures
invariant under projection; the algebraists of the 1840,
notably Cayley, translated the geometrical operations of projec-
tion into analytical language, applied this translation to the
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algebraic, Cartesian mode of expressing geometric relationships,
and were thus enabled to make phenomenally rapid progress in
the elaboration of the theory of algebraic invariants. If Desar-
gues, the daring pioneer of the seventeenth century, could have
foreseen what his ingenious method of projection was to lead
to, he might well have been astonished. He knew that he had
done something good, but he probably had no conception of
just how good it was to prove.

Isaac Newton was a young man of twenty when Desargues
died. There is no evidence that Newton ever heard the name of
Desargues. If he had, he also might have been astonished could
he have foreseen that the humble link forged by his elderly
contemporary was to form part of the strong chain which, in
the twentieth century, was to pull his law of universal gravita-
tion from its supposedly immortal pedestal. For without the
mathematical machinery of the tensor calculus which developed
naturally (as we shall see) from the algebraic work of Cayley
and Sylvester, it is improbable that Hinstein or anyone else
could ever have budged the Newtonian theory of gravitation.

o

One of the useful ideas in projective geometry is that of cross-
vatio or anharmonic ratio. Through a point O draw any four
straight lines I, m, n, p. Across these four draw any straight line
«, and label the points in which # cuts the others L, M, N, P
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respectively. We thus have on 2 the line segments LM, MN,

LM Lp
LP, PN. From these fi thy ios —— — . Fi
m these form the ratios UN and PN Finally we

take the ratio of these two ratios, and get the cross-ratio

LM x PN T Jable thi . L.
UN X LP' e remar! e thing about this cross-ratio is that

it has the same numerical magnitude for all positions of the
line .

Later we shall refer to Felix Klein’s unification'of Euclidean
geometry and the common non-Euclidean geometries into one
comprehensive geometry. This unification was made possible
by Cayley’s revision of the usual notions of distance and angle
on which metrical geometry is founded. In this revision, cross-
ratio played the leading part, and through it, by the introduc-
tion of ‘ideal’ elements of hus own devising, Cayley was enabled
to reduce mefrical geometry to a species of projective geometry.

To close this inadequate description of the kind of weapons
that Poncelet used we shall mention the extremely fruitful
‘principle of duality’. For simplicity we consider only how the
principle operates in plane geometry.

Note first that any continuous curve may be regarded in
either of two ways: either as being generated by the motion of a
point, or as being swept out by the turning motion of a straight
line. To see the latter, imagine the tangent line drawn at each
point of the curve. Thus points and lines are intimately and
reciprocally associated with respect to the curve: through every
point of the curve there is a line of the curve; on every line of
the curve there is 2 point of the curve. Instead of ‘through’ in
the preceding sentence, write ‘on’. Then the two assertions
separated by ‘;” after the ‘2 are identical except that the words
‘point’ and ‘line’ are interchanged.

As a matter of terminology we say that a line (straight or

" curved) is on a point.if the line passes through the point, and
we note that if a line is on a point, then the point is on the line,
and conversely. To make this correspondence universal we
‘adjoin’ to the usual plane in which Euclidean geometry ( com-
mon school geometry) is valid, a so-called metric plane, ‘ideal
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elements’ of the kind already described. The result of this
adjunction is a projective plane: a projective plane consists of
all the ordinary points and straight lines of a metric plane and,
in addition, of 2 set of ideal points all of which are assumed to
lie on one ideal line and such that one such ideal point lies on
every ordinary line.*

In Euclidean language we would say that two parallel lines
have the same direction; in projective phraseology this becomes
‘two parallel lines have the same ideal point.” Again, in the old,
if two or more lines have the same direction, they are parallel;
in the new, if two or more lines have the same ideal point they
are parallel. Every straight line in the projective plane is
conceived of as having on it one ideal point (‘at infinity’); all
the ideal points are thought of as making up one tdeal line, ‘the
line at infinity’.

The purpose of these conceptions is to avoid the exceptional
statements of Euclidean geometry necessitated by the postu-
lated existence of parallels. This has already been commented
on in connexion with Poncelet’s formulation of the principle of
continuity.

* This definition, and others of a similar character given presently,
are taken from Projective Geometry (Chicago, 1980) by the late John
Wesley Young. This little book is comprehensible to anyone who has
had an ordinary school course in common geometry.
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With these preliminaries the principle of duality in plane
geometry can now be stated: All the propositions of plane
projective geometry occur in dual pairs which are such that
from either proposition of a2 particular pair another can be
immediately inferred by interchanging the parts played by the
words point and line.

In his projective geometry Poncelet exploited this principle
to the limit. Opening almost any book on projective geometry
at random we note pages of propositions printed in double
columns, a device introduced by Poncelet. Corresponding
propositions in the two columns are duals of one another; if
either has been proved, 2 proof of the other is superfluous, as
implied by the principle of duality. Thus geometry at one stroke
is doubled in extent with no expenditure of extra labour. As a
specimen of dual propositions we give the following pair. It

Two distinct points are on one, Two distinet lines are on one,
and only one, line. and only one, point.

may be granted that this is not very exciting. The mountain
has laboured and brought forth a mouse. Can it do any better?

The proposition in the left-hand column (page 238) is Pascal’s
concerning his Hexagrammum Mysticum which we have already
seen; that on the right is Brianchon’s theorem, which was
discovered by means of the principle of duality. Brianchon
(1785-1864) discovered his theorem while he was a student at
the Ecole Polytechnique; it was printed in the Journal of that
school in 1806. The figures for the two propositions look nothing
alike. This may indicate the power of the methods used by
Poncelet.

Brianchon’s discovery was the one which put the principle
of duality on the map of geometry. Far more spectacular
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examples of the power of the principle will be found in any
textbook on projective geometry, particularly in the extension
of the principle to ordinary three-dimensional space. In this
extension the parts played by the words poini and plane are
interchangeable; straight line stays as it was.

If 4,B,C,D,E,F are any points
on a conic section, the points of
intersection of the pairs of lines
AB and DE, BCand EF, CDand
F4 are on a straight line; and
conversely.

If A4,B,C,D,E,F are tangent
straight lines on a conic section,
the lines joining the pairs of
intersections of 4 with B and D
with E, B with C and E with F,
C with D and F with 4, meet in

one point ; and conversely.

The conspicuous beauty of projective geometry and the
supple elegance of its demonstrations made it a favourite study
with the geometers of the nineteenth century. Able men
swarmed into the new goldfield and quickly stripped it of its
more accessible treasures. To-day the majority of experts seem
to agree that the subject is worked out so far as it is of interest
to professional mathematicians. However, it is conceivable that
there may yet be something in it as obvious as the principle of
duality which has been overlooked. In any event it is an easy
subject to acquire and one of fascinating delight to amateurs
and even to professionals at some stage of their careers. Unlike
some other fields of mathematics, projective geometry has been
blessed with many excellent textbooks and treatises, some of
them by master geometers, including Poncelet himself.



CHAPTER FOURTEEN

THE PRINCE OF MATHEMATICIANS

Gauss

ARCHIMEDES, NEWTON, AND GAUSS, these three, are in a
class by themselves among the great mathematicians, and it is
not for ordinary mortals to attempt to range them in order of
merit. All three started tidal waves in both pure and applied
mathematics: Archimedes esteemed his pure mathematics more
highly than its applications; Newton appears to have found the
chief justification for his mathematical inventions in the scien-
tific uses to which he put them, while Gauss declared that it was
all one to him whether he worked on the pure or the applied
side. Nevertheless Gauss crowned the higher arithmetic, in his
day the least practical of mathematical studies, the Queen of
all

The lineage of Gauss, Prince of Mathematicians, was any-
thing but royal. The son of poor parents, he was born.in a
miserable cottage at Brunswick (Braunschweig), Germany, on
80 April 1777. His paternal grandfather was a poor peasant. In
1740 this grandfather settled in Brunswick, where he drudged
out a meagre existence as a gardener. The second of his three
sons, Gerhard Diederich, born in 1744, became the father of
Gauss. Beyond that unique honour Gerhard’s life of hard labour
as a gardener, canal tender, and bricklayer was without dis-
tinction of any kind.

The picture we get of Gauss’ father is that of an upright,
scrupulously honest, uncouth man whose harshness to his sons
sometimes bordered on brutality. His speech was rough and his
hand heavy. Honesty and persistence gradually won him some
measure of comfort, but his circumstances were never easy. It
is not surprising that such a man did everything in his power to
thwart his young son and prevent him from acquiring an educa-
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tion suited to his abilities. Had the father prevailed, the gifted
boy would have followed one of the family trades, and it was
only by a series of happy accidents that Gauss was saved from
becoming a gardener or a bricklayer. As 2 child he was respect-
ful and obedient, and although he never criticized his poor
father in later life, he made it plain that he had never felt any
real affection for him. Gerhard died in 1806. By that time the
son he had done his best to discourage had accomplished
immortal work,

On his mother’s side Gauss was indeed fortunate. Dorothea
Benz’s father was a stonecutter who died at the age of thirty of
tuberculosis, the result of insanitary working conditions in his
trade, leaving two children, Dorothea and her younger brother
Friederich.

Here the line of descent of Gauss’ genius becomes evident.
Condemned by economic disabilities to the trade of weaving,
Friederich was a highly intelligent, genial man whose keen and
restless mind foraged for itself in fields far from his livelihood.
In his trade Friederich quickly made a reputation as a weaver
of the finest damasks, an art which he mastered wholly by
himself. Finding a kindred mind in his sister’s child, the clever
uncle Friederich sharpened his wits on those of the young
genius and did what he could to rouse the boy’s quick logic by
his own quizzical observations and somewhat mocking philo-
sophy of life.

Friederich knew what he was doing; Gauss at the time pro-
bably did not. But Gauss had a photographic memory which
retained the impressions of his infancy and childhood unblurred
to his dying day. Looking back as a grown man on what
Friederich had done for him, and remembering the prolific mind
which a premature death had robbed of its chance of fruition,
Gauss lamented that ‘a born genius was lost in him.’

Dorothea moved to Brunswick in 1769. At the age of thirty-
four (in 1776) she married Gauss’ father. The following year her
son was born, His full baptismal name was Johann Friederich
Carl Gauss. In later life he signed his masterpieces simply Carl’
Friederich Gauss. If a great genius was lost in Friederich Benz
his name survives in that of his grateful nephew.
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Gauss’ mother was a forthright woman of strong character,
sharp intellect, and humorous good sense. Her son was her
pride from the day of his birth to her own death at the age of
ninety-seven. When the ‘wonder child’ of two, whose astound-
ing intelligence impressed all who watched his phenomenal
development as something not of this earth, maintained and
even surpassed the promise of his infancy as he grew to boy-
hood, Dorothea Gauss took her boy’s part and defeated her
obstinate husband in his campaign to keep his son as ignorant
as himself.

Dorothea hoped and expected great things of her son. That
she may sometimes have doubted whether her dreams were to
be realized is shown by her hesitant questioning of those in a
position to judge her son’s abilities. Thus, when Gauss was
nineteen, she asked his mathematical friend Wolfgang Bolyai
whether Gauss would ever amount to anything. When Bolyai
exclaimed ‘The greatest mathematician in Europe!’ she burst
into tears.

The last twenty-two years of her life were spent in her son’s
house, and for the last four she was totally blind. Gauss himself
cared little if anything for fame; his triumphs were his mother’s
life.* There was always the completest understanding between
them, and Gauss repaid her courageous protection of his early
years by giving her a serene old age. When she went blind he
would allow no one but himself to wait on her, and he nursed
her in her long last illness. She died on 19 April 1839.

Of the many accidents which might have robbed Archimedes
and Newton of their mathematical peer, Gauss himself recalled
one from his earliest childhood. A spring freshet had filled the
canal which ran by the family cottage to overflowing. Playing

* The legend of Gauss’ relations to his parents has still to be
authenticated. Although, as will be seen later, the mother stood by
her son, the father opposed him; and, as was customary then (usually,
also, now), in a German household, the father had the last word. ~ I
allude later to legends from living persons who had known members
of the Gauss family, particularly in respect to Gauss’ treatment of his
sons. These allusions refer to first-hand evidence; but I do not vouch
for them, as the people were very old.
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near the water, Gauss was swept in and nearly drowned. But
for the lucky chance that a labourer happened to be about his
life would have ended then and there.

In all the history of mathematics there is nothing approach-
ing the precocity of Gauss as a child. It is not known when
Archimedes first gave evidence of genius. Newton’s earliest
manifestations of the highest mathematical talent may well
have passed unnoticed. Although it seems incredible, Gauss
showed his calibre before he was three years old.

One Saturday Gerhard Gauss was making out the weekly
pay-roll for the labourers under his charge, unaware that his
young son was following the proceedings with critical attention.
Coming to the end of his long computations, Gerhard was
startled to hear ihe little boy pipe up, ‘Father, the reckoning
is wrong, it should be. ...’ A check of the account showed that
the figure named by Gauss was correct.

Before this the boy had teased the pronunciations of the
letters of the alphabet out of his parents and their friends and
had taught himself to read. Nobody had shown him anything
about arithmetic, although presumably he had picked up the
meanings of the digits 1, 2, . . . along with the alphabet. In later
life he loved to joke that he knew how to reckon before he could
talk. A prodigious power for involved mental calculations
remained with him all his life.

Shortly after his seventh birthday Gauss entered his first
school, a squalid relic of the Middle Ages run by a virile brute,
one Biittner, whose idea of teaching the hundred or so boys in
his charge was to thrash them into such a state of terrified
stupidity that they forgot their own names. More of the good
old days for which sentimental reactionaries long. It was in this
hell-hole that Gauss found his fortune.

Nothing extraordinary happened during the first two years.
Then, in his tenth year, Gauss was admitted to the class in
arithmetic. As it was the beginning class none of the boys had
ever heard of an arithmetical progression. It was easy then for
the heroic Biittner to give out 2 long problem in addition whose
answer he could find by a formula in a few seconds. The problem
was of the following sort, 81297 + 81495 -+ 81693 + ... -+
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100899, where the step from one number to the next is the same
all along (here 198), and a given number of terms (here 100) are
to be added.

It was the custom of the school for the boy who first got the
answer to lay his slate on the table; the next laid his slate on
top of the first, and so on. Biittner had barely finished stating
the problem when Gauss flung his slate on the table: ‘There it
lies,” he said — ‘Ligget se’ * in his peasant dialect. Then, for the
ensuing hour, while the other boys toiled, he sat with his hands
folded, favoured now and then by a sarcastic glance from
Biittner, who imagined the youngest pupil in the class was just
another blockhead. At the end of the period Biittner looked
over the slates. On Gauss’ there appeared but a single number.
To the end of his days Gauss loved to tell how the one number
he had written was the correct answer and how all the others
were wrong. Gauss had not been shown the trick for doing such
problems rapidly. It is very ordinary once it is known, but for
a boy of ten to find it instantaneously by himself is not so
ordinary.

This opened the door through which Gauss passed on to
immortality. Biittner was so astonished at what the boy of ten
had done without instruction that he promptly redeemed him-
self and to at least one of his pupils became a humane teacher.
Out of his own pocket he paid for the best textbook on arith-
metic obtainable and presented it to Gauss. The boy flashed
through the book. ‘He is beyond me,’ Biittner said; ‘I can teach
him nothing more.’

By himself Biittner could probably not have done much for
the young genius. But by 2 lucky chance the schoolmaster had
an assistant, Johann Martin Bartels (1769-1836), a young man
with a passion for mathematics, whose duty it was to help the
beginners in writing and cut their quill pens for them. Between
the assistant of seventeen and the pupil of ten there sprang up
a warm friendship which lasted out Bartels’ life. They studied
together, helping one another over difficuities and amplifying
the proofs in their common textbook on algebra and the
rudiments of analysis.

Out of this early work developed one of the dominating
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interests of Gauss’ career. He quickly mastered the binomial
theorem,

(n—1)  nn-—1)(n—2)
1x2" 1x2x83

n n
(1+a:)"=1+im+ % ...,
in which 7 is not necessarily a positive integer, but may be any
number. If 7 is not a positive integer, the series on the right is
infinite (non-terminating), and in order to state when this series
is actually equal to (1 + &), it is mandatory to investigate
what restrictions must be imposed upon # and n in order that
the infinite series shall converge to a definite, finite limit. Thus, if
2 = — 2,and n = — 1, we get the absurdity that (1 — 2)71,
which is (— 1)™*or 1/( — 1), or finally — 1,isequalto1l 4 2 +
22 4 23 L ... and so on ad infinitum; that is, — 1 is equal to
the ‘infinite number’ 1 4+ 2 4+ 4 4 8 4 ... , which is nonsense.

Before young Gauss asked himself whether infinite series
converge and really do enable us to calculate the mathematical
expressions (functions) they are used to represent, the older
analysts had not seriously troubled themselves to explain the
mysteries (and nonsense) arising from an uncritical use of
infinite processes. Gauss’ early encounter with the binomial
theorem inspired him to some of his greatest work and he
became the first of the ‘rigorists’. A proof of the binomial
theorem when 7 is not an integer greater than zero is even to-
day beyond the range of an elementary textbook. Dissatisfied
with what herand Bartels found in their book, Gauss made a
proof. This initiated him to mathematical analysis. The very
essence of analysis is the correct use of infinite processes.

The work thus well begun was to change the whole aspect of
mathematics. Newton, Leibniz, Euler, Lagrange, Laplace — all
great analysts for their times — had practically no conception of
what is now acceptable as a proof involving infinite processes.
The first to see clearly that a ‘proof’ which may lead to absur-
dities like ‘minus 1 equals infinity’ is no proof at all, was Gauss.
Even if in some cases a formula gives consistent results, it has
no place in mathematics until the precise conditions under
which it will continue to yield consistency have been
determined.
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The rigor which Gauss imposed on analysis gradually over-
shadowed the whole of mathematics, both in his own habits and
in those of his contemporaries — Abel, Cauchy — and his suc-
cessors — Weierstrass, Dedekind, and mathematics after Gauss
became a totally different thing from the mathematics of
Newton, Euler, and Lagrange.

In the constructive sense Gauss was a revolutionist. Before
his schooling was over the same critical spirit which left him
dissatisfied with the binomial theorem had caused him to ques-
tion the demonstrations of elementary geometry. At the age of
twelve he was already looking askance at the foundations of
Euclidean geometry; by sixteen he had caught his first glimpse
of a geometry other than Euclid’s. A year later he had begun a
searching criticism of the proofs in the theory of numbers which
had satisfied his predecessors and had set himself the extra-
ordinarily difficult task of filling up the gaps and completing
what had been only half done. Arithmetic, the field of his
earliest triumphs, became his favourite study and the locus of
his masterpiece. To his sure feeling for what constitutes proof
Gauss added a prolific mathematical inventiveness that has
never been surpassed. The combination was unbeatable.

Bartels did more for Gauss than to induct him into the
mysteries of algebra. The young teacher was acquainted with
some of the influential men of Brunswick. Hle now made it his
business to interest these men in his find. They in turn, favour-
ably impressed by the obvious genius of Gauss, brought him to
the attention of Carl Wilhelm Ferdinand, Duke of Brunswick.

The Duke received Gauss for the first time in 1791. Gauss was
then fourteen. The boy’s modesty and awkward shyness won
the heart of the generous Duke. Gauss left with the assurance
that his education would be continued. The following year
(February 1792) Gauss matriculated at the Collegium Caro-
linum in Brunswick. The Duke paid the bills and he continued
io pay tHem till Gauss’ education was finished.

Before entering the Caroline College at the age of fifteen,
Gauss had made great headway in the classical languages by
private study and help from older friends, thus precipitating a
crisis in his career. To his crassly practical father the study of

245



MEN OF MATHEMATICS

ancient languages was the height of folly. Dorothea Gauss put
up a fight for her boy, won, and the Duke subsidized a two-
years’ course at the Gymnasium. There Gauss’ lightning
mastery of the classics astonished teachers and students alike.

Gauss himself was strongly attracted to philological studies,
but fortunately for science he was presently to find a more
compelling attraction in mathematics. On entering college
Gauss was already master of the supple Latin in which many
of his greatest works are written. It is an ever-to-be-regretted
calamity that even the example of Gauss was powerless against
the tides of bigoted nationalism which swept over Europe after
the French Revolution and the downfall of Napoleon. Instead
of the easy Latin which, sufficed for Euler and Gauss, and which
any student can master in a few weeks, scientific workers must
now acquire a reading knowledge of two or three languages in
addition to their own. Gauss resisted as long as he could, but
even he had to submit when his astronomical friends in Ger-
many pressed him to write some of his astronomical works in
German. ,

Gauss studied at the Caroline College for three years, during
which he mastered the more important works of Euler,
Lagrange, and, above all, Newton’s Principia. The highest
praise one great man can get is from another in his own class.
Gauss never lowered the estimate which as a boy of seventeen
he had formed of Newton. Others — Euler, Laplace, Lagrange,
Legendre — appear in the flowing Latin of Gauss with the
complimentary clarissimus; Newton is summus.

‘While still at the college Gauss had begun those researches in
the higher arithmetic which were to make him immortal. His
prodigious powers of calculation now came into play. Going
directly to the numbers themselves he experimented with them,
discovering by induction recondite general theorems whose
proofs were to cost even him an effort. In this way he redis-
covered ‘the gem of alrithmetic’, ‘theorema aureum’, which Euler
also had come upon inductively, which is known as the law of
quadratic reciprocity, and which he was to be the first to prove.
(Legendre’s attempted proof slurs over a crux.)

The whole investigation originated in a simple question
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which many beginners in arithmetic ask themselves: How
many digits are there in the period of a repeating decimal? To
get some light on the problem Gauss calculated the decimal
representations of all the fractions 1/n for » = 1 to 1000. He
did not find the treasure he was seeking, but something infi-
nitely greater — the law of quadratic reciprocity. As this is quite
simply stated we shall describe it, introducing at the same time
one of the revolutionary improvements in arithmetical nomen-
clature and notation which Gauss invented, that of congruence.
All numbers in what follows are integers (common whole
numbers).

If the difference (¢ — b or b — a) of two numbers a, b is
exactly divisible by the number m, we say that a, b are con-
gruent with respect to the modulus m, or simply congruent
modulo m, and we symbolize this by writing ¢ = b (mod m).
Thus 100 = 2 (mod 7), 85 = 2 (mod 11).

The advantage of this scheme is that it recalls the way we
write algebraic equations, traps the somewhat elusive notion of
arithmetical divisibility in a compact notation, and suggests
that we try to carry over to arithmetic (which is much harder
than algebra) some of the manipulations that lead to interesting
results in algebra. For example we can ‘add’ equations, and we
find that congruences also can be ‘added’, provided the
modulus is the same in all, to give other congruences.

Let # denote an unknown number, » and m given numbers, of
which r is not divisible by m. Is there a number 2 such that

2 = r (mod m)?

If there is, r is called a quadratic residue of m, if not, a quadratic
non-residue of m.

If r s a quadratic residue of m, then it must be possible to
find at least one 2 whose square when divided by m leaves the
remainder r; if r is 2 quadratic non-residue of m, then there is no
2 whose square when divided by m leaves the remainder 7.
These are immediate consequences of the preceding definitions.

To illustrate: is 18 2 quadratic residue of 177 If so, it must be
possible to solve the congruence

2% = 13 (mod 17)
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Trying 1,2, 8, ... , we find that 2 = 8, 25, 42, 59, ... are solu-
tions (82 = 64 = 8 X 17 + 13; 252 = 625 = 86 X 17 + 13;
etc.,) so that 18 is a quadratic residue of 17. But there is no
solution of 22 = 5 (mod 17), so 5 is a quadratic non-residue of 17.

It is now natural to ask what are the quadratic residues and
non-residues of a given m? Namely, given m in 2? = r (mod m),
what nuinbers r can appear and what numbers » cannot appear
as 2 runs through all the numbers 1, 2,3, ...?

Without much difficulty it can be shown that it is sufficient to
answer the question when both r and m are restricted to be
primes. So we restate the problem: If p is a given prime, what
primes ¢ will make the congruence 2% = ¢ (mod p) solvable?
This is asking altogether too much in the present state of
arithmetic. However, the situation is not utterly hopeless.

There is a beautiful ‘reciprocity’ between the pair of con-
gruences

2* = ¢ (mod p), #* = p (mod g),
in'which both of p, q are primes: both congruences are solvable, or
both are unsolvable, unless both of p, ¢ leave the remainder 8
when divided by 4, in which case one of the congruences is
solvable and the other is motf. This is the law of quadratic
reciprocity.

It was not easy to prove. In fact it baffled Euler and
Legendre. Gauss gave the first proof at the age of nineteen. As
this reciprocity is of fundamental importance in the higher
arithmetic and in many advanced parts of algebra, Gauss
turned it over and over in his mind for many years, seeking to
find its taproot, until in all he had given six distinct proofs, one
of which depends upon the straightedge and compass construc-
tion of regular polygons.

A numerical illustration will illuminate the statement of the
law. First, take p = 5, ¢ = 18. Since both of 5, 18 leave the
remainder 1 on division by 4, both of #2 = 18 (mod 5), 2 =
(mod 13) must be solvable, or neither is solvable. The latter is
the case for this pair. For p = 18, ¢ = 17, both of which leave
the remainder 1 on division by 4, we get 2 = 17 (mod 18),
2% = 18 (mod 17), and both, or neither again must be solvable.
The former is the case here: the first congruence has the solu-
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tions ¢ = 2, 15, 28, ...; the second has the solutions 2 = 8, 25,
42, .... There remains to be tested only the case when both of
p, g leave the remainder 3 on division by 4. Take p = 11,
g = 19. Then, according to the law, precisely one of 2* = 19
(mod 11), #* = 11 (mod 19) must be solvable. The first con-
gruence has no solution; the second has the solutions 7, 26,
45, ...

The mere discovery of such a law was a notable achievement.
That it was first proved by a boy of nineteen will suggest to
anyone who tries to prove it that Gauss was more than merely
competent in mathematics.

‘When Gauss left the Caroline College in October 1795 at the
age of eighteen to enter the University of Gittingen he was still
undecided whether to follow mathematics or philology as his
life work. He had already invented (when he was eighteen) the
method of ‘least squares’, which to-day is indispensable in
geodetic surveying, in the reduction of observations and indeed
in all work where the ‘most probable’ value of anything that is
measured is to be inferred from a large number of measure-
ments. (The most probable value is furnished by making the
sum of the squares of the ‘residuals’ — roughly, divergences from
assumed exactness -~ a minimum.) Gauss shares this honour
with Legendre who published the method independently in
1806. This work was the beginning of Gauss’ interest in the
theory of errors of observation. The Gaussian law of normal
distribution of errors and its accompanying bell-shaped curve
is familiar to-day to all who handle statistics, from high-
minded intelligence testers to unscrupulous market mani-
pulators.

March 80 1796 marks the turning point in Gauss’ career. On
that day, exactly a2 month before his twentieth year opened,
Gauss definitely decided in favour of mathematics. The study
of languages was to remain a lifelong hobby, but philology lost
Gauss forever on that memorable day in March.

As has already been told in the chapter on Fermat the
regular polygon of seventeen sides was the die whose lucky fall
induced Gauss to cross his Rubicon. The same day Gauss began
to keep his scientific diary (Notizenjournal). It is one of the
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most precious documents in the history of mathematics. The
first entry records his great discovery.

The diary came into scientific circulation only in 1898, forty-
three years after the death of Gauss, when the Royal Society of
Gottingen borrowed it from 2 grandson of Gauss for critical
study. It consists of nineteen small octavo pages and contains
146 extremely brief statements of discoveries or results of
calculations, the last of which is dated 9 July 1814. A facsimile
reproduction was published in 1917 in the tenth volume (part 1)
of Gauss’ collected works, together with an exhaustive analysis
of its contents by several expert editors. Not all of Gauss’
discoveries in the prolific period from 1796 to 1814 by any
means are noted. But many of those that are jotted down suffice
to establish Gauss’ priority in fields — elliptic functions, for
instance — where some of his contemporaries refused to believe
he had preceded them. (Recall that Gauss was born in 1777.)

Things were buried for years or decades in this diary that
would have made half 2 dozen great reputations had they been
published promptly. Some were never made public during
Gauss’ lifetime, and he never claimed in anything he himself
printed to have anticipated others when they caught up with
him. But the record stands. He did anticipate some who
doubted the word of his friends. These anticipations were not
mere trivialities. Some of them became major fields of nine-
teenth-century mathematics.

A few of the entries indicate that the diary was a strictly
private affair of its author’s. Thus for 10 July 1796 there is the
entry ,

EYPHKA! num = A + A + A,

Translated, this echoes Archimedes’ exultant ‘Eurekal’ and
states that every positive integer is the sum of three triangular
numbers — such 2 number is one of the sequence 0,1,8,6,10,15,
... where each (after 0) is of the form {n(n - 1), n being any
positive integer. Another way of saying the same thing is that
every number of the form Sn - 8 is 2 sum of three odd squares:
8 =124 1% 4 1%;11 = 12 4 12 + 32; 19 = 1% 4 3% -} 82, etc.
It is not easy to prove this from scratch.

Less intelligible is the cryptic entry for 11 October 1796,
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“Vicimus GEGAN.’ What dragon had Gauss conquered this
time? Or what giant had he overcome on 8 April 1799, when he
boxes REV. GALEN up in a neat rectangle? Although the
meaning of these is lost forever the remaining 144 are for the
most part clear enough. One in particular is of the first import-
ance, 2s we shall see when we come to Abel and Jacobi: the
entry for 19 March 1797, shows that Gauss had already dis-
covered the double periodicity of certain elliptic functions. He
was then not quite twenty. Again, a later entry shows that
Gauss had recognized the double periodicity in the general case.
This discovery of itself, had he published it, would have made
him famous. But he never published it.

Why did Gauss hold back the great things he discovered?
This is easier to explain than his genius — if we accept his own
simple statements, which will be reported presently. A more
romantic version is the story told by W. W. R. Ball in his well-
known history of mathematics. According to this, Gauss sub-
mitted his first masterpiece, the Disquisitiones Arithmeticae, to
the French Academy of Sciences, only to have it rejected with a
sneer. The undeserved humiliation hurt Gauss so deeply that
he resolved thenceforth to publish only what anyone would
admit was above criticisma in both matter and form. There is
nothing in this defamatory legend. It was disproved once for all
in 1985, when the officers of the French Academy ascertained
by an exhaustive search of the permanent records that the
Disquisitiones was never even submitted to the Academy, much
less rejected.

Speaking for himself Gauss said that he undertook his seien-
tific works only in response to the deepest promptings of his
nature, and it was a wholly secondary consideration to him
whether they were ever published for the instruction of others.
Another statement which Gauss once made to 2 friend explains
both his diary and his slowness in publication. He declared that
such an overwhelming horde of new ideas stormed his mind
before he was twenty that he could hardly control them and
had time to record but a small fraction. The diary contains only
the final brief statements of the outcome of elaborate investi-
gations, some of which occupied him for weeks. Contemplating
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as a youth the close, unbreakable chains of synthetic proofs in
which Archimedes and Newton had tamed their inspirations,
Gauss resolved to follow their great example and leave after
him only finished works of art, severely perfect, to which noth-
ing could be added and from which nothing could be taken
away without disfiguring the whole. The work itself must stand
forth, complete, simple, and convincing, with no trace remain-
ing of the labour by which it had been achieved. A cathedral
is not a cathedral, he said, till the last scaffolding is down and
out of sight. Working with this ideal before him, Gauss pre-
ferred to polish one masterpiece several times rather than to
publish the broad outlines of many as he might easily have
done. His seal, a tree with but few fruits, bore the motto Pauca
sed matura (Few, but ripe).

The fruits of this striving after perfection were indeed ripe
but not always easily digestible. All traces of the steps by which
the goal had been attained having been obliterated, it was not
eagy for the followers of Gauss to rediscover the road he had
travelled. Consequently some of his works had to wait for highly
gifted interpreters before mathematicians in general could
understand them, see their significance for unsolved problems,
and go ahead. His own contemporaries begged him to relax his
frigid perfection so that mathematics might advance more
rapidly, but Gauss never relaxed. Not till long after his death
was it known how much of nineteenth-century mathematics
Gauss had foreseen and anticipated before the year 1800. Had
he divulged what he knew it is quite possible that mathematics
would now be half a century or more ahead of where it is. Abel
and Jacobi could have begun where Gauss left off, instead of
expending much of their finest effort rediscovering things Gauss
knew before they were born, and the creators of non-Euclidean
geometry could have turned their genius to other things.

Of himself Gauss said that he was ‘all mathematician’. This
does him an injustice unless it is remembered that ‘mathe-
matician’ in his day included also what would now be termed a
mathematical physicist. Indeed his second motto*

* Shakespeare’s King Lear, Act I, Scene ii, 1-2, with the essential
change of ‘laws’ for ‘law’.
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Thou, nature, art my goddess; to thy laws

My services are bound ...,
truly sums up his life of devotion to mathematics and the
physical sciences of his time. The ‘all mathematician’ aspect of
him is to be understood only in the sense that he did not scatter
his magnificent endowment broadcast over all fields where he
might have reaped abundantly, as he blamed Leibniz for doing,
but cultivated his greatest gift to perfection.

The three years (October 1795-September 1798) at the Uni-
versity of Gottingen were the most prolific in Gauss’ life.
Owing to ilhe generosity of Duke Ferdinand the young
man did not have to worry about finances. He lost himself in
his work, making but few friends. Ove of these, ‘Wolfgang
Bolyai, ‘the rarest spirit I ever knew’, as Gauss described him,
was to become a friend for life. The course of this friendship and
its importance in the history of non-Euclidean geometry is too
long to be told here; Wolfgang’s son Johann was to retrace
practically the same path that Gauss had followed to the crea-
tion of a non-Euclidean geometry, in entire ignorance that his
father’s old friend had anticipated him. The ideas which had
overwhelmed Gauss since his seventeenth year were now caught
~ partly — and reduced to order. Since 1795 he had been medi-
tating a great work on the theory of numbers. This now took
definite shape, and by 1798 the Disquisitiones Arithmeticae
(Arithmetical Researches) was practically completed.

To acquaint himself with what had already been done in the
higher arithmetic and to make sure that he gave due credit to
his predecessors, Gauss went to the University of Helmstedt,
where there was a good mathematical library, in September
1798. There he found that his fame had preceded him. He was
cordially welcomed by the librarian and the professor of
mathematics, Johann Friedrich Pfaff (1765-1825), in whose
house he roomed. Gauss and Pfaff became warm friends,
although the Pfaff family saw but little of their guest. Pfaff
evidently thought it his duty to see that his hard-working
young friend took some exercise, for he and Gauss strolled
together in the evenings, talking mathematics. As Gauss was
not only modest but reticent about his own work, Pfaff
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probably did not learn as much as he might have. Gauss ad-
mired the professor tremendously (he was then the best-known
mathematician in Germany), not only for his ex_cellent mathe-
matics, but for his simple, open character. All his life there
was but one type of man for whom Gauss felt aversion and
contempt, the pretender to knowledge who will not admit his
mistakes when he knows he is wrong.

Gauss spent the autumn of 1798 (he was then twenty-one) in
Brunswick, with occasional trips to Helmstedt, putting the
finishing touches to the Disquisitiones. He had hoped for early
publication, but the book was held up in the press owing to a
Leipzig publisher’s difficulties till September 1801. In gratitude
for all that Ferdinand had done for him, Gauss dedicated his
book to the Duke — ‘Serenissimo Principt ac Domino Carolo
Guilielmo Ferdinando.’

If ever a generous patron deserved the homage of his protégé,
TFerdinand deserved that of Gauss. When the young genius was
worried ill about his future after leaving Gottingen — he tried
unsuccessfully to get pupils — the Duke came to his rescue, paid
for the printing of his doctoral dissertation (University of
Helmstedt, 1799), and granted him a modest pension which
would enable him to continue his scientific work unhampered
by poverty. ‘Your kindness’, Gauss says in his dedication,
‘freed me from all other responsibilities and enabled me to
assume this exclusively.’

Before describing the Disquisitiones we shall glance at the
dissertation for which Gauss was awarded his doctor’s degree
in absentia by the University of Helmstedt in 1799: Demon-
siratio mova theorematis omnem. functionem algebraicam ration-
alem iniegram unius variabilis in factores reales primi el
secundt gradus resolvi posse (A New Proof that Every Rational
Integral Function of One Variable Can Be Resolved into Real
Factors of the First or Second Degree).

There is only one thing wrong with this landmark in algebra.
The first two words in the title would imply that Gauss had
merely added a new proof to others already known. He should
have omitted ‘nova’. His was the first proof. (This assertion will
be qualified later.) Some before him had published what they
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supposed were proofs of this theorem ~ usually called the
fundamental theorem of algebra ~ but none had attained a
proof. With his uncompromising demand for logical and mathe-
matical rigour Gauss insisted upon a proof, and gave the first.
Another, equivalent, statement of the theorem says that every
algebraic equation in one unknown has a root, an assertion
which beginners often take for granted as being true without
having the remotest conception of what it means.

If a lunatic scribbles a jumble of mathematical symbols it
does not follow that the writing means anything merely because
to the inexpert eye it is indistinguishable from higher mathe-
maties. It is just as doubtful whether the assertion that every
algebraic equation has a root means anything until we say what
sort of a root the equation has. Vaguely, we feel that a number
will ‘satisfy’ the equation but that half a pound of butter will
not.

Gauss made this feeling precise by proving that all the roots
of any algebraic equation are ‘numbers’ of the form a + bi,
where a,b are real numbers (the numbers that correspond to
the distances, positive, zero, or negative, measured from a fixed
point O on a given straight line, as on the z-axis in Descartes’
geometry), and ¢ is the square root of — 1. The new sort of
‘number’ a 4+ bi is called complez.

Incidentally, Gauss was one of the first to give a coherent
account of complex numbers and to interpret them as labelling
the points of a plane, as is done to-day in elementary textbooks
on elgebra.

The Cartesian co-ordinates of P are (a,b); the point P is also
labelled a¢ -+ bi. Thus to every point of the plane corresponds
precisely one complex number; the numbers corresponding to
the points on XOX’ are ‘real’, those on YOY" ‘pure imaginary’
(they are all of the type ic, where ¢ is a real number).

The word ‘imaginary’ is the great algebraical calamity, but
it is too well established for mathematicians to eradicate. It
should never have been used. Books on elementary algebra give
a simple interpretation of imaginary numbers in terms of
rotations. Thus if we interpret the multiplication ¢ X ¢, where
¢ is real, as a rotation about O of the segment Oc through one
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right angle, Oc is rotated on to OY'; another multiplication by 1,
namely ¢ X 4 X ¢, rotates Oc through another right angle, and
hence the total effect is to rotate Oc through two right angles,
so that -+ Oc becomes — Oc. As an operation, multiplication
by % X 4 has the same effect as multiplication by — 1; multipli-
cation by ¢ has the same effect as a rotation through a right
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-X =5 0 a +<
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angle, and these interpretations (as we have just seen) are
consistent. If we like we may now write ¢ X ¢ = — 1,in opera-
tions, or i? = — 1; so that the operation of rolation through a
right angle is symbolized by v/ — 1.

All this of course proves nothing. It is not meant to prove
anything. There is nothing to be proved; we assign to the symbols
and operations of algebra any meanings whatever that will lead
to consistency. Although the interpretation by means of rota-
tions proves nothing, it may suggest that there is no occasion
for anyone to muddle himself into a state of mystic wonderment
over nothing about the grossly misnamed ‘imaginaries’. For
further details we must refer to almost any schoolbook on
elementary algebra.

Gauss thought the theorem that every algebraic equation has
a root in the sense just explained so important that he gave four
distinct proofs, the last when he was seventy years old. To-day
some would transfer the theorem from algebra (which restricts
itself to processes that can be carried through in a finite number
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of steps) to analysis. Even Gauss assumed that the graph of a
polynomial is 2 continuous curve and that if the polynomial is
of odd degree the graph must cross the axis at least once. To
any beginner in algebra this is obvious. But to-day it is not
obvtous without proof, and attempts to prove it again lead to
the difficulties connected with continuity and the infinite. The
roots of so simple an equation as 4% — 2 = 0 cannot be com-
puted exactly in any finite number of steps. More will be said
about this when we come to Kronecker. We proceed now to the
Disquisitiones Arithmeticae.

The Disquisitiones was the first of Gauss’ masterpieces and
by some considered his greatest. It was his farewell to pure
mathematics as an exclusive interest. After its publication in
1801 (Gauss was then twenty-four), he broadened his activity
to include astronomy, geodesy, and electromagnetism in both
their mathematical and practical aspects. But arithmetic was
his first love, and he regretted in later life that he had never
found the time to write the second volume he had planned as a
young man. The book is in seven ‘sections’. There was to have
been an eighth, but this was omitted to keep down the cost of
printing.

The opening sentence of the preface describes the general
scope of the book. ‘The researches contained in this work apper-
tain to that part of mathematics which is concerned with
integral numbers, also fractions, surds [irrationals] being always
excluded.’

The first three sections treat the theory of congruences and
give in particular an exhaustive discussion of the binomial
congruence 2™ = A4 (mod p), where the given integers n, 4 are
arbitrary and p is prime; the unknown integer is 2. This beauti-
ful arithmetical theory has many resemblances to the corre-
sponding algebraic theory of the binomial equation z* = 4,
but in its peculiarly arithmetical parts is incomparably richer
and more difficult than the algebra which offers no analogies to
the arithmetic.

In the fourth section Gauss develops the theory of quadratic
residues. Here is found the first published proof of the law of
quadratic reciprocity. The proof is by an amazing application
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of mathematical induction and is as tough a specimen of that
ingenious logic as will be found anywhere.

With the fifth section the theory of binary quadratic forms
from the arithmetical point of view enters, to be accompanied
presently by a discussion of ternary quadratic forms which are
found to be necessary for the completion of the binary theory.
The law of quadratic reciprocity plays a fundamental part in
these difficult enterprises. For the first forms named the general
problem is to discuss the solution in integers z, y of the in-
determinate equation.

ax® + 2bay 4+ cy* = m,
where a, b, ¢, m are any given integers; for the second, the
integer solutions z, y, 2 of
az® + 2bxy + cy? + 2dxz + 2eyz + fo2 =m,

where a, b, ¢, d, e, f, m, are any given integers, are the subject of
investigation. An easy-looking but hard question in this field is
to impose necessary and sufficient restrictions upon a, ¢, f, m
which will ensure the existence of a solution in integers z, y,
of the indeterminate equation

' ax? + cy? + f2? = m.

The sixth section applies the preceding theory to various
special cases, for example the integer solutions x, y of ma? + ny?
= A, where m, n, 4 are any given integers.

In the seventh and last section, which many consider the
crown of the work, Gauss applies the preceding developments,
particularly the theory of binomial congruences, to a wonderful
discussion of the algebraic equation 2" = 1, where n is any
given integer, weaving together arithmetic, algebra, and
geometry into one perfect pattern. The equation #” = 1 is the
algebraic formulation of the geometric problem to construct a
regular polygon of n sides, or to divide the circumference of a
circle into n equal parts (consult any secondary text book on
algebra or trigonometry); the arithmetical congruence a™ = 1
(mod p), where m, p are given integers, and p is prime, is the
thread which runs through the algebra and the geometry and
gives the pattern its simple meaning. This flawless work of art
is accessible to any student who has the usual algebra offered

'
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in school, but the Disquisitiones is not recommended for begin-
ners (Gauss’ concise presentation has been reworked by later
writers into a more readily assimilable form).

Many parts of all this had been done otherwise before — by
Fermat, Eulel:, Lagrange, Legendre and others; but Gauss
treated the whole from his individual point of view, added much
of his own, and deduced the isolated results of his predecessors
from his general formulations and solutions of the relevant
problems. For example, Fermat’s beautiful result that every
prime of the form 4n <+ 1 is 2 sum of two squares, and is such
a sum in only one way, which Fermat proved by his difficult
method of ‘infinite descent’, falls out naturally from Gauss’
general discussion of binary quadratic forms.

‘The Disquisitiones Arithmeticae have passed into history,’
Gauss said in his old age, and he was right. A new direction was
given to the higher arithmetic with the publication of the Dis-
quisitiones, and the theory of numbers, which in the seventeenth
and eighteenth centuries had been a miscellaneous aggregation
of disconnected special results, assumed coherence and rose to
the dignity of a mathematical science on a par with algebra,
analysis, and geometry.

The work itself has been called a ‘book of seven seals’. It is
hard reading, even for experts, but the treasures it contains (and
partly conceals) in its concise, synthetic demonstrations
are now available to all who wish to share them, largely the
results of the labours of Gauss’ friend and disciple Peter
Gustav Lejeune Dirichlet (1805-59), who first broke the seven
seals.

Competent judges recognized the masterpiece for what it was
immediately. Legendre* at first may have been inclined to
think that Gauss had done him but scant justice. But in the
preface to the second edition of his own treatise on the theory
of numbers (1808), which in large part was superseded by the
Disquisitiones, he is enthusiastic. Lagrange also praised
unstintedly. Writing to Gauss on 31 May 1804 he says ‘Your

* Adrien-Marie Legendre (1752-1833). Considerations of space pre-
clude an account of his life; much of his best work was absorbed or
circumvented by younger mathematicians.
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Disquisitiones have raised you at once to the rank of the first
mathematicians, and I regard the last section as containing the
most beautiful analytical discovery that has been made for a
long time. ... Believe, sir, that no one applauds your success
more sincerely than 1.’

Hampered by the classic perfection of its style the Disquisi-
tiones was somewhat slow of assimilation, and when finally
gifted young men began studying the work deeply they were
unable to purchase copies, owing to the bankruptey of a book-
seller. Even Eisenstein, Gauss’ favourite disciple, never owned
a copy. Dirichlet was more fortunate. His copy accompanied
him on all his travels, and he slept with it under his pillow.
Before going to bed he would struggle with some tough para-
graph in the hope — frequently fulfilled — that he would wake
up in the night to find that a re-reading made everything clear.
To Dirichlet is due the marvellous theorem, mentioned in con-
nexion with Fermat, that every arithmetical progression

a,a+b,a+ 2b,a+ 8b,a+ 4b, ...,

in which a, b are integers with no common divisor greater than
1, contains an infinity of primes. This was proved by analysis,
in itself a miracle, for the theorem concerns integers, whereas
analysis deals with the continuous, the non-integral.

Dirichlet did much more in mathematics than his amplifica-
tion of the Disquisitiones, but we shall not have space to discuss
his life. Neither shall we have space (unfortunately) for Eisen-
stein, one of the brilliant young men of the early nineteenth
century who died before their time and, what is incomprehen-
sible to most mathematicians, as the man of whom Gauss is
reported to have said, ‘There have been but three epoch-
making mathematicians, Archimedes, Newton, and Eisen-
stein’. If Gauss ever did say this (it is impossible to check) it
deserves attention merely because he said it, and he was a man
who did not speak hastily.

Before leaving this field of Gauss’ activities we may ask why
he never tackled Fermat’s Last Theorem. He gives the answer
himself. The Paris Academy in 1816 proposed the proof (or
disproof) of the theorem 2s its prize problem for the period
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1816-8. Writing from Bremen on 7 March 1816, Olbers tries to
entice Gauss into competing: ‘It seems right to me, dear Gauss,
that you should get busy about this.’

But ‘dear Gauss’ resisted the tempter. Replying two weeks
later he states his opinion of Fermat’s Last Theorem. ‘I am very
much obliged for your news concerning the Paris prize. But I
confess that Fermat’s Theorem as an isolated proposition has
very little interest for me, because I could easily lay down a
multitude of such propositions, which one could neither prove
nor dispose of.’

Gauss goes on to say that the question has induced him to
recall some of his old ideas for 2 great extension of the higher
arithmetic. This doubtless refers to the theory of algebraic
numbers (described in later chapters) which Kummer, Dede-
kind, and Kronecker were to develop independently. But the
theory Gauss has in mind is one of those things, he declares,
where it is impossible to foresee what progress shall be made
toward 2 distant goal that is only dimly seen through the dark-
ness. For success in such a difficult search one’s lucky star must
be in the ascendant, and Gauss’ circumstances are now such
that, what with his numerous distracting occupations, he is
unable to give himself up to such meditations, as he did ‘in the
fortunate years 1796-8 when I shaped the main points of the
Disquisitiones Arithmeticae. Still I am convinced that if I am
as lucky as I dare hope, and if I succeed in taking some of the
principal steps in that theory, then Fermat’s Theorem will
appear as only one of the least interesting corollaries.’

Probably all mathematicians to-day regret that Gauss was
deflected from his march through the darkness by ‘a couple of
clods of dirt which we call planets’ — his own words — which
shone out unexpectedly in the night sky and led him astray.
Lesser mathematicians than Gauss — Laplace for instance —
might have done 2ll that Gauss did in computing the orbits of
Ceres and Pallas, even if the problem was of 2 sort which
Newton said belonged to the most difficult in mathematical
astronomy. But the brilliant success of Gauss in these matters
brought him instant recognition as the first mathematician in
Europe and thereby won him a comfortable position where he
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could work in comparative peace; so perhaps those wretched
lumps of dirt were after all his lucky stars.

The second great stage in Gauss’ career began on the first day
of the nineteenth century, also a red-letter day in the histories
of philosophy and astronomy. Since 1781 when Sir William
Herschel (1738-1822) discovered the planet Uranus, thus
bringing the number of planets then known up to the philo-
sophically satisfying seven, astronomers had been diligently
searching the heavens for further menabers of the Sun’s family,
whose existence was to be expected, according to Bode’s law,
between the orbits of Mars and Jupiter. The search was fruitless
till Giuseppe Piazzi (1746-1826) of Palermo, on the opening day
of the nineteenth century, observed what he at first mistook for
a small comet approaching the Sun, but which was presently
recognized as a new planet — later named Ceres, the first of the
swarm of minor planets known to-day.

By one of the most ironic verdicts ever delivered in the age-
long litigation of fact versus speculation, the discovery of Ceres
coincided with the publication by the famous philosopher
Georg Wilhelm Friedrich Hegel (1770-18381) of a sarcastic
attack on astronomers for presuming to search for an eighth
planet. Would they but pay some attention to philosophy,
Hegel asserted, they must see immediately that there can be
precisely seven planets, no more, no less. Their search therefore
was a stupid waste of time. Doubtless this slight lapse on
Hegel’s part has been satisfactorily explained by his disciples,
but they have not yet talked away the hundreds of minor
planets which mock his Jovian ban.

It will be of interest here to quote what Gauss thought of
philosophers who busy themselves with scientific matters they
have not understood. This holds in particular for philosophers
who peck at the foundations of mathematics without having
first sharpened their dull beaks on some hard mathematics.
Conversely, it suggests why Bertrand A. W. Russell (1872~ ),
Alfred North Whitehead (1861-1947) and David Hilbert
(1862-1948) in our own times have made outstanding contribu-
tions to the philosophy of mathematics: these men are
mathematicians.
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‘Whriting to his friend Schumacher on 1 November 1844, Gauss
says “You see the same sort of thing [mathematical incompet-
ence] in the contemporary philosophers Schelling, Hegel, Nees
von Essenbeck, and their followers; don’t they make your hair
stand on end with their definitions? Read in the history of
ancient philosophy what the big men of that day — Plato and
others (I except Aristotle) — gave in the way of explanations.
But even with Kant himself it is often not much better; in my
opinion his distinetion between analytic and synthetic proposi-
tions is one of those things that either run out in a triviality
or are false.” When he wrote this (1844) Gauss had long been in
full possession of non-Euclidean geometry, itself a sufficient
refutation of some of the things Kant said about ‘space’ and
geometry, and he may have been unduly scornful.

It must not be inferred from this isolated example concerning
purely mathematical technicalities that Gauss had no apprecia-
tion of philosophy. He had. All philosophical advances had a
great charm for him, although he often disapproved of the
means by which they had been attained. ‘There are problems’,
he said once, ‘to whose solution I would attach an infinitely
greater importance than to those of mathematics, for example
touching ethics, or our relation to God, or concerning our
destiny and our future; but their solution lies wholly beyond us
and completely outside the province of science.’

Ceres was a disaster for mathematics. To understand why she
was taken with such devastating seriousness by Gauss we must
remember that the colossal figure of Newton — dead for more
than seventy years — still overshadowed mathematics in 1801.
The ‘great’ mathematicians of the time were those who, like
Laplace, toiled to complete the Newtonian edifice of celestial
mechanics. Mathematics was still confused with mathematical
physics — such as it was then — and mathematical astronomy.
The vision of mathematics as an autonomous science which
Archimedes saw in the third century before Christ had been lost
sight of in the blaze of Newton’s splendour, and it was not until
the youthful Gauss again caught the vision that mathematics
was acknowledged as 2 science whose first duty is to itself. But
that insignificant clod of dirt, the minor planet Ceres, seduced
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his unparalleled intellect when he was twenty-four years of age,
just a2s he was getting well into his stride in those untravelled
wildernesses which were to become the empire of modern
mathematies.

Ceres was not alone to blame. The magnificent gift for mental
arithmetic whose empirical discoveries had given mathematics
the Disquisitiones Arithmelicae also played a fatal part in the
tragedy. His friends and his father, too, were impatient with the
young Gauss for not finding some lucrative position now that
the Duke had educated him and, having no conception of the
nature of the work which made the young man a silent recluse,
thought him deranged. Here now at the dawn of the new
century the opportunily which Gauss had lacked was thrust
at him.

A new planet had been discovered in a position which made
it extraordinarily difficult of observation. To compute an orbit
from the meagre data available was a task which might have
exercised Laplace himself. Newton had declared that such
problems are among the most difficult in mathematical astro-
nomy. The mere arithmetic necessary to establish an orbit with
accuracy sufficient to ensure that Ceres on her whirl round the
sun should not be lost to telescopes might well deter an electri-
cally-driven calculating machine even to-day; but to the young
man whose inhuman memory enabled him to dispense with a
table of logarithms when he was hard pressed or too lazy to
reach for one, all this endless arithmetic — logistica, not arith-
metica — was the sport of an infant.

‘Why not indulge his dear vice, calculate as he had never
calculated before, produce the difficult orbit to the sincere
delight and wonderment of the dictators of mathematical
fashion and thus make it possible, a year hence, for pftient
astronomers to rediscover Ceres in the place where the New-
tonian law of gravitation decreed that she must be found — if
the law were indeed a law of nature? Why not do all this, turn
his back on the insubstantial vision of Archimedes and forget
his own unsurpassed discoveries which lay waiting for develop-
ment in his diary? Why not, in short, be popular? The Duke’s
generosity, always ungrudged, had nevertheless wounded the
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young man’s pride in its most secret place; honour, recognition,
acceptance as a ‘great’ mathematician in the fashion of the
time with its probable sequel of financial independence — all
these were now within his easy reach. Gauss, the mathematical
god of all time, stretched forth his hand and plucked the Dead
Sea fruits of & cheap fame in his own young generation.

For nearly twenty years the sublime dreams whose fugitive
glimpses the boyish Gauss had pictured with unrestrained joy
in his diary lay cold and all but forgotten. Ceres was redisco-
vered, precisely where the marvellously ingenious and detailed
calculations of the young Gauss had predicted she must be
found. Pallas, Vesta, and Juno, insignificant sister planets of
the diminutive Ceres, were quickly picked up by prying tele-
scopes defying Hegel, and their orbits, too, were found to
conform to the inspired calculations of Gauss. Computations
which would have taken Euler three days to perform — one such
is sometimes said to have blinded him — were now the simple
exercises of a few laborious hours. Gauss had prescribed the
method, the routine. The major part of his own time for nearly
twenty years was devoted to astronomical calculations.

But even such deadening work as this could not sterilize the
creative genius of a Gauss. In 1809 he published his second
masterpiece, Theoria motus corporum coelestium in sectionibus
conicis solem ambientium (Theory of the Motion of the Heavenly
Bodies Revolving round the Sun in Conic Sections), in which an
exhaustive discussion of the determination of planetary and
cometary orbits from observational data, including the difficult
analysis of perturbations, lays down the law which for many
years is to dominate computational and practical astronomy.
It was great work, but not as great as Gauss was easily capable
of had he developed the hints lying neglected in his diary. No
essentially new discovery was added to mathematics by the
Theoria motus.

Recognition came with spectacular promptness after the
rediscovery of Ceres. Laplace hailed the young mathematician
at once as an equal and presently as a superior. Some time later
when the Baron Alexander von Humboldt (1769-1859), the
famous traveller and amateur of the sciences, asked Laplace
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who was the greatest mathematician in Germany, Laplace
replied ‘Pfaff’. ‘But what about Gauss?’ the astonished Von
Humboldt asked, as he was backing Gauss for the position of
director at the Gottingen observatory. ‘Oh’, said Laplace,
‘Gauss is the greatest mathematician in the world.’

The decade following the Ceres episode was rich in both
happiness and sorrow for Gauss. He was not without detractors
even at that early stage of his career. Eminent men who had the
ear of the polite public ridiculed the young man of twenty-four
for wasting his time on so useless a pastime as the computation
of 2 minor planet’s orbit. Ceres might be the goddess of the
fields, but it was obvious to the merry wits that no corn grown
on the new planet would ever find its way into the Brunswick
market of a Saturday afternoon. No doubt they were right, but
they also ridiculed him in the same way thirty years later when
he laid the foundations of the mathematical theory of electro-
magnetism and invented the electric telegraph. Gauss let them
enjoy their jests. He never replied publicly, but in private
expressed his regret that men of honour and priests of science
could stultify themselves by being so petty. In the meantime he
went on with his work, grateful for the honours the learned
societies of Europe showered on him but not going out of his
way to invite them..

The Duke of Brunswick increased the young man’s pension
and made it possible for him to marry (9 October 1805) at the
age of twenty-eight. The lady was Johanne Osthof of Bruns-
wick. Writing to his old university friend, Wolfgang Bolyai.
three days after he became engaged, Gauss expresses his unbe-
lievable happiness. ‘Life stands still before me like an eternal
spring with new and brilliant colours.’

Three children were born of this marriage: Joseph, Minna,
and Louis, the first of whom is said to have inherited his father’s
gift for mental calculations. Johanne died on 11 October 1809,
after the birth of Louis, leaving her young husband desolate.
His eternal spring turned to winter. Although he married again
the following year (4 August 1810) for the sake of his young
children it was long before Gauss could speak without emotion
of his first wife. By the second wife, Minna Waldeck, who had
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been a close friend of the first, he had two sons and a daughter.

According to gossip Gauss did not get on well with his sons,
except possibly the gifted Joseph who never gave his father any
trouble. Two are said to have run away from home and gone to
the United States. As one of these sons is said to have left
numerous descendants still living in America, it is impossible
to say anything further here, except that one of the American
sons became a prosperous merchant in St Louis in the days of
the river boats; both first were farmers in Missouri. With his
daughters Gauss was always happy. An exactly contrary legend
(vouched for forty years ago by old people whose memories of
the Gauss family might be considered trustworthy) to that
about the sons asserts that Gauss was never anything but kind
to his boys, some of whom were rather wild and caused their
distracted father endless anxiety. One would think that the
memory of his own father would have made Gauss sympathetie
with his sons.

In 1808 Gauss lost his father. Two years previously he had
suffered an even severer loss in the death of his benefactor
under tragic circumstances.

The Duke Ferdinand was not only an enlightened patron of
learning and 2 kindly ruler but a first-rate soldier as well who
had won the warm praise of Frederick the Great for his bravery
and military brilliance in the Seven Years’ War (1756-63).

At the age of seventy Ferdinand was put in command of the
Prussian forces in a desperate attempt to halt the French under
Napoleon, after the Duke’s mission to St Petersburg in an effort
to enlist the aid of Russia for Germany had failed. The battle of
Austerlitz (2 December 1805) was already history and Prussia
found itself forsaken in the face of overwhelming odds. Ferdi-
nand faced the French on their march toward the Saale at
Auerstedt and Jena, was disastrously defeated and himself
mortally wounded. He turned homeward.

Napoleon the Great here steps on the stage in person at his
pot-bellied greatest. At the time of Ferdinand’s defeat Napoleon
was quartered at Halle. A deputation from Brunswick waited
on the victorious Emperor of all the French to implore his
generosity for the brave old man he had defeated. Would the
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mighty Emperor stretch a point of military etiquette and let
his broken enemy die in peace by his own fireside? The Duke,
they assured him, was no longer dangerous. He was dying.

It was the wrong time of the month and Napoleon was
enjoying one of his womanish tantrums. He not only refused
but did so with quite vulgar and unnecessary brutality. Reveal-
ing the true measure of himself as a man, Napoleon pointed
his refusal with a superfluous vilification of his honourable
opponent and a hysterical ridicule of the dying man’s abilities
as a soldier. There was nothing for the humiliated deputation
to do but to try to save their gentle ruler from the disgrace of
a death in prison. It does not seem surprising that these same
Germans some nine years later fought like methodical devils at
Waterloo and helped to topple the Emperor of the French into
the ditch.

Gauss at the time was living in Brunswick. His house was
on the main highway. One morning in late autumn he saw a
hospital wagon hastening by. In it lay the dying Duke on his
flight to Altona. With an emotion too deep for words Gauss saw
the man who had been more than his own father to him hurried
away to die in hiding like 2 hounded criminal. He said nothing
then and but little afterwards, but his friends noticed that his
reserve deepened and his always serious nature became more
serious. Like Descartes in his earlier years Gauss had a horror
of death, and all his life the passing of a close friend chilled him
with a quiet, oppressive dread. Gauss was too vital to die or to
witness death. The Duke died in his father’s house in Altona on
10 November 1806.

His generous patron dead, it became necessary for Gauss to
find some reliable livelihood to support his family. There was
no difficulty 2bout this as the young mathematician’s fame had
now spread to the farthest corners of Europe. St Petershurg had
been angling for him as the logical successor of Euler who had
never been worthily replaced after his death in 1783. In 1807
a definite and flattering offer was tendered Gauss. Alexander
von Humboldt and other influential friends, reluctant to see
Germany lose the greatest mathematician in the world, be-
stirred themselves, and. Gauss was appointed director of the
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Gottingen Observatory with the privilege — and duty, when
pecessary — of lecturing on mathematics to university students.

Gauss no doubt might have obtained a professorship of
mathematics, but he preferred the observatory as it offered
better prospects for uninterrupted research. Although it may
be too strong to say that Gauss hated teaching, the instruction
of ordinary students gave him no pleasure, and it was only
when a real mathematician sought him out that Gauss, sitting
at a table with his students, let himself go and disclosed the
secrets of his methods in his perfectly prepared lessons. But
such incentives were regrettably rare and for the most part the
students who took up Gauss’ priceless time had better have
been doing something other than mathematics. Writing in 1810
to his intimate friend the astronomer and mathematician
Friedrich Wilhelm Bessel (1784-1846), Gauss says ‘This winter
I am giving two courses of lectures to three students, of whom
one is only moderately prepared, the other less than moderately
and the third lacks both preparation and ability. Such are the
burdens of a mathematical calling.’

The salary which Géttingen could afford to pay Gauss at the
time — the French were then busy pillaging Germany in the
interests of good government for the Germans by the French —
was modest but sufficient for the simple needs of Gauss and his
family. Luxury never attracted the Prince of Mathematicians
whose life had been unaffectedly dedicated to science long
before he was twenty. As his friend Sartorius von Walters-
hausen writes, ‘As he was in his youth, so he remained through
his old age to his dying day, the unaffectedly simple Gauss.
A small study, a little work table with a green cover, a standing-
desk painted white, a narrow sopha and, after his seventieth
year, an arm chair, a shaded lamp, an unheated bedroom, plain
food, a dressing gown and a velvet cap, these were so becom-
ingly all his needs.’

If Gauss was simple and thrifty the French invaders of Ger-
many in 1807 were simpler and thriftier. To govern Germany
according to their ideas the victors of Auerstedt and Jena fined
the losers more than the traffic would bear. As professor and
astronomer at Gottingen Gauss was rated by the extortionists
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to be good for an involuntary contribution of 2,000 francs to the
Napoleonic war chest. This exorbitant sum was quite beyond
Gauss’ ability to pay.

Presently Gauss got a letter from his astronomical friend
Olbers enclosing the amount of the fine and expressing indigna-
tion that a scholar should be subjected to such petty extortion.
Thanking his generous friend for his sympathy, Gauss declined
the money and sent it back at once to the donor.

Not 2ll the French were as thrifty as Napoleon. Shortly after
returning Olbers’ money Gauss received a friendly little note
from Laplace telling him that the famous French mathemati-
cian had paid the 2,000-franc fine for the greatest mathemati-
cian in the world and had considered it an honour to be able to
lift this unmerited burden from his friend’s shoulders. As Lap-
lace had paid the fine in Paris, Gauss was unable to return him
the money. Nevertheless he declined to accept Laplace’s help.
An unexpected (and unsolicited) windfall was presently to
enable him to repay Laplace with interest at the current market
rate. Word must have got about thal Gauss disdained charity.
The next attempt to help him succeeded. An admirer in Frank-
furt sent 1,000 guilders anonymously. As Gauss could not trace
the sender he was forced to accept the gift.

The death of his friend Ferdinand, the wretched state of
Germany under French looting, financial straits, and the loss
of his first wife all did their part toward upsetting Gauss’
health and making his life miserable in his early thirties. Nor
did a constitutional predisposition to hypochondria, aggravated
by incessant overwork, help matters. His unhappiness was
never shared with his friends, to whom he is always the serene
correspondent, but is confided — only once — to a private
mathematical manuscript. After his appointment to the direc-
torship at Gdttingen in 1807 Gauss returned occasionally for
three years to one of the great things noted in his diary. In a
manuscript on elliptic functions purely scientific matters are
suddenly interrupted by the finely pencilled words ‘Death were
dearer to me than such 2 life.” His work became his drug.

The years 1811-12 (Gauss was thirty-four in 1811) were
brighter. With a wife again to care for his young children Gauss
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began to have some peace. Then, almost exactly a year after
his second marriage, the great comet of 1811, first observed by
Gauss deep in the evening twilight of 22 August, blazed up
unannounced. Here was 2 worthy foe to test the weapons Gauss
had invented to subjugate the minor planets.

His weapons proved adequate. While the superstitious
peoples of Europe, following the blazing spectacle with awe-
struck eyes as the comet unlimbered its flaming scimitar in its
approach to the Sun, saw in the fiery blade a sharp warning
from Heaven that the King of Kings was wroth with Napoleon
and weary of the ruthless tyrant, Gauss had the satisfaction of
seeing the comet follow the path he had quickly calculated for
it to the last decimal. The following year the credulous also saw
their own prediction verified in the burning of Moscow and the
destruction of Napoleon’s Grand Army on the icy plains of
Russia.

This is one of those rare instances where the popular explana-
tion fits the facts and leads to more important consequences
than the scientific. Napoleon himself had a basely credulous
mind - he relied on ‘hunches’, reconciled his wholesale slaugh-
ters with a childlike faith in a beneficent, inscrutable Provi-
dence, and believed himself a Man of Destiny. It is not
impossible that the celestial spectacle of a harmless comet
flaunting its gorgeous tail across the sky left its impress on the
subconscious mind of a man like Napoleon and fuddled his
judgement. The almost superstitious reverence of such a man
for mathematics and mathematicians is no great credit to
either, although it has been frequently cited as one of the main
justifications for both.

Beyond a rather crass appreciation of the value of mathe-
maties in military affairs, where its utility is obvious even to 2
blind idiot, Napoleon had no conception of what mathematics
as practised by masters like his contemporaries, Lagrange,
Laplace, and Gauss, was all about. A quick student of trivial,
elementary mathematics at school, Napoleon turned to other
things too early to certify his promise and, mathematically,
never grew up. Although it seems incredible that a man’tof
Napoleon’s demonstrated capacity could so grossly under-
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estimate the difficulties of matters beyond his comprehension
as to patronize Laplace, it is a fact that he had the ludicrous
audacity to assure the author of the Mécanique céleste that he
would read the book the first free month he could find. Newton
and Gauss might have been equal to the task; Napoleon no
doubt could have turned the pages in his month without greatly
tiring himself.

It is a satisfaction to record that Gauss was too proud to
prostitute mathematics to Napoleon the Great by appealing to
the Emperor’s vanity and begging him in the name of his
notorious respect for all things mathematical to remit the
2,000-franc fine, as some of Gauss’ mistaken friends urged him
to do. Napoleon would probably have been flattered to exercise
his clemency. But Gauss could not forget Ferdinand’s death,
and he felt that both he and the mathematics he worshipped
were better off without the condescension of a Napoleon.

No sharper contrast between the mathematician and the
military genius can be found than that afforded by their
respective attitudes to a broken enemy. We have seen how
Napoleon treated Ferdinand. When Napoleon fell Gauss did
not exult. Calmly and with a detached interest he read every-
thing he could find about Napoleon’s life and did his best to
understand the workings of a mind like Napoleon’s. The effort
even gave him considerable amusement. Gauss had a keen
sense of humour, and the blunt realism which he had inherited
from his hard-working peasant ancestors also made it easy for
him to smile at heroics.

The year 1811 might have been a landmark in mathematics
comparable to 1801 — the year in which the Disquisitiones
Arithmeticae appeared — had Gauss made public a discovery he
confided to Bessel. Having thoroughly understood complex
numbers and their geometrical representation as points on the
plane of analytic geometry, Gauss proposed himself the problem
of investigating what are to-day called analytic functions of
such numbers.

The complex number z - iy, where ¢ denotes v/ — 1, repre-
sents the point (2, y). For brevity # + iy will be denoted by the
single letter 2. As z, y independently take on real values in any
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prescribed continuous manner, the point ¥ wanders about over
the plane, obviously not at random but in a manner determined
by that in which @, y assume their values. Any expression con-
taining z, such as 22, or 1/, etc., which takes on a single definite
value when a value is assigned to 2, is called a uniform function
of z. We shall denote such a function by f(2). Thus if f(z) is the
particular function 22, so that here f(z) = (x + ty)* = a* +
2dxy + %2, = a® — y® + 2ixy (because i? = — 1), it is clear
Y

Xty

that when any value is assigned to z, namely to @ + 4y, for
example = 2,y = 8, so that ¥ = 2 4 8¢, precisely one value
of this f(z) is thereby determined; here, for 2 = 2 4 8{ we get
22 = — 5+ 1214,

Not all uniform functions f(z) are studied in the theory of
functions of a complex variable; the monogenic functions are
singled out for exhaustive discussion. The reason for this will be
stated after we have described what ‘monogenic’ means.

Let z move to another position, say to 2. The function f(z)
takes on another value, f(2’), obtained by substituting 2’ for 2.
The difference f(z') — f(z) of the new and old values of the func-
tion is now divided by the difference of the new and old values
of the variable, thus [f(z') — f(2)]/(z" — z), and, precisely as is
done in caleulating the slope of a graph to find the derivative of
the function the graph represents, we here let 2" approach z
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indefinitely, so that f(z') approaches f(z) simultaneously. But
here a remarkable new phenomenon appears.
There is not here 2 unique way in which 2’ can move into coin-
cidence with z, for 2’ may wander about all over the plane of
complex numbers by any of an infinity of different paths before
coming into coincidence with z. We should not expect the
limiting value of[f(2') — f(2)]/(z" — %) when 2’ coincides with z
to be the same for all of these paths, and in general it is not. But
if f(z) is such that the limiting value just described ¢s the same
for all paths by which 2’ moves into coincidence with 2, then
J () is said to be monogenic at z (or at the point representing z).
Uniformity (previously described) and monogenicity are distin-
guishing features of analytic functions of a complex variable.
Some idea of the importance of analytic functions can be
inferred from the fact that vast tracts of the theories of fluid
motion (also of mathematical electricity and representation by
maps which do not distort angles) are naturally handled by the
theory of aralytic functions of a complex variable. Suppose such
a function f(2) is separated into its ‘real’ part (that which does
not contain the ‘imaginary unit’ ¢) and its ‘imaginary’ part, say
f(®) = U + V. For the special analytic function z* we have
U = a® — 2, V = 2zy. Imagine a film of fluid streaming over a
plane. If the motion of the fluid is without vortices, a stream
line of the motlion is obtainable from some analytic function
f(z) by plotting the curve U = a, in which « is any real number,
and likewise the equipotential lines are obtainable from ¥ = b
(b any real number). Letting a, b range, we thus get a complete
picture of the motion for as large an area as we wish. For a given
situation, say that of a fluid streaming round an obstacle, the
hard part of the problem is to find what analytic function to
choose, and the whole matter has been gone at largely back-
wards: the simple analytic functions have been investigated
and the physical problems which they fit have been sought.
Curiously enough, many of these artificially prepared problems
have proved of the greatest service in aerodynamics and other
practical applications of the theory of fluid motion. '
The theory of analytic functions of a complex variable was
one of the greatest fields of mathematical triumphs in the nine-
274



THE PRINCE OF MATHEMATICIANS

teenth century. Gauss in his letter to Bessel states what
amounts to the fundamental theorem in this vast theory, but he
hid it away to be rediscovered by Cauchy and later Weijerstrass.
As this is a landmark in the history of mathematical analysis
we shall briefly describe it, omitting all refinements that would
be demanded in an exact formulation.

Imagine the complex variable z tracing out a closed curve of
finite length without loops or kinks. We have an intuitive
notion of what we mean by the ‘length’ of a piece of this curve.

Py
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Mark n points P,, P,, ... , P, on the curve so that each of the
pieces P, P,, P,P,, P,P,, ..., P, P, is not greater than some
preassigned finite length /. On each of these pieces choose a
point, not at either end of the piece; form the value of f(z) for
the value of z corresponding to the point, and multiply this
value by the length of the piece in which the point lies. Do the
like for all the pieces, and add the results. Finally take the
limiting value of this sum as the number of pieces is indefinitely
increased. This gives the ‘line integral’ of f(z) for the curve.

When will this line integral be zero? In order that the line
integral shall be zero it is sufficient that f(z) be analytic (uniform
and monogenic) at every point 2 on the curve and inside the
curve.

Such is the great theorem which Gauss communicated to
Bessel in 1811 and which, with another theorem of a similar
kind, in the hands of Cauchy who rediscovered it independently,
was to yield many of the important results of analysis as
corollaries.
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Astronomy did not absorb the whole of Gauss’ prodigious
energies in his middle thirties. The year 1812, which saw
Napoleon’s Grand Army fighting a desperate rear-guard action
across the frozen plains, witnessed the publication of another
great work by Gauss, that on the hypergeometric series

ab a(a + 1)b(b + 1)a?
I+ ot eI nixe

see s

the dots meaning that the series continues indefinitely accord-
ing to the law indicated; the next term is

a(a 4+ 1) (a + 2)b(db + 1) (b + 2) a®
o(c 4+ 1) (¢ + 2) 1x2x8

This memoir is another landmark. As has already been noted
Gauss was the first of the modern rigorists. In this work he
determined the restrictions that must be imposed on the
numbers a, b. ¢, # in order that the series shall converge (in the
sense explained earlier in this chapter). The series itself was no
mere textbook exercise that may be investigated to gain skill
in analytical manipulations and then be forgotten. It includes
as special cases — obtained by assigning specific values to one or
more of a, b, ¢, # — many of the most important series in
analysis, for example those by which logarithrms, the trigono-
metric functions, and several of the functions that turn up
repeatedly in Newtonian astronomy and mathematical physics
are calculated and tabulated; the general binomial theorem
also is a special case. By disposing of this series in its general
form Gauss slew a multitude at one smash. From this work
developed many applications to the differential equations of
physics in the nineteenth century.

The choice of such an investigation for a serious effort is
characteristic of Gauss. He never published trivialities. When
he put out anything it was not only finished in itself but was
also so crammed with ideas that his successors were enabled to
apply what Gauss had invented to new problems. Although
limitations of space forbid discussion of the many instances of
this fundamental character of Gauss’ contributions to pure
mathematics, one cannot be passed over in even the briefest
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sketch: the work on the law of biquadratic reciprocity. The
importance of this was that it gave a new and totally unforeseen
direction to the higher arithmetic.

Having disposed of gquadratic (second degree) reciprocity, it
was natural for Gauss to comsider the general question of
binomial congruences of any degree. If m is a given integer not
divisible by the prime p, and if » is a given positive integer, and
if further an integer z can be found such that 2® = m (mod p),
m is called an n-tc residue of p; when n = 4, m is a biquadratic
residue of p.

The case of quadratic binomial congruences (n = 2) suggests
but little to do when n exceeds 2. One of the matters Gauss was
to have included in the discarded eighth section (or possibly,
as he told Sophie Germain, in the projected but unachieved
second volume) of the Disquisitiones Arithmeticae was a discus-
sion of these higher congruences and a search for the corre-
sponding laws of reciprocity, namely the inlerconnexions (as to
solvability or non-solvability) of the pair 2" = p (mod g),
2" = ¢ (mod p), where p, q are rational primes. In particular the
cases n = 8, n = 4 were to have been investigated.

The memoir of 1825 breaks new ground with all the boldness
of the great pioneers. After many false starts which led to
intolerable complexity Gauss discovered the ‘natural’ way to
the heart of his problem. The rational integers 1, 2, 8, ... are
not those appropriate to the statement of the law of biquadratic
reciprocity, as they are for quadratic; a totally new species of
tntegers must be invented. These are called the Gaussian complex
integers and are all those complex numbers of the form a + bi
in which @, b are rational integers and i denotes v o —1.

To state the law of biquadratic reciprocity an exhaustive
preliminary discussion of the laws of arithmetical divisibility
for such complex integers is necessary. Gauss gave this, thereby
inaugurating the theory of algebraic numbers — that which he
probably had in mind when he gave his estimate of Fermat’s
Last Theorem. For cubic reciprocity (n = 8) he also found the

right way in a similar manner. His work on this was found in
his posthumous papers.

The significance of this great advance will become clearer
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when we follow the careers of Kummer and Dedekind. For the
moment it is sufficient to say that Gauss’ favourite disciple,
Eisenstein, disposed of cubic reciprocity. He further discovered
an astonishing connexion between the law of biquadratic reci-
procity and certain parts of the theory of elliptic functions, in
which Gauss had travelled far but had refrained from disclosing
what he found.

Gaussian complex infegers are of course a sub-class of all
complex numbers, and it might be thought that the algebraic
theory of all the numbers would yield the arithmetical theory of
the included iniegers as a trivial detail. Such is by no means the
case. Compared to the arithmetical theory the algebraic is
childishly easy. Perhaps a reason why this should be so is
suggested by the rational numbers (numbers of the form a/b
where a, b are rational integers). We can always divide one
rational number by another and get another rational number;
afb divided by c/d yields the rational number ad/bc. But a
rational infeger divided by another rational integer is not always
another rational integer: 7 divided by 8 gives §. Hence if we
must restrict ourselves to infegers, the case of interest for the
theory of numbers, we have tied our hands and hobbled our
feet before we start. This is one of the reasons why the higher
arithmetic is harder than algebra, higher or elementary.

Equally significant advances in geometry and the applica-
tions of mathematics to geodesy, the Newtonian theory of
attraction, and electromagnetism were also to be made by
Gauss. How was it possible for one man to accomplish this
colossal mass of work of the highest order? With characteristic
modesty Gauss declared that ‘If others would but reflect on
mathematical truths as deeply and as continuously as I have,
they would make my discoveries.” Possibly. Gauss’ explanation
recalls Newton’s. Asked how he had made discoveries in
astronomy surpassing those of all his predecessors, Newton
replied, ‘By always thinking about them’. This may have been
plain to Newton; it is not to ordinary mortals.

Part of the riddle of Gauss is answered by his involuntary
preoccupation with mathematical ideas — which itself of course
demands explanation. As a young man Gauss would be ‘seized’
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by mathematics. Conversing with friends he would suddenly go
silent, overwhelmed by thoughts beyond his control, 2and stand
staring rigidly oblivious of his surroundings. Later he controlled
his thoughts ~ or they lost their control over him — and he
consciously directed all his energies to the solution of a diffi-
culty till he succeeded. A problem once grasped was never
released till he had conquered it, although several might be in
the foreground of his attention simultaneously.

In one such instance (referring to the Disquisitiones, page
636) he relates how for four years scarcely a week passed that
he did not spend some time trying to settle whether a certain
sign should be plus or minus. The solution finally came of itself
in a flash. But to imagine that it would have blazed out of itself
like a new star without the ‘wasted’ hours is to miss the point
entirely. Often after spending days or weeks fruitlessly over
some research Gauss would find on resuming work after a
sleepless night that the obscurity had vanished and the whole
solution shone clear in his mind. The capacity for intense and
prolonged concentration was part of his secret.

In this ability to forget himself in the world of his own
thoughts Gauss resembles both Archimedes and Newton. In
two further respects he also measures up to them, his gifts for
precise observation and a scientific inventiveness which enabled
him to devise the instruments necessary for his scientific
researches. To Gauss geodesy owes the invention of the helio-
trope, an ingenious device by which signals could be trans-
mitted practically instantaneously by means of reflected light.
For its time the heliotrope was a long step forward, The
astronomical instruments he used also received notable im-
provements at Gauss’ hands. For use in his fundamental
researches in electromagnetism Gauss invented the bifilar
magnetometer. And as a final example of his mechanical
ingenuity it may be recalled that Gauss in 1833 invented the
electric telegraph and that he and his fellow worker Wilhelm
Weber (1804-91) used it as a matter of course in sending mes-
sages. The combination of mathematical genius with first-rate
experimental ability is one of the rarest in all science.

Gauss himsgelf cared but little for the possible practical uses
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of his inventions. Like Archimedes he preferred mathematics to
all the kingdoms of the earth; others might gather the tangible
fruits of his labours. But Weber, his collaborator in electro-
magnetic researches, saw clearly what the puny little telegraph
of Gottingen meant for civilization. The railway, we recall, was
just coming into its own in the early 1830’s. ‘When the globe is
covered with a net of railroads and telegraph wires’, Wcber
prophesied in 1885, ‘this net will render services comparable
to those of the nervous system in the human body, partly as a
means of transport, partly as 2 means for the propagation of
ideas and sensations with the speed of lightning.’

The admiration of Gauss for Newton has already been noted.
Knowing the tremendous efforts some of his own masterpieces
had cost him, Gauss had a true appreciation of the long prepara-
tion and incessant meditation that went into Newton’s greatest
work. The story of Newton and the falling apple roused Gauss’
indignation. ‘Silly!” he exclaimed. ‘Believe the story if you like,
but the truth of the matter is this. A stupid, officious man asked
Newton how he discovered the law of gravitation. Seeing that
he had to deal with 2 child in intellect, and wanting to get rid
of the bore, Newton answered that an apple fell and hit him on
the nose. The man went away fully satisfied and completely
enlightened.’

The apple story has its echo in our own times. When teased
as to what led him to his theory of the gravitational field
Einstein replied that he asked a2 workman who had fallen off a
building, to land unhurt on a pile of straw, whether he noticed
the tug of the ‘force’ of gravity on the way down. On being told
that no force had tugged, Einstein immediately saw that
‘gravitation’ in a sufficiently small region of space-time can be
replaced by an acceleration of the observer’s (the falling work-
man’s) reference system. This story, if true, is also probably all
rot. What gave Einstein his idea was the hard labour he
expended for several years mastering the tensor caleulus of two
Italian mathematicians, Ricci and Levi-Civita, themselves
disciples of Riemann and Christoffel, both of whom in their turn
had been inspired by the geometrical work of Gauss.

Commenting on Archimedes, for whom he also had 2 bound-
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less admiration, Gauss remarked that he could not understand
how Archimedes failed to invent the decimal system of numera-
tion or its equivalent (with some base other than 10). The
thoroughly un-Greek work of Archimedes in devising a scheme
for writing and dealing with numbers far beyond the capacity
of the Greek symbolism had — according to Gauss — put the
decimal notation with its all-important principle of place-value
(325 = 8 X 102 + 2 X 10 + 5) in Archimedes’ hands. This
oversight Gauss regarded as the greatest calamity in the history
of science. “To what heights would science now be raised if
Archimedes had made that discovery! he exclaimed, thinking
of his own masses of arithmetical and astronomical calculations
which would have been impossible, even to him, without the
decimal notation. Having a full appreciation of the significance
for all science of improved methods of computation, Gauss
slaved over his own calculations till pages of figures were
reduced to a few lines which could be taken in almost at a
glance. He himself did much of his calculating mentally; the
improvements were intended for those less gifted than himself.

Unlike Newton in his later years, Gauss was never attracted
by the rewards of public office, although his keen interest and
sagacity in all matters pertaining to the sciences of statistics,
insurance, and ‘political arithmetic’ would have made him a
good minister of finance. Till his last illness he found complete
satisfaction in his science and his simple recreations. Wide
reading in the literatures of Europe and the classics of antiquity,
a critical interest in world politics, and the mastery of foreign
languages and new sciences (including botany and mineralogy)
were his hobbies.

English literature especially attracted him, although its
darker aspect as in Shakespeare’s tragedies was too much for
the great mathematician’s acute sensitiveness to all forms of
suffering, and he tried to pick his way through the happier
masterpieces. The novels of Sir Walter Scott (who was a con-
temporary of Gauss) were read eagerly as they came out, but
the unhappy ending of Kenilworth made Gauss wretched for
days and he regretted having read the story. One slip of Sir
Walter’s tickled the mathematical astronomer into delighted
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laughter, ‘the moon rises broad in the northwest’, and he went
about for days correcting all the copies he could find. Historical
works in English, particularly Gibbon’s Decline and Fall of the
Roman Empire and Macaulay’s History of England, gave him
special pleasure.

For his meteoric young contemporary Lord Byron, Gauss had
almost an aversion. Byron’s posturing, his reiterated world-
weariness, his affected misanthropy, and his romantic good
looks had captivated the sentimental Germans even more com-
pletely than they did the stolid British who — at least the older
males — thought Byron somewhat of a silly ass, Gauss saw
through Byron’s histrionics and disliked him. No man who
guzzled good brandy and pretty women as assiduously as
Byron did could be so very weary of the world as the naughty
young poet with the flashing eye and the shaking hand pre-
tended to be.

In the literature of his own country Gauss’ tastes were some-
what unusual for an intellectual German. Jean Paul was his
favourite German poet; Goethe and Schiller, whose lives partly
overlapped his own, he did not esteem very highly. Goethe, he
said, was unsatisfying. Being completely at variance with
Schiller’s philosophical tenets, Gauss disliked his poetry. He
called Resignation a blasphemous, corrupt poem and wrote
‘Mephistopheles!’ on the margin of his copy.

The facility with which he mastered languages in his youth
stayed with Gauss all his life. Languages were rather more to
him than a hobby. To test the plasticity of his mind as he grew
older he would deliberately acquire a new language. The exer-
cise, he believed, helped to keep his mind young. At the age of
sixty-two he began an intensive study of Russian without
assistance from anyone. Within two years he was reading
Russian prose and poetical works fluently, and carrying on his
correspondence with scientific friends in St Petersburg wholly
in Russian. In the opinion of Russians who visited him in
Gottingen he also spoke the language perfectly. Russian litera-
ture he put on 2 par with English for the pleasure it gave him.
He also tried Sanskrit but disliked it.

His third hobby, world politics, 2bsorbed an hour or so of his
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time every day. Visiting the literary museum regularly, he kept
abreast of events by reading all the newspapers to which the
museum subscribed, from the London T'imes to the Gottingen
local news.

In politics the intellectual aristocrat Gauss was conservative
through and through, but in no sense reactionary. His times
were turbulent, both in his own country and abroad. Mob rule
and acts of political violence roused in him — as his friend Von
Waltershausen reports — ‘an indescribable horror’. The Paris
revolt of 1848 filled him with dismay.

The son of poor parents himself, familiar from infancy with
the intelligence and morality of ‘the masses’, Gauss remembered
what he had observed, and his opinion of the intelligence,
morality, and political acumen of ‘the people’ — taken in the
mass, as demagogues find and take them — was extremely low.
‘Mundus vult decip?’ he believed a true saying.

This disbelief in the innate morality, integrity, and intelli-
gence of Rousseau’s ‘natural man’ when massed into a2 mob or
when dcliberating in cabinets, parliaments, congresses, and '
senates, was no doubt partly inspired by Gauss’ intimate
knowledge, as a man of science, of what ‘the natural man’ did
to the scientists of France in the early days of the French Revo-
lution. It may be true, as the revolutionists declared, that ‘the
people have no need of science’, but such a declaration to a man
of Gauss’ temperament was a challenge. Accepting the chal-
lenge, Gauss in his turn expressed his acid contempt for all
‘leaders of the people’ who lead the people into turmoil for their
own profit. As he aged he saw peace and simple contentment as
the only good things in any country. Should civil war break out
in Germany, he said, he would as soon be dead. Foi’eign con-
quest in the grand Napoleonic manner he looked upon as an
incomprehensible madness.

These conservative sentiments were not the nostalgia of a
reactionary who bids the world defy the laws of celestial
mechanics and stand still in the heavens of 2 dead and un-
changing past. Gauss believed in reforms — when they were
intelligent. And if brains are not to judge when reforms are
intelligent and when they are not, what organ of the human
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body is ? Gauss had brains enough to see where the ambitions
of some of the great statesmen of his own reforming generation
were taking Europe. The spectacle did not inspire his
confidence.

His more progressive friends ascribed Gauss’ conservatism
to the closeness with which he stuck to his work. This may have
had something to do with it. For the lagt twenty-seven years of
his life Gauss slept away from his observatory only once, when
he attended a scientific meeting in Berlin to please Alexander
von Humboldt who wished to show him off. But a man does not
always have to be flying about all over the map to see what is
going on. Brains and the ability to read newspapers (even when
they lie) and government reports (especially when they lie) are
sometimes better than any amount of sightseeing and hotel
lobby gossip. Gauss stayed at home, read, disbelieved most of
what he read, thought, and arrived at the truth.

Another source of Gauss’ strength was his scientific serenity
and his freedom from personal ambition. All his ambition was
for the advancement of mathematics. When rivals doubted his
assertion that he had anticipated them — not stated boastfully,
but as a fact germane to the matter in hand — Gauss did not
exhibit his diary to prove his priority but let his statement
stand on its own merits.

Legendre was the most outspoken of these doubters. One
experience made him Gauss’ enemy for life. In the Theoria
meotus Gauss had referred to his early discovery of the method
of least squares. Legendre published the method in 1806,
before Gauss. With great indignation he wrote to Gauss prac-
tically accusing him of dishonesty and complaining that Gauss,
so rich in discoveries, might have had the decency not to appro-
priate the method of least squares, which Legendre regarded as
his own ewe lamb. Laplace entered the quarrel. Whether he
believed the assurances of Gauss that Legendre had indeed
been anticipated by ten years or more, he does not say, but he
retains his usual suavity. Gauss apparently disdained to argue
the matter further. But in a letter to 2 friend he indicates the
evidence which might have ended the dispute then and there
had Gauss not been ‘too proud to fight’. ‘I communicated the
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whole matter to Olbers in 1802’, he says, and if Legendre had
been inclinded to doubt this he could have asked Olbers, who
had the manuscript.

The dispute was most unfortunate for the subsequent deve-
lopment of mathematics, as Legendre passed on his unjustified
suspicions to Jacobi and so prevented that dazzling young
developer of the theory of elliptic functions from coming to
cordial terms with Gauss. The misunderstanding was all the
more regrettable because Legendre was 2 man of the highest
character and scrupulously fair himself. It was his fate to be
surpassed by more imaginative mathematicians than himself
in the fields where most of his long and laborious life was spent
in toil which younger men — Gauss, Abel, and Jacobi — showed
to have been superfluous. At every step Gauss strode far ahead
of Legendre. Yet when Legendre accused him of unfair dealing
Gauss felt that he himself had been left in the lurch. Writing to
Schumacher (30 July 1806), he complains that ‘It seems to be
my fate to concur in nearly all my theoretical works with
Legendre. So it is in the higher arithmetic, in the researches in
transcendental functions connected with the rectification [the
process for finding the length of an are of a curve] of the ellipse,
in the foundations of geometry and now again here [in the
method of least squares, which] ... is also used in Legendre’s
work and indeed right gallantly carried through.’

With the detailed publication of Gauss’ posthumous papers
and much of his correspondence in recent years all these old
disputes have been settled once for all in favour of Gauss. There
remains another score on which he has been criticized, his lack
of cordiality in welcoming the great work of others, particularly
of younger men. When Cauchy began publishing his brilliant
discoveries in the theory of functions of a complex variable,
Gauss ignored them. No word of praise or emcouragement came
from the Prince of Mathematicians to the young Frenchman.
Well, why should it have come? Gauss himself (as we have seen)
had reached the heart of the matter years before Cauchy
started. A memoir on the theory was to have been one of Gauss’
masterpieces. Again, when Hamilton’s work on quaternions
(to be considered in a later chapter) came to his attention in
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1852, three years before his death, Gauss said nothing. Why
should he have said anything? The crux of the matter lay buried
in his notes of more than thirty years before. He held his peace
and made no claim for priority. As in his anticipations of the
theory of functions of a complex variable, elliptic functions, and
non-Euclidean geometry, Gauss was content to'have done the
work.

The gist of quaternions is the algebra which does for rotations
in space of three dimensions what the algebra of complex
numbers does for rotations in a plane. Butin quaternions (Gauss
called them mutations) one of the fundamental rules of algebra
breaks down: it is no longer true that ¢ X b = b X a, and it is
impossible to make an algebra of rotations in three dimensions
in which this rule is preserved. Hamilton, one of the great
mathematical geniuses of the nineteenth century, records with .
Irish exuberance how he struggled for fifteen years to invent a
consistent algebra to do what was required until a happy
inspiration gave him the clue that ¢ X bisnot equaltod X a
in the algebra he was seeking. Gauss does not state how long it
took him to reach the goal; he merely records his success in a
few pages of algebra that leave no mathematics to the
imagination.

If Gauss was somewhat cool in his printed expressions of
appreciation he was cordial enough in his correspondence and
in his scientific relations with those who sought him out in 2
spirit of disinterested inquiry. One of his scientific friendships
is of more than mathematical interest as it shows the liberality
of Gauss’ views regarding women scientific workers. His broad-
mindedness in this respect would have been remarkable for any
man of his generation; for a German it was almost without
precedent.

The lady in question was Mademoiselle Sophie Germain
(1776-1831) — just a year older than Gauss. She and Gauss
never met, and she died (in Paris) before the University of
Gottingen could confer the honorary doctor’s degree which
Gauss recommended to the faculty. By a curious coincidence
we shall see the most celebrated woman mathematician of the
nineteenth century, another Sophie, getting her degree from the
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same liberal University many years later after Berlin had
refused her on account of her sex. Sophie appears to be a lucky
name in mathematics for women — provided they affiliate with
broadminded teachers. The leading woman mathematician of
our own times, Emmy Noether (1882-1935) also came from
Gottingen.* ' .

Sophie Germain’s scientific interests embraced acoustics, the
mathematical theory of elasticity, and the higher arithmetic, in
all of which she did notable work. One contribution in particular
to the study of Fermat’s Last Theorem led in 1908 to a consider-
able advance in this direction by the American mathematician
Leonard Eugene Dickson (1874~ ).

Entranced by the Disquisitiones Arithmeticae, Sophie wrote
to Gauss some of her own arithmetical observations. Fearing
that Gauss might be prejudiced against a woman mathemati-
cian, she assumed a man’s name. Gauss formed a high opinion
of the talented correspondent whom he addressed in excellent
French as ‘Mr Leblanc’.

Leblanc dropped her — or his — disguise when she was forced
to divulge her true name to Gauss on the occasion of her having
done him a good turn with the French infesting Hanover.
Writing on 80 April 1807, Gauss thanks his correspondent for
her intervention on his behalf with the French General Pernety
and deplores the war. Continuing, he pays her a high compli-
ment and expresses something of his own love for the theory of
numbers. As the latter is particularly of interest we shall quote
from this letter which shows Gauss in one of his cordially human
moods.

‘But how describe to you my admiration and astonishment at
seeing my esteemed correspondent Mr Leblanc metamorphose
himself into this illustrious personage (Sophie Germain) who
gives such a brilliant example of what I would find it difficult

* ‘Came from’ is right. When the sagacious Nazis expelled Friulein
Noether from Germany because she was a Jewess, Bryn Mawr
College, Pennsylvania, took her in. She was the most creative
abstract algebraist in the world. In less than a week of the new Ger-
man enlightenment, Gottingen lost the liberality which Gauss
cherished and which he strove all his life to maintain.
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to believe. A taste for the abstract sciences in general and above
all the mysteries of numbers is excessively rare: one is not
astonished at it; the enchanting charms of this sublime science
reveal themselves only to those who have the courage to go
deeply into it. But when a person of the sex which, according to
our customs and prejudices, must encounter infinitely more
difficulties than men to familiarize herself with these thorny
researches, succeeds nevertheless in surmounting these obs-
tacles and penetrating the most obscure parts of them, then
without doubt she must have the noblest courage, quite extra-
ordinary talents and a superior genius. Indeed nothing could
prove to me in so flattering and less equivocal manner that the
attractions of this science, which has enriched my life with so
many joys, are not chimerical, as the predilection with which
you have honoured it.” He then goes on to discuss mathematics
with her. A delightful touch is the date at the end of the letter:
‘Bronsvic ce 30 Avril 1807 jour de ma naissance — Brunswick,
this 30th of April, 1807, my birthday.’

That Gauss was not merely being polite to a young woman
admirer is shown by a letter of 21 July 1807 to his friend
Olbers. ‘... Lagrange is warmly interested in astronomy and
the higher arithmetic; the two test-theorems (for what primes 2
is a cubic or 2 biquadratic residue), which I also communicated
to him some time ago, he considers “among the most beautiful
things and the most difficult to prove”. But Sophie Germain has
sent me the proofs of these; I have not yet been able to go
through them, but I believe they are good; at least she had
attacked the matter from the right side, only somewhat more
diffusely than would be necessary. ...’ The theorems to which
Gauss refers are those stating for what odd primes p each of the
congruences 2® = 2 (mod p), z¢ == 2 (mod p) is solvable.

It would take 2 long book (possibly a longer one than would
be required for Newton) to describe all the outstanding contri-
butions of Gauss to mathematics, both pure and applied. Here
we can only refer to some of the more important works that
have not already been mentioned, and we shall select those
which have added new techniques to mathematics or which
rounded off outstanding problems. As a rough but convenient
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table of dates (from that adapted by the editors of Gauss’
works) we summarize the principal fields of Gauss® interests
after 1800 as follows: 1800-20, astronomy; 1820-30, geodesy,
the theories of surfaces, and conformal mapping; 1830-40,
mathematical physics, particularly electromagnetism, terres-
trial magnetism; and the theory of attraction according to the
Newtonian law; 1841-55, analysis situs, and the geometry asso-
ciated with functions of a complex variable.

During the period 1821-48 Gauss was scientific adviser to the
Hanoverian (Gottingen was then under the government of
Hanover) and Danish governments in an extensive geodetic
survey. Gauss threw himself into the work. His method of least
squares and his skill in devising schemes for handling masses of
numerical data had full scope but, more importantly, the prob-
lems arising in the precise survey of a portion of the earth’s
surface undoubtedly suggested deeper and more general prob-
lems connected with all curved surfaces. These researches
were to beget the mathematics of relativity. The subject was
not new: several of Gauss’ predecessors, notably Euler,
Lagrange, and Monge, had investigated geometry on certain
types of curved surfaces, but it remained for Gauss to attack
the problem in all its generality, and from his investigations the
first great period of differential geometry developed.

Differential geometry may be roughly described as the study
of properties of curves, surfaces, etc., in the immediate neigh-
bourhood of a point, so that higher powers than the second of
distances can be neglected. Inspired by this work, Riemann in
1854 produced his classic dissertation on the hypotheses which
lie at the foundations of geometry, which, in its turn, began the
second great period in differential geometry, that which is to-
day of use in mathematical physics, particularly in the theory
of general relativity.

Three of the problems which Gauss considered in his work on
surfaces suggested general theories of mathematical and scien-
tific importance: the measurement of curvature, the theory of
conformal representation (or mapping), and the applicability of
surfaces.

The unnecessarily mystical motion of a ‘curved’ space-time,
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which is 2 purely mathematical extension of familiar, visualiz-
able curvature to a ‘space’ described by four co-ordinates
instead of two, was a natural development of Gauss’ work on
curved surfaces. One of his definitions will illustrate the reason-
ableness of all. The problem is to devise some precise means for
describing how the ‘curvature’ of a surface varies from point to
point of the surface; the description must satisfy our intuitive
feeling for what ‘more curved’ and ‘less curved’ signify.

The total curvature of any part of a surface bounded by an
unlooped closed curve C is defined as follows. The normal to a

surface at a given point is that straight line passing through the
point which is perpendicular to the plane which touches the
surface at the given point. At each point of C there is 2 normal
to the surface. Imagine all these normals drawn. Now, from the
centre of a sphere (which may be anywhere with reference to the
surface being considered), whose radius is equal to the unit
length, imagine all the radii drawn which are parallel to the
normals to C. These radii will cut out a curve, say C’, on the
sphere of unit radius. The area of that part of the spherical
surface which is enclosed by C”is defined to be the fotal curvature
of the part of the given surface which is enclosed by C. A little
visualization will show that this definition accords with com-
mon notions as required.

Another fundamental idea exploited by Gauss in his study of
surfaces was that of parametric representation.
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It requires two co-ordinates to specify a particular point on a
plane. Likewise on the surface of a sphere, or on a spheroid like
the Earth: the co-ordinates in this case may be thought of as
latitude and longitude. This illustrates what is meant by a #wo-
dimensional manifold. Generally: if precisely n numbers are
both necessary and sufficient to specify (individualize) each
particular member of a class of things (points, sounds, colours,
lines, etc.,) the class is said to be an n-dimensional manifold. In
such specifications it is agreed that only certain characteristics
of the members of the class shall be assigned numbers. Thus if
we consider only the pitch of sounds, we have a one-dimen-
sional manifold, because one number, the frequency of the
vibration corresponding to the sound, suffices to determine the
pitch; if we add loudness — measured on some convenient seale —
sounds are now a two-dimensional manifold, and so on. If now
we regard a surface as being made up of points, we see thatitis a
two-dimensional manifold (of points). Using the language of
geometry we find it convenient to speak of any two-dimen-
sional manifold as a ‘surface’, and to apply to the manifold the
reasoning of geometry — in the hope of finding something
interesting.

The foregoing considerations lead to the parame’a‘ic repre-
sentation of surfaces. In Descartes’ geometry one equation be-
tween three co-ordinates represents a surface. Say the co-ordi-
nates (Cartesian) are 2, y, z. Instead of using a single equation
connecting x,y,z to represent the surface, we now seek three:

a = f(u,0), y = g(u,0), 2 = h(u,v),
where f(u,0), g(u,v), h(u,v) are such functions (expressions) of the
new variables u,0 that when these variables are eliminated (got
rid of — ‘put over the threshold’ literally) there results between
x,Y,3 the equation of the surface. The elimination is possible,
because fwo of the equations can be used to solve for the two
unknowns u,v; the results can then be substituted in the third.
For example, if

X=uU+ 0,y =u—708=17TuU,
we get u = }(x + y), v = }(x — y) from the first two, and hence
4z = 2® — y? from the third. Now as the variables u, v indepen-
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dently run through any preseribed set of numbers, the functions
f»g,h will take on numerical values and #.,y,% will move on the
surface whose equations are the three written above. The
variables u,v are called the parameters for the surface, and the
three equations @ = f(u,0), y = g(u,0), ¥ = h(u,v) their para-
metric equations. This method of representing surfaces has
great advantages over the Cartesian when applied to the study
of curvature and other properties of surfaces which vary rapidly
from point to point.

Notice that the parametric representation is nirinsic; it
refers to the surface itself for its co-ordinates, and not to an
extrinsic, or extraneous, set of axes, not connected with the
surface, as is the case in Descartes’ method. Observe also that
the fwo parameters u, v immediately show up the two-dimen-
sionality of the surface. Latitude and longitude on the earth are
instances of these intrinsic, ‘natural’ co-ordinates; it would be
most awkward to have to do all our navigation with reference
to three mutually perpendicular axes drawn through the centre
of the Earth, as would be required for Cartesian sailing.

Another advantage of the method is its easy generalization
to 2 space of any number of dimensions. It suffices to increase
the number of parameters and proceed as before. When we come
to Riemann we shall see how these simple ideas led naturally to
2 generalization of the metric geometry of Pythagoras and
Euclid. The foundations of this generalization were laid down
by Gauss, but their importance for mathematics and physical
science was not fully appreciated till our own century.

Geodetic researches also suggested to Gauss the development
of another powerful method in geometry, that of conformal
mapping. Before a map can be drawn, say of Greenland, it is
necessary to determine what is to be preserved. Are distances
to be distorted, as they are on Mercator’s projection, till Green-
land assumes an exaggerated importance in comparison with
North America? -Or are distances to be preserved, so that one
inch on the map, measured anywhere along the reference lines
(say those for latitude and longitude) shall always correspond
to the same distance measured on the surface of the earth? If
so, one kind of mapping is demanded, and this kind will not
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preserve some other feature that we may wish to preserve; for
example, if two roads on the earth intersect at a certain angle,
the lines representing these roads on the map will intersect at a
different angle. That kind of mapping which preserves angles is
called conformal. In such mapping the theory of analytic func-
tions of a complex variable, described earlier, is the most useful
tool. ’

The whole subject of conformal mapping is of constant use in
mathematical physics and its applications, for example in
electrostatics, hydrodynamics and its offspring aerodynamics,
in the last of which it plays a part in the theory of the airfoil.

Another field of geometry which Gauss cultivated with his
usual thoroughness and success was that of the applicability of
surfaces, in which it is required to determine what surfaces can
be bent on to a given surface without stretching or tearing.
Here again the methods Gauss invented were general and of
wide utility.

To other departments of science Gauss contributed funda-
mental researches, for example in the mathematical theories of
electromagnetism, including terrestrial magnetism, capillarity,
the attraction of ellipsoids (the planets are ellipsoids of special
kinds) where the law of attraction is the Newtonian, and
dioptrics, especially concerning systems of lenses. The last gave
him an opportunity to apply some of the purely abstract tech-
nique (continued fractions) he had developed as a young man to
satisfy his curiosity in the theory of numbers.

Gauss not only mathematicized sublimely about all these
things; he used his hands and his eyes, and was an extremely
accurate observer. Many of the specific theorems he discovered,
particularly in his researches on electromagnetism and the
theory of attraction, have become part of the indispensable
stock in trade of all who work seriously in physical science. For
many years Gauss, aided by his friend Weber, sought a satis-
fying theory for all electromagnetic phenomena. Failing to find
one that he considered satisfactory, he abandoned his attempt.
Had he found Clerk Maxwell’s (1831+79) equations of the
electromagnetic field he might have been satisfied.

To conclude this long but still far from complete list of the
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great things that earned Gauss the undisputed title of Prince of
Mathematicians we must allude to a subject on which he pub-
lished nothing beyond a passing mention in his dissertation of
1799, but which he predicted would become one of the chief
concerns of mathematics — analysis situs. A technical definition
of what this means is impossible here (it requires the notion of a
continuous group), but some hint of the type of problem with
which the subject deals can be gathered from a simple instance.
Any sort of a knot is tied in a string, and the ends of the string
are then tied together. A ‘simple’ knot is easily distinguishable
by eye from a ‘complicated’ one, but how are we to give an
exact, mathematical specification of the difference between the
two? And how are we to classify knots mathematically?
Although he published nothing on this, Gauss had made 2 be-
ginning, as was discovered in his posthumous papers. Another
type of problem in this subject is to determine the least number
of cuts on a given surface which will enable us to flatten the
surface out on a plane. For a conical surface one cut suffices;
for an anchor ring, two; for a sphere, no finite number of cuts
suffices if no stretching is permitted.

These examples may suggest that the whole subject is trivial.
But if it had been, Gauss would not have attached the extra-
ordinary importance to it that he did. His prediction of its
fundamental character has been fulfilled in our own generation.
To-day a vigorous school (including many Americans — J. W.
Alexander, S. Lefschetz, O. Veblen, among others) is finding
that analysis situs, or the ‘geometry of position’ as it used
sometimes to be called, has far-reaching ramifications in both
geometry and analysis. What a pity it seems to us now that
Gauss could not have stolen a year or two from Ceres to orga-
nize his thoughts on this vast theory which was to become the
dream of his old age and a reality of our own young age.

His last years were full of honour, but he was not as happy as
he had earned the right to be. As powerful of mind and as proli-
fically inventive as he had ever been, Gauss was not eager for
rest when the first symptoms of his last illness appeared some
months before his death.

A narrow escape from a violent death had made him more
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reserved than ever, and he could not bring himself to speak of
the sudden passing of a friend. For the first time in more than
twenty years he had left GSttingen on 16 June 1854 to see the
railway under construction between his town and Cassel. Gauss
had always taken a keen interest in the construction and opera-
tion of railroads; now he would see one being built. The horses
bolted; he was thrown from his carriage, unhurt, but badly
shocked. He recovered, and had the pleasure of witnessing the
opening ceremonies when the railway reached Gottingen on
31 July 1854. It was his last day of comfort.

With the opening of the new year he began to suffer greatly
from an enlarged heart and shortness of breath, and symptoms
of dropsy appeared. Nevertheless he worked when he could,
although his hand cramped and his beautifully clear writing
broke at last. The last letter he wrote was to Sir David Brewster
on the discovery of the electric telegraph.

Fully conscious almost to the end he died peacefully, after a
severe struggle to live, early on the morning of 23 February 1855,
in his seventy-eighth year. He lives everywhere in mathematics.



CHAPTER FIFTEEN
MATHEMATICS AND WINDMILLS

Cauchy

IN the first three decades of the nineteenth century mathe-
matics quite suddenly became something noticeably different
from what it had been in the heroic post-Newtonian age of the
eighteenth. The change was in the direction of greater rigour in
demonstration following an unprecedented generality and free-
dom of inventiveness. Something of the same sort is plainly
visible again to-day, and he would be a rash prophet who would
venture to forecast what mathematics will be like three-
quarters of a century hence.

At the beginning of the nineteenth century only Gauss had
any inkling of what was so soon to come, but his Newtonian
reserve held him back from telling Lagrange, Laplace, and
Legendre what he foresaw. Although the great French mathe-
maticians lived well into the first third ofthenineteenth century
much of their work now appears to have been preparatory.
Lagrange in the theory of equations prepared the way for Abel
and Galois; Laplace, with his work on the differential equations
of Newtonian astronomy — including the theory of gravitation —
hinted at the phenomenal development of mathematical physics
in the nineteenth century; while Legendre’s researches in the
integral calculus suggested to Abel and Jacobi one of the mast
fertile fields of investigation analysis has ever acquired.
Lagrange’s analytical mechanies is still modern; but even it
was to receive magnificent additions at the hands of Hamilton
and Jacobi and, later, Poincaré. Lagrange’s work in the calculus
of variations was also to remain classic and useful, but again the
work of Weierstrass gave it a new direction under the rigorous,
inventive spirit of the latter half of the nineteenth century, and
this in its turn has been amplified and renovated in our own
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times (American and Italian mathematicians taking a leading
part in the development).

Augustin-Louis Cauchy, the first of the great French mathe-
maticians whose thought belongs definitely to the modern age,
was born in Paris on 21 August 1789 — a little less than six
weeks after the fall of the Bastille. A child of the Revolution, he
paid his tax to liberty and equality by growing up with an
undernourished body. It was only by the diplomacy and good
sense of his father that Cauchy survived at all in the midst of
semi-starvation. Having outlived the Terror, he graduated
from the Polytechnique into the service of Napoleon. After the
downfall of the Napoleonic order Cauchy got his full share of
deprivations from revolutions and counter-revolutions, and in a
measure his work was affected by the social unrest of his times.
If revolutions and the like do affect a scientific man’s work,
Cauchy should be the prize laboratory specimen for proving the
fact. He had an extraordinary fertility in mathematical inven-
tiveness and a fecundity that has been surpassed only twice —
by Euler and Cayley. His work, like his times, was revo-
lutionary.

Modern mathematics is indebted to Cauchy for two of its
major interests, each of which marks a sharp break with the
mathematics of the eighteenth century. The first was the intro-
duction of rigour into mathematical analysis. It is difficult to
find an adequate simile for the magnitude of this advance;
perhaps the following will do. Suppose that for centuries an
entire people has been worshipping false gods and that suddenly
their error is revealed to them. Before the introduction of rigour
mathematical analysis was a whole pantheon of false gods. In
this Cauchy was one of the great pioneers with Gauss and Abel.
Gauss might have taken the lead long before Cauchy entered
the field, but did not, and it was Cauchy’s habit of rapid publ-
cation and his gift for effective teaching which really got rigour

' in mathematical analysis accepted.

The second thing of fundamental importance which Cauchy
added to mathematics was on the opposite side — the combina-
torial. Seizing on the heart of Lagrange’s method in the theory
of equations, Cauchy made it abstract and began the systematic
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creation of the theory of groups. The nature of this will be
described later; for the moment we note only the modernity of
Cauchy’s outlook.

Without enquiring whether the thing he invented had any
application or not, even to other branches of mathematics,
Cauchy developed it on its own merits as an abstract system.
His predecessors, with the exception of the universal Euler who
was as willing to write a memoir on a puzzle in numbers as on
hydraulics or the ‘system of the world’, had found their inspira-
tion growing out of the applications of mathematics. This state-
ment of course has numerous exceptions, notably in arithmetic;
but before the time of Cauchy few if any sought profitable dis-
coveries in the mere manipulations of algebra. Cauchy looked
deeper, saw the operations and their laws of combination beneath
the symmetries of algebraic formulas, isolated them, and was
led to the theory of groups. To-day this elemenilary yet intricate
theory is of fundamental importance in many fields of pure and
applied mathematics, from the theory of algebraic equations to
geometry and the theory of atomic structure. It is at the bottom
of the geometry of crystals, to mention but one of its applica-
tions. Its later developments (on the analytical side) extend far
into higher mechanics and the modern theory of differential
equations.

Cauchy’s life and character affect us like poor Don Quixote’s

we sometimes do not know whether to laugh or to ery, and
compromise by swearing. His father, Louis-Francois, was a
paragon of virtue and piety, both excellent things in their way,
but easily overdone. Heaven only knows how Cauchy senior
escaped the guillotine; for he was a parliamentary lawyer, a
cultured gentleman, an accomplished classical and biblical
scholar, 2 bigoted Catholic, and a lieutenant of police in Paris
when the Bastille fell. Two years before the Revolution broke
he hadmarried Marie-Madeleine Desestre, an excellent, not very
intelligent woman who, like himself, was also a bigoted Catholic.

Augustin was the eldest of six children (two sons, four
daughters). From his parents Cauchy inherited and acquired all
the estimable qualities which make their lives read like one of
those charming love stories, insipid as stewed cucumbers, con-
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cocted for French schoolgirls under sixteen, in which the hero
and heroine are as pure and sexless as God’s holy angels. With
parents such as his it was perhaps natural that Cauchy should
have grown up to be the obstinate Quixote of French Catholic-
ism in the 1830’s and 1840’s when the Church was on the
defensive. He suffered for his religion, and for that he deserves
respect (possibly even if he was the smug hypocrite his col-
leagues accused him of being), but he also richly deserved to
suffer on more than one occasion. His everlasting preaching
about the beauty of holiness put people’s backs up and engen-
dered an opposition to his pious scémes which they did not
always deserve. Abel, himself the son of a minister and a2 decent
enough Christian, expressed the general disgust which some of
Cauchy’s antics inspired when he wrote home, ‘Cauchy is a
bigoted Catholic — a strange thing for 2 man of science.” The
emphasis of course is on ‘bigoted’, not on the word it qualifies.
Two of the finest characters and greatest mathematicians we
shall meet, Weierstrass and Hermite, were Catholics. They were
devout but not bigoted.

Cauchy’s childhood fell in the bloodiest period of the Revolu-
tion. The schools were closed. Having no need of science or
culture at the moment, the Commune either left the cultured
and men of science to starve or carted them off to the guillotine.
To escape the obvious danger Cauchy senior moved his family
to his country place in the village of Arcueil. There he sat out
the Terror, half starved himself and feeding his wife and infant
largely from what scanty fruits and vegetables he could raise.
As a consequence Cauchy grew up delicate and under-developed
physically. He was nearly twenty before he began to recover
from this early malnutrition, and all his life had to watch his
health.

This retreat, gradually becoming less strict, lasted nearly
eleven years, during which Cauchy senior undertook the educa-
tion of his children. He wrote his own textbooks, several of them
in the fluent verse of which he was master. Verse, he believed,'
made grammar, history, and, above all, morals less repulsive
to the juvenile mind. Young Cauchy thus acquired his own
uncontrolled fluency in both French and Latin verse which he
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indulged all his life. His verse abounds in noble sentiments
loftily expressed and admirably reflects the piety of his blame-
less life, but is otherwise undistinguished. A large share of the
lessons was devoted to narrow religious instruction, in which
the mother assisted ably.

Arcueil adjoined the imposing estates of the Marquis Laplace
and Count Claude-Louis Berthollet (1748-1822), the distin-
guished and eccentric chemist who kept his head in the Terror
because he knew all about gunpowder. The two were great
friends. Their gardens were separated by a2 common wall with
a gate to which each had 2 key. In spite of the fact that both
the mathematician and the chemist were anything but pious,
Cauchy senior scraped an acquaintance with his distinguished
and well-fed neighbours.

Berthollet never went anywhere. Laplace was more sociable
and presently began dropping in at his friend’s cottage, where
be was struck by the spectacle of young Cauchy, too feeble
physically to be tearing round like a properly nourished boy,
poring over his books and papers like a penitent monk and
seeming to enjoy it. Before long Laplace discovered that the
boy had a phenomenal mathematical talent and advised him
to husband his strength. Within a few years Laplace was to be
listenihg apprehensively to Cauchy’s lectures on infinite series,
fearing that the bold young man’s discoveries in convergence
might have destroyed the whole vast edifice of his own celestial
mechanics. ‘The system of the world® came within a hairs-
breadth of going to smash that time; a slightly greater ellipti-
city of the Earth’s almost circular orbit, and the infinite series
on which Laplace had based his calculations would have
diverged. Luckily his astronomical intuition had preserved him
from disaster, as he discovered on rising with a sigh of infinite
relief after a prolonged testing of the convergence of all his
series by Cauchy’s methods.

On 1 January 1800 Cauchy senior, who had kept discreetly in
touch with Paris, was elected Secretary of the Senate. His office
was in the Luxembourg Palace. Young Cauchy shared the
office, using a corner as his study. Thus it came about that he
frequently saw Lagrange — then Professor at the Polytechnique
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— who dropped in frequently to discuss business with Secretary
Cauchy. Lagrange soon became interested in the boy and, like
Laplace, was struck by his mathematical talent. On one occa-
sion when Laplace and several other notables were present,
Lagrange pointed to young Cauchy in his corner and said, “You
see that little young man? Well! He will supplant all of us in so
far as we are mathematicians.’

To Cauchy senior Lagrange gave some sound advice, believ-
ing that the delicate boy might burn himself out:‘Don’t let him
touch a mathematical book till he is seventeen.” Lagrange
meant higher mathematics. And on another occasion: ‘If you
don’t hasten to give Augustin a solid literary education his
tastes will carry him away; he will be a great mathematician
but he won’t know how to write his own language.’ The father
took this advice from the greatest mathematician of the age to
heart and gave his son a sound literary education before turning
him loose on advanced mathematics.

After his father had done all he could for him, Cauchy
entered the Central School of the Panthéon, at about the age of
thirteen. Napoleon had instituted several prizes in the school
and a sort of grand sweepstakes prize for all the schools of
France in the same class. From the first Cauchy was the star of
the school, carrying off the first prizes in Greek, Latin composi-
tion, and Latin verse. On leaving the school in 1804 he won the
sweepstakes and a special prize in humanpities. The same year
Cauchy received his first communion, a solemn and beautiful
occasion in the life of any Catholic and trebly so to him.

For the next ten months he studied mathematics intensively
with a good tutor, and in 1805 at the age of sixteen passed
second into the Polytechnique. There his experiences were not
altogether happy among the ribald young scepi:ics who hazed
him unmercifully for making a public exhibition of his religious
observances. But Cauchy kept his temper and even tried to
convert some of his scorners.

From the Polytechnique Cauchy passed to the civil engineer-
ing school (Ponts et Chaussées) in 1807. Although only eighteen
he easily beat young men of twenty who had been two years in
the school, and was early marked for special service. On com-
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pleting his training in March 1810, Cauchy was at once given
an important commission. His ability and bold originality had
singled him out as a man for whom red tape should be cut, even
at the risk of lopping off some older man’s head in the process.
‘Whatever else may be said of Napoleon, he took ability where-
ever he found it.

In March 1810, when Cauchy left Paris, ‘light of baggage,
but full of hope’, for Cherbourg on his first commission, the
battle of Waterloo (18 June 1815) was still over five years in the
future, and Napoleon still confidently expected to take England
by the neck and rub its nose in its own fragrant sod. Before an
invasion could be launched an enormous fleet was necessary,
and this had yet to be built. Harbours and fortifications to
defend the shipyards from the seagoing British were the first
detail to be disposed of in the glamorous dream. Cherbourg for
many reasons was the logical point to begin all these grandiose
operations which were to hasten ‘the day of glory’ the French
had been yelling about ever since the fall of the Bastille. Hence
the gifted young Cauchy’s assignment to Cherbourg to become
a great military engineer.

In his light baggage Cauchy carried only four books, the
Mécanique céleste of Laplace, the T'raité des fonctions analy-
tiques of Lagrange, Thomas & Kempis’ Imifation of Christ, and a
copy of Virgil’s works — an unusual assortment for an ambitious
young military engineer. Lagrange’s treatise was to be the very
book which caused its author’s prophecy that ‘this young man
will supplant all of us’ to come true first, as it inspired Cauchy
to seek some theory of functions free from the glaring defects of
Lagrange’s.

The third on the list was to occasion Cauchy some distress,
for with it and his aggressive piety he rather got on the nerves of
his practical associates who were anxious to get on with their job
of killing. But Cauchy soon showed them by turning the other
cheek that he had at least read the book. “You’ll soon get over
all that’, they assured him. To which Cauchy replied by sweetly
asking them to point out what was wrong in his conduct and he
would gladly correct it. What answer this drew hasnot survived.

Rumours that her darling boy was fast becoming an infidel or
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worse reached the ears of his anxious mother. In a letter long
enough and full enough of pious sentiments to calm all the
mothers who ever sent their sons to the front or anywhere near
it Cauchy reassured her, and she was happy once more. The
conclusion of the letter shows that the holy Cauchy was quite
capable of holding his own against his tormentors, who had
hinted he was slightly cracked.

‘It is therefore ridiculous to suppose that religion can turn
anybody’s head, and if all the mnsane were sent to insane
asylums, more philosophers than Christians would be found
there.’ Is this a slip on Cauchy’s part, or did he really mean that
no Christians are philosophers? He signs off with a flash from
the other side of his head: ‘But enough of this —it is more profit-
able for me to work at certain Memoirs on Mathematics’. Pre-
cisely; but every time he saw a windmill waving its gigantic
arms against the sky he was off again full tilt. ~

Cauchy stayed approximately three years at Cherbourg.
Outside of his heavy duties his time was well spent. In a letter
of 8 July 1811, he describes his crowded life. ‘I get up at four
and am busy from morning to night. My ordinary work is aug-
mented this month by the arrival of the Spanish prisoners. We
had only eight days’ warning, and during those eight days we
had to build barracks and prepare camp beds for 1,200 men. ...
At last our prisoners are lodged and covered — since the last two
days. They have camp beds, straw, food, and count themselves
very fortunate. ... Work doesn’t tire me; on the contrary it
strengthens me and I 2am in perfect health.’

On top of all this good work pour la gloire de la belle France
Cauchy found time for research. As early as December 1810 he
had begun ‘to go over again all the branches of Mathematics,
beginning with Arithmetic and finishing with Astronomy,
clearing up obscurities, 2pplying [my own methods] to the sim-
plification of proofs and the discovery of new propositions.’
And still on top of this the amazing young man found time to
instruct others who begged for lessons so that they might rise
in their profession, and he even assisted the mayor of Cherbourg
by conducting school examinations. In this way he learned to
teach. He still had time for hobbies.
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The Moscow flasco of 1812, war against Prussia and Austria,
and the thorough drubbing he got at the battle of Leipzig in
October 1818 2ll distracted Napoleon’s attention from the
dream of invading England, and the works at Cherbourg lan-
guished. Cauchy returned to Paris in 1818, worn out by over-
work. He was then only twenty-four, but he had already
attracted the attention of the leading mathematicians of France
by his brilliant researches, particularly the memoir on poly-
hedra and that on symmetric functions. As the nature of both
is easily understood, and each offers suggestions of the very
first importance to the mathematics of to-day, we shall briefly
describe them.

The first is of only minor interest in itself. What is significant
regarding it to-day is the extraordinary acuteness of the critic-
ism which Malus levelled at it. By a curious historical coinci-
dence Malus was exactly 100 years ahead of his times in
objecting to Cauchy’s reasoning in the precise manner in which
he did. The Academy had proposed as its prize problem ‘To
perfect in some essential point the theory of polyhedra’, and
Lagrange had suggested this as a2 promising research for young
Cauchy to undertake. In February 1811 Cauchy submitted his
first memoir on the theory of polyhedra. This answered nega-
tively a question asked by Poinsot (1777-1859): is it possible
that regular polyhedra other than those having 4, 6, 8, 12, or
20 faces exist? In the second part of this memoir Cauchy
extended the formula of Euler, given in the school books on
solid geometry, connecting the number of edges (E), faces (F),
and vertices (V) of a polyhedron, E + 2 = F + V.

This work was printed. Legendre thought highly of it and
encouraged Cauchy to continue, which Cauchy did in a second
memoir (January 1812). Legendre and Malus (1775-1812) were
the referees. Legendre was enthusiastic and predicted great
things for the young author. But Malus was more reserved.

Etienne-Louis Malus was not a professional mathematician
but an ex-officer of engineers in Napoleon’s campaigns in Ger-
many and Egypt, who made himself famous by his accidental
discovery of the polarization of light by reflexion. So possibly
his objections struck young Cauchy as just the sort of captious
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criticisms to be expected from an obstinate physicist. In prov-
ing his most important theorems Cauchy had used the ‘indirect
method’ familiar to all beginners in geometry. It was to this
method of proof that Malus objected.

In proving a proposition by the indirect method, a contra-
diction is deduced from the assumed falsity of the proposition;
whence it follows, in Aristotelian logic, that the proposition is
true. Cauchy could not meet the objection by supplying direet
proofs, and Malus gave in — still unconvinced that Cauchy had
proved anything. When we come to the conclusion of the whole
story (in the last chapter) we shall see the same objection being
raised in other connexions by the intuitionists. If Malus failed
to make Cauchy see the point in 1812, Malus was avenged by
Brouwer in 1912 and thereafter when Brouwer succeeded in
meking some of Cauchy’s successors in mathematical analysis
at least see that there is a point to be seen. Aristotelian logic, as
Malus was trying to tell Cauchy, is not always a safe method of
reasoning in mathematies.

Passing to the theory of substituiions, begun systematically by
Cauchy, and elaborated by him in a long series of papers in the
middle 1840’s, which developed into the theory of finite groups,
we shall presently illustrate the underlying notions by a simple
example. First, however, the leading properties of a group of
operations may be described informally.

Operations will be denoted by capital letters, 4, B, C,
D, ...; and the performance of two operations in succession,
say 4 first, B second, will be indicated by juxtaposition thus,
AB. Note that B4, by what has just been said, means that B
is performed first, 4 second; so that 4B and B4 are not neces-
sarily the same operation. For example, if 4 is the operation
‘add 10 to a given number’, and B is the operalion ‘divide 2

10

given number by 10°, 4B applied to z gives 2t
x + 100
o
unequal; hence AB and B4 are distinct.
If the effects of two operations X, Y are the same, X and ¥
3805

, while B4

x
gives 1o + 10, or , and the resulting fractions are
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are said to be equal (or equivalent), and this is expressed by
writing X = Y.

The next fundamental notion is that of associativity. Let U,
Vv, W be any triple whatsoever of operations in the set. Then, if
(UV)W = U(VW), the set is said to satisfy the associative law.
By (UV)W is meant that UV is performed first, then, on the
result, W is performed; by U(V'W) is meant that U is performed
first, then, on the result of this VW is performed.

The last fundamental notion is that of an identical operation,
or an identity: an operation I which leaves unchanged whatever
it operates on is called an ideniity.

‘With these notions we can now state the simple postulates
which define a group of operations.

A set of operations I, 4, B,C, ... , X, Y, ... is said to form
a group if the postulates (1) — (4) are satisfied.

(1) There is a rule of combination applicable to any pair X,
Y of operations* in the set such that the result, denoted by XY,
of combining X, Y, in this order, according to the rule of com-
bination, is a uniquely determined operation in the set.

(2) For any three operations X, Y, Z in the set, the rule in (1)
is associative, namely (XY)Z = X(YZ).

(8) There is a2 unique identity I in the set, such that, for
every operation X in the set, IX = XI = X. ~

(4) If X is any operation in the set, there is in the set a unique
operation, say X, such that XX’ = I (it can be easily proved
that X’X = I also).

These postulates contain redundancies deducible from other
statements in (1) ~ (4), but in the form given the postulates are
easier to grasp. To illustrate a group we shall take 2 very simple
example relating to permutations (arrangements) of letters.
This may seem trivial, but such permutation or substitution
groups were found to be the long-sought clue to the algebraic
solvability of equations.

There are precisely six orders in which the three letters a,b,c
can be written, namely, abe, acb, bea, bac, cab, cba. Take any one
of these, say the first abe, as the initial order. By what permu-
tations of the letters can we pass from this to the remaining five

* The operations in a pair may be the same, thus X, X.
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arrangements? To pass from abc to acb it is sufficient to inter-
shange, or permute, b and c¢. To indicate the operation of permut-
ng b and ¢, we write (bc), which is read, ‘b into ¢, and c into b’.
From abc to bea we pass by a into b, b into ¢, and ¢ into a, which
is written (abc). The order abe itself is obtained from abe by no
change, namely a into a, b into b, ¢ into ¢, which is the identity
substitution and is denoted by I. Proceeding similarly with all
six orders
abe, ach, bea, bac, cab, cba,

we get the corresponding substitutions,
I, (be), (abe), (ab), (acb), (ac).

The ‘rule of combination’ in the postulates is here as follows.
Take any two of the substitutions, say (bc¢) and (acb), and con-
sider the effect of these applied successively in the order stated,
namely (bc) first and (acb) second: (be) carries b into ¢, then
(acb) carries ¢ into b. Thus b is left as it was. Take the next
letter, ¢, in (bc): by (be), ¢ is carried into b, which, by (acb) is
carried into a; thus c¢ is carried into a. Continuing, we see what
a is now carried into: (bc) leaves a as it was, but (ach) carries
a into c. Finally then the total effect of (bc) followed by (acb) is
seen to be (ca), which we indicate by writing (bc) (ach) = (ca) =
(ac).

In the same way it is easily verified that

(acb) (abc) = (abe) (ach) = I;

(abe) (ac) = (ab); (be) (ac) = (ach),
and so on for all possible pairs. Thus postulate (1) is satisfied for
these six substitutions, and it can be checked that (2), (8), (4)
are also satisfied.

All this is summed up in the ‘multiplication table’ of the
group, which we shall write out, denoting the substitutions by
the letters under them (to save space),

1, (be), (abe), (ab), (acb), (ac)
2 A» B; C, .D,
In reading the table any letter, say C, is taken from the left-
hand column, and any letter, say D, from the top row, and the
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entry, here 4, where the corresponding row and column inter-
sect is the result of CD. Thus CD = 4, DC = E, EA = B, and
50 on.

As an example we may verify the associative law for (4B)C
and 4(BC), which should be equal. First, 4B = C; hence
(AB)C = CC = I. Again BC = A4; hence A(BC) = 44 = I.
In the same way A(DB) = AI = A4;(AD)B = EB = 4; thus
(AD)B = A(DB).

I A B C D E

D D C 1 E B 4

E E B 4 D c I

The total number of distinct operations in a group is called
its order. Here six is the order of the group. By inspection of the
table we pick out several subgroups, for example,

I I 4 I B D
1 I I I A I I B D
A 4 I B B D I

308



MATHEMATICS AND WINDMILLS

which are of the respective orders one, two, three. This illus-
trates one of the fundamental theorems proved by Cauchy: the
order of any sub-group is a divisor of the order of the group.

The reader may find it amusing to try to construct groups of
orders other- than six. For any given order the number of
distinct groups (having different multiplication tables) is finite,
but what this number may be for any given order (the general
order n) is not known — nor likely to be in our lifetime. So at the
very beginning of a theory which on its surface is as simple as
dominoes we run into unsolved problems.

Having constructed the ‘multiplication table’ of a group, we
forget about its derivation from substitutions (if that happens
to be the way the table was made), and regard the table as
defining an abstract group; that is, the symbols I, 4, B, .. are
given no interpretation beyond that implied by the rule of
combination, as in CD = 4, DC = E, ete. This abstract point
of view is that now current. It was not Cauchy’s but was intro-
duced by Cayley in 1854..Nor were completely satisfactory sets
of postulates for groups stated till the first decade of the
twentieth century.

‘When the operations of a group are interpreted as substitu-
tions, or as the rotations of a rigid body, or in any other depart-
ment of mathematics to which groups are applicable, the
interpretation is called a realization of the abstract group defined
by.the multiplication table. A given abstract group may have
many diverse realizations. This is one of the reasons that
groups are of fundamental importance in modern mathematies:
‘one abstract, underlying structure (that summarized in the
multiplication table) of one and the same group is the essence
of several apparently unrelated theories, and by an intensive
study of the properties of the abstract group, a knowledge of
the theories in question and their mutual relationships is
obtained by one investigation instead of several.

To give but one instance, the set of all rotations which twirl
a regular icosahedron (twenty-sided regular solid) aboutl its
axes of symmetry, so that after any rotation of the set the
volume of the solid occupies the same space as before, forms 2
group, and this group of rotations, when expressed abstractly,
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is the same group as that which appears, under permutations
of the roots, when we attempt to solve the general equation of
the fifth degree. Further, this same group turns up (to antici-
pate slightly) in the theory of elliptic functions. This suggests
that although it is impossible to solve the general quintic
algebraically, the equation may be — and in fact is — solvable
in terms of the functions mentioned. Finally, all this can be
pictured geometrically by describing the rotations of an icosa-
hedron already mentioned. This beautiful unificatio was the
work of Felix Klein (1849-1925) in his book on the icosahedron
(1884).

Cauchy was one of the great pioneers in the theory of substi-
tution groups. Since his day an immense amount of work has
been done in the subject, and the theory itself has been vastly
extended by the accession of infinite groups — groups having
an infinity of operations which can be counted off 1,2,8, ... ,
and further, to groups of coniinuous motions. In the latter an
operation of the group shifts a body into another position by
infinitesimal (arbitrarily small) displacements — not like the
icosahedral group described above, where the rotations shift the
whole body round by a finite amount. This is but one category
of infinite groups (the terminology here is not exact, but is
sufficient to bring out the point of importance — the distinction
between discreie and continuous groups). Just as the theory of
finite discrete groups is the structure underlying the theory of
algebraic equations, so is the theory of infinite, continuous
groups of great service in theory of differential equations -
those of the greatest importance in mathematical physics. So
in playing with groups Cauchy was not idling.

To close this description of groups we may indicate how the,
groups of substitutions discussed by Cauchy have entered the
modern theory of atomic structure. A substitution, say (zy),
containing precisely Lwo letters in its symbol, is called a trans-
position. It is easily proved that any substitution is a combina-
tion of transpositions. For example,

(abedef) = (ab) (ac) (ad) (ae) (af),
from which the rule for writing out any substitution in terms of
transpositions is evident.

310



MATHEMATICS AND WINDMILLS

Now, it is an entirely reasonable hypothesis to assume that
the electrons in an atom are identical, that is, one electron is
indistinguishable from another. Hence, if in an atom two
electrons are interchanged, the atom will remain unchanged.
Suppose for simplicity that the atom contains precisely three
clectrons, say a,b,c. To the group of substitutions on a,b,c (the
one whose multiplication table we gave) will correspond all
interchanges of electrons leaving the atom invariani — as it was.
From this to the spectral lines in the light emitted by an excited
gas consisting of atoms may seem a long step, but it has been
taken, and one school of experts in quantum mechanics finds a
satisfactory background for the elucidation of spectra (and
other phenomena associated with atomic structure) in the
theory of substitution groups. Cauchy of course foresaw no
such applications of the theory which he developed for its own
fascinations, nor did he foresee its application to the out-
standing riddle of algebraic equations. That triumph was
reserved for a boy in his teens whom we shall meet later.

By the age of twenty-seven (in 1816) Cauchy had raised him-
self to the front rank of living mathematicians. His only serious
rival was the reticent Gauss, twelve years older than himself.
Cauchy’s memoir of 1814 on definite integrals with complex-
number limits inaugurated his great career as the independent
creator and unequalled developer of the theory of functions of
a complex variable. For the technical terms we must refer to
the chapter on Gauss — who had reached the fundamental
theorem in 1811, three years before Cauchy. Cauchy’s luxu-
riantly detailed memoir on the subject was published only in
1827. The delay was due possibly to the length of the work —
about 180 pages. Cauchy thought nothing of hurling massive
works of from 80 to 300 pages at the Academy or the Poly-
technique to be printed out of their stinted funds.

The following year (1815) Cauchy created a sensation by
proving one of the great theorems which Fermat had be-
queathed to a baffled posterity: every positive integer is a sum
of three ‘triangles’, four ‘squares’, five ‘pentagons’, six ‘hexa-
gons’, and so on, zero in each case being counted as 2 number
of the kind concerned. A ‘triangle’ is one of the numbers
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0,1,3,6,10,15,21, ... got by building up regular (equilateral)
triangles out of dets,

o, etes

‘squares" are built up similarly,

. ,ete.,

.y . .« . . . -

where the ‘bordering’ by which one square is obtained from its
predecessor is evident. Similarly ‘pentagons’ are regular penta-
gons built up by dots; and so on for ‘hexagons’ and the rest.
This was not easy to prove. In fact it had been too much for
Euler, Lagrange, and Legendre. Gauss had early proved the
case of ‘triangles’.

As if to show that he was not limited to first-rate work in
pure mathematics Cauchy next captured the Grand Prize
offered by the Academy in 1816 for a ‘theory of the propagation
of waves on the surface of 2 heavy fluid of indefinite depth’ ~
ocean waves are close enough to this type for mathematical
treatment. This finally (when printed) ran to more than 300
pages. At the age of twenty-seven Cauchy found himself being
strongly ‘rushed’ for membership in the Academy of Sciences —
a most unusual honour for so young a man. The very first
vacancy in the mathematical section would fall to him, he was
assured on the quiet. So far as popularity is concerned this was
the highwater mark of Cauchy’s career.

In 1816, then, Cauchy was ripe for election to the Academy.
But there were no vacancies. Two of the seats, however, might
scon be expected to be empty owing to the age of the incum-
bents: Monge was seventy, L. M. N. Carnot sixty-three. Monge
we have already met; Carnot was a precursor of Poncelet.
Carnot held his seat in the Academy on account of his researches
which restored and extended the synthetic geometry of Pascal
and Desargues, and for his heroic attempt to put the calculus
on a firm logical foundation. Outside mathematics Carnot
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made an enviable name for himself in French history, being the
genius who in 1793 organized fourteen armies to defeat the half
million troops hurled against France by the united anti-
democratic reactionaries of Europe. When Napoleon seized the
power for himself in 1796, Carnot was banished for opposing the
tyrant: ‘I am an irreconcilable enemy of all kings’, said Carnot.
‘After the Russian campaign of 1812 Carnot offered his services
as a soldier, but with one stipulation. He would fight for France,
not for the French Empire of Napoleon.

In the reorganization of the Academy of Sciences during the
political upheaval after Napoleon’s glorious ‘Hundred Days’
following his escape from Elba, Carnot and Monge were
expelled. Carnot’s successor took his seat without much being
said, but when young Cauchy calmly sat down in Monge’s chair
the storm broke. The expulsion of Monge was sheer political
indecency, and whoever profited by it showed at least that he
lacked the finer sensibilities. Cauchy of course was well within
his rights and his conscience.

The hippopotamus is said to have a tender heart by those who
have eaten that delicacy baked, so a thick skin is not neces-
sarily a reliable index to what is inside a man. Worshipping the
Bourbons as he did, and believing the dynasty to be the direct
representatives of Heaven sent to govern France — even when
Heaven sent an incompetent clown like Charles X — Cauchy
was merely doing his loyal duty to Heaven and to France when
he slipped into Monge’s chair. That he was sincere and not
merely self-seeking will appear from his subsequent devotion to
the sanctified Charles.

Honourable and important positions now came thick and
fast to the greatest mathematician in France — still well under
thirty. Since 1815 (when he was twenty-six) Cauchy had been
lecturing on analysis at the Polytechnique. He was now made
Professor, and before long was appointed also at the College de
France and the Sorbonne. Everything began coming his way.
His mathematical activity was incredible; sometimes two full-
length papers would be laid before the Academy in the same
week. In addition to his own research he drew up innumerable
reports on the memoirs of others submitted to the Academy,
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and found time to emit an almost constant stream of short
papers on practically all branches of mathematics, pure and
applied. He became better known than Gauss to the mathe-
maticians of Europe. Savants as well as students came to hear
his beautifully clear expositions of the new theories he was
developing, particularly in analysis and mathematical physics.
His auditors included well-known mathematicians from Berlin,
Madrid, and St Petersburg.

In the midst of all this work Cauchy found time to do his
courting. His fancy, Aloise de Bure, whom he married in 1818
and with whom he lived for nearly forty years, was the daughter
of a cultured old family and, like himself, an ardent Catholic.
They had two daughters, who were brought up as Cauchy had
been.

One great work of this period may be noted. Encouraged by
Laplace and others, Cauchy in 1821 wrote up for publication
the course of lectures on analysis he had been giving at the
Polytechnique. This is the work which for long set the standard
in rigour. Even to-day Cauchy’s definitions of limit and con-
tinuity, and much of what he wrote on the convergence of
infinite series in this course of lectures, will be found in any care-
fully written book on the calculus. An extract from the preface
will show what he had in mind and what he accomplished.

‘I have sought to give to the methods [of analysis] all the
rigour which is demanded in geometry, in such a way as never
to refer to reasons drawn from the generality of algebra. [As it
would be put to-day, the formalism of algebra.] Reasons of this
kind, although commonly enough admitted, above all in the
passage from convergent to divergent series, and from real
quantities to imaginary, cannot be considered, it seems to me,
as anything more than inductions which occasionally suggest
the truth, but which agree but little with the boasted exactitude
of mathematics. We must also observe that they tend to cause
an indefinite validity to be attributed to algebraical formulae,*

* For example T = 1 + @ + a* + 2°® 4 .. . to infinity,

obtained by dividing 1 by 1 — a, is nonsense if z is a positive number
equal to or greater than 1.
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while, in reality, the majority of these formulae subsist only
under certain conditions, and for certain values of the quantities
which they contain. By determining these conditions and
values, and by fixing precisely the meaning of the notations I
make use of, I shall dispel all uncertainty.’

Cauchy’s productivity was so prodigious that he had to found
a sort of journal of his own, the Ewercices de Mathématiques
(1826-30), continued in a second series as Exercices d’ Analyse
Mathématique et de Physique, for the publication of his exposi-~
tory and original work in pure and applied mathematics. These
works were eagerly bought and studied, and did much to reform
mathematical taste before 1860.

One aspect of Cauchy’s terrific activity is rather amusing.
In 1835 the Academy of Sciences began publishing its weekly
bulletin. (the Compies rendus). Here was a virgin dumping
ground for Cauchy, and he began swamping the new publication
with notes and lengthy memoirs — sometimes more than one a
week. Dismayed at the rapidly mounting bill for printing, the
Academy passed a rule, in force to-day, prohibiting the publi-
cation of an article over four pages long. This cramped Cauchy’s
luxuriant style, and his longer memoirs, including a great one
of 300 pages on the theory of numbers, were published else-
where.

Happily married and as prolific in his research as a spawning
salmon, Cauchy was ripe for the jester when the revolution of
18380 unseated his beloved Charles. Fate never enjoyed a
heartier laugh than it did when it motioned Cauchy to rise from
Monge’s chair in the Academy and follow his anointed King
into exile. Cauchy could not refuse; he had sworn a solemn oath
of allegiance to Charles, and to Cauchy an oath was an oath,
even if sworn to a deaf donkey. To his credit, Cauchy, at the
age of forty, gave up all his positions and went into voluntary
exile.

He was not sorry to go. The bloodied streets of Paris had
turned his sensitive stomach. He firmly believed that good King
Charles was in no way responsible for the gory mess.

Leaving his family in Paris, but not resigning his seat in the
Academy, Cauchy went fixst to Switzerland, where he sought
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distraction in scientific conferences and research. He never
asked the slightest favour from Charles and did not even know
that the exiled king was aware of his voluntary sacrifice for a
matter of principle. Shortly 2 more enlightened Charles, Charles
Albert, King of Sardinia, heard that the renowned Cauchy
was out of a job and made one for him as Professor of Mathe-
matical Physics at Turin. Cauchy was perfectly happy. He
quickly learned Italian and delivered his lectures in that
language.

Presently overwork and excitement made him ill, and to his

regret (as he wrote to his wife) he was forced to abandon evening
work for a time. A vacation in Italy, with a visit to the Pope
for good measure, completely restored him, and he returned to
Turin, eagerly anticipating a long life devoted to teaching and
research., But presently the obtuse Charles X butted into the
retiring mathematician’s life like a brainless goat and, in
seeking to reward his loyal follower, did him a singular dis-
service. In 1833 Cauchy was entrusted with the education of
Charles’ heir, the thirteen-year-old Duke of Bordeaux. The job
of male nurse and elementary tutor was the last thing on earth
that Cauchy desired. Nevertheless he dutifully reported to
Charles at Prague and took up the cross of loyalty. The follow-
ing year he was joined by his family.

The education of the heir to the Bourbons proved no sine-
cure. From early morning to late evening, with barely time out
for meals, Cauchy was pestered by the royal brat. Not only the
elementary lessons of an ordinary school course had to be
hammered somehow or another into the pampered boy, but
Cauchy was detailed to see that his charge did not fall down and
skin his knees on his gambols in the park. Needless to say the
major part of Cauchy’s instruction consisted in intimate talks
on the peculiar brand of moral philosophy to which he was
addicted; so perhaps it is as well that France finally decided
not to take the Bourbons back to its heart, but to Ieave them
and their innumerable descendants as prizes to be raffled off
to the daughters of millionaires in the international marriage
bureau.

In spite of almost constant attendance on his pupil Cauchy
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somehow managed to keep his mathematics going, dashing into
his private quarters at odd moments to jot down a formula or
seribble a hasty paragraph. The most impressive work of this
period was the long memoir on the dispersion of light, in which
Cauchy attempted to explain the phenomenon of dispersion
(the separation of white light into colours owing to different
refrangibilities of the coloured lights composing the white) on
the hypothesis that light is caused by the vibrations of an
clastic solid. This work is of great interest in the history of
physics, as it exemplified the tendeney of the nineteenth century
to try to account for physical phenomena in terms of mecha-
nical models instead of merely constructing an abstract,
mathematical theory to correlate observations. This was a
departure from the prevailing practice of Newton and his
successors — although there had been attempts to ‘explain’
gravitation mechanically.

To-day the tendency is in the opposite direction of a purely
mathematical correlation and a complete abandonment of
ethers, elastic solids, or other mechanical ‘explanations’ more
difficult to grasp than the thing explained. Physicists at present
seem to have heeded Byron’s query. “Who will then explain the
explanation?’ The elastic solid theory had a long and brilliant
success, and even to-day some of the formulae Cauchy derived
from his false hypothesis are in use. But the theory itself was
abandoned when, as not infrequently happens, refined experi-
mental technique and unsuspected phenomena (anomalous
dispersion in this case) failed to accord with the predictions of
the theory.

Cauchy escaped from his pupil in 1833 (he was then almost
fifty). Friends in Paris had been urging him for some time to
return, and Cauchy seized the excuse of his parents’ golden
wedding to bid adieu to Charles and all his entourage. By a
special dispensation members of the Institut (of which the
Academy of Sciences was, and is, a part) were not required to
take an oath of allegiance to the Government, so Cauchy
resumed his seat. His mathematical activity now became
greater than ever. During the last nineteen years of his life he
produced over 500 papers on 2ll branches of mathematics,
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including mechanics, physics, and astronomy. Many of these
works were long treatises.

His troubles were not yet over. When a vacancy occurred at
the Collége de France Cauchy was unanimously elected to fill
the place. But here there was no dispensation and before he
could step into the position Cauchy would have to take the oath
of allegiance. Believing the Government to be usurping the
divine rights of his master, Cauchy stiffened his neck and
refused to take the oath. Once more he was out of a job. But the
Bureau des Longitudes could use 2 mathematician of his
calibre. Again he was unanimously elected.

Then began an amusing tug-of-war between Baron Cauchy
and the Bureau at one end of the rope and the unsanctified
Government at the other. Conscious for once that it was making
a fool of itself the Government let go and Cauchy was shot
backwards into the Bureau without an oath. Defiance of the
Government was grossly illegal, not to say treasonable, but
Cauchy stuck to his job. His colleagues at the Bureau embar-
rassed the Government by politely ignoring its request to elect
someone legally. For four years Cauchy turned his obstinate
back on the Government and went on with his work.

To this period belong some of Cauchy’s most important con-
tributions to mathematical astronomy. Leverrier had unwit-
tingly started Cauchy off with his memoir of 1840 on Pallas.
This was a lengthy work packed with numerical calculations
which it would take any referee as long to check as it had taken
the author to perform them in the first place. When the memoir
was presented to the Academy the officers began looking about
for someone willing to undertake the inhuman task of verifying
the correctness of the conclusions. Cauchy volunteered. Instead
of following Leverrier’s footsteps he quickly found short cuts
and invented new methods which enabled him to verify and
extend the work in a remarkably short time.

The tussle with the Government reached its crisis in 1843
when Cauchy was fifty-four. The Minister declined to be made
a public laughing stock any longer and demanded that the
Bureau hold an election to fill the position Cauchy refused to
vacate. On the advice of his friends Cauchy laid his case before
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the people in an open letter. This letter is one of the finest things
Cauchy ever wrote.

‘Whatever we may think of his quixotic championship of a
cause which all but flyblown reactionaries knew had been well
lost for ever, we cannot help respecting Cauchy’s fearlessness in
stating his own case, with dignity and without passion, and in
fighting for the freedom of his conscience. It was the old fight
for free thought in a guise that was not very familiar then but
is common enough now.

In the time of Galileo, Cauchy no doubt would have gone to
the stake to maintain the freedom of his beliefs; under Louis
Philippe he denied the right of any government to exact an
oath of allegiance which traversed his conscience, and he
suffered for his courage. His stand earned him the respect even
of his enemies, and brought the Govermment into contempt,
even in the eyes of its supporters. Presently the stupidity of
repression was brought home to the Government in a way it
could understand — street fighting, riots, strikes, civil war, and
an unanswerable order to get out and stay out. Louis Philippe
and all his gang were ousted in 1848. One of the first acts of the
Provisional Government was to abolish the oath of allegiance.
‘With rare good sense the politicians realized that all such oaths
are either unnecessary or worthless.

In 1852, when Napocleon III took charge, the oath was
restored. But by this time Cauchy had won his battle. Word was
quietly passed to him that he might resume his lectures without
taking the oath. It was understood on both sides that no fuss
was to be made. The Government asked no thanks for its
liberality, nor did Cauchy tender any, but went on with his
lectures as if nothing had happened. From then to the end of
his life he was the chief glory of the Sorbonne.

In the interim belween official instability and unofficial
stability Cauchy had taken time out to splinter a lance in
defence of the Jesuits. The trouble was the old one — the State
educational authorities insisting that the Jesuit trainings
incurred a divided allegiance, the Jesuits defending religious
instruction as the only sound basis for any education. It was a
fight up Cauchy’s own alley and he sailed into it with eloquent
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gusto. His deferice of his friends was touching and sincere but
unconvineing. Whenever Cauchy got off mathematics he
substituted emotion for reason.

The Crimean War afforded Cauchy his last opportunity for
getting himself disliked by his harder-headed colleagues. He
became an enthusiastic propagandist for a singular enterprise
known as Work of the Schools of the Orient. ‘Work’ here is
intended in the sense of a particular ‘good work’.

‘It was necessary’, according to the sponsors of the Work in
1855, ‘to remedy the disorders of the past and at the same time
impose a double check on Muscovite ambition and Mohamme-
dan fanaticism: above all to prepare the regeneration of
peoples brutalized by the Koran. ... > In short the Crimean
‘War had been the customary bayonet preparing the way for
the Cross. Deeply impressed by the obvious necessity of
replacing the brutalizing Koran by something more humane,
Cauchy threw himself into the project, ‘completing and con-
solidating . .. the work of emancipation so admirably begun by
the arms of France’.

The Jesuit Council, grateful for Cauchy’s expert help, gave
him full credit for many of the details (including the collection
of subscriptions) which were to accomplish ‘the moral regenera-
tion of peoples enslaved to the law of the Koran, the triumph
of the Gospel round the cradle and the sepulchre of Jesus Christ
being the sole acceptable compensation for these billows of
blood that have been shed’ by the Christian French, English,
Russians, Sardinians, and the Mohammedan Turks in the
Crimean War.

It was good works of this character that caused some of
Cauchy’s friends, out of sympathy with the pious spirit of the
orthodox religion of the time, to call him a2 smug hypocrite.
The epithet was wholly undeserved. Cauchy was one of the
sincerest bigots that ever lived.

The net result of the Work was the parblcularly revolting
massacre of May 1860. Cauchy did not live to see his labours
crowned.

Reputations of great mathematicians are subject to the same
vicissitudes as those of other great men. For long after his death
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—and even to-day — Cauchy was severely criticized for over-
production and hasty composition. His total output is 789
papers (many of them very extensive works) filling twenty-four
large quarto volumes. Criticism of this sort always seems rather
beside the point if a man has put out a mass of first-rate work
in addition to some that is not of high quality, and is usually
indulged in by men who themselves have done comparatively
little, and that little not of the highest order of originality.
Cauchy’s part in modern mathematics is somewhere not far
from the centre of the stage. This is now almost universally
admitted, if grudgingly in some quarters. Since his death.
especially in recent decades, Cauchy’s reputation as a mathe-
matician has risen steadily. The methods he introduced, his
whole programme inaugurating the first period of modern
rigour, and his almost unequalled inventiveness have made a
mark on mathematics that is, so far as we can now see, destined
to be visible for many years to come.

One apparently unimportant detail out of all the mass of
new things Cauchy did may be mentioned as an illustration of
his prophetic originality. Instead of using the ‘imaginary’
i(=V _:-_1) Cauchy proposed to accomplish all that complex
numbers do in mathematics by operating with congruences to
the modulus 22 4 1. This was done in 184/7. The paper — a short
one — attracted but little attention, Yet it is the germ of some-
thing — Kronecker’s programme — that is on its way to revolu-
tionizing some of the fundamental concepts of mathematics.
This matter will reappear frequently in later chapters, so we
may pass it here with this allusion.

In social contacts Cauchy was extremely polite, not to say
oily on occasion as when, for example, he was soliciting sub-
seriptions for one of his jousts. His habits were temperate, and
in all things except mathematics and religion he was moderate.
On the last he lacked ordinary common sense. Everyone who
came near him was a prospect for conversion. When William
Thomson (Lord Kelvin) as a young man of twenty-one called
on Cauchy to discuss mathematics, Cauchy spent the time try-
ing to convert his visitor — then a staunch adherent of the
Scottish Free Church — to Catholicism.

321



MEN OF MATHEMATICS

Cauchy had his share of rows over priority in which his
enemies accused him of greed and unfair play. His last year was
marred by one such dispute wherein it would seem that Cauchy
had no case. But with his usual stubbornness where a matter of
principle was involved he braved the outery and stuck to his
point with invincible sweetness and pertinacity.

Another peculiarity added to Cauchy’s unpopularity with his
scientific colleagues. In scientific academies and societies a man
is supposed to base his vote for a candidate only on the candi-
date’s scientific merits; any other procedure is considered bad
ethics. Whether rightly or wrongly Cauchy was accused of
voting in accordance with his religious and political views. His
last years were embittered by what he considered a lack of
understanding among his colleagues on this and similar foibles.
Neither side could get the point of view of the other.

Cauchy died rather unexpectedly in his sixty-eighth year on
28 May 1857, Hoping to benefit a bronchial trouble he retired
to the country to recuperate, only to be smitten with a fever
which proved fatal. A few hours before his death he was talking
animatedly with the Archbishop of Paris of the charitable
works he had in view — charity was one of Cauchy’s lifelong
interests. His last words were addressed to the Archbishop:
‘Men pass away but their deeds abide’.
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The enormous success and rapid expansion of statistical
techniques in recent years is ample proof of the need for
them. They are not a cure-all, but many a headache
persists because the research worker, production inspec-
tor, or executive imagines them as being too mathema-
tical for him to apply. But there is nothing magical or
mysterious in them. Statistical tools have been deve-
loped by practical men to deal with practical problems
as simply as possible. Common sense and simple arith-
metic will carry the reader through this book. Every
symbol, every principle is explained and illustrated with
cxamples drawn from a wide varicty of subjects. The
reader will find here a comprehensive introduction to
the possibilities of the subject; he is given the how and
the why and the wherefore by which he can recognize
the kind of problem where statistics pay dividends. The
author writes from experience, for he knows the limita-
tions to the usefulness of statistical technique, and
appreciates the difficulties of the non-mathematician.
The book ranges from purely descriptive statistics,
through probability theory, the game of Crown and
Anchor, the design of sampling schemes, production
quality control, correlation and ranking methods, to the
analysis of variance and covariance.
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