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To Helen and my family



PREFACE

This book grew out of lecture notes for a graduate-level molecular spectroscopy
course that I developed at Iowa State University between 1974 and 1987. It is
intended to fill a pressing need for a concise introduction to the spectroscopy of
atoms and molecules. I have tried to stress logical continuity throughout, with a
view to developing readers’ confidence in their physical intuition and problem-
solving techniques. A suitable quantum mechanical background is furnished by
the first seven and a half chapters of P. W. Atkins’ Molecular Quantum
Mechanics, 2d ed. (Oxford University Press, London, 1983): The Schrédinger
equation for simple systems, angular momentum, the hydrogen atom, stationary
state perturbation theory, and the variational theorem are all presumed in this
book. Group theory is used extensively from Chapter 3 on; it is not developed
here, because many excellent texts are available on this subject. A one-semester
undergraduate course in electromagnetism is helpful but not strictly necessary:
The concepts of vector and scalar potentials are introduced in Chapter 1. Other
requisite material, such as time-dependent perturbation theory and second
quantization, is developed in the text.

Fight or nine of the eleven chapters in this book can be comfortably
accommodated within a one-semester course. The underlying time-dependent
perturbation theory for molecule-radiation interactions is emphasized early,
revealing the hierarchies of multipole and multiphoton transitions that can
occur. Several of the chapters are introduced using illustrative spectra from the
literature. This technique, extensively used by Herzberg in his classic series of
monographs, avoids excessive abstraction before spectroscopic applications are
reached. Diatomic rotations and vibrations are introduced explicitly in the
context of the Born-Oppenheimer principle. Electronic band spectra are
examined with careful attention to electronic structure, angular momentum
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coupling, and rotational fine structure. The treatment of polyatomic rotations
hinges on a physically transparent demonstration of the commutation rules for
molecule-fixed and space-fixed angular momenta. From these, ali of the energy
levels and selection rules that govern microwave spectroscopy are accessible
without recourse to detailed rotational eigenstates. The chapter on polyatomic
electronic spectra focuses on triatomic molecules and aromatic hydrocarbons—
the former for their environmental and astrophysical interest, and the latter for
their illustrations of vibronic coupling and radiationless relaxation phenomena.
Population inversion criteria, specific laser systems, and the principles of
ultrahigh-resolution lasers and ultrashort pulse generation are outlined in a
chapter on lasers, which have emerged as a ubiquitous tool in spectroscopy
laboratories. Some of the higher order terms in the time-dependent perturbation
expansion are fleshed out for several multiphoton spectroscopies (Raman, two-
photon absorption, second-harmonic generation, and CARS) in the final two
chapters. The reader is guided through the powerful diagrammatic perturbation
techniques in a discussion designed to enable facile determination of transition
probabilities for arbitrary multiphoton processes of the reader’s choice.

It is my great pleasure to acknowledge the people who made this book
possible. I am particularly indebted to my teachers, Dudley Herschbach and
Roy Gordon, who communicated to me the inherent beauty and cohesiveness of
molecular quantum mechanics. The original suggestion for writing this book
came from Cheuk-Yiu Ng. David Hoffman made seminal contributions to the
chapter on polyatomic rotations. I am grateful to numerous anonymous referees
for valuable suggestions for improving the manuscript, though, of course, the
responsibility for errors is still mine. The line drawings were supplied by Linda
Emmerson, and Sandra Bellefeuille, Klaus Ruedenberg, and Gregory Atchity
generated the computer graphics. Finally, I must express deep appreciation to
my wife, Helen, whose moral support was essential to completing this work.

WALTER S. STRUVE

Ames, lowa
June 1988
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RADIATION-MATTER
INTERACTIONS

In its broadest sense, spectroscopy is concerned with interactions between light
and matter. Since light consists of electromagnetic waves, this chapter begins
with classical and quantum mechanical treatments of molecules subjected to
static (time-independent) electric fields. Our discussion identifies the molecular
properties that control interactions with electric fields: the electric multipole
moments and the electric polarizability. Time-dependent electromagnetic waves
are then described classically using vector and scalar potentials for the
associated electric and magnetic fields E and B, and the classical Hamiltonian is
obtained for a molecule in the presence of these potentials. Quantum mechanical
time-dependent perturbation theory is finally used to extract probabilities of
transitions between molecular states. This powerful formalism not only covers
the full array of multipole interactions that can cause spectroscopic transitions,
but also reveals the hierarchies of multiphoton transitions that can occur. This
chapter thus establishes a framework for multiphoton spectroscopies (e.g.,
Raman spectroscopy and coherent anti-Stokes Raman spectroscopy, which are
discussed in Chapters 10 and 11) as well as for the one-photon spectroscopies
that are described in most of this book.

1.1 CLASSICAL ELECTROSTATICS OF MOLECULES IN
ELECTRIC FIELDS

Consider a molecule composed of N electric charges e, (electrons and nuclei)
located at positions r, referenced to an arbitrary origin in space. The total

1



2 RADIATION-MATTER INTERACTIONS

molecular charge is

N
q=y, e, (1.1)
n=1
and the electric dipole moment is
N
p=73 er, (1.2)
n=1

The latter expression reduces to a familiar expression for the dipole moment in a
neutral “molecule” consisting of two point charges,e; = + Q and e, = —Q (Fig.
1.1). In this case, we have p=+Qr; +(—Qjr,=0(r; —r,)=QR, which is the
conventional expression for the dipole moment of a pair of opposite charges + Q
separated by the vector R. By convention, R points toward the positive charge.
For molecules characterized by electric charge distributions p(r) instead of point
charges, the expressions for the molecular charge and dipole moment are
superseded by

qg= J , p(r)dr (1.3)

and

n= J- rp(r)dr (1.4)

where the integration volume encloses the entire charge distribution.

Figure1.1 Dipole moment u = QR formed by charges + Q separated by the vector
R.

*Numbers in brackets are citations of references at the end of the chapter.



CLASSICAL ELECTROSTATICS OF MOLECULES IN ELECTRIC FIELDS 3

For a point charge e located at position r under an external electrostatic
potential ¢(r), the energy of interaction with the potential is [1]*

W = ed(r) (1.5)

¢(r) can be expanded in a Taylor series about r = 0 (whose location is arbitrary)
as

o) = ¢(0)+x@(0)+y—"’(0>+ %o

*¢

62
"’(0>+ 2720

62
r3| 7 L0y

32</> *¢ *¢
+ 2xy ax0y 0) + 2xz Tx0s ©) + 2yz ay0z ]

+ -

2
90

=¢0)+r- v¢(0)+ 2 XX = o,

(1.6)

where the components of r are expressed as either (x, y, z) or (x 15 X2, X3). Since
the electric field E(0) at the origin is related to ¢(0) by

E(0) = —V¢(0) (L7
this implies that
0 0
$) = $0) — r-EO) + 3 3 X X5 a"’ ©+:
= ¢(0) — r-E(0) — 5 ZJ X;X; E] ©) + - (1.8)
The interaction energy is then
W = ed(r) = ed(0) — er- E(0) — 1e Z XiX; % O +-- (1.9)

For a molecule consisting of N point charges e, at locations r,, this becomes
N N
W= (Z en> (I)(O) - <z enrn> * HO)

y E(0
~ 53 e T G

= q$(0) — p-E(0) — = Z ¥ 0 %1(5.(?)

Ni'—

(1.10)



4 RADIATION-MATTER INTERACTIONS °

(a) (b)

(c) (d)

Figure1.2 Examples of charge distributions with (a) nonzero charge, (b) nonzero
dipole moment, (c) nonzero quadrupole moment, and (d) nonzero octupole
moment.

The first two terms in W arise from the interaction of the molecular charge with
the scalar potential ¢ and the interaction of the molecular dipole moment with
the electric field E, respectively. The next terms in W are due to interactions
between the various electric field gradients 0E;/d(r,); and the corresponding
components [2]

0 = 3e,[3(r)ir,); — 1301 (1.11)

of the electric quadrupole moment tensor. (Note that the term —rZ2d;; in Q{7
drops out when Eq. 1.11 for the latter is used in Eq. 1.10, because V+E = 0 for
an external field in free space.) Hence the expansion (1.10) illustrates how the
various electric multipoles interact with an external field. Examples of charge
distributions exhibiting nonzero dipole, quadrupole, and octupole moments are
shown in Fig. 1.2

1.2 QUANTUM THEORY OF MOLECULES IN STATIC
ELECTRIC FIELDS

We will be concerned almost exclusively with interactions between light and
isolated molecules. The total Hamiltonian of the system is then given by

A=H,+H +W (1.12)

H, is the Hamiltonian for the isolated molecule, H,,4 is the Hamiltonian of the
radiation field, and W is the interaction term describing the coupling of the
molecular states to the radiation field. We will denote the isolated unperturbed
molecular states with |¥,»; they obey the time-independent and time-dependent
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Schrodinger equations

Ho¥,> = EO¥,> L13)
ih 2 19, = A%, (1.14)

The unperturbed molecular states |¥,) depend on both position (r) and time (z);
since they are eigenstates of H,, they can be factorized into spatial and time-
dependent portions,

12, ) = e~y (@) (1.15)

If, instead of (1.12), the total Hamiltonian for the molecule in the presence of
light were H = H, + H,,,, the eigenstates of the system would become simple
products of molecular and radiation field states |W,(r, t))|x;.a)> Where the
radiation field states |x,,,> would depend on photon occupation numbers,
energies and polarizations. Since no coupling of light with molecular states is
implied in such a Hamiltonian, no transitions can occur between molecular
states due to absorption or emission of light in this description. The simplest
Hamiltonian that can account for spectroscopic transitions is therefore the one
in Eq. 1.12. :

Formally, the inclusion of the interaction term W requires that the Schrodin-
ger equations (1.13) and (1.14) be solved again after replacing H, + H,,4 with the
total Hamiltonian H for the molecule in the presence of light. A simplification
arises here because the interaction term W in Eq. 1.12 normally introduces only
a small perturbation to the isolated molecular Hamiltonian H,. For example,
the electric field of bright sunlight is on the order of 5 V/cm. By comparison, an
electron spaced by a Bohr radius a, from the nucleus in a H atom experiences an
electric field of e?/4neya3, which is on the order of 5 x 10° V/cm. Hence, W can
generally be treated as a perturbation to H, + H,,,. This approach proves to be
useful even for describing molecules subject to intense laser beams; in such cases,
higher order perturbations assume unusual importance in comparison to the
situation of molecules exposed to classical light sources.

For molecules subjected to static (time-independent) electromagnetic fields,
the perturbed energies and eigenstates may be evaluated from stationary-state
perturbation theory [3]. The full Hamiltonian may be written in terms of a
perturbation parameter 4 (which may be set to unity at the end of the
calculation, after serving its usual purpose of keeping track of orders in the
perturbation expansions for the energies and eigenstates) as

H=H,+ W (1.16)

(H .4 has been dropped here because we are interested primarily in how the
applied field affects the molecular energy levels.) The time-independent eigen-



6 RADIATION-MATTER INTERACTIONS

states |y, >, which we use here instead of [¥,) because we are dealing with the
static problem, and the eigenvalues E, are expanded as

W) = Wi + AWEDD + A5 + - (1.17)
E,=E? + AEV + 2EP + -+ (1.18)

Substituting Eqs. 1.16-1.18 into H|y,) = E,|¢,> and using Eqgs. 1.13 and 1.14
yields successive approximations to the perturbed energy

E,=E9 4+ AE"V 4+ A?E®? 4 --- (1.19)
where
EQ = YO Holy®) (1.20)

is the unperturbed energy in state |®) and

ED = YWY (1.21)
YW P Iy
E® = ,; £ — FO (1.22)
n n 1

are the leading terms in the energy corrections to E(.

As an example of using stationary-state perturbation theory to compute the
perturbed energies of a molecule in a static electromagnetic field, consider an
uncharged molecule in a uniform (position-independent) static electric field E. In
this case, the only nonvanishing term in the expansion (1.10) is W = — u- E(0).
Substitution of this expression for the perturbation W in Egs. 1.21 and 1.22
yields

ED = —E- YOy (1.23)
E - W9 ply @<y ply @y - E

The first- and second-order corrections to the energy are linear and quadratic in
the electric field E, respectively. It is interesting to compare these results with the
classical energy of an uncharged molecule with permanent dipole moment g, in
a uniform, static E field: according to Eq. 1.10, this would be

E=Ey,—pyE (1.25)
Here E,, the classical energy of the molecule in the absence of the field, can be

identified with unperturbed energy E” in Eq. 1.20. Comparison of the terms
linear in E in Eqgs. 1.23 and 1.25 shows that the permanent dipole moment g, is
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Table 1.1 Permanent dipole moments of some
molecules?

Molecule Ho
HCl 1.03
HBr 0.788
H,0 1.81
CcOo 1.2
CH,Cl1 1.9
NO, 0.399

“In units of debyes: 1 D=3.33564 x 1073°C-m.

the expectation value of the instantaneous dipole moment operator g = X e,r,,,
Ho = <Y\l (1.26)

(Values of permanent dipole moments are given for several small molecules in
Table 1.1.) However, the classical energy 1.25 has no counterparts to the second-
and higher order terms in the perturbation expansion (1.19) for E,.

This situation arises because the multipole expansion for W per se (Eq. 1.10)
has no provision for molecular polarization by the electric field. When an atom
(or nonpolar molecule of sufficiently high symmetry) is subjected to an electric
field E, the latter separates the centers of gravity of the species’ positive and
negative charges, creating an induced dipole moment p;,, which is parallel to E
(Fig. 1.3). For sufficiently small E, g,,4 is proportional to E, so that

Hing = 0E (1.27)

The proportionality constant « is defined as the atomic (or molecular) polariza-
bility. The total dipole moment of the polarized molecule in the electric field is

E=0 E#0

Figure 1.3 Polarizable atom in the absence of an external electric field (left) and in
the presence of a uniform electric field E (right).
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then
B =po+ Pina = o + oE (1.28)

and the classical energy becomes [4]

E
E=E0—J pdE
(1]

=Ey—po'E —44E-E (1.29)

instead of Eq. 1.25. In molecules lacking special symmetry (e.g., CO,, CH;OH)
the induced moment g;,4 does not generally point parallel to the external field E,
because the electron cloud in such molecules is more easily distorted in certain
directions than in others (Fig. 1.4). In such cases, the polarizability is a tensor
rather than a scalar quantity. The induced dipole moment is then given by

Hina=0aE (1.30)

with
a=|a Oy  Oyz (1.31)

Hind,x axxEx + axyEy + aszz
Hing = #ind,y = ayxEx + (xnyy + ayzEz (132)
l"ind,z aszx + azyEy + ‘xzzEz

Thus, in general, p;,,q is not parallel to E (i.e., fing y/Mina,x # E,/E., etc.) unless the
elements o;; of the polarizability tensor satisfy special relationships—as in
molecules of T, or O, symmetry.

Another property of the polarizability tensor is that it can always be
diagonalized by a suitable choice of axes (x'y’z):

axx axy axz ax'x’ 0 0
a=lo, o, o |=>| 0 o 0 (1.33)
azx (xzy azz 0 O az z

This is analogous to the choice of principal axes (x'y’z’) in calculating the three
principal moments of inertia of a rigid rotor (Chapter 5), and it shows that only
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Find

Figure 1.4 Polarization of an anisotropic molecule by an electric field. Since the
electronic charge distribution is more polarizable along the long axis than along the
short axis, the induced dipole moment u,, 4 is not parallel to E.

three of the components of a polarizability tensor are independent. In molecules
with sufficiently high symmetry, the principal polarizability axes coincide with
symmetry axes of the molecule. In CO,, one of these principal axes is the C,
molecular axis, while the other two may be any choice of orthogonal C, axes
perpendicular to the molecular axis. In a less symmetric molecule like CH;OH,
the directions of the principal polarizability axes must be evaluated numerically.

When the polarizability is a tensor rather than a scalar, Eq. 1.29 for the
classical energy becomes

E=Ey—poE—4E-a-E (1.34)

Comparison of the terms quadratic in E in Eqgs. 1.19, 1.22, and 1.34 then reveals
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that the quantum mechanical expression for the molecular polarizability is

(i.35)

wma 3 SOBVOYDO W)

0 20
& EP—ED

If the spatial part |¥) of the unperturbed molecular wave function is
accurately known in state n, the permanent dipole moment g, can be evaluated
for that state using Eq. 1.26. However, Eq. 1.35 shows that an accurate
knowledge of all the molecular eigenstates |\’ with [ # n are normally
required in addition to [{?) to calculate the molecular polarizability in state n.
In particular, the xy component of the polarizability tensor (which will be
nonvanishing only if the coordinate axes (xyz) are not chosen to coincide with
the principal molecular axes) will be

PN Zex i< Ze yilyi”)

xy % EgO) _ E;O)

(1.36)

where the index i is summed over all of the molecular charges. Inspection of Eq.
1.35 or 1.36 shows that large values of the polarizability tensor components are
favored by large <Y @|ry{”> and by small energy denominators (E{® — E{).
For this reason, the alkali atoms, with their voluminous valence orbitals and
closely spaced energy levels, exhibit the largest atomic polarizabilities in the
periodic table (Table 1.2), and such atoms have figured prominently in the
development of nonlinear optics. These expressions for molecular polariza-
bilities become useful in Chapter 10, where Raman transition probabilities are
discussed.

Table 1.2 Polarizabilities of several atoms?

Atom o

H 0.666793
He 0.204956
Li 24.3

N 1.10

O 0.802

F 0.557
Ne 0.3946
Na 23.6

Ar 1.64

K 434

Cs 59.6

“In units of A3. Data taken from T. M. Miller and B Bederson,
Adv. At. Mol. Phys. 13: 1 (1977).
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The stationary-state perturbation theory used in this section is applicable
only to nondegenerate states |y{”>; degenerate perturbation theory must
otherwise be used. The polarizability expressions developed here are oniy good
for time-independent (static) external fields. The polarizability turns out to
depend on the frequency w of the applied field, since the electronic motion
cannot respond instantaneously to changes in E. Finally, since light contains
time-dependent electromagnetic rather than static electric fields, the results of
this section are not directly applicable to radiation—molecule interactions.

1.3 CLASSICAL DESCRIPTION OF MOLECULES IN
TIME-DEPENDENT FIELDS

In the classical electromagnetic theory of light, light in vacuum consists of
transverse electromagnetic waves that obey Maxwell’s equations [1,2]

V-E=0 (1.37a)

V-B=0 (1.37b)
B

VxE= - (1.37¢)

V x B = poeo % (1.37d)

where ¢, = 8.854 x 10712 C2?/J-m and p, = 1.257 x 10~ H/m are the electric
permeability and magnetic susceptibility of free space.* Examples of electric and
magnetic fields satisfying Eqs. 1.37 are given by

E(r, t) = Ege® T (1.38a)
B(r, 1) = Bye'® r—0) (1.38b)

It is easy to show from Maxwell’s equations that E, -k = B,k = 0 (i.e., both
fields point normal to the direction k of propagation as required in a transverse
electromagnetic wave), that E; B, = 0, and that Eqs. 1.38 describe linearly
polarized light with its electric polarization parallel to E, as shown in Fig. 1.5.

Since V- B = 0 (as magnetic monopoles do not exist), B can be expressed in
terms of a vector potential A(r, ) as [1, 2]

B=VxA (1.39)

*This book uses the International System of Units (abbreviated SI), an extension of the mks system.
The units for length, mass, time, and current are meters, kilograms, seconds, and amperes,
respectively. The equations in this and the following sections differ from the corresponding
equations written in cgs units in that the factors of the speed of light ¢ = (gou) ™/ = 2.998 x 108
m/s, which appear in many of the cgs equations, are absent in the SI versions.
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x>

Figure1.5 Orientations of the vectors E,, B,,
E and k for the light wave described by Egs. 1.38.

This automatically satisfies V+B = 0 in consequence of the vector identity
V:(VxA)=0 (1.40)

(The latter identity is apparent because V x A formally yields another vector
that is normal to both V and A; hence a scalar product between V and (V x A)
invariably vanishes) From the third of Maxwell’s equations, we have
V x E = —0B/dt, which implies that

VxE=-VxA
and so

VXx(E+A)=0 (1.41)
In the absence (;f magnetic fields, B and the vector potential A vanish, and the

electric field E is related to the scalar potential ¢ by E = —V¢. Hence Eq. 1.41
and the third Maxwell equation are consistent with setting

0A
E=—-V¢— 5 (1.42)
because then
VxE=—Vx(V¢)—§(VxA) (1.43)
= —0B/ot

in view of the vector identity V x (V¢) = O for arbitrary scalar fields ¢. This
enables us to express the measurable E and B fields in terms of a scalar potential
¢(r, t) and a vector potential A(r, t) using Eqs. 1.39 and 1.42.

The vector and scalar potentials are not directly measurable themselves, since
their definition has an arbitrariness analogous to the setting of standard states in
thermodynamic functions [2, 5]. Suppose ¢ and A are altered using some scalar
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function X(r, t) via

A=A+ VX (1.44a)
)¢
= — 44
¢ = (1.44b)

Under this transformation, the magnetic field B =V x A becomes

B=Vx(A+VX)=V x A+V x(VX)
=B (1.45)

since V x (VX) = 0. Similarly E = —V¢ — dA/dt becomes

E = —V(¢ —X)—(%(A +VX)

. A .,
—V¢ + VX — =~ VX
=E | (1.46)

Thus, the physical E and B fields are both unaffected by this so-called gauge
transformation, and this gives us latitude to select algebraically convenient
expressions for ¢ and A without affecting the measurable electromagnetic fields.
It may be shown [5] that it is possible to choose the Coulomb gauge in
which V- A = 0. This gauge is often used to describe electromagnetic waves in
free space, where the scalar potential ¢ = 0. The fields are then given by

0A
E=— ™ (1.47a)
B=VxA (1.47b)

It now remains to formulate the classical Hamiltonian for a charged particle
subjected to potentials ¢ and A (or, equivalently, their associated fields E and B).
Nonrelativistic classical mechanics is based on Newton’s law of motion

F = mi (1.48)

for a particle of mass m subjected to an external force F. The kinetic energy of
the particle is

T = imv? (1.49)
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and (for conservative forces) the force is derivable from a potential V by
F=-VV (1.50)

Since for each Cartesian component i of the particle velocity v

g_: = mo, (L51)
and
‘% <Z—Z:) = % (mv) = mi; = — g—; (1.52)
it follows that
()

If one forms the Lagrangian function [6]
L=T-V (1.54)

Eq. 1.53 assumes the form of the Lagrangian equations

d (oL\ oL
4 <a_u,.) -0 (1.55)

provided the external force F is conservative (i.e., the potential function V is
independent of the particle velocity v). It may be shown that if one chooses any
convenient set of 3N generalized coordinates g; for an N-particle system, so that
for each particle n the Cartesian components of its position are expressible in the
form

Xp = xn(q17 qs --- q3N)
Yn= yn(qla q2, ---» q3N) (156)

Zp = Zn(Qla qz ---» q3N)

the transformation from Cartesian to generalized coordinates yields the more
powerful generalized Lagrangian equations

4 (oL oL _, (1.57)
dt \ 0g; 0q;
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In an N-particle system with r constraints, (3N — r) of the generalized coor-
dinates will be independent, and there will be (3N — r) independent equations of
the form (1.57). The Lagrangian is treated as a function of the conjugate
variables ¢; and 4.

Differentiating the Lagrangian function with respect to v; in Cartesian
coordinates gives (for conservative forces)

oL _oT

0_Ui = —6?, = mv; = p; (1.58)

which is the ith component of linear momentum. In generalized coordinates, the
same procedure

oL
=D (1.59)
0g;
yields the component of generalized momentum conjugate to the generalized
coordinate g;. Differentiation of L with respect to x; in Cartesian coordinates
yields

oL v

e —F.=p. 1.60
o, ox, i =Dbi (1.60)

which expresses the conservation law that if the Lagrangian is independent of x;,
the linear momentum component p; is a constant of the motion. The analogous
equation

oL

a—qi = p; (1.61)

can also be shown to hold for generalized momenta.
The classical Hamiltonian is now defined as [6]

3N-r

H= ._Zl pigi— L

= H(p:, ) (1.62)

and is handled as a function of the conjugate variables g;, p;. It is readily shown
that the classical Hamiltonian gives the total energy for a single particle
experiencing conservative forces in Cartesian coordinates:

M

i

, 3 (0T ,
H= pgi— L= (a.>‘1i—L
i=1 i=1 q;

3
(mx)x; — Y, smx; +V =T+ V (1.63)

i=1

Il
e

]
-
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A similar result can be obtained for the Hamiltonian (1.62) in generalized

coordinates.
The Lorentz force F experienced by a charge e of mass m in the presence of

electric and magnetic fields E and B is given in SI units by [1, 2, 5]

F=¢[E+vxB]= j_t (mv) (1.64)

This nonconservative (v — dependent) force is not derivable from a potential
energy V in the manner of Eq. 1.50. If a Lagrangian function can nevertheless be
found that obeys Eq. 1.57, the formulation of the Hamiltonian using Eq. 1.62

will still be valid. Recasting Eq. 1.64 in terms of the vector and scalar potentials
(Egs. 1.39 and 1.42), we obtain

F=e[-v¢—%’;+vx(VxA)] (1.65)

This expression for the force can be simplified with the identities

dA 0A

' EE‘F(V'V)A (1.66)
vx(VxA)=V(v-A)—(v-V)A (1.67)
to give
dA d
er[—V(qb—v-A)—E—J:E(mv) (1.68)

We are now in a position to show that the Lagrangian for this system happens to
be

L =imv? + e(v-A) — e¢ (1.69)

Substitution of (1.69) into the Lagrangian equations (1.57), using the particle
Cartesian coordinates for the g;, yields

9

v-A—¢)=0 (1.70)
0x;

d
7 (mv; + ed)) — e

since the external vector potential A = A(r, t) depends only on position and
time. This result is in fact just Eq. 1.68 in component form, which confirms that
the system Lagrangian is correctly given by Eq. 1.69. According to Eq. 1.62, the
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system Hamiltonian becomes

e

I
-

H= pig; — L

, :
= ‘Zﬁ <%‘> X; —Imv? —e(v-A) + ed

mv? + e(v-A) — imv? — e(v-A) + e

1
= smv? + ed o (mv)* + e¢ (L.71)

The Hamiltonian is conventionally written in terms of the position coordinates
q; (x; if Cartesian) and their conjugate momenta p;. From Eq. 1.58, the latter are

oL .
pi= o =mk + ed; (1.72)

i

or p = mv + eA. Substitution of (p — eA) for mv in Eq. 1.71 then produces the
classical Hamiltonian for a charged particle in an electromagnetic field as a
function of the conjugate Cartesian variables r and p,

1 ‘
H= 3 (p — eA)* + ed (1.73)

. (the r — dependence in H stems from the r — dependence in the scalar and
vector potentials). Physically, the conjugate momentum p does not equal mv
because the particle’s linear momentum in the electromagnetic field is influenced
by the vector potential A. This Hamiltonian is straightforwardly modified if, in
addition to the external fields we have just treated, the particle experiences a
conservative potential ¥ (r) (e.g., that arising from electrostatic interactions with
other charges in a molecule). The correct Hamiltonian in this case is given by
[7,8]

H= 1 (p—eA’ +ep+V (1.74)
2m

1.4 TIME-DEPENDENT PERTURBATION THEORY OF
RADIATION-MATTER INTERACTIONS

The quantum mechanical Hamiltonian operator corresponding to the classical
Hamiltonian (1.74) is

1 (h 2
A=—(-V—cA) +ep+V (1.75)
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which may be expanded into

~ 1 h
A= | -wv -2 -2 ww o]
2m i i

tep+V (1.76)

The parentheses surrounding the quantity V-A in Eq. 1.76 indicate that V
operates only on the vector potential A immediately following it. The choice of
Coulomb gauge (V- A = 0) for electromagnetic waves propagating in free space
(¢ = 0) reduces the Hamiltonian to

. 2 2A%2  h ~
H=|:_h_v2+ V(r)]+|:e —TE(A°V):| =Hy+ W (1.77)
2m 2m im

where the terms have now been grouped in the form of Eq. 1.16. H, represents
the zero-order Hamiltonian for the particle unperturbed by the external fields,
and the terms arising from the radiation—matter interaction have been isolated
in the perturbation W. For particles bound in atoms or molecules experiencing
ordinary electromagnetic waves, the internal electric fields due to ¥ (r) are orders
of magnitude larger than the external fields, with the consequence that eA « p.
The quadratic term e2A2 in W then becomes negligible next to ehA -+ V, with the
result that the perturbation is well approximated by the linear term,

W= -l%h AV (1.78)

As a concrete example, the vector potential for a linearly polarized mono-
chromatic electromagnetic plane wave with wave vector k may be written

A(r, 1) = Re(Aoe™ ")
= Ao cosk 1 — 1) (1.79)

where k and the circular frequency w are related to the wavelength A and
frequency v by

|k| = 2n/A (1.80a)
o =21y (1.80b)
Since ¢ = 0, the electric field is
E(r, t)= — %‘?— = —wAysin(k*r — wt)

—clk|A, sin(k -t — o) (1.81)
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so that the electric field points antiparallel to A. The magnetic field associated
with the light wave is

Br,t)=V x A= —k x A, sink'r — wt) (1.82)

Another way of writing Eq. 1.82 is

A A 3
o & 0

B(r, ’)‘5 3 (1.83)
A, A, A,

Comparison of Egs. 1.81 and 1.82 shows that E and B are mutually orthogonal,
and the latter equation requires that B is orthogonal to the wave’s propagation
vector k. Hence the vector potential in Eq. 1.79 describes a linearly polarized
transverse electromagnetic wave. The wave propagates at the speed of light c,
because E and B are both functions of (k-r — wt) = |k| (k-r — vit) = K|
(k*r — ct) according to Egs. 1.80.

Since the vector potential A in Eq. 1.79 depends explicitly on time, the
perturbation W = (ieh/m)A * V is time-dependent as well. A perturbation theory
based on the time-dependent Schrédinger equation (1.14) must therefore be used
to describe the radiation—matter coupling. The Hamiltonian is assumed to have
the form of Eq. 1.77, except that the perturbation W(t) is now explicitly
acknowledged to depend on time. The molecule has zero-order eigenstates
|9z, t)> obeying Eqs. 1.13 through 1.15. It is assumed initially (at t = — o0)
that the molecule is in state |[k) = [{>)>. We then turn on the perturbation W(t),
which can cause the molecule to undergo a transition to some other state
Im) = [Y'?> because of its interaction with the radiation field. We wish to
calculate the probability that the molecule ends up in state |m) by some later
time .

In general, the state of the interacting molecule—radiation system |¥(r, t)) will
. not coincide with one of the zero-order states |W,(r,t))|x;.a), because the
Schrodinger equation is modified by the presence of the coupling term W(t). (In
what follows, we will drop |x,.q» from our discussion, since including it could
only tell us how many photons of each type (energy, polarization, etc.) will be
absorbed or emitted in a given transition, and we have other ways of obtaining
this information. By focusing on the molecular states |V (r, t)), we gain the far
more interesting information about what happens in the molecule.) If we have a
complete orthonormal set of zeroth-order (i.e., isolated-molecule) eigenstates
[¥,(r, 1)) of H,, the mixed state [¥(r, {)) can always be expressed as

¥, 0> =Y c,(OI¥r, )> =3 c,(t) exp(—iELt/h) In) (1.84)

n n
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by a suitable choice of coefficients c,(t). The ¢,(t) are assumed to be normalized
and to obey the initial conditions

e —o0)=1
cn#k(_oo)=0

2 leo =1 (1.86)

} Co(—0) = Oy (1.85)

Equation 1.85 states that [¥(r, — o)) = exp(—iEQt/h)|k); i.e., the molecule is
initially in state |k) with energy E, = E{. The expansion (1.84) can be
substituted into the time-dependent Schrédinger equation to give

[Ho + WY cit)e Ethny = ih% Y e (t) e Eltny (1.87)

n

Using the fact that Hojn) = E,|n) and multiplying on the left by the bra {(m|, we
have

i 0 )

Y e (OW(R)e B nY = inCm] S _act_n o=ty
iny 0Cn ik

= lh E e nl <m|n>

; dc
— ih p—iEnt/h Z=m 1.88
ihe e (1.88)

The latter follows since {m|n) = J,,, in an orthonormal set, so that only the term
with n = m survives in the summation. Hence, the time-dependent coefficients
obey the coupled equations

de,, 1

t) e~ Ea—Et/h | W (¢ 1.89
= Yale CmiW (©ln) (189)
This expression is exact. We can now introduce the spirit of the perturbation
theory by assuming that the transition probability from the initial state k) to
some other state |m) is small. This would imply that c,(t) ~ §,, at all times t, not

just at t = — c0. Hence, as a zeroth approximation, we take [9]
D=1 (1.90)
Q) = - (191)

and, using w,,, to denote (E, — E,,)/h and substituting Eq. 1.90 into the right side
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of Eq. 1.89, we can get an expression for the next order of approximation to c,(t):

dc 1 .
i 7 Y. Owce” “nm'm|W(t)|n)

= %e‘i‘”‘"%mlW(t)Ik) (1.92)

From this, considering the initial condition that c,(t) = c{%(f) as t - — oo (and
hence that c{})(t) - 0 for m # k in this limit), we can integrate Eq. 1.92 to obtain

t
(1) = % f e~ (m| Wty )k ydt, (1.93)

For a second approximation to c,(t), we can place c;(t) into the right side of Eq.
1.89 to obtain

de?

o’ L ¥ e ot m WOl

1 . ! .
=@ Y. e emm|W(t)n) j e~ lin|W(ty)lk)dt, (1.94)
Integrating this with the proper initial condition leads to
- . .
) = @ > J e” i {m|W(ty)|n)dt,

x J Y et (e kD dt (1.95)

Iteration of this process will show that [9]

nlt) = 20 + cD(0) + D) + -

1 [t ;
= O + o f e Ot m|W(ty)lkdt,

— o

— 0

1 S neoo
+(ihT ;J_ e mim| W (e y)npdt, J e M| W(ty)lk)dt,

t1

(,h)s > | e““""“"(mlWIn>dt1 J we"i“’"'"‘Z(n|W|n’>dt2

t2
xf et (| Wikt

—

. (1.96)
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In the absence of any perturbation W(t), c,(t) is given by ¢! = §,,,, and no
transitions can occur from the initial state |k). The next term c{})(¢) corresponds
to one-photon processes (absorption and emission of single photons), and covers
most of classical spectroscopy. The two-photon processes (two-photon ab-
sorption and Raman spectroscopy) are contained in the second-order term
c)t), the three-photon processes (e.g., second-harmonic generation and three-
photon absorption) correspond to c{)(t), and so on. We will concentrate on the
consequences of the first-order (one-photon) term c{}(t) in the next few chapters.
Higher order terms like c{2)(¢) and c¢)(t) require intense electromagnetic fields
(i.e., lasers) to gain importance, and indeed the practicality of Raman spec-
troscopy bloomed dramatically with the advent of lasers.

Under the normalization and initial conditions (1.85) and (1.86), the proba-
bility that the molecule has reached state |m) at time ¢ is equal to |c,,(¢)|*. In first
order, c,(t) is given by

— o

D) = % ft e~ eli (m| W (t )|k Ddt, (1.97)

and so we must have {m|/W(t)k) #0 for an allowed k — m one-photon
transition. The transition is otherwise said to be forbidden. To calculate
molecular transition probabilities more concretely and to derive general
selection rules for allowed transitions, we need only to substitute specific
expressions for W(r).

1.5 SELECTION RULES FOR ONE-PHOTON TRANSITIONS
Heuristic selection rules for one-photon transitions may be obtained by using

Eq. 1.9 or 1.10 for the perturbation W in the expression for c{!)(t), Eq. 1.97. This
procedure yields the matrix element

mWk) = {mlegplk) — {m|p- Elk>

1 OE,
—<{m| 3¢ ,Zj:xixja_)ci k> +
1 JE;
=0—E-(mlplky — = Y e ——L (mlxxjky ++ (1.98)
2 ij 6xi

which controls the probability of transitions from state k to state m. The first
term vanishes ((m|k) = 0) due to orthogonality between eigenstates of H,
having different energy eigenvalues. The second term results from interaction of
the instantaneous molecular dipole moment with the external electric field E,
and leads to electric dipole (E1) transitions from state k to state m. The third term
arises from interaction of the instantaneous molecular quadrupole moment
tensor with the electric field gradients 0E;/0x;; it is responsible for electric
quadrupole (E2) transitions from state k to state m. Our qualification that it is the
instantaneous (rathér than permanent) moments that are critical here is
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Hx

A
VA,

Figure 1.6 Orientations of the E and B fields associated with the linearly polarized
light wave described by Egs. 1.99. The E field, directed along the x axis, interacts
with the x component of the molecule’s instantaneous electric dipole moment; the B
field, directed along the y axis, interacts with the y component of the molecule’s
instantaneous magnetic dipole moment.

y (kmly

important, since, for example, E1 transitions can occur in atoms (e.g., in Na and
Hg lamps) even though no atom has any nonvanishing permanent dipole
moment g, The foregoing discussion can be summarized in the following
selection rules:

For allowed E1 transitions, {m|ulk) # 0
For allowed E2 transitions, {m|x;x;|k)> # 0 for some (i, j)

While this discussion based on electrostatics ignores the time dependence in
W(t) and omits the effects of magnetic fields associated with the light wave, it
does anticipate some of our final results in this section regarding electric dipole
and electric quadrupole contributions to the matrix elements {m|W(t) k). It
yields no insight into magnetic multipole transitions or into the nature of the
time-ordered integrals in the Dyson series expansion of Eq. 1.96.

Next we calculate the matrix elements using the correct time-dependent
perturbation W = (ieh/m)(A - V), Eq. 1.78. We assume for clarity that the vector
potential is that for a linearly polarized plane wave (Eq. 1.79) with A, = A4,i and
k = |k|k. This vector potential points along the x axis and propagates along the
z axis (Fig. 1.6); results for the more general case are given at the end of this
discussion. Following Eqs. 1.81 and 1.82, the electric and magnetic fields
corresponding to this vector potential are

E(r, t) = —c|k|Af sin(kz — wt) (1.99a)
B(r, t) = —jlk|4, sin(kz — wt) (1.99b)

so that the E and B fields point along the negative x and y axes, respectively. The
matrix element {m|W(¢t)lk) becomes

WO =% (mfAge™ =9 - VK>

he .
== Age ™ (e T Ik

ih ;
=l-m—e Age " m| (1 +ik-r+

Y
(lsz) + ) VK> (1.100)
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The quantity k - r is equivalent to |k| |r| cos § = 2x|r| cos §/4, where 6 is the angle
formed between the vectors k and r. The matrix elements {m|W(t)k)> limit |r] to
the molecular dimensions over which the wave functions |k> and {(m| are
appreciable, i.e., [r] < 104 in typical cases. The shortest wavelengths 4 used in
molecular spectroscopy are on the order of 103 A for vacuum-ultraviolet light,
and are of course much longer for visible, IR, and microwave spectroscopy.
Hence k- r is typically much less than 1, and the series expansion of exp(ik - r)
converges rapidly. In the special geometry we have assumed for our vector
potential,

ihe . 0
mW@Ik> = — Age™ " {m|l — [k
m 0x

ih . 0
+ 7 goemiom(ikz) — [k
m 0x

ihe it (kz)? 0
+ 2 dgemienm 2 e + (1.101)

The first term in {m|W(t)|k) requires the matrix element {m|8/0x|k>. This can be
obtained by evaluating the commutator

(Ao 1= [5/2m + V09, x] =5 - [7, ]

1 ., 1. . DPx .
- ﬁ [px’ x] - m [px’ X}px + om [px’ X]
ih . ~ . .

where we have used the commutator identity [AB,C] = A[B, C] + [4, C]B
[3]. Then

0 i m ih m A N
— =D = — — —— P = — — b H 1.1
== hz( = px) o (Hox—xHy)  (1103)

and so

0 m ~ .
<m| P k> = — P {m|Hox — xHlk)

m
= — 23 (miE,x — xEJk>

— 55 (Ey — EJCmfxlk

= — T i, (1.04)



SELECTION RULES FOR ONE-PHOTON TRANSITIONS 25

The second term in {m|W(t)|k) requires

0 0 0 0 0
Cmlz —— k> = mlz —— — x — k> + 3{mlz =— + x — k>

ox oz O0x 0z
i h o ho 0 0
—2—ﬁ<mlziax x7—|k>+2< IZ—+va|k>
0
(mlL,,Ik} + 2<m|z + x — |k> (1.105)

since the y component of the orbital (not spin or total) angular momentum is
L = zp, — xp,. The last matrix element on the right side above can be obtained
using the commutator

N 1
[HOa XZ] = 5}; [i)z’ xz]
1 ~2 ~2
= _ZE [px + Pz XZ]

1
2 2p, [P, X1z + 5= o 2p.x[p., ZJ

ih .
= _—(pxz + xpz)
m

w0 i
= ( pe x£> (1.106)

Then

0 . 0 m ~ ~
{m|z x + X % k> = — Pl {m|Hyxz — xzHy|k)

m
= 23 (B — E)mixzlk
h\l
= T%ﬂ (mixzlk> (1.107)

Collecting these results for the first and second terms in {m|W(t)k)>, we
summarize that

(mW(Olk) = +ieamAoe ™ " <mix|k)

- izk—e Age o (m|L Jk> + 2""' Age ™ “m|xzlk)
) -
_ Thk” eAd e"""’(mlz — |k> + - (1.108)

2m
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For a single particle, the electric dipole operator is g = er; the first term on
the right side of Eq. 1.108 is therefore

ia)kmAOe - imt<m|ﬂxlk>

and it represents the electric dipole (E1) contribution to the total transition
probability. Only the x component of g appears here, because in our example
the E field of the light wave has only an x component (Fig. 1.6), and the electric
dipole interaction behaves as u - E. The second term in Eq. 1.108 can be recast in
terms of the magnetic dipole moment operator in SI units

= €L/2m (1.109)

(the orbital angular moment L of a moving charged particle physically gives rise
to a proportional magnetic dipole moment g, in the same direction as L for
e > 0), and so it becomes

—ikAoe ™ (mi(py), k>

This corresponds to the magnetic dipole (M1) contribution. The energy of a
magnetic dipole moment g, in a uniform magnetic field B is —u,,* B, and the
magnetic field of our current problem is directed along the y axis (Fig. 1.6)—
which is why only the y component of g,, appears in this term. The third term in
Eq. 1.108 embodies the electric quadrupole (E2) xz component, which is the only
contributing electric quadrupole tensor component since E in our example has
only an x component that spatially depends only on z (all of the other 0E;/0x;
are zero). The succeeding terms not shown in Eq. 1.108 describe higher order
(electric octupole, magnetic quadrupole, etc.) transitions; their importance
decreases rapidly with increasing order because of the increasingly high powers
in (kz). Since the E2 and M1 transition amplitudes contain a factor of kz that is
absent in the E1 term of (m|W(t)k), they are inherently much weaker
transitions than electric dipole transitions. The vast majority of one-photon
spectroscopic transitions that are exploited in practice are E1 transitions.

We now give without proof the matrix element of W(t) for the more general
case of an incident plane wave A(r,t) = Agexp(ik *r — wt) in which k and A,
point in arbitrary directions (A, must be normal to k to give a physically real
light wave in vacuum, however):

CriW Ik = T oo [% (iAo D>

<mILlIk> + T0m '"" Cmi(k-r)(Ag - D)lk> + - J

=e "“'C (1.110)
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in which L, denotes the component of orbital angular momentum about an axis
normal to both A, and k. These terms in order correspond to the E1, M1, and
E2 k — m transition amplitudes.

From Eq. 1.96, the k > m one-photon transition probability becomes

1
les @O = 75

t
f e_iw""'tl<m| W(tl)|k>dt1|2

—©
2

(1.111)

t
h[ e_i(w“"‘+w)t‘dtl

— o0

meaning that the transition probability is proportional to the absolute value
squared of the weighted sum of matrix elements in Eq. 1.110. To see the
significance of the time integral, we may take the limit as t - + oo (the
continuous-wave limit) to get

47%|C)?
hz

le (@) = [0(wim + @)1? (1.112)

since the integral representation of the Dirac delta function is

1 [*
6(x)=EJ‘ e*tdt (1.113)

— 0

Hence, the k—>m transition in this limit cannot occur unless
0= —Wpy = +0u = (E,, — Ey)/h. The frequency in the external radiation field
must exactly match the energy level difference between the initial and final
states, in accordance with the Ritz combination principle. Thus, the time
integral leads to an “energy-conserving” delta function. This energy-matching
condition should not be taken too seriously at this point, because in fact the
energies E, and E, themselves are not sharply defined in general owing to
lifetime broadening [10] (sometimes referred to as the “time-energy uncertainty
principle”). Rather, the time integral in Eq. 1.111 expresses the w-dependence of
the transition probability in the idealized case when the energies of the two levels
are infinitely sharp. It is interesting to note that if the upper integration limit ¢ is
set to some finite number rather than + oo, the function §(w,,, + w) will be
replaced by some function g(w) with a finite, rather than zero, width. This
corresponds to the fact that a light wave with less than infinite length has some
uncertainty in its frequency w, so that its center (or most probable) frequency
can be detuned from (E,, — E,)/h and still have some finite probability of
effecting the molecular transition.

The selection rules we have derived in this section form the basis for all of the
one-photon spectroscopies treated in Chapters 2 through 7 of this book. They
may be succinctly summarized as follows for general one-photon transitions
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from state k to state m:

Electric dipole (E1): {mlulky #0 (1.114a)
Magnetic dipole (M1): {m|LIk) #0 (1.114b)
Electric quadrupole (E2): {mlx;x;lk)> # 0 (1.114c¢)

for some (i, j)

Obtaining the selection rules for two-photon and higher order multiphoton
processes requires analysis of the expansion coefficients c{2(t), c(¢), ... in Eq.
1.96. This is done explicitly for two-photon processes in Chapter 10, where two-
photon absorption and Raman spectroscopy are discussed. This formalism
becomes increasingly unwieldy when applied to three- and four-photon pro-
cesses, and diagrammatic techniques then become useful for organizing the
calculation of the pertinent transition probabilities (Chapter 11).

REFERENCES

. M. H. Nayfeh and M. K. Brussel, Electricity and Magnetism, Wiley, New York, 1985.

. J. D. Jackson, Classical Electrodynamics, Wiley, New York, 1962.

. E. Merzbacher, Quantum Mechanics, Wiley, New York, 1961.

. K. S. Pitzer, Quantum Chemistry, Prentice-Hall, Englewood Cliffs, NJ, 1953.

. W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism, 2d ed.,
Addison-Wesley, Reading, MA, 1962.

. J. B. Marion, Classical Dynamics of Particles and Systems, Academic, New York,
1965.

7. R. H. Dicke and J. P. Wittke, Introduction to Quantum Mechanics, Addison-Wesley,

Reading, MA, 1960.

8. W. H. Flygare, Molecular Structure and Dynamics, Prentice-Hall, Englewood Cliffs,
NJ, 1978.
9. A. S. Davydov, Quantum Mechanics, NEO Press, Peaks Island, ME, 1966.

10. P. W. Atkins, Molecular Quantum Mechanics, 2d ed., Oxford Univ. Press, London,
1983.

WV AW N =

[=))

PROBLEMS

1. For the electric and magnetic fields given in Egs. 1.38, show that Maxwell’s
equations in vacuum (Egs. 1.37) require that E,*B, = E,k = B,k = 0.

2. A vector potential is given by A(r, t) = A 7+ k)cos(k - r — wt), in which the
wave vector k = i]k|. Compute E(r,?) and B(r,t) in the Coulomb gauge, and
show that these fields obey Maxwell’s equations in vacuum.
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3. The evaluation of ground-state atomic or molecular polarizabilities using
Eq. 1.35 requires accurate knowledge of all of the molecular eigenstates in
principle. This proves to be unnecessary in the hydrogen atom (A. Dalgarno and
J. T. Lewis, Proc. R. Soc. London, Ser. A 233: 70 (1955); E. Merzbacher, Quantum
Mechanics, Wiley, New York, 1961), where the second-order perturbation sum
(1.35) can be evaluated exactly. In this problem, we evaluate «,, for the 1s ground
state |0)

<0]z|1 )<1|z|0>

2
o, = 2e
= 7o E —E,

in which |I)> denotes an excited state in hydrogen and the summation is
evaluated over all such states.

(a) Verify by substitution that the function

Fe (T a) 2

satisfies the commutation relation
20> = (FH, — HoF)I0)
Here u and qa, are the hydrogen atom reduced mass and Bohr radius, and

H, is the hydrogen atom Hamiltonian.

(b) Show that this result leads to

age’ r
Rl (5 + ao) 20

.
so that no information about excited states |I) with | # 0 is required to
compute the polarizability in the hydrogen atom.

() Compute a,, in A3. Compare this value with the polarizabilities of He
(0.205 A%) and Li (24.3 A?) and discuss the differences.

@ An electromagnetic wave with vector potential
A(r, t) = Ao(j + k) cos(kx — ot)
is incident on a 1s hydrogen atom.

(a) Calculate the E and B fields, assuming ¢(r) = 0.

(b) Write down all of the nonvanishing terms in the matrix elements {1s|W|2s),
1s|W(2p, >, {1s|W|2p,>, and {1s|W|3d,,) for this vector potential up to
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first order in (k *r) in Eq. 1.100. [In terms of the hydrogen atom stationary
states [Yum(r)), 115D is [Y100(r)>, 125D is [Y200(r)>, 2p.> is the linear
combination 27Y2(—|y,,,> + |5y, 1)), etc. Use elementary symmetry
arguments to determine which of the matrix elements will vanish.]

(c) For this particular vector potential, which of the transitions 1s— 2s,
1s—>2p,, 1s—>2p,, and 1s—3d,, are El-allowed by symmetry? E2-
allowed? M1-allowed?

5. Combine Maxwell’s equations in vacuum with Egs. 1.39 and 1.42 to
generate the homogeneous wave equation for the vector potential in the
Coulomb gauge,

2

2
(V2 — Hoto a?) Ar,t)=0

Show that the most general solution to this wave equation is
A, t)=f(k'r — wi)

where f is any function of the argument (k‘r — wt) having first and second
derivatives with respect to r and t. What physical significance does this function
_have in general?

After expanding the exponential in the matrix element {m|exp(ikz)(d/0x)|k)
in Eq. 1.101, we demonstrated that the first-order term {m|(ikz)(0/0x)|k) breaks
down into a sum of contributions proportional to (mlﬁy|k> and {m|xz|k). These
account for the M1 and E2 transition probabilities, respectively. Reduce the
second-order term {m|(ikz)%(8/0x)|k) into a similar pair of physically interpre-
table matrix elements, using the identity

0 1 0 0 0 0
2 __=_ |22z —x=— 2 — 4 2xz—
“ T3 I: Z(Z P 62) * <z 0x exz 62):|
Determine which types of multipole transitions are embodied in this second-
order term. What kinds of electric and magnetic field gradients are generally

required to effect these types of transitions? By what factor do these transition
probabilities differ from those of M1 and E2 transitions?

7. The time-dependent perturbation theory developed in Section 1.4 is useful
for small perturbations, and is widely applied in spectroscopy. The contrasting
situation in which the perturbation is not small compared to the energy
separations between unperturbed levels is often more difficult to treat. A
simplification occurs when the Hamiltonian changes suddenly at t = 0 from H,
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to H +» where H;and H , are time-independent Hamiltonians satisfying
Hjs;i> = Efs; i)
Hjlk; f> = Eflk; f )

It can be shown that in the sudden approximation (which is applicable when the
time 7 during which the Hamiltonian changes satisfies 7(E; — E,) < h), a system
initially in state s of H; will evolve into state k of H  after t = 0 with probability

Pei=Ks ilk f5I1?

A 1s tritium atom undergoes 18keV p decay to form He*. With what
probabilities is He* formed in the 1s, 25, and 3d states?
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Atomic spectra accompany electronic transitions in neutral atoms and in atomic
ions. One-photon transitions involving outer-shell (valence) electrons in neutral
atoms yield spectral lines in the vacuum ultraviolet to the far infrared regions of
the electromagnetic spectrum (Fig. 2.1), corresponding to wavelengths between
several hundred angstroms and several meters. Transitions involving the more
tightly bound inner-shell electrons give rise to spectra in the X-ray region at
wavelengths below ~ 100 A; we will not be concerned with X-ray spectra in this
chapter.

Atomic emission spectra are commonly obtained by generating atoms in their
electronic excited states in a vapor and analyzing the resulting emission with a
spectrometer. Electric discharges produce excited atoms by allowing ground-
state atoms to collide with electrons or ions that have been accelerated in an
electric field. Such collisions convert part of the ion’s translational kinetic energy
into electronic excitation in the atom. Low-pressure mercury (Hg) calibration
lamps operate by this mechanism. Atomic excited states may also be produced
by excitation with lasers (Chapter 9), which are intense, highly monochromatic
light sources. This monochromaticity permits selective laser excitation of single
atomic states, a feature that is not possible in ordinary electric discharges. A less
common method of generating excited atoms is by chemical reactions, and the
resulting emission is called chemiluminescence. An important example is the
bimolecular reaction between sodium dimers and chlorine atoms,
Na, + Cl - Na* + NaCl, which creates electronically excited sodium atoms
Na* in a large number of different excited states. The photodissociation process
CH;I + hv —» CH; + I* initiated by ultraviolet light is an efficient method of
producing iodine atoms I* in their lowest excited electronic state, which cannot
be reached by E1 one-photon transitions from ground-state I.

33
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Visible
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Figure 2.1 The electromagnetic spectrum. IR and UV are acronyms for infrared
and ultraviolet, respectively; the abbreviations kHz, MHz, GHz, and THz stand for
kilohertz, megahertz, gigahertz, and terahertz.

Light emitted at different wavelengths is spatially dispersed in grating
spectrometers, and emission spectra may be recorded on photographic film.
Alternatively, the grating instrument may be operated as a scanning mono-
chromator that transmits a single wavelength (more precisely, a narrow
bandwidth of wavelengths) at a time. Emission spectra may then be recorded
using a sensitive photomultiplier tube to detect the emission transmitted by the
monochromator while the latter is scanned through a range of wavelengths.

Atomic absorption spectra may be obtained by passing light from a source
that emits a continuous spectrum (e.g., a tungsten filament lamp, whose output
spectrum approximates that of a blackbody emitting at the filament temper-
ature) through a cell containing the atomic vapor. The transmitted continuum is
then dispersed in a grating spectrometer, and may be recorded either photo-
graphically or electronically using a vidicon (television camera tube) or linear
photodiode array. Characteristic absorption wavelengths are associated with
optical density minima in developed photographic negatives, or with trans-
mitted light intensity minima detected on a vidicon or photodiode array grid.
Emission spectroscopy is preferable to absorption spectroscopy for detection of
atoms in trace amounts, since emitted photons are readily monitored photo-
electrically with useful signal-to-noise ratios at atom concentrations at which
absorption lines would be barely detectable in samples of reasonable size.

Representative emission spectra are shown schematically in Fig. 2.2 for
hydrogen, potassium, and mercury on a common wavelength scale from the
near infrared to the ultraviolet. Under the coarse wavelength resolution of this
figure, the emitted light intensities are concentrated at single, well-defined
emission lines. In H, the displayed emission consists of four convergent series of
lines, the so-called Ritz-Paschen and Pfund series in the near infrared, the
Lyman series in the vacuum ultraviolet, and the Balmer series in the visible.
Johann Balmer, a schoolteacher in Basel in the late nineteenth century,



ATOMIC SPECTROSCOPY 35

Ritz-Paschen 1
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Figure 2.2 Schematic emission spectra of H, K, and Hg atoms. These are plotted
versus the line frequencies v = 1/4 in units of cm ™!, where the 1 are the emission
wavelengths in vacuum. Only the strongest emission lines are included, and relative
line intensities are not shown. Line headers for H and K denote series of lines
resulting from transitions terminating at a common lower level. Line headers are
omitted for the Pfund series in H (which appears at extreme left) and for the sharp
series in K, which closely overlaps the diffuse series.

discovered that the wavelengths in angstroms of lines in the latter series closely
obey the remarkably simple formula

2

A = 3645.6 (me_TZ) @.1)

withm = 3,4, 5,.... In the limit of large m, this expression converges to a series
limit at A = 3645.6 A. (This limit is not directly observable in spectra like that in
Fig. 2.2, because the line intensities become weak for large m.) The wavelengths
of lines in the Ritz-Paschen series are similarly well approximated by
A = 8202.6 m*/(m* — 3%) with m = 4, 5, 6, .... Hydrogenlike ions with atomic
number Z # 1 (He*, Li?*, etc.) exhibit analogous series in which the emission
wavelengths are scaled by the factor 1/Z? relative to those in H. The
compactness of the analytic expressions (cf. Eq. 2.1) for spectral line positions in
hydrogenlike atoms is, of course, a consequence of their simple electronic
structure.
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Though potassium (like hydrogen) has only one valence electron, its
spectrum appears more complicated. It can be analyzed into several overlapping
convergent series (historically named the principal, sharp, diffuse, and funda-
mental series) as shown by the line headers in Fig. 2.2. Potassium exhibits a
larger number of visible spectral lines than hydrogen, and their wavelengths are
not accurately given by analytic formulas as simple as Eq. 2.1. These differences
are caused by interactions between the valence electron and the tightly bound
core electrons in the alkali atom—interactions that are absent in hydrogen. No
discrete absorption lines occur at energies higher than about 35,000cm 1, the
ionization potential of potassium.

The mercury spectrum is even less regular. The electron configuration in Hg
consists of two valence electrons outside of a closed-shell core
(55)%(5p)%(4f)*4(5d)'°. The Hg spectrum features that are not anticipated in H or
K arise from electron spin multiplicity (i.e., the formation of triplet as well as
singlet excited states in atoms with even numbers of valence electrons) and from
spin—orbit coupling, which assumes importance in heavy atoms like Hg
(Z = 80). The mercury spectrum in Fig. 2.2 has been widely used as a spectral
calibration standard.

In this chapter, we review electronic structure in hydrogenlike atoms and
develop the pertinent selection rules for spectroscopic transitions. The theory of
spin—orbit coupling is introduced, and the electronic structure and spectroscopy
of many-electron atoms is greated. These discussions enable us to explain details
of the spectra in Fig. 2.2. Finally, we deal with atomic perturbations in static
external magnetic fields, which lead to the normal and anomalous Zeeman
effects. The latter furnishes a useful tool for the assignment of atomic spectral
lines.

21 HYDROGENLIKE SPECTRA

The unperturbed Hamiltonian for an electron in a hydrogenlike atom with
nuclear charge +Ze is
h? Ze?

Ho= -1 w2 _
0 2u 4regr

(2.2)

The atomic reduced mass u is related to the nuclear mass my and electron mass
m, by pu=m,my/(m,+my), V> operates on the electronic coordinates, and r is the
electron—nuclear separation. The eigenfunctions |/,,,.(r, 6, ¢)> and eigenvalues
E, of this Hamiltonian exhibit the properties

ﬁow’nlm(r’ 0, ¢)> = Enlwnlm(rs 09 ¢)> (2'3)
n=12 ...
1=0,1,...,(n— 1)
m=0, +1,..., 1
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Il//nlm(ra 9, ¢)> = Rnl(r)Ylm(e’ ¢) (24)
E,=— %‘?‘ﬁ (2.5)

The eigenfunctions factor into a radial part R,(r) and the well-known spherical
harmonics Y,,(0, ¢); n, I, and m are the principal, azimuthal, and magnetic
quantum numbers, respectively. The energy eigenvalues E, depend only on the
principal quantum number n. Since the total number of independent spherical
harmonics ¥,,,(0, ¢) for I < (n — 1) is equal to n? for a given n, each energy
eigenvalue E, is n?>-fold degenerate. While n controls the hydrogenlike orbital
energy as well as size, the quantum numbers | and m govern the orbital
anisotropy (shape) and angular momentum. Since the orbital angular mo-
mentum operators L? and L, commute with the Hamiltonian H,, the
eigenfunctions |,;,,> of H, are also eigenfunctions of [?and L,

Y6, ¢) = Il + DA?Y,,,(0, ) (2.6)
L.Y,,(6, ¢) = mhY,, (8, ¢) 2.7

(The radial part R,;(r) of |{/,;,> cancels out in Egs. 2.6 and 2.7, because L? and L,
operate only on 0 and ¢.) This implies that the orbital angular momentum
quantities L? and L, are constants of the motion in stationary state |{/,;,,» With
values I(I + 1)4®> and mh, respectively. A common notation for one-electron
orbitals combines the principal quantum number n with the letter s, p, d, or f for
orbitals with [ =0, 1, 2, and 3, respectively. (This notation is a vestige of the
nomenclature sharp, principal, diffuse, and fundamental for the emission series
observed in alkali atoms, as shown for K in Fig. 2.2.) An orbital withn = 2,1 =0
is called a 2s orbital, one with n = 4, [ = 3 a 4f orbital, and so on. Numerical
subscripts are occasionally added to indicate the pertinent m value: the 2p,
orbital exhibits n =2, I = 1, and m = 0. Chemists frequently work with real
(rather than complex) orbitals which transform as Cartesian vector (or tensor)
components. A normalized 2p, orbital is the linear combination
(=12py) + |2p_1>)/\/§ =(—211) + |21, — 1))/\/5, because the spherical har-
monics Yy; and Y; _; are given in Cartesian coordinates by

[3 x+iy
Yii=— 87
nr 2.8)
3 x—iy
Yl"l_\/% r

with r = (x2 + y2 + z2)!/2, Contours of some of the lower-energy hydrogenlike
orbitals are shown in Fig. 2.3.
In accordance with the selection rules developed in Chapter 1, one must have
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3d.: 3d,.

Figure 2.3 Contour plots of several low-lying H atom orbitals. Curves are surfaces
on which the wavefunction exhibits constant values; solid and dashed curves
correspond to positive and negative values, respectively. The outermost contour in all
cases defines a surface containing ~90% of the electron probability density. The
incremental change in wavefunction value between adjacent contours is 0.04, 0.008,
0.015, 0.003, 0.005, and 0.003 bohr~3/2 respectively for the 1s, 2s, 2p, 3p, and
3d orbitals. Boxes exhibit side lengths of 20 bohrs (1s, 2s, 2p) and 40 bohrs (3s, 3p,
3d), so that orbital sizes can be compared. Straight dashed lines in 3p, and 3d,. plots
show locations of nodes.

for allowed one-photon transitions from state |{/,;,,> to state |V, ;m>

Y il WY ey # O, E1 transitions
VLI wrm> #0, Ml transitions (2.9)
Y uml QW > # 0O, E2 transitions

To consider the specific selection rules on electric dipole (E1) transitions in
one-electron atoms, we evaluate the matrix elements of the pertinent electric
dipole moment operator u = X;exr; = Zery — er’, where ry and r' are the
positions of the nucleus and electron referenced to an arbitrary origin in space.
Then

<d’nlm|”|¢n’l’m'> = <l/lnlmlzerN - er’|¢n'l’m’>
= (Z - I)erN<l//nlm|¢n’l’m’> - e<‘//nlmlr|l//n’l'm’>

=0- e<'//nlm|r|'//n’l'm'> (210)

since the hydrogenlike states are orthogonal and depend only on the electron’s
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coordinates r = r’ — ry relative to the position of the nucleus. Using

r sin 6 cos ¢
r=|rsin 0 sin ¢ (2.11)
r cos 0

the transition dipole moment integral is

<‘/jn1m"‘w’n’l'm'>
= —e J‘w r2dr rR,(r)R,(r) fﬂ sin 0 do J‘Zu dpYE(D, ¢)
0

V] 0
sin 6 cos ¢
x | sin 0 sin ¢ | ¥,.,.(0, @) (2.12)

cos 0

It can be shown that the angular part of this integral vanishes [1] unless
Al=1 — 1= +1 (not zero), and unless Am = m’ — m = 0 or + 1. Evaluation of
the radial part is difficult; this factor is nonzero regardless of An=n'—n,
provided Al = +1. Hence we can summarize the E1 selection rules for one-
photon transitions in hydrogenlike atoms,

Al= +1 (2.13a)

Am =0, +1 (2.13b)

Since the hydrogenlike energy levels are given by Eq. 2.5, the transition
energy accompanying emission of a photon of frequency w will be

722 2
o= g, - I 1]

= —he/A (2.14)

in going from state Y ,,,> to state |, ,...>. The corresponding photon wavel-
ength is then

8k n%(n')?
4= HZ*(e?[eo)? [”2 - ("')2] @1

which has a form identical to Eq. 2.1 if n’ = 2. The visible H atom lines in the
Balmer series thus result from transitions from n = 3, 4, 5, ... down to n’ = 2.
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- Other H atom series arise from transitions terminating in different values of n’
(Fig. 2.4). Since the hydrogenlike energy levels E, are independent of | and m, the
selection rules (2.12) do not preclude the appearance of a spectral line for any
energy separation (E,. — E,), and lines appear for all combinations (n', n). These
facts quantitatively account for the wavelengths of all of the H atom spectral
lines in the low-resolution spectrum of Fig. 2.2.

Another consequence of the selection rules (2.13) is that a hydrogenlike atom

cm’!

n
(6] —0
5 T
3 R
o
3 I S ©
—_— TN
RS Z333
‘Yoo ~® oo Brackett
899 PNOQ series
5 ARE Ritz-
Paschen
Balmer series
series
—50,000
eBoe
novNo
— NN~ T
06
—100,000

Lyman
series

Figure 2.4 Hydrogen atom energy levels and transitions. The Lyman, Balmer, Ritz-
Paschen, and Brackett series occur in the vacuum ultraviolet, visible, near-infrared,
and infrared regions of the electromagnetic spectrum, respectively.
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in any excited electronic state except the 2s state can emit a photon sponta-
neously by electric dipole radiation, and thereby relax to some lower energy
state. For any such excited state |{,;...», there exists a lower state |{,,,,» for
which Al = +1and Am = 0, £ 1. The 2s state is the exception, because the only
state with lower energy than the 2s state is the 1ls state, and the 25— 1s
fluorescence transition (Al=0) is El-forbidden. The 2s state is therefore called
metastable since it will exhibit an unusually long lifetime, lacking an electric
dipole-allowed radiative transition to any lower state. Metastable states are not
simply states which have no El-allowed transition to the ground state: to be
metastable, a state must have no El-allowed transitions to any states of lower
energy. Such atomic states play an important role in the efficiency of He/Ne
lasers (Chapter 9).

Since the spherical harmonics Y,,(0, ¢) also describe angular momenta for the
single valence electron in alkali atoms (Li, Na, K, Rb, Cs), the selection rules
(2.13) apply equally well to valence electron transitions in such atoms (but not to
transitions involving core electrons, where angular momentum coupling can
become important). In this case, (nlm) and (n'I'm’) denote the initial and final sets
of quantum numbers in the valence orbital. Valence—core interactions in alkali
atoms split the n*-fold degeneracy of energy levels belonging to a given principal
quantum number 7, so that the energies now depend on [ as well as n. This is
illustrated in the energy level diagram for potassium in Fig. 2.5. (Each of the
levels is still (2] + 1)-fold degenerate, since the m sublevels for given n and [ are
isoenergetic in the absence of external magnetic fields.) The larger number of
distinct levels resulting from this degeneracy-breaking in K does complicate the
emission spectrum. However, the selection rules (2.13) still limit the observed E1
transitions to a small subset of the total number that could conceivably occur.
The allowed transitions (Al = + 1) are restricted to ones that connect levels in
adjacent vertical groups of levels in Fig. 2.5, where the levels are organized in
columns according to their [ values. The principal series in K arises from np — 4s
transitions with n > 4; the sharp series results from ns — 4p transitions with
n = 5; the diffuse series occurs in nd — 4p transitions with n > 4; and the
fundamental series is produced by nf — 4d transitions with n > 4. The origin of
each of the lines in the low-resolution potassium spectrum (Fig. 2.2) can now be
qualitatively understood with reference to Fig. 2.5.

Each of the series in the H and K spectra converges in principle to a series
limit, as the discrete atomic energy levels must converge when the onset of the
ionization continuum is approached (Figs. 2.4 and 2.5). The lines are very weak
in the neighborhood of the series limits, because their intensities are pro-
portional to the absclute value square of the transition dipole moment. The
latter contains the factor

2

J rsdarl(r)Rn’l’(r)

0

which falls off rapidly with (n — n’) for given (I, I') [1]. For example, this quantity
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15,000 4

20,000 4

25,000

Figure 2.5 Energy levels and observed transitions in K. This type of diagram is
commonly referred to as a Grotrian diagram. All of these low-lying energy levels arise
from electron configurations of the type (15)2(2s)?(2p)®(3s)2(3p)%(n/)! = - - - (nl)*.
The 2S, ), level labeled “1”, the ?P,,, and 2P, levels labeled 2", the 2D, , and 2D,
levels labeled “3”, and the F;,, and 2F,, levels labeled “4" correspond to the
electron configurations - - - (4s)!, - - (4p)?, - -- (4d)!, and - - - (4f)! respectively.
Reproduced, by permission, from G. Herzberg, Atomic Spectra and Atomic Structure,
Dover Publications, Inc., New York, 1944.

equals 0.464, 0.075, and 0.026 A2, respectively, for the 1s —2p, 1s — 3p, and
s — 4p transitions in hydrogen, and so good sensitivity is required to observe
lines near the series limit.

2.2 SPIN-ORBIT COUPLING

If the low-resolution potassium spectrum in Fig. 2.2 is reexamined using a

scanning monochromator that can distinguish between wavelengths that are 5 A

apart, each of the lines becomes split into closely spaced multiplets or groups of

lines. Lines in the principal and sharp series become doublets, and lines in the

diffuse series appear as triplets. This fine structure arises from the interaction

between the orbital angular momentum L and the spin angular momentum s of
the valence electron. Analogous splittings occur in the hydrogen spectrum, but .
much higher resolution is required to observe them in this atom, and other

relativistic effects have comparable importance in hydrogen.
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We can derive the interaction between the electron’s intrinsic spin angular
momentum s and its orbital angular momentum L classically for an electron
moving in a circular orbit around the nucleus. In this picture, the electron is
instantaneously moving with a velocity V, perpendicular to a line that connects
it with the nucleus. In the electron’s rest frame, the nucleus appears to be moving
in the opposite direction, Vy, = —V,, relative to the electron. So the electron
experiences a magnetic field from the apparent moving charge on the nucleus

(21,

B= L (xxB)= 5 (V.xB=+_Exp (IO

m,c?

where m, is the electron mass and E is the electric field at the electron due to the
nucleus. Since

Zer Ze
= = 7 2.17
4neor’ < 4neyr? r> @17
the magnetic field is
Ze Ze
= Tmegm.ir P = G @18)

where L is the electron’s orbital angular momentum. The electron’s intrinsic spin
s carries an associated magnetic dipole moment [3]

_ —gs€s
p= o 219)

where g is the electronic g factor (g, = 2 according to Dirac, 2.0023 according to
Schwinger [4]). The negative sign in Eq. 2.19 is due to the negative charge on the
electron. The energy of interaction of the electron spin magnetic moment with
the magnetic field B due to the moving nuclear charge is [2]

H o= —H;"B
_ —g.es ZeL
- 2m, J\dneomc?r3
Zg.e?
= W S) (220)

Since the potential energy of attraction between the electron and nucleus is

V(r) = —Ze?/4neyr
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the spin—orbital energy is

s 9s OV
7 2mic?r or

s) (2.21)

This actually overestimates the spin—orbital energy by a factor of 2, because we
have neglected the fact that an electron in a circular or elliptical orbit does not
travel at a uniform velocity V,, but experiences acceleration. The effect of
correcting for this is to cancel [5] (or nearly cancel, according to Schwinger) the
g factor g,, and we write

. 1 oV
=———|(L- 2.22
0= 508 5 L9 222)
where m, has been replaced by the atomic reduced mass p. We note that since
V(r) = — Ze?/4neyr, the magnitude of the spin—orbital Hamiltonian increases
with atomic number Z.
In hydrogenlike atoms, the total electronic Hamiltonian now becomes

ﬁ=ﬁ0+ﬁso

h? ze
v:_2° g, (2.23)

B 5; B 4ne,r

In the limit where H_, can be treated as a stationary perturbation, the energy
corrected to first order becomes

UZ*(e?/4me,y)? .
Enlm ~ - _—5—717,—1-2—0_ + <l//nlm|Hso|wnlm> (224)

The latter matrix element requires an expression for L s according to Eq. 2.22.
It also requires knowledge of the total angular momentum states that can arise
in an atom with orbital and spin angular momenta L and s (Appendix E). The
spherical harmonics in the atomic states y,,,, are eigenfunctions of L2 and L,
(Egs. 2.6, 2.7). The electron spin states |sm,» obey

§%|smy = s(s + 1)h%|sm,> (2.25a)
S:lsmgy = mghlsmy) (2.25b)

with s = 1 and m; = +3 for a single electron [3]. Two alternative commuting
sets of angular momentum operators are then I?, L,, §2, §, and 2, 32, J2, J,,
where the total angular momentum J is defined as J = L + s. Eigenfunctions of
the first commuting set form the uncoupled representation |Imismg)y = |lm;)|sm,).
Since J? does not commute with L, or §, (Appendix E), these uncoupled states
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are not eigenfunctions of J2. Eigenfunctions of the second commuting set form
the coupled representation |lsjm). The total angular momentum squared J 2 must
be a constant of the motion in an isolated atom, which is then appropriately
described using the coupled representation. In this representation, the states
|lsim) are eigenfunctions of J j2 with eigenvalue j(j + 1)4%, where the possible
values of j are

j=l+sl+s—1,..., -5l (2.26)
Since
L's=4J*-L?-5? (2.27)

the energy 2.24 corrected for spin—orbit coupling becomes

—uZ*(e*/4ne )2 1 10V 1 ,
Enm > —— o+ 3 Wl £ 5 3 O = L2 = W
—uZ?*(e?/4ne,)? iG+ 1) — I+ 1) — s(s + 1)]n? laV
= £ ziszz 0) + [](] ) (4“20)2 S( )] <¢n1m| |'//nlm>
2.28
Letting (2.28)
[ 10V
A,,,ij r’dr ——R() (2:29)
the corrected énergies are
— uZ*(e?/4ne,)”

Epm =~ +AuLG+ D =10+ 1) —s(s+ 1)]1/2  (2.30)

2n%h?

The possible values of the quantum number j=1[+s, ..., || — s| reduce to
j =14 4for I # 0 in hydrogenlike atoms. As an example the possible j values
for 2p states in hydrogenlike atoms are j = 1 + 4,1 — 4 = 3, 1 The correspond-
ing energies of the j sublevels would then be*

— uZ*(e*/4ne,)”

o+ An[G+ D -2-312  forj=3

E3/2 =

*It can be shown that for hydrogenlike atoms, the spin—orbit coupling constant 4,, is given by

Z%e*h? 1
2y2c2a3 il + 31+ 1)

nl =

The radial wave functions R,(r) do not have closed-form expressions in many-electron atoms
(Section 2.3), and so A4,, is not given by simple formulas in such atoms. Note the sensitivity of 4,, to
the atomic number Z; this gives rise to large spin—orbit coupling in heavy atoms.
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—uZ*(e*/4ne,y)?

E =
1/2 8h2

+ABE+1)—-2-3]2 forj=1% (2.31)

and the energy splitting between these spin—orbital states is
E;, —Eq ), =34,/2 (2.32)

This is an example of the Landé interval rule (1933) for the energy separation of
spin—orbital states with successive j values:

Ei—E;_ y =jAu (2.33)

To keep track of the different angular momenta in atomic states, term symbols
are used to specify the values of [, m, and j:

2s+ 1Lj (234)

When | = 0, L is denoted with an S; when [ = 1, L is denoted with a P, and so on.
Similar term symbols are used to notate the angular momenta in many-electron
atoms. For the hydrogenlike 2p sublevels with j = 3 and 4, the term symbols are
2%P,,, and 2?P, , respectively, where the first digit indicating n = 2 is useful for
specifying the principal quantum number of the valence electron in hydrogen-
like and alkali atom states.

Since each of the hydrogenlike levels with [ # 0 is now split into doublets with
j =141 it becomes necessary to augment the E1 selection rules on An, Al, and
Am with E1 selection rules on Aj. It turns out that these are Aj = 0, + 1. We will
demonstrate this selection rule in the case of n’S,,, — n’?P; transitions, where j
can be { or 3. The coupled (total) angular momentum states |Isjm) = |jm) in
atoms can be expressed as a superposition of uncoupled states |Im;sm,) weighted
by Clebsch-Gordan coefficients [1, 3],

Lim> =Y. llmysmy){mysmy| jm (2.39)

Ms

For the n'?P; states, it is understood that I = 1, s = 3; the possible m, values are
0, +1 and the possible m, values are +3. The four components of the *P; , state
(m = —3 through +3) are then

AD -5 2360
B =30, + @I - (2.36b)
B - =6"-L+3"0, - (2.36¢c)
B -»=1-1-% (2.36d)
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The first of Egs. 2.36 arises because there is only one combination of m;, and m, in
a ?P,, state that can give a total m of 3 (m, = 1, m; = $). The second can be
shown using the fact that the raising/lowering operator J . has the effect

Joljmy = /i(G + 1) — m(m + 1)|j(m + 1)) 237

when applied to state |jm), and that

Jp=Li+5, (2.38)

with
Llimy = /Il + 1) — my(m, £ Dli(m, £ 1)) - (2.39a)
Silsmey = \/s(s + 1) — my(m, £ Dls(m, + 1)) (2.39b)

The | jm) state |3, —$) can thus be obtained by applying the J _ operator to |3, 1
and using Eqgs. 2.37 and 2.39.
The two components of the 2P, , state are given by

jm m;my mymg
LD =340, -G, - (2.40a)
3 - =3"1-1,3 -0, - (2.40b)

These follow because the | jm) state |1, 3> must be normalized and orthogonal to
the | jm) state |3,3) in Eq. 2.36, and because |1, —1) can be obtained from |3, %)
by application of the J_ operator and use of Egs. 2.37 and 2.39. Finally, the
n’S,, state (I = 0) has the two components (m = m; = +3%)

0,2> and [0, —3) (2.41)

The electric dipole transition moments for the various fine structure transitions
between the n’S,,, and n'?P,, 5, manifolds (i.e., groups) of levels can now be
evaluated:

Aj= +1, Am = +1)

<zsx/2,1/2‘ﬂ|2P3/2,3/2> = (0, %II‘H, % (2.42a)

(Aj = +1, Am = 0)

<251/z.1/z|ﬂ|2P3/2,1/2> =$"%0, 3|ml0, 3> + $)*/*
x <0, 3pll, —3) (2.42b)
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Aj= +1, Am = —1)

<2sl/2,1/2lﬂ|2P3/2,—1/2> = (%)1/2<0, %|I‘| -1, %
+ (3)V/%<0, 3(pl0, —3> (2.42¢)

Aj= +1, Am = —2)

<ZS1/2,1/2|I‘i2P3/2.—3/2> = (0, %M -1, —%> (2.424)

In evaluating these, we note that
{mymJplmimy = {my|plmi>Sm m

since g does not depend on the spin coordinates. Further, this matrix element
vanishes unless Am; = m; —m; = 0 or + 1. Hence, the second terms on the right
sides of Eqgs. 2.42b and 2.42¢ both vanish, but none of the total transition
moments in Eqs. 2.38a—2.38c vanish. The only El-forbidden transition is the
one whose (zero) transition moment is given by Eq. 2.42d.

For the n*S,,, - n*P,, transitions, we have

(Aj = 0, Am = 0)

<ZS1/2,1/2|ﬂ|2P1/2,1/2> = (%)1/2<0, 310, 3>
- (%)1/2<0a %l”lla _%> (2.433)

(Aj=0,Am= —1)

<ZS1/2,1/2|I‘|2P1/2,—1/2> = (%)1/2<0, %M -1, %>
— (3)"%0, 3|pl0, —3) (2.43b)

The first terms on both right sides are nonzero, and so these are both allowed
transitions. A set of equations analogous to (2.42) and (2.43) can be obtained for
transitions from |S,,, _,,,>, and will not be included here. Equations 2.42 and
243 typify the E1 selection rules Al= +1; Aj=0, +1; and Am =0, +1 for
electronic transitions in hydrogenlike atoms.

These angular momentum selection rules figure prominently in the fine
structure of alkali atom spectra. The filled-shell core electrons have zero net
orbital and spin angular momentum, so the term symbols 22S, ,, 38, ,, 4°S, ,,
5%S,,2, and 6°S,,, of ground states Li, Na, K, Rb, and Cs respectively are
composed from the angular momenta of the single valence electron. The
principal series of alkali atomic lines arises from n?S,,, - n'?P,, 5, transitions;
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since Aj =0, +1, there will always be two fine structure components (e.g.,
328,,, - 3?P,,, and 3%S,,, - 3%P;, in Na) in this series. (Bear in mind that the
various m sublevels of any |jm) state are degenerate, so that only transitions
from a given level to final states with different j values will give rise to more than
one spectral line—unless an applied magnetic field splits the m sublevels.) The
diffuse series n*P, 3, = n'?Dy,, s, always yields triplets (e.g., 3°P;, = 32D5 5,
3?P;,, > 3?D;),, and 3%P;, — 3°Ds)y; but not 32P,, — 3Dy, for which
Aj = +2.) Doublets occur in the sharp series n*P,, 3, = n'?S,,,. These El-
allowed fine structure transitions are ali summarized in Fig. 2.6.

In the alkali atoms, the spin—orbit coupling is a small perturbation to the
zero-order electronic Hamiltonian. In Na, the energy separation between the
3?P,,, and 3%P;,, spin—orbit sublevels of the lowest excited 3?P state is only
~17cm™1, versus ~ 17,000 cm ~ ! for the difference between the 32P and ground
state (32S) levels. At the other extreme, the 52P ground state of the I atom is split
by spin-orbit coupling into 5?P;, and 5°P,,, sublevels which are about
8000cm ! apart! In this limit, the spin—orbit sublevels behave much like
different electronic states—which they are, because the spin—orbit coupling is
no longer a small perturbation to the electronic structure.

When H,, is not a small perturbation, it becomes important to know which
dynamical observables are still conserved in the atom. In the absence of spin—
orbit coupling, the electronic Hamiltonian H, and the angular momenta obey
the commutation relationships

[He,[21=0 [Hy J?1=0  [H,S.1=0
[ﬁOa §2] = 0 [ﬁOa Ez] = 0 [ﬁOa jz] = 0 (244)

2 2
Sizz P

ZD 2F
172,372 3/2,5/2 5/72,7/2

Figure 2.6 Schematic Grotrian diagram showing fine structure transitions in Na.
The spin—orbit splittings are greatly exaggerated: The 3P, ,—32P;, splitting is only
17cm™?, as compared to 16,961 cm~*! for the 3°S,,, —» 3?P,, transition.
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When H,, is turned on, the total Hamiltonian H becomes H, + H,,, gaining a
term proportional to L-S. In this case, it can be shown (Problem 2.4) that

[A,[2]1=0 [A,J*]1=0 [HS]#0
[A,§1=0 [AL1#0 [AJ]1=0 (2.45)

so that m;, and m, are not good quantum numbers (and L, and S, are not
conserved) in the presence of spin—orbit coupling.

We now briefly consider the magnetic dipole (M1) selection rules for
transitions in hydrogenlike and alkali atoms. The relevant matrix element is
Y niml LW ety (0Ot Yl I W > @S has sometimes been implied, because the
derivation of the M1 selection rules in Chapter 1 makes it clear that only the
orbital part of the angular momentum enters in this matrix element). Using [3]

L.=4L,+L.) (2.46a)
.1 . .

L= % (L, - L)) (2.46b)
i,=1L, (2.46¢)

and using Eq. 2.39 immediately shows that since all matrix elements of L are
diagonal in I (i.e., proportional to d;;), the M1 selection rule on Al is Al = 0. To
obtain the M1 selection rule on Aj, one must again expand the coupled |jm)
states in terms of the uncoupled states (e.g., Egs. 2.36 and 2.40) and then get
expressions analogous to Eqs. 2.42 and 2.43, with L replacing . An example of
an M1 (but not E1) allowed atomic transition is the *P,,, - 2P, spin—orbital
transition between the lowest two levels in the I atom, which forms the basis of
the 1.2 um CH,I dissociation laser. That such a laser works at all is somewhat
startling, because M1 transitions are inherently weak, and the overwhelming
majority of laser tranmsitions (e.g., in the He/Ne laser) operate on strong El
transitions.

2.3 STRUCTURE OF MANY-ELECTRON ATOMS

We now extend our discussion of hydrogenlike atoms to complex atoms with a
total of p electrons. The nonrelativistic Hamiltonian operator for such atoms in
the absence of external fields is

V2 _
2me ! 47[807','

hl Z 2 p 2
¢ >+ ¢ 2.47)

m=;(_

i<j 4meor;;

where r; is the distance of electron i from the nucleus and r;; is the separation
between electrons i and j. This Hamiltonian consists of a sum of p one-electron
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hydrogenlike Hamiltonians

a W, Zée

2 _ 2.4
! 2m, ' dmeyr; (248)

combined with a sum of electron—electron repulsion terms of the form
e%/4neyr;;. Were it not for these pairwise repulsion terms, the many-electron
Hamiltonian H, would reduce to

e

A, =Y H, (2.49)

i=1

whose eigenfunctions are siml.)ly products of p hydrogenlike states [/ ,>,

I.//(la 2’ R p)> = N/mllm;(l)l//nzlzmz(z). o l//n,,lpmp(p)> (250)

Such expressions incorporating hydrogenlike states do not in fact provide
useful approximations to electronic wave functions in many-electron atoms: the
electron repulsions have a large effect on the total energy, and the wave
function (2.50) is not properly antisymmetrized (see below). The concept of
writing many-electron wave functions as products of generalized one-electron
orbitals nonetheless provides a viable starting point for developing accurate
approximations to the true nonrelativistic wave functions. As a prototype
example, we consider the neutral He atom, for which the Hamiltonian operator
is '

ﬁo = ﬁl + ﬁz + 62/47t807'12 (2.51)
Since the Schrodinger equation using this two-electron Hamiltonian cannot be

exactly solved, we use as a trial wave function for ground-state He the product of
one-electron orbitals |¢,(1)> and |¢,(2)),

W, 2)> = 16.(1)$2(2)> (2.52)

According to the variational theorem [3], the trial energy

_ Y1, 2\H, + H, + eX/Aneqry (1, 2))

W, 2.53
° W1, DA, 2 239

is bounded from below by the true ground-state energy E,,
E, < W, (2.54)

As a first approximation to |y(1, 2)», we may start with

191(1)92(2)> = W100(D¥100(2)> (2.55)
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where |/;00(i)> = N exp(—Zr;/a,) is the normalized hydrogenlike 1s orbital
with Z = 2 for electron i. This arbitrarily places both electrons in identical
orbitals which are undistorted by electron repulsion. Substitution of this zeroth-
order wave function into Eq. 2.53 for the trial energy in He yields

Wo = <$:1(DIH116:(D) + <$,)H,1$,(2))
+ <$1()y(2le*/Ameor,ld1 (12(2)
= 2<‘//100(1)|I'71W100(1)>
+ Y100 100(2)le*/4meqr 1 21W 100D 100(2))
= 2E; + (€*/4ne0)¥ 100(D¥100I1/r 121 100(D¥ 100(2)> (2.56)

where

uZAe Ao _

E, = e

—4(13.6058 V) (2.57)

is the exact nonrelativistic ground-state energy of the hydrogenlike ion He*
(Z=2). The matrix element of 1/r;, can be evaluated [6] to yield
5uZ(e*/4ne,)?/8h? = 34.0145¢V. Then W, becomes — 74.832¢€V, as compared to
the experimental energy 79.014 eV required to remove both electrons from a He
atom. While W, so computed is obviously a large fraction of the true electronic
energy, its error of 4.18eV is of the same order as excited-state energy
separations in He (cf. Fig. 2.11); a more sophisticated treatment is clearly
necessary to obtain results of spectroscopic accuracy.

An improved wave function can be obtained by replacing the fixed atomic
number Z = 2 in |, 4(i)) With a single variational parameter {. The trial energy
W, is then calculated in a manner analogous to Eq. 2.56, and is minimized with
respect to { by setting 0W,/0( = 0. This procedure yields { = 27/16 = 1.688 in
He; this is physically smaller than Z = 2, because each electron screens part of
the nuclear charge from the other electron. The corresponding trial energy
Wy = —77.490¢V is a closer approximation to true energy, but its error is still
large. It is then logical to consider trial wave functions with more flexibility than
N exp(—{r;/a,), which has only one variational parameter. An example of such a
wave function is the Slater-type orbital (STO), which has the general form

,Snlm> = Nr?—le_griillm(ei’ ¢1) (258)

STOs exhibit no radial nodes (unlike hydrogenlike orbitals for 2s and higher
energy states), but both n and { can simultaneously be varied to simulate the
behavior of the outer (largest-r) lobes of orbitals in many-electron atoms.
Optimization of n and { to minimize W,, again using identical STOs for both
electrons in ground-state He (with [ = m = 0), yields n = 0.955, { = 1.612, and
W, = —77.667 V. This is still closer to the true energy, but the error has been
reduced by a factor of only 0.88 over that in the previous approximation. The
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use of arbitrarily flexible functions in variational calculations that restrict both
electrons to occupying identical orbitals in He yields no trial energies lower than
—77.8714eV (Fig. 2.7). The remaining error in the energy is
(79.014 — 77.871)eV = 1.143 €V, and is called the correlation error. It arises
physically from the electrons’ tendency to avoid each other in order to minimize
their average Coulomb repulsion energy—a tendency that is ignored when
identical hydrogenlike or Slater-type orbitals are used for both electrons.

To reduce the trial energy W, below —77.8714¢V, the electrons must be
placed in functionally distinct orbitals, or trial functions more general than
single products of the form (2.52) must be introduced. In pursuing the first of
these alternatives, the electrons could be placed in hydrogenlike orbitals

Wi30(r)> = Nye ™" = ¢,(i)
W30(r)> = Noe ™" = ¢,(i) (2.59)

with the two independently variable parameters {; and {,. Such a calculation
requires explicit construction of two-electron wave functions that are antisym-
metric [6] with respect to exchange of the electrons (which are fermions). Since
the Pauli principle demands that no two electrons with the same spatial
quantum numbers (n, I, m) can have the same spin, the electrons in ground-state
He (1s)*> must have opposite spin, m; = +4% (x) and m; = —1 (). An acceptable
antisymmetrized trial function for He using the individualized orbitals (2.59) is
then

(1, 2) = 3[6:1(1)¢2(2) + 6:1(2)$>(1)] [(DA2) — «(2)B(1)] (2.60)

(Antisymmetrization of trial functions placing the two electrons into identical
spatial orbitals ¢,(i) was unnecessary, since the use of the correctly antisym-

He
- 74.832 (hydrogenlike AQ's, Z=2)

_75 —
>
()
>
© 77
o . | L
w -77.490 (hydrogenlike AQ's, { optimized)
2 P
W ————~-77.667 (STO's, n and { optimized)

_ \—77A87I4 (SCF limit)
correlation error=1.143 eV
-79 }— —L - 79.014 (experimental)

Figure 2.7 Energies obtained from variational calculations on the He atom.
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metrized function ¢,(1)¢,(2)[(1)(2) — «(2)f(1)] in place of ¢,(1)¢,(2) in Eq.
2.53 does not influence the value of the trial energy.) The simultaneous
optimization of the orbital exponents {, and {, for ¢, and ¢, in Eq. 2.60 yields
{,=1189, {, =2.173, and W, = —78.252¢eV. It is clear that this simple
calculation removes a substantial part of the correlation error, but the residual
error of 0.762 eV still does not begin to approach spectroscopic accuracy. Better
accuracy can be achieved by using trial functions that are linear combinations of
many antisymmetrized functions like (2.60), in which a set of linearly indepen-
dent basis functions of spherical symmetry (e.g., 2s, 3s, 4s, ... hydrogenlike
orbitals in addition to 1s) is used for ¢, and ¢,. This procedure corrects the so-
called radial correlation error. Incorporation of a sufficient number of suitable
nonspherical orbitals (i.e., with higher order spherical harmonics Y, in the
angular part) as basis functions in such calculations removes the angular
correlation error, and spectroscopic precision has been achieved in this manner
for many atoms.

Electronic structure calculations in atoms with more than two electrons
require properly antisymmetrized trial functions. For a closed-shell atom with p
electrons having paired spins, such a function can be written in the form of a
normalized Slater determinant:

¢1(N1)  ¢1(D(2) -+ G1(P)A(P)
¢:(DA(1)  ¢1(DB(2) ¢1(p)B(p)
1| $a(D(l)  92(2)x(2) ¢2(p)x(p)
N

@ p2(1d(1) ®p12(P)Ap)
¢52(1)B(1) - ¢52(P)B(D)

Y, 2,...,p)= (2.61)

This determinant vanishes if any two rows are identical, which occurs if any two
electrons are assigned the same spatial and spin states. The determinant changes
sign if any two columns are interchanged, corresponding to exchange of two
electrons. Hence, both the Pauli principle and antisymmetrization are built into
the Slater determinant. Note that the determinant (2.61) assigns the same spatial
function ¢; to both electrons in each orbital. Since the many-electron Hamil-
tonian has the form

R P p
H, = Zl H; + ) e*/dneyr;; (2.62)

i<j
it can be shown that that trial energy becomes [6]

— <!//(11 2’ ceey P)|Ho|¢(1, 25 L) P)>
T L2, L (L2, ., )

p[2 p/2
= ﬁ [2Hi.~ + _; Qjli y — <ijlji >)] (2.63)

i=1
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with
H; = <¢ilHi|¢i> (2~64)
Cjliy = {pi1)¢;(2)e?/Aneor,,|d:(1)$;(2)) (2.65)
Cijljiy = {pi1)p [2)le*/Aneor 5|d;(1)$:(2)) (2.66)

The matrix elements in Egs. 2.64 through 2.66 are referred to as the core integral,
the Coulomb integral, and the exchange integral, respectively. Minimization of
the trial energy by varying the ¢, under the constraint that the basis functions
remain orthonormal leads to the Hartree-Fock equation [ 6]

p/2
{Hu + ; [2{¢,(2)le*/Aneory,ld;(2)> — <¢>,~(2)Iez/4n80r1zl¢.-(2)>]}fb.-(l)

p/2

p/2
= {Hu + ; [27;(1) - K,-(l)]}qﬁ.-(l) = .Zl ¢i(De;;  (2.67)

where the ¢ are elements of a (p/2) x (p/2) matrix having units of energy. This
equation is frequently abbreviated as

F¢;= Z bj€ji (2.68)

where F, called the Hartree-Fock operator, depends on the basis functions ¢;
through Eq. 2.67. The Hartree-Fock equation can be solved numerically by
setting the ¢;; equal to ¢;,0;;, computing the F operator from an assumed set of
basis function ¢;, and using Eq. 2.68 to compute a new set of functions ¢;. These
new functions are used in turn to compute a new F operator. This cycle is
repeated until the ¢, used for calculating the Hartree-Fock operator converge to
the final solutions ¢; to within desired precision. When this self-consistent field
(SCF) limit has been reached, the orbital energies ¢; may be evaluated from Eq.
2.63,

&= Hy + ), <l — <ijljid) (2.69)
J

and the optimized trial energy (Eq. 2.63) becomes

p/2

Wy = i; (H; + ¢) (2.70)

The spherical harmonics are ordinarily used for the angular part of the orbitals,
and the Hartree-Fock equations are solved to obtain the radial wave functions
numerically. The Hartree-Fock wave functions are the best radial wave
functions that can be obtained in the form of the Slater determinant 2.61. For
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He, the Hartree-Fock wave function is equivalent to the infinite-parameter
variational wave function (2.52) with both electrons in identical spatial orbitals;
the SCF energy of He is —77.871eV (Fig. 2.7). Slater determinants like (2.61)
and the derivation of the Hartree-Fock equations given here are specific to
closed-shell atoms. For open-shell atoms (e.g., K, F) and for electronically
excited atoms, different procedures must be followed.

The difference between the SCF energy and the true nonrelativistic energy is
the correlation error. For first-row atoms, the correlation error is less than 2%, of
the true energy. This implies that the physical picture offered by the Hartree-
Fock treatment—in which each electron experiences a centrosymmetric field
due to the averaged interactions {1/r;;) with other electrons—accounts for the
major portion of the electronic energy. However, the absolute correlation error
is so large (1.14 eV for He) that the differences between SCF energies computed
in atoms do not agree well with spectroscopically measured energy separations.
A commonly used method of recouping part of the correlation error is
configurational interaction (CI). In this technique, the ground-state wave
function is expanded as a linear combination of determinants, rather than a
single determinant as in closed-shell Hartree-Fock theory. One of these is the
Hartree-Fock determinant wave function (2.61), and the remainder are determi-
nants for excited electron configurations. For He, a CI wave function may be
expanded as

U(1, 2) = CoA(1s%) + C,A(152s) + C,A(25%) + C3A(1s3s) + -+ (2.71)
where A(1s?) is the determinant describing two electrons in identical 1s orbitals,

Table 2.1. s

|

2s —>2p

3s— 3p 34
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etc. The expansion coefficients C,y, C,, etc., are optimized in a variational
calculation. Inclusion of many excited configurations in CI determinant expan-
sions like (2.71) reduces the radial correlation error to an arbitrary level, as the
excitations permit the electrons to become more separated and decrease the
average electron repulsion energy.

This section barely scratches the surface of many-electron atomic structure
calculations. They have mushroomed in complexity to multiconfigurational
SCF calculations in which linear combinations of atomic orbitals (LCAOs) are
used for each of the spatial orbitals ¢;. With atomic orbital basis sets of sufficient
size, close agreement is obtained with experiment.

The Aufbau or building-up principle by which electrons are placed in
successive atomic orbitals in many-electron atoms has been experimentally
established to follow the pattern shown in Table 2.1.

2.4 ANGULAR MOMENTUM COUPLING IN MANY-ELECTRON
ATOMS

Since filled shells do not contribute to the net orbital or spin angular momentum
in atoms, one needs to consider only the electrons in unfilled orbitals when
calculating the possible angular momenta for a given electron configuration.
The simplest case is an atom with two electrons in unfilled orbitals. We use 1,
and 1, to denote the orbital angular momenta of the individual electrons, and
likewise use s; and s, for their spin angular momenta. In the limit of weak spin—
orbital coupling; the total atomic angular momentum is composed by first
coupling the above vectors to obtain resultants for the total orbital and total
spin angular momenta,

L=1+1,
S = 51 + 52 (272)

According to the rules for composition of angular momenta, the possible
quantum numbers L and S for the resultant orbital and spin angular momenta
are

L=1+1...,l; =L
S=15;4+55 ..., |8 — 8| (2.73)
The total angular momentum J is then the vector sum
J=L+S8S (2.74)

and exhibits the possible quantum numbers

J=L+S,...,|L—§ (2.75)



ANGULAR MOMENTUM COUPLING IN MANY-ELECTRON ATOMS 59

This coupling scheme is known as Russell-Saunders coupling. As an example, we
treat the equivalent p? configuration in which the two valence electrons have the
same principal quantum number n (e.g., the ground state of a carbon atom that
has the configuration (1s)%(2s)%(2p)?). In this case I, = [, = 1, so that

L=ll+12,...,|11—12|=2, 1,0
S=5 45y ...,l5; —8,]=1,0 (2.76)

In an equivalent p? atom we thus expect to find S, P, and D states (ie., L = 0, 1,
2), some will be singlet states (S = 0) and some will be triplets (S = 1). Schematic
vector diagrams illustrating these resultant angular momenta are shown in Fig.
2.8. At first sight, one might predict that all possible combinations of L and S
could appear (S, 3S, 'P, 3P, 'D, *D)—but some of these combinations will
violate the Pauli principle, and the possible states must be considered more
directly. One may count the ways in which two electrons can legally be
distributed among the equivalent (degenerate) p states; for example, the allowed
configuration

=_1 m’=0 ml=+1
1 ]
T ¥

contributes one state with M; = m;; + m;, = 0, Mg = my; + mg, = 0. The total
numbers of states counted for all combinations of M; and Mg may be tabulated

l2
l2
L
I I {2
L
L=2 L=1 L=0
S2
ﬁV 5|H82
S=1 $=0

Figure 2.8 Vector addition of orbital and spin angular momenta for two valence
electrons with /; =1, /, = 1 in the Russell-Saunders coupling scheme.
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in the Slater diagram

+2 1
) +1 1 2 1
M 0 1 3 1
t -1 1 2 1
-2 1
-1 0 +1 Mg-
which can be viewed as the sum of the diagrams
1
1 1 1 1
1 + 1 11 + 1
1 11 1
1
('s) CP) ('D)

The last diagram, for example, represents a D state, because it restricts Mg to
zero (i.e., it is a singlet state) but allows M| to range from +2 to —2. Thus, the
possible states in an equivalent p? configuration are 'S, *P, and 'D. In each of
these, the possible J values range between L + S and |L — S|; i.e., the allowed
term symbols are 'S,, 'D,, 3P,, 3P,, and *P,. The J subscript is superflous
in singlet term symbols (since only one J value is possible for a given L in singlet
states, namely J = L) and it is often omitted. The total number of states in an
equivalent p? configuration is

1§ P 1D
Y (L + 1)2S + 1) = 1(1) + 3(3) + 5(1) = 15
L,S

which must equal the sum of the integers in the Slater diagram. Another way of
summing the states is to count (2J + 1) for each 25*!L; term symbol,

s, 'D, P, 3P, 3P,
Y2J+)=1 + 5 +5 + 3 + 1 =15
J

For nonequivalent p* configurations in which the two electrons are in different
shells (e.g., the (2p)*(3p)* excited state of carbon), states exist for all combinations
of the allowed L and S values generated in Egs. 2.76. Slater diagram tabulations
of the allowed (M, M) combinations are then superfluous; the nonequivalent
p* configuration gives rise to S, 3S, 'P, 3P, 'D, and °D term symbols. Slater
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diagram tabulations are readily extended to open-shell configurations with
three or more electrons (although they can become tedious). A simplification
occurs for nearly filled (n, I) shells: The possible term symbols are identical to
those for configurations consisting of the absent electrons. For example,
equivalent p> and p' configurations both exhibit only ?P,,, and ?P,,, term
symbols, and equivalent d? and d® configurations both yield the term symbols
'So, *Po,1.2 'Dy, *F3 3.4, and 'G,.

The energy level scheme for a p? atom can now be described for the case of
small spin—orbit coupling (Fig. 2.9), where Russell-Saunders coupling applies. In
the absence of electron—electron interactions, all of the configurations counted
in the Slater diagram would have the same energy, because the one-electron p
orbitals with m; =0, +1 are degenerate. When the electron—electron inter-
actions are turned on, the states with term symbols 25*!L; have different
energies for different L, S. By Hund’s rule (the states with the highest multiplicity
from a given configuration—in this case p>—will be lowest in energy), the
3P states empirically lie below the others. When the spin—orbit coupling is
turned on, the energy levels assume a J-dependence of the form E(L,S)
+ A[J(J + 1) — L(L + 1) — S(S + 1)]/2; in this case A is not analytic, because
the radial wave functions in a many-electron atom are of course no longer
hydrogenic.

Russell-Saunders coupling applies only when the spin—orbital coupling is
small enough to be treated as a perturbation to the electronic Hamiltonian. In
the limit of large H,,, an alternative scheme called jj coupling applies. In this
case, the total angular momenta of each electron are added to form the resultant
total angular momentum J. For a two-electron configuration, we have

L +s, =)
l2 + Sz =jz (2.77)
J=ji+i2

Figure 2.9 CQualitative energy levels for a
p? atom under Russell-Saunders coupling.
Electron correlation splits the energy levels
of states with different (L, S); spin—orbit

electron
a 4 ' ) correlation
coupling further splits levels with different spin-orbit

J. coupling
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Figure 2.10 Correlation between levels under

Russell- ; . .
e ors Russell-Saunders coupling (left) and jj coupling
coupling ji - coupling (right).

In a p? configuration, each electron i can have j; = I; + s;,..., |l; — s;|,orj, = 3, 1.
Then the possible J values are j; + j,, ..., |j; —j,|; this leads to J=0, 1, 2, 3.
However, the last of these values violates the Pauli principle. (Allowing J = 3
would require j; = j, = 3; this means that I, =1, = 1 and s, = s, = 3, which
would require that one of the possible states has m; =m,, =1 and
my, = m,, = . This would place two electrons with the same spin into the same
orbital). Hence, the only allowed J values in an equivalent p? configuration are
0, 1, and 2. This is reasonable, since J? is conserved even for large H,, according
to the commutation relationships in Eqgs. 2.45. Hence, the J values that are
possible for a given electron configuration in the limit of Russell-Saunders
coupling will be the same as the ones accessible in the limit of jj coupling, and a
conceptual correlation diagram can be drawn between J states in the Russell-
Saunders and jj limits (Fig. 2.10). In the latter limit, the splittings between term
energies depend primarily on J, rather than on L and S. The noncrossing rule
states that no two energy curves representing states with the same symmetry
(which is indicated by J, M in the full rotation group of spherical atoms) can
intersect, and this rule is observed in Fig. 2.10. Most atoms are Russell-Saunders
or intermediate coupling cases; few atoms are jj-coupled.

2.5 MANY-ELECTRON ATOMS: SELECTION RULES AND
SPECTRA

An interesting example of a many-electron spectrum is that of He, in which the
shown low-energy transitions involve orbital jumps of one of the two electrons.
For this case our one-electron atomic selection rules (Al = +1,Aj = 0, +1) hold
for the electron involved in the transition. The He electronic spectrum resembles
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a superposition of two independent alkali spectra [7]: It exhibits two indepen-
dent principal series, two independent sharp series, and so on (Fig. 2.11). This
occurs because in He, where the spin—orbit coupling is very small (Z = 2), the
electronic states have nearly pure singlet or triplet character. Since the electric
dipole operator g does not contain any spin coordinates, the spin selection rule
AS = Qs strict in He. Hence there are two families of E1 transitions, one among
the singlet levels (S = 0) and the other among the triplet levels (S = 1). The
separations between lines within fine structure multiplets in this light atom are
too small to depict in Fig. 2.11, and the J subscripts in the level term symbols are
omitted in this figure.

The spin—orbit coupling is much larger in Hg (Z = 80), whose strongest
transitions are shown in Fig. 2.12. This complicates the emission spectrum in
two ways. The fine structure levels arising from each triplet multiplet (e.g., the
3P,, 3P,, and 3P, levels arising from the (6s)!(6p)! configuration) are now well
separated in energy, increasing the number of spectral lines observed under low
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Figure 2.11 Grotrian diagram of energy levels and observed transitions in He. All
shown levels arise from electron configurations of the type (1s)!(n/)!. The 'S level
labeled “1” is the (1s)? ground state. The 'S, 3S levels labeled “2" arise from
(1s)*(2s)* configurations, the'P, 3P levels labeled 2" arise from (1s)!(2p)?
configurations, and so on. Reproduced by permission from G. Herzberg, Atomic
Spectra and Atomic Structure, Dover Publications, Inc., New York, 1944.
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Figure 2.12 Grotrian diagram for low-lying Hg levels with the configuration - - -
(6s)'(n1). Excited levels are labeled with the quantum numbers of the valence
electron which is excited; for example, the P, level labeled “7p” arises from the
electron configuration - - - (6s)!(7p)!. Reproduced by permission from G. Herzberg,
Atomic Spectra and Atomic Structure, Dover Publications, Inc., New York, 1944,

resolution. The large spin—orbit coupling in Hg also endows the electronic
states with mixed singlet/triplet character, with the consequence that many
intersystem transitions (AS = +1) are observed. These factors lend the Hg
emission spectrum in Fig. 2.2 an appearance of irregularity which is absent in the
emission spectra of H and K.

Strong E1 transitions in many-electron atoms are observed only when one
electron changes its orbital quantum numbers; for this electron, the selection
rule Al= +1 must be obeyed (cf. our discussion following Eq. 2.12). To
appreciate this, we recall that spatial wavefunctions in many-electron atoms
may be expressed (Section 2.3) in terms of products ¥(1,2, ..., p) = ¢,(1)¢,(2)
... ¢,(p) of one-electron orbitals ¢,(1), #,(2), ..., ¢,(p). Since the pertinent
electric dipole operator is g= —eZr;, the El transition moment from
electronic state Y(1, 2, ..., p) to state ¥'(1, 2, ..., p) = ¢1(1)95(2) ... ¢\(p)



MANY-ELECTRON ATOMS: SELECTION RULES AND SPECTRA 65

behaves as

p

X T

i=1

—e{$1(1)92(2) -~ ¢,(p) ¢i(1)2(2) -+ ¢3(p)>

= —e<P1(Diry|91(1)5{D2(2)|¢3(2)> - {D,(P)P}(P)>
—e95(2)Ir2|95(2)><P:1(D1(1)) -~ (D) P,(P)>
— e @y(DIr,|d(p)><B:1(DI1(1)) -+ {bp-1(P — Dldp-s(p — 1))

Each of these terms contains a factor {@{(i)|r;|¢i(i)> analogous to the hydrogen-
like transition moment (2.10), multiplied by orthogonality integrals
{¢;(j)l¢(j)> for all other electrons j # i. Hence, if electron i jumps to a new
orbital, i.e., (i) # ¢(i), orthogonality requires that all other electrons remain in
their original orbitals because <{¢;(j)|¢;(j)> = 0 unless ¢; = ¢;.

The E1 selection rules may also be formulated in terms of the quantum
numbers L, S, and J for the many-electron orbital, spin, and total angular
momentum. These prove to be

El

AL=0, +1 except L=0eoL=0"
AS=0 - (2.78)
AJ =0, +1 except J =0 J' =0

Not all transitions consistent with these selection rules are El-allowed, since
Al = +1 must be simultaneously obeyed by the electron that jumps. For
example, a transition from a state with L =3, [, =3, I, =1 to a state with
L=2,1, =1,1, =1 is forbidden because Al; = —2 and Al, = 0, even though
the AL = 0, + 1 selection rule is obeyed.

The corresponding M1 and E2 selection rules are

m
AJ =0, +1 except J =0 J =0
AL=0, +1 2.79)
AS=0

E2

AJ=0,+1, £2 and (J+J)=2
AL=0, +1, +2 exceptL=0eL=0 (2.80)
AS=0
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In all cases, the AS = 0 selection rule becomes relaxed when the spin-orbit
coupling is large.

To illustrate one final point, we return to the example of the equivalent p?
configuration, for which the possible atomic term symbols are 'S, *P, , ,, and
!D. The E1 selection rules in Eq. 2.78 indicate that there are no El-allowed
transitions connecting any two of these levels with different L if the spin—orbit
coupling is small. This is an example of a general rule that no E1 transitions
connect two term symbols arising from the same electron configuration (in this
case, p?). El-allowed transitions can, however, occur between states from
different electron configurations, say s!'p! — p2. This proves to be a useful
principle that carries over to the electronic spectroscopy of diatomic and
polyatomic molecules.

2.6 THE ZEEMAN EFFECT

When atoms are subjected to external magnetic fields, their spectral lines
become split into several components whose separations depend on the field
strength B. In atoms with zero net electronic spin (S = 0), the splittings turn out
to be identical for all spectral lines. For weak, static magnetic fields B, the
interaction energy for a spinless atom of angular momentum J = L with the
field is

e

W= —p, B=5 LB (2.81)

e

and it may be treated as a stationary perturbation to the atomic Hamiltonian
H,. The first-order correction to the electronic energy of any level characterized
by angular momentum quantum numbers (L, M) in the presence of a magnetic
field B = B,z is

e e
om, (LM;|L*B|LM;) = om,

eh
2m,

B.(LMJL LM,

B.M, (2.82)

Since M, ranges from +L to —L, a level with orbital angular momentum L
becomes split into (2L + 1) components separated in energy by the amount
ehB,/2m,. A spectral line that appears at energy AE in zero magnetic field then
appears at energy

h
ho = AE + 2‘; B.,AM, (2.83)

e
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in the presence of the field, where AM| is the change in M accompanying the
electronic transition. The E1 selection rules on AM, (Eq. 2.78) then imply that
two new lines will appear for AM; = +1, in addition to an unshifted line
corresponding to AM; = 0 (Fig. 2.13). The only exception to this nominally
occurs when both electronic levels in the transition are S states with L = 0, but
such a transition would be El-forbidden to begin with. Such splittings were
predicted classically by Larmor many years before they were observed in atoms
with S = 0. This phenomenon is historically known as the normal Zeeman effect.

In atoms with nonvanishing spin as well as orbital angular momentum, the
situation is far more interesting. The Hamiltonian for such atoms in external
magnetic fields assumes the form

A=H,+ f('L*S —u,-B (2.84)

where the second and third terms represent the spin—orbit and Zeeman
Hamiltonians, respectively. (The function f(r) in the spin—orbit Hamiltonian

M, =
]
'p
o
-1
M, =
2
Immaz/zm°
I
)
o
-1
-2
B,= 0 B,#0

Figure 2.13 Transitions observed between D and !P states under the normal
Zeeman effect. Since the separation between adjacent sublevels is invariably
ehB,/2m, and the selection rule restricts AM, to 0, +1, spectral lines appear at only
two new frequencies when the magnetic field is turned on.
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depends only on the electronic radial coordinates.) The atomic magnetic
moment g, is now given by

_ el g.S
™ 2m, 2m,
=p+ o (2.85)

where the electron spin g factor is approximately given by g, ~ 2.0. The Zeeman
Hamiltonian

H,= —p,'B (2.86)
for B = B,z could be taken to be

A, =5 — (L. +930B. 287)

which could then be used in principle to calculate the new levels using first-order
perturbation theory in weak magnetic fields. The problem here is that in the
presence of spin—orbit coupling the atomic stationary states are not
eigenfunctions of L, and S,, due to the commutation rules (2.45). Hence, Eq. 2.87
cannot be used to calculate the first-order Zeeman energies directly. In the
classical view of Russell-Saunders coupling, L and S precess about J, which in
turn precesses about the magnetic field direction B = # as shown in Fig. 2.14.
(This corresponds to the quantum mechanical picture in which J, is stationary,
but L, and S, are indefinite.) Since g; and ug are proportional to L and S,
respectively (Eq. 2.85), 4, and ug also precess about J, with the consequence that
only the components of g; and pg directed along J contribute to the expectation
(averaged) value of u,, = p; + pg. The vector along J with length equal to sum
of these components is

ny = [ + ps)- 313/32 (2.88)
The Zeeman Hamiltonian then effectively becomes
H;= —p;B

because components of g; and gg normal to J average out to zero during
precession. Now the fact that

+ pg)-J e 1
("L—st—= —5 (L4985 (2.89)
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Figure 2.14 Angular momentum vectors L, S, J (left) and their associated
magnetic moments g,, us, p, (right). Under Russell-Saunders coupling, the orbital
and spin angular momenta L and S precess about the total angular momentum J. The
magnetic moments g,, pus (which are antiparallel to L and S) undergo similar
precession. Since g, ~ 2, we have |ug|/|S| ~ 2|u,|/|L|, with the consequence that the
vector sum (g, + pg) is not parallel to J. The effective g factor g, is the projection of
(u, + ps) upon the direction of J, since precession rapidly averages the other
components of (u, + us) to zero.

combined with the identities

S2=J-L?=J2+L>—2L-J
L2=(J—S?=J2+S2-28-J (2.90)

allows us to write

e J2+L2—SZ+gS(J2+SZ—L2)‘I
2m, 2J?

ay = — 291)

Replacing J2, L2, and S? with A2J(J + 1), h2L(L + 1), and A%S(S + 1), re-
spectively, yields

gsed
2m,

By = (2.92)
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with the effective Landé g factor

(2.93)

(U4 g)IU + 1) + (1 — )L + 1) — S(5 + 1)]
95 = 200 + 1)

Using the approximate value 2.0 for the electron spin g factor g results in the
common expression [1]

JUJ+1)+SE+1)— LIL+1)

TR (2.94)

g,=1+

Finally, the Zeeman correction to the energy in a state with angular momentum
quantum numbers L, S, J, M; becomes in the weak-field limit

€d;

—(LSIM,|p,, - BILSIM,> = o

(LSIM,|J-BILSIM,>

_gseh
T 2m

B.M, (2.95)

e

The remarkable property of the effective g factor g is that it depends on L and §
as well as on J (Egs. 2.93 and 2.94). In the limits where L=0and S =0, g,
reasonably approaches g, and unity, respectively. If g, were unity rather than
approximately 2.0, g, would also be unity according to Eq. 2.93; u,, would then
be parallel to J. Since the orbital and spin angular momenta have different ¢
factors, u,, does not point along J (Fig. 2.14), and the Zeeman energies depend
on the orbital and spin as well as total angular momentum quantum numbers.
They are independent of the radial quantum numbers. Since atomic spectral lines
in the absence of external fields do not appear with little flags exclaiming “I came
from J = 4, L = 3, S = 1,” this anomalous Zeeman effect observed in atoms with
nonvanishing L, S has proved to be an invaluable experimental tool for
assigning them. The fact that g, depends only on L, S, and J is known as
Preston’s Law.

Figure 2.15 illustrates the anomalous Zeeman effect in Na atom transitions
from the 32S,,, ground state to the lowest lying excited fine structure levels
3%P,,, and 3?Py),. (These are the well-known D line transitions which occur at
5895.93 and 5889.96 A in zero field.) According to Eq. 2.94, the respective ¢,
values for the 3%S, ,, 3?P, 5, and 3P, terms symbols are 2, 2, and %; a weak
magnetic field splits the fine structure levels into 2J +1=2, 2, and 4
components, respectively. The E1 transitions displayed in Fig: 2.15 obey the
selection rules AJ =0, +1 and AM,; =0, +1. Their wavelengths may be
analyzed using Eqs. 2.94 and 2.95 to deduce the angular momentum quantum
numbers a priori.
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Figure 2.15 Transitions observed between a *S, , state and 2P, and 2P, states
under the anomalous Zeeman effect. Since the Lande ¢ factor g, =1 +

[(J(J+1)+S(S+1) = L(L+1)]/2J(J + 1) has a different value in each of these
electronic states, a unique frequency is associated with each of the shown
transitions. These frequencies can be analyzed to infer the angular momentum
quantum numbers for each electronic state.
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PROBLEMS

1. Consider the D3, and ?Ds), fine structure levels in a one-electron atom.

(a) Express the coupled states [Isjm) in terms of the uncoupled states |ln,sm,>
for these levels by working out the Clebsch-Gordan coefficients using



72 ATOMIC SPECTROSCOPY

angular momentum raising and lowering operators (there are 10 of these
coupled states in all).

(b) Determine which of the 24 transitions between ?D;,, and 2Ds,, fine
structure levels are M1-allowed. Can you extend your reasoning to obtain
general selection rules on Aj and Am for M1 transitions?

2. Ina hydrogenlike atom, the magnitude of the unperturbed Hamiltonian H,
is on the order of Ze?/4neyr, and that of the spin—orbit Hamiltonian H,, is
h2Ze?/8ne,m2c*r®. Considering that r is typically equal to a,/Z (where a, is the
Bohr radius), calculate the numerical magnitude of H,,/H,, and comment on the
validity of using perturbation theory to describe spin—orbit coupling. (The fine
structure constant o = e*/dneshe is equal to 1/137.0372; the Bohr radius is
ao = 4negh?/m e?.)

3. Which of the Hg atom levels shown in Fig. 2.12 are metastable?

4. Use the angular momentum commutation rules [L,,L,] =ihL,, [L,,
L,] =ihL,,[L,, L,] =ihL,, [L, I*] = 0, along with the analogous rules for the
components of S and J, to prove the commutation relationships (2.45) that hold
in the presence of spin—orbit coupling. Take the spin—orbit Hamiltonian to be
H,, = f(r)L*S, with f(r) a function of the radial coordinates only.

5. Determine the atomic term symbols >* 1L, that may be obtained from the
equivalent p® configuration using a Slater diagram. Ascertain explicitly whether
there are any El-allowed transitions among sublevels of this p® multiplet.
According to Hund’s rule, what should be the term symbol for ground state N?

6. Which levels in K could be reached by E2 transitions from the 4°S,,,
ground state?

7. AnEl transition at 3125.66 A connects the 6p *P, and 6d 3D, fine structure
levels in Hg. A weak magnetic field splits these levels via the anomalous Zeeman
effect. Evaluate the g, factors for both levels, indicate all of the E1 transitions
that will occur using a schematic energy level diagram, and draw the resulting
“stick spectrum” on a wavelength scale.



ROTATION AND VIBRATION
IN DIATOMICS

Many of the features that are prominent in atomic spectroscopy have close
analogies in electronic spectroscopy of diatomic molecules. Like atoms, dia-
tomics exhibit electron correlation, spin—orbit coupling with its associated fine
structure and angular momentum coupling schemes, and the Zeeman effect. In
diatomics as in atoms, the symmetry of the electronic Hamiltonian plays a
major role in the electronic state degeneracies and selection rules. The
distinctions encountered here in going from atoms to diatomics are rather trivial
ones that accompany the reduction of spherical symmetry in atoms into the C,,
and D, point group symmetries in diatomics.

These analogies fail to explain the coarse structure observed in diatomic
electronic spectra under low resolution (Chapter 4), because the additional
nuclear coordinates introduced by the second atom in a diatomic molecule AB
create new internal modes that have no counterpart in atoms. The nuclear
positions relative to an arbitrary origin fixed in space can be specified using the
Cartesian vectors R, and Ry (Fig. 3.1). They may be equivalently described in
terms of the coordinates

Rem = (M R, + MgRg)/(M, + Mp) (3.1)
and

where M, and My are the nuclear masses. The vector R, locates the nuclear
center of mass; R is a vector whose length R gives the internuclear separation

73
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Figure 3.1 The nuclear positions in a diatomic
molecule may be specified in terms of either the
laboratory coordinates R,, Ry, or the center-of-
mass coordinates R.,,, R.

and whose direction R gives the orientation of the internuclear axis in space. It
can readily be shown [1] (see also Appendix G) that the kinetic energy

T = M RX + $MyR3 (3.3)

of nuclear motion in Cartesian coordinates becomes transformed using Egs. 3.1
and 3.2 into

T = IMR2Z + LuyR? = IMR? + 1uR? + 1uR?H? (3.4)

in terms of the center-of-mass coordinates R, and R. The masses appearing in
Eq. 3.4 are the total nuclear mass

M=M, + Mg (3.5)
and the nuclear reduced mass
Uy = M My/(M, + Mp) (3.6)

The first term in the kinetic energy (3.4), associated with center of mass
translation, does not affect the internal energy levels in the molecule. The 1uyR>
term is the vibrational kinetic energy arising from changes in the diatomic’s bond
length R. The last term, iuyR?0?, is the nuclear rotational kinetic energy
connected with molecular rotation through an angle § about an axis normal to
the molecular axis. The usefulness of the center-of-mass coordinates in Eq. 3.4 is
that they separate the total nuclear kinetic energy into contributions from the
overall molecular translation and the internal modes (vibration and rotation).
These internal modes in diatomics are responsible for spectroscopic transitions
occurring in the microwave to near-infrared regions of the electromagnetic
spectrum.

An example of a far-infrared absorption spectrum of a diatomic gas is shown
in Fig. 3.2. The vertical coordinate is light intensity transmitted by an HCI
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Figure 3.2 Far-infrared absorption spectrum of HCI gas. The vertical coordinate is
light intensity transmitted by the gas sample; the horizontal coordinate is wave-
length. Reproduced by permission from D- Bloor et al., Proc. London Ser. A 260: 510
(1961).

sample after passing through a scanning monochromator operating at wave-
lengths A betwen ~90 and 300 um. The intensity envelope peaking near 130 um
is determined primarily by wavelength-dependent light transmission (techni-
cally, the grating blaze) in the monochromator. The characteristic HCl ab-
sorption lines appear as minima at A = 240, 160, 120, and 96 um. The regularity
in this sequence of lines is more striking when these wavelengths are converted
into frequencies v = 1/4 = 41.7, 62.5, 83.3, and 104cm ™!, respectively: These
frequencies are uniformly spaced by 20.8 cm ™. The energy changes associated
with these absorption lines, which arise from transitions between different
rotational levels in HCI, are smaller than those observed in the atomic line
spectra in Fig. 2.2 by factors of typically 10°.

The far-infrared spectrum in Fig. 3.2 exhibits poor signal-to-noise ratios
(S/N) and low resolution in comparison to other forms of molecular spec-
troscopy that will be studied later. As far-infrared spectra go, it represented
nearly state-of-the-art technology in 1961. The experimental difficulties of far-
infrared spectroscopy stem from the low intensities available from continuum
light sources at such wavelengths (a 10* K blackbody emits only 1 part in 10® of
its total output between 150 and 350um) and from the low efficiency of
specialized light detectors (e.g., Golay thermal detectors, superconducting
bolometers) that can be used in this regime. The linewidths displayed in Fig. 3.2
(defined as full width at half maximum, or fwhm) are on the order of 5cm ™.
They are not intrinsically a property of the HCI gas, but arise from the necessity
of relaxing the monochromator resolution (using wider entrance and exit slits)
to bring the signal to a detectable level. Far higher resolution is now routinely
available in this wavelength regime using Fourier transform techniques.
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HCI gas also exhibits a series of absorption lines in the near-infrared, as
shown in Fig. 3.3. The S/N in this spectrum is considerably higher than
in the far-infrared spectrum; the fwhm linewidths in Fig. 3.3 are approximately
1cm™'. This reflects on the relative facility of generating and detect-
ing light with near-infrared wavelengths; the energy changes associated with
the transitions in Fig. 3.3 are larger than those in the far-infrared spectrum by
factors on the order of 102. The absorption lines in the near-infrared HCl
spectrum are grouped into closely spaced doublets separated by ~2 cm ™. It
will be shown that these doublets appear because HCI naturally occurs in two
common isotopes, H**Cl and H3Cl, with 75.5 and 24.5% abundance, re-
spectively. (Under sufficient resolution, the far-infrared absorption lines in Fig.
3.2 would similarly be split into isotopic doublets.) The near-infrared spectrum
results from simultaneous rotational and vibrational level changes in HCl, and
is called a vibration—rotation spectrum. The frequency spacings of ~20cm ™!
between successive absorption lines are similar to those occurring in the far-
infrared spectrum, although they are not nearly as constant as in the pure
rotation spectrum of Fig. 3.2. The vibration—rotation spectrum shown in Fig. 3.3
is centered near 2900 cm ~!; similar (but weaker) families of vibration—rotation
lines can also be observed at frequencies near multiples of 2900 cm ~ 1.

These spectra can be analyzed to yield detailed information about the
molecular bond length, about the potential energy function that governs the
vibrational motion, and about the interactions between vibrational and rota-
tional motions which result in small corrections to the total molecular energy. A
remarkable property of pure rotational spectra is that no knowledge of
electronic structure is required to interpret them. This situation contrasts
strikingly with that in atomic line spectra, where extensive configurational
interaction calculations must be performed to correctly predict spectral line
positions. The implication here is that electronic and nuclear rotational motions
are in some way essentially decoupled. Vibrational and electronic motions often
prove to be separable in a similar sense, although details of electronic structure
do influence vibrational motion via their effect on the vibrational potential
energy function. The concept of separability between electronic and nuclear
motions forms the basis of the Born-Oppenheimer approximation, which we
discuss in Section 3.1. In the remainder of this chapter, we build on the
foundation provided by the Born-Oppenheimer principle to develop the
eigenfunctions, energy levels, and spectroscopy of diatomic rotations and
vibrations.

3.1 THE BORN-OPPENHEIMER PRINCIPLE

The Born-Oppenheimer principle is a cornerstone of molecular spectroscopy, an
organizing principle that vastly simplifies the assignment of different spectral
features to different types of molecular motion. Without it, electronic and
nuclear motions would be scrambled in complicated molecular Hamiltonians,
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and extensive numerical calculations would be necessary to extract even the
most qualitative features of vibrational and rotational structure—as must now
be done to compute energy levels that are influenced by correlation in many-
electron atoms. The well-known approximations to diatomic vibrational and
rotational energy levels [E, ~ hw(v + 1) and E; ~ hcBJ(J + 1)] would have no
reality. The Born-Oppenheimer principle sometimes breaks down, and the cases
in which it does so have attracted considerable research interest from people
interested in molecular dynamics and energy transfer. Examples of such
breakdowns are vibronic coupling effects in electronic spectroscopy of polynu-
clear aromatic hydrocarbons, and nonadiabatic transitions in reactive mole-
cular collisions.
The total Hamiltonian for a diatomic molecule with n electrons is

.2 —h?
H =
NZ] 2mN
1 & 2 Zye? 1 Z,Zge? .
_ + + H, 3.7
4me, i; N; Ir, — Ry  4ne, IR, — Ry ° (37)

1 & &

4ney i< v — 14

n _h2 )
V2 Vi
N + iZI 2me ! +

These contributions to H include the nuclear kinetic energy, the electronic
kinetic energy, the electron—electron repulsions, the electron—nuclear attrac-
tions, the nuclear—nuclear repulsion, and the spin—orbit coupling. A priori, the
electronic coordinates r and nuclear coordinates R appear to be inseparably
mixed in H, and the electronic and nuclear coordinates are strongly coupled.
The Schrodinger equation for the diatomic becomes

H(r, RIY(r, R)) = E¥(r, R)) (3.8)
where r and R represent the sets of electronic and nuclear coordinates,

respectively.
We now define the electronic Hamiltonian H,, as

~ ~ 2 —p? P2 o
He =H-— - Hso
! NZ=:1 2my N
=A-1,-H, (3.9)

H,, differs from H by lacking the nuclear kinetic energy and spin—orbit
operators Ty and H,. It is possible to find eigenfunctions of H,, for fixed R (i.e.,
for nuclei motionlessly clamped in position), such that

H(r, R R)) = e (R)Y(r; R) (3.10)

The resulting electronic states |if,(r; R)> will depend parametrically on R in that
the choice of fixed nuclear positions influences the electronic states (physically,
pulling the nuclei apart will naturally distort the molecule’s electron cloud). The
&(R) are the diatomic potential energy curves—the electronic energies of the
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various states k as functions of the internuclear separation R. Numerous
potential energy curves are shown for several diatomic molecules in Figs. 3.4,
3.10, 4.2, 4.6, 4.7, 4.8, 4.9, 4.14, 429, 4.30, and 4.31 in this book.

For the solutions |¥(r, R)) to the full diatomic Hamiltonian, we now try
expansions of the form

I'¥(r, R)) =Xk: ayi(r; R)I(R)> (3.11)

where the |x(R)) are the diatomic nuclear (vibrational-rotational) wave
functions in electronic state k and the g, are expansion coefficients. If we have
complete sets |y, and |y, |¥(r, R)) can always be expanded as in Eq. 3.11. It
is only when |¥(r, R)) can be well approximated by a single term of the form
[ >lx> that one can be said to have achieved separation between electronic and
nuclear motion, by factorizing the total wave function into electronic and
nuclear parts. Such a factorized state is called a Born-Oppenheimer state.

If we substitute from Eq. 3.11 for |'¥(r, R)) into the diatomic Schrédinger
equation using the Hamiltonian of Eq. 3.7, we obtain [2]

2 _p2
ax [ z VI%I + Tix + U — E] [x(R)>

N=1 2mN
= _k;k @[T + Tiw + U N(R)) (3.12)

According to Eq. 3.4, the nuclear kinetic energy operator may be recast in terms
of center-of-mass coordinates,

hz hz 5 h2

2
Vi= —— Vi— V3
Zl sz 2MA A 2MB B
h? h?
= 3 Vi~ 3, VA (3.13)
UN

Since the electronic and nuclear wave functions are independent of the center-of-
mass position R, the term in Ty involving V2, drops out in Eq. 3.12. The new
quantities introduced in Eq. 3.12 are defined as

Ui = YilHo + Ho Wi = elR) + YilHolie (3.14a)
_K2

e = —2# dyy - Vi (3.14b)
N
_hz

Ty = 5— D (3.14c)
2uy

A = Yl VrlYi> (3.144)

Dy = Wl Vilyi> (3.14¢)
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The operators Vg and V3 are given by

vo—il 10 p 1 0
R='%R "/R3 T “Rsin 0 09

1 0 d 18 d 1
2 _ - 7 2 7 i 3 _ -
Vi =R7 3R (R aR) T RTsin 0 26 (s"’ o ae) T R7sin? 6 347

| (3.15)

where (6, ¢) define the orientation of the internuclear axis in space, R is the

MX

Energy

R

Figure 3.4 Lowest two bound potential energy curves for an alkali halide molecule
MX. The zeroth-order ionic and covalent curves, which intersect at the crossing
radius R = R, are shown at left. The adiabatic curves ¢, (R) and &, (R) are shown at
right; the avoided crossing at R = R, is caused by mixing of the degenerate ionic and
covalent states, which have the same symmetry. The lower adiabatic state W, (r; R)>
describes ionic M*X~ for R < R, but correlates with uncharged separated atoms
M + X for large R. The higher adiabatic state |y,(r; R)> describes covalent MX
(which is far more weakly bound that ionic M*X~) for R < R.. and correlates with

M™* + X~ at large separations.
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internuclear separation, and (i, j, k) in this context are unit vectors associated
with the coordinates (R, 0, ¢). _

Equation 3.12 is actually an infinite set of coupled equations that tell us that
nuclear motion generally takes place in all electronic states simultaneously
(since motion in a given state k is coupled by the right side to motion in all other
electronic states k). When this is true, the electronic and nuclear motions cannot
be separated.

We now briefly consider the special case in which the right side of Eq. 3.12 is
negligible. The quantity T}, on the left side of Eq. 3.12 is usually small (ie., the
electronic states |, > do not normally oscillate violently with internuclear
separation R!) and so in this case we obtain

_p2
[ ’ Vi + Uu(R) — E] lx(R)> = 0 (3.16)
2uy

When the spin—orbit coupling is small, U, (R) = &(R) according to Eq. 3.14a:
Ui(R) = <Y lH > = &(R). Then Eq. 3.16 becomes a Schrédinger equation

MX M++ X-

Energy

M+ X

R
Figure 3.4 (Continued)
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for nuclear motion (vibration and rotation) in the potential U,,(R) specified by
the potential energy curve ¢,(R) of electronic state k. This eigenvalue equation
then leads to the diatomic rotational and vibrational states as they are
commonly understood in molecular spectroscopy. When Eq. 3.16 is approx-
imately valid, the Born-Oppenheimer principle applies.

We now consider reasons why the Born-Oppenheimer approximation can
break down, i.e., why the right side of Eq. 3.12 can become appreciable. Since
U = YA Wi for k # k', large spin—orbital Hamiltonians H,, can be a
culprit—and Born-Oppenheimer violations can indeed result from large spin—
orbit coupling. The term Ty, in Eq. 3.14 is generally small, for the same reason
that Ty, is usually negligible. So we now focus on T},. This term can become
large when the potential energy curves for two electronic states k and k'
approach closely, causing nonadiabatic transitions from nuclear motion in state
k to nuclear motion in state k'.

As an example, we discuss the approach of an alkali atom M and a halogen
atom X. The lowest two potential energy curves ¢,(R) and &,(R) for the alkali
halide MX are schematically shown in Fig. 3.4. The lower of the two states
[1(r; R)) correlates with the ground-state neutral alkali atoms M + X, and has
13+ symmetry. The upper state |y,(r; R))> correlates with the ions M* + X~
and also has 'X* symmetry. The two potential energy curves ¢,(R) and &,(R)
exhibit an avoided crossing at R = R, in consequence of the noncrossing rule
[3] for curves corresponding to states of the same symmetry. Because of this
noncrossing rule, the adiabatic states |y, ) and |y, rapidly change in character
near R = R.. In particular, |yy;) describes ionic M*X~ for RS R,—since the
deep well in &,(R) results primarily from Coulomb attraction between the ions at
smaller separations—but corresponds to covalent MX for R X R., where
covalent MX has lower energy than ionic M *X ™. Conversely, |j,> switches
from covalent to ionic character as R, is passed going outward; ¢,(R) has a
shallow well since covalent MX is considerably more weakly bound than ionic
M™*X". In the neighborhood of R, where the potential curves £,(R) and &,(R)
approach closely, T}, becomes large for k = 1, k' = 2, because the quantity

~ 0
d12 = <'//1|VRW/2> = i(‘//ll ﬁ |‘/’2> (3-17)

is large in this region where |,> and |y,) are switching between ionic and
covalent behavior.

The implications of this for collisions between the neutral atoms M + X are
as follows. The collision starts out at large R in state |i;) (corresponding to
M + X). As the atoms approach at R » R,, the system remains in state |y, ),
because in this region the right side of Eq. 3.12 is small. But as R approaches R,,
d,, becomes appreciable, and then

hz
g .dIZ.VR (318)

= 2y
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can become important if the atoms approach with sufficient relative velocity
(which is proportional to V). At this point, Eq. 3.12 informs us that the system
has a finite probability of hopping to state |i/,> near R = R.. If it does, the atoms
will momentarily form covalent MX (following curve &,(R)) on closer approach,
R S R,. If the curve-hopping fails to occur, the system remains adiabatically in
state |/,)>, and forms ionic M*X~ when R becomes smaller than R.. The
probability of this curve-hopping (which amounts to a breakdown of the Born-
Oppenheimer principle) depends on the relative nuclear velocity: the larger Vg
is, the more probable the nonadiabatic jump. The widespread use of Eq. 3.16 in
molecular spectroscopy rests on the assumption that such nonadiabatic trans-
itions never occur, and that nuclear motion is restricted to motion on one
potential energy curve (or surface in polyatomic molecules) corresponding to a
single electronic state. This is valid in the limit of small spin—orbit coupling, and
when the electronic potential energy surface in question is not closely
approached by other surfaces at the total (electronic plus nuclear) energies of
interest.

Interested readers are referred to the chapter by J. C. Tully in Dynamics of
Molecular Collisions, Part B, edited by W. H. Miller (Plenum, New York, 1976)
for additional information on this subject.

3.2 DIATOMIC ROTATIONAL ENERGY LEVELS AND
SPECTROSCOPY

In the remainder of this chapter, we assume that the Born-Oppenheimer
approximation is good, and that Eq. 3.16 holds. In this section we consider the
rotational motion of a idealized rigid diatomic rotor, in which R is fixed at R,
Then Ug(R) = U(R,) is a constant that we may set to zero for convenience.
Using Eq. 3.15 for V% in the Schrédinger equation (3.16), we immediately have

-w[1 o (_ , 0 J?
Dy [FEE <R ﬁ) *——thz] [Xro?

72

= 2 E rol0s B0 = Enoliteal, #)> - (3.19)

where we have used the fact that rotor’s rotational angular momentum operator
J?is

1o 0 1
J2=—n? —(sinf—)+———
[sin 920 (S‘“ 6 aa) *n? 0 aquJ (3:20)

and the fact that terms in §/0R drop out when R is held constant. Hence the rigid
rotor Hamiltonian is

H,.. = J*2uxR3 = J?/21 (3.21)
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where I is the rotational moment of inertia, I = uyR%. The eigenfunctions of A
are the spherical harmonics

rot

X85 D)5 = Yip(6; ¢)

J=0,12,...
M=J,...,-J (3.22)
and its eigenvalues are
1)h?
Eqo = —J—(";T)— J=0,1,2,... (3.23)

According to Eq. 3.22, the rotational levels are (2J + 1)-fold degenerate.
Equation 3.23 gives the rotational levels in joules (J) when hisin J-s and [ is in
kg-m2. They are more commonly expressed in cm ™! (wave numbers) via

E.(cm~') = BJUJ + 1) (3.24)
where B (the rotational constant in cm 1) is
B = h?/2hcl = h/8n3cl (3.25)

The rotational energy spacing in cm ™! between level J and level (J — 1) is
BJ(J + 1) — B(J — 1)J = 2BJ, which increases linearly with J (Fig. 3.5).

We now derive the pure rotational selection rules (i.e., in the absence of
vibrational or electronic transitions) for the rigid rotor. If a rotor of fixed length
R, has charges +6 glued to its ends, it has a permanent dipole moment

Ho = OR = SR R (3.26)

along the molecular axis. The El1 transition moment for the JM —» J'M’
rotational transition is then SRy{ Y;3,(6, ¢)|R| Y} 5(6, ), which vanishes unless
Al=J—-J=+1,AM =M —M =0, +1,and 6 # 0. Accordingly, E1 trans-
itions occur only between adjacent rotational levels for which
AE; = E(J) — E(J — 1) = 2BJ. Note that this E1 transition moment integral is
formally identical to the angular part of the El transition moment for
hydrogenlike atoms—which is why it yields identical selection rules. The factor
of 6 means that only heteronuclear diatomics with permanent dipole moments
(6 # 0)—such as HBr and CO—can exhibit a pure E1 rotational spectrum.
Since the energy changes in cm ~ ! for transitions from state (J — 1) to state J
are equal to 2BJ for a rigid rotor, the observed rotational absorption lines are
predicted to be uniformly separated by the spacing 2B (Fig. 3.5). This is borne
out to within experimental error in the far-infrared spéctrum of HCI, Fig. 3.2. If
the nuclear masses (and hence the nuclear reduced mass uy) are independently
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Figure 3.5 Rotational levels in a diatomic molecule. Allowed absorptive trans-
itions (AJ = +1) are shown by vertical arrows. Schematic absorption spectrum is
shown at bottom.

known, the rotational constant B inferred from such a spectrum can be used to
calculate the apparent internuclear separation

Rq = (h*/2hcuyB)*> (3.27)

Indeed, a principal application of rotational (and vibrational-rotational)
spectroscopy is determination of molecular bond lengths (and bond angles in
polyatomics, Chapter 5).

The intensities of the absorption lines in a far-infrared spectrum like Fig. 3.2
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3.6 Relative rotational

state

populations,
g,exp[—hcBJ(J +1)/kT]/Z,g,exp[—hcBJ(J + 1)/kT], versus
quantum number J for B = 10.6cm™ 1.

Tablle 3.1 Rotational constants of diatomic molecules,
cm

Molecule B, o, D,
4°Ar2 0.05975 0.00375 11.3E-7
138g4160Q 0.3126140 0.0013921 2.724E-7
12c16Q 1.93128087 0.01750441 6.1214E-6
'H, 60.853 3.062 4.71E-2
TH35C1 10.59341 0.30718 5.3194E-4
1271, 0.03737 0.000113 4.2E-9
1271351 0.1141587 0.0005354 4.03E-8
23Na35Cl 0.2180630 0.0016248 3.12E-7
23Na'H 49012 0.1353 3.32E4
23Na2 0.154707 0.0008736 5.81E-7
14N, 1.99824 0.01731 5.76E-6
14N160O 1.67195 0.0171 0.5E-6
16Q, 1.44563 0.0159 4.839E-6
1601 18.910 0.7242 19.38E-4

Data taken from K. P. Huber and G. Herzberg, Molecular Spectra
and Molecular Structure: Constants of Diatomic Molecules, Van
Nostrand-Reinhold, New York, 1979.

given by
rotational
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are also of interest. The optical densities of absorption lines in a sample at
thermal equilibrium will be weighted by the Boltzmann factors

q;5,exp(—E;, /kT) = (2J, + Dexp[ —hcBJ (J, + 1)/kT] (3.28)

where J; is the rotational quantum number of the lower (absorbing) level.
(Optical densities are defined in Appendix D.) This causes the pure rotational
spectrum to peak its intensity at some J, determined by the sample temperature
and rotational moment. In Fig. 3.6, relative rotational state populations are
shown for J =1 to 10 in HCI for two contrasting temperatures.

Most values of heteronuclear diatomic rotational constants B fall between
the extremes of HF (20.9 cm~!) and ICl (0.114 cm ™ ?). For these species, the
frequencies of the J = 0 — 1 rotational transitions are 41.8 and 0.228 cm ™ !; both
are in the far-infrared to microwave region of the electromagnetic spectrum.
Some representative rotational constants are listed in Table 3.1.

3.3 VIBRATIONAL SPECTROSCOPY IN DIATOMICS

With the aid of Egs. 3.15 and 3.20, the Schrodinger equation (3.16) for nuclear
motion in the Born-Oppenheimer approximation becomes

n (1 0 0 J?
[U i R) — 2in <'Ef R (Rz ﬁ> - h—zﬁ)] lx(R)> = Elx(R)> (3.29)

where [x,(R)) is the wave function for nuclear motion in electronic state k. If we
make the substitution [y, (R)> = Si(R)Y;(0, ¢)/R, and recall that J2Y;,/(0, ¢)
= J(J + Dh%Y;,,(0, ¢), we obtain

d2S(R) 2u
d}’éz +h—2" E— UywR) —

JJ + )2
2uyR?

] SiR)=0 (3.30)

This is the Schrodinger equation for vibrational motion, with eigenstates S,(R)
representing vibrational wave functions in electronic state k, under the effective
vibrational potential

J(J + 1

Uuin(R) = U R) + 2R

(3.31)

We recall that U, (R) = YlHal¥> + Wil Hy JW,D; it is the electronic potential
energy curve g(R), corrected by the expectation value of the spin—orbit coupling
Hamiltonian. The second term in Eq. 3.31 is the centrifugal potential which is
occasioned by the rotational motion in state |y,.> = Y;(0, ¢); it reminds us that
the rotational and vibrational motions cannot be truly independent, since the
rotational state influences the effective vibrational potential.
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Needless to say, the R-dependence of U,(R) = &(R) is not analytic. For
bound electronic states that exhibit local minima in g(R), it can be usefully
expanded in a Taylor series about the equilibrium separation R = R,,

d*Uy
dR?

s >R,., (R—R)P+ (332

U®) = UniR) + (“52) @R+ 5

If we set Uy(R,) = 0 and recognize that dU,,/dR vanishes at the local minimum
R =R,, then

Uu(R) ~ 3k(R — R,)? (3.33)

where the vibrational force constant k is defined as

k= (dzU"") (3.34)
Re

dR?

This is the familiar potential for a one-dimensional harmonic oscillator (Fig.

Energy

Figure 3.7 Harmonic oscillator approximation (dashed curve) to true potential
energy curve ¢(R) in a diatomic molecule.
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3.7). If we restrict ourselves to pure vibrational motion (J = 0), Eq. 3.30 then
becomes

—n* d?
(T R + 3k(R — Rc)2> SR) = ES(R) (3.35)
N .

From prior experience with the one-dimensional quantum mechanical har-
monic oscillator [4], we know that its eigenfunctions and eigenvalues are

S(R) = N,e *2H (x) = |v) (3.36a)
E.p = ho(v + 1) (3.36b)
v=0,1,2,...

where x = (R — R,)\/uyw/h, o = \/k/uy, and the H, are the Hermite poly-
nomials in x. To keep things in perspective, we recall that these are the diatomic
vibrational states only in the harmonic approximation (ignoring higher than
second-order terms in the Taylor series expansion (3.32)) in the absence of
rotation (J = 0).

In the E1 approximation, absorption or emission of radiation can accom-
pany a one-photon transition between vibrational states |[v) and |v") only if
{vlglv’> # 0. Since the vibrational states depend on R, the value of this transition
moment is affected by the R-dependence of u = p(R), the permanent dipole
moment. In homonuclear diatomics, g(R) =0 for all R. In heteronuclear
diatomics, the R-dependence of g must resemble the schematic behavior shown
in Fig. 3.8. This is so because u(R) — 0 both in the united-atom limit (R = 0) and
in the separated-atom limit (R = oo0) where the diatomic dissociates into neutral
atoms. Thus g(R) generally is not given by a closed-form expression, but can be
approximated by a Taylor series about R = R_:

op

ﬂ(R)=ﬂ(Re)+<aR

1/
>Re (R—R,) + 5 (a?)& (R — R,U,)2 + (3.37)

This should not be confused with the Taylor series expansion of U,,(R), Eq. 3.32.
The validity of terminating the expansion for U,,(R) with the second-order term
(i.e., the harmonic approximation) is not connected with the validity of breaking
off the expansion of g(R) with some low-order term—these two approximations
are unrelated. Textbooks commonly base their derivation of El vibrational
selection rules on the premise that the series for g(R) can be terminated with the
term that is linear in (R — R,). This can be approximately valid over limited-R
regions, but is (strictly speaking) unphysical for general R. The error of using this
linear approximation is mitigated by the fact that the vibrational eigenstates
tend-to limit contributions of g(R) in the matrix element {v|g(R)|v'> to small
regions near R = R, (Fig. 3.8).
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u(R)

R

Figure 3.8 Qualitative behavior of the dipole moment function u(R) for a
heteronuclear diatomic molecule that dissociates into neutral atoms. The straight line
tangent to u(R) at R = R, represents the linear approximation to u(R) which breaks
off the Taylor series (3.39) after the term proportional to (R — R,). When the
vibrational motion is limited to a small range of internuclear separations
R_ZRZS R .. the deviations between the true dipole moment function and its linear

approximation remain small.

Using the series expansion for p#(R), the vibrational transition dipole moment
becomes

Colp(R)vy = R J<Vl') + <§—£> Cul(R = R)v'>
Re )

1(p 20,
5 <W>RC<UI(R — R + (339)

We now need a systematic way to evaluate matrix elements like
¢v|(R — R,)"|v'). This is provided by the second quantization formulation [5] of
the one-dimensional harmonic oscillator problem, which parallels in some ways
the ladder operator treatment of angular momentum. The harmonic oscillator

Hamiltonian is
~ n d?
Hup = " 2uy dR?

A

P

i + 3kq?

+ k(R — R)* =
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with p = (h/i)(3/0R) and g = (R — R,). Since the harmonic oscillator frequency is
o = (k/uy)''?, this is the same as

5 14
Hyp = . + Juno’q? (3.39)
UN

We now define the destruction operator

a = (p — ipywq)//2uyhew (3.40)
Its Hermitian conjugate, known as the creation operator, is

at = (p + ipywq)//2uyhw (3.41)

because both p and g are Hermitian. The inverses of Egs. 3.40 and 3.41 are

h 1/2
b= <ﬂ2—w> (@+a®)

h 1/2
q=1i ( > (@a—a") (3.42)
2Un®

and these allow us to rewrite the Hamiltonian (3.39) compactly in terms of the
creation and destruction operators,

~

h
H, = 7(0 (aa* + a*a) (3.43)

A useful commutation relationship for these operators is

1 .. ..
[a,a"]= S [P — iuywgq, p + iuywq]
N

—i . i .
_E[qap] +E[P, q =1
so that
[a,a*] =1 (3.44)

Using this, the Hamiltonian becomes

. h
A, = 7‘” @*a+1+a*a) = hofa*a +3) (3.45)
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because aa* — a*a = 1 from Eq. 3.44. If we call the operator product ata = N
the number operator, the Hamiltonian (3.45) can be rewritten as

H,, = ho(N + ). (3.46)
However, we know from prior experience that
H,plv) = ho(v + Do) (3.47)
Comparison of Egs. (3.46) and (3.47) then shows that
Npv) = v|v) (3.48)
The state |v) is then an eigenstate of the number operato£ N with eigenvalue v,
which shows the number of vibrational quanta in that state.
We now wish to determine what kind of state a*|v) is. We can do this by
testing the new state a*|v) with the number operator,
N@*lv)) = (a*N + [N, a* Do) (3.49)
But
[N,a*]=[a%a, a*]=a*[a,a*] =a" (3.50)
using the commutator in Eq. 3.44. Then Eq 3.49 becomes
N@*|v)) = @*N + a*)vd = (v + 1)a*|v)) 3.51)
Hence the new state (a*|v)) is an eigenstate of N with eigenvalue (v + 1). Since

the eigenstates of a one-dimensional harmonic oscillator are nondegenerate, this
implies that

atjvd clo + 1> (3.52)
We can similarly show that

av) clpv—1) (3.53)
so that the operators a* and a have the effect of creating and annihilating one

quantum respectively in the harmonic oscillator. It can further be demonstrated
that

Cvlaa* vy = (a*|v))*(@” [v))
=@+ D@+1p+1>=@0+1) (3.59)
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and that
Cvla*alv)y = (av))*(alv)) = v (3.55)
so that to within a phase factor
a*ty = Jo+ 1o+ 1)
appy = /olv — 1) (3.56)

Then we finally have the matrix elements useful for evaluating the contributions
to the transition moment in Eq. 3.38,

vla* v’y = \/;60,:)’+1
Cylav’y = /v + 10, , -4 3.57)

We now calculate the first few terms in the transition moment (3.38) explicitly.
The leading term p(R,)<{v|v')> vanishes by orthogonality of the harmonic
oscillator states. For the next (first-order) term, the substitution for g using Eq.
3.42 leads to

) h 1/2
<UI(R - Re)lv’> =1 <2ﬂnw> [ v+ 150,0’—1 - \/560,0'+1] (358)

so that the linear term in the expansion (3.37) of u(R) yields the selection rule
Av=v'— v = %1 for vibrational transitions. The second-order term is pro-
portional to

V(R = R ') = — {vlaa —a*ta—aa* +a*a*|v') (3.59)

2uNw

The respective integrands resulting from expansion of (a — a*)? can be easily be
shown to give Av = +2, 0, 0, and —2. Hence the second-order term allows
Av = +2 overtone vibrational transitions to occur, and higher overtones can
result from the succeeding terms in the expansion of g(R). In practice, the
fundamental transitions Av = +1 are usually the ones with the largest proba-
bilities, and the overtone transition probabilities for Av = +n fall off rapidly
with increasing n, because the transition moment integral samples a com-
paratively limited region of R near R,.

Typical vibrational frequencies in heteronuclear diatomics tend to be
bracketed between those of ICl and those in hydrides (in which low reduced
masses are accompanied by high vibrational frequencies). In wave numbers, the
fundamental vibrational frequencies w,= w/2nc are ~384cm~! and
~2990cm ~ ! for ICl and HC], respectively. Vibrational frequencies are listed for
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Table 3.2 Vibrational constants of diato_mic molecules,

-1

cm
Molecule @, WX, DcYe
40Ar, 25.74

1383160 669.76 2.02 —0.003
12ct6Q 2169.81358 13.28831 0.010511
H, 4401.21 121.33 0.812
TH33Cl1 2990.946 52.8186 0.2243
1271, 214.50 0.614

1271351 384.29 1.501

23Na33Cl 366.0 20

23Na'H 1172.2 19.72 0.160
23Na, 159.12 0.7254 —0.00109
14N, 2358.57 14.32 —0.00226
14N16Q 1904.20 14.075 0.011
16Q, 1580.19 11.98 0.0474
160'H 3737.76 84.881 0.540

Data taken from K. P. Huber and G. Herzberg, Molecular and
Molecular Structure: Constants of Diatomic Molecules, Van
Nostrand-Reinhold, New York, 1979.

several other diatomic molecules in Table 3.2. These frequencies lie in the
infrared to near-infrared regi?n of the electromagnetic spectrum.

3.4 VIBRATION-ROTATION SPECTRA IN DIATOMICS

Molecular vibrational spectra exhibit fine structure in gases, because rotational
transitions can occur simultaneously with vibrational transitions. In
diatomics with small vibration—rotation coupling, the selection rules on Av and
AJ are exactly as in the cases of pure vibrational and pure rotational
spectroscopy, respectively:

Av=+1,(+2, +3,..) (3.60)

These rules hold provided the electronic state in question has no component of
orbital angular momentum along the molecular axis (Chapter 4). When this
component is nonvanishing, the selection rules are influenced by interaction
between electronic and rotational angular momenta, and the AJ = 0 transition
becomes allowed:

Av=+1,(£2, £3,..) (3.61)
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—P branch—— — R branch———— J'
6

o—-N u »
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-2 2| 2+3 34
4*332 -3 3 45

5+6

Figure 3.9 Energy levels and transitions giving rise to vibration—rotation spectra in
a diatomic molecule. The upper state and lower state quantum numbers are (v, J')
and (v”, J"), respectively. The schematic spectrum at bottom shows line intensities
weighted by rotational state populations, which are proportional to
(2J" + 1) exp[—hcBJ"(J" + 1) /kT]. The rotational constants B,. and B, are as-
sumed to be equal, resulting in equally spaced rotational lines. This assumption is
clearly not valid in the HCI vibration-rotation spectrum in Fig. 3.3.

The vibration—rotation spectrum can be understood on the basis of a partial
energy level diagram for the lowest vibrational and rotational levels (Fig. 3.9).
The upper and lower level quantum numbers are denoted by (v'J’) and (v"J"),
respectively. Transitions for which AJ = +1, AJ = —1, and AJ = 0 (the latter
occurring only in states with nonzero orbital angular momentum along the
molecular axis) are called R-, P-, and Q-branch transitions. The transition
frequencies are derived from

hy = AEvib + AErot = hm(v’ + %) - hw(U" + %)
+ heBJ'(J + 1) — heB'J"(J" + 1) (3.62)

or

Wem 1) =¥y + BJ(J + 1) — B'J"(J" + 1) (3.63)
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where v, = w(v' — v")/2nc is the frequency for the pure vibrational transition. In
the case of the P branch, letting J” = J and J' = J — 1 gives

V=7V, — (B + B")J + (B' — B")J? = vp(J) (3.64)
whereas for the R branch in which J" =J,J =J + 1,
V=7, + (3B — B")J + (B' — B")J? + 2B’ = vg(J) (3.65)

If B = B” = B (i.e., if the diatomic exhibits identical rotational constants in both
vibrational states |[v') and [v")),

Vr(J) = Vo + 2B(J + 1) (3.66)
Hence the rotational fine structure lines are predicted to be equally spaced in
frequency if B is independent of the vibrational quantum number v. In fact, the
rotational constant, described earlier as B = h%/2hcuyR3 for a rigid rotor with
separation R,, becomes
hz
B, =
2hcpuy

1
vl 2z v (3.67)

in a vibrating diatomic. B, then acquires a v-dependence, largely because the
harmonic oscillator potential is asymmetric about R = R,. Since U(R) levels
off to the separated atom asymptote for large R (Fig. 3.10) but falls rapidly for
small R, {v|1/R?v)> (and therefore B,) decreases as v increases. This fact is
accommodated experimentally by fitting measured B, values to the expression

(6] ’
B,=B,— a0+ +y0+>+5,0+>+ (3.68)

The v-dependence in the rotational constant B, is clearly visible in the HCI
near-infrared spectrum shown in Fig. 3.3. This vibration-rotation spectrum
consists of the v' =0 to v’ =1 absorptive transition with rotational fine
structure in a P branch (whose absorption lines at successive J values appear at
ever lower frequencies according to Eq. 3.64) and an R branch (whose
absorption lines run to higher frequencies as J is increased, Eq. 3.65). No Q
branch line occurs, because HCl in its closed-shell electronic ground state has no
electronic angular momentum. The absorption lines are labeled according to the
value of J” in the lower vibrational state: R(0) is the R-branch line from J” = 0,
P(1) is the P-branch line from J” = 1, etc. The rotational line spacings decrease
at higher frequencies in both branches, in consequence of the quadratic
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Energy

R

Figure 3.10 Potential energy curve for the electronic ground state of Na,, with
effective internuclear separations R, indicated by dots for v = 0 through 45. These R,
values are computed from the experimental rotational constants B, via
hcB, = h?/2u,R2. R, is close to R, in the lowest vibrational states, and increases

with v.

(B’ — B")J?* terms in vp(J) and vg(J). This implies that B” > B', or that the
rotational constant is larger in vibrational state v =0 than in v = 1.

Each of the rotational lines in Fig. 3.3 is split into doublets spaced by
~2cm ™! because the isotopes H*3Cl and H*"Cl have slightly different reduced
masses, and therefore different rotational constants according to Eq. 3.25.
Vibration-rotation spectra like the one in Fig. 3.3 can be analyzed to obtain
accurate values of the rotational constant in the upper and lower vibrational
levels for both isotopes.
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3.5 CENTRIFUGAL DISTORTION

Since chemical bonds can be stretched, the centrifugal force accompanying
diatomic rotation pushes the nuclei farther apart than they would be in a
nonrotating diatomic. This in turn reduces the rotational constant B,, which
then depends on J as well as on v. To treat this effect quantitatively, we begin by
defining F, as the centrifugal force pulling the nuclei apart, F, as the harmonic
oscillator restoring force pulling the nuclei together, R, as the equilibrium
separation when J = 0, and R, as the separation when J # 0. Clearly R, > R,
due to the centrifugal force. Classically, the centrifugal force is given by

F. = pyo®R, = J*/uyR? (3.69)

using the fact that the rotational angular momentum J = Iw = pyRZw. The
magnitude of the harmonic oscillator restoring force is

IF,| = k(R, — R,) (3.70)
because U,(R) =1k(R, — R,)?> in the harmonic approximation, and
F, = —dU/dR,. Balancing the centrifugal and restoring forces gives

J*/unR? = kR, — R,) (3.71)
or
R, — R, = J?/uyR3k. 3.72)

Then the rotational energy is

2

J
Erp = ~——5 + 3k(R, — R,)?
rot Z#NRCZ + 2 ( c Re) (373)

where the latter term is included in the rotational energy because it reflects the
change in the diatomic potential due to the centrifugal displacement of R from
R, to R,. Using twice the expression for R, from Eq. 3.72, the rotational energy
then becomes

J? 1 1 Jr \?
Erot = 2 372 + —k 05371
v (R, + J*/unR2k) 2 \unRZk

L J? 1 N 1 k J? \?
" 2uy (R, + J?/unR3K)?* 2 \uyR3k

J? 2J? 1 J*
~ s\l = —papr + |+ 5 e
2#lee :uNRek 2 /'tNRek
J? J*
TR 23Rk T

(3.74)
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where we have used the identity (1 + x)"2 ~1 — 2x + 0(x?) for small x.
Quantum mechanically, this expression for the rotational energy becomes

E.o. = J(J + DR?*2uyR2 — J*(J + 1)*h*/2u3 RSk (3.75)

and the rotational energy in wave numbers (with v-dependence of the rotational
constants included) is now

V

E, (cm™ ') = BJ(J + 1) — D,J*(J + 1)? (3.76)
with

4
D h

= sk ol s > (377

Like B,, D, decreases as v increases; its v-dependence has often been fitted for
diatomics using expressions of the form [6]

D,=D,— Bfv+3)+-- (3.78)
If the v-dependence in B, and D, is ignored, the fact that

hz

Br—m— .79
2hcuyR? (3.79)

and

h4
D~———
2hcuyRS

implies that the centrifugal distortion constant is

B3
p~? . (3.80)

- w?

where w, is the widely used notation for the vibrational fundamental frequency
in cm ™! (which we have been calling v,). The physical significance of Eq.-3.80 is
that bonds with stronger force constants (and hence larger w,) experience less
centrifugal distortion. It is interesting that knowledge of the rotational and
vibrational constants B and w, permits one to predict (with reasonable
accuracy) the more subtle quantity D.

When D, # 0, the rotational lines in a pure rotational spectrum (or in a
vibration—rotation spectrum) are no longer equally spaced, but become more
closely spaced at higher J. However, D, is usually not particularly large. In I,,
which has one of the weaker vibrational force constants among ordinary



100 ROTATION AND VIBRATION IN DIATOMICS

diatomics (excluding van der Waals molecules!), B, =.0374cm™' and
o, = 214.6 cm ™ '—yielding D, ~ 4.55 x 10"°cm ™!, which is seven orders of
magnitude smaller than B,. In HCI (B, = 10.6 cm ™ !), the distortion constant D,
is 5.3 x 10~*cm ™ !; centrifugal distortion is far too small to observe in the HCI
far-infrared spectrum in Fig. 3.2.

3.6 THE ANHARMONIC OSCILLATOR

Most of our discussion of vibrational eigenstates and selection rules has been
centered on the harmonic approximation. Of course, the effective vibrational
potential U, (R) is not well approximated by a parabola for energies corre-
sponding to large vibrational quantum numbers v (cf. Fig. 3.7), and considerable
work has been expended to find alternative expressions for either U, (R) or the
vibrational energy levels which are both compact and accurate. It has become
conventional to fit experimentally determined vibrational levels G (cm™!) to
expressions of the form [6]

G, =0 +3) —0x0+3)+ o+ + (3.81)

The first term in G, is the harmonic approximation to the vibrational energy,
and the remaining terms are the anharmonic corrections. The negative sign in the
leading anharmonic term corresponds to the fact that real vibrational levels
become more closely spaced with higher v. A typical value of w,x,/w, is 0.0028
for I,, which indicates that its ground-state potential energy curve is very nearly
harmonic near the bottom of its well. For the A'X* excited state in NaH
(Chapter 4), w.x,/w, is —0.0174, which is anomalous because it is negative; this
occurs because the A'X* potential curve in NaH is pathologically misshapen
due to perturbation by other nearby excited states.

If the vibrational energy level expression (3.81) is cut off after its leading
anharmonic term

G, = 0 + 3) — X[ + 3)° (3.82)

the resulting levels are the exact eigenvalues of an approximate vibrational
Hamiltonian in which the potential is given by the analytic function

Uw(R) = D,[1 — ¢ *®R~Ro]2 (3.83)

This is known as the Morse potential. At R =R,, the first and second
derivatives of the Morse potential are [7]

dUR) _ |
dR
2
d Ukk(R) — 2a2De = k (384)

dR?
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with the consequence that

2 [k
w.,=a <hDe > =— [— (3.85)
nCUy 2nc \ Uy

with D, in cm 1. It can also be shown that

ha?

- 4rcuy

WX,

(3.86)

\

The Morse potential expression for U, (R) has the limits D, and 0 as R
approaches oo and R,, respectively. When R — 0, U,(R) — D,exp(2aR,), which
is typically large. Hence the Morse potential is capable of modeling the
qualitative features of a realistic diatomic potential energy curve. If the latter is
well described by a Morse potential, then spectroscopically determined values of
o, and w,x, can be combined using Eqs. 3.85 and 3.86 to estimate the molecular
dissociation energy [7]

D, = w}/dw,x, (3.87)

measured between the bottom of the potential well and the asymptote of U,,(R)
at large R. This can yield useful approximations to D, if the dissociation energy
is not available by other means. In more general cases where the vibrational
energy levels are given by Eq. 3.81 rather than 3.82, the dissociation energy D,
measured from level v = 0 is rigorously given in terms of the level differences

AG(v) = G + 1) — G(v)
=W, — 2wexe(v + 1) + weye(3vz + 6v + %)
+ (3.88)
as
Do= 3 AGE) (3.89)
v=0

if the vibrational level spacing vanishes between level v,,,, and level (v,,, + 1) at
the dissociation limit. The area under an experimental plot of AG(v) versus v
then equals D,, in principle (Fig. 3.11). Many of the terms G(v) for larger v will not
be known in practice, so that the experimental AG(v) curve is frequently
extrapolated to AG = 0 to estimate the dissociation energy. The use of Eq. 3.87
to estimate D, amounts to making a linear extrapolation of AG(v), since for the
Morse potential only the two leading terms in Eq. 3.88 contribute to AG(v). Such
Birge-Sponer extrapolations frequently yield dissociation energies that are
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AG(U)

Figure 3.11 Birge-Sponer plot of AG(v) versus v for the electronic ground state of
Na,. The area under the AG(v) curve yields the ground state dissociation energy D,,.
Linear extrapolation of the points for low v (straight line) would clearly yield a gross
overestimate of D,. Nonlinear extrapolation of the points exhibited for 0 < v < 45
(P. Kusch and M. M. Hessel, J. Chem. Phys. 68: 2591 (1978)) leads to an improved
estimate of D,. A still better approximation to D, can be made by analyzing
vibrational levels for v up to 55 from the more recent Na, fluorescence spectrum
shown in Fig. 4.1.

~30% too large for diatomics that dissociate into neutral atoms [6]. Diatomics
that dissociate into ions exhibit potentials that behave as R™' at long range.
Such potentials exhibit infinite numbers of vibrational levels; plots of G(v) versus
v then run asymptotically along the v axis for large v, and the Birge-Sponer
extrapolation becomes inapplicable.
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PROBLEMS

1. In the pure rotational spectrum of *H3>Cl, lines from the initial states J = 2
and J = 3 are observed with equal intensity. Calculate the temperature of the
sample. (For *H35Cl, the rotational constant is 10.6cm ™))

2. Use the second quantization formalism to develop the selection rule on
{V'[(R = R,)"Jv) for arbitrary n.

3. For a heteronuclear diatomic molecule AB, the dipole moment function in
the neighborhood of R = R, is given by

w(R) =a+ bR —R,)+ (R —-R)*+dR —R,)?

in which a, b, ¢, and d are constants. Treating this molecule as a harmonic
oscillator, calculate the relative intensities of the v = 0 — 1 fundamental and
v =0-2 and 0 — 3 overtone transitions in the E1 approximation in terms of
these constants and the harmonic oscillator constants y and w.

4. Some of the frequencies and assignments of the 'H33Cl vibration—rotation
lines in Fig. 3.3 are given below.

¥em™Y) Assignment
2963 RQ)
2944 RQ)
2906 R(O)
2865 P(1)
2843 PQ2)
2821 P(3)

Determine the values of the rotational constants (in cm ') and the associated
bond lengths (in A) of "H33Cl in vibrational states v = 0 and v = 1. The nuclear
masses of 'H and 3°Cl are 1.007825 and 34.96885 amu, respectively.

5. From an analysis of the B'II, -» X', fluorescence bands of 2*°Na, (see
Chapter 4), the vibrational energy levels in the electronic ground state can be
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represented by

G(v) = 159.12 (v + 1) — 0.725(v + 3)> — 0.0011(v + 1)®
in cm~!. Determine the vibrational quantum number v, at which the
vibrational level spacing vanishes, and estimate the dissociation energy D,.
Compare this dissociation energy with that estimated using a linear Birge-
Sponer extrapolation, and with the directly measured value D, = 0.73eV.



ELECTRONIC STRUCTURE
AND SPECTRA IN
- DIATOMICS

Like the atomic spectra discussed in Chapter 2, electronic band spectra in
diatomic molecules arise from transitions between different electronic states.
Both types of spectra occur at wavelengths ranging from the vacuum ultraviolet
to the infrared regions of the electromagnetic spectrum. A complication in
diatomic band spectra is that changes in vibrational and/or rotational state
generally accompany electronic transitions in molecules, endowing band
spectra with rich rovibrational structure. Analysis of this structure (which often
lends a bandlike appearance to diatomic spectra, in contrast to the discrete line
spectra characteristic of atoms) can yield a wealth of information about ground
and excited electronic state symmetries, detailed potential energy curves, and
vibrational wave functions. An anthology of such information is presented for
several diatomic molecules in this chapter.

An uncommonly lucid example of an electronic band spectrum is the Na,
fluorescence spectrum shown in Fig. 4.1, which was obtained by exciting Na,
vapor in a 453°C oven using nearly monochromatic 5682 A light from a Kr* ion
laser. At this temperature, Na, exists in its electronic ground state (the X',
state, in notation to be developed later) with appreciable populations in several
vibrational and many rotational levels. However, the 5862-A excitation wave-
length is uniquely matched in Na, by the energy level difference between the
X'Z) state (v” =3, J” = 51) and an electronically excited state (A'X,) with
v' = 34, J" = 50. The latter level then becomes selectively pumped by the laser. It
subsequently relaxes by fluorescence transitions to X'X' Na, in vibrational
levels v” between 0 and 56, producing the exhibited spectrum. Only transitions
to v” > 4 are shown; a schematic energy level diagram showing some of these
transitions is given in Fig. 4.2.
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Figure 4.2 Energy level diagram for the fluorescence spectrum in Fig. 4.1.
Absorption of the 5682-A laser photon pumps Na_, molecules from v’ = 3,/ = 51 in
the X'Z; electronic state to v’ =34, J' =50 in the A% electronic state. Subse-
quent fluorescence transitions connect v'=34 in the A%} state with v’ =0 through
56 in the electronic ground state. Only three of these fluorescence transitions are
shown for clarity. Rotational levels are not shown. Internuclear separations and
energies are in A and cm ™", respectively.

Figure 4.1 illustrates some of the El selection rules on rotational and
vibrational structure in electronic band spectra. The observed rotational
selection rule, AJ = +1 (the laser-excited level with J' = 50 fluorescences only
to lower levels with J” = 49 or 51) is reminiscent of that in vibration—rotation
spectra of molecules with no component of electronic angular momentum along
the molecular axis (Chapter 3). The R- and P-branch notations in Fig. 4.1 are
identical in meaning to those used in vibration—rotation spectra. In marked
contrast, there is no apparent selection rule on Av = v" — v": lines terminating in
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v” = 43 have comparable intensity to lines terminating in v” =5, and the
intensity pattern of vibrational lines appears somewhat haphazard to the
uneducated eye. The positions of the successive vibrational lines in a given
rotational branch (R or P) accurately reflect the energy spacings of the
anharmonic oscillator levels in ground-state Na,; these spacings grow narrower
as the dissociation limit is approached near 800 nm. The absence of a restrictive
vibrational selection rule in electronic band spectra vastly enhances their
information content; the spectral line intensities and positions in Fig. 4.1 allow
precise construction of an empirical potential-energy curve for X'Z; Na, for
vibrational energies up to >99% of its dissociation energy.

Electronic band spectra may also be observed in absorption of continuum
light (e.g., from a high-pressure Hg lamp) by a gas-phase sample. The observed
spectrum is then a superposition of absorption lines arising from excitation of all
levels (v”, J”) in the electronic ground state to levels (v/, J') in the electronically
excited state, weighted by the appropriate Boltzman factors of the initial
rovibronic levels (v”, J”). This lack of selectivity causes far greater spectral
congestion in band spectra, and high spectral resolution is required to detect
successive rotational lines within a vibrational band. Such crowding of spectral
lines can be relieved by preparing the diatomic species in a supersonic jet, in
which very low vibrational and rotational temperatures are routinely attained.
In this manner, molecules with predominantly v” = 0 and low J” values are
produced.

It is customary to obtain fluorescence excitation spectra rather than ab-
sorption spectra in jets, where the total fluorescence intensity is monitored as a
function of excitation laser wavelength. In cases where the fluorescence quantum
efficiency (defined as fluorescence photons emitted/laser photons absorbed) is
independent of excitation wavelength, the fluorescence excitation spectrum
coincides with the absorption spectrum. Part of the fluorescence excitation
spectrum of an Na, jet operated with vibrational and rotational temperatures of
~ 50 and 30K, respectively, is shown in Fig. 4.3. The four intense bands arise
from electronic transitions from v” = 0 in the X', ground state to v’ = 25
through 28 in the A'X} excited state. The rotational fine structure in each band
consists of a barely resolved series of narrow lines, creating an envelope that
peaks asymmetrically toward the blue edge at the bandhead. Such rotational
envelopes (or contours) are said to be shaded to the red. Electronic transitions are
occasionally characterized by rotational contours that are shaded to the blue,
i.e., by contours in which the bandhead lies at the long-wavelength edge. Such
contours are absent in the fluorescence spectrum in Fig. 4.1, where the selective
preparation of J' = 50in the A'Z. state simplifies the rotational structure in the
fluorescence spectrum. Analysis of absorption or fluorescence excitation spectra
yields information about the vibrational structure and potential energy curve of
the upper (as opposed to lower) electronic state.

This chapter begins with a treatment of symmetry and electronic structure in
diatomic molecules. The symmetry selection rules for electronic transitions are
derived, and vibrational band intensities (cf. Fig. 4.1) are described in terms of
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Figure 4.3 Fluorescence excitation spectrum (total fluorescence intensity versus
excitation wavelength) of Na, molecules in a supersonic jet. The four intense groups
of barely resolved lines are due to electronic transitions from v’ = 0 in the electronic
ground state to v/ = 25 through 28 in the A'Z} excited state. The individual lines are
due to rotational fine structure, which is discussed in Section 4.6. Reproduced by
permission from J. L. Gole, G. J. Green, S. A. Pace, and D. R. Preuss, J. Chem. Phys.
76: 2251 (1982).

Franck-Condon factors. The most common angular momentum coupling cases
are discussed, and rotational fine structure in electronic transitions (cf. Fig. 4.3)
is rationalized for heteronuclear and homonuclear diatomics using Herzberg
diagrams.

41 SYMMETRY AND ELECTRONIC STRUCTURE IN
DIATOMICS

All diatomic molecules belong to either the C,, or D, point group, and so
much of their electronic structure and nomenclature is derived from the
properties of these two groups. In what follows, the Cartesian z axis is always
taken to be along the molecular axis (the line connecting the two nuclei). The x
and y axes are both normal to the internuclear axis, as shown in Fig. 4.4.

The partial character table for the heteronuclear point group C,,, (Which has
an infinite number of classes and irreducible representations) is

Coo
E 2C, 0,
Tt 1 1 1 z
) 1 1 -1 R,
I 2 2 cos ¢ 0  (x),(R.R)
A 2 2 cos 2¢ 0
] 2 0

2 cos 3¢
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Figure 4.4 Orientation of Cartesian
axes in a diatomic molecule AB.

The symmetry elements C; and g, are the rotation by an arbitrary angle ¢ about
the principal (z) axis and a reflection plane containing the principal axis,
respectively. The superscript in the notations for the £* and X~ irreducible
representations (IRs) indicates the behavior of the IRs under the o, operation.
Since the characters of the E operation in all IRs of C,, are either 1 or 2, this
means that all diatomic electronic states are spatially either nondegenerate or
doubly degenerate.

The behavior of the vector components (x, y, z) and the rotations (R,, R,, R,)
under the group operations proves to be important for determining the E1 and
M1 selection rules for electronic transitions. In particular, the vector z is
obviously unaffected by all of the C,,, operations, so it transforms as the Z*
(totally symmetric) IR. The rotation R, is not changed by E or C,, but changes
sign (direction) under any g, operation—so that it belongs to the £~ IR. Some
of the group operations transform the vectors (x, y) into linear combinations of x
and y, so that (x, y) form a basis for a two-dimensional IR of C,. If the (x, y)
basis vectors are rotated by an angle ¢ about the z axis, the resulting new basis
(x', ') is related to the former basis by

[x’ _[cos¢ —sing | x
V-lme sl
=c, [’;J @.1)

The character x(C,) in this basis is then 2 cos ¢. Similarly, suppose a reflection
plane o, contains the x axis. Then under this o, operation,

HRHN
]

Then x(6,) = 0; it can easily be shown that this result is independent of the
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orientation of the ¢, plane with respect to the x and y axes [1]. Finally, by the
definition of the identity operation

<[]0

and y(E) = 2. We conclude that the (x, y) vectors together form a basis for the
ITIR of C,, and this fact is reflected in the character table. It may similarly be
shown that the rotations (R,, R,) about the x and y axes also form a basis for the
ITIR.

The homonuclear point group D, can be generated from C, by adding the
inversion operation i about a center of symmetry, (x, y, z) - (—x, — y, —z). This
creates two additional classes of group operations: the improper rotations
Ss = iC4, and the two fold rotations C, = io,. The homonuclear point group
character table is

Dooh

E 2C,... 00, i 28, ... 0C,
z; 1 1 1 1 1 -1
X, 1 1 -1 1 1 —1 R,
I, 2 2 cos ¢ 0 2 —2cos ¢ 0 (R,R)
A, 2 2 cos 2¢ 0 2 2 cos 2¢ 0
= 1 1 1 -1 —1 -1 z
) 1 1 -1 —-1_ —1 1
I1, 2 2 cos ¢ 0 -2 2 cos ¢ 0 (xy
A, 2 2 cos 2¢ 0 0

-2 —2 cos 2¢

From our discussion of the C_, point group, z transforms as either Iy or L),
since iz = —z, it must belong to X.}. Since

[

the character y(i) in the (x, y) basis is —2, and so (x, y) forms a basis for the IT,
rather than the IT, IR. In general, the vector components always transform as u-
type IRs in D ,. The reverse is true of the rotations R,, R,, R,, which always
transform as g-type IRs.

We are now prepared to discuss the relationships between symmetry and
electronic structure in diatomics. In the absence of spin—orbit coupling in atoms,
one has the commutation relationships involving the electronic Hamiltonian



112  ELECTRONIC STRUCTURE AND SPECTRA IN DIATOMICS

and angular momenta:
0

=0 4.5)
0

This means that L, S, J, M;, Mg, M, can all be good quantum numbers, in
addition to the principal quantum number, in spherically symmetric potentials.
(All six of these cannot simultaneously be good quantum numbers, for reasons
explained in section 2.2 and Appendix E.) In the reduced cylindrical symmetry of
diatomic molecules, however, two of these commutation relationships in the
absence of spin—orbit coupling_ become modified [2],

[H, [2]1#0

[H, J]+#0 (4.6)
so that L and J are no longer good quantum numbers. The projections
L,=M,h, S,= Mgh, and J, = M;h of L, S, and J along the molecular axis
remain conserved in the cylindrically symmetric potential. Diatomic states
which are eigenfunctions of L, (i.e. states in which M, is a good quantum

number) must have the ¢-dependence exp(+iA¢) with A = |M,|, because such
functions are the only physically acceptable eigenfunctions of L,

L. exp(+iA¢) = + Ah exp(+iA¢) 4.7
For continuity of this function at ¢ = 0 (2r), A must be integral,
A=0,1,2,... 4.8)

In analogy to L, = + Ah, one also has S, = + Xh, where X can be half-integral
for spin angular momentum,

=031,

Njw

e (4.9)

Nl

When A = 0, the electronic state is obviously ¢-independent and unaffected
by the C, operation. Hence, a state with A = 0 exhibits (C,) = 1 and therefore
is some type of X state, which, according to the C, and D, character tables, is
spatially nondegenerate. For A = 1, we have two diatomic states behaving as
exp(+i¢). These are degenerate a priori (ie., in the absence of spin—orbit
coupling), since the electronic energy is independent of whether L, points in the
+z or —z direction. One may then take linear combinations of these two states’
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¢-dependence to form
cos ¢ =3(e + e ) = x/r
. 1 . .
sin ¢ = % (€ —e )= y/r (4.10)
with r = (x2 + y?)!/2,

Clearly, these linear combinations transform as the vectors (x, y) under the
group operations of C_, and D ,—so they form a basis for the II(C,,) and
I1,(D;) IRs. It can similarly be shown that the functions exp(+2i¢) for A =2
form a basis for the A(C,,) and A (D ;) IRs. These are examples of the fact that
the Greek letter notations for the diatomic point group IRs give the A values

associated with the electronic states directly:

A Type of state

0
1
2
3

e >HM

Each of the X states in molecules belonging to C,, or D, exhibits a definite
behavior (+ or —) under the o, reflection operation, and this is always indicated
in the superscript that accompanies the IR notation. For the doubly degenerate
states (IT, A, @, . . ) it is always possible to choose linear combinations analogous
to those in Eq. 4.10 in order that each of the two combinations is either
unaffected or changes sign with respect to a particular reflection plane. The
reflection symmetries of the cos ¢ and sin ¢ combinations in Eq. 4.10, for
example, are respectively (+) and (—) with respect to a o, reflection plane
containing the x and z axes.

4.2 CORRELATION OF MOLECULAR STATES WITH
SEPARATED-ATOM STATES

The question of which diatomic term symbols may be obtained by adiabatically
bringing together atoms A and B, initially in electronic states with angular
momentum quantum numbers (I, s,) and (lg, sg), can be answered without
recourse to electronic structure calculations. Since the electronic (orbital plus
spin) degeneracies on the respective atoms are (24 + 1)(2s, +1) and
(2lg + 1)(2sg + 1), a total of (21, + 1)(2s, + 1)l + 1)(2sg + 1) diatomic states
must correlate with the separated-atom states. According to one of the
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commutation relationships (4.6), M, is a good quantum number for diatomics at
all internuclear separations R (in the absence of spin—orbit coupling). M; must
then be conserved as the atoms are pulled apart, and so A = |[M| must equal the
absolute sum of magnetic quantum numbers m;, and m; for the separated
atoms. A similar argument applies to the spin angular momenta: Mg in any
diatomic state is necessarily the sum of the separated-atom quantum numbers
m,, and mg. The notation X' = |Mj| is commonly used to specify the projection
of spin angular momentum along the molecular axis; it should not be confused
with the unrelated use of the notation X to denote diatomic electronic states
with A = 0.

We now consider the heteronuclear correlation problem for several examples
of increasing complexity. An example of the simplest case (both atoms in S
states) is the ground state of NaH, which dissociates into the ground-state atoms
Na(32S) + H(12S). Since I, = Iz = 0 in the separated atom S states, the total z
component of orbital angular momentum is L, = hM; = h(m;, + m;) = 0.
Hence only X diatomic states (A = 0) can correlate with the S-state atoms. They
must furthermore be £* rather than £~ states, because the atomic S states are
even with respect to reflection in any ¢, plane containing the molecular axis (Fig.
4.5). The number of diatomic states which correlate with the S-state atoms is
(215 + 12l + 1)(2s4 + 1)(2s5 + 1) = 4. Hence the pertinent diatomic states are
1$* (one state with Mg = 0) and'3E* (three states with Mg = 0, + 1), which will
later be seen to be bound and repulsive states, respectively.

The next few excited states in NaH correlate with Na(32P) + H(12S), for
which [, = 1 and Iz = 0. The allowed m, values for the separated atoms are then
my=0, +1.and mgp=0; these atomic states must give rise to
(2l + 1)(2s, + )2l + 1)(2s5 + 1) = 12 diatomic states. It helps to tabulate the
12 possible combinations of my,, mg, Mg, mg as shown in Table 4.1, which also
lists the resultant A = |m;| and My values. In this table, an upward (downward)
arrow denotes the value +% (—1%) for either mg, or mg. We obtain one X state
each with Mg = 41, and two X states with Mg = 0; this is possible only if there
is one T state (with Mg = 0) and three 3X states (with Mg = 0, 1+ 1). These

Na(32S) + H(12S)

\\-’/ ~ -

OGO Na(32P,) + H(128)

\
‘\z/\~/, Noo

Figure 4.5 Reflection symmetry of NaH diatomic states correlating with (a)
H(123S) + Na(32S) and (b) H(12S) + Na(32P,).



CORRELATION OF MOLECULAR STATES WITH SEPARATED-ATOM STATES 115

Table 4.1 Diatomic states correlating with 2P + 28
atomic states

ms
mg

—1 0 +1 0 A Mg
1 1 1 1
i ! 1 0
T 1 0 1
1 ! 0 0
1 1 1 1
1 ! 1 0
1 1 1 0
l l 1 —1
l 1 0 0
| l 0 -1
| 1 1 0
l l 1 —1

states must be £* states, since Table 4.1 shows they arise only from atomic
states with m,, =mp=0. Such states (composed from the H s orbital and the Na
p, orbital oriented along the molecular axis) are even with respect to any o,
reflection (Fig. 4.5). Table 4.1 similarly reveals two IT states each with Mg = +1,
and four IT states with Mg = 0. These are naturally grouped into one 'I1 and
one 3IT manifold of states; the inherent twofold spatial degeneracy of I1 states
(Section 4.1) is asserted by the appearance of two, four, and two (rather than one,
two, and one) states, respectively, with Mg = —1,0, and +1.

These correlations are summarized for NaH in Fig. 4.6, which shows
theoretical potential energy curves for all diatomic states which dissociate into
either Na(32S) + H(12S) or Na(3?P) + H(1%S). The ground atomic states are
split into the X'X* bound and a3X ™ repulsive diatomic states as the atoms are
brought together; the atomic states corresponding to Na(32P) + H(12S) are split
into the A'Z*, b3I1, B'II, and c3X* diatomic states. We will see in the discussion
of Hund’s coupling cases (Section 4.5) that when the spin—orbit coupling is small
but nonnegligible, the orbital and spin angular momentum components A and X'
can couple to form a resultant electronic angular momentum (2 with possible
values 2=A+S, ..., |A— S| In the 31T states (A = S = 1), the possible 2
resultants are (1 + 1), ..., (1—1)=2, 1, 0. The 2 values are notated as
subscripts to the diatomic term symbols (and are analogous to the quantum
number J in atomic term symbols); the 31T states are then said to be split into
3M1,, 3M,, and 31, sublevels under spin—orbit coupling. The spin—orbit
coupling is so small in NaH that these three sublevels have indistinguishable
energies on the scale of Fig. 4.6, which shows only one potential energy curve for
the b3I1 state. In I, (Fig. 4.7), the reverse is true: the A®I1,,, B3I1,,, and 3I1,,
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Figure 4.6 Potential energy curves for six electronic states of NaH. The curve
labeled “ionic” is the function e2/4me R, approaching the energy of Na* + H™ at
infinite separation. From multiconfigurational self-consistent field calculations by E.
S. Sachs, J. Hinze, and N. H. Sabelli, J. Chem. Phys. 62: 3367 (1975); used with

permission.

states have such widely separated potential energy curves as a consequence of
large spin—orbit coupling that they behave dynamically like separate electronic
states. (The incorporation of the g and u labels in subscripts of I, state term
symbols is necessary because I,, unlike NaH, belongs to the D, point group.)

A brief aside about diatomic electronic state notation is necessary here. A
molecule can have many electronic states of a given symmetry and multiplicity
(e.g., 'TI), and additional symbols are needed to tell them apart. The electronic
ground state is always denoted with an X—as in X'Z* for NaH, X'Z; for I,.
The lowest excited state with the same multiplicity as the ground state is
supposed to be denoted with A, the next one up is B, and so on. The lowest
excited state with different multiplicity than the ground state should be labeled
a, the next is called b, etc. These good intentions have not always been followed
historically, partly because there are frequently “phantom states”—states that
are difficult to observe spectroscopically because of selection rules, and are
overlooked—so that labels that have become well established in the literature
turn out to be incorrect when phantom states are flushed out by improved
techniques. The way we have labeled the NaH potential energy curves in Fig. 4.5
is orthodox, because it is positively known that there are no other NaH states
with comparable or lower energy than the ones pictured (our preceding
discussion should convince you of that!). However, in I, the A and B state
labeling in Fig. 4.6 is clearly wrong (they should not be capitalized for *I1,, and
31,, states when the ground state is X'Z,; they are not the lowest two states of
their multiplicity, either). These A and B state notations in I, are well entrenched
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Figure 4.7 Potential energy curves for electronic states of |,. The sets of numbers
2440, etc., give orbital occupancies of the o,5p, m,5p, m;5p, and o 5p molecular
orbitals, respectively (Section 4.3). The X'Z;, B3M,,, and A2[,, potential energy
curves have been characterized spectroscopically. Used with permission from R. S.
Mulliken, J. Chem. Phys. 55: 288 (1971).
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anyway. Such state prefixes should generally be regarded as interesting relics
that draw attention to the most easily observed excited states; their supposed
structural implications should not be taken at face value.

We consider next the heteronuclear diatomic states that correlate with two
atoms in 2P states, a situation that introduces complications not anticipated in
the simpler cases. Since [, = I; = 1 and s, = sz = 1, combining two 2P atoms
creates 36 diatomic states. By compiling a table similar to Table 4.1 (but
allowing my as well as my, to range from —1 to +1) for the 36 possible
combinations of my,, myg, m,,, and mg, one readily finds 8 A states with A =2
(two each with Mg = + 1, four with Mg = 0), 16 = states with A = 1 (4 each with
Mg = +1, 8 with Mg=0), and 12X states (3 each with Mg = +1, 6 with
Mg = 0). One may thus conclude that there are one !A and one 3A manifold of
states with 2 and 6 states, respectively (since states with A # 0 are spatially
doubly degenerate), and that there are two 'IT and two 3I1 manifolds totaling 4
and 12 states, respectively. The question then arises as to whether the 12 X states
have £* or £~ character. The configurations corresponding to these 12 states
are listed in Table 4.2. The first four configurations (states ¢, through ¢,)
involve only p, orbitals with m;, =m;3 =0, which point along the molecular axis
and are even under o,. Hence states ¢, through ¢, (one each with Mg = +1,
two with Mg = 0) represent one !=* and one >Z* manifold of states. States ¢
through ¢, , are composed of p orbitals with m;, = +1 and mg= + 1. Using the
notations p, and p_ for p orbitals with m; = +1 and m;, = — 1, respectively,
properly antisymmetrized expressions for states ¢s through ¢,, in the

Table 4.2 Diatomic I states correlating with 2P + 2P atomic states

Mya ‘ Mg
-1 0 +1 -1 0 +1 A Mg State
T 1 0 1 (N
1 ! 0 0 b2
! 7 0 0 @3
! ! 0 -1 b4
1 7 0 1 b5
1 l 0 0
l T 0 0} ¢6’ ¢7
! ! 0 -1 b3
1 T 0 1 o
1 ! 0 0
! 1 0 0} 10 P11
) ! 0 -1 ?12
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separated-atom limit are

¢s = [pa-(DPs+(2) — Pa-(2)pp+(D]a(1)(2)
b6 = [Pa-(DPp+(2) — pa-Q)ps+(DI[(DA(2) + «(2)A(1)]
¢7 = [Pa-(DPp+(2) + pa-(Dpp+ (DI[(DA2) — «(2)B(1)]

¢s = [Pa-(DPp+(2) — pa-(2)ps+(1)]1B(1)BQ)
o = [Pa+()Pp-(2) — pa+(2)pp-(1)J(1)(2)

®10 = [Pa+(DPp-(2) — pa+(2ps-(D][(DB2) + «(2)B(1)]
$11 = [Pa+(Dpp-(2) + pa+(2)ps-(D][(V)B(2) — 2(2)B(1)]
@12 = [Pa+(D)Pp-(2) — pa+(2)ps-(D]IB(1)B(2)
Since the o, operation converts the function exp(+i¢) into the function
exp(Fi¢)—o, reverses the sense of any rotation by an angle ¢ about the z
axis—we have
O,PA+ = DAF

0,PB+ = PBF ' 4.12)

with the result that

0,¢s = P o,po = Ps
0,06 =10 0P10 = b6 (4.13)
0,7 =011 0,P11 =0,
0,8 = P12 012 = s

One may thus form linear combinations of states ¢5 through ¢,, exhibiting
definite parity under o,:

o(@s + ¢g) = +(ds + &)

0P T P10) = T(P6 = P10)

o(¢7 £ ¢11) = £(d7 £ ¢44) (4.14)
0(ps + ¢12) = £(ds £ H15)

Hence, these linear combinations may be classified as shown in Table 4.3, using
the properties of states ¢ 5 through ¢, , taken from Table 4.2 and Eqs. 4.14. It is
apparent that these states yield one manifold each of !Z*, 32* 'S~ and 3X~
character, with one, three, one, and three states, respectively.
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Table 4.3

State Symmetry Mg
s+ do z* +1
¢s — do = +1
6 + D10 r* 0
b6 — P10 x- 0
&7+ b1y Y 0
7 — 014 - 0
s + b1z Tt -1
s — b1z z- -1

In summary, the diatomic states that correlate with two 2P atoms include

IA 3A 12 + 32+
1, 311 Iy+ 3%+ 4.15)
1, 311 1¥y-, 3%

In the presence of spin—orbit coupling, the triplet states with A # 0 become split

into three components with 2=A+ S, ..., |[A—-S|=A+1, A, A— 1. The
resulting diatomic states then become

IA’ 3A3, 3A2, 3A1 12+, 3z+
1, 311, 3M,, *1, DR (4.16)
LM, T, T, 'R, R "

Finally, it is instructive to discuss the homonuclear analogs to two of the
simplest cases treated above. These are furnished by Na,, a well-studied
diatomic (cf. Figs. 4.1 and 4.3) whose ground state dissociates into 2Na(32S). The
bound X'Z and repulsive a*%;} diatomic Na, states correlate with the ground-
state atoms, as shown in Fig. 4.8. Aside from the inclusion of the g and u labels
appropriate to the D, point group, these are entirely analogous to the X'Z*
and a3Z* NaH states formed from ground-state Na and H atoms (Fig. 4.6).
However, the next few Na, excited states correlate with the degenerate
configurations

Na(3%S) + Na(3%P)
Na(3?P) + Na(32S)

for which I, =0,I; = 1 and I, = 1, Iy = 0, respectively. Twelve diatomic states
arise from the former configuration, and 12 additional states (of the same energy
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Figure 4.8 Multiconfigurational self-consistent field potential energy curves for
low-lying electronic states of Li, and Na,. Reproduced with permission from D.
Konowalow, M. Rosenkrantz, and M. Olson, J. Chem. Phys. 72: 2612 (1980).

in the separated-atom limit) arise from the latter. As a result, 24 Na, states
correlate with one 2S and one 2P atom, in contrast to the 12 NaH states that
dissociate into Na(32P) + H(12S). Corresponding to each of the latter states in
NaH (Fig. 4.6), namely

A'Z*, b3, B, 327
there is a pair of conjugate states with opposite inversion symmetry Na,:
AT}, b1, B'IL,, 3%
12;’ 3Hg’ lng’ 32;—
Theoretical potential energy curves are shown for six of these Na, states in Fig.

48.

4.3 LCAO-MO WAVE FUNCTIONS IN DIATOMICS

In our discussion of the Born-Oppenheimer principle (Section 3.1) we pointed
out that eigenfunctions [if,(r; R)) of the electronic Hamiltonian

—h? 1 & 2 Zye?

47[80 i=1 N=1 ,l‘, - RNl
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@.17)

may be found for fixed nuclear positions R,, Rg by solving the clamped-nuclei
eigenvalue equation

ﬁelwfk(r; R))> = &(R)|Y(r; R)) (3.10)

The eigenfunctions depend parametrically on the choice of internuclear sep-
aration R = |R, — Ry|. The R-dependent eigenvalues ¢,(R) act as potential
energy functions for nuclear vibrational motion when the Born-Oppenheimer
separation of nuclear and electronic motions is valid.

It is illuminating to treat covalent bonding in the simplest diatomic species,
the Hy molecule-ion. The electronic Hamiltonian (4.17) for H; reduces to

- -h _, & (1 1 1

Ha= 2m, v+ 4ne, <R T rB> (4.13)
with r, = |[r — R,| and rz = |r — Ry; it exhibits no electron—electron repulsion
terms. The corresponding H Schrodinger equation can be solved exactly for
fixed R. The exact ground-state potential energy curve displays a minimum at
R, = 2.00a, (1.06 A) with energy —2.79 eV relative to the energy of the separated
proton and ground-state hydrogen atom (Fig. 4.9). The exact solutions for H5
prove to be useful in assessing the accuracy of variational wave functions in this
prototype diatomic.

A widely used approximation to true molecular wave functions employs
linear combinations of atomic orbitals (LCAOs) to simulate the molecular
orbitals (MOs). At the lowest level of approximation, an HY MO may be
represented as a superposition of two H atom states centered on the respective
nuclei,

W) = calpa) + csldsd (4.19)

with expansion coefficients c,, cg to be determined by symmetry, normalization,
and (in MOs with larger basis sets) the variational principle. Since H; belongs
- to the D, point group, |/|> must be unaffected by the inversion i. This requires
that |cs| = |cgl, and that the AOs |$,) and |¢pg) be identical apart from phase
and the fact that they are centered on different nuclei. The MO (4.19) may then
be rewritten (for real AOs and expansion coefficients)

Vi) =cllda> £ |d5)) (4.20)

Normalization then demands that

1 = 2 Palday + 2{Palds> + {Psld)
= c%(2 + 254p) (4.21)
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Figure 4.9 HJ potential energy curves: trial energies €. (R) and e_(R) obtained
from LCAO-MOs |y . > and |y _ ), respectively, and the exact ground-state potential
energy curve. Energies and separations are in eV and in Bohr radii, respectively.

where S, = {@.ldp) is the R-dependent overlap integral between the opposite
AOs. The MO then assumes the explicit form

1
- 422
W+ 50 (Ipa>  1987) (4.22)

In a trial LCAO-MO wave function for ground-state H; , which correlates with
proton and a 1s H atom as R — oo, we may use the hydrogen 1s states

[pa> = exp(—ra/ao)//mag and |pg)> = exp(—rg/ay)//mad for AOs. The overlap

integral using these AOs becomes

~

1
San = 23 | VoL~ + raao] @23)

0
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which is readily evaluated using ellipsoidal coordinates to yield
S,g=e (1 + p + p%/3) (4.24)

with p = R/a, (Problem 4.8). As the two nuclei coalesce (R — 0), the overlap
integral approaches unity according to Eq. 4.24. S ,; decreases monotonically to
zero as the nuclei are pulled apart (R — o0). In this limit, the MO (4.22)
consequently approaches

1
Wi = NG (94> + 108)) (4.25)

In the same limit, the H electronic Hamiltonian (4.18) becomes

- —h? 2 1 1
H, = 2o (4=
2m, Areg \rn g
2 - &2
—3 H _—
4regry B dregra

¢ (4.26)

:ﬁA—

where H, and Hy are the Hydrogen atom Hamiltonians for atoms A and B.
Since

ﬁA|¢A> = E1s|¢A>

and

ﬁB|¢B> = E1s|¢B>

the trial energies ¢, may be evaluated in the limit R — oo using the asymptotic
Eqgs. 4.25 and 4.26, respectively, for [ .> and H;:

WalBoly > = 12Kl r> £ 2PulHeldn> + (SulHalds))
- 2 1 -
= 1/2(<¢A|HA|¢A> e B IV SN N
0 B

_é? 1 . e? 1 '
F o<l — |¢s> + {PplHgldpp) — (sl — I¢B>>
e rs 4re, ra
= %Els(<¢A'¢A> 1 2{Palds> + {PslPs>)
=E,, 4.27)

Equation 4.27 follows because the integrals {¢,|l/rg|da> = {Pg|l/raldsD,
{Palps> = Sap, and {P,|1/rg|¢pg> all tend to zero as R — oo. Hence both of the
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asymptotic LCAG-MOs (4.25) are exact eigenfunctions of the asymptotic
Hamiltonian (4.26) with eigenvalue E,, (the total electronic energy of the
dissociated fragments H* + H(1s)). This correct asymptotic behavior provides a
partial justification of the LCAO-MO method. The trial energies €+(R) may
now be obtained for general R using Eqgs. 4.18 and 4.22, with the result that

. H,,+ H
R) = a _Haa T fas
e+(R) = Y+ [Help+> T
where
Hpp = Hgg = <¢A|ﬁe||¢A>
o2
!¢A> IR R
o2
=E J
SR 4neyR
and
H,p = Hgp = <¢A|ﬁell¢]§>
o2
= (PalHylPp) — — <¢A| I¢B> +7 <¢Al¢a>
e SAB
= EisSap + K + 4meoR

Here we have defined two new integrals, the Coulomb integral

Liga
rg

and the exchange integral

<¢AI |¢B>

47:30

(4.28)

(4.29)

(4.30)

(4.31)

4.32)

As written in"Eq. 4.31, the Coulomb integral is simply the expectation value of
the energy due to electrostatic attraction between nucleus B and a 1s electron
centered on nucleus A. The exchange integral is an intrinsically quantum
phenomenon, and has no analogous classical electrostatic interpretation.
Collating the results of Eqs. 4.28—4.30, we finally obtain the trial energies

e? N J+K
47[80R liSAB

gi(R) = Els +

(4.33)
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Since the Coulomb and exchange integrals (which are both negative-definite)
approach zero as R — oo, the first term E, in ¢4 (R) is the dissociation limit of
the trial energy, in agreement with Eq. 4.27. The second term is the electrostatic
internuclear repulsion energy. It may be shown (Problem 4.8) that analytic
expressions for the Coulomb and exchange integrals are

e? 1 , 1
J=— = —e 21 4+~
dreqag | p p

K= e (1 + p) (4.34)

with p = R/a,. It is then straightforward to evaluate the LCAO-MO trial
energies ¢4 (R), which are compared with the exact HS ground-state potential-
energy curve in Fig. 49. The LCAO |§.)> generated from the positive
superposition of AOs (Fig. 4.10) is a bound state with potential energy minimum
at R, = 2.50a,, corresponding to an energy — 1.78 eV relative to H* + H(ls).
This underestimates the true dissociation energy (2.79 eV) by 36%,, and ¢, (R) lies
everywhere above the true ground state potential, in accordance with the
variational principle. The LCAO |y _ >, which has a nodal plane bisecting the
internuclear axis (Fig. 4.10), is a purely repulsive state in which the nuclei
experience a force pushing them apart at all finite R.

In the LCAO-MO perspective of Eq. 4.33, the chemical bonding (i.e.,
lowering of total energy relative to H* + H (1s)) in state |y, ) originates in part
from the electrostatic consequences of concentrating electron density between
the nuclei (the Coulomb term) and in part from the exchange term. It is easy to
show that the presence of an electron in regions between the nuclei electrosta-
tically tends to draw the nuclei together, whereas an electron in other regions
exerts a net repulsive effect between the nuclei (Fig. 4.11). This suggests a
tempting rationalization of the bonding and repulsive characters of MOs |¢ , >
and |y _ ), respectively, in terms of the relative degrees to which charge density is
concentrated between the nuclei [3,4]: the repulsive character of | _ ) could be
attributed to the presence of the nodal plane, which diminishes the internuclear
charge density. Such an interpretation overlooks kinetic energy effects (electron
localization in a limited internuclear region increases the expectation value of
kinetic energy), and analyses of the physical origin of chemical bonding are
advisedly made on the basis of accurate rather than zeroth-order LCAO-MO
wave functions. A detailed examination of contributions to the total energy
using an exact ground-state H; wave function reveals that chemical bonding -
arises from a subtle balance between electrostatic and kinetic energy effects [5].

Zeroth-order approximations to higher excited states in HY may be obtained
from linear combinations of higher-energy hydrogen atom AOs, subject to the
symmetry and normalization constraints of Eqgs. 4.20 and 4.22. Like the states
| +> formed from the 1s AOs, the higher lying LCAOs yield inaccurate trial
energies—but their nodal patterns do furnish useful illustrations of the
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Figure 4.10 Contour plots of the LCAO-MOs |y _) (above) and |/, ) (below).
Curves are surfaces on which the wavefunction exhibits constant values; solid and
dashed curves correspond to positive and negative values, respectively. The cut-
ermost contours in both cases define surfaces containing ~90% of the electron
probability density. The incremental change in wavefunction value between adjacent
contours is 0.04 bohr™3/2, The border squares have sides 10 bohrs long; the
internuclear separation is 2 bohrs, the equilibrium distance in ground-state HJ.
Dashed straight line in [y _) plot shows location of nodal plane.

127
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Figure 4.11 Electrostatic forces experienced by nuclei in a homonuclear molecule
due to presence of an electron in region between the nuclei (top) and outside this
region (middle). The electron—nuclear attraction draws the nuclear together in the
former case, and pulls them apart in the latter case. The region in which the electron’s
presence tends to stabilize the molecule is shaded in the diagram at bottom.

symmetry properties of one-electron orbitals in diatomic molecules. The partial
hierarchy of LCAO-MOs in F, is illustrated in Fig. 4.12, which shows contour
plots of LCAO-MOs formed from the 1s, 2s, and 2p AOs, and in Fig. 4.13,
which gives schematic energy correlations between the AOs and the diatomic
LCAO-MOs in Hj. In analogy to the MOs formed from the 1s AOs, the
positive linear combinations in Fig. 4.12 yield bound states that exhibit lower
energies than those of the separated atoms with which they correlate (Fig. 4.13).
The negative linear combinations, which all show nodal planes bisecting the
internuclear axis, yield repulsive states that are unstable with respect to
dissociation into the correlating atomic states.

Since L, is conserved in each of these one-electron orbitals, the wave
functions must exhibit a ¢-dependence of the form exp(+ii¢) with 1 =0, 1, 2,
... (We use the lower-case notation A rather than A when discussing one-
electron orbitals; A is reserved for characterizing the total component L, of
orbital angular momentum in many-electron diatomics.) One-electron orbitals
with 4 =0, 1,2,... are denoted g, 7, J, . .. orbitals, respectively; the subscripts g
and u are appended to indicate the behavior of the homonuclear LCAO-MOs
under inversion. To differentiate between MOs having the same point group
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BONDING ' ANTIBONDING

Figure 4.12 Contour plots of LCAO-MOs formed from 1s, 2s, 2p,, and 2p, AOs
(bottom to top) in the homonuclear diatomic molecule F,. Distance scale is in bohrs.
Solid and dashed contours correspond to positive and negative wavefunction values,
respectively. Increments are 0.20 and 0.05 bohr™3/2 for inner-shell and valence
orbitals, respectively. Reproduced by permission from W. England, L. S. Salmon, and
K. Ruedenberg, Topics in Current Chemistry 23, 31 (1971).

symmetry, the quantum numbers nl of the AOs from which the LCAOs are
formed are used as suffixes in Fig. 4.13. The lowest two HJ states |y.)
are both ols states, since these LCAO—-MOs have no ¢-dependence and were
formed from linear combinations of 1s AOs. Since |, > and | _) have g and u
inversion symmetry, respectively, their orbital designations are o,1s and o,ls.
We similarly obtain bound ¢,2s and repulsive ¢,2s MOs from the 2s AOs, and
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Figure 4.13 AQualitative energy ordering of
MOs in H}. This figure should be compared with
Fig. 4.14.

bound ¢,2p, and repulsive ¢,2p, MOs from the 2p, AOs. Since the LCAOs
formed from the 2p, and 2p, AOs, which are oriented perpendicular to the
molecular axis, behave as cos¢ (=[exp(i¢) + exp(—i¢)]/2) and sin¢
(=[exp(i¢p) — exp(—ip)]1/2i), respectively, they are n2p orbitals. By inspection of
the contour plots in Fig. 4.12, it is apparent that the bonding and repulsive n
orbitals have u and g symmetry, respectively.

These one-electron orbitals may be used to conceptually build up many-
electron configurations in heavier diatomics using the Aufbau prescription of
placing electrons in orbitals according to the Pauli principle. The energy
ordering of MOs varies with the diatomic [6]. For the diatomics with higher
nuclear charge (e.g., O, and F, in the first row of the periodic table) the orbitals
are ordered as shown in Fig. 4.14. In contrast to HJ, the atoms in these
molecules exhibit large splittings between their 2s and 2p AOs as a consequence
of configuration interaction (Chapter 2). There is thus comparatively little
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Figure 4.14 Energy ordering of MOs in O, and
% Is F,.

mixing between the widely spearated ¢,2s and ¢,2p, MOs in O, and F,, so that
partial hybridization endows them with relatively little 6,2p, and ¢,2s character,
respectively. In N,, C,, B,, Be,, and Li, the 2s—2p atomic splitting is smaller (it
vanishes in H,), and thus the energy difference between the pure ¢,2s and g,2p,
MOs is smaller. Mutual mixing of the ¢,2s and ¢,2p, MOs in these lighter
molecules then increases the splitting between them, inverting the energy
order of the o,2p and =,2p levels (Fig. 4.15). The electron configuration in
first-row diatomics can be read off from Figs. 4.14 and 4.15 by inspection.
Ground-state N, (which has 14 electrons) has the configuration
(0,15)%(0,15)(0,25)%(0,25)*(m,2p)*(6,2p)>. Since all of the MOs are fully
occupied, ground-state N, is a totally symmetric state with zero net orbital and
spin angular momentum. Hence A =0 and S =0, and the pertinent term
symbol is X'X'. Ground-state F, (18 electrons) has the configuration
(0415)%(0,15)%(0,25)*(0,25)%(0,2p)*(m,2p)*(m2p)*; it is also an X'Z ) state, for the
same reasons.

Evaluating the possible term symbols for diatomics with partially filled MOs
is slightly more involved. A ¢' configuration (e.g, H; (o,1s)' or Lij
(0,15)%(0,15)*(0,25)") has a single valence electron with 2 =0 and s = 4. Since
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Li,, Be,, B,,C5,N,

—

o, 28

% Is Figure 4.15 Energy ordering of MOs in Li,,
Be,, B,. C,, and N,: (a) prior to mixing of 5, 2s
with o, 2p and ¢ 2s with ¢ 2p; and (b) after

(a) (b) mixing.

filled orbitals do not contribute to orbital or spin angular momentum, one
obtains A = 0 and S = 4. Hence a ¢' configuration gives rise to a >X state. By
similar reasoning the +/— and g/u classifications depend on the reflection and
inversion symmetries of the partially occupied orbital. The H; and Li; ground
states mentioned above are therefore both 2X states; the Li; excited states with
configurations (c,15)%(a,15)*(0,2s)" and (o,15)*(0,15)*(n,2p)" are *Z," and *TI,
states, respectively.

In a nonequivalent ¢* configuration (in which two valence electrons occupy
different ¢ orbitals o, and 6,), the four possible distributions of electron spins are
shown in Table 4.4. We find that we have a singlet state (Mg = 0) and a triplet
state (M5 =0, +1). The symmetry designation will be _given by the direct

product of point groups to which MOs ¢, and g, belong For example, if o, and
o, are g, and g, orbitals with positive reflection symmetry (e.g, LCAOs of s or p,
AOs), the resultant states are ‘T, 3Z states because LI =3

The interesting and important equivalent ©? case is typlﬁed by ground-state
O,, which has the configuration (o,15)*(0,15)%(0,25)*(0,25)*(c,2p)*(m,2p)*-
(m2p)* according to the level ordering in Fig. 4.14. Since the partially filled =,
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Table 4.4 Diatomic states from nonequivalent ¢
configuration ‘

g, gy A Mg
1 1 0 +1
1 ! 0 -1
T ! 0 0
! I 0 0

Table 4.5 Diatomic states from equivalent n?
configuration

A=—1 A=+1 A Mg State
1 2 Y R
1l 2 0 é,
T T Y +1 ?s
i l 0 0 Pa
! f 0 0 ¢s
! ! 0 -1 b6

orbitals are doubly degenerate, we count the ways of placing two electrons in
two 7, orbitals with A = +1 as shown in Table 4.5. We obviously obtain a A
manifold of states (A = 2, M, = 0), and 3 and !'Z manifolds as well. We also
know that since n, ® n, = Z: @ Z; ® A,, the latter three states should evolve
from an equivalent =} configuration. Then the possible states are either
1£), 3%, A, or PZF, 'ZS, A, To choose between these alternatives, we
inspect some of the wave functions for the states counted in Table 4.5. Let n,. be
the orbital for an electron with 4 = +1, and n_ be that for an electron with
= —1. Then the antisymmetrized state ¢, is

¢3 = [n.(Nr_(2) — n_ (D7 (2)](1)(2) (4.35)

while the antisymmetrized state ¢ is

6 = [ (Dn_(2) — = _()m, 2)IBDAQ) (4.36)

Under the o, operation, R, changes sign and the z component of spatial angular
momentum becomes reversed. This implies that

O, =T_

o =T, 4.37)

v
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and s0 6,03 = — 3, 0,06 = —Pe. Then ¢ and ¢, which are clearly Mg = +1
and M5 = —1 components of a triplet state, are £~ rather than = states. We
may take linear combinations of ¢, and ¢ to form the Mg =0 triplet
component, [n,(1)z_(2) — z_(1)m (2)J[«(1)B(2) + «(2)p(1)]. The linear com-
bination of ¢, and ¢s orthogonal to this forms the 'T* state,
[ (Dm_(2) + n_(1)m . (2)][o(1)B(2) — (2)B(1)]. Note that the latter linear com-
bination is even under o, as required for a £* state. We conclude that the
possible term symbols in an equivalent =7 configuration are 'Z;,
3%, , and 'A,. The lowest three states in O, are in fact X*X;, a'A,, and
b'X}; the triplet state has the lowest energy according to Hund’s rule.

The nonequivalent n? configuration can arise when one of two valence
electrons is in a «, orbital and the other is in a 7, orbital (e.g., in excited states of
C,). Finding the term symbols arising from this configuration is left as an
exercise for the reader.

The atomic SCF calculations described in Section 2.3 may be extended in
principle to diatomic molecules with closed-shell electron configurations. The
diatomic electronic Hamiltonian in the clamped-nuclei approximation (Egs. 3.7
and 3.9) may be broken down into a sum of one-electron operators H, and

electron repulsion terms e?/4mneyr;;,

=

~

2 2 2 n 2
A,=3 | - _ff_ y? 1 Zye + 1 e
= 2m, 47ey N=1 Ir; — Ryl dney i< |r; — 1
n 1 n ez
=Y H;+ 438
i; dneg < lr; — 1 (4.38)

(For stationary nuclei, the nuclear repulsion term Z,Zge?/4neo|R, — Ryl
becomes a constant that may be added to the total energy at the end of the
calculation.) The diatomic Hamiltonian (4.38) is identical in form to the many-
electron atomic Hamiltonian given in Eq. 2.62. One may write a single-
determinant many-electron wave function analogous to Eq. 2.61, with each of
the spatial wave functions ¢; (with 1 < i < n/2) representing a doubly occupied
molecular orbital. A set of equations analogous to the Hartree-Fock equation
(2.67) may then be solved numerically to determine the best obtainable single-
determinant wave function in the form of the Slater determinant (2.61). The
discrepancy between the resulting SCF electronic energy (given by Eq. 2.70, with
H, denoting the diagonal matrix element of the one-electron operator H,
defined in Eq. 4.38) and the true electronic energy is the correlation error. Such a
procedure is so cumbersome in diatomics and polyatomics that relatively few
such calculations have been performed in species other than atoms [7]. In
atoms, the centrosymmetric one-electron Hamiltonian H,; (Eq. 2.48) allows
factorization of the atomic orbitals into radial and angular parts. The latter can
be represented in atoms by spherical harmonics Y,,(6, ¢), and the numerical
optimization of the Hartree-Fock wave function becomes confined to the radial
coordinate. In diatomics, the angular dependence of molecular orbitals under
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the cylindrically symmetric Hamiltonian is e'*¢ (Section 4.1), so that numerical
SCF calculations must be performed over the two remaining coordinates. In
nonlinear polyatomics, the molecular orbitals must generally be optimized over
a full three-dimensional grid. Compounding this problem is the fact that SCF
energies must also be calculated over a grid of molecular geometries (bond
lengths and bond angles) to search for an equilibrium geometry.

More commonly, the molecular orbitals in a single-determinant wave
function are expressed as linear combinations of atomic orbitals (LCAOs),

o> = 2 |Xj>aji (4.39)

where the |y; > are atomic orbitals (AOs) centered on the nuclei and the a;; are
expansion coefficients. A minimal basis set of AOs includes all AOs that are
occupied in the separated constituent atoms. The coefficients a; may be varied
to minimize the energy. Parameters in the AOs themselves may also be varied,
but these are frequently fixed at values established by prior experience with the
same atoms in similar molecules. STOs (Eq. 2.58) may be used for the AOs in Eq.
4.39. However, numerical calculation of many of the resulting matrix elements
A, <ijlij>, and (ijlji) is slow using STOs, and the use of Gaussian type
orbitals (GTOs) of the form

|Gpim> = Nri exp(—0r1{)Y,,(6, ¢) (4.40)

is far more economical [7,8]. For this reason, LCAO-MO-SCF calculations
have sometimes employed AOs obtained by expressing STOs with known
parameters as linear combinations of several GTOs. The inconvenience of
evaluating the resulting larger number of Hamiltonian matrix elements is more
than offset by their efficiency of calculation using GTOs.

Improved accuracy may be obtained by using expanded basis sets in single-
determinant wave functions, but such calculations still do not remove the
correlation error associated with representing the electron—electron repulsion
1/r;; by the time-averaged expectation value {1/r;;>. The configuration inter-
action technique, which is analogous to that described in Section 2.3 for atoms,
begins with a many-electron wave function consisting of a superposition of the
closed-shell determinant and additional determinants in which electrons are
promoted to unoccupied orbitals,

W, 2, ...,n= ; CnAy 4.41)

The coefficients Cy are obtained in a variational calculation. In a multicon-
figurational self-consistent field (MCSCF) calculation, these expansion coeffi-
cients are simultaneously varied with the parameters a;; of the basis functions
|¢:> in Eq. 4.39. For detailed discussions of electronic structure calculations in
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molecules, the reader is referred to W. H. Flygare, Molecular Structure and
Dynamics (Prentice-Hall, Englewood Cliffs, NJ, 1978) and references therein.

4.4 ELECTRONIC SPECTRA OF DIATOMICS

It was emphasized in the introduction to this chapter that molecular electronic
transitions are generally accompanied by simultaneous changes in vibrational
and rotational states. A calculation of the transition energy of a particular
spectroscopic line thus requires knowledge of the rovibrational energy for a
diatomic with vibrational and rotational quantum numbers v” and J” in the
lower diatomic state

E@", J") = ol(v" + 3 — olxi(v" +3)* + -
+ BUJ"(J" + 1) + Dy J (I + 1) + -
= G//(U//) + F:]I(J”) (442)

along with the total energy
EW,J)=GW)+ F,(J)+ T, 4.43)

in the upper electronic state. T, is the energy separation (conventionally in cm ™)
between the minima in the two electronic state potential energy curves. (If the
upper electronic state is purely repulsive, its separated-atom asymptote is used
to calculate T,.) The transition frequency in cm ™! is then

v="T, + [G'() — G"(")] + [F,(J) — Fr(J")] (4.44)

which shows that numerous combinations of (v/, J') and (v”, J”) can add rich
structure to electronic spectra in molecules. We will see later that the El
rotational selection rules are reminiscent of the ones we derived for pure
rotational and vibration—rotation spectra (although electronic state symmetry
must be carefully considered, using the Herzberg diagrams introduced in
Section 4.6). Since the upper and lower electronic states have unrelated
vibrational potentials, it will turn out that all Av = v" — v" are El-allowed a
priori in electronic transitions.

In the Born-Oppenheimer approximation, the total diatomic wave functions
in the upper and lower states are

[P (r, R)> = [Ya(r; RDIA(R,AR)Y (4.45)
and

|9"(, R)Y = [Wee, RN AR (R)) (4.46)
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Since changes in rotational and vibrational as well as electronic state are
possible, we must consider both the r- and R- dependence in the total dipole
moment operator when calculating E1 transition probabilities,

r= _Z er; + ; eZyRy = pey + Houa (4.47)

For E1 transitions we must then have

Y™ = Waroltta + HawalYaxo >
= <¢;l|‘p:l><Xv’|/‘nucl|Xv”> + <l//ele’|”el|ll/elle”>
#0 (4.48)

These expressions ignore rotation, which is considered in Section 4.6. The term
proportional to (|2 > vanishes due to orthogonality of the electronic states.
Note that (W) | Bl x> does not factor into (¥l peil e <2 |%,, since the
electronic states |.,> and |.,> depend parametrically on R as well as on r.
Instead, this matrix element is

f dRy5(R)y,(R) fdrlﬂé’{‘(r; Rppe(r-R) = J AR (R), (RM(R) (4.49)

where M_(R) is the (R-dependent) electronic transition moment function. If
M,(R) varies slowly over the range of R for which y,(R) and yx,.(R) are
substantial, it becomes meaningful to write

{¥'(r, R)|#I'P"(r, R)> = M,(R) dexi(R)Xw(R)
= ML(R) v o"> (4.50)

where M_(R) is an averaged value of the electronic transition moment function.
The probability of the electronic transition is then proportional to

IK¥"(x, R)| | P7(r, RDI* = M (R)PIKv'|o" > (4.51)

where |[{v'|v")|? is called the Franck-Condon factor for the v” — v’ vibrational
band of the electronic transition (we allude to it as a band, since it exhibits
rotational structure in the gas phase as shown for Na, in Fig. 4.3). Since the
vibrational states |¢'> and [v”) belong to potential energy functions having
different shape, the Franck-Condon factor |{v'|v”}|* can assume any value <1
regardless of v/, v”. This is typified by the seemingly random vibrational band
intensities in the Na, fluorescence spectrum of Fig. 4.1. It is only in the special
limit where the upper and lower electronic states have identical potential energy
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curves that one obtains [{v'|v")|* = 4, ,, since it is only then that the electronic
states have identical orthonormal sets of vibrational states.

The Franck-Condon factors do obey a sum rule, however. If one sums the
Franck-Condon factors for transitions from a particular vibrational level v” in
the lower electronic state to the complete set of levels v’ in the upper electronic
state, one obtains

2 IR =3 <"y = <o)
=1 (4.52)

by closure. This implies that summing the vibrational band intensities over an
electronic band spectrum allows direct measurement of the averaged electronic
transition moment function M (R) according to Eq. 4.51.

.We now turn to the E1 selection rules embodied in the electronic transition
moment

M(R) = {Yaltalya (4.53)

To have a nonvanishing matrix element (4.53), it is necessary for the direct
product of irreducible representations

I'(yo) @ I'(pe) @ T'(Yrc

to contain the totally symmetric irreducible representation (£* in C,, X, in
D). Since the components (u,),,, and (), of the dipole moment operator
transform as I, and £} in D_,, the direct products

I,

Z+) ® F(l//Z,

I'Yo)® <

must contain the X representation for E1l transitions in homonuclear dia-
tomics. (The g, u subscripts may be dropped to generalize this discussion to
heteronuclear diatomics.) In many homonuclear diatomics, the electronic
ground state |y,> is X'Z . Then electronic transitions from the ground state to
state |-, are El-allowed if

Iy ® (;‘ :) ®Z,

contains ., which happens only when ITyy) is either IT, or ;. Working out
similar direct products for electronic states |i/.,>, |yu) of arbitrary symmetry
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would show that the E1 selection rules for electronic transitions in diatomics are

AA =0, +1
+ <> —in X — X transitions

Ve g, gexr g uex—u (Laporte rule)

Since p,, does not operate on the spin coordinates, we also have the El spin
selection rules

AS =0
AX =0

for small H,,. When the spin—orbit coupling is large, the selection rule becomes
AQ =0, + 1. Examples of El-allowed transitions under these selection rules are
My, — M0, ,,, M0, — 310, A5, — *Aspy, T, — A5 a pair of El-forbidden
transitions would be *I1; — *I1,, *I15,, — *I1,,,. When AA = 0, the z compo-
nent of {Y.|u. Y% is nonvanishing, and the electronic transition is said to be
parallel (i.e., polarized along the molecular axis). When AA = +1, the x and/or y
components of the transition moment are nonzero, and the transition is termed
perpendicular. The formalism developed in Chapter 1 implies that to effect an E1
parallel absorptive transition in a diatomic molecule, the electric field vector E
of the incident electromagnetic wave must have a component along the
molecular axis (the E1 transition probability amplitude is proportional to
E - (Y,lulyiD). Perpendicular transitions require the presence of an E compo-
nent normal to the molecular axis.

For M1 electronic transitions in diatomics, we inspect the matrix elements
YLy, where L is the orbital angular momentum operator. Since the
components of L transform as the rotations (R,, R,, R,), the direct product

IT
) RITW) =TWa)® (Zf) ® I'y (4.54)

g

I'(R., R,)

F(l//é;)@( IR

must contain the totally symmetric irreducible representation for M1-allowed
transitions. This is satisfied only if

AA =0, +1
UeD U, g g Uexog (anti-Laporte)
+ > —, + «%> +, — <3¢ — in X — I transitions

AS =0

It may similarly be shown that for E2 electronic transitions in diatomics one has
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the selection rules

AA =0, +1, +2
UeD U, ge g U+Xg (anti-Laporte)

AS =0

The AT and B!II, states in Na, (Fig. 4.8) are two of the best-characterized
diatomic states in the literature because the A'Z} « X'Z and B'I], « X'Z;
transitions are El-allowed, because these transitions occur at visible wave-
lengths easily generated by tunable lasers, and because Na, vapor is easily made.
The >} and 'TI, Na, bound states correlating with Na(32S) + Na(32P) are less
well known, because the E1 transitions to these states from the ground state are
symmetry forbidden and because the M1 and E2 transitions (symmetry-allowed
for 'TI « 'Z}) are far weaker than E1 transitions (Chapter 1). The best-known
electronic transitions in I, are the AT, «X'Z/ (red-IR) and B*I1,,« X'Z}
(green) transitions (Fig. 4.7); the latter is responsible for the purple color in I,.
They are El-forbidden according to the selection rules (AS # 0), but they gain
small E1 intensity because the large spin—orbit coupling in I, causes con-
siderable admixtures of singlet character into the A and B states and triplet
character into the X state [9]. These transitions do obey the selection rule on AR
(= +1and 0, respectively). The *IT, « X'} transition (A2 = +2) is extremely
weak, on the other hand, because it violates the AQ2 = 0, +1 selection rule.

Observed
spectrum
1| nII||l| .|.l|l[lL
V":o
| l l [
v'=0 | 2 3 4 5
V"=|
I I | 1 I I
v'=0 | 2 4 5 6
ll=2
1 N I 1 . 1 1 l Y
V=1 2 3 4 5 6 8

vV —

Figure 4.16 The observed X'y - A%} electronic band absorption spectrum of a
high-temperature Na, vapor is a superposition of spectra originating from v’ = 0,
1,2,...; only the first three series are shown. While the band intensities arising from
a particular v” level show systematic variations (in fact, their intensity envelopes
exhibit the same number of nodes as the vibrational state |v")), this regularity is not
apparent in the composite absorption spectrum.
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The large number of v’ « v” vibrational bands observed in an electronic
transition can complicate the analysis of electronic band spectra, particularly if
several of the initial »” levels have appreciable populations (e.g., when
) S kT/hc at thermal equilibrium). Neglecting rotational fine structure, v
becomes equal to T, + G'(v') — G"(v"). If we should superimpose the spectra
arising from, say, v”" =0, 1, and 2 and recall that the v' «v” band intensities are
weighted by (seemingly) random Franck-Condon factors, the resulting
electronic band spectrum (Fig. 4.16) shows no comprehensible patterns, even
though the regularity would be apparent if only a single progression of bands
(e.g., from v” = 0) were present. The Ritz combination principle offers a brute-
force method of assigning (v, v”) combinations to the bands: one obtains all
possible difference frequencies between pairs of band frequencies W(v',v") to
determine if particular difference frequencies crop up repeatedly. For example,
[¥(3,0) — ¥(2,0)] and [v(3,1) — %2, 1)] and [¥(3,2) — ¥(2, 2)] must all equal G’
(3) — G'(2), and this gives a start in organizing the assignment of the spectrum.
This approach is known as a Deslandres analysis (Problem 4.6). A preferable
approach is to simplify the spectrum experimentally: the use of supersonic jets
produces gases with very low vibrational temperatures, essentially populating
only v" = 0 (Fig. 4.3).

4.5 ANGULAR MOMENTUM COUPLING CASES

The expressions we derived for diatomic rotational energy levels in Chapter 3
are applicable only to molecules in-'Z states. In such molecules, the magnitude
|J] of the rotational angular momentum is conserved, and the rotor energy levels
(E; = BJ(J + 1) in the absence of centrifugal distortion and vibration—rotation
interaction) are those of a freely rotating molecule whose nuclear angular
momentum is uncoupled to any other angular momenta. In more general cases
where A and/or S is nonzero, it is the magnitude of the total (electronic plus
rotational) rather than just rotational angular momentum that is conserved.
Several coupling schemes for spin, orbital, and rotational angular momenta may
be identified, depending on the magnitudes of the magnetic field generated by
the electrons’ orbital motion and the spin—orbit coupling.

Hund’s case (a) describes the majority of molecules with A # 0 that exhibit
small spin—orbit coupling. Since the electronic orbital and spin angular
momenta L and S are not mutually strongly coupled, they precess independently
about the quantization axis (the molecular axis) established by the magnetic
fields arising from electronic motion. The projections A% and X% of L and S
respectively along the molecular axis are then conserved, as is their sum 4. In
contrast, the parts of L and S normal to the molecular axis oscillate rapidly; they
are denoted L, and S, (Fig. 4.17).

For the total angular momentum J, the quantity |J|2 = J(J + DA? is
necessarily a constant of motion. (J was previously used for rotational angular
momentum in !X state molecules in Chapter 3; it is: now reserved for total
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Figure 4.17 Hund's case (a) coupling. The orbital and spin angular momenta L
and S precess rapidly about the molecular axis with fixed projections Ak and Zh. The .
total angular momentum normal to the molecular axis is in effect the rotational
angular momentum N, since the normal components L, and S, of L and S fluctuate
rapidly and their expectation values are zero. The total angular momentum J is the
vector sum of N and Q, the projection of (L +S) upon the molecular axis.
Interactions between L,, S, and the rotational angular momentum N give rise to A-
doubling (see text).

(electronic plus rotational) angular momentum in diatomics with A # 0.) Since
the rotational angular momentum vector N must be normal to the molecular
axis, it has no z.component—which implies that the projection of J along the
molecular axis must be (L + S), = ©h (Fig. 4.17). According to the inequality
|J)? > J2, we must then have J(J + 1)h%? > *h?, or J > £2. Hence for given
the allowed J quantum numbers for the total angular momentum are

J=2,02+1,2+2,... (4.55)

We finally compute the rotational energy E,,, = [N|?/2I for a case (a) molecule.
Since the portion J, of J which lies in a plane perpendicular to the molecular
axis is

J,=(L+8S), +N (4.56)
we have
J2=3+J2
=(L, +S,)>+N?>+2N-(L, +8S)) + J? 4.57)

The classical rotational energy is then

Eq=[J?—J; — (L, +8,)* = 2N-(L, +S,)]/2I (4.58)
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The quantum analog of this expression for the rotational energy in cm ™! is (in
the absence of centrifugal distortion)

E=B[J(J+1)— 2 — (L, +8)*) —2(N-(L_ +8,))] (4.59)

where the brackets { > denote expectation values. The terms
2% + (L, + S,)?) are often lumped with the vibronic energy, in which case the
rotational energy is

Eo=BJUJ+1)—2BN-(L, +8S,)) (4.60)

The first term resembles the rotational energy of a !X molecule, but is subject to
the restriction J > . The second term describes the electronic—rotational
interactions, which constitute a small perturbation to the rotational energy in
molecular states with A # 0. In the absence of electronic-rotational inter-
actions, such states are doubly degenerate with components exhibiting + and
— behavior under o, (Section 4.1). This degeneracy is split by the perturbation
B,N-:(L, + S,), producing closely spaced doublets of rotational energy levels
with opposite reflection symmetry (Figure 4.18). This phenomenon is known as
A-doubling.

For atoms with Russell-Saunders coupling (those in which H_, can be treated
as a perturbation) the spin—orbital correction to the energy was seen to behave

J J J
—_—
- 5 ——==1% 4 ——*
3 =7
5 =——+% 4 —/——=7 *
2="_‘
I
————4
4 3Tl'2
2=1
2 =1t
| ——7% 3TT|
—_— 4
0] ¥
3
TrO

Figure 4.18 Rotational energy levels in Hund's case (a) for a 3M, state, a 3M,
state, and a ®M, state. No levels appear with J < Q. Each J level is split by A-
_doubling into sublevels with opposite reflection symmetry. The 2-doubling is greatly
‘exaggerated.
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as A[J(J + 1) — L(L + 1) — S(S + 1)]. The corresponding spin—orbital energy
in diatomics has the form AQ? where A is a spin—orbital constant [10]. The
total energy in excess of the vibronic energy (cf. Eq. 4.59) then becomes

Eo = B[JUJ + 1) — (L. +8,)*> —2(N-(L; +S,)>]
+ (A — B,)? (4.61)

The differences arising from the (4 — B,)§2* term in the rotational energies of
spin—orbital components with different 2 are reflected in the case (a) energy
level diagram in Fig. 4.18.

In Hund’s case (b) the magnetic fields due to orbiting electrons are so weak
that the electron spin angular momentum S does not precess about the
molecular axis. Molecules with A = 0 (Z states) and S # 0 belong to case (a) by
default, but light molecules (with few electrons) having A # 0 may also exhibit
case (b) coupling. For simplicity, we restrict our discussion to case (b) molecules
with A = 0. The rotational angular momentum N is directed normal to the
molecule axis. In the absence of orbital angular momentum, the local magnetic
field is dominated by molecular rotation, with the result that S precesses about J
(Fig. 4.19). The rotational energies to zeroth order are

E. = B,N(N + 1) 4.62)

with N =0, 1, 2, ... Each rotational level N may be split by spin-rotation
coupling into sublevels with total angular momentum quantum number

J=N+S§N+S§—-1,...,IN-§| (4.63)

A schematic energy level diagram for rotational states in 2Z and *Z molecules is
shown in Fig. 4.20.

In Hund’s case (c) the spin—orbit coupling is so large that L and S are
mutually coupled to form a resultant J, which precesses about the molecular
axis with fixed projection h(2 (Fig. 4.21). The rotational energy levels are given
by the same expression, (4.61), as in case (a). An important distinction between
cases (a) and (c) is that while the spin—orbit contribution 42* to Eq. 4.61 is

Figure 4.19 Hund's case (b) for A =0. The spin
angular momentum S and the rotational angular mom-
entum N precess about the total angular momentum J.
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Figure 4.20 Rotational energy levels in Hund’s case (b) for a 2X state and for a 3%
state. Each NV level (Eq. 4.62) is split into 2S + 1 sublevels through the interaction
between the rotational angular momentum N and the spin angular momentum S.

generally the order of the rotational level spacing or smaller in case (a), it
becomes large enough in case (c) to endow the different 2 components of 251 A,
states with individual potential energy curves. This is what happens in the
B3I1,,, A3, ,, and 3I1,, states of I, (Fig. 4.7), and these are good examples of
case (c) coupling in a heavy molecule with large spin—orbit coupling. Since L
and S do not precess independently about the molecular axis in case (c)

Figure 4.21 Hund's case (c) coupling. The orbital and spin angular momenta L
and S are strongly coupled to form a resultant J,. The projection Q of J, on the
molecular axis and the rotational angular momentum N combine to form the total
angular momentum J. L and S clearly do not have well-defined projections on the
molecular axis, and so case (c) molecular states cannot be strictly characterized in
terms of the quantum numbers A and 2.
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molecules, A and X (unlike ) are not good quantum numbers, and the
designation of these I, states as 31 states is not rigorous.

4.6 ROTATIONAL FINE STRUCTURE IN ELECTRONIC BAND
SPECTRA

In Section 4.4 we worked out the El electronic and vibrational selection rules
for electronic band spectra, and it remains for us to determine the selection rules
that govern the rotational fine structure. We have seen that no symmetry
selection rule exists for Av, but that the vibrational band intensities are
proportional to Franck-Condon factors in the Born-Oppenheimer approxi-
mation. To understand the selection rules for simultaneous changes in electronic
and rotational state, we must find how |}/ ¥.0.> = [V 2|J M) transforms under
the symmetry operations of the molecule. A complication arises here because we
have derived our earlier pure rotational and vibration—rotation selection rules
using space-fixed coordinates (i.e., the rotational state |[JM ) depends on angles
(6, ¢) relative to Cartesian coordinates (x, y, z), which are fixed in space and do
not rotate with the molecule), whereas our group theoretical E1 electronic
selection rules for {y.,|uly?,> were derived using electronic states [y,>, |2,
which depend on molecule-fixed coordinates (r »;, 'g;, @) for each electron i; these
coordinates do rotate with the molecule. To consider simultaneous rotational
and electronic state changes, we must use one set of coordinates consistently.

In heteronuclear diatomics | ,x,.,> can be classified according to its behavior
under molecule-fixed reflection o,. We already know that the molecule-fixed
states |y.,> obey

olVer) = [Ye> for £* states
= —|Y.» for X~ states
and that states with A # 0 are doubly degenerate (at least prior to A-doubling)
with components that can be chosen to exhibit + and — behavior under o,.
While the rotational states |[JM) are space-fixed, it can be shown that [11]
g, (molecule-fixed) = i (space-fixed) (4.64)

with the result that [12]
o, (molecule-fixed)lJM ) = i(space-fixed) Yy (6, ¢) = Yyp(m — 0, ¢ + m) (4.65)
=(-1’|UM)

Consequently,

o,(molecule-fixed)Yeitror? = (N —") Werkror (4.66)
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where the upper (+) si_mgn applies to X states and the lower (—) sign applies to
2" states. In the remainder of this section we use (+) and (—) to indicate the
behavior of |,,x..> under o, (molecule-fixed); this should not be confused with
the superscripts in the electronic state notations £*, X ~. We finally determine
how g is influenced by o, (molecule-fixed). Since this operation is equivalent to i
(space-fixed), and the latter operation converts g into — g,

o, (molecule-fixed)u = —p (4.67)

It follows that for <Y . xi| BlW i, to be nonvanishing, the states |y/.;x:..> and
[ x> must exhibit opposite reflection behavior under o, (molecule-fixed), and
(+) states can combine only with (—) states in the E1 approximation. To keep
track of all rotational transitions that are consistent with this rule for a given
electronic transition, we set up a Herzberg diagram [10] in which the rotational
J levels in the relevant electronic states are labeled with their behavior under o,
(molecule-fixed). For definiteness, suppose we are interested in a 'T* — 1T+
electronic transition (which is El-allowed according to the selection rules
obtained in Section 4.4). Using Eq. 4.66, the pertinent Herzberg diagram can be
generated as shown in Fig. 4.22, where the arrows show all allowed transitions
subject to AJ = 0, + 1 connecting levels that are (+) under o, (molecule-fixed)
with levels that are (—). This diagram exhibits only R- and P-branch transitions.
Nc Q-branch (4J = 0) transitions are possible, since they would connect (+)
with (+) or (—) with (—) levels. A more interesting example is the case of a
3% — MI transition. The pertinent Herzberg diagram (Fig. 4.23) reflects the fact
that doubly degenerate 'I1 states can have both (+) and (—) components
under ¢, (molecule-fixed) for any J, but cannot have J = 0. (Recall that we
require J > 2, and 2= 1 in a II state.) In this case AJ = 0 transitions are
possible as well as AJ = +1 transitions, so Fig. 4.23 provides an example of the
fact that Q branches can appear in electronic transitions involving states with
A#0Q.

In homonuclear diatomics an additional symmetry element is needed to
classify state symmetries in the D, point group, and we can use i (molecule-
fixed) for this purpose. A new complication, peculiar to homonuclear molecules

=0 | 2 3

Figure 4.22 Herzberg diagram for allowed rotational transitions accompanying a
1Z* - 13" electronic transition in a heteronuclear diatomic molecule.
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Figure4.23 Allowed rotational transitions in a X" — "I electronic transition.
Note the absence of the Q(0) and P(1) transitions, since J' > 1 in a [ state.

in which both nuclei are the same isotope, is the effect of nuclear exchange
symmetry on rotational state populations. Under the space-fixed nuclear
exchange operation Xy, the total wave function |¥) = [ XvivXrotWnuct.spin?
must behave as [10]

XN =+1¥> for boson nuclei (s)
= —|¥>  for fermion nuclei (a) (4.69)

Since the vibrational state |y,;,> depends only on |R| = R, it is unaffected by
exchange of the nuclei. To decide the effect of Xy on [/, We use the identity

[10]
Xy =i i, (4.69)

where i, represents inversion of all particles through the origin and i, represents
inversion of electrons only through the origin. We have already seen that
it = UMD = (—1)’|),0p. For the effect of i; on [y,), we note that
i; = C,0,1in D,, where the latter two operations are applied to all particles in
the molecule. C, then has no effect on |y,), since |/.;> depends only on the
electronic coordinates relative to the positions of the nuclei. Then '

i) =0V = e for = states
= —|¢,>  for T states (4.70) -

because o, reflects the positions of the electrons, but not of the nuclei. The
inversion i, does not affect |x,> because it inverts only the electronic
coordinates. By definition,

Llea> = Wad in g states
= —Wa>  in ustates 4.71)
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We finally consider the effect of Xy on the nuclear spin function |,y spin)- Each
nucleus has spin I with (21 + 1) magnetic sublevels, giving a total of (2I + 1)?
diatomic nuclear spin states. Of these, (2I + 1)(I + 1) states are always sym-
metric (s) with respect to Xy, and (2I + 1) are antisymmetric (a). For
concreteness, consider the H, molecule in which both nuclei are *H with spin
I =1 From the nuclear magnetic sublevels o (m; = 1) and B (m; = —1) on the
individual nuclei, we may form the symmetric (s) and antisymmetric (a) nuclear
spin states

a(1)(2) ()
«(1)B(2) + (2)B(1) (s)
BBR2) ()

(1DB2) — «(2)p(1) (a)

for the diatomic molecule. For I =4 there are (2 + 1)I + 1)=3 and
(2I + 1)I = 1 nuclear spin states that are symmetric (s) and antisymmetric (a),
respectively, under X y.

The possible combinations of electronic, rotational, and nuclear spin states
can now be compiled [10] as shown in Table 4.6. The total wave function |¥)
must be (s) and (a) under the nuclear exchange X for boson and fermion nuclei,
respectively. Fermion nuclei exhibit half-integral spin: I =1 (*H, 3He, '3C),
I =3 (**Na), I = 3 (70), etc. Bosons include integral-spin nuclei, such as “He,
16Q (I = 0) and N (I = 1).

For 'H, in its X'Z ground state, the nuclei are fermions with I = 4. The
exchange symmetry of | x> under Xy is p

XNh#eerot) = iliZ'!pchrot)
= [(= /()L + T ertror
= (_ I)Jlllleerot> (472)

so that [We1Xeor) s (s) for even J and (a) for odd J. The total wave function |¥)
‘must be (a) for these fermion nuclei. According to Table 4.6, the X'Z" state

Table 4.6
Statistical
W’ellmt) |!/,nucl.spin> | lP> weight
a a ] 21 + I
s a a 21+ 11
a S a QI+1nyuI+1
s s S @I+ 1) +1)
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rotational level pupulations in a thermal gas gain extra factors (beyond the
Boltzmann factors in Eq. 328) of (2I+ 1)I=1 for even J and
(2I + 1)1 + 1) = 3 for odd J. This leads to a nearly 3:1 intensity alternation in
rotational state populations of adjacent levels in X'Z; 'H,. For °0, in its
X3Z; ground state, the nuclei are bosons with I = 0. The exchange symmetry of
[V eiXrory 10 this case becomes

ili2|!/Ieerot> = [(— I)J(_)][+]I¢e1Xrot>
= (=" Wt (4.73)

so that |[.,x..> 1s (a) for even J and (s) for odd J. Since |¥) must be (s) in this
molecule, the rotational state populations gain statistical factors of
21 +1)I =0 for even J and (2I + 1)(I + 1) =1 for odd J. Consequently,
X*Z, 1°0, cannot exist in even — J levels at all. Such levels can be populated in
other electronic states (e.g., a 'A,) of °O,, however.

Prior to digressing on the subject of nuclear exchange symmetry, we
mentioned that a new symmetry element besides ¢, (molecule-fixed) was
required to classify electronic—rotational states in homonuclear diatomics. A
logical choice is i (molecule-fixed), an operation which belongs to D, but not
C,- It may be shown that i (molecule-fixed) is equivalent to Xy (space-fixed),
and so the procedures worked out in the foregoing discussion may be used to
classify /%0 @s either (s) or (a) under X in lieu of determining their behavior
under molecule-fixed inversion. The dipole moment operator g in homonuclear
molecules is (s) under X, [11]. This leads to the conclusion that only states
[Weixrory With like symmetry under X can be connected by El transitions in
electronic band spectra:

Se>§
ae>a

SeX—>a

The Herzberg diagrams for homonuclear diatomics can now be augmented with
(s) and (a) labels denoting behavior under X . For a 'Z) — 'Z} transition, the
diagram is shown in Fig. 4.24, where all of the El-allowed transitions
simultaneously obey (+)« (=), (s)«>(s), and (a)«<>(a). As in Z* 13"
transitions for heteronuclear molecules, only R and P branches can appear. It is
easy to show that the Herzberg diagrams for 'L — !X} and 'Z) - 'Z;
transitions forbid any transitions from occurring at all (ie, the Herzberg
diagrams have the Laporte rule built into them). For a 'Z — 'II,, transition
(Fig. 4.25), all three rotational branches appear. Note that the P(1) and Q(0) lines
are absent, since the J = 0 level cannot occur in a 'IT, state. A wealth of
additional Herzberg diagrams may be found in G. Herzberg’s classic Spectra of
Diatomic Molecules [10].
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J"=0 0 2 3

Figure 4.24 Allowed rotational transitionsina 'X; — "X} electronic transition in a
heteronuclear diatomic molecule. Such Herzberg diagrams automatically incorporate
the Laporte g <> u selection rule, since no allowed rotational transitions can be drawn
fora X} —'Z; ora I} 'L} electronic transition.

Figure 4.25 Allowed rotational transitions in a "X} — "I, transition.

The Na, fluorescence spectra in Fig. 4.26 are excellent examples of the
rotational selection rules predicted by the '=} — 'IT, Herzberg diagram in Fig.
4.25. The first of these spectra was excited using the 4727-A line from an Ar*
laser, which matches the energy difference between 'Z; (v" = 1, J” = 37) and
1, ¥ =9, J' = 38) in Na,. The laser linewidth was considerably broader than
the energy separation (due to A doubling) between the (a) and (s) 'II, levels
belonging to J' = 38 in Na,. Since the initial J” = 37 level is an (a) level ina X
state, however, the selection rules in Fig. 4.25 show that only the (a) sublevel in
J' = 38 can be reached from J” = 37 in E1 transition. Subsequent fluorescence
transitions from 1, (vV = 9, J' = 38) to the ' state in various v’ levels can only
terminate in J” = 37 or 39 according to Fig. 4.25. Hence, the 'II, »'Z}
fluorescence spectrum excited at 4727 A exhibits only P and R branches. The
second spectrum was excited by the 4800-A Ar* laser line, which matches the
energy separation between 'L (v" = 3, J” = 43) and 'I1, (v' = 6, J"=43). Such
a transition can populate only the (s) sublevel in J' = 43; reasoning similar to
that outlined above shows that fluorescence from v' = 6, J' = 43 can then
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Figure 4.26 B'N, » X"Z] fluorescence spectra of Na, vapor following excitation
by an argon ion Iaser at (a) 4727A and (b) 4880 A. The first spectrum is due to the
transitions v =9, J' = 38 —» v, J” = 37, 39; its rotational fine structure exhibits only
P and R branches. The second spectrum arises from the transitions v =6,
J =43 > v, J" = 43; only the Q branch appears in its rotational structure. These
spectra are excellent examples of the selection ruies in Fig. 4.25. Monochromatic
laser excitation of an X'Z;) molecule creates a B*I, molecule in either an s or an a
level, but not both. According to Fig. 4.25, the leve: can consequently fluoresce with
either (P, R) or Q branches, but not both. The numbers in boxes give v” for the lower
level in fluorescence transitions. Vibrational band intensities are proportional to the
Franck-Condon factors |{v'|v")|2. Reproduced with parmission from W. Demtrdder,
M. McClintock, and R. N. Zare, J. Chem. Pfys. 51: 5495 (1969).
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exhibit only a Q branch. Hence, the (v, v") fluorescence bands are doublets in the
first fluorescence spectrum, but are singlets in the second one. The band
intensities are proportional to the pertinent Franck-Condon factors [{v'|v”D|? in
both spectra.

Rotational line assignments are easily made by inspection in pure rotational
and vibration—rotation spectra (Chapter 3). In the former case, the rotational
energies and transition frequencies are

E,o(J)/hc = BJ(J + 1) — DJ*(J + 1)? (4.74)
and
v =2BJ — 4DJ? (4.75)

where J denotes the upper level in absorptive transitions (AJ = + 1). Since the
centrifugal distortion constant D is generally small compared to B
(D/B < 10~ %), the rotational lines are very nearly equally spaced in frequency.
For vibration—rotation spectra, the P-, Q-, and R-branch line frequencies
(ignoring centrifugal distortion) are

Vo = Vo — (B’ + B")J + (B’ — B")J?
Vo = Vo + (B — B)J + (B’ — B')J? (4.76)
Vg = Vo + 2B + (3B' — B")J + (B' — B")J?

where J pertains to the lower level in the transition and ¥, is the vibrational
energy difference. Since B’ and B” are nearly the same in vibration—rotation
spectra (because B varies weakly with v within a given electronic state), Egs. 4.76
imply that rotational lines in such spectra will also be roughly equally spaced in
frequency for low J (Fig. 3.3). '

For rotational fine structure in electronic band spectra, the P- and R-branch
line positions are still given by Eqgs. 4.76, except that ¥, now becomes
T, + G'(v') — G"(v"). The important physical difference here is that B’ and B” are
often grossly different in transitions between different electronic states. For
example, B, and B, are 0.029 and 0.037cm™!, respectively, for the
B, < X'Z, transition in I, (Fig. 4.7). The rotational line positions in the P
and R branches are no longer even approximately equally spaced. For that
matter, vp and Vg both vary as (B' — B")J? for large J—since they are then
dominated by terms quadratic in J—and hence they run in the same direction
as functions of J. In contrast, ¥p and v run in opposite directions as functions of
J for small J, where the linear terms dominate. Hence, either the P or the R
branch turns around as a function of J (depending on whether B’ < B” or
B’ > B") at the bandhead as shown in Fig. 4.27. The approximate value of J at
which one of these branches turns around can be found by differentiating the
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Figure 4.27 Rotational fine structures at 300K for the v’ = 0 » v’ = 0 absorptive
transitions in (a) the X'¥* - B3N, transition in ICl, B, =0.1142 cm™?,
B, = 0.0872cm™"; and (b) the X2I, —» A2Z™ transition in NO, B% = 1.67195¢cm ™,
B, = 1.9965 cm™'. The rotational line spacings are smaller for ICl, owing to its larger
reduced mass. The ICl spectrum is shaded to the red, and typifies the usual situation
in which B% > B’,. The reverse is true in the X2, » A2 * transition of NO, in which
the rotational structure is shaded to the blue. Horizontal energy scale is in cm™? for
both spectra.
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equations for vp and v with respect to J,

_r BI Bl/ 2 B/ _ B// —
T (B'+ B") + X ) =0
df)R ’ /"

Then the J values at which these branches turn around are

Jt = (B + B")2(B' — B')
Jt = (B" — 3B)/2(B' — B") @.78)

Only one of these values is physical (positive). Since the upper electronic state is
commonly more weakly bound than the lower state (R, > R), one usually
observes B, < B;—in which case the R branch is the one that turns around
(J& > 0). Both the P and R branches then run to lower frequencies for large J
(since (B'— B")<0), and the band is said to be shaded to the red. When R, <R,
the band is shaded to the blue. The rotational fine structure is barely resolved in
the Na, fluorescence excitation spectrum of Fig. 4.3, but the asymmetric shading
of the vibrational bands to the red is clearly asserted. It occurs because the
equilibrium separation of Na, is considerably larger in the A'’Z; than in the
X'Z) state, as is apparent in Fig. 4.8.

4.7 POTENTIAL ENERGY CURVES FROM ELECTRONIC BAND
SPECTRA

The spectroscopic techniques described in this and the preceding chapters yield
an impressive array of molecular constants, in terms of which the rovibrational
energy levels may be expanded to desired accuracy via

E/hC = (l)e(l) + %) - wexe(u + %)2 + weye(v + %)3 +
+BJUJ+1)—DJ*J + 1) —aJJ+Dv+H+- (479

For example, spectral lines in vibration—rotation spectra of heteronuclear
diatomics are readily assigned to particular (v'J’) < (v"J") transitions by in-
spection. Their positions may be analyzed using Egs. 3.64, 3.65, 3.68, and 3.81 to
extract the ground-state constants ., w,x., w,y., B,, D., of, .... In homonu-
clear diatomics (which are infrared-inactive), analysis of rotational fine structure
in fluorescence spectra yields the rotational constants B., D, a, ... and B, D,
o, ... for the upper and lower states. The vibrational band positions in such
spectra (e.g., the Na, fluorescence spectrum in Fig. 4.1) may be analyzed to

" " "o

obtain the vibrational constants w), w.x., w.y., ... in the lower state. Similar
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treatment of the absorption or fluorescence excitation spectrum (cf. Fig. 4.3)
yields the corresponding upper state vibrational constants ), w,x,, ®,y,, ....
Conclusive vibrational assignments in electronic band spectra can be difficult to
establish when the electronic energy separation T, between upper and lower
states is not independently known. Failure to observe the v” = 0 - v" = 0 band
due to a small Franck-Condon factor |{v'|v")|?, for example, can result in
misnumbering of the true levelsv” = 1,2,...,asv” =0, 1, ... [13]. A strategem
for confirming vibrational assignments of electronic band spectra is described
later in this section. Huber and Herzberg [14] have compiled molecular
constants for over 900 diatomic molecules and molecule-ions, based on critical
examination of the literature up to 1978.

In many applications, it is desirable to know the detailed potential energy
curves U (R) for the upper and lower states. Such information would be
required to predict spectral line intensities of heretofore unobserved vibronic
transitions (e.g., for investigation as possible laser transitions). We have already
shown that the radial Schrodinger equation (3.30) can be solved under a given
potential U,,(R) to obtain the vibrational eigenvalues for J = 0. We are now
concerned with the reverse procedure: Given a set of spectroscopically deter-
mined vibrational levels, can the detailed potential energy curve U,(R) be
reconstructed? For nonpathological potentials, the intuitive answer is yes. When
the vibrational levels are equally spaced in energy, U, (R) is a parabola with -
curvature determined by the level spacing. Nonuniformities in level spacing
(manifested by nonvanishing anharmonic constants w.x,, ®,y,, ...) should
deform the parabola in predictable directions.

The current technique for derivation of experimental potential energy curves,
developed in the 1930s but popularized only with the advent of high-speed
computers, is based on the Sommerfeld condition [15] for quantization of
action in systems undergoing periodic motion,

§pdq =W+dHh v=0,1,2 (4.80)
The generalized coordinate g and its conjugate momentum p vary periodically,
and the line integral is evaluated over one cycle. (A similar quantization
condition on angular momentum led to the famous Bohr postulate L = n# for
the hydrogen atom in the old quantum theory [16].) For vibrational motion
subject to a potential U(R) in a diatomic, the classical energy is
E = p*/2u + U(R). The integral in (4.80) then translates into

2 I& JE — UR)dR = (v + Hh 4.81)
R_

for periodic motion between the classical turning points R_ and R, (Fig. 4.28).
Rydberg, Klein, and Rees demonstrated that this semiclassical procedure for
deriving the allowed vibrational energies E from a given potential U(R) may be
inverted. If the rovibrational energy (4.79) is rewritten in terms of the vibrational



POTENTIAL ENERGY CURVES FROM ELECTRONIC BAND SPECTRA 157

Energy

R

Figure 4.28 The classical turning points R_ and R, for a given vibrational level.
For this vibrational energy, nuclear motion is classically forbidden for R < R_ and for
R>R,.

and rotational action variables I = h(v + %) and k = J(J + 1)h%/2u as

E(l, )/hc = lw,/h — Pwx,/h* + Pw,y./h?
+ x/hcR? — k2D, /h*c*B2R% — Iko,/h*cB,R? (4.82)

it may be shown [17] that the inner and outer turning points R , of avibrational
state with known energy E, are given by -

Ri=(flg+f)"2 £ f (4.83)

with
f—L " [E, — E(I, k)]~ 2dI (4.84)
T2 Jo VT 0 '
and

_ h ' 0E —172
9= 2 L 2 LB — EWL ]~ dl (4.85)
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The upper integration limit I’ is the value of the vibrational action variable for
which E(I',k) = E,. These integrals are evaluated for k = 0 to compute the
vibrational turning points Ry for the nonrotating (J = 0) molecule. Rees
showed that these integrals are expressible in closed form [18] when the
vibrational energy E(/, 0) is quadratic in I, but this level of approximation does
not yield accurate turning points over a broad range of vibrational energies.
Hence, these integrals are calculated numerically to yield two points R (E,) on
the potential energy curve U, (R) at each spectroscopic energy E,. The full
potential U, (R) is then constructed by connecting the turning points with a
smooth curve. Figure 4.29 shows the experimental Rydberg-Klein-Rees (RKR)
turning points for the X'Z state in Na,. Such RKR calculations furnish the
most accurate experimental potential energy curves for diatomics. Their facile
execution using established computer codes has largely superseded character-
izations of U,(R) by analytic fitted potentials such as the Morse potential
(Section 3.6).

Once RKR potential energy curves have been generated for the lower and

- 4000 -
|
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O
= L
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Naz
0L
| | | ] L
2 4 6

R

Figure 4.29 RKR points for the X*Z; state of Na,. These are the classical turning
points R_, R, calculated for v" = 0 through 45 using spectroscopically determined
rovibrational energy levels from Na,, fluorescence spectra. Separations are given in A.
Data are taken from P. Kusch and M. M. Hessel, J. Chem. Phys. 68: 2591 (1978).
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upper states (e.g., the X'Z and B’II,, states in I,, Fig. 4.7), the radial
Schrodinger equation (3.30) can be solved numerically to obtain the correspond-
ing vibrational states [v”) and |v') in the respective electronic states. It is then
straightforward to calculate the predicted Franck-Condon factors |[{v'|v"|? for
all vibrational bands in the electronic transition. The band intensities observed
in an absorption or fluorescence spectrum should be proportional to these
calculated Franck-Condon factors (Section 4.4). If they are not, the vibrational
bands in the electronic spectrum may have been incorrectly assigned. In this
manner, Zare found it necessary to reassign the v" quantum numbers previously
attributed to vibrational bands in the X'X — BII,, spectrum [13]. RKR
calculations are, of course, possible only for spectroscopically accessible
electronic states for which a reasonable number of the molecular constants in
Eq. 4.82 are known. For this reason, only the X', A®M,,, and B3I ,,
potential energy curves for I, in Fig. 4.7 are well known. The lowest-lying
X% - M0, transition (AQ =2) is so weak that no RKR curve has been
generated for that excited state to the author’s knowledge. RKR calculations are
not applicable to purely repulsive states, and the shapes (but not the asymptotes)
of the repulsive potential energy curves depicted in this chapter are largely
conjectural. Methods for predicting intensities of transitions to repulsive states
(“bound-continuum transitions”) have recently been developed [19].

A number of potential energy curves is shown for O,, O;, and O; in Fig.
4.30, and for N,, N5, and N; in Fig. 4.31. The lowest three bound states in
neutral O, (X*%;, a’A,, and b'X)) arise from the equivalent 72 configuration
(Section 4.3). El transitions among these three states are forbidden, in ac-
cordance with the general rule that no El transitions exist among states
generated from the same electron configuration. The better-characterized
excited states (i.e., the ones with more labeled vibrational levels) tend to be ones
which are El-connected to the ground-state molecule or molecule-ion. As
examples, the B3Z_ excited-state potential in O, is known up to nearly its
dissociation limit, but the C3A, state is not (Fig. 4.30). In N, the X'Z ground
state is a closed-shell configuration; its excited states are among the most
thoroughly studied in any diatomic. Since it is not connected to any lower
electronic state by El transition, the A3X} state is metastable, and El
absorptive transitions from this state to higher states (e.g., C3I1,) can easily be
observed. The well-known N, laser, which operates at 337 nm, stems from the
v’ = 0-v" = 0 transition between the C°II, and B>II, states.
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PROBLEMS

1. For a heteronuclear diatomic molecule, determine the electronic term
symbols that correlate with 2D + 2D atoms.

2. Write down the electron configurations for the ground states of B,, C,, N,
and O,. What term symbol corresponds to the ground state in each of these
molecules?

3. For a homonuclear diatomic molecule, what term symbols 25* A, can arise
(a) from an equivalent 62 configuration and (b) from a nonequivalent 7? (e.g,,
nim,) configuration?

4. Determine the relative statistical weights of the even- and odd-J levels in
85Rb, and “°K,, which have nuclear spin I = 5 and 4, respectively.

5. Using the potential energy curves in Fig. 4.31 for neutral N,, decide which of
the shown states are El-metastable. Are all of the diatomic states which
correlate with N(*S) + N(*S) shown? Which of the shown excited states are
theoretically accessible by M1 transitions from ground-state N,?
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6. The C'II, « X' absorption spectrum of Na, in the near-ultraviolet

region of the spectrum exhibits bands at the following frequencies in cm ™ *:

28871 29182 29338 29479 29682
28986 29213 29368 29524 29745
29026 29255 29411 29569 29793
29100 29297 29434 29589 29903
29141 29324 29455 29635

Starting from the assumption that one of these frequencies corresponds to the
v”" = 0 - ¢’ = 0 transition, make the vibrational assignments by ordering the
observed band frequencies ¥(v”, v') into a Deslandres table:

50,0) A, W0, 1) A, %0, 2)
01 01 01

(1, 0) o1 (1, 1) 4, (1, 2)
Atz 12 12

52,00 A, W) A 52, 2)

The numbers 4,,, and A,,, represent the numerical differences between adjacent
frequencies in the table. (In a correctly ordered table, all differences denoted by
the same label (e.g., A7,) must exhibit the same value to within experimental
error, in accordance with the Ritz combination principle. The value found for
A,..(Ay,) is the observed energy separation between vibrational levels m and n in
the upper (lower) electronic state.) Determine the vibrational constants w}, w.,

/"I "M

wlixl, w.x, and (if possible) w]y., w,y, from these data.

7. The 0-3 absorption band of an allowed E1 electronic transition originates
from the X*%_ state in O,. Rotational fine structure lines occur at the following
wave numbers:

51354.37 R(1)
51353.99 Liat
51353.50 RQ)
51351.37 gl
51349.46 P
51348.01 R(4)
51345.31 PQ2)
51343.38 R(5)

51339.92 Ry )
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(a) Complete the assignments of the four unlabeled lines. Is this band shaded
to the red or violet? Is B’ greater than or less than B"?

(b) Determine the numerical values of the rotational constants B’ and B”.

(c) Recognizing that this is an allowed transition in the relatively light
molecule O,, specify the term symbol of the upper state.

8. The analytic expressions 4.24 and 4.34 for the overlap, Coulomb, and
exchange integrals in H; may be obtained using the ellipsoidal coordinates 4, y,
and ¢, where

i = (rA + TB)/R

p=(ra —rg)/R

and the angle ¢ has its usual meaning in a diatomic molecule. These coordinates
exhibit the range

I1<i<w
—lI<spsl
0<d<2n

and the volume element is R3(A2 — p?)dAdudg/8. Use this information to
confirm that S,5, J, and K are correctly given by Egs. 4.24 and 4.34.



POLYATOMIC ROTATIONS

In this chapter, we extend our treatment of rotation in diatomic molecules to
nonlinear polyatomic molecules. A traditional motivation for treating
polyatomic rotations quantum mechanically is that they form a basis for
experimental determination for bond lengths and bond angles in gas-phase
molecules. Microwave spectroscopy, a prolific area in chemical physics since
1946, has provided the most accurate available equilibrium geometries for many
polar molecules. A background in polyatomic rotations is also a prerequisite for
understanding rotational fine structure in polyatomic vibrational spectra
(Chapter 6). The shapes of rotational contours (i.e., unresolved rotational fine
structure) in polyatomic electronic band spectra are sensitive to the relative
orientations of the principal rotational axes and the electronic transition
moment (Chapter 7). Rotational contour analysis has thus provided an
invaluable means of assigning symmetries to the electronic states involved in
such spectra.

We begin this chapter with a derivation of the classical Hamiltonian for a
rigid, freely rotating polyatomic molecule. Such a polyatomic rotor may be
classified according to its point group symmetry (Section 5.1). We formulate the
quantum mechanical Hamiltonian and rotational energy eigenvalues for
molecules having at least one C, axis with n > 3. Molecules with lower
symmetry (e.g., H,O) are far more difficult to treat, and readers are referred to
specialized sources on rotational spectroscopy for these cases. E1 selection rules
are obtained for pure rotational transitions, and examples are given of structural
information yielded by microwave spectra.

- 165
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5.1 CLASSICAL HAMILTONIAN AND SYMMETRY
CLASSIFICATION OF RIGID ROTORS

Consider a rigid body consisting of a collection of point masses my located at
positions Ry = (Xy, Yy, Zy)in a Cartesian coordinate system which rotates with
the molecule. The origin of this coordinate system coincides with the body’s
center of mass (Fig. 5.1). If the body is caused to rotate with angular velocities
Wy, Wy, Wz about the molecule-fixed X, Y, and Z axes, respectively, its rotational
kinetic energy becomes [ 1]

1

T = Zwiluwjziu)'l'(o 5.1
ij

N —

where the indices i, j run over X, Y, and Z. The matrix | is the rotational inertia
tensor [1]

-
Z my(Y% + Z3) _; myX Yy _; myXnZy
N

I=| = myYXy > my(X% + Z3) —Y myYWZy

N N N

“EmZXy =Y mZu Yy Y myG + i)

N

Iyx Iyy Ixg
=|Iyx Iyy Iyz (5-2)

IZX IZY IZZ

“y
Figure5.1 Therotational kinetic energy of a rigid body may be specified in terms of
angular velocities wy, wy, w, about arbitrary orthonormal axes X, Y, Z intersecting at
the center of mass.
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In general, the classical rotational kinetic energy (5.1) contains three diagonal
terms (proportional to w%, w3, and w3). It also contains six off-diagonal terms
(proportional to wywy, etc.). Since the inertia tensor is necessarily a symmetric
matrix according to Eq. 5.2, only three of these off-diagonal terms are
independent.

It always proves possible to rotate the X YZ axes into a new body-fixed
coordinate system with orthonormal axes a, b, and ¢ (called the principal axes)
which diagonalize the inertia tensor,

Z M (b% + c2) 0 ' 0 T
N
I= 0 Y. my(ak + cR) 0
¥
0 0 Z my(ak + b3)

B N i

I, 0 0
=lo 1, o (5.3)

0 0 I

By virtue of Eq. 5.1, these new coordinates also diagonalize the rotational
kinetic energy,

T = {1,002 + Lw} + [.w?) (5.4)
where w,, w,, ®, are the rigid body’s angular velocities about the principal axes

(Fig. 5.2). Since the body-fixed components of rotational angular momentum
about the principal axes are

J, =10,
Jb = Ibwb (5.5)
JC = Il.'wl.'

the classical Hamiltonian for a rigid free rotor becomes

4n?c

h

(AJ? + BJ? + CJ?) (5.6)
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Ye

Figure5.2 Foraspecial choice of body-fixed axes (X, Y, Z) = (a, b, c), the rotational
kinetic energy assumes the diagonal form in Eq. 5.4. In the ellipsoid illustrated, one of
the principal axes a lies along the C, axis, while the other two principal axes b and ¢
are any pair of mutually orthogonal axes which are perpendicular to a.

Equation 5.6 defines three rotational constants having units of cm ™!,

A = h/8n%cl,
B = h/8n3cl, (5.7)
C = h/8n?cl,

The principal axes a, b, ¢ are conventionally labeled so that the rotational
constants are ordered in decreasing magnitude, A > B > C. Four classes of
nonlinear rigid rotors may then be distinguished:

A=B=C spherical top
A>B=C prolate symmetric top
A=B>C oblate symmetric top S

A>B>C asymmetric top

The orientations of the principal axes are easily obtained by inspection in
molecules with sufficient symmetry. Any C, symmetry axis (n > 2) coincides
with a principal axis. In the D,, ethylene molecule, for example, the C,(x), C (),
and C,(z) twofold axes are principal axes. All of the principal moments of inertia
in ethylene are different in magnitude, so this molecule is an asymmetric top. All
molecules with one C; or higher-order axis are symmetric tops, because the
principal moments about two axes normal to a C, axis withm > 3 are necessarily
equal. Such molecules include BF; (which belongs to the D5, point group), NH,
and CH,I (C5,), and benzene (D). Molecules with two or more C; or higher
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order rotation axes are spherical tops; examples of these are CCl, (T;) and SF4
(0,). It is possible in principle for a molecule lacking a C, axis (n > 3) to exhibit
two equal principal moments; such a molecule is termed an accidental symmetric
top. The frequency resolution afforded by microwave technology can detect
such small differences between two moments of inertia that very few molecules
pass for accidental symmetric tops under microwave spectroscopy.

In symmetric tops, two of the rotational moments of inertia are equal. The
third moment is associated with rotation about the axis of highest symmetry
(called the figure axis). In prolate symmetric tops, the figure axis exhibits the
largest rotational constant (and the smallest principal moment of inertia). Such
molecules concentrate most of their nuclear mass along the figure axis (the a
axis), and tend to be cigar-shaped. Eclipsed and staggered ethane molecules are
both prolate symmetric tops, as is 2-butyge (Fig. 5.3). In oblate symmetric tops,
the nuclear mass tends to concentrate at an appreciable distance from the figure
axis (the ¢ axis), endowing the figure axis with the smallest rotational constant
and the largest principal moment of inertia. Oblate tops (e.g., benzene) thus:
resemble disks rather than cigars. Linear polyatomic molecules are a special case
of prolate symmetric tops, in which the rotational moment about the figure axis
(the C,, axis) is negligible. For such species (e.g., OCS, HCN), the rotational
Hamiltonian is formally identical to that for a diatomic molecule.

The classical Hamiltonian (5.6) for a rigid rotor becomes simplified when two
or more of the principal moments are equal. In the case of the spherical top
(A=B=C),itis

4n3c 4n3c

H=——BU}+J}+J2)=——BJ (5.8)

'
e
S

s

Figure 5.3 Examples of a prolate symmetric top, 2-butyne (left) and an oblate
symmetric top, benzene (right). By convention, the figure axis is labeled the a axis and
the c axis in prolate and oblate tops, respectively.
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For the prolate top (A > B = C), the Hamiltonian becomes

H:

42
"= [AJ2 + BUE + J2)]

2
_4mC (4 - B2 + B (5.9)

while for the oblate top (A = B> C) it is

H 4n%c

+(C—BYJ?] (5-10)

No such simplification is possible for the asymmetric top, where A > B > C. We
will see that this fact considerably complicates the derivation of the quantum
mechanical energy levels for an asymmetric top.

5.2 RIGID ROTOR ANGULAR MOMENTA

Simple as they may appear, the classical Hamiltonians developed for rigid rotors
in the preceding section are conceptually new. In our discussion of diatomic
rotations in Chapter 3, the rotational states |[JM) were obtained as
eigenfunctions of the space-fixed angular momentum operators J, and
J2=J2+ f" + J?2. The space-fixed angular momentum components J,, J J,
obey the famlllar commutation rules

[Je J,] = ihJ,
[J,,J?1=0 (5.11)

and cyclic permutations of x, y, z

S

In contrast, the rotor Hamiltonian (5.6) is expressed as a function of the body-
fixed angular momentum components J,, J,, J. associated with rotations about
the principal axes a, b, and ¢, which themselves rotate with the molecule. It is
unclear a priori what commutation relationships are obeyed by J,, J,, J. and
J2=J2+J2 +J2 It would also be useful to know whether any space-
fixed components of J commute with particular body-fixed components of J, so
that commuting sets of observables may be constructed as an aid in visualizing
the physical significance of rigid rotor wave functions.

An arbitrary three-dimensional rotation of a rigid body may be described [1]
using the Euler angles ¢, 0, y (Fig. 5.4). The body-fixed a, b, and ¢ axes are
initially aligned with the space-fixed x, y, and z axes, respectively. The body is
first rotated counterclockwise by the angle ¢ about the z axis; this rotation does
not affect the orientation of the ¢ axis, but rotates the a and b axes in the xy
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Figure 5.4 Euler angles (¢, 6, x) describing the orientation of body-fixed axes
(a, b, ¢) with respect to space-fixed axes (x, y, z). The molecule is first rotated by an
angle ¢ about the space-fixed z axis, causing molecule-fixed axes initially pointing
along x and y to be rotated into x’ and y’, respectively. The molecule is then rotated by
the angle 8 about the new x’ axis, displacing the body-fixed axis initially pointing
along z into the direction ¢ and the y’ axis into direction y”. The molecule is finally
rotated by the angle x about the ¢ axis, rotating the x’ and y” axes into the a and b
axes, respectively.

plane. The second rotation is a counterclockwise rotation by the angle 6 about
the new orientation of the a axis; it rotates the body-fixed c axis by the angle 6
from the space-fixed z axis. The body is finally rotated counterclockwise by the
angle y about the new ¢ axis. The components of the rigid rotor’s angular
momentum may be specified as projections of J along either the space-fixed axes
(J» Jy, J,) or body-fixed axes (J,, J,, J.). They may also be expressed in terms of
the three independent angular momentum components J4, Jo, J, associated
with the Euler rotation axes,

~ ho
T3
~ ho
Jo==25 (5.12)
-~ ho
i
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which are directed along the unit vectors 4;, 9: and j, respectively. It is
not difficult to show geometrically (Problem 5.1) that the space-fixed angular
momentum components in terms of the Euler angles are

. hsing 0 sin¢cosB 0 0
Jx-z[sma;a;‘ sin 0 w*"“%@]
. h cos¢p 0 cos¢cosf 0 . 0
Jy"?[_sinea“L sin 0 ﬁ_smeﬁ] (5.13)
~ h 0
Jz—;%
and that the body-fixed angular momentum components are
s~ hfsiny 0 sinxcosl9_6_+cos 9
«= 7 |sin 0 3¢ sin 6 0y X0
.~ h|lcosy & cosycosf 0 . 0
=|—4—F—— — 5.14
T i[sineaqs sind oy "t (5.14)
. ho
Jc—;a—x

The well-known space-fixed commutation relationships (5.11) may readily be
confirmed using Egs. 5.13 for J,, J,, J in terms of the Euler angles. Use of Egs.
5.14 for the body-fixed components J,, J,, J. quickly leads to the somewhat
surprising commutation rules:

[fm jb] = _lhjc

and cyclic permutations of a, b, ¢ (519
In analogy to space-fixed angular momenta, one consequently obtains
Ve 1= Ue Ji+ 1B +721 =0 (5.16)
and cyclic permutations of a, b, ¢
It is manifest from Egs. 5.13 and 5.14 that
[J..J3=0 (5.7

because the Euler angles ¢ and y associated with J, and J, respectively are
independent variables. It may also be shown [2] that each space-fixed
component of J commutes with any body-fixed component of J,

PN i=Xx,),0rz
. = 5.18
odd=0 ) e (5.18)
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5.3 RIGID ROTOR STATES AND ENERGY LEVELS

We are now in a position to determine the rigid rotor energy levels for tops in
order of decreasing symmetry. The Hamiltonian (5.8) for a spherical top is
functionally indistinguishable from that of a diatomic rotor,

4n%c 4nc

A= . Bﬁ:TB(f,%+f§+J‘3) (5.19)

with the consequence that spherical top energy levels in cm ™! are given by (cf:
Eq. 3.24)

E,=BJJ+1) J=0,1,2,... - (5.20)

Owing to the spherical symmetry of its inertia tensor (I, = I, = I.), the spherical
top’s rotational levels depend only on the single quantum number J.

In the oblate symmetric top, the rotational Hamiltonian is given by Eq. 5.10.
The ¢ axis is denoted the figure axis. According to the commutation rules
obtained in Section 5.3, one possible commuting set of observables is J,, J., and
J2. It is then possible to formulate rotational states |[JKM> which simulta-
neously obey the eigenvalue equations

JUYIKMY = J(J + DR}JKMY  J=0,1,2, ... (5.21)
JJJKM) = MhJJKM> —J<M<J (5.22)
JIJKM)Y = Kh|JKM> -J<K<J (5.23)

This implies that the eigenstates [JKM ) must behave as
|[JKM) = e™M®f D (0)ex (5.24)

where M and K are both integers ranging from —J to J. The 6-dependent
functions f{}/(0) prove to be hypergeometric functions of sin%(6/2) [3,4]. These
are rarely given explicitly in modern spectroscopy texts, because no knowledge
of these functions is necessary to obtain either the energy levels or ihe selection
rules for spectroscopic transitions in symmetric tops. By combining Egs. 5.1C.

5.21, and 5.23, we obtain the energy levels for the oblate symmetric top in cm ™!,

E,;x = BJ(J + 1) + (C — B)K? (5.25)

A schematic energy level diagram is given for the oblate top in Fig. 5.5.

The quantum number M measures the projection of the rotational angular
momentum J upon the space-fixed z axis (Eq. 5.22). Since the rotational energy
is independent of the orientation of J in isotropic space, E g is independent of M
(Eq. 5.25). The projection K# of J on the bocdy-fixed ¢ axis does influence the
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OBLATE PROLATE

Figure 5.5 Rotational energy levels for oblate and prolate symmetric tops. Note
that levels do not exist for |K| > J (dashed lines). For given J, the rotational energy is
a decreasing (increasing) function of |K| for oblate (prclate) tops.

e

! \

(a) (b)

Figure 5.6 Rotational motion in an oblate top for (a) |K|=J and (b) K=0.
According to Eq. 5.25, the rotational energy for given J is smaller in case (a) than in
case (b). This is in agreement with the classical result, where the rotational energy
J2/2/ depends on the total angular momentum J and the moment of inertia / about
the axis of rotation: / is clearly larger in case (a) than in case (b).

rotational energy, as is illustrated in Fig. 5.6 for an oblate top. When |K] attains
its maximum value (=J) for given J, the molecule is rotating about an axis that
is nearly parallel to the figure axis. (It cannot rotate purely about the ¢ axis: In
such a state, one would have J, = J, = 0, which would violate the uncertainty
principle embodied in Eq. 5.15) When K is small, the molecule undergoes a
tumbling motion dominated by rotation about the a and/or b axis. Since
numerically different rotational constants are associated with rotations about
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the figure axis and the normal axes, the rotational energy must depend on |K|. It
is insensitive to the sign of K, which only controls the direction of rotation about
the figure axis.

In a prolate symmetric top, the a axis rather than the ¢ axis becomes the figure
axis. The body-fixed a, b, c axes depicted in Fig. 5.4 are replaced by the b, ¢, and a
axes, respectively. The mutually commuting set of observables becomes J,, J,,
and J2. With these modifications, the oblate top eigenvalue equations and wave
functions (5.21)—(5.24) become applicable to the prolate top as well. The
pertinent rotational energies in cm ™! are

E,x = BJ(J + 1) + (4 — B)K? (5.26)

The energy levels for the prolate top are contrasted with those for the oblate top
in Fig. 5.5. Since (C — B) < 0 in the oblate top and (4 — B) > 0 in the prolate

J
Ko Ko
N TTTTT——————— 1.1

o 1o

0
0,0 Ll 0,0
J, 1Kyl -B J, 1Kl
OBLATE PROLATE
A=B>C A>B=C

Figure 5.7 Correlation diagram for asymmetric rotor state energies between the
oblate (A =B > C) and prolate (A > B = C) limits. Here the rotational constants A
and C are fixed, while B (the horizontal coordinate) is varied continously between A
and C. The oblate and prolate top energies are given by Eqgs. 5.25 and 5.26,
respectively; the asymmetric top energies for intermediate rotational constants B
must be found by explicit diagonalization of the asymmetric top Hamiltonian [2, 6].
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Table 5.1 Rotational constants in cm~! for some asymmetric, symmetric, and
spherical top molecules

Species Point group A B C
H,O0 C,, 27.877 14.512 9.285
H,CO C,, 9.4053 1.2953 1.1342
HCO,H C, 2.58548 0.402112 0.347447
CH,3%Cl Cs, 5.09 0.443401 —
CH,'%"1 C,, 5.11 0.250217 —
C,H¢ D, 2.681 - 0.6621 —

NH, Cs, — 9.4443 6.196
C¢Hg¢ D, — 0.1896 0.0948
CH, T, — 5.2412 —

Data taken from G. Herzberg, Molecular Structure and Molecular Spectra, 111. Electronic Spectra
and Electronic Structure of Polyatomic Molecules, Van Nostrand Reinhold, New York, 1966.

top, increasing K decreases the rotational energy in an oblate top, but increases
the rotational energy in a prolate top.

In the asymmetric top, the rotational Hamiltonian (5.6) is proportional to
AJ? + BJ? + CJ? with A > B > C. Since no two body-fixed components of J
commute (Eq. 5.15), no wave function can simultaneously be an eigenfunction of
any two (let alone all three) of the operators J?2, JZ, and J2. It is possible to find
the rotational eigenstates and energies of an asymmetric top by diagonalizing
the Hamiltonian (5.6) in the |[JKM) basis. This has been done in several texts
[2], and it will not be repeated here. An asymmetric top (in which A > B > C)
may be considered an intermediate case in which the value of the rotational
constant B lies between the extremes exhibited in a prolate top (4 > B = C) and
in an oblate top (4 = B > C). In this spirit, the energies of the asymmetric rotor
may be visualized on a qualitative energy level diagram showing the correlations
between the prolate and oblate limits (Fig. 5.7). The vast majority of molecules
are asymmetric tops.

Some representative rotational constants are listed for asymmetric, sym-
metric, and spherical top molecules in Table 5.1.

5.4 SELECTION RULES FOR PURE ROTATIONAL TRANSITIONS

We begin this section by deriving the E1 selection rules for rotational transitions
in symmetric tops, since spherical and linear molecules may be considered
special cases of symmetric tops. Fo: El-allowed transitions from state |JKM) to
state |J'’K'M’), we require a nonzero electric dipole transition moment

Hs
KMl K'M"y = (JKM| | p, [ IK'My #0 (5.27)

Mz
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Here u is the permanent molecular electric dipole moment. An intuitive
argument will suffice for the selection rule on AK. Since g must be parallel to the
figure axis by symmetry in any prolate or oblate top, and since K controls the
velocity of rotation about the figure axis, changing K has no effect on the motion
of the molecule’s permanent dipole moment. Accordingly, the presence of an
oscillating external electric field cannot influence K, and we have the selection
rule AK = 0.

To obtain the selection rules on AJ and AM, we exploit the properties of
vector operators. All quantities that transform like vectors under three-
dimensional rotations have operators exhibiting commutation rules that are
identical to those shown by the space-fixed angular momentum operators J, J,,,
J.. Such operators, which we will denote V = (V,, ¥, ,), exhibit the commuta-
tion rules

Ve V1=0
U, V1=iV, = —[J,, V] (5.28)

and cyclic permutations of x, y, z

These operators are termed vector operators with respect to J. The space-fixed
angular momentum components J,, J,, J, are obviously vector operators with
respect to themselves (cf. Eq. 5.11). The position and linear momentum
r =(x, y, z) and p = (p,, P, p) are also vector operators, as is the electric dipole
moment operator g. Since we have from Eq. 5.28 that for any vector operator V

[jz’ I7;:] = lhI?y
., V1 = ik?, (5.29)
it follows that
., Ve + iV, = h(V, + V)] (5.30)

Using the notation V, =V, +iV,, this implies that [J,,
V,1=J,V, — V,J,=hV,. We consequently find that for any vector operator

(JKM\I, P, — V., J, —wV, |JK'M">

=M — M — DiIKMIPL[JK'MY =0 (5.31)

Proceeding similarly with the operator V_ =V, —iV,, we find that
[J,, V_] = —hV_, with the result that

IKMVJT, V. —V_J, + WV_|JK'M")
=M — M’ + Dh{JKM|P_|J'K'M'Y =0 (5.32)
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Since [J,, V,] = 0, we also have

IKM|J,V, — VJJJK'M")
=M — MWJKM|VJJK'M'> =0 (5.33)

Recognizing that the dipole moment operator u is a vector operator, we see that
Eqgs. 5.31 and 5.32 give the selection rule AM = +1 for the x and y components
of the E1 transition moment. From Eq. 5.33, it is clear that (JKM|u |J'K'M") is
zero unless AM = 0.

For the selection rule on AJ, we may use the more complicated vector
operator identity [5]

[J2, [J2, V1] = 2k2[J?V + VJ2 — (3 -V)J] : (5.34)
This leads to the condition
CIKMILJ?, [J?, V] = 202[J%V + VJ2 — 25 - VI K' MY
=h*[(J —J)? = 1][(J + J' + 1) = 1IIJKM|V|J'K'M")
=0 (5.35)

Thus, either (JKM|V|J’K’M’> vanishes, or J'=J + 1 (the quantity in the
second set of square brackets cannot vanish when J # J’ and J, J' > 0). Hence
we find the selection rule AJ = +1 for pure rotational transitions in a
symmetric top. The symmetric top E1 selection rules can therefore be sum-
marized as AJ = +1, AK = 0. In the presence of strong external electric fields,
the rotational energy levels depend on M as well as on J and K (via the Stark
affect); the selection rules AM =0 (u,) and AM = +1 (p,, p,) then become
relevant. For freely rotating spherical tops and linear polyatomics, the K
dependence drops out of the expressions for the rotational Hamiltonian and
energy levels; their selection rules reduce to AJ = +1, AM =0, +1 as in
diatomics (Chapter 3). It is worth remarking that all of the selection rules
derived in this section emerged as consequences of vector operator properties;
consideration of the specific rotational wave functions (5.24) was unnecessary.

5.6 MICROWAVE SPECTROSCOPY OF POLYATOMIC
MOLECULES

Rotational transitions in most polyatomic molecules occur in the microwave
region of the electromagnetic spectrum (A = Imm to 1cm). In a prototype
microwave absorption experiment, microwaves are generated in a specialized
oscillator (called a klystron), propagated through a hollow rectangular metal
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pipe (a waveguide) containing the sample gas at low pressure, and finally
detected at a silicon crystal. At gas pressures low enough to render collisional
broadening negligible (Chapter 8), the frequency widths of rotational absorption
lines are narrowed to the point where their frequency positions may be
determined with high accuracy. This fact, coupled with the available frequency
stability of klystron sources (better than one part in 10°), endows microwave
spectroscopy with the capability of determining the rotational constants
extremely to high precision. A drawback of obtaining microwave spectra at such
low gas pressures (1072 to 10~ * torr) is loss of sensitivity, since the absorbance
(Appendix D) is proportional to the molecule number density. This problem is
addressed by the technique of Stark-modulated microwave spectroscopy [6].
The waveguide used for microwave propagation through the sample gas is
bisected by an insulated, conducting septum running down its length. Applica-
tion of a square-wave voltage (typical frequency ~ 100kHz) to the septum
generates a modulated electric field in the gas, modifying its rotational
energies by the Stark effect. The rotational line frequencies in the presence of the
field are shifted from their zero-field positions, because the level Stark shifts
depend on J, K, and M. Hence the absorption lines may be switched in and out
of resonance with the incident microwave frequency from the klystron, allowing
selective detection of the molecule-specific absorption signal with a lock-in
amplifier. This widely used method greatly enhances the sensitivity and
resolution of microwave spectroscopy. ‘

As examples of the use of microwave spectroscopy to determine equilibrium
geometry, consider the molecules NF; and CH;Cl, which both have C,,
symmetry. If the N—F bond length is denoted / and the bond angle is 0, the use of
Eq. 5.3 leads to the expression

1, = 2mgl*(1 — cos 6) (5.36)

for the moment of inertia about the figure (C5) axis. Similarly, the two moments
of inertia about axes normal to the figure axis are both

mympgl?

= 2 —
I, = mgl*(1 — cos 6) + Er—— (1+2cosb) (5.37)

Since the symmetric top selection rules are AJ = +1, AK =0, absorptive
transitions will be observed from state |J — 1, KM) to states |JKM)> and
[JKM + 1), occurring at frequencies 2BJ according to Eq. 5.25. Hence, the
microwave spectrum of NF; yields no measurement of the rotational constant
C. Since two structural parameters (I and 6) enter in the rotational moment I,, a
single microwave spectrum cannot determine the geometry of NF;. However,
spectra of the isotopic species 1*NF; and !’NF; may be combined to give two
equations similar to Eq. 5.37, assuming the isotopes have identical geometry. In
this manner, / and 6 were determined to be 1.71 A and 102°9’, respectively [6]. In
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a similar vein, the perpendicular moments of inertia in C5, CH;Cl are given by

1

I, =myxl?(1 —cos ) + —M8MM
b Hl( ) 3mH+mc+mCl

x {mH(mc + me)l2(1 + 2 cos 6)

1+2 0
+ mel, [(mc + 3my)l; + 6myl, (%)/l]} (538)

where [; is the C—H bond length, I, is the C-Cl bond length, and 0 is the
H-C-H bond angle. (The expression for the moment about the figure axis is
analogous to that for NF; in Eq. 5.36; the AK = 0 selection rate prevents its
measurement by microwave spectroscopy.) In this case, microwave spectra of
three isotopic species must be made in principle to determine /,, [,, and 6. The
assumption that molecular geometries are insensitive to isotopic substitution is
not always justified; the C—H bond distance in CH;Cl is in fact some 0.009 A
larger than the C—D bond distance in the deuterated compound [6]. Hydrogen
atom positions appear to be especially prone to isotopic geometry variation.
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PROBLEMS

1. Inthis problem, we derive the expressions given in Egs. 5.13 and 5.14 for the
space-fixed and molecule-fixed angular momentum components in terms of the
Euler angles &, 6, and y. It is already clear from Fig. 5.4 that J, = J¢ = (h/l)@/@d)
and J, = J = (h/i)d/dy. Hence, the problem reduces to finding J., J, » J,,and J,
in terms of the Euler angles.

(a) Show gegtr}etrically that the projection of the unit vector j in the xy plane is
% — (- ®)p. Then show that this projection, normalized to unit length,
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becomes

¥ — cos 0
sin 6

N S C3r.)
TO-G 97

Noting that %, and 6 are orthogonal unit vectors in the xy plane, show that

X=X, +@ %0 =sinp-%, +cos -0

and similarly that

9= —cos ¢-7, +sin ¢-8

Using the fact that

s .~ h_ (.0 0 0
Jx= 'J=— . —_— —_ v —

X 1x<¢6¢+960+x0}(>
s . h_ (.0 0 0
J=ypF="3(3 L1 59
y=Y 1y<¢5¢+ 59+Xax>

derive Egs. 5.13 for J, and J,.
Using an analogous procedure, derive Egs. 5.14 for J, and J,. (Hint: The
unit vectors a and b lie in a tilted plane perpendlcular to . Express a and b

in terms of § and the pro_]ectlon é L of é upon this plane. The desired
quantities are given by J,=a*J and J, = b*J.)

Obtain the angular momentum commutation relations (5.15) and (5.17)

directly from Egs. 5.13-5.14 for the space-fixed and body-fixed angular
momentum components.

3.

Classify each of the following molecules by point group and by rotor type

(spherical, symmetric, or asymmetric). Which of them will exhibit a microwave
spectrum?

(@
(b)
(©
(d)
()

4.

SF¢

Allene, C;H,
Fluorobenzene, C¢HsF
NH,

CH,Cl,

The microwave spectroscopic bond lengths ! and bond angles 0 for the Cj,

molecules PF; and P3°Cl, are given below. Determine whether each molecule is
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a prolate or an oblate symmetric top.

IA) 0(°)
PF, 1.55 102°
P35Cl, 2043 100°6'

5. The microwave spectrum of NH; yields the rotational constant
B =9.933 cm ™ !. If the N—H bond length is independently known to be 1.014 A
in NH;, what is the H-N-H bond angle?

6. Consider a hypothetical molecule ABs;C which is known to exhibit C,,
geometry (it would be an O, molecule if atoms B and C were identical and all
bond lengths were equal).

(a) Obtain expressions for the principal moments of inertia.
(b) In view of the symmetric top selection rules, for how many isotopic species
must microwave spectra be obtained to specify its geometry?

7. For what H-N-H bond angle would C;, NH; become an accidental
spherical top?
8.

(a) Show that the moment of inertia in the linear OCS molecule is given by
I, = [momcléo + memgles + momg(lco + lcs)*]/m

where m is the total mass mg + mc + mq.

(b) The pure rotational spectrum of **0O!2C32S exhibits adjacent lines at the
frequencies 48651.7 and 60814.1 MHz. Assign the J values for these
transitions and calculate the rotational constant B for this isotope.

(c) The frequencies of one of the lines in the spectrum of °0Q!2C34S is
23731.3 MHz. Assign this line, and compute the experimental values of I,
and .

9. The FNO molecule is a bent triatomic with Iyz = 1.52A, Iyo = 1.13A; the
F-N-O bond angle is 110°.

(a) Locate the center of mass, and evaluate the moment of inertia tensor in a
right-handed Cartesian coordinate system in which X points along the N-F
bond, y lies in the molecular plane, and Z is perpendicular to the plane.

(b) Diagonalize the inertia tensor to obtain the principal moments of inertia I,
I,, I.. Determine the directions &, b, ¢ of the principal axes.



POLYATOMIC VIBRATIONS

In a polyatomic molecule with N nuclei, 3N independent coordinates are
required to specify all of the nuclear positions in space. We have already seen in
the preceding chapter that rotations of nonlinear polyatomics about their center
of mass may be described in terms of the three Euler angles ¢, 0, and y. Three
additional coordinates are required to describe spatial translation of a
molecule’s center of mass. Hence, there will be 3N — 6 independent vibrational
coordinates in a nonlinear polyatomic molecule. In a linear polyatomic
molecule, the orientation may be given in terms of two independent angles 6 and
¢. Linear polyatomics therefore exhibit 3N — 5 rather than 3N — 6 independent
vibrational coordinates.

By their nature, such vibrational coordinates involve collective, oscillatory
nuclear motions that leave the molecule’s center of mass undisplaced. It is of
interest to know the relative nuclear displacements and vibrational frequencies
associated with these coordinates, because they are instrumental in predicting
band positions and intensities in vibrational spectroscopy. An important
question arises as to whether vibrational motion occurs in modes that are
dynamically uncoupled. If it does, an isolated molecule initially having several
quanta of vibrational energy in a particular mode will not spontaneously
redistribute this energy into some of its other modes, even though such a process
may conserve energy. Hence, the form of the modes has implications not only for
vibrational structure (as manifested by energy levels and selection rules in
infrared spectra), but also for understanding dynamical processes like vibra-
tional energy transfer in collisions and intramolecular vibrational relaxation
(IVR). These phenomena are currently well-pursued research areas, and can
only be understood with a seasoned physical appreciation of vibrational modes.

183
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This chapter begins with a classical treatment of vibrational motion, because
most of the important concepts that are specific to vibrations in polyatomics
carry over naturally from the classical to the quantum mechanical description.
In molecules with harmonic potential energy functions, vibrational motion
occurs in normal modes that are mutually uncoupled. Coupling between
vibrational modes inevitably occurs in the presence of anharmonic potentials
(potentials exhibiting cubic and/or higher order terms in the nuclear coor-
dinates). In molecules with sufficient symmetry, the use of group
theory simplifies the procedure of obtaining the normal mode frequencies and
coordinates. We obtain E1 selection rules for vibrational transitions in
polyatomics, and consider the rotational fine structure of vibrational bands. We
finally treat breakdown of the normal mode approximation in real molecules,
and discuss the local mode formulation of vibrational motion in polyatomics.

6.1 CLASSICAL TREATMENT OF VIBRATIONS IN
POLYATOMICS

The positions of all N nuclei in a polyatomic molecule may be specified using the
3N Cartesian coordinates &,, &,, ..., &35. In terms of these, the nuclear kinetic
energy is given by

=5 z mE:=TE, ..., &y (6.1)

where m; is the mass of the nucleus with which coordinate &; is associated. In the
Born-Oppenheimer approximation, the eigenvalues of the electronic Hamil-
tonian will act as a conservative potential energy function V(&,, ..., &;y) for
vibrational motion (in reality, ¥V will only depend on 3N — 6 independent
coordinates in nonlinear polyatomics). If one forms the Lagrangian function
L = T — V, the nuclear Cartesian coordinates will obey the equations of motion

d 0L oL

== i=1,...,3N 6.2

dt 08 3¢, ! (6.2)
which lead to

( &) + ; i=1,...,3N (6.3

These equations may be solved for a specified potential energy function V. In
analogy to what was done for diatomics (Eq. 3.32), we may expand the
vibrational potential V as a Taylor series about the equgibrium geometry,
el

<

oV 13N/ 9%y ’
V= V°+Z<6§.>oé+ Z(aga:)oéﬁJ’ | (6.4)
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Arbitrarily setting V,, = 0 and recognizing that (0V/9¢&;) = 0 for all coordinates ¢&;
at the equilibrium geometry, we obtain the general potential energy function

3N

1
V=§Zcij€,’€j+”' (65)

where we have introduced the notation ¢;; = (02V/0&,0¢),. If we now make the

harmonic approximation by ignoring third- and higher order terms in Eq. 6.5, the
equations of motion become

d .
- (m;&;) + Z ¢;¢;j=0 (6.6)
dt 7

In terms of the mass-weighted coordinates

= Eu/m; (6.7)

the kinetic energy assumes the simpler form

T=5) i (6.8)
The equations of motion then become transformed into

d .
d—t (1) + ; bij’7j =0 (6.9)

motlons Since the solution to the classical equatlon of motion for an undamped
one-dimensional harmonic oscillator is a sinusoidal function of time [1], it is
physically reasonable to try solutiens of the form

m=n?sin(t/2+9) i=1,...,3N (6.10)

for the coupled homogeneous second-order differential equations (6.9). Differ-
entiating this twice with respect to time gives

= —Mn? sin(t\/2 + 9) (6.11)

and then substituting Eqgs. 6.10 and 6.11 into the coupled equations (6.9) yields

i+ Y bym?=0 ij=1,...,3N (6.12)
e
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because the function sin(tﬁ + 9) cancels throughout. Writing the trial solu-
tions #; in the form of Eq. 6.10 is tantamount, by the way, to assuming that all
of the nuclear motions in a given vibrational mode oscillate with the same

frequency v = ﬂ/Zn and at the same phase 6. The simultaneous equations (6.12)
for the 3N oscillation amplitudes #? can have nontrivial solutions only when [1]

b11 — 4 ‘ b12 bl,SN

b?‘ boy =4 =0 (6.13)

b3N'1 b3N,3N — 4

The 3N roots 4y, 4,, ..., A3y of this secular determinant are related to the
allowed vibrational frequencies v; by 4; = 4n?v2. They depend on the coefficients
b;;, which are in turn governed by the potential energy function (via
c;j = (0*V/0&,0¢,)) and the nuclear masses (via b; = c;;/(mym;)'/?). It turns out
that six of the eigenvalues of (6.13) will be zero in general (five in linear
molecules), corresponding to the nonoscillating center-of-mass translational
and rotational motions. The only approximation we have used in this treatment
was to break off the Taylor series (6.4) at the second-order (harmonic)
approximation; otherwise it is classically exact. The principal difficulty with this
approach is that except in molecules with special symmetry, the coefficients
¢;j = (0?V/0¢,0¢;) are not easily evaluated in terms of the Cartesian coordinates
& '
We will now apply this formalism to the example of a linear ABC molecule in
which the nuclear motion is artificially restricted to motion along the internu-
clear axis for simplicity. In a full three-dimensional treatment, such a molecule
would have three translations, two rotations, and four vibrational modes.
Constraining the nuclei to one-dimensional motion along the axis will eliminate
two of the translations, both rotations, and two bending vibrational modes
(which involve nuclear displacements perpendicular to the axis). The nuclear
masses and Cartesian coordinates are shown in Fig. 6.1. For this system, the
nuclear kinetic energy is rigorously given by

2T = mpé? + mé3 + mc&3 (6.14)
=% + 03+ 73
We may use a harmonic approximation for the potential energy function

2V = ky(&y — &) + ky(E3 — &) (6.15)

3 Figure 6.1 Nuclear masses and Cartesian
c displacement coordinates for linear ABC.
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which attributes Hooke’s law forces to the A—B and B—C bonds with force
constants k, and k,, respectively. (A more accurate potential could also include
some interaction between the end atoms, and so depend on (£; — &,) as well). In
mass-weighted coordinates, the potential becomes

2V = kyn}/mp + ni(ky + ky)/mg + kon3/mc
— 2kynny//mamy — 2kyn,13/\/ memc (6.16)

The secular determinant (6.13) then becomes

kl/mA_j, —kl/\/mAmB 0
—ky/\/mamg (ky + ky)/mg — A —ka//mgmc
0 —k,//mgmc ky/mc — A

1 1 1 1
=4 {lz—llikl <—+——>+k2 <—+—>}
my Mg mg Mc
+ kiky(my + mg + mC)/mAmBmC} =0 6.17)

Hence the three roots of the secular determinant are given by

A A=k 1+1+k 1+1
1+ s 2mB e

/1112 = (mA + mB + mc)klkz/mAmBmC (618)

2.3-_—0

These roots 4, are related to the allowed vibrational frequencies v; by A; = 4n2v2.
The third root A3 =0 is associated with the zero-frequency translation of
molecule’s center of mass along the molecular axis; the nonzero roots 4, and 1,
correspond to vibrational modes involving stretching of the A—B and B-C
bonds.

We can gain considerably more insight by recasting this treatment in the
form of a matrix eigenvalue problem, because then we can exploit several well-
established theorems from matrix algebra [2]. The coefficients b;; in the
potential energy function (6.9) may be organized into the matrix

bu b12 b1,3N

B=| : (6.19)

b3N.1 b3N,3N
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and the set of mass-weighted coordinates #; can be written as the column vector

U
n=|" (6.20)
N3N
with transpose
n=1[n n - Nl (6:21)

The secular determinant equation (6.13) then becomes
|IB — AE| =0 (6.22)
where E is the unit matrix. Each of the roots 4, of this secular determinant can be

substituted back into Egs. 6.12 to give a new set of equations. These give the
relative amplitudes 7 of oscillation in the coordinates #; corresponding to the

kth allowed vibrational frequency v, = ﬂk/2n:

by + byand + - — At =0
: (6.23)
ban. 1Mk + bay 2 + - — A3nx =0

For a given vibrational frequency v,, these relative displacements may be
expressed in a column vector

%k
= ’7?" (6.24)
"IgN.k
These column vectors may be normalized,

lu= Ckr’gc (6.25)

so that

SB-1 (626)
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In matrix notation, the normalized column vectors

llk

le

L= (6.27)

lSN,k

obey the condition I} +1, = 1. All of the information about the form of the
vibrational motions is contained in the normalized eigenvectors l,, whose
elements reflect the relative displacements in each of the mass-weighted
coordinates. The number C, in Eq. 6.25 is just a constant fixing the vibrational
energy in the mode with frequency v,; C; 2 is proportional to the total energy
T + V in mode k, and forms an allowed vibrational energy continuum in the
classical picture.

Finding the roots 4, ..., A3y of the secular determinant (6.13) is mathema-
tically equivalent to finding a similarity transformation which diagonalizes the
B matrix,

(2, 0 0 0 - O]
0 4, 0 0 - 0

L B-L=[0 0 4 0 0 =4 (6.28)
0 0 0 - Asn ]

where A is a diagonalized matrix of eigenvalues whose elements are the roots.
Each of the column vectors I, (Eq. 6.27) is an eigenvector of B with eigenvalue 4,

B-1, = 4l

According to the theory of the matrix eigenvalue problem [2], the matrix L
required for the similarity transformation (6.28) is equivalent to the matrix of
eigenvectors

lll 112 ll.3N

L= 2'1 22 2,.3N (6.29)

l3N,1 l3N,3N

obtained by stacking up the eigenvectorsly, L,, ..., 15y side by side. When Bis a
symmetric matrix (b; = b;)—which it must be in our problem because
b,; = (mm;)~*?0*V/0¢,0¢ ;—the eigenvectors I, form an orthonormal set

Ll = b (6.30)
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and the inverse L™ ! of the matrix of eigenvectors is given by
L !=1L" (6.31)

where the elements (C');; of the transpose C* of any matrix C are defined as
(CY;j = cji-

To illustrate how we obtain the normalized eigenvectors I, for molecular
vibrations, we resume our discussion of the linear ABC molecule. When
specialized to the more symmetrical case of linear ABA in which the end masses
and force constants are equal (m, = m¢ and k, = k, = k), the secular determi-
nant roots 4, in Eq. 6.18 become

Ay = kjmy
Ay = kjmy + 2k/my ' (6.32)
1.3 = 0

Substitution of the root A; = 0 into one of Egs. 6.23 then yields

(k/ma)nQs + (—k//mamg)n3; =0 (6.33)

since b,;; = 0 and A; = 0. Similarly,

b3inYs + b3ands + basn3s — A3n33 =0 (6.34)
leads to
(—k//mamgnds + (k/ma)n3; =0 (6.35)

Equations 6.34 and 6.35 imply that

n3/M3s = (my/mg)'/? and &9,/89; =1

n33/m3s = (my/mg)'’? and &3,/85; =1 (6.36)
Hence it is apparent that £9; = &9, = &35, so that the zero-frequency mode
(A3 = 0) is associated with overall molecular translation parallel to the mole-

cular axis (Fig. 6.2). The normalized eigenvector for mode 3 can now easily be
shown to be

(my/m)2
Iy = | (mg/m)*” (637)
(mafm)'2
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Figure 6.2 Eigenvectors I, I, I, of the matrix B for linear AB,,. Lengths of arrows
give relative displacements in mass-weighted (not Cartesian) coordinates.

where m = 2m, + my is the total nuclear mass. In a similar way, the normalized
eigenvectors for the other two modes can be derived as

1//2
0

I, = (6.38)
-1/ \/E
(mg/2m)'/2
L, =| —2(m,/2m)'? (6.39)
(mg/2m)'"?

It may be verified that these normalized eigenvectors obey the normalization
and orthogonality conditions (6.26) and (6.30). It is apparent from Eq. 6.38 that
mode 1 is a symmetric stretching mode (Fig. 6.2), because the coordinate 7, of
atom B has zero coefficient in eigenvector l,, and the eigenvalue 1; has no
dependence on myz—as would be expected if nucleus B were motionless. It is
clear from the form of eigenvector 1, that mode 2 is an asymmetric stretching
mode (Fig. 6.2) in which the A nuclei move together in a direction opposite to
that of nucleus B. Since all of the nuclei move in mode 2, 5, depends on my as
well as on m,.

6.2 NORMAL COORDINATES

To a good approximation, the restoring forces responsible for molecular
vibrations are directed along chemical bonds. The potential energy function (6.4)
is therefore not easily expressed in Cartesian coordinates except for molecules
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having bond angles of 90° and/or 180° (e.g., linear molecules, octahedral SF,
and the hypothetical square-planar A, molecule). It may be more naturally de-
scribed using 3N generalized coordinates q; which are related by a linear
transformation to the mass-weighted coordinates,

3N
n = Z Mijqj
J
or
n=M-q (6.40)

The enormous utility of the Lagrangian equations (6.2) lies in the fact that if q is
related to n by such a transformation, they become true in the generalized as
well as in Cartesian coordinates:

4oL oL
dt 0q; 0q;

J

=0 (6.41)

The potential function in the harmonic approximation now becomes

2VE .rlt.B.n =(M.q)l.B.(M.q)
=q'*B'-q (6.42)

where the matrix B in the Cartesian basis has become transformed into
B =M'"-B-M (6.43)

in the basis of generalized coordinates. Under this linear transformation, 2V
remains harmonic, because Eq. 6.42 contains no higher than second-order terms
in q;. The kinetic energy now becomes

T =i =M@ (M9 (644)
= (M M)-q

With this change of basis, the secular determinant equation |B — AE| =0
becomes replaced by

IB'— AM'-M| =0 (6.45)

with B'= M'-B-M. However, the linear transformation (6.40) leaves the
eigenvalues 4, and the physical eigenvectors unchanged [2], so that the secular
equations (6.22) and (6.45) yield precisely the same results; the transformation
simply creates leeway for choosing convenient coordinates with which to
express the potential energy function.
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‘We now assert that for harmonic potentials (potentials containing no terms
beyond the quadratic terms proportional to ¢;q; in Eq. 6.42) it is always possible
to find normal coordinates Q, related to n by a linear transformation

n=M,'Q (6.46)

which diagonalize both the kinetic and potential energy. In particular, we claim
that these energies become

2T=Q"Q=Y ¢}
2r=Q-4-Q=Y 407 (6:47)

In contrast to expressions (6.44) and (6.42) for 2T and 2V in arbitrary
generalized coordinates, these equations contain no cross terms in Q,0;
or Q;Q;. We may appreciate the physical significance of such normal coor-
dinates by substituting Eqs. 6.47 into the Lagrangian equations

d oL 9L

56,750, i=1,...,3N (6.48)

to yield
0;+40i=0 i=1,...,3N (6.49)

In contrast to the corresponding coupled equations #; + Y b;#; = 0 in mass-
weighted coordinates, Eq. 6.49 shows that each normal coordinate Q; oscillates
independently with motion which is uncoupled to that in other normal
coordinates Q;. This separation of motion into noninteracting normal coor-
dinates is possible only if ¥V contains no cubic or higher-order terms in Eq. 6.4.
Anharmonicity will inevitably couple motion between different vibrational
modes, and then the concept of normal modes will break down. In the normal
‘mode approximation, no vibrational energy redistribution can take place in an

isolated molecule.
The formal solutions to the second-order differential equations (6.49) are

Q; = 0f sin(t./4; + 9) (6.50)

so that each normal coordinate oscillates with frequency v; = \/Z/Zn. These
frequencies are identical to those found by diagonalizing the secular determi-
nant (6.13) in the mass-weighted coordinate basis. To find the actual form of the
normal coordinates Q, we note that from Eq. 6.46

2V=7"B:n=Q'"(M}y-B-My):Q - (651
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Comparing this with Eq. 6.47 for 2V then implies that
My-B-M, =4 (6.52)
In the light of Egs. 6.28 and 6.31, it then follows that
My=1L (6.53)
and that

n=L-Q (6.54)

where L is the matrix of eigenvectors of B. The normal coordinates Q may then
be obtained via

Q=L—1"[|.= Lt'n (655)

»

6.3 INTERNAL COORDINATES AND THE FG-MATRIX METHOD

We pointed out in the preceding section that a realistic potential energy function
may not be easily expressible in Cartesian coordinates, but may be written more
naturally in terms of 3N generalized coordinates related to the mass-weighted
coordinates by a linear transformation (6.40). In fact, only 3N — 6 such
coordinates are required to fully specify the potential (3N — 5 in linear
molecules): 2V is not sensitive to the center-of-mass position or molecular
orientation in space, and a polyatomic molecule exhibits only 3N — 6 (3N —5)
independent bond lengths and bond angles. Such a truncated set of 3N — 6
(BN — 5) generalized coordinates is called an internal coordinate basis, and is
commonly denoted S. To illustrate how an internal coordinate basis may be
used to evaluate normal modes, we consider the bent H,O molecule in Fig. 6.3.
The three internal coordinates are conveniently chosen to be

S2 = rc - ro (6.56)

(where the subscripts 0 denote equilibrium values), because to a good first
approximation the potential energy function in water has the form

2V = ky(S? + S2) + k,S2 , (6.57)

This potential assumes that independent Hooke’s law restoring forces are
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Figure 6.3 Internal coordinates rg, rc, and ¢ for the H,0 molecule. Arrows show
orientations of the Cartesian basis vectors £, through ¢, used in Eqgs. 6.64 and 6.65.

operative in each of the O-H bonds as well as in the bond angle ¢. The
3N — 6 = 3 internal coordinates are displacements in two bond lengths and a
bond angle, rather than coordinates of individual nuclei as in the mass-weighted
basis. The matrix formulation of the vibrational problem in Section 6.2 is
nonetheless still applicable, because the S; can be related to the #; by a linear
transformation. Equation 6.57 implicitly defines a force constant matrix F, since

2V =S"F-S (6.58)
with
k, 0 0
F=[0 k; O (6.59)
0 0 k,

The force constant matrix need not be diagonal (i.e., more sophisticated
potentials may be used). For a bent molecule with three nuclei, an arbitrarily
accurate force constant matrix will still be a BN —6) x BN —6) =3 x 3
matrix.

To obtain a secular determinant equation analogous to (6.22) in the internal
coordinate basis, both 2T and 2V must be expressed in terms of S. Since 2T is
readily given in terms of mass-weighted coordinates 1, we need a transformation
of the form

S=D-q (6.60)

Note that because S and n have 3N — 6 and 3N elements respectively, D is a
rectangular (rather than square) matrix with 3N — 6 rows and 3N columns. The
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kinetic energy then becomes

2T= =4 =D -§ (D *-§)
—$-(D-DY'-$
=$8-G!§ (6.61)
According to the rules of matrix multiplication, the product D-D is a
(BN — 6) x (3N — 6)square matrix. With 2T and 2V now consistently expressed

in the S basis, the secular determinant equation |B'— AM'-M| =0 in the
generalized coordinate basis becomes 2

IF-—iG Y =0 (6.62)
in the internal coordinate basis. This is equivalent to
IF-G — AE| =0 (6.63)

so that finding the normal mode frequencies and coordinates reduces to
evaluating the matrix F- G, and then diagonalizing it [3]. This formalism has
become known as the “FG matrix method.” Since a physically reasonable force
constant matrix F is often expressible in internal coordinates, most of the labor
is incurred in evaluating the kinetic energy (G) matrix. Wilson, Decius, and
Cross [3] have provided extensive tabulations of G for a number of molecular
geometries. '

The internal coordinates S, = ry — ro and S, = r — r, for H,O are related
to the Cartesian displacement coordinates &, through &4 in Figure 6.3 by

Si=—(& sin ¢ + &, cos @) + &5 sin ¢p + &g cos @

S, =¢3sin ¢ — &4 cos ¢ — &5 sin ¢ + &g cos @ (6.64)
To obtain the bending coordinate S 3, we recognize that small displacement Ar of
any nucleus in a direction perpendicular to a bond of length r, produces a

change A¢ = Ar/r, in the bond angle. Consideration of the effects of each of the
Cartesian displacements on the bond angle then leads to

1 . .
Sy = - (—&,cos ¢+ &, sin @ + &5 cos ¢ + &, sin @) (6.65)
]
Equations  6.64 and 6.65 now give us D directly. Recalling that

n; = &;1/m; and that

Sy Dy -+ Dy {|m
S (=1 : : : (6.66)
S3 D3; -+ D36 || 76
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the D matrix is by inspection

F—sin ¢ —cos ¢ 0 0 sin¢ cos ¢
 my /My VMo /Mo
sin¢ —cos¢ —sin¢ cos ¢
D= 0 (6.67)
v/ My v My VMo /Mo
—cos ¢ sin ¢ cos ¢ sin ¢ 0 0
| rox/Mu To/My  To/my  Tox/my i
The G matrix then becomes
1 1 cos2¢ 0 ]
my Mg meo
G=D-D=| %2 L 1 (6.68)
Mo my Mo
0 0
L rgmy i)

This can be multiplied by the F matrix (Eq. 6.59) and F- G can be diagonalized
to find the eigenvalues 4, through ;. Such an algebraic procedure can readily
be computerized to vary the force constant matrix in order to optimize the
closeness of fitted vibrational frequencies vZ = 4,/4n> to spectroscopic
frequencies.

~ 6.4 SYMMETRY CLASSIFICATION OF NORMAL MODES

When expressed in terms of normal coordinates, the classical kinetic and
potential energies associated with vibration in a polyatomic molecule are both
diagonalized (cf. Eqs. 6.47). The classical vibrational Hamiltonian becomes

3N-6
H=T+V=Y (0}+40) (6.69)

Under the correspondence principle, the quantum mechanical Hamiltonian for
3N — 6 independently oscillating normal modes in then

3N—6< h2 62

H, = ~ 7807

+ liQi2> (6.70)
The eigenfunctions of H.;, are

3N—-6

Vi @15 - -» Qan—6)) = H NviHvi(Ci)exp(_Ciz/z) (6.71)
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with
L= 240y /h (6.72)
and the eigenvalues are
3IN-6
Ep = Z hv,(v; + %) (6.73)

In Eq. 6.71, the functions H,,({;) are Hermite polynomials of order v; in {;, and
the N,, are normalization constants. The factorization of |y, > into independent
functions of the normal coordinates Q; is possible only when the potential
energy function is harmonic.

To derive the selection rules for vibrational transitions, it is necessary to take
the symmetry of the normal modes into account. We assume that the
polyatomic molecule belongs to some point group G of symmetry operations R.
By definition, all R in G leave the vibrational Hamiltonian invariant, so that [R,
H,;,] = 0. If each normal mode transforms as an irreducible representation (IR)
of G, one can set up matrices R with elements R;; and H with elements H;; in a
basis of vibrational states which are eigenvectors of R (i.e., vibrational states that
transform as IRs of G). Since [R, H,;,] = 0, it follows that [4]

[R-Hlx = Z R;;Hj = [H-R]y = Z H;;Rj (6.74)
: J J

However, if the matrix R is evaluated in a basis of eigenvectors of R, it follows by
definition that R;; = R;;6;;. Then Eq. 6.74 implies that

RiiH ik = H ikRkk
and

(Ri; — RyHy =0 (6.75)

This means that if i # k (i.e., vibrational states i and k belong to different IRs of
G), Hy, = 0. So H,;, has no nonvanishing matrix elements connecting states
transforming as two different IRs i and k.

Since the molecule is physically unchanged by any symmetry operation R in
G, RQ; must be a normal mode having the same frequency as Q; itself. Hence, if
0, is a nondegenerate mode, RQ; must equal + Q; for all operations R in G—so
that Q; must form the basis of a one-dimensional IR in G. If Q; is degenerate,
then

EQ;‘ = ; Dik(ka (6.76)

where k runs over all modes, including Q;, that are degenerate with Q,. This is
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the case because all of the Q, in this set of modes will oscillate at the same
frequency as Q;.

Since the normal coordinates Q are related by a linear transformation to the
Cartesian coordinates &, the matrices for the transformation properties will have
the same characters (traces) in either coordinate basis under all group opera-
tions R [5]. We can see this by assuming that £ = N - Q by hypothesis, and that
the effect of a group operation R on the Cartesian basis is

RE = P(R)-E (6.77)
Then the effect of the operation R on the normal coordinate set Q is
RQ=R(N"'-&) =N"!-Rg
=N"-P(R)-E=[N"'-P(R):N]-Q
=P(R)-Q (6.78)

Since the character of a matrix is unaffected by a similarity transformation [2]
and P'(R) = N~!-P(R)- N, the transformation matrices P’(R) and P(R) in the
normal coordinate and Cartesian bases respectively have the same character for
all group operations R in G. This fact considerably simplifies the determination
of the IRs to which the normal coordinates belong, since the behavior of the
nuclear Cartesian displacements under the group operations reveals this
information even if the form of the normal coordinates is unknown.

“For concreteness, consider the planar, nearly T:shaped CIF; molecule, which
belongs to the C,, point group (Fig. 6.4). The group elements o, and o/, denote
the out-of-plane and in-plane reflection operations. Any symmetry operation on
the Cartesian basis vectors &, through &, , is expressible using a 12 x 12 matrix.
Under the ¢, operation, for example, the in-plane vectors ¢, through &g will be
unaffected, whereas £y through &,, will reverse sign. Hence in the Cartesian
basis

(&1 [too0oo00000 0o o o O]
01000000 O 0O O O
00100000 O O O O
00010000 O 0O O O
00001000 O O 0 ©

o _|[00000100 0 0 o0 oOf.

i 00000010 o0 o o off
00000001 O O 0 O
00000000 -1 0 0 O
00000000 O -1 0 O
00000000 O 0 —1 0

¢2f 00000000 0 0 0 —1ff¢5,]

(6.79)
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Ty

Figure 6.4 Cartesian coordinates for planar T-shaped molecule of C,, symmetry.
¢, through &, lie in the o, reflection plane, while &, through &,, point normal to this
plane. The o, plane (not shown) is normal to the o/, plane; the twofold rotation axis
C, lies at the intersection of the g, and o, planes.

and the character x(o,) of the matrix o, is 8 — 4 = 4. Under the identity
operation, all of &, through &,, are unchanged, so that y(E) = 12. The C,
operation is more interesting in that two of the nuclei are displaced:

¢ [0 o0 o1 00 0 0 o0 o o0]fg
0 00 00 —-10 0 0 0 0 0
0 0 1 00 00 0 0 0 0 0
0 00 -1 0 00 0 0 0 0 0
1 00 00 00 0 0 0 0 0
. 0 -1 0 00 00 0 0. 0 0 0
Cl:1=lo 00 00 01 0o 0 0 o o
0 00 00 00 -1 0 0 0 0
0 00 00 00 0 0 0 -1 0
0 00 00 00 0 0 —1 0 0
0 00 00 00 0 —1 0 0 0
__'5 2] |0 00 00 00 0 0 0 0 —1][&,
(6.80)
For this matrix, the sum of diagonal elements is y(C,) = —2. It can similarly be

shown that y(c,) = 2. These characters for the transformation of & under the C,,
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group operations may then be summarized as

E C, o, o,
x=12 =2 2 4 =4a,®a,®3b, @4b,

According to the C,, character table, CIF; will have translations transforming
asa,, b,, b, and rotations transforming as a,, by, b,. Subtracting these IRs from
the above direct sum yields 3a;, @ b; ® 2b,. Hence CIF; will have three normal
modes of a, symmetry, one of b, symmetry, and two of b, symmetry. We have
determined this without determining what the normal mode coordinates Q,
through Qg actually are; this is possible because the transformation matrices
P(R) and P'(R) have the same character in the € and Q bases.

Setting up transformation matrices like those in Egs. 6.79 and 6.80 is
laborious, and a worthwhile simplification results if one sees [6] that only the
Cartesian coordinates attached to nuclei that are undisplaced by a symmetry
operation R contribute to the character y(R). In particular, the contributions to
the character are yx(6)= +1, y(CH=1+2 cos@mn/n), x(SH=—1+2
cos(2mn/n), and x(i) = — 3 for each nucleus that is undisplaced by the symmetry
operations o, C™, ST, and i, respectively. The character x(E) for the identity
operation is always 3N. These rules are independent of the particular choice of
orientation of the Cartesian axes.

The identification of the IRs according to which the normal coordinates
transform can greatly reduce the computational labor associated with imple-
menting the FG matrix method. It is frequently easy to set up symmetry
coordinates, as linear combinations of internal coordinates, which transform
according to IRs of the point group G. For CIF;, one choice of symmetry
coordinates would be

Si@) =@, —r) +@,—rd)

Sya) =(rs —r9

Sy(ay) = (¢ — 99) + (6, — ¢9)

Sub)) =6 (6.81)

Ss(by) = (ry — 1) —(r; — 19)

Se(by) = (¢ — ¢(1)) - (¢2 - ¢(z))
where the six independent internal coordinates (bond lengths and bond angles)
are defined in Fig. 6.5. In such a basis, the F * G matrix reduces to block diagonal
form, with subblocks allocated to symmetry coordinates transforming as
particular IRs of G (because H,;, has no matrix elements connecting normal
coordinates belonging to different IRs). The block-diagonal form of F-G for
CIF, is shown in Fig. 6.6.

We will now consolidate some of the ideas introduced in this chapter by
deriving the vibrational frequencies of the linear acetylene molecule C,H,, in
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coordinate & is an out-of-plane bending coordinate; + and — indicate nuclear
motions above and below the plane of the paper.
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H C C H

Figure 6.7 Five of the seven independent internal coordinates for D, acetylene.
The remaining two internal coordinates are bending motions normal to the plane of
the paper, and are not considered in our treatment.

which the nuclei are numbered 1 through 4 from left to right (Fig. 6.7). In terms
of the bond radii r;; and bending angles J;;, we will assume that the potential
energy function is given by

j>

2V = kyr3s + kao(r}, + 134) + ky(633 + 634) (6.82)

(A more detailed potential function, incorporating interaction between non-
neighboring atoms, for example, could be used to obtain better fits of derived
vibrational frequencies to experimental frequencies.) Here k, and k, are
harmonic force constants for C-C and C-H bond stretching, respectively, while
ks is a bending force constant. As a first step, we determine the IRs to which the
normal modes will belong in linear C,H,, using the rules for contributions to the
character by nuclei undisplaced by the symmetry operations in D,:

E 2C¢ wa, i 25, C,
x= 12 4 +8cos ¢ ‘ 4 0 0 0
Lirans = 3 1+2cos ¢ 1 -3 —1+2cos¢p —1(=06f@®mn)
Xrot = 2 2COS¢ 0 2 -2 COS¢ 0 (=7‘cg)
Xvib= 7 3 +4cos ¢ 3 1 1 1 =0': @20';
' ® n,P7,

Acetylene therefore has three nondegenerate vibrations (one has ¢ symme-
try and two have o, symmetry), and two doubly degenerate vibrations each of
n, and m, symmetry. It is now possible to form symmetry coordinates from
linear combinations of the bond lengths r;; and the bond angles §;;:

Si(ag) =712 + 734

52(0;) =T33

Sy(00) =112 — T34 (6.83)
Sa(m,) =013 + 024

SS(ng) =013 — 034
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These choices of symmetry coordinates are not all unique; one could take
orthogonal combinations S| =a(r,, +r3,) +br,z; and S, =a'(ry, + r34)
+ b'r,; as the two o, symmetry coordinates instead. The choice S; =
ri, —r3s is unique (aside from normalization, which does not concern
us here), because there is only one vibration of ¢ symmetry and it is non-
degenerate. In our potential energy expression (6.82) we have ignored
bending motions which are analogous to , 3 and §,,, but move in and out of the
paper. These bending motions are simply the degenerate, perpendicular counter-
parts of the =, and n, coordinates listed in Eqgs. 6.83. Treating them would only
give us redundant information about the n, and n, modes, and so they are
omitted. With these five symmetry coordinates, the potential energy expression
becomes

k k
2V = k,S2'+ 72 (S2 + 82 + ~2‘3 (83 + 83 (6.84)

and the F matrix is

(k2 0 0 0
0 k, 0 0
F=| 0 0 ky2 0
0 0 0 kg2 O
| 0 0 0 0 ky2 |

oS O O

(6.85)

(Normally the F matrix should be B3N — 5) x (3N — 5) = 7 x 7 in the S basis,
but we have left out one of the n, and one of the 7, coordinates.) To derive the G
matrix, we begin with the Cartesian basis shown in Fig. 6.8. (We could
include four additional Cartesian vectors &, through &,, pointing out of the
paper, but these vectors have projections only along the omitted =, and =,
modes.) In terms of these, the symmetry coordinates are

S;=¢ —& +¢&,— & (ry, and r;, expand simultaneously)

S, = fs - fz

Sy=¢&, —& — ¢+ &, (r1, and r3, expand out-of-phase)
1

Sa= o (C6 + &7 — &5 —Cs) (6.86)
H

1 2
S5=;;(£6+£8_65_67)"';(56_67)

where ry; and r¢ are the equilibrium C—H and C—-C bond distances, respectively.
(The expressions for S, and S5 arise from repeated application of the relation-
ship Ad = Ar/r, bearing in mind the effects of increments in the Cartesian
coordinates £ through &g on the sign of changes in the angles 6,5 and d,,4.) We
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H C C H

Figure 6.8 Cartesian displacement coordinates for acetylene. Motions per-
pendicular to the plane of the paper are not considered.

may now construct the matrix D, since

S, Dyy -+ Dys M1
=1 Sl (6.87)
Ss D5 -+ Dsg Nsg

Recalling that n; = ./m;&; and using the abbreviations C = mc and H = my,

D=
—1/H 1, /C -1 /C 1//H 0 0o 0
o -1c 1/c 0 0 0 0
~1JH 1, /C 1J/Cc -1 /H 0 0 0
0 0 0 o L ! ! 1
rH\/E rH\/E rH\/E rH\/E
o 0 o o0 —— i(£+i>—l<1+2> !
rH\/E\/—C_ fc Tu \/—C- m Tc rH\/I?_J
(6.88)
and so
G=D'D'=
2 2 2 7]
7Y ~¢ 0 0 0
2 2
- ¢ 0 0 0
2 2
2/1 1
0 0 0 E(ﬁ C) 0
1 2/1 2\?
¢ 00 ° [‘ﬁ G *)]




206 POLYATOMIC VIBRATIONS

The F- G matrix is then

F-G=
_k l+1 k,/C 0 0 |
2\H'C 2 0
—k/C  2k,)C 0 0 0
1 1
0 — = 0
o n(k+) :
ks(1 1
1 1/1 2\?
0 0 0 0 k| —+ - (242
i 6[rl21H * Cc (’H+"c>:,

(6.90)

Note that this matrix is block-diagonal, with the subblocks o, (2 x 2),
o4 (1 x 1), (1 x 1), and m(1 x 1). Hence, we could have evaluated the F, G,
and F-G matrices in separate bases of symmetry coordinates transforming as
one IR at a time. The eigenvalues in the last three modes can now be read
directly from the 1 x 1 subblocks in the F+ G matrix,

1 1
Jy =k, (E + —C—> = 4nv} o
ks (1 1
=t (E N E) _ 4n2v2 7 (691)

1 1/1 2V
As=ks| 5—+=|—+—
3T |:r,2{H *C <rH + rc> ] s
The o, eigenvalues A, and 4, are the roots of the 2 x 2 secular determinant
1 1
k,{=+=)—4 —ky/C
2 <H C> 2/ =0 (6.92)
—ky/C 2k,/C — A

yielding

11\ 2 2kk, (1 1 :
Az—l[kz (E+E>+?l]+ éz<ﬁ+6>—klk2/C2=0 (6.93)
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Y, 2;
v, 2;
Vg DM
Vg ng
A II,

Figure 6.9 Cartesian displacements in the normal coordinates of acetylene. Each
of the modes labeled 7, and 7, has a degenerate partner mode involving nuclear

motion in and out of the paper.

The eigenvalues 4, and 1, then obey

1 1 2k
A+ A=k, <ﬁ+'c‘>+—?1=4752("%+v§) 6;
2k.k, (1 1
Ady = é 2 (ﬁ + —C—) — kyk,/C?* = 167*v}v3 o] (6.94)

It may be seen from the expressions for the symmetry coordinates (Egs. 6.86)
that the qualitative normal coordinates in acetylene are those shown in Fig. 6.9.
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6.5 SELECTION RULES IN VIBRATIONAL TRANSITIONS

The symmetry selection rules for E1 vibrational transitions can be obtained
using the symmetry properties of the pertinent vibrational states. According to
Eq. 6.71, the vibrational ground state is

3N-6

Nl\?ib> = 1_[ No:H (L) eXP(—CiZ/Z)

3N-6 3N-6
= (T No) o =5 22) 699

since the zeroth-order Hermite polynomial is Hy({;) = 1. The exponential in this
wave function is

3N- 3N -

- 26 (2= - 26 2nv,Q7/2h (6.96)

i i

and is invariant under all symmetry operations of the molecular point group.
Hence, the nondegenerate vibrational ground-state wave function belongs to the
totally symmetric IR of the point group. The vibrationally excited state with one
quantum in normal mode j and zero quanta in all other modes is

3N-6
|l//\{ib> = Nlel(Cj) exp(_C}/z) l;[ No.'Ho(Ci)exP(_Ciz/z)

i itj

3N—-6 3N-6
- H«&,-)[ I exp(—c.?/2>] Ny 1 No (6.97)

Since H,({;) = 2{; oc Q;, |y therefore transforms as Q; itself, and belongs to
the same IR as Q.

The symmetries of overtone and combination levels in which no degenerate
modes are multiply excited are straightforwardly obtained from direct products
of IRs I'(Q;) according to which the normal coordinates Q; transform. In
particular, the symmetry of the vibrational state with v; quanta in mode 1, v,
quanta in mode 2, etc., is given by

QIR IQY® - IRM(Q)RTI(Q)R - ]1®

vy factors vafactors

®UI(Q3n-6)®T(Q3n-6)® ]
v3n -6 factors
Levels involving overtones in degenerate modes must be handled with more

caution. Consider the two degenerate n, modes Q, and Q) corresponding to the
bending frequency v, in acetylene (Section 6.4). These form a basis for the n, IR
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in D_,. We wish to obtain the symmetries of the vibrational states in which v,
and v, quanta are placed in the respective modes, under the condition that
v, + v, = 2. Since both modes have n, symmetry, using the above procedure
would imply (incorrectly) that the resulting vibrational states should have the
symmetries n, ® 7, = 0, ® o, @ J,. This would mean that four vibrational
states supposedly arise from distributing two quanta between the degenerate =,
modes (one doubly degenerate J, pair of states, and one state each of ¢, and o
symmetry). However, there are only three distinct (v,, v;) combinations possible:
(2, 0), (1,1), and (0,2). Evaluating the ordinary direct product therefore
overcounts the resulting vibrational levels when two quanta are placed in the
degenerate =, vibrations. The symmetries of states arising from multiple
excitation of degenerate modes Q; are instead found by evaluating the symmetric
product [I'(Q,) ® I'(Q;)]" [7]. For a doubly excited =, mode, the pertinent
symmetric product is (7, ® n,)" = 6, ® J, rather than o @ o, @, [7]. If
two vibrational quanta are distributed between nonequivalent degenerate modes
(e.g, a m, and a m, mode, or two 7, modes oscillating at different frequencies),
conventional direct products yield the correct vibrational state symmetries.

The E1 selection rules for vibrational transitions |y/,;,> — |4, can be
obtained by expanding the dipole moment g in a Taylor series in the normal
coordinates,

vl vin)
3IN-6 1 N6/ 32y
= {Yuipltto + z (0Q ) 0+ Z (GQ@Q)O Q:0; +  Wyiny (6.98)

i u

The leading term is py{¥,;lyipy, Which vanishes by orthogonality. Group
theoretically, the terms (0p/0Q;)0Q:, (0*#/0Q:0Q;)o Q.Q);, etc., all transform as
vector components; in effect, the transformation properties of Q;0,0, ... in the
expansion (6.98) are cancelled by those of 6Q;00;0Q; ... in the corresponding
derivative. Consequently, we obtain the symmetry selection rule that
I'(Y.) ® I't) ® I'(Y,;p) must contain the totally symmetric IR—regardless of
which terms dominate in the Taylor series expansion of u. For fundamental
transitions from the (totally symmetric) vibrational ground state to levels with
one quantum in mode @; and zero quanta on all others,
T(Yryip) @ (1) @ I'(Wis) =T'(Q;) ® I'(p). Hence the E1 selection rule for funda-
mental transitions is that I(Q;) = I'(w); that is, Q; must transform as a vector
component. As two examples of this, we cite BF; and acetylene. In BF;, the
normal mode symmetries are aj, a3, and 2¢’ (the prefix 2 denotes that this
molecule has two pairs of degenerate ¢’ vibrations). In the D5, point group, (x, y)
and z transform as ¢ and a7, respectively—so that the 2¢’ and a} vibrations
exhibit El-allowed fundamentals, but the totally symmetric a) breathing mode
does not. In acetylene, we showed that the seven vibrational modes are 20; , o),
m,, and m,. The vector components transform as ¢, and 7, in D, so only the
o) and m, vibrations have El-allowed fundamentals in acetylene. These group
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theoretical rules ensure that fundamentals are observed only in normal modes in
which the molecule’s electric dipole moment oscillates.

The selection rules on Av can be extracted by applying the second quantiza-
tion formalism to Eq. 6.98. In particular, the first-order terms proportional to
Q; permit transitions with Av;= £ 1, the second-order terms in Q,Q; are re-
sponsible for the overtone and combination bands with A(v; + v;) = 0 or £2,
and so on. The symmetry selection rule must simultaneously be satisfied. It is
well known to students in organic chemistry that overtone and combination
bands are frequently prominent in infrared spectra, and so the second- and
higher order terms in Eq. 6.98 are not negligible.

CO, presents a good example of vibrational selection rules in polyatomics. It
possesses three normal mode species (Fig. 6.10): a ¢, symmetric stretch with
frequency v; ~ 1390cm ™!, a doubly degenerate m, bend with frequency
v, ~667cm ™}, and a ¢ asymmetric stretch with frequency v; ~ 2280cm L.
The lowest few vibrational levels in CO, are shown in Fig. 6.11. Each level is
labeled with the number of quanta (v, v, v3) in each mode; the vibrational state
symmetries are also given. The E1 allowed transitions among these levels are
shown by the solid connecting lines. Those transitions originating from the
(0 10) level are hot bands which will have appreciable intensity in a CO, sample
at 300K (kT =208 cm 1), because this level lies only 667cm ™! above the
vibrationless level (00 0).

14 2;
v I,

+
1/3 X u

0o c 0

Figure6.10 Normal modesin D, CO,. Note that the relative displacements in the
2+ mode are a consequence of the mode symmetry; those in the M, mode may be
found from the requirement that the center of mass is undisplaced in any vibrational
mode.
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Figure 6.11 Energy level diagram for low-lying vibrational states in CO,. Levels
are labeled with the vibrational quantum numbers v,v,v,. Some of the observed
infrared transitions are indicated by arrows. Adapted from G. Herzberg, /nfrared and
Raman Spectra of Polyatomic Molecules, Van Nostrand, Princeton, NJ, 1945.

The intense 10.6-um infrared laser transitions in CO, are due to the
(001)—(020) and (00 1) — (100) transitions. Since these are both o, — o,
transitions, they are symmetry-allowed (and z-polarized, because z transforms as
o). It is interesting that even though these two E1 transitions arise from third-
and second-order terms, respectively, in the expansion of g, efficient lasing has
been achieved in both of them.

Degenerate vibrational modes give rise to vibrational angular momentum in
polyatomic molecules. In the case of CO,, the degenerate n, normal modes Q,
and Q) shown in Fig. 6.12 exhibit nuclear motion in mutually perpendicular
planes containing the molecular axis. In cylindrical coordinates, the nuclear
positions during vibration may be specified by the coordinates z, r, and ¢. Since
the cylindrically symmetric vibrational potential energy function is independent
of ¢, the vibrational wavefunctions must exhibit the ¢-dependence exp(=il¢)
with / an integer. Such a wave function describes vibrational motion in which
the nuclei exhibit a constant angular momentum l# about the z axis. It may be
shown [8] that when v, quanta are distributed between the n, modes, the
allowed values of l are v,, v, — 2,...,0 or 1. In the (0 1 0) level, for example, the
vibrational angular momentum quantum number becomes [ = v, = 1; the
vibrational wave function then becomes proportional to exp(+i¢). The vibra-
tional motion in state (010) therefore cannot be confined to one of the
coordinates Q, or Q) (which exhibit zero angular momentum about the z axis).
It is classically described by a linear combination of Q, and Q) in which the
nuclei follow closed trajectories in a plane normal to the z axis (Fig. 6.13). In the
(v,vhv3) level notation of Fig. 6.11, the [ quantum number is included as a
superscript to the number of quanta v, in the n, mode. The [ specification is
superfluous if the vibrational state symmetry is known: levels with o, 7, 9, ...



Figure 6.12 The doubly degenerate 17, bending modes Q, and Q, in CO,. The
nuclear positions in CO, vibrations may be expressed in terms of the cylindrical

coordinates z, r, and ¢.

DD

1
[ RN -
\ﬁ / \' - /I'y \_ /
/ Figure 6.13 Nuclear trajectories in a CO,, vibra-

tional state with nonzero vibrational angular
0 (& O momentum quantum number /.

-~

212



ROTATIONAL FINE STRUCTURE OF VIBRATIONAL BANDS 213

symmetry exhibit [ =0, 1, 2, ..., respectively. Hence, the symmetric product
representations we described earlier (in connection with obtaining the symme-
tries of states with multiply excited degenerate modes) embody the rules for
composition of vibrational angular momenta. The foregoing discussion has
tacitly assumed that vibration—rotation coupling is negligible; under such
coupling the vibrational angular momentum may no longer be a constant of the
motion. Vibrational angular momenta also occur in degenerate vibrations of
nonlinear polyatomics, where the nuclear displacements may trace ellipses,
circles, or lines in a plane perpendicular to the axis of highest symmetry [6].

6.6 ROTATIONAL FINE STRUCTURE OF VIBRATIONAL BANDS

As in diatomics, vibrational transitions in polyatomic molecules are inevitably
accompanied by rotational fine structure. In linear molecules, the vibrational
and rotational selection rules in vibration—rotation spectra are closely analo-
gous to the electronic and rotational selection rules, respectively, in diatomic
electronic band spectra. When applied to a D, molecule, the general symmetry
arguments of the previous Section lead to the E1 selection rules

Al=0, +1
ot oo™

gexm g U1

for vibrational transitions in linear molecules. Here [ is the vibrational angular
momentum quantum number. The selection rule on A4l is reminiscent of the
condition AA = 0, + 1 for El-allowed electronic transitions in diatomics. (The
g/u labels are dropped in the case of C, molecules.) For transitions between
two o-type vibrational levels (I = 0 — I’ = 0), the vibrational transition moment
is polarized along the molecular axis, and the transition is called a parallel
transition. The rotational selection rule in parallel vibrational transitions is
AJ = +1; that is, only the P and R branches occur. For transitions in which
Al = +1 (6w, T 0, etc.), the transition moment lies perpendicular to the
molecular axis, and the transition is termed a perpendicular transition. In such a
transition, the Q branch also becomes allowed. The frequencies of the P-, Q-,
and R-branch lines in vibration—rotation spectra are given by formulas
analogous to Egs. 4.76; v, represents the vibrational energy change in the
transition. All three rotational branches appear in Al = 0 vibrational bands with
I # 0 (e.g., m <>« transitions). These rotational selection rules are all identical to
those that apply to rotational fine structure in diatomic electronic transitions, if /
is replaced by A in the discussion above (Section 4.6).

In symmetric top molecules, the rotational selection rules depend on the
relative orientations of the figure axis (Chapter 5) and the vibrational transition
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moment. When these are parallel, the El rotational selection rules are [8]

AK =0
Al =0, +1 (6.99)

when K # 0. When K is zero, the transition AJ = 0 is forbidden. When the
transition moment is perpendicular to the figure axis, one obtains the contrasting
selection rules [8]

AK = £1
AJ =0, +1 (6.100)

Analysis of the rotational fine structure in vibration—rotation spectra thus offers
potential for deducing the direction of the transition moment (and thus the
vibrational symmetry species) of a vibrational band. If the transition moment
has components parallel and normal to the figure axis, then both AK = 0 and
AK = +1 transitions will be observed.

This variety in rotational selection rules, coupled with our natural endow-
ment of molecules with diverse rotational constants, leads to wide variations in
the rotational fine structure exhibited by symmetric and near-symmetric tops.
For definiteness, we consider a prolate symmetric top whose rotational energy
levels are given in Eq. 5.26. Rotational lines will be found at the frequencies

V=9 +BJWJ + 1)+ (4 — B)K> —[B"J'(J" + 1) + 1) + (4" — B")K"?]
(6.101)

where v, is the frequency of the pure vibrational transition and (4’, B), (4", B”)
are the rotational constants of the upper and lower vibrational states. According
to Eq. 6.101, the rotational structure can be regarded as a superimposition of
sets of diatomic P, Q, and R rotational branches (corresponding to AJ = —1, 0,
and + 1, respectively) centered at origins with the K-dependent frequencies

V=79,+ (A" — B)K'* — (4" — B")K"? (6.102)
For parallel bands (K’ = K” = K) the origin positions are
V=79, + [(4 — B)— (4" — B")]K? (6.103)
whereas for perpendicular transitions (K’ = K” + 1 = K + 1) they become
V=V,+[(A —B)— (A" — B")]K*+ 24— B)K + A’ — B’ (6.104)
The initial and final rotational levels responsible for a given transition may be

specified by writing P, Q, and R as a superscript to denote AK = —1,0, or +1,
and by supplying the numerical value of K” as a subscript. Hence the symbol
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Figure 6.14 Rotational fine structure in a parallel vibrational band for a prolate
symmetric top in which (A'-B')-(A"-B") is small: A"=528cm™",
A'=526cm™", and B”=B'=0.307 cm~". The origin positions are closely spaced,
and the spectrum resembles the vibration—rotation spectrum of a diatomic
molecule. Horizontal energy scale is in cm™".

PQ,(3) represents a AJ = 0, AK = —1 transition from J” =3, K" =2to J' =
K' = 1. In a parallel transition, the origin positions (6.103) will frequently
depend weakly on K, because the rotational constants are nearly the same in the
upper and lower vibrational states. In such a case the rotational structure will
resemble that in Fig. 6.14, which is reminiscent of the HCl vibration—rotation
spectrum of Fig. 3.3. Since the positions of the ?Q(J) lines in a parallel
transition vary little with K and J when 4" ~ A” and B’ ~ B"” (Eq. 6.101),
considerable intensity is concentrated near the frequency of the pure vibrational
transition. Figure 6.15 illustrates the rotational structure in a parallel transition
in which [(4’ — B’) — (A” — B")] is appreciable; the origin positions are now
well separated. In many prolate tops (e.g., CH;Cl), the rotational constant 4
about the figure axis is much larger than B. The positions of the %Q(J) lines
then tend to depend strongly on K, but weakly on J (Eq. 6.101), so that the
spectrum in Fig. 6.15 is dominated by a series of bunched Q-branch lines. In
perpendicular transitions, the subband origins depend strongly on K by virtue of
the +2(4’ — B)K term in Eq. 6.104. The rotational structure then exhibits dense
groups of Qy and RQy lines, because the position of any PRQ(J) lines varies
little with J.
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| 1 ! !
—15 15
Figure 6.15 . Rotational fine structure in a parallel vibrational band for a prolate
symmetric top in which (A —B’) - (A" - B") is substantial: A”=5.28cm™",
=5.00cm™ ", and B”=B'=0.307 cm™'. The origin positions here become well
dispersed. Horizontal energy scale is in cm™".

These spectra serve to illustrate the sensitivity of rotational fine structure to
the transition moment orientations and rotational constants. In practice,
individual rotational lines cannot be resolved in most infrared vibration—
rotation spectra, because the rotational constants are too small. In spectra such
as that in Fig. 6.14, the bunched groups of Q-branch lines frequently materialize
as single intense bands, while the more sparse P and R branches form weak
continua. Rotational structures are frequently analyzed by comparing them
with computer-generated spectra derived from assumed rotational constants
and selection rules. By weighting the rotational line intensities with appropriate
Boltzmann factors (cf. Eq. 3.28) and assigning each rotational line a frequency
width commensurate with the known instrument resolution, realistic simula-
tions of experimental spectra are possible if the rotational constants and
selection rules are properly adjusted.

6.7 BREAKDOWN OF THE NORMAL MODE APPROXIMATION

Our development of the normal mode description of polyatomic vibrations in
Sections 6.1-6.4 rested on the assumption that the potential energy function
(6.4) is harmonic in the nuclear coordinates. As in diatomics, this assumption



BREAKDOWN OF THE NORMAL MODE APPROXIMATION 217

breaks down for sufficiently large vibrational energies in real polyatomic
molecules. When several quanta of excitation are placed into a normal mode, it
begins to redistribute its energy to other normal modes. Such behavior is
guaranteed by the cubic and higher order terms in the vibrational potential,
since their presence rules out the possibility of finding 3N — 6 independently
oscillating normal coordinates that obey the uncoupled differential equations
(6.49).

At high vibrational energies, there is compelling evidence [9] that the nuclear
motion cannot be even approximately described in terms of normal coordinates.
A case in point is the thermal dissociation of benzene, C¢H¢ 3 CgHs + H,
where a hydrogen atom is created by selective stretching of a single C—H bond.
Such motion is inconsistent with the normal mode descriptions of the six
benzene vibrations composed primarily of C—H stretches (Fig. 6.16), in which
the stretching amplitudes must be identical in at least two of the C—H bonds by
symmetry. The infrared—visible absorption spectrum of benzene exhibits a
prominent series of overtone bands at frequencies that closely obey the equation

[10]

v =(x; + x)v — x,0° v=12,...,8 (6.105)
a
i?:; ; b,
elu e29
Figure 6.16 Benzene normal modes dominated by C—H stretching motions. Since

there are six C—H bonds, there are six such modes: one each of a,, and b,,
symmetry, and two degenerate pairs of e,, and e,, symmetry.
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“with x; = 3153cm ™! and x, = 58.4cm ™ '. This overtone spectrum is strikingly
similar to the vibrational spectrum of the isolated CH radical, and has been
assigned to an anharmonic local stretching mode confined to a single C—H
bond. The observed frequencies (6.105) are consistent with transitions from
v=0tov=12,...,8 in a one-dimensional oscillator subject to the quartic
potential

V(q) = ao + a,q* + asq® + asq* (6.106)

if one treats the anharmonicities a;q> and a,g* to second and first order
respectively in a harmonic oscillator basis. Here g is the C—H bond displacement
coordinate, and the expansion coefficients in the potential are related to the
overtone spectrum parameters by

Xy =04y

X, = 6a, — 30a%/a, (6.107)

Additional evidence for the validity of the local mode description in
vibrationally excited states is furnished by overtone spectra obtained using
-highly sensitive thermal lensing spectroscopy techniques [11] in several other
aromatic hydrocarbons. The sixth overtone band of the C—H stretching mode is
found at virtually the same frequency in benzene (16,480 cm~!), naphthalene
(16,440cm™!), and anthracene (16,470cm™!). This sameness is difficult to
rationalize in a normal mode description, in which the nature of the parent
hydrocarbon skeleton is expected to influence the allowed frequencies of the
collective nuclear motions. Furthermore, the observed width of the C-H
stretching vibrational band is the same (~360cm ') for both the e,, funda-
mental in benzene (cf. Fig. 6.16) and for the sixth overtone. If one distributes six
quanta among the C-H stretching normal modes in Fig. 6.16, one obtains
462 distinct levels. Using the symmetry classification techniques outlined in
Section 6.4, it may be shown that 150 of these will exhibit the overall a,, or
e,, vibrational level symmetry required in the Dy, point group for observa-
tion of an El overtone transition from the a,, ground state. (These are 75
doubly degenerate states of e;, symmetry.) Hence one would expect a
noticably broader vibrational band in the sixth overtone than in the funda-
mental, in consequence of the far greater variety of El-accessible states
generated using six quanta, if the normal mode approximation were accurate at
these energies. Such a picture is not supported by the spectroscopic evidence
[11].

In the local mode treatment [11] of the C—H stretching vibrations in
benzene, the six bonds oscillate independently with energies (cf. Eq. 6.105)

E,o(v;) = —1562 + 3153(v; + %) — 58.4(v; + %)? i=1,...,6 (6.108)
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The total vibrational energy residing in the C—H vibrations is

6
Eyp= ), Euuwv) (6.109)
i=1
and the corresponding vibrational states |v; v, --- vg) are products of one-

dimensional anharmonic oscillator states, which are eigenfunctions of a Hamil-
tonian with the potential function (6.106). For a given total number

o

V=

v; (6.110)

i=1

of vibrational quanta, the possible vibrational states may be divided into classes
of degenerate states. One such class is the nondegenerate class (111111), in
which each local mode contains one quantum. An example of a degenerate class
is (4, 2), in which one local mode has four quanta and the other two are placed
together in any of the other six. The degeneracy of this mode is 30 [11]. The
classes, energies, and degeneracies of all 462 C—H local mode states in benzene
are shown in Fig. 6.17. The product vibrational wavefunctions within each class

No. of E,,
Class Energy Degeneracy  States
(L 18220 —— ] -
(2,1,1,1,1) 18103 — 30 5
8o (2,2,1,) 17986 90 14
22,2),31)) 17870 —— 20,60 3,10
(3,2,1) 17753 ——— 120 20
m
O 75k (33,40 17520 —— 15,60 2,10
_l" (4,2) 17.403 —— 30 [
E
o
£
>
S (5,0 17.053 —— 30 5
c 1701
w
185 (g 16.469 6 m

Figure6.17 Classes, energies, and degeneracies of the C—H local mode vibrational
states in benzene. Reproduced with permission from R. L. Swofford, M. E. Long, and
A. C. Albrecht, J. Chem. Phys. 65: 187 (1976).
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form a basis for irreducible representations of Dg,; one may construct linear
combinations of these functions transforming as a,,, a,,, by, b,,, €54, 0r €4,,. In
this way, one finds that there exist 150 linearly independent combinations of
anharmonic local mode states with e,, overall symmetry, as shown in Fig. 6.17.
(This counting of state symmetries if, of course, independent of whether the
normal or local mode formulation is used.) It may be shown [11] that in the
local mode formulation, E1 transitions are possible only when one of the v;
changes, and the remaining v; are unaffected (i.e., combination transitions
among local mode states are forbidden). Hence, for v = 6 the only e, state
accessible from the a,, ground state is the one belonging to the (6) class in which
all six quanta reside in one of the C—H bonds. This is why the absorption band
of the sixth overtone in benzene is no broader than that in the C—H stretching
fundamental. The whole question of whether vibrational motion in polyatomics
is more appropriately described in the normal mode or local mode formulation
has fundamental implications for vibrational spectroscopy, intramolecular
vibrational redistribution (IVR), and dissociation. It is also important in
radiationless relaxation processes such as internal conversion and intersystem
crossing (Chapter 7).

Another manifestation of vibrational anharmonicity occurs in Fermi re-
sonance [8]. When two vibrational states of the same overall-symmetry are
accidentally degenerate, they can become strongly mixed by the anharmonic
coupling terms between them. Their energies may be repelled considerably (in
the language of degenerate perturbation theory), and the intensities of the
spectroscopic transitions to these levels may be redistributed by the mixing.

REFERENCES

1. J. B. Marion, Classical Dynamics of Particles and Systems, Academic, New York,
1965.

2. E. D. Nering, Linear Algebra and Matrix Theory, Wiley, New York, 1963; F. R.
Gantmacher, The Theory of Matrices, Chelsea, New York, 1960.

3. E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations, McGraw-Hill, New
York, 1955.

4. M. Tinkham, Group Theory and Quantum Mechanics, McGraw-Hill, New York,
1964.

5. D. S. Schonland, Molecular Symmetry, Van Nostrand, London, 1965.

6. G. W. King, Spectroscopy and Molecular Structure, Holt, Rinehart, & Winston, New
York, 1964.

7. C. D. H. Chisholm, Group Theoretical Techniques in Quantum Chemistry, Academic,
London, 1976.

8. G. Herzberg, Molecular Spectra and Molecular Structure, I1. Infrared and Raman
Spectra of Polyatomic Molecules, Van Nostrand, Princeton, NJ, 1945.

9. P. Avouris, W. M. Gelbart, and M. A. El-Sayed, Chem. Rev. 77: 793 (1977).



PROBLEMS 221

10. J. W. Ellis, Phys. Rev. 32: 906 (1928); 33: 27 (1929); Trans. Faraday Soc. 25: 888 (1924).

11. R. L. Swofford, M. E. Long, and A. C. Albrecht, J. Chem. Phys. 65: 179 (1976). See
also W. Siebrand, J. Chem. Phys. 44: 4055 (1966); W. Siebrand and D. F. Williams, J.
Chem. Phys. 49: 1860 (1968); B. R. Henry and W. Siebrand, J. Chem. Phys. 49: 5369
(1968); R. Wallace, Chem. Phys. 11: 189 (1975).

PROBLEMS

1. The force constants of the H-C and C-N bonds in linear HCN are
5.8 x 10° and 17.9 x 10° dyne/cm, respectively. Use the treatment of the linear
ABC molecule in Section 6.1 to predict the HCN stretching frequencies in cm ~ 1.
Compare these with the actual stretching frequencies, 2062 and 3312¢cm ™ ?, and
comment on the validity of the harmonic approximation to the vibrational

potential.

2. The frequencies of the stretching fundamentals of linear CS, are 657 and
1523 cm ™ L. Calculate the C—S bond force constant in two different ways. Are the
resulting values consistent? Why or why not? Which of these fundamentals is E1
infrared-active?

3. Determine the symmetry species of the normal modes in SF¢ (O,), P, (T),
and CsHy (Ds,). Which of these normal modes have El-allowed fundamentals?

4. Consider a planar, T-shaped molecule of C,, symmetry (CIF; has approx-
imately this geometry). The pertinent coordinate systems are shown below.

(a) How many vibrational modes will involve only nuclear displacements in
the molecular plane, and according to what irreducible representations
must they transform?
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(b) We may form the symmetry coordinates

Sy =(ry +71y)2

S2 = 1‘3
Ss=¢
Sa=(ry—1))2
S5 = 6

from the internal coordinates ry, r,, r3, ¢, and 5. According to which
irreducible representation does each of these transform? Assuming the
potential energy function

2V = ky(r? + r3) + kyr3 + kyp? + k,0?

determine the F matrix.

(c) Obtain the G matrix for the in-plane vibrations, form the matrix F* G, and
determine the value(s) of any vibrational frequencies that can be obtained
without solving quadratic or higher order equations for A.

5. Consider a hypothetical square-planar A, molecule of D,, symmetry.

(a) How many in-plane vibrational modes does A, have, and what are their
symmetry species?
(b) As symmetry coordinates for the in-plane vibrations, we may take
Sy =(ry +ry+r3+71,)/4
S, =(ry—ry+r3—ry)/4
Sy =(ry —r3)/2
S, = (ry —r4)/2
Ss = ¢
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where the internal displacement coordinates ry, r,, 3, r4, ¢ are defined in
the accompanying figure (¢ is actually the displacement of the bond angle
from its equilibrium value of 90°). What irreducible representation of D,
does each of these belong to? Assuming the potential

2V =ky(r + 13 + 13 + 1) + ky¢?

set up the F matrix for the in-plane vibrations.

Obtain the G and F - G matrices for the in-plane vibrations, and determine
the A, vibrational frequencies in terms of the force constants, the equilib-
rium bond length and the nuclear mass.






ELECTRONIC
SPECTROSCO PY OF
POLYATOMIC MOLECULES

Many of the ideas that are essential to understanding polyatomic electronic
spectra have already been developed in the three preceding chapters. As in
diatomics, the Born-Oppenheimer separation between electronic and nuclear
motions is a useful organizing principle for treating electronic transitions in
polyatomics. Vibrational band intensities in polyatomic electronic spectra are
frequently (but not always) governed by Franck-Condon factors in the vibra-
tional modes. The rotational fine structure in gas-phase electronic transitions
parallels that in polyatomic vibration—rotation spectra (Section 6.6), except that
the rotational selection rules in symmetric and asymmetric tops now depend on
the relative orientations of the electronic transition moment and the principal
axes. Analyses of rotational contours in polyatomic band spectra thus provide
valuable clues about the symmetry and assignment of the electronic states
involved.

Polyatomic band spectra still abound in features that have no antecedents in
diatomic spectra. Polyatomic spectra are often far more congested (in the sense
that they exhibit many more vibrational bands per frequency interval), because
the number of vibrational modes scales with molecular size as 3N — 6. A
thermal gas sample of naphthalene (C, ,Hg) cannot be selectively pumped into a
single vibrational level in its lowest excited singlet S, state at 300 K, because the
rotational fine structure at this temperature merges the closely spaced vibra-
tional bands into a barely resolved continuum. A qualitatively new phenomen-
on arises from the presence of nontotally symmetric modes in polyatomics. Such
modes can cause vibronic coupling between electronic states belonging to
different symmetry species, allowing electronic transitions which would
otherwise be El-forbidden to gain appreciable El intensity. This coupling is

225
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responsible for the “first allowed” electronic transition in SO,, the well-known
2600-A S, «- S, band system in benzene, and the rich S, state photochemistry of
the carbonyl group in aldehydes and ketones. Predictions of vibrational band
intensities in such transitions require quantitative theories of vibronic coupling.
In contrast, many other electronic band spectra arise from intrinsically E1-
allowed transitions in which vibrational band intensities are straightforwardly
given by products of Franck-Condon factors and squared electronic transition
moments (cf. Eq. 4.51). Examples of these are the “second allowed” transition in
SO, and the S; « S, spectrum of aniline, C;H;NH,.

In isolated polyatomic molecules of sufficient size, electronically excited
states decay nonradiatively and irreversibly into states with lower electronic
energy. (Since such a process is necessarily isoenergetic in an isolated molecule,
the electronic energy difference is converted into excess vibrational energy.) Such
spontaneous radiationless relaxation processes, unknown in collisionless dia-
tomics, pervade the photophysics of molecules with 24 atoms. Their discovery
prompted fundamental questions about the nature of quantum mechanical
stationary states in molecules with dense vibrational level structure, and their
investigation became one of the most active research areas in chemical physics
during the 1960s and 1970s.

Discussions of polyatomic band spectra in a text of this scope can cover only
a small fraction of the molecular types that have been explored in this vast field.
We begin by treating electronic transitions in triatomic molecules, which are of
interest to environmental scientists (viz. NO,, O;) and astrophysicists. The
electronic band spectrum of SO, is considered in detail and presents us with a
prototype example of vibronic coupling. We then deal with several aromatic
hydrocarbons: aniline, naphthalene, and benzene. These chemically similar
molecules exhibit sharply contrasting S, « S, spectra arising from transitions
from their ground states to their lowest excited singlet states, and serve to
illuminate the sensitivity of band spectra to symmetry, vibronic coupling, and
geometry changes accompanying transitions. This chapter concludes by devel-
oping quantitative theories for vibronic coupling and radiationless relaxation in
polyatomics.

7.1 TRIATOMIC MOLECULES

As in diatomics (Section 4.3), the molecular orbitals in polyatomic molecules
may be expressed as linear combinations of atomic orbitals (AOs) centered on
the nuclei. A minimal basis set of AOs contains all of the AOs that are occupied
in the separated atoms [1, 2]. In the bent ozone molecule, for example, the
separated O atoms have the ground state configuration (1s)*(2s)*(2p)*. The
minimal basis set for ground-state O therefore consists of the 1s, 2s, and three
2p orbitals centered on each of the oxygen nuclei (Fig. 7.1). The orientations
selected for the 2p AOs in the basis set are of course arbitrary (aside from the
constraint that basis AOs centered on any nucleus must be linearly independ-
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Figure 7.1 Minimal basis set of atomic orbitals (AOs) in O,.
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ent); the particular orientations shown in Fig. 7.1 are simply one choice which
facilitates the construction of MOs appropriate to the molecular symmetry.

The electronic states must transform as one of the irreducible representations
I" of the molecular point group, and so linear combinations of the AOs in Fig.
7.1 must be found which transform as these representations. Such symmetry-
adapted linear combinations (SALCs) may be obtained using the projection
operator technique [3]. Application of the projection operator

P = ; 2"(RR (7.1

to any basis AO yields a linear combination of AOs transforming as the IR T,
provided such a linear combination exists which contains the original AO. Here

xT(R) is the character in representation I" of the class to which the group
operatlon R belongs, and the summation is carried out over all operations Rin
the point group. Bent AB, molecules belong to the C,, point group, which
contains the operations E, C,, g, (reflection in a plane perpendicular to the
molecular plane), and ¢/, (reflection in the molecular plane). The projection
operators for the a; and b, representations of C,, are then

Pa)=E+C,+6,+ 6!
Pb,)=E—-C,—6,+ 5, (7.2)

<

By applying these projection operators to the 1s AOs |15, and |1s¢) in Fig. 7.1,
we obtain the unnormalized SALCs

P(ay)|1sy> = 2(|1s5> + |1sg))

ﬁ(al)|15c> = 4|lsc)

P(by)l1sa) = 2(1s,> — |1sg)) (7.3)

Neglecting overlap between the 1s AOs, we then have the normalized SALCs

loy(@1)) = (154D + [15))/x/2
lo2(@y)> = |15c) (7.4)
lo4(b2)) = (I1sa> — I1sp))/\/2

Application of the projection operators P(a,) or P(b,) to any of the 15 AOs yields
a null result, and the linear combinations P(a,)|1sg), P(b,)|1sg>, and P(b,)|1sc)
all either vanish or reproduce the unnormalized SALCs (7.3). Hence, only three
linearly independent SALCs are generated from the three 1s basis AOs, as
expected. In an LCAO-MO-SCF calculation, the two SALCs of a, symmetry
will mix to yield the lowest two MOs of a; symmetry, |1a,) and |2a,) (Fig. 7.2).
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a, (b,)

O/\O o, (a)

SALCs MOs

Figure-7.2 Symmetry-adapted linear combinations (SALCs) and molecular or-
bitals (MOs) generated from the 1s AOs in a bent AB, molecule.

The extent of this mixing will be small in triatomics composed of atoms with
valence electrons in their 2s or higher energy AOs, since the overlap between the
inner-shell 1s AOs in these molecules will be insignificant. The rest of the
minimal-basis SALCs can similarly be generated using the projection operator
technique on the 2s and 2p AOs. Mixing between SALCs having similar energy
and belonging to the same symmetry species then yields valence MOs with the
qualitative nodal patterns shown on the right side of Fig. 7.3.

When the bond angle ¢ in a bent AB, molecule is increased toward 180°,
these nodal patterns must be preserved. As the molecule approaches linear
geometry, the resulting orbital symmetries in D, may be found by noting that
the symmetry operations C,, g,, and o), in C,, correspond to the classes C5, o},
and o, respectively, in the linear point group. The correlations between AB,
orbital symmetries in C,, and D, may then be worked out by requiring that the
characters of the corresponding classes of operations be identical in both
irreducible representations. (Some of the characters for ¢,, which are not
ordinarily listed in D, character tables, are +1 (o, and 0,), —2 (n,), —1 (o
and o,), and +2 (=w,).) This yields the correlations

Ci E CyxC%) of04) 0S0,) D

a, 1 1 1 1 ot
b, 1 -1 -1 1 ol
a,+b, 2 0 2 0 7,
a, +b, 2 0 -2 0 i,
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Figure 7.3 Nodal patterns and qualitative energies of MOs in linear and bent
triatomic molecules according to Walsh [4]. The lowest three MOs, composed of 1s
AOs on the constituent atoms (Fig. 7.2), participate little in the chemical bonding
and are excluded. Horizontal coordinate is the bending angle 6. Orbital occupancies
are shown for linear CO, (6 =180°) and for bent NO, (8 = 134°). Irreducible
representations are given for the MOs in D, and C,, point groups at left and right,
respectively.

and these are reflected in the orbital correlation diagram in Fig. 7.3. Note that
when a linear molecule becomes bent, its doubly degenerate n, orbitals in D,
are split into pairs of nondegenerate a, and b, orbitals in C,,.

Orbital correlations alone cannot rationalize the electronic structure in
triatomic molecules; one needs to know how the MO energies are ordered and
how they are influenced by the bond angle ¢. In a remarkably prescient series of
papers published in the early 1950s (long before accurate wave functions became
available for polyatomic molecules), Walsh [4] developed semiempirical rules
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for predicting geometry effects on orbital energies in small polyatomics. Walsh’s
rules for triatomic AB, are incorporated in the correlation diagram in Fig. 7.3,
where the orbital energies and bond angle are qualitatively plotted along the
vertical and horizontal axes, respectively. Most of the orbital energies are seen to
increase slightly when linear AB, becomes bent. The 27, orbitals in linear AB,
present a key anomaly: one of them correlates with the 6a; orbital, whose energy
falls violently as the bond angle is reduced.

The electron configurations in AB, may now be constructed using the
Aufbau prescription of placing electrons in successive MOs according to the
Pauli principle. The first six electrons go into the nonvalence orbitals 1a,, 2a,,
and 1b, (Fig. 7.2). The remaining electrons are placed in the valence orbitals
which are shown in the correlation diagram (Fig. 7.3). The CO, molecule, which
has 16 valence electrons, exhibits the ground-state configuration

.. (30)*(26,)*(46,)*(30,)*(1m,)*(17,)* N

Since the majority of the occupied orbital energies are minimized at ¢ = 180°,
CO, has linear geometry. In NO,, which has 17 valence electrons, the bent
geometry becomes favored because the “extra” electron goes into the 6a, orbital
whose energy drops sharply when the bond angle is decreased The electron
configuration of NO, then becomes

.- (32,)*(2b,)*(42,)*(3b,)%(1by)*(5a,)’(1a,)°(4b,)*(6ay)!  *A,

In accordance with these predictions, ground-state triatomics with 16 or fewer
valence electrons (CO,, CS,, OCS, N,0) are experimentally found to be linear,
while those with more than 16 valence electrons (NO,, Oj, SO,) are bent.

The low-resolution absorption spectrum of SO, is shown in Fig. 7.4. The
intense band system lying between 1900 and 2300 A is called the “second
allowed” band. It exhibits a decadic molar absorption coefficient ¢ ~ 3000 L
mol " 'cm ™! at maximum, which is characteristic of a strongly El-allowed
electronic transition in triatomics. (Absorption coefficients are defined in
Appendix D.) The less prominent “first allowed” band system between 2400 and
3400 A shows ¢ values on the order of 300Lmol~!cm™!. In the “forbidden”
band between 3400 and 4000A, the absorption coefficients of
~0.1 Lmol *cm™! are typical of those found in spin-forbidden transitions.
The valence structure in SO, is isoelectronic with that in O, and we will use the
orbital nomenclature in Fig. 7.3 to discuss electronic transitions in SO,. In so
doing, we should bear in mind that the “6a,” orbital in Fig. 7.3, for example, is
not actually the sixth lowest-energy a; MO in SO,: This molecule (unlike O;)
has additional inner-shell a, MOs arising from SALCs of 2s and 2p AOs
centered on the sulfur atom.

The ground state in SO, has the closed-shell configuration

.. (132)2(4b2)2(631)2 1Al
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Figure 7.4 Absorption spectrum of SO, gas from 1900 to 4000 A. The strong
“second allowed” band system appears between 1900 and 2300A; the “first
allowed” band occurs between 2400 and 3400 A; and the very weak “‘forbidden
band" lies between 3400 and 4000 A. Reproduced by permission from S. J. Strickler
and D. B. Howell, J. Chem. Phys. 49: 1948 (1968).

and is a totally symmetric singlet state. According to Walsh’s rules (Fig. 7.3),
some of the lowest-lying excited states in SO, should be

... (1a,)%(4by)*(6a,)'(2by)"  'By, °B,
... (1a)*(4b,)"(6a,)*(2b,)* 1A,, 3A,
.- (1a;)'(4by)*(6a,)*(2b,)" !By, ’B,

Each of these open-shell configurations gives rise to a singlet and a triplet state;
the triplet state in each configuration exhibits the lower energy due to Hund’s
rule. The overall electronic state symmetries are given by the direct products of
irreducible representations for singly occupied MOs (e.g., b, ® b, = A,). The
second allowed band between 1900 and 2300A is due to the 'B, « A,
transition, which promotes an electron from the la, orbital to the 2b, orbital.
This transition is group-theoretically El-allowed (A; ® B, = B,) ‘and y-
polarized. This is consistent with an analysis of rotational fine structure in this
band system [5], which indicates that the electronic transition is polarized in the
molecular plane. According to Fig. 7.3, this transition removes an electron from
an essentially nonbonding n-type orbital (1a,) and places it into an antibonding
n* orbital (2b,). This should weaken the S—O bond in the !B, state relative to
the 'A, ground state, and thus endow the !B, state with longer bonds. This is in
fact what happens: The S—O bond lengths in the 'A, and !B, states are 1.432
and 1.560 A, respectively. Furthermore, the la, orbital energetically favors
larger bond angles (its correlation curve minimizes at ¢ = 180°), whereas the 2b,
orbital energy varies more weakly with ¢. Hence the 'B, « 'A, transition
should produce an excited state with a smaller equilibrium bond angle. This is
borne out by the experimental bond angles in the 'A; and !B, states (119.5° and
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104.3°, respectively). Bent SO, exhibits three vibrational modes: an a; sym-
metric stretch (v,), an a; bending mode (v,) and a b, asymmetric stretch (v;).
Since the equilibrium bond angles are so different in the 'A; and B, states, the
resulting displacement along normal coordinate Q, between the minima in the
respective potential energy surfaces causes the Franck-Condon factors
|V v5v5|v v5vs Y% to assume appreciable magnitudes for many values of
Av, = v, — vj. This is responsible for the progression of nearly equally spaced
vibrational bands which is observed on the long-wavelength side of the second
allowed system in Fig. 7.4. These arise principally from transitions from v = 0
in the 'A, state to v, =0, 1, 2, 3, ... in the B, state. Such progressions are
generally associated with significant changes in equilibrium geometry between
the upper and lower electronic states.

The assignment of the first allowed band system was controversial for many
years [5]. It is now known that the low-energy portion of this system (where the
spectrum maintains a nearly regular band spacing in a progression between
~2800 and 3400 A in Fig. 7.4) is due to the 'A, « 'A, transition. Since no
vector component transforms as A, in C,,, this transition is E1 symmetry-
forbidden. It is observed anyway (though with lower intensity than the second
allowed !B, « 'A; transition), due to a breakdown in the Born-Oppenheimer
approximation. We recall in Section 3.1 that motion in two electronic states [/, )
and |y,.> in a diatomic molecule may be coupled by a nuclear kinetic energy
term proportional to {y,|0/0R|y,.>. Generalizing this treatment to triatomic
SO,, one finds that nuclear kinetic energy coupling is possible between the A,
state and some other excited singlet state (which we provisionally call 'B),
provided that

<'BI0/0Q'Az> # 0 (7.5)

Here Q, is one of the SO, vibrational mode coordinates. If Q, were one of the a,
normal modes, the !B state would have to be another A, state to render the
integrand in Eq. 7.5 totally symmetric as required for a nonvanishing matrix
element. If mode Q, is the b, asymmetric stretching mode, however, the
integrand will transform as I'(*!B) ® b, ® A,. This becomes totally symmetric if
the electronic state !B has !B, symmetry. As it happens, we have already shown
that Walsh’s rules predict the existence of a low-lying B, excited state. The
close energy separation between this !B, state and the 'A, state then makes for
substantial kinetic energy coupling between these states by the nontotally
symmetric b, vibrational mode. As a result, the 'A, state no longer has purely
'A, character, but contains an admixture of B, character as well. Since a
1B, « 'A, electronic transition is E1 symmetry-allowed (and polarized per-
pendicular to the molecular plane), this !B, admixture to the A, state renders
the otherwise forbidden 'A, « !'A, transition partly allowed. This coupling of
different electronic states by nuclear motion in nontotally symmetric modes is
an example of vibronic coupling, a phenomenon widely observed in polyatomic
band spectra.



234 ELECTRONIC SPECTROSCOPY OF POLYATOMIC MOLECULES

In the Walsh picture, the 'A, « A, transition excites an electron from the
4b, orbital to the 2b, orbital (Fig. 7.3). Such a transition from a nonbonding to
an antibonding n* orbital should produce an increased bond length, as is
observed (1.53 versus 1.432 A). In analogy to the !B, « 'A, transition, it aiso
decreases the bond angle as predicted (from 119.5° to 99°). The question arises as
to where the 'B, state, from which the !'A, « !A, transition presumably
borrows its intensity via vibronic coupling, can be found in the absorption
spectrum. This !B, state is not conspicuous in the SO, spectrum in Fig. 7.4; it
may contribute a weak continuum to the high-energy side (~2400-2800 A) of
the first allowed system.

The forbidden band system (3400-4000A) arises from a 3B, « 'A, spin-
forbidden transition. (This 3B, state is the triplet counterpart to the afore-
mentioned !B, state.) In this transition, an electron jumps from the 6a, orbital
to the 2b, orbital, orbitals that favor smaller and larger bond angles, re-
spectively (Fig. 7.3). Thus Walsh’s rules predict that SO, in the 3B, state will
exhibit a larger bond angle than in the ground state, as indeed it does (126.1° as
compared to 119.5°).

Investigators have searched in vain [5] for absorption bands due to the two
remaining low-lying triplet states (A, and 3B,) whose existence is predicted by
Walsh’s ordering of orbital energies. Electronic structure calculations have
predicted that the >B, state should absorb in the region around 6000 A, and that
the 3A, state should produce a band system at 3400—3900 A. Perturbations in
the 3B, « 'A, spectrum have been attributed to the presence of a nearby *B,
state.

7.2 AROMATIC HYDROCARBONS

The lowest energy electronic transitions in homocyclic aromatic hydrocarbons
occur at near-ultraviolet, visible, and infrared wavelengths from 2500 A out to
beyond 7000 A. They involve excitations of electrons in delocalized n-type MOs,
which are composed principally of carbon 2p orbitals oriented perpendicular to
the aromatic plane. The remaining minimal-basis carbon valence orbitals (the 2s
orbitals and the 2p orbitals oriented in the molecular plane) are utilized to form
in-plane o-type MOs directed along the chemical bonds. Excitations of electrons
in o-type MOs to unoccupied MOs require far higher photon energies (in the
vacuum ultraviolet), and are not considered in this Section.

A well-studied aromatic molecule is aniline, C¢HsNH,, which differs from
benzene in that one of the six hydrogens has been replaced by the amino group
—NH,. To a first approximation, the # MOs may be formed from linear
combinations of the six out-of-plane carbon 2p AOs. In benzene, these MOs
would have to transform as irreducible representations of the D¢, point group
(see below). It is reasonable to expect that amino group substitution will perturb
the m-electron system in aniline, however, reducing its effective point group
symmetry to C,,. (In fact, the plane containing the three atoms in the amino
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I'b

Figure 7.5 Nodal patterns and irreducible representations in C,, of 7 orbitals in
aniline, CcH NH,,.

group is inclined from the aromatic plane by 39° in ground-state aniline, so that
the environment experienced by the n-electron system does not even show C,,
symmetry. This point will be ignored in our treatment.) The nodal patterns for
the six lowest-energy # MOs are shown in Fig. 7.5. This diagram also gives the
alignments of the x, y, and z axes which are standard in discussions of excited-
state symmetries in aniline. Since each carbon atom contributes one electron to
the n system, ground-state aniline will have the closed-shell n-electron
configuration

(16,)%(2b)*(12,)*  'A,
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while the lowest four excited states should have the configurations

(1b,)%(2b))*(12,)'(22,)" Ay, %A,
(1b,)*(2b,)’(12,)'(3by)"  'B;, °B,
(1b,)%(2by)'(12,)*(2;)'  'B,, B,
(1b,)*(2b,)!(1a,)*(3by)’ Ay Ay

The singlet ground state S, is therefore totally symmetric, while the lowest
excited singlet S, is either a ' A, state or a !B, state. Both types of excited states
are El-accessible from the A, ground state: the 'A, « 'A; and 'B, « A,
transitions should be polarized along the z and y axes, respectively. This
situation poses an interesting contrast to that in benzene, which is considered at
the end of this section. Under the D¢, symmetry of benzene, some of the
analogous transitions (including the S, « S, transition) prove to be El-
forbidden.

The S, « S, fluorescence excitation spectrum (total fluorescence intensity as
a function of excitation wavelength) is shown in Fig. 7.6 for aniline vapor at
room temperature. Also shown in Fig. 7.6 are several of the aniline vibrational
modes (labeled in accordance with the Varsanyi [6] normal mode nom-
enclature). The most prominent bands in the spectrum are assigned using a
notation that concisely specifies the aniline vibrational levels in the upper and
lower states. The 12} band, for example, corresponds to a transition from an S,-
state molecule with zero quanta of vibrational energy in the a; mode number 12,
to an S,-state molecule with one quantum in mode 12. The origin band (arising
from a transition between vibrationless S, and S, states) is denoted the 03 band.
The very fact that Fig. 7.6 shows a strong 03 band—implying that the S; « S,
transition occurs without succor from vibronic coupling through vibrational
excitation of either the S; or S, state—means that the S, « S, electronic
transition is intrinsically strongly E1l-allowed. Hence the original D¢, symmetry
of the m-electron system in benzene is significantly distorted by the presence of
amino group. In contrast to the allowed band systems in SO, (Fig. 7.4), no
regular progressions of nearly equally spaced bands occur in the aniline
excitation spectrum. For that matter, the great majority of the aniline bands
arise from transitions in which no vibrational quantum number changes by
more than 1 unit. Unlike the allowed transitions in SO,, then, the S; « S,
aniline transition is not accompanied by large geometry changes along its totally
symmetric modes.

To determine the symmetry of the S, state, Christofferson et al. [7] analyzed
the rotational structure of several of the bands. The appearance of the 05
absorption band under high resolution is shown in the top portion of Fig. 7.7. In
a molecule as large as aniline, such a contour comprises some 30,000 rotational
transitions, and so there is little hope for resolving individual lines. Instead, the
contour is compared with a computer simulation that calculates the asymmetric
rotor energy level differences, weights the intensities of allowed rotational



| L | 1 ] L ] . | n | |

950 29754

2825 2850 2875 2900 2925 2
A |
i ! ]
0 !
1 1,0 :
— '60‘ 6!0012‘ : 1 -1
. IGo‘,T" I:IGO? Iii6a . .

-—r

12 1:6“(:}'1’

Figure 7.6 Fluorescence excitation spectra of aniline vapor: (a) 0.3-torr pressure,
0.32 A resolution; (b) 0.24-torr pressure, 0.08-A resolution. Also shown are several
normal vibrations that are active in the fluorescence excitation spectra. Used with
permission from D. Chernoff and S. A. Rice, J. Chem. Phys. 70: 2521 (1979).
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Figure 7.7 Rotational fine structure of the 03 absorption band in aniline vapor. The
experimental rotational contour is shown at top; the theoretical simulations labeled
(b), (c), and (d) were generated using identical rotational constants, but assumed
S, « S, transition moments polarized along the b, a, and ¢ principal rotational axes,
respectively. This work established that the S, « S, transition in aniline is polarized
along the b axis (Fig. 7.8), or equivalently, y-polarized (cf. Fig. 7.5). Reproduced by
permission from J. Christofferen, J. M. Hollas, and G. H. Kirby, Mo/. Phys. 16, 441
(1969).

transitions with the degeneracies and Boltzmann factors of the lower levels, and
superimposes the lines (broadened to replicate the known experimental re-
solution) to generate a theoretical spectrum. The rotational constants A", B”, C"
of S, state aniline were already known from microwave spectroscopy. The S,
state rotational constants A’, B, C’' may be varied to optimize the theoretical
spectrum to fit to the experimental contour. A crucial point here is that the
contour shape is extremely sensitive to the rotational selection rules, which in
turn hinge on the relative orientations of the S, « S, transition moment and the
principal rotational axes a, b, and c (Fig. 7.8). We have already seen in Section
6.6 how the rotational structure in vibration—rotation spectra is influenced by
the alignment of the vibrational transition moment with respect to the
rotational axes. The three theoretical contours in Fig. 7.8 were generated using
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Figure 7.8 Orientations of principal rotational axes in
aniline. The ¢ axis is perpendicular to the paper.

identical upper state rotational constants, but assuming different directions for
the S; « S, transition moments. It is clear that the observed contour is only
consistent with an electronic transition polarized along the b principal rota-
tional axis, which is equivalent to the y axis in Fig. 7.5. Hence the S, state is a
!B, rather than 'A, state. This example illustrates the power of rotational
contour analysis for assigning electronic transitions.

Naphthalene, C,,Hjg, is a planar molecule belonging to the D,, point group.
Ten n-type SALCs may be derived by application of the D,, projection
operators to the out-of-plane carbon 2p orbitals; the qualitative nodal patterns
of the resulting = MOs are shown in Fig. 7.9. We use the Pariser coordinate
system, in which the in-plane x and y axes are aligned with the long and short
axes in naphthalene; the z axis is perpendicular to the molecular plane. Since
naphthalene has ten electrons (one donated by each carbon) in its 7 orbitals, its
ground state S, will have the closed-shell configuration

(1b1,)*(1byp)*(1bs)*(1a,)*(2by,)* A,
The lowest few excited singlet states are then expected to be

... (1a,%(2by,)'(2byy)! B,
- (1a)%(2by,)'(2bsy)! !By,
" (1a)'(2by,)*(2byy)! !By,

The S, « S, transition to the lowest excited singlet state in napthalene is the
'B,, « 'A, transition. Since the 'A, state is totally symmetric and the vector x
transforms as B, in D,,, this transition should presumably be E1 symmetry-
allowed and polarized along the long axis. The next higher spin-allowed
transition (S, « S,) is a symmetry-allowed 'B,, « A, transition. The vector y
transforms as B,,, so this transition should be polarized along the short axis.
The S, « S, transition is in fact responsible for an intense electronic band
system in the near ultraviolet.

In Fig. 7.10, S, « S, fluorescence excitation spectra are contrasted for room-
temperature collisionless naphthalene (at a pressure of ~5 x 1073 torr) and for
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Figure 7.9 Nodal patterns and irreducible representations in D, of i orbitals in
naphthalene, C, H,.
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Figure 7.10 Fluorescence excitation spectra of naphthalene: (a) in room-
temperature vapor at 5 x 1072 torr; (b) in supersonic jet, 0.07-torr hydrocarbon in
4 atm helium. The 8(b, )} peak in the jet spectrum extends considerably offscale.
Used with permission from S. Behlen, D. McDonald, V. Sethuraman, and S. A. Rice,
J. Chem. Phys. 75: 5685 (1981).
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naphthalene in a supersonic jet. The “bulb” spectrum is broadened by rotational
profiles at room temperature. The supersonic jet spectrum differs radically from
the bulb spectrum because the effective rotational and vibrational temperatures
in the jet are less than ~ 10 K. The rotational cooling sharpens the vibrational
bands, while the vibrational cooling removes hot bands caused by transitions
from vibrationally excited S, molecules. The jet spectrum is clearly more useful
for making spectral assignments and for studying the S; state vibrational
structure.

It can be shown using the group theoretical methods in Chapter 6 that
naphthdlene possesses nine a,, eight b,,, three b,,, four bs,, four a,, four b,,,
eight b,,, and eight b;, normal modes. Each normal mode is denoted with a
numerical prefix indicating its rank in frequency among modes of the same
symmetry. For example, mode 8(b,,) is the b;, mode having the eighth highest
(i.e., the lowest) frequency among b,, modes. This notation is employed in the
vibrational band assignments in Fig. 7.10: The band 7(ap)§ arises from a
transition between an S, molecule with zero vibrational quanta in mode 7(a,)
and an S; molecule with one quantum in mode 7(a,). A distinguishing feature of
the naphthalene S, « S, spectrum is the weakness of the 03 transition between
vibrationless S; and S, states (this transition is labeled “origin” in Fig. 7.10).
Even though the S; « S, transition is E1 symmetry-allowed in naphthalene, it
so happens that the pertinent electronic transition moment M, (Section 4.4) is
numerically much smaller than expected for a strong E1 transition. (In the
oscillator strength language which will be developed in Chapter 8, the S; « S,
transition exhibits f ~ 0.001; the strongly allowed S, « S, transition that
occurs at higher energies exhibits f ~ 1.0.) The presence of b,, vibrational
modes allows vibronic coupling between the 'B;, S, state and the nearby !B,
S, state (since B3, ® b;, ® B,, = A,). The 'B;, S, state then gains some of the
1B,, character of the S, state, and consequently borrows some of the intensity of
the strong S, « S, transition. This vibronic coupling accounts for the 8(b,,)s,
7(b, )0, and to some extent the 8(b,,)58(a,)¢ bands, all of which are an order of
magnitude more intense than the origin band at 32,018.5cm™!. Since most of
the intensity in these bands is due to the 'B,, admixture into the 'B,, S, state,
these bands are polarized along the short axis (rather than along the long axis as
would be expected for an intrinsically strong 'B;,«<'A, S, S, transition). It
will be shown in the following section that the vibrational selection rule in these
vibronically induced transitions is Av = +1, +3, ... in the normal mode
responsible for the vibronic coupling. This is why one observes transitions such
as 8(b;,)g, but not 8(b;,)3.

The bands designated 9(a,)s, 8(ap)s, 7(ap)s, and 3(a,)y are also vibronically
induced bands, occasioned by vibronic coupling of the !B;, S, state and some
higher energy 'B;, S, state by the respective totally symmetric modes
(B3, ® a, ® B3, = A,). While this mixing of S, into S, does not modify the B;,
character in S, levels having excitation in a, modes, it will enlarge the S, « S,
transition moment if the S, « S, transition is more intense than the intrinsic
S, « S, transition in the absence of vibronic coupling. These bands in the
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S, « S, spectrum should exhibit the long-axis polarization of the intrinsic
S, < So (B3, < 'A,) transition. All of these band polarizations have been
confirmed by obtaining absorption spectra of napthalene doped as an impurity
into host crystals, where the napthalene orientations relative to the crystal axes
are independently known.

Another notable feature in the napthalene S; « S, spectrum is the lack of
progression formation—the absence of intense bands like 8(b,,)g (ag)p with
n > 1. This indicates that large geometry changes do not occur along totally
symmetry modes in the S; « S, transitions. In this respect, napthalene is similar
to aniline and contrasts with SO,.

The benzene molecule C¢Hg exhibits Dy, symmetry. The nodal patterns of
the six n-type SALCs formed from linear combinations of out-of-plane carbon
2p AOs are shown in Fig. 7.11. With six 7 electrons, benzene has the totally

2u

CI2u

Figure 7.11 Nodal patterns and irreducible representations in D, of i orbitals in
benzene, C H,.
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symmetric A, ground-state configuration (az,,)z(elg)"‘. Its lowest lying excited
states arise from the configuration (a,,)%(e;,)(€,,)"; they have the overall
electronic symmetries e;, ® €,, = B;,® B,, ® E;,. The intrinsic (i€, not
vibronically induced) electronic transitions ‘B,, < 'A;, and 'B,, « 'A,, are
symmetry-forbidden. The 'E,, « 'A,, transition is El-allowed, and has been
assigned to an intense (f ~ 1.0) band system at 1850 A. The lowest spin-allowed
transition S; « S, in benzene is associated with a much weaker system
(f ~ 0.001) at 2600 A; its spectrum is shown in Fig. 7.12. This must be either the
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Figure 7.12 S, < S, absorption spectra of benzene between 2300 and 2700 A in

the vapor, in C4F,,, and in CcH, ,. Used with permission from C. W. Lawson, F.
Hirayama, and S. Lipsky, J. Chem. Phys. 51: 1595 (1961).
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"By, < 'A;, or the 'B,, < A, transition, with E1 intensity gained through
vibronic coupling.

The 30 normal vibrations available in benzene include two a,,, one a,,, two
b,,, one e,,, four e,,, one a,,, two b, two b,,, three ¢,,, and two e,, modes.
For a vibronically induced E1 transition from S, to S, the latter state must be
coupled to either an E, state (which transforms as x, y) or an A, state (which
transforms as z). In the latter case, the S, « S, absorption spectrum would
exhibit parallel bands polarized along the z axis. For S, states having B,, and
B,, symmetry, respectively, b,, and b;, modes would be required to effect
coupling to an A,, state. Benzene has two b,, modes, but no b, , modes. Since no
parallel bands have ever turned up in the S; « S, spectrum, the S, stateisa !B,,
rather than a !B, state.

Perpendicular bands (polarized in the molecular plane) may appear due to
vibronic coupling of the !B,, state with the higher energy E,, state through
vibrations of e,, symmetry. The lowest frequency (605 cm™!) e,, mode, called
mode 6 in current spectroscopic literature, yields the largest 'B,, < 'E,,
vibronic coupling in benzene. (In the Herzberg-Teller theory of vibronic
coupling developed in the following section, lower-frequency modes are predic-
ted to yield stronger coupling.) Hence, the vibronically induced bands 63, 69, 62,

12 oo gl 0

of *o*

So O

Figure 7.13 Energy level diagram for vibronically induced S, « S, transitions in
benzene.
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63 are prominent in the S; « S, spectrum; the last three are hot bands which
occur in bulb spectra. The distinctively regular progression in the benzene
spectrum of Fig. 7.12 appears because the geometry change associated with the
S; « S, transition has a large component along the totally symmetric “brea-
thing” mode (which is called mode 1). For this reason, one observes, in addition
to the transitions 63, 69, 62, 61, the transitions 6515, 6915, 6313, 6315 with n > 1
(Fig. 7.13).

7.3 QUANTITATIVE THEORIES OF VIBRONIC COUPLING

In our qualitative discussions of vibronic coupling in Sections 7.1 and 7.2, we did
not develop any method for predicting vibrational band intensities or
vibrational selection rules in electronic band spectra in which vibronic coupling
is important. Vibronic coupling generally arises from interactions between
nuclear and electronic motions [8]. The Herzberg-Teller (HT) theory of vibronic
coupling deals with the ramifications of the vibrational coordinate dependence
of the electronic transition moment; it thus examines one aspect of coupling
between nuclear and electronic motions. The Born-Oppenheimer (BO) vibronic
coupling theory is concerned with interactions arising from the nuclear kinetic
energy operator T(Q) = —(h*/2) ). 0%/0Q%; these interactions are analogous to
those described for diatomic molecules in Section 3.1. Earlier in this chapter, we
rationalized vibronic coupling in the 1A, state of SO, in terms of such nuclear
kinetic energy coupling. The HT theory has accounted for vibronic band
intensity distributions to a first approximation in many organic molecules; the
BO theory has been invoked to improve on the quantitative predictions of HT
theory.

Let the initial and final states in an E1 optical transition be represented by the
Born-Oppenheimer states

and

[¥ola; Q) = Vg, Q)1W(Q)> (7.7
where ¢ and Q represent the electronic and normal coordinates, ¥,y and |zp_,,>
are the initial and final electronic states, and |y7> and [y},> are the respective

vibrational states. In analogy to Eq. 4.49 for diatomics, the transition moment
integral is given by

Pounow = <XoIMZ 771200 (7.8)
where M™~" is the electronic transition moment

M:en_’" = <lllm|ﬂel|‘//n> (7'9)
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In the Herzberg-Teller theory, M7 ~" (whose notation we now truncate to M,,,)
is expanded in a Taylor series in some normal coordinate @, about its
equilibrium value @, =0,

oM,,
M,..(Q) = M,,,(0) + < 70,

This renders the E1 transition moment equal to

) O+ (7.10)

oM,,
an,ow = M0
Honn, ()<xlx>+<aQ

) 1Ol + -+ (7.11)
M,,(0) is nonzero only if the electronic transition is intrinsically E1-allowed
(as in the aniline S; « S, system or in the second allowed system of SO,). It is
small for the naphthalene S; « S, system, and it vanishes for the S; « S,
transition in an isolated benzene molecule. In the latter two molecules, intense
vibrational bands can thus arise only from the first-order term (or in principle
from higher-order terms) in Eq. 7.11. HT theory retains only the first-order term
in Eq. 7.11. If Q, is a nontotally symmetric mode having the same frequency and
equilibrium value in both electronic states m and n, the Franck-Condon
amplitude (}J|x%> vanishes by symmetry unless the number of quanta in mode
Q. changes by Av =0, +2, +4, .... However, {x7|0Ql x> vanishes unless
Av = +1, +3,...IfQ,is totally symmetric, however, both terms in Eq. 7.11 may
simultaneously be nonzero, allowing interferences to occur between the zeroth-
order (intrinsic) and first-order (vibronically induced) components of p,,, ..,
The vibronically induced component, which is proportional to (0M,,,/0Q.)o
controls the vibrational band intensity according to HT theory when the
intrinsic electronic transition is forbidden. Since the electronic dipole moment
operator ., depends only on the electronic coordinates (Eq. 4.47), we have

M, W\ /om
( an > <l//m|”el 6Q > + <aQ ellwn>
AN
—Z[ Q> < S WOl ] (.12

This leads to an explicit expression for the vibronically induced component of
the transition moment according to Herzberg-Teller theory,

W) = ¥l 55 l!ﬂ > ¥ Iﬂexll//n>] < 1Qudxn?

(7.13)

m:,vw - Z |:<'//mlﬂelllll ><l/’ | Q

The first set of terms on the right side of this expression may be physically
interpreted as follows. The upper electronic state [{,» in the transition nw « mv

v
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can be mixed by vibration in normal coordinate Q, with some other electronic
state |y;> to an extent that is proportional to {;|0/0Q,l¥,>. The nw « mv
transition moment, which would be zero in the absence of vibronic coupling if
the intrinsic transition is forbidden (M,,,, = 0), can then borrow intensity from the
i « m electronic transition provided that {y,|u.|ly;> is nonzero. Since 9/0Q,
transforms as Q, under molecular point group operations, the matrix element
{;10/0Qy > required for intensity-borrowing is nonvanishing only if the direct
product I'(/;) ® I'(Q,) ® I'({,) contains the totally symmetric irreducible rep-
resentation. This symmetry requirement is identical to the one we used in our
more qualitative discussions of vibronic coupling in SO,, naphthalene and
benzene. We may interpret Eq. 7.13 less formally by saying that when state |y,,)
is vibronically coupled to some other state |{;), it becomes replaced by the
mixed state |¥,> + ajyy;>, where o is a small number proportional to
{Y;10/0QylWr,.»- The transition moment g1,,, = 1o |l x5 is then superseded
in the Herzberg-Teller picture by

Pon = <merlﬂel|¢nxnw> + a(‘//mxm”ell‘pix':v> (714)

which says that if the intrinsic nw<mv transition is forbidden
Y mx el axn> = 0), it can still occur if the i« m transition is allowed
(¥ mx™Mpal x> # 0)and if states [, > and |;> are vibronically coupled (o # 0).

The second set of terms in the summation of Eq. 7.13 represents vibronic
coupling of the initial state |\,,> with other states [{;> through vibration in mode
Q.. The transition nw < mv then borrows intensity from the electronic trans-
itions i « n. In most situations of interest, [,,> and |y, are ground and excited
states, respectively, in an absorptive transition. Other electronic states |y;> tend
to lie closer in energy to [,> than to [,,)>, and so workers have frequently
assumed that the “intensity-lending” states |i;) are much more strongly coupled
to the excited state |,> than to the ground state |, ». This approximation
(which ignores the second set of terms) has been challenged, however [9]. It may
be shown that

W\ _ 5 SUil0Ho/0QulY )
( >0 > 7% (7.15)

00y iFn E,—E,

where H, is the electronic Hamiltonian and the E;, E, are electronic-state
‘ fanergies. For a nontotally symmetric, harmonic mode with identical frequencies

in both electronic states, we have the selection rule Ay = +1 in the vibrational
integral {y'|Q,lx5>. Use of second quantization then shows that

3N-6

1/2
) VI wd Y @@y (1.16)

itk

Qx> = (2
Py @y

where y, and w, are the reduced mass and frequency in mode k, and [v,, w,] is
the larger of the two quantum numbers of vibrational states v and w in normal
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coordinate Q. Combining Eqgs. 7.15 and 7.16 yields the conventional expression

.=y Yty <Yil0H o/ 0Qul )

'mn,vw T Ei — E”
ho\'? IN-6
g (z#kwk> Vi wd 1 <@ty (.17

for the vibronically induced transition moment in the Herzberg-Teller theory.
(The last factor in Eqgs. 7.16 and 7.17 is simply a product of Franck-Condon
amplitudes in all modes other than mode Q,.) Herzberg-Teller coupling appears
to account fairly well for the relative intensities of the vibronically induced
bands in the naphthalene S, « S, spectrum. Equation 7.17 predicts that
vibronically induced band intensities will vary as 1/w, with the frequency of the
nontotally symmetric mode. This is in accord with the observation that lower-
frequency modes of appropriate symmetry tend to be more active in vibronically
induced spectra.

Vibronic coupling through the nuclear kinetic energy operator T(Q) rather
than through Q-dependence in the electronic transition moment M,,, can be
treated in a manner that parallels our discussion of the Born-Oppenheimer
approximation in diatomics (Section 3.1). The Born-Oppenheimer theory of
vibronic coupling predicts that the induced transition moment will be

K
00,

Il//.~><¢.~|ﬂe1|l//,.>> Qx> (7.18)

Wy

h
m(r?,vw = Z <E iOkE <¢m|ﬂel|‘/’i><l//i|

o0

E_E. Yl 70,

+

If vibronic coupling of the lower electronic state [,,) to higher states |i;) is
ignored (by setting <{y,|0/0Q,l¥;> = 0), comparison of Eqgs. 7.13 and 7.18
immediately shows that

= hoy/(E; — E,) (7.19)

”r}?rfn),vw
T

H
‘mn,vw

if the coupling is dominated by one of the higher states |i;,>. The vibrational
spacing hw, in mode Q, is frequently small compared to the energy gap (E; — E,)
between coupled electronic states. For example, |{;> and ¥, can represent the
S.(*Bs,) and S,(*B,,) states that are separated by ~3800cm ™! in naphthalene;
they are vibronically coupled by b,, modes with hw, = 512 and 944 cm ' in the
jet spectrum shown in Fig. 7.10. Hence, BO coupling has frequently .been
assumed to be insignificant relative to HT coupling, a presumption that has
been questioned by Orlandi and Siebrand [9]. It is necessary to invoke BO as
well as HT coupling to reproduce the details of the naphthalene S, « S, band
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intensity distribution, because the intensity borrowing and lending states (S,
and S,) are unusually close together in this molecule.

We finally comment on the vibrational selection rules for vibronically
induced transitions. The intensity of a vibrational band which occurs through
vibronic coupling in normal coordinate Q, is proportional to [} Q.lx%>|? in
both the Herzberg-Teller and Born-Oppenheimer theories. When mode k is
nontotally symmetric, the symmetry selection rule in that mode will be
Av= +1, £3, ... if the equilibrium position is undisplaced along @, in the
electronic transition. If mode k is also harmonic, with similar frequencies in both
electronic states, the more restrictive selection rule Av = +1 applies. In such a
case, the band intensity becomes proportional to #A[v,, w,]/2uw, times a
product of Franck-Condon factors over all vibrational modes other than mode
k according to Eq. 7.16. For this reason, one observes the vibronically induced
transitions 63, 69, 62, 6} in the S, « S, spectrum of benzene, but not 61, 62, or 6§.
One similarly obtains the vibronically induced bands 8(b, ) and 7(b,,)g in the
naphthalene S; « S, spectrum, but not bands like 8(b,,)3. In the first allowed
band progression of SO, (in which the upper state ' A, is vibronically coupled to
a higher 'B, electronic state by asymmetric stretching mode 2, which has b,
symmetry), the selection rules permit the transitions 1528 and 1523 with various
n, but not 1523 or 1322

7.4 RADIATIONLESS RELAXATION IN ISOLATED
POLYATOMICS

When an isolated (collision-free) molecule is prepared in an excited vibronic
level, its probable subsequent fate depends fundamentally on whether the
molecule is “small” or “large” (the criterion for “largeness” will be developed in
this section). If one excites the B'II, state in v = 5 of Na, at sufficiently gas low
pressures, that pumped level will decay almost exclusively by emitting a
fluorescence photon—and one can be confident that essentially all of the
fluorescence in a system of Na, molecules so excited will be emitted specifically
by v = 5 in the B'II, state. However, a pumped vibrational level (say 6') in
collision-free S, benzene (which is assuredly a “large” molecule in the context of
radiationless relaxation theory) has access to many decay routes that do not
involve emission of a photon. These radiationless decay routes include conver-
sion of a 6! S; molecule into a vibrationally excited S,-state isoenergetic with
the 6! S, state (internal conversion), and conversion into some vibrational level
of T, (lowest triplet state) benzene with a total energy that closely matches that
of 6! S, benzene (intersystem crossing). Internal conversion and intersystem
crossing are generic terms for spin-allowed and spin-forbidden nonradiative
electronic-state changes, respectively.

Since the molecule is isolated, these radiationless processes must be energy-
conserving. Since they are energy-conserving, it might seem a priori that they
should be reversible. For example, T, benzene formed by intersystem crossing
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(ISC) from 6'S,; benzene should be capable of reverting back to the initial state.
The processes are in fact irreversible, even in isolated large molecules. (In
nondilute gases and in solution, these radiationless decay processes would
appear irreversible in any case, because collisions would rapidly remove the
excess vibrational energy from the vibrationally hot S, or T, molecules formed
in IC or ISC, rendering them energetically incapable of recreating a 6'S,
molecule. The point we are making here is that the energy-conserving non-
radiative decay processes themselves are irreversible in collision-free large
molecules.) Unlike diatomics, large molecules can thus spontaneously decay
nonradiatively into electronic states other than the pumped state, and emit
luminescence from those states. 61S; benzene can emit a fluorescence photon, or
it can undergo ISC to some vibrational level within the T, manifold of levels
(which may then phosphoresce), or it may undergo IC to the S, state (Fig. 7.14).
The peculiarities of large-molecule photophysics and their contrasts to small-
molecule behavior occupied the attention of a number of foremost theoreticians
during the 1960s and 1970s [10].

The general problem of isolated-molecule nonradiative relaxation may be
stated as follows. A Born-Oppenheimer molecular state |i,) in electronic state
manifold A is prepared in a molecule by photon absorption from some lower

1C

LI

Fluorescence

Phosphorescence

So

Figure 7.14 Possible radiationless processes following creation of 6° S, benzene,
one of the vibronic levels which is El-accessible from ground-state benzene (cf. Fig.
7.13). This level may undergo internal conversion (IC) to an isoenergetic, vibration-
ally hot S, molecule, or it may undergo intersystem crossing (1SC) to an isoenergetic
level in triplet state T,. The T, —» S, phosphorescence transition can be monitored
for experimental evidence of ISC. Time-dependent S, - S, fluorescence decay
furnishes a probe for depopulation of S, through radiative (fluorescence) and
nonradiative (IC, ISC) decay.
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Born-Oppenheimer state [y,> as shown in Fig. 7.15. Electronic state B possesses
a manifold of Born-Oppenheimer states |y;> with energies E; which span the
energy region of the state [/,> having energy E,. One wishes to calculate the rate
of decay of the initially excited level |¥,> into the |y;> manifold due to
perturbations like nonadiabatic and spin—orbit coupling, and also to determine
the conditions under which such decay will be irreversible. The Born-
Oppenheimer states and Hamiltonian are analogous to those we used for
diatomics at the beginning of Chapter 3. The total Hamiltonian

A =T+ T(Q + Ug, Q) + V(Q) + H,, (7.20)

contains the electronic kinetic energy, nuclear kinetic energy, electronic potent-
ial energy, nuclear repulsion, and spin—orbit operators, respectively, which are
functions of the electronic and/or nuclear coordinates ¢ and Q. The reduced
Schrodinger equation for electronic motion is

[T(g) + Ulg, QIWila, Q> = E(Qig, O)> (7.21)

where the |y,> are fixed-nuclei electronic wave functions and the E,(Q) are
potential energy surfaces for nuclear motion in the electronic states |, >. The
total wave function is the superimposition of Born-Oppenheimer states

(g, Q) = EI: Wi(q, Q1n(Q)> (7.22)
: A % Ei
—
fw
Eg— ——

Figure 7.15 General problem for nonradiative decay of an excited Born-
Oppenheimer state with energy £, in electronic state A, prepared by photon
excitation of a level with energy £, in the electronic ground state. The prepared state
|¢> is connected by perturbations (spin—orbit coupling, nonradiative coupling, etc.)
to a set of Born—-Oppenheimer states |i,)> with energies £; in electronic state B. The
states |y,> are not accessible by El transitions from the ground state.
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and satisfies the total Schrodihger equation

Hiy(g, Q) = Wikla, Q) (7.23)

This requires that

[T() + T(Q) + U(g, Q) + V(Q) + H,, — W] Ell Wilg, Qx(Q)> =0

(7.24)

In analogy to what was done in Section 3.1, we multiply this equation by {,,(q,
0)|, and use the facts that

Wl Tta) + U(g, QW) = Epdp
Yl VWD = V(Q)om (7.25)
YWY = Wo

to obtain the coupled equations

[T(Q) + En(Q) + V(@) + Yl T@QWm> + <¥mlHoldrm> — WIixn(Q)

- ‘,; W TQWDIX(Q)
iy
iy Z <t//mljwf> 20, (7.26)
tem —<¢m|Hsowf,>|x,(Q)>

where y, is the reduced mass in normal coordinate Q, and |x,,> and |x,> are the
vibrational wave functions in Born-Oppenheimer states |,,» and |/,>. When
the right side of this equation vanishes (ie., nonadiabatic and spin—orbit
coupling are negligible), the motion is confined to a single Born-Oppenheimer
state (|i,,» in this example). All of this parallels what we demonstrated for
diatomics in Section 3.1.

Returning to the general problem, the pumped BO state |/, > may be coupled
by terms like those on the right side of Eq. 7.26 with varying strengths to a large
number of levels in the |i; > manifold with irregularly spaced energies E;. Since
this general problem is not tractable to analytic solution, Bixon and Jortner [11]
studied an idealized system in which the energies of the |;> manifold are equally
spaced,

E;=E,—a+ic i=0,+1, £2,... (7.27)

where E, is the energy of BO state |y,) and «, ¢ are real constants. They also
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made the simplifying assumption that the coupling matrix element

YAy = v (1.28)

has the same value regardless of the final level i, so that all BO levels |i; > have
identical nonadiabatic couplings to |/, ). The density of final states p; is 1/¢, a
constant independent of E;, since the latter energies are equally spaced (Fig.
7.16). It was also assumed that

WA, = E, W lHW,> =0
iAW = E; W AW =0 (7.29)
YilHW:> =0

so that nonadiabatic coupling occurs only between |,> and the states in the
|y; > manifold. In the presence of the perturbations (i.e., nonadiabatic and spin—
orbit coupling) which are included in the total Hamiltonian H, the BO states
I¥,> and the |y;> will become modified into the mixed states

|V = aly> + 3 bily:> (7.30)
which satisfy
HY¥,> = E|¥> (7.31)

It is important to differentiate here between the energies E;, E; (which are
eigenvalues of the BO Hamiltonian T(q) + U(q, Q)) and the energies E, (which

E
I~ Ea
€
E
E, —
_*_____ EO
£ Figure7.16 Simplified level scheme studied by Bixon
-l and Jortner. The levels E; in electronic state B are
equally separated with spacing €; the level £, is offset
— E, from the photon-excited level £, by an arbitrary energy

a. The coupling matrix element <|//sll-7||//,~> = v is as-
sumed to be the same for all states |y/;).
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are eigenvalues of the complete Hamiltonian H including nonadiabatic and
spin—orbit coupling). The expansion coefficients in Eq. 7.30 must satisfy

a,, an
H| ' |=E, 3" (7.32)

Using the matrix elements of H assigned by Bixon and Jortner in Egs. 7.28 and
7.29, this is equivalent to saying that

Es v v a, an
v Ol |-k |® (1.33)
v E; b} b}

o .

where the only nonzero off-diagonal elements in the Hamiltonian matrix are
the H;. Expanding the matrix equation (7.33) leads to

(E;— Epa, +v Z b?=0 (7.34)
(E; — E,)b? + va,=0 (7.35)

From the second of these equations, we have

—va —va
= = z 7.36
B ~E_E E—uti_LE, (7.36)

so that

© via
— = — 7.37
(B—EJan= ¥ atie_E, 737
and

E,—E,= —1v? . Y (E,—E;+a—ig ! (7.38)

1= — o

This is an equation that can be solved for the perturbed-state energies E, in
terms of E;, the coupling v, and the constants « and ¢. It can be shown [11] that
Eq. 7.38 is mathematically equivalent to the statement that

E,—E, = ng cot[G) (E, — E, + a)] (7.39) -
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which may be solved graphically for the perturbed energies E, (Fig. 7.17). It is
clear from inspection of the graph that there will be one new eigenvalue E,, of the
perturbed Hamiltonian between each pair of BO eigenvalues E; (Fig. 7.18). For
large |i| (E; « or » E,) E, will differ little from E,, so that the E, are little shifted
from the E; for states |;> which are far off-resonance. Normalization of the
perturbed states |¢, > in Eq. 7.30 requires that

@2+ Y =1

1= — o

o a?
=a? +v? 2 7.40
" ,'=Z—co (Es — o+ ie — E,,)z ( )
or
) 1 -1
2 2
a;,=|1+v
< _Zoo(Es—oc+ie—E,,)2)
= v (7.41)
= 02 \2 :
(E, — E)* +v* + (—
€
)
+
ui
lll‘
—
< )
£ . i
= ( 1
o . .
/k_)\ ' '
< ‘
N> '
& 2
—(2e + @) —(e+a) —a e—a 2¢—« 3e—a

E.-E,

Figure 7.17 Graphical solution of the equation (Es— E,) = (nv3/e)

>'<cot[(n/e) (E, — E; + @)]. The eigenvalues are given by intersections of the straight
line with the periodic cotangent function.
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Figure 7.18 Eigenvalues E; and E; (/=0, £1, £2,...) of the Born-Oppenheimer
Hamiltonian, solid lines; eigenvalues £, (n=0, +£1, £2,...) of the perturbed
Hamiltonian, dashed lines. The latter eigenvalues are obtained from the graphical
solutions in Fig. 7.17. Note the general property that there is one perturbed
eigenvalue between every pair of Born-Oppenheimer levels.

This expression gives the admixtures a? of the original BO state |, ) .in the
various mixed states |, > which have energies E,,. Because of the (E, — E,)? term
in the denominator of Eq. 7.41, these admixtures will only be appreciable near
resonance.

We are now prepared to examine what happens when a molecule is excited
with a short light pulse. We assume that the transition from |y, to |y is E1-
allowed, but that transitions from |y, to the states ;) are forbidden, i.e.,

Ylulyy> #0
Yilulyg» =0 (7.42)

This will be the case, for example, when |y, is an excited singlet state
vibrational level that is E1-connected to the ground state, and when the |i;) are
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vibrational levels belonging to one of the triplet electronic states. Excitation by a

photon of appropriate energy will then momentarily produce the pure BO state
[¥s>, which may be expanded in terms of the mixed states as

s> =2 Wa<ald> = Y a, v, (7.43)

at the time t = 0 when excitation occurs. At later times this prepared state will
evolve as

W)y =Y, ae™ By,
=Y a0 <a"|n/zs> +3 b:'wz.->) (7.44)

The probability of finding the molecule in BO state |y, after excitation will be

K<Y le)>1?

P(t)
2

= z <¢slane‘iEnt/h|anl//s + Z b:lwz>

2

— Z a'zle—iE,,t/h
n

2 2

v —iE,t/h

=X ) 3¢
" (E, — E,? +u2+<”7>

This is difficult to evaluate a priori, because the mixed state energies E, are not
given by analytic expressions (Fig. 7.17). We therefore coarsen our approxi-
mation by assuming that they are given by

(7.45)

E,~E,+ne n=0,+1, +2,... (7.46)

(This is not totally unreasonable, because there will be an E, level between every
pair of E; levels, will and so the two sets of levels have similar average spacings in
Fig. 7.18). Letting

2\ 2
A =0+ <K> (7.47)
&

we have the time-dependent probability

Z vzeinat/h 2
n%e? + A?

n

P(1) =

(7.48)
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that the molecule will be found in state |y, after excitation. In the limits v > ¢
(or vp; > 1) and t « h/e, this sum may be replaced by the integral [10]

P1) =

) 02 2
J dn m COS(Ent/h)

— @

— o~ 2m0tfch — p—kngt (7.49)

Hence when v » ¢ and t « h/e, the excited BO state |,y undergoes irreversible
first-order decay with a rate constant

kyg = 2mv?/eh (7.50)

which is proportional to the square of the nonadiabatic coupling matrix element
and to the density of final states p; = 1/e. If, however, we drop the assumptions
v >» ¢ and t « h/e, the sum for P(t) in Eq. 7.48 must be evaluated explicitly. This
was done by Gelbart et al. for several model systems [10], and we show their
results for v = 0.5¢ in Fig. 7.19. P(t) initially decays exponentially, becoming

100 T T T T WV T T T T T T 1.0
-
- ‘t‘ BJ -
0.50r
B —0.8
‘t -
0.20}
—0.6
Py (1)
: o4
0.05
Troe o2
002} ‘
’ -
0.0l ! 1 ] | L nel | L ) | I | 0
(o] | 2 3 4 5 V74 16 18 20

TIME (nanosec.)

Figure 7.19 The time-dependent decay function P (t) evaluated using Eq. 7.48
with v=0.5€. P (t) exhibits exponential decay (manifested by a straight line in this
semilog plot) at early times; a partial recurrence occurs at tZ 2mhje = 18).. The
energy spacing € was chosen to render the exponential lifetime 7 = 1/k, 5 between 1
and 2 ns for realism. Reproduced by permission from P. Avouris, W. M. Gelbart, and

M. A. El-Sayed, Chem. Rev. 77: 793 (1977).
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very small for t > 1/kygz. However, it then begins to build up again to a large
value at the recurrence time ... = 2nh/e, since Eq. 7.48 contains a superimposi-
tion of periodic terms proportional to exp(inet/h). In real molecules, the
population of pumped state |,> is depleted by spontaneous emission (flu-
orescence, phosphorescence) long before this recurrence time is reached. For
example, we can consider the radiationless decay of vibrationless S; benzene
into T, benzene (ISC). The density of T, vibrational states isoenergetic with the
0° S, stateis p ~ 3 x 10°cm (i.e., 3 x 10° levels per cm ~!) in benzene, and this
number can be identified with 1/¢ in our discussion. The corresponding
recurrence time is then 1., = 2nh/e ~ 10~ 3s, which should be compared with
the ~10~%s fluorescence lifetime in benzene. The radiative decay timescale in
benzene preempts that of recurrence by several orders of magnitude.

One of the nominal criteria for the validity of the integral approximation in
Eq. 7.49 was v » ¢. The foregoing discussion shows that this is too strict, since
the calculations of Gelbart et al. prove that irreversible decay can be obtained
for v = 0.5¢. A more realistic criterion is v/e £ 1, or vp < 1 in molecules with an
energy-dependent density of final states.

The problem of estimating densities of vibrational states p is a large one that
we will only touch on here. For single harmonic oscillator with uniform energy
spacing hv, p is of course 1/hv. The number of ways of placing n vibrational
quanta in g identical oscillators (total energy E = nhv) is [12]

W(E) = (n + q — 1)!/(q — 1)'n! (1.51)

The total number of states in such a system with vibrational energies between 0
and E is

i(’”_l)' (1 + g

G(E) = =
) nlq!

(1.52)

and the density of states p(E) at vibrational energy E is obtained from
p(E) = dG(E)/dE (7.53)

For a system of three such oscillators, the following table describes the behavior
of G(E) with increasing n = E/hv:

n G(E)
0 1
1 4
2 10
3 20
4 35
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G(E) and p(E) can become incredibly large at moderate vibrational energies (e.g.,
5000 cm ~!) in molecules of respectable size (benzene has 30 vibrational modes).
Approximations are then required to evaluate them, particularly when the
normal modes have a range of frequencies [13].

The criterion that vp 2 1 now implies that a critical number of vibrations is
required to make an irreversible radiationless relaxation process possible. We
may consider a hypothetical case in which the energy gap between the
vibrationless electronic states is ~1eV (8066 cm ~1); that is, state |y,> decays
into a set of final states |[{;> which have ~ 1 eV of excess vibrational energy. For
IC and ISC, typical values of the coupling v may be taken to be ~107! and
10~ *cm ™, respectively [11]. A table of products vp calculated by Bixon and
Jortner for nonlinear molecules with N atoms in which all 3N — 6) vibrational
modes oscillate with frequency 1000 cm ~ ! is shown below; the densities of states
p were evaluated according to the method of Haarhoff [13]:

N p(E=1¢eV) vp (IC) vp (ISC)
3 0.06 cm 6x 1073 6 x10°°
4 4 0.4 4 x 107
5 50 5 5x 1073

10 4 x 10° 4 x 10* 40

Hence, internal conversion is typically expected to occur in molecules with >4
atoms, and intersystem crossing sets in when N 2 10. These are rough guidelines
for the “large-molecule” regime in which nonradiative relaxation is prevalent in
isolated molecules. It includes all aromatic molecules (the smallest common one
of which is benzene); formaldehyde and larger molecules with the carbonyl
chromophore; and all laser dyes such as rhodamines, oxazines and commarins
(Chapter 9).
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PROBLEMS

1. The S, « S, band system of formaldehyde (CH,O) has been thoroughly
studied, and it has been established that the vibrationless S; and S, states have
'A, and 'A; symmetry, respectively, in C,,. The S; < S, absorption spectrum
and descriptions of normal vibrations in the S, and S, states are shown in
Figure P7.1 and in the list below.

Normal mode Symmetry XA, A'A,

v, C—H symmetric stretch a, 2766.4 2847

v,  C=0 stretch a, 1746.1 1173

v; H—C—H bend a, 1500.6 1290

vs  Out-of-plane wag b, 1167.3 124.6

vs C—H asymmetric stretch b, 2843.4 2968

ve¢ In-plane wag b, 1251.2 904

(a) Is the intrinsic S; « S, transition El-allowed in formaldehyde?

(b) Assuming that the exhibited bands gain intensity by Herzberg-Teller
coupling between S, and higher excited singlets S,,, what are the symmetries
of the electronic states S,? What polarizations do these bands exhibit?

(c) What information about the relative geometries of the S; and S, states can
be inferred from the progressions in this spectrum?

%1% co HeCO
zY.l 2“' 2I‘I zl‘l Z.‘I 2l.l . zl‘l ‘l
0.08 oy z_c.; ‘za‘; _ 2‘42: 2%43 2243 2'a )
006 '2%? (2% 12248
A
Q.04
AL
P
0 1 ! 1 1 1 ] ! | 1 | 1 1 1 1 1 | J
270 280 290 300 310 320 330 340 330 380
X (nm)
Figure P7.1 Reproduced with permission from E. K. C. Lee, Adv. Photochem. 12:

18 (1980).
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2. In s-triazine (a D5, molecule), the three lowest excited singlet states are
predicted to be closely spaced in energy with symmetries *A7, 'A%, and 'E”. An
s-triazine crystal absorption spectrum (taken with unpolarized light) is shown in
Figure P7.2. The weak 0-0 band is E1 symmetry-forbidden, and appears
because the D;, symmetry of s-triazine is slightly distorted by the crystal
environment. From analysis of the polarized crystal absorption spectra, the
following fundamentals are found in the S, « S, spectrum:

Normal mode Symmetry  Polarization

6 e I (2)

4 a3 1 (x )
5 aj 1(xy)
10 e’ 1L (xp
16 e’ 1 (x,y)

‘(a) Assuming that these fundamentals gain intensity through Herzberg-Teller
coupling, deduce the symmetry of the lowest excited singlet state. Show that
this choice is consistent with all pertinent data given in this problem.

(b) - Mode 12 in s-triazine has aj symmetry. By what mechanism (other than
environment symmetry-breaking) can the 12} band appear in this crystal

absorption spectrum?

(c) What symmetries of electronically excited states are vibronically coupled to
the S, state in the 67, 4, 5, 10, and 16! vibrational levels? Considering
this, why does the 65 band exhibit such large intensity?

PLATE BLACKENING
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ot
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|
'4l 5'
0-0 e °
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I ! I
30014 30500 31000
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Figure P7.2 Reproduced with permission from N. J.
~ Chem. Phys. 56: 2987 (1972).

Kruse and G. J. Small, J.
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3. Polarized S; « S, absorption spectra of tetracene in a transparent ordered
host crystal at 4.2 K are shown in Figure P7.3. The upper spectrum was obtained
using light polarized along the tetracene y axis, and the lower spectrum was
obtained using z-polarized light. The y and z axes lie in the molecular plane
along the short and long axes of tetracene, respectively. The tetracene S, state
has 'A, symmetry in D,,.

(a) Most of the assigned bands in the y-polarized spectrum arise from
fundamentals and combinations in a, modes: the 308-cm ™! band is 12(a,)3,
the 308 + 609-cm ™! band is 12(a,); 11(a,)}, etc. What is the symmetry of
the electronic state S,?

(b) The 479-, 1166-, and 1506-cm ' bands in the z-polarized spectrum are
fundamentals arising from vibronic coupling between S, and a higher lying
!B,, state. What is the symmetry of the normal modes responsible for this
vibronic coupling?

(©) Use Herzberg-Teller theory to develop an algebraic expression for the ratio
of intensities for the 479- and 1166-cm ~ ! bands in the z-polarized spectrum.
What structural information about tetracene would be needed to test the
theory against these data?
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Figure P7.3 Reproduced with permission from G. Fischer and G. J. Small, J.
Chem. Phys. 56: 5937 (1972).
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4. One way to evaluate energy-dependent vibrational densities of states p(E) is
to invert the classical vibrational partition function

0= J: p(E)e™BIT = j: p(E)e™ dE = Q(s)

The desired density of states is the inverse Laplace transform of Q(s),

p(E) = £ '[Q(s)]

For a harmonic oscillator, the classical partition function is

Q(s) = lim [1/(1 — exp(—hv/kT))] = kT/hv = 1/shv

T—

and for v independent oscillators with frequencies v; it is

0(s) = (kT)v/ﬁ hy, = s/n h,

(a) Show that the classical vibrational density of states in a molecule with v
normal modes is

pE) = — 2

v —D]]hv

13

(b) Obtain numerical values of p(E) at E =8000cm~! for CO, (whose
vibrational frequencies are given in Section 6.5) and for ethylene, whose 12
nondegenerate vibrational frequencies are 825, 943, 950, 995, 1050, 1342,
1443, 1623, 2990, 3019, 3106, and 3272cm ~ 1. What circumstances lead to
large densities of states for given E?

(c) The classical density of states is accurate only when E is large compared to
the zero-point vibrational energy E, = +hXv;. A more accurate expression
for p(E) at lower energies is the semiclassical expression

_(E+Ep!
(v — DT hv,

p(E)

which results from replacing E in the classical density of states with
(E + E,). Reevaluate p(E) for CO, and ethylene at 8000cm ! using the
semiclassical density of states. At what energies do the two approximations
agree to within 109 in these two molecules?
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5. In the isolated benzene molecule, the *B, T, state lies 9200 cm ~ ! below the

1B,. S, state. Assume that T, benzene has the following vibrational frequencies

incm™ !

3060 a,, 850 €1

990 ay, 3000 €1
1200 a5, 1500 €

650 a,, 1050 e
3050 by, 3000 €2
1000 by 1500 €2
1500 b,, 1200 €2

550 bs, 600 €24
1900 bs, 1200 ey,
1145 b,, 400 €

(a) Calculate the semiclassical density of states p(E) in T, benzene at the energy
of the vibrationless S; state. (Be sure to consider the vibrational mode
degeneracies.)

(b) If the value of the spin—orbit coupling matrix element v between S; and T,
is on the order of 10" *cm ™!, is irreversible T, « S, intersystem crossing
likely to occur in benzene?

6. The lowest excited triplet state (*A,) in formaldehyde lies some 3500 cm ~*
below the S, origin. Assuming that the vibrational frequencies in T, are the
same as in S; (Problem 7.1), evaluate the semiclassical density of states in T, at
the energy of the vibrationless S, state. If the relevant spin—orbit coupling
matrix element v is 10~ *cm ™!, what will be the first-order rate constant kyy in
s~ ! for T, « S, intersystem crossing?






SPECTRAL LINESHAPES AND
OSCILLATOR STRENGTHS

We have tacitly assumed in the preceding seven chapters that spectroscopic
transitions occur at sharp, well-defined frequencies, leading to absorption lines
with zero frequency width. In reality, numerous mechanisms (including lifetime
broadening, Doppler broadening, and collisional broadening) endow experi-
mental absorption lines with finite widths and characteristic lineshape functions.
We develop a framework in the first part of this chapter for predicting these
lineshape functions in gases, where they assume a particularly simple form. In
condensed media, the absorption lineshapes (e.g., in solid naphthalene or
Nd3+* : glass) are controlled by electron—phonon interactions, thermal broaden-
ing, and broadening that arises from the fact that not all molecules experience
identical environments within the medium (inhomogeneous broadening). Such
condensed-phase broadening mechanisms lie beyond the scope of this chapter.

Our discussion of Einstein coefficients and oscillator strengths in Sections 8.3
and 8.4 yields fundamental relationships among absorption coefficients, lumin-
escence lifetimes, and probabilities for stimulated emission. The latter process is
responsible for light amplification by stimulated emission (laser action), and
these relationships figure prominently in the derivation of lasing criteria in
Chapter 9.

8.1 ELECTRIC DIPOLE CORRELATION FUN‘CTIONS

According to the formalism we developed in Chapter 1, the probability
amplitude for an E1 one-photon transition from state |k) to state |m) is

1
) = W

t
J e o mW(t)lkdt,
h Jo

267
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Drmik . k ' i(wmk_w)hd 8.1
= (mler-Aolky | e ty (8.1)
0

for a molecule that is exposed to a vector potential A(r, t) = Ay expli(k ‘T — wt)]
turned on at time ¢ = 0. Since the time integral in this equation is

t ei(wmk—w)t —1
glomomgy =&~ (82)
0 Wy — )

the probability that the transition will occur between times 0 and ¢ becomes

2w3 1 — cos[(w, — @)t]
(1)(4)|2 — Z"km . 2 mk
0 = 2 K Aol =00 e
2wi, 2 sin?[(w — @)t/2
= 2 e Ay 2 2L = 2] 83

In the limit of long times t > w,;!, the w-dependent factor in Eq. 8.3 approaches
a constant times the Dirac delta function,

2 sin?[(@py — ®)t/2]
(wmk - w)Z

= (W, — ©) (84)

(The proportionality factor nt is required here to ensure that the delta function is
normalized to unity.) The external electric field E = Ejexp[i(k ‘r — wt)] is
related to the vector potential in the Coulomb gauge by E = —0A/dt. Noting
that the delta function (8.4) will constrain w to equal w,,, in Eq. 8.3, we may write

2
AV = 25 <l Ealk)?5(0p — ) 83)

The transition probability is clearly proportional to the time duration ¢ for
which the external field is applied. It is therefore meaningful to define the
transition probability per unit time,

2
Piom= % [<mlp* EolkH|> (i — @) (8.6)

This expression coincides with the well-known Golden Rule formulation [1] of
the molecular transition probability under the external perturbation
W= —uE,

We now wish to generalize this expression to a system of molecules at thermal
equilibrium. Let p, and p,, be the probabilities that a molecule will be found in
state k and in state m, respectively. The rate of energy loss from the radiation
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field due to E1 one-photon absorption/emission processes will be [3]
_E = Z hwmkpk—»m
km

2
=5 T Ol pi — PalmIEq S0 — )

2
-5 Y omp(l — e EDKmIE, P S@m — @) g o

The average energy density stored in the electromagnetic field is E = g Eq/2 [2].
Since the delta function in Eq. 8.7 requires w to equal w,,, in each term of the
summation (8.7), the optical absorption coefficient will be proportional to

—-E 4 -
o) = = (L= ) 5 g CmlE gl Poo — @) B8

where E is a unit vector directed along the electric field. Since we are now
concentrating on the shape (rather than intensity) of the absorption lines, we
define the lineshape function

3ephe(w)

@) = g gmray = 3 2 PelKmlE - Bk 8(@ — ) (8.9)

In view of the integral representation (1.113) of the Dirac delta function this is
equivalent to

3 nl 0 © il - -
I@) = 5= % pCKE- pim)<miE- pie) j | dielE Bk

3 —i o i 2o
=5 | dte "‘"kZ PiCKIE - plmy<m)e=n(E - p)e =Bk

(8.10)

In the Schrodinger representation of the latter matrix element in (8.10), the
molecular states are regarded as time-dependent basis functions exp(—iE,t/h)|k)
and exp(—iE,t/h)m>, and the operator E-p is considered to be time-
independent. For present purposes, it is more illuminating to use the Heisenberg
representation, in which the molecular states are the time-independent basis
functions |k>, |m> and the operator is viewed as time-dependent. Since
H|i> = E|Ji) for each of the molecular states |i », we have

2 * —i F iHt/h —i
I(w)=%f dte™ "3 pCKIE - pim)<mle ™ E - e~y

— 00

(8.11)
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and so the time-dependent electric dipole moment operator in the Heisenberg
representation is

[l(t) — eiﬁt/h”e—iﬁt/h (812)

In terms of this, the lineshape function becomes

3 [ ) ~ .
I(w) = —— f dre™ ™" ; PiCKIE - pO)E - p(t)lk) 8.13)

21 |- w

Performing the summation in (8.13) with the Boltzmann weighting factors p,
amounts to evaluating an ensemble average. Using the subscript zero to denote
the ensemble average of a matrix element, we then have

3 (= . . "
I(w) = > J dte™ "*Ck|E - p(O)E - p(t)|k>, (8.14)
Since the orientation of the unit vector E is arbitrary in an isotropic sample, and
since

Kl O)pB)lkdo = CkluyO)nB)lkyo = <Kl O D)Ko
= 5<kIp(0) - p()lk o (8.15)

our lineshape function assumes the final form [3]

1 [ .
Ilw) == J . dte™ " pu(0) - p(t))o (8.16)

I(w) is then given by the Fourier transform of the electric dipole correlation
function {u(0)- u(t)),. For a single molecule, the quantity u(0)- u(t) gives the
projection of its dipole moment at time ¢ along its initial direction at time ¢t = 0.
In a collection of molexules, the total dipole moment must be used in p(t), so that
the correlation function will generally contain cross terms between dipole
moment operators belonging to different molecules. At high concentrations (e.g.,
in pure polar liquids), where orientational motion between neighboring
molecules may be highly correlated, {u(0) u(t)) o therefore cannot be interpreted
in terms of reorientation of a single molecule. Such cross terms are unimportant
in gases and in dilute solutions of polar molecules in nonpolar solvents (where
the motions of neighboring polar molecules are essentially uncoupled), and in
these systems the dipole correlation function gives a quantitative measure of
how a single molecule loses its orientational memory as a result of collisions or
other perturbations. The correlation function typically approaches zero at long
times in liquids in gases, as the molecular orientations become randomized
through stochastic processes (e.g., angular momentum changes in bimolecular
collisions).
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8.2 LIFETIME BROADENING

We next evaluate the lineshape function (8.16) for two concrete situations in
gases. (The complexity of molecular motions in liquids precludes computation of
their dipole correlation functions in a text of this scope.) In the first situation, we
imagine that we are examining lineshapes in the far-infrared spectrum of a
collision-free, rotating polar molecule. Its dipole moment g, is assumed to rotate
classically without interruption with angular frequency w, about an axis normal
to . In a dilute gas, we would then have

p(0)* p()>o = M5 cos wot
2

=9 (efoo 4 e7iom (8.17)

for —o0 <t < +o0. The relevant lineshape function is then

2 ©
I(w) = % f . dte™(gi@0t ¢~ iwot)
2
- 5‘2—" [8(@ — wg) + (e + wy)] 8.18)

These two delta functions correspond to absorption and emission of radiation at

frequency w,, respectively, with spectral lineshapes exhibiting zero full width at

half maximum (fwhm). Such uninterrupted molecular rotation, in which the

dipole correlation function (8.17) maintains perfect sinusoidal coherence for an

indefinite period of time, produces no broadening in the lineshape function I(w).
Suppose now that we have the more realistic correlation function

<p0): p(t)>o =0 t<0

=p2e "2cos wyt >0 (8.19)

This would represent a molecule rotating classically with frequency w,, with a
transition moment that decays exponentially with 1/e lifetime T = 2/y following
excitation at time t = 0. Such decay may occur via radiationless transition,
spontaneous emission (Section 8.4), or collisional deactivation in the excited
state. The corresponding (real) lineshape function is

2 ©
I(w) = & Re J e_iﬂ)te_}’t/2(eimol + e—imot)dt
4r 0

_ 7/2 )
T 4n [(w — wo)Z + 72/4 + (@ + wo)z T )’2/4:| (8.20)
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Like Eq. 8.18, this expression exhibits terms corresponding to absorption and
emission, respectively. The normalized absorption lineshape function

y 1
=71 8.21
) = o @ — w7 21
satisfies the condition
f P (w)dw =1 (8.22)

P, (w) is called the Lorentzian lineshape function. Its fwhm is equal to y, and is
inversely proportional to the lifetime T = 2/y. It approaches zero as w — + oo,
and maximizes at w = w, (Fig. 8.1). Physically, y itself will have several
components in any real absorption line, arising from spontaneous emission
(fluorescence or phosphorescence), nonradiative excited-state decay (intersystem
crossing, internal conversion, photochemistry), collisional deactivation, etc.:

Y = Yrad + Vnonrad + Yeou + " ° (823)

Figure 8.1 Lorentzian and Gaussian profiles P _(w) and Ps(w) (solid and dashed
curves, respectively) with the same peak height and the same fwhm. The two profiles
are very similar for |w| < fwhm/2, but the Lorentizian profile falls off much more
slowly than the Gaussian profile at large |w|.
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or
1/1 = 1/"'-rad + 1/‘Cncunrad + 1/Tcoll + (824)

Lifetime broadening is ubiquitous, because all excited states decay. The
observed absorption lineshape is seldom Lorentzian, however, since other
mechanisms than lifetime broadening usually dominate the actual lineshape.

8.3 DOPPLER BROADENING AND VOIGT PROFlLES

As a result of the Doppler effect, a molecule traveling with velocity component v,
along the propagation axis of an incident light beam will experience a light
frequency that is shifted from that experienced by a stationary molecule by

Ao = 0 — Wy = —wy(v,/c) (8.25)

Here w, is the frequency experienced by the stationary molecule. In a thermal
gas sample at temperature 7, the one-dimensional Boltzmann velocity distribu-
tion in v, will be

P(v,) = Poe—"/2T ' (8.26)

where m is the molecular mass. (This equation should not be confused with the
three-dimensional ~ velocity  distribution, which is proportional to
v? exp(—mv?/2kT).) Using v, = c(w — wy)/w,, We obtain

Pg(w) = Pyexp[ —m(w — wo)?c?/2wikT] (8.27)

This is the Gaussian lineshape function, which arises from Doppler broadening.
Like the Lorentzian function P;(w), it maximizes at w = w,, and approaches
zero as @ — + oo. The fwhm of Pg(w) is

1/2 ‘
fwhm = (iﬂxw) (8.28)

m

so that the Gaussian lineshape broadens with temperature as T2, The
Lorentzian and Gaussian lineshapes are contrasted in Fig. 8.1.

The Lorentzian and Gaussian lineshapes physically differ in one important
respect. All molecules in a homogeneous gas (excepting specialized situations
where the gas is subjected to a nonuniform external field) in a given excited state
have an identical probability per unit time of decaying either radiatively or
nonradiatively. All molecules in such a sample thus contribute equally to P (w)
at all frequencies w. This is an example of homogeneous broadening. In Doppler
broadening, it is clear from Egs. 8.26 and 8.27 that slowly moving molecules
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contribute more to the center of the Gaussian profile Pg(w), while faster
molecules account for the wings where w > @, or w « wy. Doppler broadening
is thus an example of inhomogeneous broadening.

Both lifetime and Doppler broadening are always present in gas samples. If
these two are the only important broadening mechanisms, the resulting profile is
given by the convolution

Py(w) = r Po(o — )P y(w)do (829)

of the Gaussian and Lorentzian profiles (Fig. 8.2). This function, called the Voigt
lineshape function, is nonanalytic (i.e., inexpressible in closed form), and it has
been extensively tabulated for analysis of gas sample absorption lineshapes.
With our current access to interactive computers, such tabulations are rapidly
becoming unnecessary.

Doppler broadening in gases can readily be eliminated by manipulation of
experimental conditions. One way to achieve this is to do spectroscopy on
supersonic gas jets, in which the translational velocity distribution can be made
to resemble a delta function along the jet direction (i.e., the velocity distribution

Figure 8.2 The Voigt profile, formed by the convolution (8.29) of the Gaussian
profile with the Lorentzian profile, effectively sums Lorentian profiles (solid curves)
centered at all frequencies w’, weighted by the value of the Gaussian profile (dashed
curve) at those frequencies.
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is highly non-Boltzmann), while the velocity distribution transverse to the jet
direction is characterized by low temperatures T < 20K. At such low temper-
atures, Eq. 8.28 yields an absorption line fwhm that is far narrower than that
observed in room-temperature gases. Supersonic jet spectroscopy has therefore
afforded experimentalists an opportunity to obtain highly detailed, well-
resolved vibrational structure in large-molecule electronic band spectra (cf. Fig.
7.10). An alternative way of obtaining Doppler-free spectra (applicable to
thermal gases) is to do two-photon spectroscopy with counterpropagating laser
beams; this will be discussed in the section on two-photon absorption in
Chapter 10.

Experimentalists must always contend with instrumental broadening as
well, since spectrometers and excitation lasers never operate with zero bandpass
or output bandwidth. The resolution of a grating spectrometer (defined as
R = 1/AJ, with 1 and AJ equal respectively to the operating wavelength and the
wavelength bandwidth passed by the instrument) is ideally inversely pro-
portional to the width of the instrument’s exit slit. Any real instrument suffers
from aberrations that lower R from its ideal value: coma, spherical aberrations,
and chromatic aberrations are some of the artifacts that can contribute to
instrumental broadening in the less well-designed instruments. Additional
problems arise in grating spectrometers with mechanically ruled gratings,
because the groove spacing in such gratings cannot be made absolutely uniform;
these gratings inevitably diffract more than one wavelength at a time into any
given direction. This drawback has been greatly reduced by the introduction of
holographic gratings, in which the diffraction grooves are automatically formed
with uniform spacing upon exposure to an interference pattern of two coherent
laser beams with well-defined wavelength.

8.4 EINSTEIN COEFFICIENTS

The Einstein coefficients prove to be useful for understanding the relationships
among the probabilities for spontaneous emission, stimulated emission, and
absorption. They are thus valuable for understanding the criteria for achieving
laser action, where the competition between spontaneous and stimulated
emission in the laser medium is crucial. The Einstein coefficients also lead to
important insights into the relationships between the absorption and flu-
orescence properties of molecules, relationships that are often taken for granted
in the chemical physics literature.

We begin our discussion with an ensemble of identical two-level systems in
which the upper and lower state populations are N, and N,, respectively. The
energy levels are spaced by AE = hv, and the systems are at thermal equilibrium
with a radiation energy distribution over light frequencies v given by p(v). It is
assumed that only three mechanisms exist for transferring systems between
levels 1 and 2: one-photon absorption, spontaneous emission (radiation of a
single photon), and stimulated emission (Fig. 8.3). In the latter process, a photon
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Figure 8.3 Optical processes in a two-level system with level populations NV, and
N,. The rates of photon absorption, spontaneous emission, and stimulated emission
are B,,N,p(v), A,,N,, and B,,N,p(v), respectively.

with frequency v (which matches the energy level difference AE) and given
polarization is incident upon a system in upper level 2. It causes the system to
relax to level 1, giving up a photon of identical energy, polarization, and
propagation. (Since two identical, coherent photons emerge from one incident
photon, stimulated emission forms the basis for laser amplification in Chapter
9.) The number of photons absorbed per unit time will be proportional to both
N, and p(v), and we define the Einstein absorption coefficient B, by setting this
photon absorption rate equal to B, , N, p(v). The number of photons emitted per
unit time will be equal to N,A4,; + N,B,,p(v), where we have now implicitly
defined the Einstein coefficients B,; for stimulated emission and A4, for
spontaneous emission (whose rate is necessarily independent of p(v)). The
absorption and emission rates must balance at thermal equilibrium, so that

Ny(B21p(v) + A31) = N1By2p(v) (8.30)
We may solve this for the radiation energy distribution

N2A21

_ (8.31)
NBy; — N;,By,

p(v) =

However, p(v) also be given by the Planck blackbody distribution at thermal
equilibrium [4]

8nhv3 1
p(v) = 3 T ] (832
We also know that N, and N, are related at equilibrium by [4]
N,/N; = (g5/g1)e” T (8.33)

where g, and g, are the statistical weights of levels 1 and 2. It is easy to show that
Egs. 8.31 through 8.33 are mutually consistent only if

B,1 = (91/92)B12 (8.34)
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and

Ay =3 By, (8.35)

Hence, the Einstein coefficients for absorption, spontaneous emission, and
stimulated emission are all simply related. The v factor that enters in the
spontaneous emission coefficient 4,, (Eq. 8.35) has had historical importance in
the development of lasers, since it implies that spontaneous emission competes
more effectively with stimulated emission at higher frequencies. High-frequency
lasers have therefore been more difficult to construct. This is one of the reasons
why X-ray lasers have only recently been built, and why the first laser was an
ammonia maser operating on a microwave umbrella-inversion vibration rather
than a visible laser.

It may be shown [5] that in the E1 approximation the Einstein absorption
coefficient for the two-level system is given by

8n3 5
B, = Iz [<1|pl2>] (8.36)

This leads immediately to explicit expressions for the two Einstein emission
coefficients,

8n? (g,)
By == | =) K1|u2)|? 8.37
2 =35 5r ) KA (837)
and
64n*y?
Az = (Z—) K1lpi2>? (838)
2

8.5 OSCILLATOR STRENGTHS

We now exploit the relationships among Einstein coefficients to obtain
relationships between the electronic absorption and emission properties in
polyatomics. For simplicity, we assume that an absorptive transition originates
from the ground vibrational state 0 in electronic state 1, and terminates with
vibrational state n in electronic state u. (These vibrational level designations are
shorthand labels for collective vibrational states involving all of the normal
modes.) The Einstein coefficient for this absorption process is

8n3 5
Biooun = 2 [<10|plun}| (8.39)
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which in the Born-Oppenheimer approximation (not good for vibronically
induced transitions!) is

8n3 5 )
BlO—'un = 3h2 |<1|”el|u>| l<0|n>|
8 w2 2
= S IME <Ol (840)

Here |{0|n)|? is the Franck-Condon factor for the 0 — n vibrational band
intensity in the electronic spectrum, and M2~* is the electronic transition
moment. If one sums Eq. 8.40 over all of the upper state vibrational levels n
reached from the vibrationless lower state, one obtains

8n3 .
> Biooun = IE IM; 723" <0lny<nl0)

8n3 .

=3 IME (841)
which depends only on the electronic transition moment and is independent of
the upper state vibrational structure. This sum is therefore a measure of the
allowedness of the electronic transition. To describe the latter, it is conventional
to use the dimensionless oscillator strength [6]

8n’m,
3he?

Jiou= Vi M (342

where m, is the electron mass, e is the electron charge, and v,, is the mean
frequency of the electronic transition. Defined in this way, the sum of oscillator
strengths Y, f; ., for electronic transitions from electronic state 1 to all other
electronic states is supposed to equal unity, but in practice this depends on how
v, is specified. As a rule, f; _,, on the order of unity is associated with a strongly
allowed El1 transition in aromatic hydrocarbons, while E1-forbidden transitions
carry f;., S 1072,

Next we examine the fluorescence properties embodied in the spontaneous
emission coefficient. In a two-level system with low radiation density (ie.,
negligible stimulated emission and negligible pumping of level 2 by absorption
from level 1), we have

——2=N,A4,, (8.43)

This has the time-dependent solution

N,(t) = N,(0)e**"
= N ,(0)e /s (344)
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meaning the upper level decays by spontaneous emission (fluorescence in the
case of a spin-allowed transition) with an exponential lifetime 7,4 = 1/4,;.
When we consider the analogous case of a polyatomic fluorescing from its
vibrationless electronic state u down to a manifold of vibrational levels m in
electronic state 1, the radiative lifetime is given instead by

l/rrad = Z AuO—'lm (845)

In the Born-Oppenheimer approximation, this becomes

64n*
/%00 = TV (91/92)|<"|I‘e1|1>|2 Z Vso—»1m|<0|m>|2 (8.46)

which simplifies into

64n* _
1/t e = ET¥] (91/92)IM3™"2v2, (8.47)

if the value of v3 is assumed constant over the fluorescence spectrum. At this
level of approximation, it is clear that 7,4 is independent of the upper state
vibrational level. (To see this, assume that upper vibrational level I rather than
level O emits, replacing the right side of Eq. 8.45 with ), A4, ... The I-
dependence of 1/t,,, then drops out by the time the analog of Eq. 847 is
- reached.) As we pointed out at the end of Section 8.2, t,,, is related to the
observed lifetime t by 1/7 = 1/7,.4 + 1/Tnonraa + 1/Tcon + ***, so that the ob-
served lifetime equals 7,,4 only if the other excited-state deactivation pathways
have negligible rates. The fluorescence quantum yield of the excited state u is
defined as

QF = 'Yrad/(‘))rad + Vnonrad + Yeoll + ) (848)

and approaches unity if y,,4 > Ynonrag + Yeon + * - SINCe y,,4 is nearly independ-
ent of the fluorescing vibrational level | in the Born-Oppenheimer approxi-
mation, a strong [-dependence in Qf implies that there are vibrational level-
dependent intersystem crossing, internal conversion, photochemical, or colli-
sional deactivation processes present if the Born-Oppenheimer approximation
holds in Eq. 8.46.

We next combine Eqs. 8.41 and 8.47 to find a relationship between the
absorption spectrum and the fluorescence lifetime. In particular, the equation

thF,H
1/t = —23—1(91/92) Y. Biooun (8.49)

implies that the fluorescence lifetime for the u — 1 fluorescence transition may be
predicted by summing the Einstein absorption coefficients for all of the 0 »n
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vibrational bands in the 1 —u electronic absorption spectrum. In many
practical situations (i.e., outside of supersonic jets) the measured absorption
spectrum is not a series of discrete vibrational lines, but a continuous spectrum
(inhomogeneously broadened in a solution, for example). A working formula
that has been evolved for singlet—singlet transitions in such cases is [6]

87-2303n3 . _, (&)
ta = 2o (72 dev (8.50)

where n, and n, are the medium (solvent) refractive index at the absorption and
fluorescence wavelengths, v is frequency in s~ %, t,,4 is in s, and &(v) is the molar
absorption coefficient in L/mol-cm. Equation (8.50) has been verified for a
number of rigid molecules by Strickler and coworkers [7]. In nonrigid molecules
having different equilibrium geometries in electronic states 1 and u, M} ™"
(which depends on the electronic wave functions) will not have the same value in
both Egs. 8.46 and 8.41, so that Eq. 8.50 will not be valid.

The strongest commonly observed absorption bands in organic molecules are
exhibited by laser dyes such as rhodamine 6G, a xanthene dye with a rigid
chromophore which exhibits &, ~ 105 L/mol-cm at 5300 A (Chapter 9). Its
fluorescence lifetime 7 is in the neighborhood of 5 ns (depending on solvent), and
is dominated by 7,4 because Qp is nearly unity under conditions in which
stimulated emission is suppressed. At the other extreme, ¢,,,, for I, in an inert
solvent like cyclohexane is about 7 x 102 L/mol-cm for the spin-forbidden
X'z - B, transition. In accordance with Eq. 8.50, ,,, for this transition is
in excess of 10 us. Little I, B’II,, - X'Z emission can be seen in solution,
however (Qr < 10™%), because collisions of B3I, I, with the solvent induces

rapid predissociation into I atoms on a time scale of ~ 15 ps.
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PROBLEMS

1. The El transition moment {2p|u|ls) for a 1s — 2p transition in H can be
evaluated analytically using the hydrogenic wave functions.
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(a) Calculate the Einstein coefficients B,,, 4,;, and B,, for this transition.
Include units.

(b) For what radiation energy density p(v) at the transition frequency will
stimulated emission from a 2p level become competitive with spontaneous
emission?

(c) Determine the radiative lifetime of a 2p state in hydrogen.

2. The absorption and fluorescence spectra of the organic dye rhodamine 6G
in ethanol are shown in Figure P8.2. Use reasonable approximations to
determine 7,4 and the oscillator strength to within 209 for the S, « S,
electronic transition. (Assume that the S, « S, system is confined between 400
and 600 nm; the absorption bands at wavelengths shorter than 400 nm arise
from transitions to higher singlet states.)

3. Calculate the expected fwhm of the R(0) line in the HCI vibration—rotation
spectrum of Fig. 3.3 if the linewidth is dominated by Dopper broadening.
Assume that the gas temperature is 300 K. Is the observed broadening primarily
Doppler broadening?

4. An absorption spectrophotometer is operated with a resolution of 1cm ™! in

the near ultraviolet. What excited-state lifetimes will yield Lorentzian lineshape
functions with fwhm larger than this?

5. Figure P85 shows the normalized dipole correlation functions
<u(0)- p(t)>/<{p?(0)> obtained by taking the inverse Fourier transform of near-

S

€x107%(1 mole™ cm™)
o\

200 300 400 500 600 700
Wavelength (nm)

Figure P8.2 Reproduced with permission from K. H. Drexhage, in Topics in
Applied Physics, Vol. 1, Dye Lasers, F. P. Schéfer (Ed.), Springer-Verlag, New York,
1973, p.168.
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Figure P8.5 Reproduced with permission from R. G. Gordon, Adv. Magn. Reson.
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infrared absorption lines of CO in several contrasting environments [3].
Account for the qualitative differences between the various correlation functions
(assume that the solutions are dilute enough to render cross terms in {g(0) * u(z))>
insignificant). Why is the correlation function for “free” CO (i.e., isolated
molecules) not a simple sinusoidal function of time, like that of a set of classical
dipoles rotating at a uniform frequency w,? How would the correlation function
for free HCI differ from that of free CO?
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Since their introduction to spectroscopy laboratories in the 1960s, lasers have
revolutionized the field to the point where most current spectroscopy would be
unrecognizable to observers from the pre-laser era. This stems partly from the
fact that tunable lasers can be made to operate with intense output which is
highly monochromatic (output bandwidths Av < 10"2>cm ™! are now available
using specialized ring lasers), so that high-resolution spectroscopy which was
once barely feasible can now be done routinely. The fact that lasers can easily
generate picosecond and subpicosecond light pulses with selectable wavelength
and repetition rate has brought time-resolved spectroscopy securely into the
time scale of vibrational motions and fast photochemistry. The truly novel laser-
based spectroscopies, however, have evolved primarily from the ability of lasers
to generate such extraordinarily high power densities that the nonlinear terms in
the Dyson expansion of ¢,(t) in Eq. 1.96, which are barely noticeable with
classical light sources, become prominent in laser-excited molecules. Processes
like two-photon absorption, second- and third-harmonic generation, four-wave
mixing, stimulated Raman scattering, self-focusing and self-phase modulation
were all discovered in laser laboratories. Ordinary Raman scattering was well
established in classical spectroscopy before the 1950s, but required cumber-
somely large excitation lamps; laser excitation has enormously expanded its
resolution and productivity. We discuss the characteristics of lasers in this
chapter, and we deal with several topics in nonlinear optics in the last two
chapters of this book.

283
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9.1 POPULATION INVERSIONS AND LASING CRITERIA

To establish the conditions required for laser action, we consider a slab of a laser
medium containing a large number of two-level species. A light beam initially
with intensity I, will have the intensity

I=1Ie ™ ©.1)

after passing a distance ! through the medium if the latter obeys Beer’s law.
According to Eq. 9.1, the absorption coefficient « is

a=—c— 9.2)

so that the change in beam intensity after passing through a distance dl is
—dl =aldl 9.3)

We now rephrase Eq. 9.3 in terms of the microscopic dynamics of the two-level
system. If W,_,, and W,_,, are the probabilities for upward and downward
transitions per unit time in a two-level system, the change in beam intensity will
be

—dI = h(W,.,N, — W,_,,N,)dt (9.4)

where dt = ndl/c is the time required for a photon to traverse distance dl
through a medium with refractive index n. Using the Einstein coefficients and
two-level notation introduced in Chapter 8, this becomes

—dI = hw(B;,N, — B,;N,)I -ndl/c 9.5)

From Eq. 9.2, we may now obtain an expression for the absorption coefficient of
the laser medium,

1dl nhy
o« = _YE=T(312N1 — By;1N,) (9-6)
Note that we include no term in A4,, (for spontaneous emission) in Egs. 9.4
through 9.6: Fluorescence is so widely dispersed over all propagation directions
that its contribution to the coherent beam directed along the propagation axis of
the incident light can be ignored. Using the relationships among the three
Einstein coefficients, the absorption coefficient of the laser medium is finally [1]

CZA21 g> g1
—— — _— - ‘7
o Svin? (gl N, _g2 N, 9.7
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This absorption coefficient can have either sign a priori, with the consequences
tabulated below:

Sign of « Result
N, < z—: N, <0 Amplification, I > I,
N; > g:— N, >0 Absorption, I < I,
N, = Z—: N, =0 Threshold, I = I,

At thermal equilibrium, N, = (9,/g,)N, exp(— hv/kT), meaning that one inevit-
ably has

oz SA2 g-’) N[l — exp(—hv/kT)] > 0 9.8)
8mvin? \g,) ' '

for a collection of two-level systems in a Boltzmann distribution with finite,
positive temperature. Hence, no system at thermal equilibrium can lase; to get
the required “negative absorption coefficient,” N, must be artificially increased
by external pumping of the upper level through optical or other means.

To set up a prototype laser cavity (Fig. 9.1), we place a laser medium of length
L between parallel mirrors with light intensity reflectivities 7, < 1 and r, <1 at
the optical frequency v = AE/h corresponding to the transition between the
upper and lower levels of the two-level system. Upon traveling twice through the
gain medium with absorption coefficient o in a single round-trip pass through
the cavity, an incident light beam with intensity I, will emerge with intensity
I, exp(—2aL). At the same time, it will be reduced by the factor r,r, = exp(—2y)
as the beam strikes each reflector once in a round-trip pass; this defines a cavity

loss coefficient y = —3In(r,r,). For lasing to occur, the round-trip gains must
LASER
MEDIUM
M (rl ) M(r,)

Figure 9.1 A laser cavity. The laser gain medium has physical length L; the end
reflecting mirrors M have light intensity reflectivities r, and r,,.
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exceed the cavity losses, or
Ije 2*Le 27 > |, 9.9)

This requires that the negative absorption coefficient a(v) at the lasing frequency
v satisfy

—o(v) > y/L (9-10)

In view of Eq. 9.7, this implies the condition

—c?A,, (92 g Y
— (=N, —=—=N, | >— 9.11
8mvin? \g, g, 2 L ©-11)
or
91 8an?v? <91> Y
—JN,—N;>———|— )= 9.12
<92> 2 ! C2A21 g.) L ( )

As a final detail, we allow for broadening (e.g., Doppler broadening, which
determines the lasing lineshape in He/Ne lasers) of the two-level transition.
Assume that the spectral lineshape function is g(v), normalized so that
[ g(v)dv = 1. Then the negative absorption coefficient in Eq. 9.7 at the lineshape
center frequency v, should be multiplied by g(v,), which will be inversely
proportional to the lineshape fwhm Av since g(v) is normalized; the product
g(vo)Av will be about unity. This implies that the lasing criterion in Eq. 9.12
should be replaced by [1]

2.2
(g—1> N, — N, 3 ST <g—1> r4v ©.13)

The factors favoring lasing are now easily identified. The right side of inequality
(9.13) can be minimized by selecting a strongly allowed E1 transition (large 4,,),
by using a large laser medium length L (in principle), by using sharp transition
bandwidths Av, and by minimizing the cavity loss coefficient y. (In practice, y has
contributions from diffraction, scattering, and reflection losses at the medium
boundaries as well as from the cavity mirror reflection losses mentioned earlier.)
The upper state population N, must be kept large enough to maintain the
inequality.

Not all of these requirements are symbiotic. In an argon ion (Ar*) laser, the
upper lasing level population N, is created in a plasma in which Ar atoms are
ionized and excited by bombardment with hot electrons. However, the resulting
high temperatures markedly increase the transition bandwidth Av through
Doppler broadening, raising the lasing threshold. As another example, a laser at
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the Lawrence Livermore Laboratory amplifies 1.06-um pulses through one of
the world’s longest Nd**:YAG gain media—but this fact can incur problems,
because the intense laser pulses themselves can cause the gain medium to
become lenslike (with nonuniform refractive index), leading to pulse self-
focusing and gain medium damage over such distances.

In the next section, we describe how these lasing criteria are met and
maintained in two real laser types, the He/Ne laser and the dye laser.

9.2 THE He/Ne AND DYE LASERS

Discovered by A. Javan and coworkers in 1960 at Bell Laboratories, the He/Ne
laser is the most commonly used laser for alignment and holographic purposes.
The upper and lower laser levels in this system are pairs of highly excited
(% 150,000 cm ~!) electronic states in the Ne atom. Lasing has been achieved
between many such pairs: The 6328 A line is the one most commonly used, but
the system can lase at 3.39, 1.12, 1.21, 1.16, and 1.19 um, and many other lines
stemming from the complicated multiplet structure of rare gas atom excited
states.

When a mixture of He and Ne is subjected to a suitably energetic electric
discharge, the following energy transfer processes take place: -

1. He+ e~ > He* +e”
He* + Ne —» He + Ne* (N,)

lhv(laser)
Ne* (N,)
2. Ne +e~ »> Ne* (N,) +e”

lhv (laser)

Ne* (N,)

(The asterisks denote electronic excitation.) In the first mechanism, electroni-
cally excited Ne* produced in the discharge transfers its excitation collisionally
to Ne, which subsequently lases down to a lower excited level. In the second
mechanism, excited Ne* is produced directly by the electric discharge. The latter
mechanism can cause lasing at several lines in pure Ne; however, the addition of
He greatly increases the lasing efficiency for the following reasons. He gas
subjected to an electric discharge is initially pumped to a wide range of excited
states, which can then rapidly relax radiatively to a succession of lower lying
levels by El transitions (Fig. 9.2). The latter process, known as cascading,
proceeds according to the selection rules Al = +1, 4j =0, +1 for the excited
electron. A large fraction of the plasma-excited He atoms accumulate this way in
the 2'S and 23S states (both with the (1s)!(2s)* configuration) of He. Once
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Figure 9.2 Energy level diagram for He. Since the 2'S and 23S levels are E1-
metastable, populations accumulate by cascading toward these two levels. Repro-
duced by permission from B. Lengyel, Lasers, 2d ed., Wiley-Interscience, New York,
1971.

populated, these levels are E1-metastable because neither one is E1-connected to
any lower level (only the (1s)? 1'S ground state lies below the 2°S state). These
levels do not lase in He, because (aside from the lack of any E1-connected lower-
lying level) the 1'S ground state invariably has a larger population N, than
either 2'S or 23S. Hence, 2'S and 23S He atoms typically retain their excitation
(at suitably adjusted He and Ne pressures) until they collide with a Ne atom,
creating Ne*. The efficiency of this collisional excitation transfer is abetted by
the near-resonance of the 2'S and 23S energy levels with several of the
--+(2p)*(5s) and - - - (2p)>(4s) excited levels in Ne, respectively (Fig. 9.3).

The multiplet structure in Ne* arises from a pair-coupling (not Russell-
Saunders) angular momentum coupling scheme, which is obeyed in rare-gas
atom excited states. The ground and excited states of Ne exhibit the electron
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Figure 9.3 Energy level diagram for Ne excited states in the energy region of the
metastable He 27S and 23S levels, which are shown at extreme left. The strongest
laser transitions are indicated with their wavelengths. Adapted from B. Lengyel,
Lasers, 2d ed., Wiley-Interscience, New York, 1971; used with permission.

configurations - - - (2p)® and ---(2p)>(nl)’, respectively. In the latter configura-
tions, the angular momenta of the 2p “core” electrons form the resultants L, S,
of their orbital and spin angular momenta, which couple to form the core
angular momentum J.. Clearly L, = 1 and S, = 4 (since these are the quantum
numbers of the missing electron in the otherwise-filled (2p)® core shell), and so
the possible J, values are 4 and 3. The excited “valence” electron (nl)!, whose
angular momenta are comparatively weakly coupled to the core angular
momenta because its orbital is considerably more voluminous than those of the
core electrons, exhibits L, = [ and S, = . The angular momenta J, and L, then
couple to form a resultant

K=J.+L, (9.14)
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and the total Ne* angular momentum is given by
J=K+8S, (9.15)

The Racah notation for rare gas excited states neatly summarizes all of these
pertinent angular momenta in the term symbol ni[K];. As two examples of Ne*
multiplets, we consider the 3s[K]; and the np[K]; states. The former are the
lowest-lying - - - (2p)>(3s)! excited states with L, = 0 and S, = 1. Since one always
has L, =1, S, =1 and J, = { or 3 in the rare-gas atoms, the possible K values
are from Eq. 9.14

K=J,+L,...,lJ.—Ll=J.=4%3 9.16)
since L, = 0 in the 3s[K]; multiplet. Then the possible J values are [Eq. 9.15]

J=K+S,,...,IK—S,

2,1 when K =3

- {1, 0 whenK=1% 6.17)

The 3s{K], multiplet therefore has four sublevels: 3s[1],, 3s[3],, 3s[3];, and

3s[2],; the higher ns[K], multiplets exhibit similar sets of four sublevels. In a

similar vein, the np[ K], multiplets each exhibit 10 components, because L, = 1
can combine with J, =3, 2 toform K =4, 3, 3; 1 3.

With these multiplet splittings, a large number of Ne* laser transitions is
possible. The common 6328-A line arises from a 5s[K]; — 3p[K], E1 transition,
the 3.39-um infrared line arises from a 5s[K]; — 4p[K], transition, and the
series of infrared lines between 1.12 and 1.19 um arises from transitions from
various 4s[ K], levels to lower-energy 3p[ K], levels. Most laser applications in
spectroscopy require monochromatic output, and the undesired laser lines are
easily suppressed in favor of the selected one. One can make the cavity loss
coefficient y = —1In(r,r,) considerably larger for the infrared wavelengths than
for the 6328-A wavelength, for example, by using laser cavity mirrors with
coatings exhibiting larger r,r, at 6328 A than in the infrared. One may
alternatively insert a prism or other dispersive element into the cavity so that
only the desired wavelength will strike both cavity mirrors at normal incidence
in a self-consistent, recycling trajectory (Fig. 9.4).

One important property of the above Ne* excited states which favors their
involvement in lasing is their radiative lifetimes. To maintain favorable N, and
N, in Eq. 9.13 and achieve continuous laser action, the upper state population
N, should have a high probability for stimulated emission prior to deexcitation
by other pathways, and the lower state population N; should be depleted
rapidly after the laser transition to prevent its buildup. Thus, the upper and
lower levels ideally should have relatively long and short radiative lifetimes,
respectively. This condition is met in each of the He/Ne transitions we have
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Figure 9.4 Laser cavity with intracavity tuning prism. Laser oscillation at the
selected frequency v, is refracted by the prism in a direction normal to the reflector
with r; = 1, and retraces its trajectory through the gain medium. Oscillation at other
frequencies v strikes the reflector at nonnormal incidence, and leaves the cavity.

described, since the ns[K];, and np[ K], levels have radiative lifetimes of ~ 107
and ~ 10~ 8s, respectively. This condition is not met in the well known N, laser,
which oscillates with high efficiency in a series of C*II, — BII, transitions
between 3370.44 and 3371.44 A. Since the upper state lifetime is shorter than the
Bi"Hg state lifetime, the laser action terminates in about 20ns, and N, laser
operation is restricted to the pulsed mode.

Prior to the discovery of organic dye lasers in 1966, laser action had already
been demonstrated in several hundred gases (e.g., He/Ne, CO, N,) and solids
(e.g., ruby, Nd>* :glass, Nd**:YAG). The truly novel property of dye lasers was
their tunability—the fact that their output wavelengths could be varied over a
broad range (tens of nm) by adjustment of the dye concentration and/or
resonator conditions. While dyes may lase in vapors and solids as well as in
liquid solutions, the latter rapidly became the media of choice owing to their
economy and ease of handling. Population inversions in early dye lasers were
frequently achieved by broadband excitation with xenon gas-filled flashlamps.
Dye lasers are now more commonly monochromatically pumped using another
laser (typically a 5145-A argon ion laser or a 5320-A beam from a frequency-
doubled Nd3*:YAG laser).

The processes that are critical to lasing in an organic dye [2] are summarized
in Fig. 9.5. Absorption of a visible photon creates a vibrationally excited S,
molecule. In aqueous or alcoholic solution, the excess vibrational energy is lost
within several picoseconds to the medium, leaving an S; molecule whose
vibrational energy distribution is thermally equilibrated. Laser action may then
occur, terminating in S, molecules with varying degrees of vibrational excita-
tion. To obtain S, « S, energy gaps appropriate for visible laser transitions, one
must resort to molecules with extended 7 electron systems (alternating single
and double bonds) which are larger than those in any of the ultraviolet-
absorbing molecules we considered in Chapter 7. A typical size is exhibited by

-the rhodamine 6G cation (Problem 8.2), which has 64 atoms and therefore 186
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Figure 9.5 Energy levels for an organic dye laser. IC and ISC denote internal
conversion and intersystem crossing, respectively (Chapter 7). Wavy arrows indicate
vibrational relaxation. S, and S, are singlet electronic states, while T, and T, are
triplet states.

vibrational modes. In view of the resulting potential for spectral congestion, it is
no surprise that this dye’s S, « S, absorption and fluorescence spectra are
vibrationally unresolved continua. It is this feature that endows a dye laser with
its most conspicuous asset, continuous tunability.

Two of the processes which detract from lasing, S; — S, internal conversion
(IC) and S, — T, intersystem crossing (ISC), are shown in Fig. 9.5. IC depletes
the S, population, reducing the laser gain. The consequences of ISC are often
more serious. Since the T, state is metastable (the T, - S, phosphorescence
transition is spin-forbidden), molecules accumulate in T, if the ISC quantum
yield is substantial. Many dyes exhibit large T, — T, absorption coefficients at
the wavelengths of the S; — S, laser transition, due to transitions from T, to
some higher triplet state T,. Such triplet—triplet absorption can dramatically
reduce the laser gain. Since rapid IC and/or ISC occur in the vast majority of
organic compounds (Section 7.4), a survey of some one thousand dyes that were
commercially available in 1969 gleaned only four that proved useful in dye lasers
[2]. Most of the dyes that are currently used fall into three structural classes:
xanthenes, oxazines, and coumarins.

It has been empirically established [2] that the presence of torsional modes
(intramolecular rotations about bonds) accelerates S; — S, IC in dyes. For
example, the dye phenolphthalein has essentially zero fluorescence yield, while
fluorescein has 909 yield (Fig. 9.6): The torsional modes in phenolphthalein are
frozen out by the presence of the oxygen bridge in fluorescein. In the absence of
such torsional modes, most of the S, « S, electronic energy difference in IC is
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Phenolphthalein Fluorescein

Figure 9.6.

absorbed as S, state vibrational energy in high-frequency C-H stretching
modes. (It may be shown that the IC probability is larger if this energy difference
is deposited into a smaller number of vibrational quanta in the lower electronic
state [3]. For a fixed energy gap, this implies that higher frequency “accepting”
modes are more effective in promoting IC.) For this reason, the presence of more
H atoms attached to the chromophore will reduce the fluorescence yield (and
also the lasing efficiency). Dyes frequently show larger fluorescence yields in
deuterated solvents, because proton exchange with the solvent replaces the C—H
modes with lower frequency C—D modes via the isotope effect.

Intersystem crossing will obviously be accelerated by heavy-atom sub-
stitutients, and no efficient laser dye contains them. The four bromine atoms in
eosin (Fig. 9.7) increase its S; —» T, ISC yield to 76%,, as compared to the 3%
value observed in fluorescein. Solvents containing heavy atoms (e.g., CBr,) also
contribute to T, buildup in laser dyes, and are avoided.

Drexhage [2] has formulated a remarkable rule that relates the ISC rates in
dyes to the topologies of their n-electron structures. If the ring atoms that
contribute to the zn-electron structure form a closed loop of adjacent sites, the
molecule exhibits a higher ISC yield than if the loop is broken by the presence of
a ring atom uninvolved the z-electron system. This rule can be rationalized
semiclassically by noting that the orbital angular momentum in dyes with such
closed loops will produce larger spin—orbit coupling and enhanced S; - T,
yields. As an example, acridine dyes (Fig. 9.8) have not materialized as a class of
laser dyes. The two resonance structures shown in this figure both exhibit the

Eosin

Figure 9.7.
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Figure 9.8 Resonance structures contributing to 7 electron densities in acridine
dyes (X=N) and rhodamine dyes (X=0). The resonance structures containing
=X* < are dominant in acridines, but are less favorable in rhodamines.

ammonium group =N"* <. Both structures have comparable weighting in the r-
electron structure of acridines, so that considerable n-electron density resides
on the bridging N atom. In the important rhodamine laser dyes, the bridging
group =N " < in the second resonance structure is replaced by the energetically
less favored oxonium group =0 *—. Appreciably less n-electron density is then
found on the bridging atom in rhodamines than in acridines, with the result that
the latter show far higher S; — T, yields. Likewise, carbazine dyes (in which the
bridging atom is a tetrahedral C atom, Fig. 9.9) exhibit very low triplet yields.

Many laser dyes (xanthenes and oxazines) are employed as cations in polar
solvents, and the S, state in such dyes may be quenched by electron transfer
from the negatively charged counterion. The quenching rate decreases with the
identity of the counterion as I~ > Br™ > Cl~ > ClO, . Perchlorate is therefore
the counterion of choice, particularly at higher concentrations in nonpolar
solvents, where rapid diffusion occurs between the dye and counterion.

In the xanthene dyes (Fig. 9.9), the absorption and lasing wavelengths are
sensitive to the substituents on the xanthene chromophore, with the result that a
continuous range of lasing wavelengths is accessible between ~ 540 and
~650nm through appropriate choice of dye. (The carboxyphenyl group
common to all rhodamine dyes is not part of the rigid xanthene chromophore,
and it has little effect on its lasing properties.) Longer lasing wavelengths (630-

750 nm) are available using oxazine dyes, in which the =C— bridge group in
xanthenes is supplanted by =N—. Since the S; « S, energy gap is smaller in the
oxazines than in the xanthenes, IC is more problematic in the oxazines, and the
use of deuterated solvents improves their lasing efficiency. In both the xanthene
and oxazine dyes, the S; « S, transition moment is polarized along the long
molecular axis. By symmetry, neither the S; nor S, state in these dye
chromophores exhibits a permanent dipole moment.

In contrast, the coumarin dyes, while relatively nonpolar in the ground state,
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Figure 9.9 Typical xanthene and oxazine dyes.
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Figure 9.10 Dominant resonance structures for S, and S, electronic states in
coumarin dyes, and two typical coumarins.

are highly polar in the S, state (Fig. 9.10). Excitation of a coumarin S, statein a
polar solvent (e.g., methanol) then produces a sudden increase in the molecule’s
permanent dipole moment, followed by rapid solvent dipole reorganization [2].
This lowers the S; state energy relative to that in nonpolar solvents, and
decreases the S; « S, energy separation; the result is a large wavelength shift
(Stokes shift) between the absorption and fluorescence maxima. For example,
the absorption and lasing maxima of coumarin 1 in methanol are at 373 and
460 nm. Owing to their smaller chromophore size, the coumarins lase at shorter
wavelengths (440 to 540 nm) than the xanthenes and oxazines.
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Figure 9.11 Folded-cavity configuration for dye laser pumped by an argon ion or
frequency-doubled Nd3*:YAG laser. The optics denoted M are >99.9% reflecting at
the incident wavelength. The dye jet is flowed along an axis perpendicular to the
plane of the paper. The Lyot plate provides wavelength tunability (see text).

A commonly employed configuration for a cw (continuous-wave) dye laser
externally pumped by an argon ion or frequency-doubled Nd**:YAG laser is
shown in Fig. 9.11. A rhodamine dye solution in ethylene glycol (a viscous
solvent) is flowed in a jet stream ~ 0.25 nm thick at ~7m/s. The use of such a jet
obviates the thermal inhomogeneities, window damage, and extensive dye
photochemical degradation that would attend exposure of a stationary dye
solution to an intense laser beam in a cell. To attain the large population
inversions requisite for lasing, the pump laser beam is tightly focused using a
spherical concave reflector to ~0.01 mm diameter at the center of the jet. The
dye laser beam inside the cavity is similarly focused, using two confocal spherical
reflectors (i.e., reflectors whose focal points coincide at the center of the jet) to
provide good spatial overlap between the amplified dye laser beam and the
small pumped volume of the jet. All of these spherical surfaces are coated with
specialized multilayer dielectric materials, which are essentially 100%; reflecting
at the incident wavelengths and are highly resistant to optical damage.

The laser output is extracted through the output coupler, a multilayer
dielectric-coated fused silica substrate with typically 5% transmission at the
lasing wavelength. In a well-aligned rhodamine 6G laser pumped by a 5145-A
cw argon ion laser, 25—-30% of the optical pump power can be converted into
dye laser output. Coarse wavelength tuning can be effected by incorporating a
prism into the dye cavity (Fig. 9.4), or by including a diffraction grating as one of
the cavity elements. The current tuning element of choice is a Lyot plate, aligned
with its surface normal at the Brewster angle 0 [4] with respect to the laser
propagation axis as shown in Fig. 9.11. A dye laser beam polarized in the plane
of the Lyot plate (which is made of birefringent single-crystal quartz) and
incident on the plate at 0y will be partly reflected off the plate and partly
refracted into the plate. (This polarization, termed the S polarization, corre-
sponds to polarization along an axis perpendicular to the paper in Fig. 9.11)
Laser light with the orthogonal polarization (P polarization) incident at 65 will
be totally refracted through the plate. Since a typical laser photon experiences
many round-trip passes in the cavity prior to exiting through the output
coupler, the presence of these Brewster-angle surfaces therefore strongly favors
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P polarization in the laser beam. The crucial property of the Lyot plate is that it
rotates the polarization of all wavelengths traversing the plate, with the
exception of those wavelengths A obeying

d(n, — n,) = ni n=12 ... 9.18)

Here n,, n, are the ordinary and extraordinary refractive indices [4] of the
birefringent plate, and d is the plate thickness. Since a laser beam that is
consistently P-polarized during each cavity pass is strongly favored, the Lyot
plate effectively suppresses lasing at wavelengths that fail to satisfy condition
(9.18). When the plate is rotated about its normal, the wavelengths that fulfill Eq.
9.18 become shifted. Hence a Lyot plate (or a stack of two or three Lyot plates
with different thickness) can afford continuous tuning of the laser output across
the entire dye gain bandwidth.

9.3 AXIAL MODE STRUCTURE AND SINGLE MODE SELECTION

Provided the loss coefficient y is accurately given (taking into account all cavity
loss mechanisms), lasing will occur a priori for all frequencies for which
inequality (9.10) is satisfied. The resulting lasing bandwidth, shown graphically
in Fig. 9.12, extends over all frequencies for which the gain coefficient [ — o(v)]
exceeds y/L. A new constraint is now posed by the physical boundary condition
that the laser oscillation must have nodes at the surfaces of the cavity end
mirrors. This means that an integral number of laser half-wavelengths must fit

Lasing Bandwidth

v/L

e

v

Figure9.12 Dye laser gain curve —a(v) versus laser frequency v. Lasing occurs for
frequencies satisfying —a(v) > y/L.
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into the cavity’s optical path length, so that

%A=ﬂzjn(s)ds n=123,... (9.19)

Here n(s) is the refractive index along the light propagation path in the cavity,
and the line integral is taken over a single traversal of the cavity (one-half round
trip). For a laser medium with refractive index n and physical length L, situated
in air between cavity mirrors separated by physical length L, > L,, the optical
path length is L = nL, + (L, — L,). Equation 9.19 can be rearranged using
A = c/v to give the allowed longitudinal (or axial) mode frequencies [1]

v, = nc/2L n=1273,... (9.20)

These axial mode frequencies are equally spaced with separation
Av =v,, — v, = c¢/2L = 1/T, where T is the time required for one cavity round-
trip. In the absence of tuning elements, the actual lasing frequencies will be those
which simultaneously satisfy both Egs. 9.10 and 9.20, and all axial modes with
frequencies v for which —a(v) > y/L will lase (Fig. 9.13). The shape of the gain
curve —a(v) depends on the operative line-broadening mechanism: Doppler
broadening in He/Ne or Ar* lasers, lattice broadening in solid-state
Nd3*:YAG lasers, and so forth.

The axial mode frequencies themselves are not infinitely sharp. The widths of
the individual modes depend on how long a typical laser photon stays inside the
cavity. In consequence of lifetime broadening, we have

AE At > h)2 9.21)

o)

ATyt

Vn  Vnpia

v

Figure 9.13 Dye laser gain curve —a(v), with axial mode frequencies v, = nc/2L’
superimposed. Lasing occurs in axial modes v,, for which —a(v,) > y/L. Axial mode
profiles are represented as Lorentzian profiles for realism, since they are broadened
by finite photon lifetimes in the cavity.
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and so we can deduce that since AE = h Av = hc Av for photons,
t,Av = 1/4zn (9.22)

where t, = At is the photon lifetime inside the cavity. The photon lifetime ¢, is
controlled by the cavity loss coefficient y. Cavity losses tend to deplete the cavity
photon population by a factor of exp(—y) per cavity pass; by the definition of ¢,
this factor can be equated with exp(— T/2t,), where T = 2L/c is the round-trip
time. (One round-trip equals two cavity passes.) Hence the photon lifetime is

t, = T/2y = L/cy (9.23)
According to Eq. 9.22, the order of magnitude of 4v is then
AV R 1/4nct, = y/4nL 9.24)

for the width of individual axial modes in cm ™.

As an example, we consider a laser with 1-m optical path length and cavity
end reflectors with reflectivities r; = 1.00,r, = 0.95 (these are typical values for a
rear (high) reflector and an output coupler reflector respectively in a practical
laser). If cavity reflector losses dominate the loss coefficient,

= —3In[(1)(0.95)] = +0.025 9.25)

and so the individual mode width will be the order of A% 2 2.5 x 10 5cm L.

This suggests a potential for compressing the intense laser output into a
remarkably narrow (by classical spectroscopy standards!) bandwidth of
<10~ *cm™%, if the laser oscillation can be limited to just one of these axial
modes. In fact, this is readily achieved by incorporating an etalon, in effect an
additional pair of partially mirrored parallel reflectors separated by the etalon
length L., into the cavity (Fig. 9.14). All lasing frequencies must then simulta-
neously satisfy two sets of axial mode boundary conditions

v, = nc/2L n=1,273 ...
v, =n'c/2L, n=123... (9.26)

b0 —

Etalon

L

Figure 9.14 Laser cavity of optical path length L’ augmented with an etalon,
whose partially reflecting surfaces are separated by a precisely variable distance L..
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Figure 9.15 Laser gain curve —a(v), axial mode frequencies v, = nc/2L’, and an
etalon mode frequency v, = n'c/2L,. Since L, « L', other etalon modes are too
widely spaced from v,,. to appear in this frequency range. Lasing occurs selectively at

the axial mode which overlaps the etalon mode. Tuning the etalon separation L,
controls the axial mode selected.

The etalon spacing L, can be adjusted in practice so that only one axial cavity
mode within the gain bandwidth —o(v) > y/L satisfies both of Egs. 9.18, as
shown in Fig. 9.15. Moreover, L, can be varied to select successive cavity axial
modes at will.

This discussion barely touches on the topics of cavity modes and high-
resolution laser technology. Laser light also propagates in transverse cavity
modes [5], which can introduce fine structure superimposed on the axial mode
frequencies if lasing is not confined to the lowest-order TEM, transverse mode.
Ring dye lasers are currently the most widely used frequency-stabilized high-
resolution lasers.
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9.4 MODE-LOCKING AND ULTRASHORT LASER PULSES

We now concentrate on the time dependence of laser oscillation in a cavity
whose gain curve encompasses a large number of axial modes. Each axial mode
amplitude will oscillate with a time dependence of the form
explio,(t — x/c) + i¢,], with circular frequency

o, = 2nv, = nnc/L n=1,23, ... (9.27)

¢, is the phase of oscillation for mode n. The total amplitude of laser oscillation
will then behave as

E(t) = Y E,ot=x/+id, (9.28)

where the amplitude factors E,, reflect the weighting of the laser gain curve at the
axial mode frequencies w,. Equation 9.28 describes the time dependence of a
randomly spaced sequence of light puises, since E(f) is a superimposition of
different frequency components added together with random phases ¢,.

We now consider what happens when all of the axial modes are forced to
oscillate at the same phase, say ¢, For simplicity, we assume that (2k + 1)
modes oscillate with identical amplitude E,, and that the equally spaced mode
frequencies run from w=w,—kdAw to ®=w,+ kAw, with
Aw =21 Av = nic/L = 2n/T. The total oscillation amplitude then simplifies into

k
E(t) — EO ei¢o Z ei(w0+nAw)(t — x/c)

n=—k

_ g, olost—x/0+ g1 SILK + DAalt — x/c)]
- o)

sin[1Aw(t — x/c)] (9.29)
The intensity of the associated light wave is then
sin?[(k + DAw(t — x/c
B2 = (B2 L ¥ Dol = x/0)] (9.30)

sin?[Aw(t — x/c)]

This function is periodic, with period T equal to the cavity round-trip time (Fig.
9.16); it corresponds physically to the fact that one light pulse is propagating
back and forth inside the cavity at all times. Since part of this pulse is
transmitted outside the cavity everytime it strikes the output coupler reflector,
the laser output consists of a train of pulses equally spaced in time by T. The
zeros in |E(t))? on either side of the primary pulse peaks are separated by the
duration 2T/(2k + 1), which gives an upper bound estimate of the laser pulse
width 7,. For a 1-m optical path length cavity, the round-trip time T is
2L/c = 6.67 ns. If 9 axial modes are forced to oscillate in phase with equal
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Figure 9.16 Graphs of the periodic time-dependent function |E(#)|2 for k=4, 8,
and 25, corresponding to (2k+1) =9, 17, and 51 axial modes locked in the same
phase with equal amplitude. Note the laser pulse sharpening which occurs as the
number of locked modes increases.

amplitude, the pulse widths are on the order of 1.5ns; for 51 phase-locked
modes, the pulse widths would be reduced to 260 ps. This trend is illustrated in
Fig. 9.16. Since the pulse widths depend on the number of locked modes 2k + 1
via 7, ~ 2T/(2k + 1), generation of extremely short laser pulses has become the
province of mode-locked solid-state and dye lasers, whose broad gain
bandwidths can permit simultaneous phase-locked oscillation in thousands of
axial modes.

Mode-locking does not occur spontaneously in a simple laser cavity. Either it
must be actively driven by a cavity element which introduces cavity losses with a
period of exactly T/2 (i.e., one-half the optical round-trip time), or it must be
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passively induced by an intracavity nonlinear absorber [6] which discourages
lasing at phases other than some phase ¢, at which strong lasing initially occurs.
In an active acousto-optic [ 7] mode-locker, coarse wavelength selection of the
laser output is provided by an interactivity triangular prism placed near the rear
mirror (Fig. 9.4). A thin layer of piezoelectric material is deposited on one of the
triangular faces. An oscillating voltage applied to the piezoelectric creates a
mechanical stress, which is transmitted to the prism in the form of a standing
longitudinal acoustic wave if the driven wave frequency matches a prism
resonance frequency. The mechanical rarefactions and compressions induced in
the prism by the standing acoustic wave produce a spatial alternation in
refractive index, creating a transient diffraction grating which deflects the laser
beam from its cavity path when the voltage is applied to the piezoelectric. By
proper synchronization of the applied voltage frequency with the cavity round-
trip time, the longitudinal modes can thus be forced to oscillate in phase.
Acousto-optic mode lockers are commonly used in argon ion lasers, which can
operate in several strong visible lines (notably 4880 and 5145 A). The 5145-A line
is generally selected with the tuning prism; Doppler broadening of this line in the
argon plasma tube allows some 40 axial modes to lase under the gain bandwidth
curve in a 1-m cavity. Active mode-locking of such a laser typically produces
laser pulses with ~ 500 psfwhm.

It is beyond the scope of the present chapter to review the technology and
capabilities of mode-locked lasers. The currently favored systems for picosecond
pulse generation are mode-locked Nd3*:YAG lasers (which afford 1.06-um
pulses ~15psfwhm and may be wavelength-converted by using their 5320-A
second-harmonic pulses to pump tunable dye lasers), although dye lasers
pumped by mode-locked Ar* lasers are still widely used. Pulses from
Nd3*:YAG-based systems have been compressed to less than 1psfwhm in
optical fibers. The very shortest pulses now reported have been generated in
passively mode-locked Ar*-pumped colliding-pulse-mode ring dye lasers, which
have yielded pulses as short as 40fs wide (1fs = 10~ 155).
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PROBLEMS

1. As an exercise in evaluating criteria for lasing in an idealized system,
consider the 3?P;,, — 3?S,, transition in a Na atom. The radiative lifetime of
the 3P, levels is 5 x 107 ®s; the photon energy for the transition is
16,978 cm ™ 1. It is proposed to explore the possibility of lasing in a uniform 10-
cm cavity bounded by end reflectors with r; = 1.00 and r, = 0.98. Assume that
the translational temperature in the Na vapor is 300 K, and that no cavity losses
other than transmission losses at the end reflectors are operative.

(a) Determine the population inversion (g,/g,)N, — N, required for lasing in
this system; include units. How is the answer changed if the translational
temperature is increased to 600 K?

(b) What are the most fundamental problems that limit the practicality of such
a laser?

2. Several compounds from the limitless roster of organic species that cannot
serve as useful laser dyes are listed below. For each of these, indicate the most
important physical reason(s) why the molecule is an unsuitable laser dye
candidate. Consider only the S; — S, transitions.

(a) Naphthalene

(b) Aniline

(¢) Rosamine 4

(d) Dithiofluorescein
(¢) Acridine

(f) Iodoanthracene

Rosamine 4

Dithiof luorescein

00 -
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3. A dye laser 0.5m long is operated in a single axial mode with end reflectors
characterized by r; = 1.00, r, = 0.95. The single-mode output bandwidth is
10~ 3cm 1. Is this bandwidth limited by end reflector losses? What effect would
doubling the cavity length L have on the output bandwidth if the cavity losses
are dominated by r,? If the cavity losses are uniformly distributed along L (e.g.,
through diffraction losses?)

4. An etalon is used for single-mode selection in a 1-m rhodamine 6G laser. If
the dye gain bandwidth is commensurate with the width of the rhodamine 6G
fluorescence spectrum shown in Problem 8.2, what etalon separations L, and
etalon surface reflectivities would ensure that only one axial mode is selected at
any time?

5. A 0.75-m solid-state Nd**:YAG laser is acousto-optically mode-locked to

yield ultrashort pulses centered at v, = 9416 cm™!.

(a) Assuming that the lasing bandwidth function is given by

le(¥) + y/L| = C, v — v, <05cm™!
=0, v — v, >05cm™!

where C is a positive constant, how many axial modes will lase? What pulse
duration will result from perfect mode-locking in this laser? What will be
the time separation between adjacent pulses?

(b) Suppose now that the lasing bandwidth function is given by a Gaussian
function of ¥, centered at ¥, with an fwhm of 1cm ~!. How are the answers
in part (a) qualitatively charged?
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TWO-PHOTON PROCESSES

Up to now, we have been primarily concerned with one-photon absorption and
emission processes, whose probability amplitudes are given by the first-order
term

[t _.
Cfi’(t)=%j e i {m| Wity )k Hdt, (10.1)
to

in the time-ordered perturbation expansion (1.96). We have seen that evaluation
of the time integral (10.1) in the cw limit t, —» — 00, t — + o0 leads to a statement
of the one-photon Ritz combination principle E,, — E, = hw, where w is the
circular frequency of the applied radiation field (Eq. 1.112). The discussions of
oscillator strengths and radiative lifetimes in Chapter 8 proceeded from the
assumption that one-photon processes accounted for all spectroscopic trans-
itions of interest.

Many radiative transitions cannot be treated under the framework of one-
photon processes. Raman transitions (which are two-photon processes) were
discovered by Raman and Krishnan in 1928; evidence for two-photon ab-
sorption and more exotic multiphoton phenomena accumulated rapidly after
the introduction of lasers in the 1960s. Some of the characteristics of two-photon
processes are illustrated by the Raman spectra of p-difluorobenzene (Fig. 10.1).
These spectra were generated by exposing the pure liquid or vapor to a nearly
monochromatic cw beam from either a He/Ne or an argon ion laser, and
analyzing the wavelengths of light scattered by the sample at a right angle from
the laser beam. They are plotted as scattered light intensity versus the difference
o — o' between incident and scattered frequencies. p-Difluorobenzene exhibits

307
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Figure 10.1 Raman spectra of p-difluorobenzene (a) pure liquid and (b) vapor,
recorded as light intensity /(w’) scattered at frequency w’ versus the difference
(w — ') between incident and scattered frequencies. The spectra excited using an
argon ion laser (4880 A) and a He/Ne laser (6328 A) are nearly identical. Used with
permission from R. L. Zimmerman and T. M. Dunn, J. Mol. Spectrosc. 110; 312
(1985).

an S, « S, electronic spectrum with an origin band at 2713.5A in the near
ultraviolet, and is practically transparent at the visible He/Ne and Ar™ laser
wavelengths (6328 and 4880 A, respectively). Photons at the scattered freq-
uencies @’ are produced essentially instantaneously (within <1 fs) upon disap-
pearance of incident photons at frequency w. Consequently, this process cannot
be interpreted as a sequence of one-photon absorption and emission steps. A
one-photon absorptive transition with an oscillator strength of ~1 in the UV-
visible would populate an excited state with a radiative lifetime on the order of
ns (Chapter 8). In a p-difluorobenzene molecule subjected to a visible laser, the
emergence of photon @’ would typically be delayed by a far longer time if it
followed the (extremely weak) one-photon absorption process at 6328 or 4880 A.

The frequencies w — ' of the Raman lines in Fig. 10.1 prove to be
independent of the excitation laser frequency w, and analysis shows that they are
equal to vibrational energy level separations in S, p-difluorobenzene. This is an
example of the energy conservation law A(w — @’) = E,, — E, in Raman spec-
troscopy: An incident photon with energy hw interacts with the molecule; a
transition occurs from level |k) to level |m), and a scattered photon emerges with
a shifted energy hw' that compensates for the energy gained or lost by the
molecule (Fig. 10.2). When o > ', the process is called a Stokes Raman
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Figure 10.2 Energy level diagram for Raman scatter-
ing. A photon is incident at frequency w and a photon is
scattered at frequency w’; the energy difference
[ |m> #(w — w’) matches a molecular level separation £,, — £,.
The dashed line corresponds to a virtual state, which

- I need not coincide with any eigenstate of the molecule
— |k>  (Section 10.1).

transition; when o < ', it is an anti-Stokes transition. We will see that Stokes
transitions are generally stronger than anti-Stokes transitions, and only the
Stokes portions of the p-difluorobenzene spectra are reported in Fig. 10.1.
Detailed study of these spectra reveals that some of the Raman lines (e.g., the
lines at 3084, 859, 636, and 376 cm ~ ! in the liquid spectrum) are fundamentals in
vibrations of a,, b,,, and b;, symmetry in the D,, point group. Such
fundamentals are symmetry-forbidden in one-photon vibrational spectroscopy
(Chapter 6). This illustrates the value of vibrational Raman spectroscopy for
characterizing vibrational modes that are spectrally dark in the infrared. Raman
spectra have also been used to probe rotational and (less frequently) electronic
structure.

The other important two-photon process is two-photon absorption (TPA), in
which two photons are simultaneously absorbed and a molecule is promoted
from some state |[k) to a higher-energy state |m). The selection rules in TPA are
different from those in one-photon absorption, and TPA has proved fruitful in
identifying electronic states that are inaccessible to conventional electronic
spectroscopy.

10.1 THEORY OF TWO-PHOTON PROCESSES

The probabilities of two-photon |k) — |m) transitions are controlled by the
second-order coefficients

1 e
) =—= Y | e mW(t,)nyde,
@h)* & Jio
x J " e otz W(t )k dt, (10.2)
to

from the Dyson expansion (1.96). We may allow for the presence of two different
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radiation fields with vector potentials A (r, t) and A,(r,t) in the Coulomb gauge
by setting

ih
Wit) = L Aglr 1)V

ih
W(t,) = == A,(F, 1)V (10.3)
me
If one lets
A(r,t;) = Ay cos(ky -1 — w,ty)

A :
= 71 {exp(i(k, ‘T — w,t,)] + exp[ —i(k, 1 — w,t,)]}
A A
= —21 (r)exp(—iw,t,) + 71 (—r)exp(iom,t,) (10.4)
and similarly treats A,(r, ¢,), we have

ih . ih .
{n|W(e)lk> = 4 (n]A,(r)- Vlkye > + 4 (A (=) V]kye' 2
2mc 2me

ih . )
= ﬁ (anke—m“t2 + ankelw”z) (105)
and
lhq ' —iwot ihq +iwat
{m|W(tyny = e {m|A,(r)- V|n)e """ + — {m|A,y(—r)" V|n)e "
mc 2me
lhq —iwaty ~ iwaty
= e (Ot mne + A€’ ) (10.6)
We finally obtain
¢

a(e) =

t
—inmt —iwat = iwat
e Y J e Y0 ' a0 M)dt,
n to

1 3 3
X f e ity eI 4 g " 1)L, (10.7)

to

as the second-order contribution to c,(t). This summation contains four cross
terms for each n. Their interpretations will become clear as we develop Eq. 10.7
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farther, and we list them for reference below:

Term Process

O pannk Two-photon absprption

L punnk Raman (Stokes if w; > w,)

L panlnk Raman (anti-Stokes if w; < w,)
Lk Two-photon emission

These processes can also be visualized in the same order using qualitative energy
level diagrams in Fig. 10.3. The dashed lines in this figure denote virtual states,
which are not generally true eigenstates of the molecular Hamiltonian unless
one of the radiation field frequencies w,, w, happens to be tuned to one of the
molecular energy level differences. All of these two-photon processes are
effectively instantaneous, and the virtual states do not exhibit measurable
lifetimes. A second way [1] of visualizing these processes, which appears to be
cumbersome for displaying these (relatively) simple second-order phenomena
but which proves to be valuable in sorting out still higher order processes like
second-harmonic generation (Chapter 11), is to use time-ordered graphs (Fig.
10.4). The time coordinate in these graphs is vertical, pointing upwards. The
photons are represented by wavy lines. The vertical lines, which are divided into
segments labeled k, n, and m, identify the molecular states that are occupied at
various times; the center portions of these lines denote the time intervals during
which the molecule is in the virtual state labeled n. The state of the system at any
time ¢ can thus be inferred by noting which portion of the vertical line and which
(wavy) photon line(s) intersect the horizontal line representing time ¢. In the first
diagram (corresponding to two-photon absorption), there are two photons,
(ky, ®,) and (k,, w,), and the molecule is in the initial state |k) at time t,. By time

— —— >
Y2
@
_—— 1
“ Y2 “
Y2
[m> — k>
— x> — k> —Im) [m>
Two - photon Raman Raman TWO-' phpton
absorption emission

Figure 10.3 Energy level diagrams representing the four contributions
to c2'(t) when the perturbation matrix elements are given by Eqgs. 10.5 and 10.6.
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(ka,"‘z) (kl,wl) (kz,wz)
m
____________ t
c

(kI ,wl)

[ 4 L

L L

(kp,@p)
Two - photon Raman Raman Two - photon
absorption emission

Figure 10.4 Time-ordered graphs corresponding to the four contributions to
¢'2)(t) when the perturbation matrix elements are given by Egs. 10.5 and 10.6. These
are shown in the same order as the energy level diagrams in Fig. 10.3.

ty, the molecule has undergone a transition to virtual state [n) by virtue of the
radiation-molecule interaction W(t,), and only the (k,, w,) photon remains
unabsorbed. At time ¢, the molecule has reached its final state |m) as a result of
the interaction between virtual state |n) and the (k,, ®,) photon via coupling by
the W(t,) term. The intersections of the photon lines with the vertical lines,
which are labeled with interaction Hamiltonian terms like W(t,) or W(t,), are
called interaction vertices.

The role implied by these time-ordered graphs for the virtual states called
“In)” should not be taken too literally. In the treatment that follows, these
virtual states are in effect expanded in infinite series of true molecular eigenstates
[n), and no virtual state in any of the processes will coincide with any single,
particular true |n). Hence, while the energy conservation hw, + hw, = E,, — E;
must be preserved in the overall two-photon absorption process, the first of the
time-ordered graphs is not intended to imply that hw, = E, — E,, where
E, is the energy of some true molecular eigenstate |n). The absorption of photon
(k;, w,) in this graph is called a virtual absorption, and it is not subject to the
energy level-matching Ritz combination principle that is obeyed by one-photon
absorption (a real absorption process).

We have arbitrarily chosen to associate A,(r,t) with W(t,) and A(r,t) with
W(t,) in Egs. 10.3. If we allow in addition the reverse assignments [A,(r, t) with
W(t,) and A,(r, t) with W(t,)], we will generate the new energy level diagrams in
Fig. 10.5 and the new time-ordered graphs in Fig. 10.6.

At this point, we have developed our theoretical framework sufficiently to
deal explicitly with TPA and Raman spectroscopy. Spontaneous two-photon
emission (which is depicted by the last of each set of time-ordered graphi\in Figs.
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—L— |k [m>

Two-photon Raman
absorption

Figure 10.5 Energy level diagrams for four
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Raman

additional

_ |
w2

Y

>

Two-photon
emission

contributions

to ¢2'(t), generated by associating A, with W(t,) and A, with W(¢,).

m
n
(k,,w,)
2'72 K
(kl,w|) (kl,wl)
Two-photon Raman
absorption

(kp, wp)

(kz,wz)

Raman

(kl,wl)

“‘2""2)

(k@)

Two -photon

emission

Figure 10.6 Time-ordered graphs corresponding to the energy level diagrams in

Fig. 10.5.

10.4 and 10.6) exhibits transition rates far smaller than those of E1-allowed one-
photon emission [1], and has not been detected. It is likely to contribute to
decay in astrophysical systems in which one-photon decay is El1-forbidden.

10.2 TWO-PHOTON ABSORPTION

We now develop the terms pertinent to TPA in Eq. 10.7. They become

2

t
A = s T St J di,e™ ot o
n t

m2c? o

J

" dt,e~i@mtone  (10.8)
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Setting t, = — oo in the cw limit, we have

2

t 51

TPA q P— —iomn +

cr (t)=4m2c2 ) oc,,,,,oc,,kj~ dte '@ "’2)'"[ dt e~ {@mton (10.9)
n — o0 — 0

To make the last integral on the right converge, we may replace w,, by (wy,, + i),
where ¢ is small and positive, and then let ¢ — 0 after the integration:

ty _e—i(wk"+w1+is)t21n
dt e‘i(mkn+m1+i5)tz _
2 - . .
- t(a)k,,+a)1+18)|_co
_e‘i(mkn+ml+i5)h _e‘i(wkn*wx)tl

= ; > — 10.10
. i(wk" + (O3} + 18) e l(wk" + 0)1) ( )

This is more than just a mathematical artifice. This substitution is tantamount
to replacing the energy E, by (E, — ihe), so that the intermediate state |n)
exhibits the time dependence exp(—iE,t/h — ¢t) and hence physically decays
with lifetime 1/2¢. The constant ¢ can be identified with y/4, where vy is the
Lorentzian linewidth (Chapter 8). Such linewidths are generally much smaller
than level energies E,, so that dropping ¢ at the end of the integration yields
good approximations to ¢(t) in Eq. 10.10. Next, we have

2 t

cIPA() = ‘—"45,%2 Y a,,,"a,,,‘J dt e~ @entort oo (10.11)

i(wkn + 0)1)
and so in the cw limit
27[(12 amnank
4im*c? T (g, + )

_ —2nq® . {m|Ay(r)- VIn)<n|A,(r)- VIk)
4im*c? 5 Wyn + @

CIPA(o0) =

Nwpm + 0, + ®,)

S + @y + ;) (10.12)

In the E1 approximation (Chapter 1), this is equivalent to

y E, - {mlpin)<{njplk) - E,
n Wi + 04

cIPA(o0) oc MWy + 01 + @) (10.13)
/
where E,; and E, are the electric vectors of the incident light waves (k,, w,) and
(k,, w,). Since the roles of vector potentials A, and A, can be reversed in TPA
and c,(t) must.exhibit symmetry reflecting this fact, we finally conclude that

PV (E oy Colplk) B, E - <mlnln><nlﬂlk>'Ez>
n Wpp + (O3} Wy + (1))

X Wy + 0y + ©3) (10.14)
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Since the delta function in Egs. 10.13-10.14 is proportional to
OLE, — E,, + (w, + w,)], it yields the obvious energy-conserving criterion
(E,, — E,) = h(w, + w,) relevant to TPA. It is thus clear that the terms included
in Eq. 10.8 are the ones associated with TPA, and furthermore that the
particular physical processes connected with the other terms in Eq. 10.7 may be
identified by examining the signs of the time-dependent exponential arguments.
Equation 10.14 describes the TPA transition amplitude for a molecule
subjected to two light beams with arbitrary electric field vectors and propa-
gation vectors. A particularly useful application of TPA in gas phase spec-
troscopy employs two counterpropagating laser beams with k, *k, = —|k,||k,|.
In this case, a molecule traveling with velocity v, parallel to k, will experience
Doppler shifts
0 0
DO e 2222 e (10.15)

(31 @3

in the frequencies w,, w, relative to the frequencies w9, w? experienced by a
molecule at rest (Fig. 10.7). The total energy absorbed in a transition involving
photons (k,, w,) and (k,, w,) will then be proportional to

w12=w1+a)2=w?+a)g+vf(w?—a)g)
=0, + 2 (@ - o) (10.16)
or
013 — oy == (@ - ) (10.17)

The Gaussian absorption profile that results from Doppler broadening of the
TPA transition probability as a function of @,, will then be

P(w,,) = Poe_m”:/sz= Poe—mcz(wu—w?z)z/sz(w?—wg)z (10.18)

k., w kl,ml

Figure 10.7 Two-photon absor)ption in a molecule subjected to counterpropagat-
ing light beams (k,, w,) and (kJ, w,) directed along the x axis.
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This profile exhibits a full width at half-maximum

0_ 0 1/2
fwhm = 20, . @l <2kTmln 2) (10.19)

where m is the molecular mass. If photons of identical frequency are used
(@9 = 9), the Doppler broadening cancels between the counterpropagating
photons, and one nominally obtains zero fwhm. (In practice, one will still
observe lifetime and possibly other residual broadening effects.) Doppler-free
TPA spectroscopy is the most practical means of obtaining high-resolution
absorption spectra in thermal gases.

The 32S — 528 transition in Na vapor provided the now-famous prototype
system for observing Doppler-free TPA [2,3]. The one-photon 32S — 52§
transition, which would occur at 301.11 nm, is El-forbidden (Al = 0). If two
counterpropagating photons with identical wavelength 4 = 602.23 nm are used,
we have w, = w, = w and k, = —k, (Fig. 10.8). The leading contributions to
the 328 — 52S TPA transition amplitude will then be

Cm (00)
o B2 <57SIHI3*P)(3?Plpl3’S) - E, + E, - (S°S|u[3°P)(3°PIpi3’S) - E,
E3P - Ess - hw
LB (5°S|ul4”PY<4’Pip|3°S) - E, + E, - (5’S|p4’P)(4?P|pi3’S) - E,

E4P - E3s - hw

+ E, - (57S|p|5*P)<{5*P|p|3*S) - E, + E, - {5’S|p|5*P){5°P|p|3’S) - E,
Esp — E3s — ho

4o (10.20)

The intermediate states |n) are restricted to the m?P states (with m > 3) by the
E1 selection rule Al = +1 in each of the matrix elements of g. Contributions

3°p Figure 10.8 Energy level diagram for
328S-52S two-photon absorption in Na
vapor. The two-photon process is moni-
tored by detecting 4P —32S fluorescence
from the 42P level, which is populated by
cascading from 52S atoms created by
two-photon absorption.

42P- 325 Fluorescence

3"s —
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from the 62P, 72P states, etc. will be smaller than those in Eq. 10.20, because the
energy denominator (E,,p, — E;5 — hw) increases with m. In one of the earliest Na
vapor TPA experiments, a N, laser-pumped rhodamine B dye laser provided
linearly polarized pulses at 602.23 nm. These laser pulses were passed through a
thermal Na vapor cell, and then reflected backward by a mirror, causing them to
collide inside the cell with later pulses passing through the cell for the first time.
The 32S — 52S TPA transition was detected by monitoring 4°P — 32S flu-
orescence from the 42P Na atoms, generated by cascading from the 528 atoms
created by TPA,; this particular fluorescence transition in Na occurs at a visible
wavelength that is easily monitored by conventional phototubes.

The elimination of Doppler broadening in this experiment allows the clear
observation of hyperfine structure that arises from the interaction of electronic
and nuclear angular momenta. The total atomic angular momentum is

F=L+S+1 (10.21)

where L is the nuclear spin angular momentum. In 2S states of 2>Na, L = 0,1 = 3
and S = 1, so that the possible F values are

F=I1+S,...,I-8=21 (10.22)

in both the 32S and 578 states. The splitting between the F = 1, 2 sublevels is
larger in the 32S than the 52S state (as might be expected because the 528 orbital
is more diffuse and has less electron probability density near the nucleus). It can
be shown that the selection rule on AF is AF =0 in TPA [2]; thus two
transitions will be observed (F = 1 — 1 and F = 2 — 2 as shown in Fig. 10.9) at

F
s 2 ks
P
17
F ﬁ& { Figure 10.9 Detailed energy level diagram for
° 2 — ~— -~ 32S-52S two-photon absorption in Na, showing
3°s A splitting of the n3S levels into hyperfine components

3
| ——— = . . .. .
_f with F =1, 2. Dashed lines indicate virtual states.
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single-photon frequencies separated by
2Aw = Ay — As or Aw =HA; — As) =26 x 1072 cm~ ' (10.23)

(the factor of 2 is required here because this is a two-photon transition). The
actual TPA spectrum obtained this way is shown in Fig. 10.10. The hyperfine
components exhibit approximately a 5: 3 intensity ratio, because 5 and 3 are the
degeneracies of the F = 2 and 1 sublevels. The resolved hyperfine peaks result
from Doppler-free TPA of photons travelling in opposite directions. The broad
background in which these Doppler-free peaks are superimposed arises from
TPA of pairs of photons traveling in the same direction, since nothing in this
apparatus can present TPA of copropagating photons. This background can be
removed using circularly polarized photons, however (Fig. 10.11).

It is instructive to touch briefly on the TPA spectroscopy of benzene [4] since
we have discussed its one-photon absorption spectroscopy in Chapter 7. For
TPA from the 'A,, benzene ground state to some final vibronic state f,

AR CIED)

n

<E2'<f|ﬂ|n><nlnIAlg>'E1 E {fluln)<nlplA,,) - E, (1024)
(E,, - EAlg — hwl) (En — EAlg - hwz) )

For El-allowed TPA, it is then necessary that both

I'm®I'W® A,
I'y)®Irpw® In

simultaneously contain A,, for some intermediate state |n). Since (x, y) and z
transform as E;, and A,, in Dg,, respectively, the intermediate states |n) must
have E,, or A,, symmetry. Consequently, the allowed symmetries of the final
vibronic states |f) are A, A,,, E,,, and E,,. This exemplifies the obvious fact
that the selection rules in TPA are anti-Laporte in centrosymmetric molecules,
and that TPA can be used to study excited states that are inaccessible to one-
photon absorption from the ground state.

While the 'B,, S, state in benzene has inappropriate symmetry for an
intrinsically El-allowed S, « S, TPA transition, S; « S, TPA is still observed
due to vibronic coupling. Since

b2u Alg
b A
B,,®| " |= EZ" (10.25)
e2u 1g
€1u E;e

in Dg,, there are four symmetries of normal modes (b,,, b;,, €54, €1,) that can
serve as promoting modes in vibronically induced S, « S, transitions. This
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Figure10.10 Two-photon absorption profiles in Na vapor, obtained using linearly
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were linearly and circularly polarized, respectively. Reproduced by permission from
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Figure10.11 Apparatus for measurement of two-photon absorption profiles in Na
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Fabry-Perot etalon. Profile (a) was obtained by two-photon absorption from one
linearly polarized beam. Profile (b) shows the Doppler-free F=1—1 and 2 -2
hyperfine peaks, obtained using counterpropagating circularly polarized beams.
Used with permission from M. D. Levenson and N. Bloembergen, Phys. Rev. Lett. 32,
645 (1974). Note that this work arrived in a dead heat with that of Biraben et al., Fig.
10.10.
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situation contrasts with that in the one-photon spectrum, where vibrational
modes of e,, symmetry are required for the intensity-borrowing (Section 7.2).

10.3 RAMAN SPECTROSCOPY

In ordinary Raman scattering, we are concerned with the two-photon process
whereby photon (k,,w;) is annihilated, photon (k,, ®,) is created, and the
molecule undergoes a transition from state |k) to state |m). Energy conservation
requires that i(w, — w,) = E,, — E,. The possible time-ordered graphs satisfy-
ing these conditions are shown in Fig. 10.12. These two graphs should not be
regarded as physically distinct in the sense that the first graph depicts
“absorption” of photon (k,, w,) followed by “emission” of photon (k,, w,), while
the second graph depicts these events occurring in reverse sequence. They are
simply a bookkeeping method for keeping track of different terms in the
perturbation expression (10.7). (For that matter, the portions of the time lines
labeled “n” in Fig. 10.12 are unresolvably short, and the interaction vertices
labeled “W(t,)” and “W(t,)” coincide for practical purposes.) Using the terms
associated with these two diagrams in Eq. 10.7, it is straightforward to show by a
procedure similar to that carried out for TPA in Section 10.2 that the second-
order probability amplitude for Raman scattering in the cw limit is

C,&,(OO) o« Z (Ez < {mlplny<{njplk) - E, " E, - {mjgin){njpk E2>

Wy + @ Wyp — W2
X (Wi + ©; — @) (10.26)
For a given intermediate state |n), the first and second right-hand terms in Eq.

10.26 correspond to the first and second time-ordered graphs in Fig. 10.12,
respectively. When @, > w,, the scattered radiation frequency w, is said to be

(kpywp) (kpswp)

wit)

W(ty)

(k|,w|) (kl'wl)

Figure10.12 Time-ordered graphs for the Raman process with incident frequency
w, and scattered frequency w,.
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Stokes-shifted from the incident frequency w,; anti-Stokes scattering is obtained
when w,; < w,. The energy difference A(w, — w,) normally matches either a
molecular vibrational-rotational or rotational level difference, and the incident
frequency w, is usually some readily generated visible frequency (e.g., an Ar* or
He/Ne laser line) in conventional Raman spectroscopy. In such cases
|w, — w,|/w,; « 1. We may specialize Eq. 10.26 to chemical applications of
Raman spectroscopy [1] by using Born-Oppenheimer states for the molecular
zeroth-order states,

k> = W@ 0)xolQ)>
In> = We(g, Ot (@) (10.27)
Im) = (g, Q)xon(Q)>

This implies that the initial and final states |k) and |m) are different
vibrational levels within the same (normally the ground) electronic state, and
that the intermediate states |n), in terms of which the virtual states are
expanded, are vibrational levels in electronically excited manifolds (Fig. 10.13).
Using this notation, the Raman transition amplitude becomes

cp(e0) o Y.

no”

E2 ) <X00'|l‘0n|Xm:"><Xm;”|”nOIXOU> ) El
COOn + wOv.m:” + (Dl

+ El ) <X01;’|”0n|Xm;"><Xnv"|”nOIXOU> ) EZ

(10.28)
WDop + Doy,np — D3

where

Hon = <¢21|ﬂe1|'/’:1> = poa(Q) (10.29)

H'n Xav" >

TT . . .
Figure 10.13 Energy level scheme for chemical appli-
v wp cations of ordinary Raman scattering. The first allowed
electronic state |yy") lies well above the energy Aw, of the

%> incident photon; the energy separations i(w, — w,) cor-
o ov respond to rotational/vibrational energies in the ground

L ¥%Xe > electronic state [°).
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is a transition moment function for the electronic transition |n) « |0). In
analogy to the R-dependent diatomic transition moment function M (R) in Eq.
4.49, p,,(Q) depends on the vibrational coordinates Q in polyatomics. The
quantity hw,, = (E, — E,) is the electronic energy difference between states |k)
and |n), and hw,, ..~ is the vibrational energy difference between states |k) and
[n). In a conventional Raman experiment where |w, — w,|/w, «1 and
[0y ny| < |@on) (Fig. 10.13), one may use the approximation w, ~ w,; = w and
neglect the vibrational energy difference terms w,, ,,~ in the energy denomi-
nators, with the result that the Raman transition amplitude takes on the
symmetrical form

cn(0)oc Y,

no”

+ El ) <XOU’|”On!Xnv"><Xnv”|”n0IX09> ) EZ
Weo, — W

E2 ) <X00’|ﬂ0n|%nv”><Xnv”|”n0lx0u> ) El
Wo, + ©

Z (Ez* pon)(no"Ey) " (Ey * pon)(tt0 " E>)
n Wop + o Wo, — O

= <XOU'I |X00> (1030)

The polarizability tensor a(w) for a molecule in electronic state |0) subjected to a
sinusoidal electric field with circular frequency w has components

oy(@) = Y (10.31)

<(”0n)i(ﬂn0)j + (I%n),(l‘n())i)

hwg, + ho  hw,, — ho

This bears a family resemblance to expression (1.35), which was derived for
the polarizability of a molecule subjected to a static electric field (w = 0).
Equation 10.31 is a generalization of Eq. 1.35 for the dynamic polarizability in
the presence of applied fields with nonzero frequency . (The dynamic
polarizability is reduced when the applied frequency is increased, because the
electronic motions in molecules cannot react instantaneously to rapid changes
in the external electric field.) A comparison of Egs. 10.30 and 10.31 then shows
that

m(00) o E * {xou (@)l X0, * Eq (10.32)

which is to say that the transition amplitude is proportional to the matrix
element of the frequency-dependent molecular electric polarizability taken
between the initial and final vibrational states. The polarizability tensor a(w)
generally depends on Q as well, through the Q-dependence of g, in Eq. 10.29—
otherwise, Eq. 10.32 tells us that no vibrational Raman transitions would take
place between the orthonormal Born-Oppenheimer states |k) and |m).

We may obtain working selection rules for vibrational Raman transitions by
expanding the molecular polarizability tensor in the normal coordinates Q;
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about the molecular equilibrium geometry,

oo
°“°‘°+Z<5Q> 2(5Q15Q> 00+ (1033
so that
{tovl®tlXov) = %00,y + z owl <3Q > Qilxon>
1 9%
*t3 Z, (Xowl <0Q. an> Q000> + (10.34)

Hence, the Raman selection rules on Av depend on the relative magnitudes of
the derivatives of a in different orders of Q;,. The Raman fundamentals
(Av = +1) arise from the terms linear in Q;. Symmetry selection rules may be
derived by noting that quantities like (00,/0Q,)0Q; and (9°2/0Q;0Q;)00:Q;
transform under point group operations like a itself; any component a;; of
transforms like x;x; (ie., a,, transforms like xy, etc). Hence, Raman funda-
mentals generally arise only from normal modes Q; which transform under point
group operations like linear combinations of x;x; such as (x* — y?), z%, x.

Allowed vibrational Raman transitions involve only modes that change the
molecular polarizability (the right side of Eq. 10.32 would otherwise reduce into
E, - a(w)* E;{Xovlxov», Which is proportional to J,,). Cases do arise in which
Raman fundamentals are symmetry-allowed, but very weak. For example, alkali
halide molecules consist of pairs of oppositely charged ions whose electronic
structures are nearly insensitive to the internuclear separation R for R near R,.
The alkali halide molecular polarizability

a~aM*) + aX") (10.35)

is thus nearly R-independent, and alkali halides exhibit very weak Raman
scattering even though their Raman fundamentals are symmetry-allowed. (Their
diatomic vibrational motion is of course totally symmetric in C,, and the =+
irreducible representation transforms as both (x? + y?) amd z2.)

For a nontrivial example of Raman symmetry selection rules, we consider the
molecular vibrations in p-difluorobenzene. We list in Table 10.1, next to each of
the irreducible representations in D,,, the number of vibrations of that species
exhibited by p-difluorobenzene, the vector and tensor components that trans-
form as that representation, and the corresponding infrared (one-photon) and
Raman activity expected for fundamental transitions in the pertinent vibrational
modes. Table 10.2 gives an analysis of the p-difluorobenzene Raman spectra
shown in Fig. 10.1. These tables illustrate the point that in centrosymmetric
molecules, symmetry-allowed Raman fundamentals appear only in modes with
g symmetry, while the infrared-active fundamentals occur only in modes of u
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Table 10.1 Molecular vibrations in p-difluorobenzene
Irreducible Number of
representation vibrations IR Raman
a, 6 x2, y?, z* J
by, 1 Xy N
by, 3 x N
by, 5 yz V
a, 2
by, 5 z N
b2u 5 y \/
b, 3 X J
Table 10.2 Assignments of p-difluorobenzene Raman bands
Liquid Vapor
Relative Relative
v (cm™1) intensity Assignment v (cm™1) intensity
1619 (11) va(a,) 1615 3
1606 3) [2vg(by,)], A,
1388 (1) [2v,6(b2,)]; A,
1285 3) v2s(b3g)
1244 (42) vs(ap) 1257 30)
1141 14) v4(ay) 1140 (5)
1019 0l [v17(b2g) + v26(b3g)], Byg 1013 @
895 (1) [2ve(ag], A, 897 )]
[2v,4(bs))], A, 867 (16)
859 (68) vs(ay) 859 (73)
840 (89) [2vg(ay)], A, 840 (35)
799 2 vo(by,)
636 (23) v26(b3g) 635 ©)
451 (84) ve(ay) 450 37
376 47 vi9(b2g) 374 9

symmetry. Hence, vibrational modes exhibiting infrared and Raman funda-
mentals belong to mutually exclusive sets if the molecule has a center of
symmetry; this fact has been used as evidence for assigning molecular geometry.
Laser Raman spectroscopy has found wide applications in environmental
chemistry, biochemistry (e.g., conformational analysis of proteins), and medicine
as well as in chemical physics.

A specialized situation called resonance Raman scattering arises when the
laser frequency w, is tuned close to resonance with one of the molecular
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eigenstates [n) = [¥/"(q, Q) Xn,(Q)), as shown in Fig. 10.14. The energy denomi-
nator (Wg, + Wy n + @;) in Eq. 10.28 becomes very small relative to its value
in ordinary Raman scattering, and the transition probability (which is pro-
portional to |c}|?) becomes anomalously large. In this limit, the vibrational
energy differences w,, ,,~ cannot be ignored next to the other terms in the energy
denominators, with the result that the transition amplitude cX(c0) no longer
reduces to the symmetrical form (10.30). Hence, the assumptions leading up to
Eq. 10.32 (which gives the Raman transition amplitude in terms of a matrix
element of a(w)) fall through: The ordinary Raman selection rules are not
applicable to resonance Raman transitions. It turns out that some transitions
that are forbidden in ordinary Raman become allowed in resonance Raman
spectroscopy (Problem 10.4). Time-resolved resonance Raman (TR?) scattering
has been developed into a useful technique for monitoring the populations of
large molecules in electronically excited states (Fig. 10.15). Such excited-state
populations might be more conventionally probed by studying the evolution of
S, < S, or T, « T, one-photon transient absorption spectra on the ns or ps time
scale. These transient spectra tend to be featureless (due to spectral congestion)
in photobiological molecules and transition metal complexes. TR? scattering is
a more advantageous probe, because the resulting spectra exhibit sharp
vibrational structure similar to that in Fig. 10.1. The enhanced sensitivity
inherent in TR can be rendered specific to an excited state of interest by tuning
the probe laser frequency w,, because each excited state will be uniquely spaced
in energy from higher-lying electronic states.

In Chapter 8, we characterized the strengths of one-photon transitions in
terms of Einstein coefficients and oscillator strengths. According to Beer’s law, a
weak light beam with incident intensity I, will emerge from an absorptive
sample of concentration C and path length [ with diminished intensity I = I,
exp(—aCl), where « is the molar absorption coefficient. Beer’s law can be recast
in the form

I =TI, N (10.36)

: [¥" Xy
Figure 10.14 Energy level scheme for resonance
v wp Raman scattering.'The inpideqt photqn energy hw, is i.n
near resonance with a vibronic level in some electroni-
[¥° Xou cally excited state [¢y"); ’Fhe energy differences
i — h(w, — w,) correspond to rotational/vibrational energies
T v %e in the ground electronic state |°®).
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—==- T, Figure 10.15 Resonance Raman detection of
s, populations in electronically excited states S, and
T, following creation of S, state molecules by laser
excitation at frequency w,. Probing S, molecules
2 at frequency w, will generate intense resonance
s . . Raman emission at w, if the S, « S, transition is
! 2 E1-allowed, because w, is in near-resonance with
the energy separation between vibrationless S, and
some vibronic level of S,. Probing at frequency w,
T\ will generate similarly intense emission only if
“Ye ! appreciable population has accumulated in T, by
intersystem crossing from S, since w) is in re-
sonance with the T, — T, energy gap. This excited-
state selectivity of resonance Raman scattering has
rendered it a useful tool for monitoring time-
So resolved excited state dynamics.

|I|Il
il

where N is the molecule number density in cm ™2 and ¢ is the absorption cross
section. This cross section, which has units of area, is related to the absorption
coefficient by

o(A?) = 1.66 x 10 3a (L mol~ ! cm™?!)
— 383 x 10~ %(L mol~* cm™?) (10.37)

The physical picture suggested by the concept of a cross section may be
appreciated by visualizing the photons as point particles impinging on a sample
containing N molecules per cm®. Each molecule is imagined to have a well-
defined cross sectional area o. A photon is absorbed when it “hits” a molecule,
but is transmitted if it traverses the path length [ without scoring a hit. Under
these conditions, the fraction I/I, of photons that are transmitted will be
exp(— Nol). For strongly allowed one-photon transitions, o is somewhat smaller
than the molecular size: The absorption cross section for rhodamine 6G at
5300 A (g, = 105 L mol ™! cm™!, Problem 8.2) is 3.8 A2.

Raman scattering intensities (which are proportional to |cR|?) are commonly
expressed in terms of cross sections. The differential cross section do/dQ, is
defined as

do  dN,./dQ,
— = wlm2 10.
dQ,  dN,_jdA (10.38)

where dN;,. is the number of photons (k;, w,) which traverse the area element
dA normal to wave vector k, in the incident beam, and dN is the number of
photons scattered into the solid angle element dQ, = sin 0,d0,d¢, (Fig. 10.16).
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Laser

Figure 10.16 Raman scattering geometry. The laser is incident along the z axis,
and the Raman emission is scattered into the volume element dQ, = sin 6,d6,d¢,,.

The total Raman cross section

— | "sin 0,00, |7 (9 a0 ' (10.39)
0= 0 24U, o \de, 2 -

has an interpretation similar to that of the one-photon absorption cross section:
o is related to the fraction I/1 of incident photons that remain unscattered after
traversing path length [ in the sample, via I/I, = exp(— Nol). It may be shown
that the differential cross section for Raman scattering is [1]

do 0,03 2
dQ,  (4ngohc?)?

5 <E2 ~Cmipind<nlplk) - E, + E, <mlﬂln><nlﬂlk>'fz)

Dy + (1 Wy — W3

n

(10.40)

where E,, E, are unit vectors in the directions of polarization of the electric
fields associated with photons (k;, ®,) (k,, ®,). A special case called Rayleigh
scattering occurs when w, = w, (i.e, the initial and final molecular states are the
same). The differential cross section for Rayleigh scattering is obtained by
‘replacing w, by w, in Eq. 10.40, with the result that the cross section becomes
proportional to the fourth power of the incident frequency w,. This pheno-
menon is responsible for the inimitable blue color of the cloudless sky, because
the shorter wavelengths in the solar spectrum are preferentially scattered by the
atmosphere. According to Eq. 10.40, the scattered photon may propagate into
any direction k, in general. The angular distribution of Raman scattering
(relative intensities of light scattered into different directions k,) may be ob-
tained by averaging expressions like (10.40) over the orientational distribution
of molecules in the sample. For conventional vibrational Raman transitions
excited by visible light, a typical cross section da/d€2, is on the order of 10~ 14 A2,
with the result that only one photon in 10° is scattered in a sample with molecule
number density N = 102°cm 3 and path length I = 10 cm. (The cross sections
for resonance Raman transitions are, of course, far larger). This is why intense
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light sources (preferably lasers) are required for Raman spectroscopy. Visible
rather than infrared lasers are normally used in vibrational and rotational
Raman spectroscopy, because the cross sections (which are proportional to
,w3) and the photon detector sensitivities are more advantageous in the visible
than in the infrared.

Raman line intensities are proportional to the number density N of molecules
in the initial state |k, which is in turn proportional to the pertinent Boltzmann
factor for that state at thermal equilibrium. Consequently, the relative intensities
of a Stokes transition |k) — |m) and the corresponding anti-Stokes transition
[m) — |k) are 1 and exp(—hw,,/kT), respectively. (The factor w,w3 varies little
between the Stokes and anti-Stokes lines, because the Raman frequency shifts
are ordinarily small compared to w,.) Hence the anti-Stokes Raman transitions
(which require molecules in vibrationally excited initial states) are considerably
less intense than their Stokes counterparts, particularly when the Raman shift
W, 1 large. In much of the current vibrational Raman literature, only the
Stokes spectrum is reported (cf. Fig. 10.1).
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PROBLEMS

1. Two-photon 3s — 5s absorption is observed in Na vapor at 400K with
counterpropagating laser beams whose frequencies w? and w9 are not quite
identical. How large must the frequency difference |9 — w9| be so that the
Doppler contribution to the linewidth equals the Lorentzian contribution if the
5s radiative lifetime is 10 ns?

2. What states in K can be reached by two-photon absorption from 4P, ,
level in the E1 approximation? To what term symbols are the intermediate states
restricted?

3. Show that expression (10.40) for the differential cross section in Raman
scattering has units of area as required.

4. The acetylene molecule C,H, has five vibrational modes, three nondegen-
erate and two doubly degenerate (Chapter 6).
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(a) Several of this molecule’s lowest energy vibrational levels are listed below.
The polarizability function is assumed to have the form

5
UQy, ..., Qs) =0y + 'Zl a;Q; + 25: b;;0:0; + i ¢5%Q:Q,0
i= T ik

with no other terms. Which of the levels will be reached by El-allowed
Raman transition from the 0000°0° level?

v v, V3 v v Symmetry
0 0 0 10 I,
0 0 0 0 o,
0 0 0 T o=
0 0 0 2 11,
0 0 0 0 20 A,
0 1 0 0 0 T
0 0 0 0 31,
0 0 0 0 P,
0 1 0 0 o,
0 0 1 0 0 ke
0 1 0 1 LRt
1 0 0 0 0 o
0 1 0 20 o,
3 0 0 0 0 T
3 1 0 0o 0 z;
0 4 0 0 0 z
0 1 0 30 I,
0 0 0 22 0 A

(b) Consider the hypothetical case in which the laser frequency w, is tuned
close to the lowest El-allowed electronic transition in C,H,, so that
resonance Raman emission occurs and the polarizability expression (10.32)
for the Raman transition probability amplitude is no longer applicable.
Which of the vibrational levels listed above can be reached from 0000°0°
acetylene by El symmetry-allowed resonance Raman transitions, even
though they cannot be reached by conventional Raman transitions?

(c) The frequency of mode 2 in acetylene is 1974cm ™~ !. What will be the
approximate ratio of intensities in the Raman fundamentals of this mode in
the Stokes and anti-Stokes branches in a 300 K sample?
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The discussion of Raman and Rayleigh scattering in Section 10.3 was based on
the time-dependent perturbation theory of radiation—matter interactions devel-
oped in Chapter 1. The scattered light intensities were found to be linear in the
incident laser intensity; the scattered Raman frequencies were shifted from the
laser frequency by molecular vibrational/rotational frequencies. Identical con-
clusions may be reached using a contrasting theory which treats the polarization
of bulk media by electromagnetic fields classically. Such a classical theory
provides an insightful vehicle for introducing the nonlinear optical phenomena
described in this chapter, and so we begin by recasting the familiar Raman and
Rayleigh scattering processes in a classical framework.

The total dipole moment p of a dielectric material contained in volume V is
given by the volume integral

P=J Pdr (11.1)

of the local dipole moment density P [1]. Defined in this way, P (which is
normally called the polarization) has the same units as electric field. In a material
composed of nonpolar molecules or randomly oriented polar molecules, P
vanishes in the absence of perturbing fields. In the presence of an external
electric field E, the polarization becomes

P=c¢u E (11.2)

where 7 is the dimensionless electric susceptibility tensor. This expression gives
the correct zero-field limit P = 0. However, the polarization is not necessarily

331
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linear in E, because the susceptibility itself may depend on E. We shall see that
this nonlinearity forms the basis for the phenomena in this chapter. For
isotropic media (gases, liquids, and most amorphous solids), the susceptibility
reduces to a scalar function y(E), and the polarization P points in the same
direction as E. In many crystalline solids, the induced polarization does not
point along E, and 7 is an anisotropic tensor. Equation 11.2 closely resembles
the expression for the dipole moment induced in a molecule by an electric field,
Mi.q = o E. For atoms and isotropically polarizable molecules at low densities
N (expressed in molecules/cm?), the bulk susceptibility is clearly related to the
molecular polarizability by

x = Nojeg (11.3)

At general number densities where the total field experienced by a molecule may
be influenced by dipole moments induced on neighboring molecules, the
susceptibility is given instead [1] by y = (Na/go)/(1 — Na/3¢,).

We now consider an electromagnetic wave with time dependence
E = E,cos wyt incident upon a system of isotropically polarizable molecules.
For simplicity, we assume the molecules undergo classical harmonic vibrational
motion with frequency w in some totally symmetric mode Q. The normal
coordinate then oscillates as Q = Q, cos(wt + ), where d is the vibrational
phase and Q, is the amplitude. If the molecular polarizability « is linear in Q (as
a special case of Eq. 10.33), the vibrational motion will endow the molecule with
the oscillating polarizability

o =og + oy cos(wt + ) (11.4)

Ignoring the vibrational phases ¢ (which will be random in an incoherently
excited system of vibrating molecules), the polarization induced by the external
field will be

P=£0x.E

= N(ao + 0‘1 cos wt)Eo Ccos (Dot

= NE, {ao cos wot + “2—* [cos(wg + w)t + cos(we — w)t]} (11.5)

According to the classical theory of radiation [1], an oscillating dipole moment
p will emit radiation with an electric field proportional to its second time
derivative p. Equations 11.1 and 11.5 then imply that radiation will be scattered
at the frequencies w,, @, — ®, and w, + w, corresponding to Rayleigh, Stokes
Raman, and anti-Stokes Raman scattering, respectively. The scattered electric
fields are proportional to Eg, so that the Rayleigh and Raman intensities are
linear in the incident laser intensity. Expressions similar to Eq. 11.5 are
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frequently cited in classical treatments of Raman scattering [2, 3]; they em-
phasize the central role of Q-dependent molecular polarizability, and they
demonstrate heuristically how Raman-scattered light frequencies are shifted by
molecular frequencies w from the laser frequency w,.

As lasers with high output powers became accessible to spectroscopists in the
1960s, conspicuous nonlinearities emerged in the polarization P(E) induced by
intense fields. The components P; of P may be expanded in powers of
components E;, E,, E; of the electric field E via

3 3
Pi=¢ <Z LPE; + ; 12EE, + ; ACLEELE, + ) (11.6)
J

The linear susceptibility %"’ gives rise to the Raman and Rayleigh processes
treated in Chapter 10; it dominates the polarization in weak fields. As the light
intensity is increased, the responses due to the nonlinear susceptibilities x{Z,
X%, - - . gain prominence. A discussion analogous to the one culminating in Eq.
11.5 shows that scattering may occur at frequencies that are multiples of the
laser frequency. A process controlled by the second-order nonlinear sus-
ceptibility x{% is second-harmonic generation (SHG), whereby two laser photons
at frequency w, are converted into a single photon of frequency 2w,. (A related
process is sum-frequency generation, in which laser photons w, and w, are
combined into a single photon with frequency w, + w,.) The third-order
nonlinear susceptibility x{3);, is responsible for third-harmonic generation,
Wo + W + W — 3w,. It also leads to coherent anti-Stokes Raman scattering
(CARS), which is treated in Section 11.3. Generation of nth-harmonic freq-
uencies is governed by the nth-order nonlinear susceptibility x™; ninth-
harmonic pulses have been generated by 10.6-um CO, laser pulses in nonlinear
media.

Because the scattered light intensities occasioned by the second- and higher
order terms in Eq. 11.6 increase nonlinearly with the incident light intensity,
higher order contributions to the susceptibility become important at sufficient
laser powers. SHG conversion efficiencies of 209, from 1064 to 532nm are
routinely achieved in pulsed Nd3* : YAG lasers, and were unimaginable prior to
the invention of lasers.

Explicit formulas for the nonlinear susceptibilities x{7, x3), ... may be
derived by working out the coefficients c¢2(2), c¥(1), . . . , respectively, in the time-
ordered expansion (1.96). Straightforward evaluation of the integrals in the time-
ordered expansions rapidly becomes unwieldy, and an efficient diagrammatic
technique is developed in Section 11.1 for writing down the contributions to
c™(t) that are pertinent to any multiphoton process of interest. In Sections 11.2
and 11.3, we apply this technique to obtaining the nonlinear susceptibilities for
two important nonlinear optical processes, SHG and CARS. Experimental
considerations that are unique to such coherent optical phenomena are also
discussed.
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11.1 DIAGRAMMATIC PERTURBATION THEORY

To illustrate the simplifications introduced by diagrammatic perturbation
theory [4], we consider the three-photon processes corresponding to the third-
order term in the Dyson expansion of c,(t),

51

ﬁr?) (h)3 Z _lmpmtl<m'W(tl)|p>dt1 J e_im"pt2<plw(t2)|n>dt2

to

x J e~ @Rt | Wt )kt 5 (11.7)

to

We may associate the perturbations W(t,), W(t,), and W(r;) with vector
potentials for electromagnetic waves with frequencies w,, ®,, and ®;
respectively:

ihq _
<m|W(t1)|p> = m ( mp o1ty + a e"""l)

ih
AWy =2

(otpne ™22 + &,,e'°22) (11.8)
h 10) t i t
nW(ta)k) = 7— (“nke 3B+ a,e" ")

Substitution of these matrix elements into Eq. 11.7 then yields terms in c$(f)
proportional to the eight products

o S . O p Ok
ampa pnank t_xmpapn&nk
ampa pnank ampapnank
&m papnank &m p&pnank

These correspond to the eight time-ordered graphs (a) through (h), respectively,
in Fig. 11.1. These are only a small fraction of the possible third-order graphs,
because the arbitrary assignment of vector potentials to perturbations W(t;) in
Egs. 11.8 is only one of six permutations of w,, w,, w; among the W(t,). Hence,
c3)(t) contains 48 time-ordered graphs, of which only eight are shown in Fig.
11.1.

We next evaluate the terms in ¢{3)(t) corresponding to the first two time-
ordered graphs. The contribution from graph (a) in the cw limit is

3 t t
q . ! .
§_3_3 Z Oy p% pnnk ‘[ exp[_l(wpm + wl)tl:]dtl J‘ exp[_l(wnp + wZ)tZJdtZ
m=Cc~ ‘pn to

to
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t2
XJ exp[ — i@y, + w3)t3]dt;
to

_ —-21tq3 ampapnank

= (D + 03 + @05 + 11.9
8m>c® 5 (wyp + 05 + 03) W4 + @3) (@ + @1 + 03 + @03)  (11.9)

The delta function in (11.9) implies the energy conservation
E, — E, = h(w,; + w, + w;) pertinent to three-photon absorption. This is con-
sistent with graph (a), which shows photons w,, w,, w; incident at early times,
and no photons scattered at long times. The contribution from graph (b) is

to

3 t ‘
q _ .
8m3c3 Z ampapnank j exp[ - l(wpm + Col)tl:ldtl
pn

t2

[ty
X J exp[ —i(w,, + w,)t,]dt, J exp[ — i(wy, — w3)t;3]de,

to to

—2nq® O p % pn Ok
= PP T Hwyy + @1 + 0, — w3)  (11.10)
8m’c® o (04, + 03 — 03)(Of, — @3) § ! 2 }

(a) ~ (b) (c) (d)

w.

m 3 v2 uqlw

p

n

p

k ;’JJ‘
(e) (f) (g) (h)
“2 ;"n “3 “’\1 “3 @ 93 Y @

w3 w2 ,‘,|

Figure 11.1 Time-ordered graphs representing the eight contributions to c{3'(¢) in
Eq. 11.7 when the perturbation matrix elements are given by Eq. 11.8.
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A

“2
S R

Figure11.2 Energy level diagram for the process represented
by graph (b) in Fig. 11.1. The process is sum-frequency
generation when states |k) and |m) are the same, and hyper-
—L——— |x> Raman scattering when they are different.

@)

{m>

The energy conserving condition here is E,, — E, = h(w,; + w, — w;), corre-
sponding to absorption of photons w,, w, and scattering of photon w; (Fig.
11.2). When the initial and final molecular states |k), |m) are identical, the
process is sum-frequency generation [ 5,6], an important gating technique used in
time-resolved laser spectroscopies. When the two states differ, the process is
hyper-Raman scattering [4]; the energy difference E,, — E, usually corresponds
to a rotational/vibrational energy separation in gases, or to phonon frequencies
in lattices.

It is clearly tedious to evaluate 48 such integrals. The number of graphs
mushrooms as 2"n! with the perturbation order n: the four- and five-photon
processes are associated with 384 and 3840 graphs, respectively. The dia-
grammatic technique’s great utility consists in that it quickly isolates those
graphs that contribute to any given multiphoton process. It also provides simple
rules for generating expressions like Eqs. 11.9 and 11.10 directly from the graphs,
without recourse to explicit integration. These rules (which should be self-
evident by induction to readers who have retraced the steps leading to Eqgs. 11.9
and 11.10 and studied the accompanying graphs) are:

1. For a given multiphoton process, decide which frequencies are incident
and which are scattered. In sum-frequency generation, for example, one can
stipulate that frequencies w,, w, are incident and frequency w; is scattered; the
frequencies obey the conservation law w3 = 0, + ,.

2. Write down all of the graphs consistent with these assignments of
frequencies. These graphs will exhibit n interaction vertices (Section 10.1) in an
n-photon process. In our sum-frequency generation example, there are six
distinct graphs having incident frequencies w,, w, and scattered frequency w,
(Fig. 11.3). Only one of these graphs is contained in the set shown in Fig. 11.2.

3. Each interaction vertex between states |p> and |g) in any diagram
contributes a factor «,, for a photon incident at that vertex, and a factor ,, for a
photon scattered at that vertex. (These quantities are defined in Egs. 10.5-10.6.)
The diagrams (a) through (f) in Fig. 11.3 yield cumulative factors of a,,,0,,%,

Olmp® pnnks OmpCpnCnkcs CmpOpnOink> EmpQpninks ANA Opyp0y, 0y, TESPECtiVEY.
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(a) (b)
w3 w3

(d) (e)

w2 | Y2 9

(c)

w3
X
4
w2 @)
(f)
w3
Y2 9

Figure 11.3 The set of time-ordered graphs that can be drawn for the sum-
frequency generation process in which w, and w, are the incident frequencies and
w, is the scattered frequency. Six graphs result from permuting the three frequencies

among the three interaction vertices.

4. Reading from bottom to top of the time line in each graph, each of the first
(n — 1) interaction vertices contributes a factor of (w, + w) to the energy
denominator. Here w,, = (E, — E})/h, |I) is the state lying above the vertex on
the time line, |k is the initial state, and o is the total photon energy “absorbed”
at all vertices up to and including that vertex. The energy denominators for the

six diagrams of Fig. 11.3 are in order

(04 + 01 — O3, — @3), (O, + ©; — O3)(Wy, — @3),

(Whp — 03 + O MWy + @), (@) — @3 + ©) Wy, + @),

(W + 03 + 004 + @), and (@, + ®; + © )W, + @)
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5. The contributions from the graphs are summed to give the total proba-
bility amplitude. For the sum-frequency generation w; + w, — w3, we have

—2nq? O pO ok
) = Ganey® 2 ((wk,, o1 — W) — @)

ampap'l&nk + amp&pnank
(W — 03 + D)Wy, — @3) (W — D3 + 1) D4y + @)

. ocmpatpno‘nk ocmpotpnoc
+
(0hp — @3 + O Wy + @;) (W + W3 + O MWy + @)
g prCik
(11.11)
(wkp + 0y + )@y, + wz))

These rules provide an enormous labor-saving device for evaluating nonlinear
susceptibilities, as we shall see in the last two sections of this book.

11.2 SECOND-HARMONIC GENERATION

Second-harmonic generation (SHG), the special case of sum-frequency gen-
eration where w; = w, = w and w; = 2w, is an invaluable frequency upconver-
sion technique in lasers [5,6]. Most near-UV lasers are frequency-doubled
beams originating in visible dye lasers, and Nd**:YAG-pumped dye lasers are
excited by the 532-nm SHG rather than the 1064-nm fundamental from the
YAG laser. Autocorrelation diagnoses of pulse durations generated by mode-
locked lasers also rely on frequency doubling.

It is clear from Eq. 11.11 that for SHG (in which |o) represents both the initial
and final state)

c®(c0) = (2mc) — Z
OO pnlino + Aoy pnOlno Lo p% pnOlno ]
(CO w)(a)on - 260) (wop a?)(won + (wop + 2(0)(600" + (D)

(11.12)

Since the second-order nonlinear susceptibility is proportional to ¢®X(c0), we
have in the E1 approximation

@ oY [<0|#.-IP><pluj|n><n|uk|0>

o (wop - w)(won - 2(0)

<ol u;lp>< plpin)<{nlwlo) 4 olujlp><plulny<{nlplo) (1L.13)
(wop - w)(won + (D) (wop + 260)((00" + Cl)) i

pn

+
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where y; is the ith Cartesian component of the electric dipole operator. The
summations in (11.13) are carried out over all states |n), |p) other than the
ground state |o). Efficient frequency-doubling will naturally occur only in
materials that are transparent at both @ and 2w, so only terms for which w,,,
w,, > 2w will contribute to x{2).

The practical problems associated with SHG may be appreciated by
considering a classical theory for wave propagation in the medium. By
combining the Maxwell equations (1.37c) and (1.37d), we obtain the homog-
eneous wave equation [1]

VxVxE+peE=0 (11.14)

for electromagnetic waves propagating in free space. Since
V x V x E = V(V-E) — V2E and since V- E = 0 in vacuum, the wave equation
becomes

V2E — pe,k =0 (11.15)
This has solutions (Section 1.3) of the form
E(r, t) = E & 7o) (11.16)

When an electromagnetic wave propagates through a frequency-doubling
medium, the homogeneous equation (11.15) becomes superseded by [1,5]

VZE — peE = pu, P (11.17)

where the source term in P reflects the fact that electromagnetic waves are
radiated from regions with oscillating polarization P. Owing to the source term,
the plane wave (11.16) is not a solution to the wave equation inside the medium.
When the optical nonlinearity is dominated by second-order terms due to SHG,
the polarization is

P =¢xE
=¢,(fVE + yPE?) (11.18)

where we have assumed that the susceptibility is isotropic to simplify our
algebra. The wave equation then becomes

" Q*E?
oo (x‘”E + 12 =5 )

uP (11.19)

V2E — p,¢,E

The source term in (11.19) now contains two contributions P, and P, due to the
linear and nonlinear susceptibilities x') and x'?), respectively. As a zeroth-order
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approximation to E, we may take the plane wave (11.16). The nonlinear
contribution to the source term is then

P, = — g,y PElnie?itir— o (11.20)

This equation asserts that as the incident wave of frequency w; propagates
through the medium it stimulates the radiation of new waves with frequency
w, = 2w, at every point r along the optical path. The SHG electric field dE,
generated by the incident wave travelling through distance dr near r = r, will
then have an amplitude proportional to [5]

e,y PE2w2e2itiro w1ty (11.21)

Note that the amplitude varies as E2, so that the SHG intensity is quadratic in
the laser intensity. Since the SHG radiation will itself propagate with wavevec-
tor k,, the infinitesimal field generated near r, will be

dEZ o SOX(Z)E%C()%eZi(k'r" ‘wlt)ei[kz(r —ro)l

after it has propagated from r, to some arbitrary point r down the path. The
quantity k,(r — ry) is the phase change accompanying SHG beam propagation
from r, to r. The total SHG field observed at point r is the resultant sum

r
E2 e 801(2)E%w§ez(kzr —w2at) J el(Zkl -kz)rodro
o

i2ki—kar _ 4

. _ e
— 8‘)X(Z)Efa)%el[kzr wat] [

| m

of interfering waves generated between positions 0 (corresponding to the edge of
the medium) and r. The wave vectors k,, k, are related to the fundamental and
SHG frequencies w,, w, by

k, = no,/c (11.23)

and
k, = n,w,/c = 2n,w,/c (11.24)
where n,, n, are the refractive indices of the medium at frequencies w,, w,. Since
most materials are dispersive (n, # n,), one ordinarily finds 2k; — k, # 0.

Hence the SHG amplitude will oscillate as exp[i(2k; — k,)r] — 1, with
periodicity

I = n/|2k, — k| (11.25)
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along the optical path. This oscillation, caused by interference between SHG
waves generated at different points along the path, severely limits the attainable
SHG intensity unless special provisions are made to achieve the index-matching
condition 2k; — k, = 0. The distance [, called the coherence length, is typically
several wavelengths in ordinary condensed media.

In an index-matched medium, the coherence length becomes infinite, and
complete conversion of fundamental into second harmonic becomes theoretical-
ly possible. Index matching is not possible in isotropic media with normal
dispersion, where n, > n,. (In dilute isotropic media, the molecular polariza-
bility « is proportional to (n?> — 1) according to the Clausius-Masotti equation.
It is apparent from Eq. 10.31 that the frequency-dependent polarizability o(w)
increases when the optical frequency is increased, in the normal dispersion
regime where w is smaller than any frequency w,, for El-allowed transitions
from the ground state |0) to excited state |n) of the medium. It then follows that
n, > n, in normally dispersive media.) It is possible in principle to achieve
index-matching in anomalously dispersive isotropic media, in which w is larger
than some w,,, and in which n, is not necessarily larger than n,. However, such
media are likely to absorb prohibitively at w, (not to mention w,). Practical
index matching is instead achieved in birefringent crystals [6], in which the
refractive indices differ for the two linear polarizations and depend on the
direction of propagation. The incident laser fundamental is linearly polarized,
and the SHG emerges with orthogonal polarization. The direction of propa-
gation is adjusted by aligning the crystal in a gimbal mount so that the refractive
indices at w; and w, become equal for the respective polarizations. Large SHG
conversion efficiencies can then be obtained.

Still another criterion for an SHG medium is implicit in Eq. 11.18, where the
presence of the nonzero second-order nonlinear susceptibility ¥® implies that
the polarization P cannot simply change sign if the electric field E is reversed in
direction. (The inclusion of only odd-order terms varying as E, E*, E5, ... in P
would ensure that P(—E) = —P(E).) Hence SHG is impossible in any medium
for which reversing E produces an equal but opposite polarization P. Such
media include isotropic media (liquids, gases) and crystals belonging to
centrosymmetric space groups. For these materials, ‘2 vanishes by symmetry.
By way of contrast, efficient third-harmonic generation is possible in isotropic
media, and was demonstrated many years ago in Na vapor. A common SHG
crystal for frequency-doubling Nd**:YAG lasers is potassium dihydrogen
phosphate (KDP), which belongs to the noncentrosymmetric space group 42m.

11.3 COHERENT ANTI-STOKES RAMAN SCATTERING

Coherent anti-Stokes Raman scattering (CARS) is one of several four-photon
optical phenomena that can occur when a sample is exposed to two intense laser
beams with frequencies w,, ®,. Some of the other phenomena, two of which are
shown in Fig. 11.4, are the harmonic generation and frequency-summing
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Figure 11.4 Energy level diagrams for third-harmonic  generation
w,+w, +w, ->3w, (left) and frequency summing w, +w, + W, » 2w, + w,)
(right), two of the four-photon processes which are possible in a material subjected
to two intense beams at frequencies w, and w,.

processes which yield the scattered frequencies 3w,, 20, + w,, ®; + 2w,, and
3w,. In CARS, two photons of frequency w, are absorbed, one photon of
frequency w, is scattered via stimulated emission, and a photon at the new
frequency w; = 2w, — w, is coherently scattered (Fig. 11.5). It is apparent in
this figure that when the frequency difference w, — w, is tuned to match a
molecular vibrational/rotational energy level difference, w; becomes identical
with an anti-Stokes frequency in the conventional Raman spectrum excited by a
laser at w,. In this special case (called resonant CARS), the scattered intensity at
w5 exceeds typical intensities of Stokes bands in ordinary Raman scattering by

iRty U i
T } l& _______ Sp——
SR T Sk s R ST
Y| “2 “ 1“3 )| w2 Y |93
syoctodobe o
[o
Nonresonant Resonant
CARS CARS

Figure 11.5 Energy level diagrams for nonresonant CARS and resonant CARS.
The latter case occurs when (w, —w,) matches some molecular energy level
difference £, - E,,.
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several orders of magnitude. Resonant CARS thus offers greater sensitivity and
improved spectral resolution over conventional Raman spectroscopy.

As a first step in deriving expressions for CARS transition probabilities, we
list in Fig. 11.6 the 12 time-ordered graphs corresponding to absorption of two
photons at @, and scattering of photons at w,, w;. Using the diagrammatic
techniques introduced in Section 11.1, we immediately get for the CARS
contribution to the fourth-order coefficient in the time-dependent perturbation
expansion (1.96)

2ng*

CCARS(0) = — [ og%gp%pn%no
(2mc)4 'lzpq (woq -, + zwl)(wop + 20)1)(@0" + (.01)

%0g%gp% pn%no

(a)oq — 3 + 2601)(0)0p + zwl)(wan + (1)1)

%og%qp%pn%no

(woq — W, + 2w1)(wop — @, + wl)(wan + wl)

aOlla‘IPaP"a"o

(0o — 03 + 20 N@,p, — W3 + @1 )@,, + @)

+ aoq&qpapnano
(woq — wW; — g3 + wl)(wop — @, + wl)(won + (,()1)
+ aaqaqpapnano
(wo‘l — W, _’w3 + wl)(wop — W3 + wl)(won + a)l)
&oqaqpap"&'m
(woq + 2(01 - wZ)(a)op + Wy — wz)(won - wz)
aaqaqpap"&"a
(Cl)aq + 2CUl - w3)(wop + wy — 603)((1)0,, - (1)3)
a"q&‘“’al’"a”o
(Woq — W3 + W1 — W)W, + ©1 — W) (We, — @)
ao‘l&qpapﬂam’
(Cqu — @ + (2 w3)(wap + @y — 0)3)((00,, - (1)3)
+ ao‘laqpap"am’
(woq + w; — W3 — (1)2)(600‘, — W3 — a)Z)(won - (02)
%% p® ol
+ A AT ] (11.26)
(woq + Wy — Wy — (03)((,001, — Wy — 6()3)(600,, - CU3)

This coefficient is proportional to the third-order nonlinear susceptibility
responsible for CARS. It may be simplified somewhat by defining
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Figure 11.6 The 12 time-ordered graphs that can be drawn for CARS with two
incident photons at frequency w, and scattered photons at frequencies w, and w,.
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A4 =w; — w, = w3 — ;. In the E1 approximation, repeated application of the
identity 2w, — w, — w3 = 0 then leads to

LM _ =3 Y (u3" g + w3 g
50| 2@oq + 3@, + 20, Y @on + 1)
N (13" + " P b p s
2(woq + wZ)(wop + 2a)l)(a)on + wl) (woq + Cl)3)(COop + A)(a)an + wl)
+ Wl W kil
(woq + wZ)(wop - A)(won + (1)1) (woq - wl)(wop + A)(won + wl)
KGRt ud® bR
(woq - wl)(wop - A)(won + wl) (woq + wS)(wop + A)(a)on - wZ)
"R M HPpp
(woq + wz)(wop - A)(won - CO3) (waq - C01)(60011 + A)(won - 602)
WG g M P + pfud®)

(waq — wl)(wop - A)(won - 603) 2((00q - 601)((,00‘, - 2(01)((1)0,, - wz)

P + ) ]
2(woq - wl)(wop - 26()l)(a)on - w3)

(11.27)

where we have used the abbreviation u" = {o|y|n)> and similarly throughout.
The terms in Eq. 11.27 have been listed in the same order as the graphs (a)—(1) in
Fig. 11.6. When the frequencies w,, w, are tunéd so that h(w; — w,) = hA
matches some molecular energy level difference E, — E, (Fig. 11.5), the terms in
x5a> proportional to (w,, + 4)~ ! become large. These terms, which correspond
to graphs (c), (¢), (g), and (i), are responsible for the resonant CARS phenomenon:
When the laser frequency w, is swept across the resonance condition
h(w, — w,) = E, — E, while w, is held fixed, the CARS intensity peaks sharply
at the value of w, at which Stokes Raman scattering off the laser frequency w,
would be observed. The remaining (nonresonant) terms in
x5k contribute a weak background intensity which varies little with w,. It

may be shown that the total scattering intensity at w; is [4]

IiI,k3N* ; 3 i o) CARS)2
I; = Z IEi(w3)Ej(wI)Ek(wZ)El(wl)Xijkl (11.28)

161[28862 ijkl

Here I,, I, are the incident light intensities at w,, w,; N is number of scattering
molecules; E;(w;) is the projection of the unit electric field vector at frequency w,
along Cartesian axis i, and similarly for E;(w,), etc; and y5ar is averaged over
the molecular orientational distribution. The intensity is proportional to the
square of both the number of scattering centers and the third-order nonlinear
susceptibility.
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Generation of a CARS signal requires that the momentum conservation
condition

2k, =k, + ki (11.29)

be satisfied for the incoming and scattered photons. The magnitude k; of each
wave vector is given by n,w;/c, where n; is the sample medium’s refractive index
at frequency w;. In dilute gases, where the refractive index dispersion is low (i.e.,
n; is relatively insensitive to w,), one automatically satisfies (11.29) by using a
collinear beam geometry in which all three wave vectors are parallel. The
refractive indices depend appreciably on the frequencies w; in liquids, however.
In this case, index matching may be achieved by crossing the incident beams at
an angle 6 which achieves momentum conservation (Fig. 11.7). From the law of
cosines, the required angle 0 is given by

ak? — k3 + k3
4k k,

2 20,2 2 202 2
_ 4w,0,n3 — 4oi(n3 — nj) — w3(n3 — n3)
4w,w,nn,

cos 0 =

(11.30)

Owing to this momentum conservation, the CARS signal with wave vector kj is
directionally concentrated in a laser beam with a divergence of typically 10~
steradians. This contrasts with conventional Raman spectroscopy, in which the
signal is dispersed over 47 steradians. CARS is thus an advantageous technique
for studying vibrational transitions in samples where the scattered signal of
interest is accompanied by fluorescence background, a problem frequently
encountered in biological systems. Its directional selectivity, combined with the
intensity enhancement encountered in resonant CARS, renders it sensitive
enough to detect gases at pressures down to ~ 10~ !%atm. Disadvantages of
CARS include the need for a tunable laser to sweep w, (a single-wavelength laser
suffices in conventional Raman spectroscopy), and the sensitive alignments
required for momentum conservation in condensed samples. The ultimate

Figure 11.7 Index-matching geometry for conservation of photon momentum in
CARS, 2k, =k, +k,. The experimental angle between the laser beams at freq-
uencies w, and w, must be adjusted to the value 6 given in Eq. 11.30 for observation
of CARS; the scattered anti-Stokes signal emerges in the well-defined direction /E;
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Figure 11.8 Vibrational Q-branch CARS spectrum of a'A,0, produced by O,
photodissociation at 266 nm. The bands originating from v’ =0, 1, 2, and 3 are
centered at 1473, 1450, 1428, and 1403 cm ™", respectively. Fine structure arises
from rotational transitions with AJ=0. Reproduced by permission from J. J.
Valentini, D. P. Gerrity, D. L. Phillips, J. C. Nieh, and K. D. Tabor, J. Chem. Phys. 86;

6745 (1987).

limitation on CARS sensitivity is imposed by background scattering arising
from the nonresonant terms in Eq. 11.27.

An example of CARS detection of molecules at low densities is given in Fig,
11.8, which shows the CARS spectrum of a'A, O, molecules created by
photolysis of ozone [7],

0, 8 0,('A,) + O(*P)

The ozone is photolyzed by a 266-nm (near ultraviolet) laser pulse. The fixed
pump frequency w, for CARS detection of the nascent O, molecules is provided
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by 532-nm second-harmonic pulses from a Nd: YAG laser. Tunable pulses (572
578 nm) from a dye laser provide the variable probe frequency w,. The Raman
shift A =w; — w, is plotted as the horizontal coordinate in Fig. 11.8. The
CARS transitions (which obey the selection rules Av = 1, AJ = 0 between states
lo) and |p)) originate from vibrational levels v” = 0 through 4 in a'A, excited
state O, molecules produced in the photodissociation. The rotational Q-branch
lines appear at different frequencies for different J owing to differences in B”, B’
for the lower and upper vibrational levels in each CARS transition. The line
intensities may be analyzed to yield the rotational/vibrational state populations
in the O, protofragments, which reflect on the dynamics of the photodis-
sociation process. (CARS line intensities are not proportional to state popula-
tions (cf. Eq. 11.28); peak intensities for transitions connecting levels (v" J”) and
(v, J') vary as [N(v", J") — N(v', J')]%.) The alternations in CARS rotational line
intensities shown in Fig. 11.8 are not a consequence of nuclear spin statistics in
160,, since a'A,; O, (unlike X*Z; O,, Section 4.6) can exist in either even- or
odd-J levels. Rather, they indicate a propensity for selective O; photodis-
sociation into even J levels. Measurement of these state populations by
conventional Raman spectroscopy is not feasible, since the initial O pressure is
only 1 torr. Laser-induced fluorescence (in which the photofragment molecules
are excited to a higher electronic state, and the resulting rotationally resolved
fluorescence band intensities are analyzed to determine the state populations) is
more sensitive than CARS. However, this technique requires an El-accessible
electronic state that can be reached by a tunable laser. There is no such state in
O,, which begins to absorb strongly only in the vacuum UV. Hence, this
example illustrates the generality as well as sensitivity of CARS.
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Appendix A

FUNDAMENTAL CONSTANTS

Atomic mass unit
Electron rest mass
Proton rest mass
Elementary charge
Speed of light
Permittivity of vacuum
Permeability of vacuum
Planck’s constant

Free electron g factor
Rydberg constant
Bohr radius

Fine structure constant
Avogadro’s number
Boltzmann constant

amu = 1.6605655 x 10727 kg .
m, = 9.109534 x 10731 kg
m, = 1.6726485 x 10727 kg
e = 1.6021892 x 10~ *? coulomb (C)
¢ = 299792458 x 108 m/s
6o = 8.85418782 x 10~12 C/J-m
Uo = 1.2566370614 x 10~ ¢ henry/m
h=6.626176 x 10734 J-s
h = 10545887 x 10734J-s
g. = 2.00231931
R =1.0973731 x 10° cm ™!
a, = 0.52917706 x 10~ m
o = 1/137.03604
N, = 6.022045 x 10?3/mol
k = 1.380662 x 10”23 J/K

Data taken from E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2: 663 (1973).
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Appendix B

ENERGY CONVERSION
FACTORS

1J=0624146 x 10'8 eV
= 5.03404 x 10*2 cm™!
= 1.43834 x 10?3 cal/mol

1eV=160219 x 107 1°]
= 8065.48 cm !
= 2.30450 x 10* cal/mol

1em™! =1.98648 x 10723 ]
= 123985 x 10~ % eV
= 2.85724 cal/mol

1 cal/mol = 6.95246 x 10724 ]
=4.33934 x 1073 eV
=3.49989 x 10 ' cm™!

lerg=10""1]
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Appendix C

MULTIPOLE EXPANSIONS OF
CHARGE DISTRIBUTIONS

The general problem is to evaluate the electrostatic potential ¢(r) at some point
r due to the presence of a molecular charge distribution p(r). According to
classical electrostatics, it is given in SI units by

1 p(rdr’
4re, | r— 1|

o(r) =

(C.1)

In consequence of the identity (J. D. Jackson, Classical Electrodynamics, Wiley,
New York, 1962)

1
Ir—r]

1

] ]
4n Y Y st VO 9)Yn(6, 9) (&%)

the charge distribution ¢(r) may be expressed as

1 1 Y0,
W= T [ f Y50, ¢')r"p(r')dr'] W e

wherer=(r, 0, ¢), ¥ = (v, 0', ¢'), and r (r.) is the greater (lesser) of r and r'.
Equation C.3 is the well-known multipole expansion of the electrostatic potential
¢(r). It is particularly useful for evaluating the electrostatic potential at distances
r which are large compared to the distances r’ over which the molecular charge
distribution is appreciable (Fig. C.1). In this long-range limit, the expansion (C.2)
converges rapidly with 7., = rand r. = r. We may define the multipole moments
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r

Figure C.1

qim Of the charge distribution as

Qim = J Y30, ) px)dr’ (C4)

To appreciate the physical significance of the g,,,, we evaluate some of the lower
order moments explicitly. The moment g is

doo = J Y&o(0', ¢))p(r)dr
- ﬁ j p)Y = g/ /A 3

where g is the total molecular charge. In like manner, the moments q,, and ¢, ,

are
/3
qi0 = J Y¥or' p(r')dr = yr fr’ cos 0'p(r')dr’
3 3
= /21; fz’p(r')dr’ = /ZE e (C.6)
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i1 = J YTrp(r)dr’ = / Jr sin §'e ™ p(r')dr’
3
= - /8—(#x — i) (C.7)
n

where p,, p,, i, are the Cartesian components of the molecule’s electric dipole
moment g The multipole moment g, is

and

d20 = f Y§o"’2l’( )dr’

1 /5
=3 ,E f(3z'2 — r?)p(r')dr’ (C.8)
1 /5

where Q,, is the zz component of the molecule’s electric quadrupole moment
tensor.

Substitution of the moments back into Equation C.3 finally yields the
electrostatic potential

- 1 1 lm(g’ ¢)

(r) 8 ’Z':n l+1 rl+1
~ L (g 'r/r3+lz L P (C9)
- 47[80 1 # 2 ij Qij ? )

which transparently shows the charge, dipole, and quadrupole contributions to
¢(r). Such multipole expansions yield valuable insights into molecule—radiation
interactions and long-range intermolecular forces.






Appendix D

BEER'S LAW

Discussions of light absorption in a homogeneous sample with molar concen-
tration C and path length b are usually couched in terms of Beer’s law, which
states that the light intensity I transmitted by such a sample is related to the
incident intensity I, in a parallel light beam by

=1, ¢ (D.1)

Here o is the molar absorption coefficient, which has units of L/mol-cm.
Experimental spectroscopists often work with the decadic absorption coefficient
¢, defined by

I = 1,(10)~%¢ (D.2)

Clearly ¢ = /2.303. Absorption spectra are frequently recorded as the quantity
ebC (which is termed the absorbance or optical density) versus incident light
wavelength 4; knowledge of the absorption cell geometry and sample concen-
tration then allows extraction of the wavelength-dependent absorption coeffi-
cient g(1). Beer’s law is applicable only when the incident light intensity I, is low
enough that the molecular state populations are essentially unperturbed by it;
the redistribution of molecules into excited states by the light beam would
otherwise materially change ¢ for different photons within the beam. In addition,
Beer’s law is strictly valid only in very thin optical samples.
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Appendix E

ADDITION OF TWO
ANGULAR MOMENTA

Here we consider the nature of the angular momentum states that result from
the vector addition of two angular momenta J; and J, to form a resultant J,

J=J1 +J2 (E.l)

The Cartesian components of J; and J, obey the usual angular momentum
commutation rules

[Jixs J1,] = ihJ 4, (E.2)
[ 2xs J2,] = iy, (E3)
/1, J1:1=0 (E4)
[J3, J2.1=0 (E.5)

and the cyclic permutations x — y, y — z, z — x. Since J, and J, are independent
angular momenta, all components of J, commute with all components of J,,

[jli, flj] =0 (E6)

for all (i, j). Using the commutation rules (E.2) through (E.6), it is easy to show
that
[jxa jy] = [flx + j2x, jly + ij]
=ih(J,, + J,,) = ihJ, (E.7)
359
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and that
[J.,J21=0 (E-8)

Hence, the vector J = J, + J, itself behaves quantum mechanically like an
angular momentum. According to (E.8), it is possible to set up a complete set of
eigenstates that are simultaneously eigenstates of J2 and J,.

The question now arises as to whether such eigenstates can also be
eigenstates of J2, J2, J,,, and J,,. It follows from (E.2) through (E.8) that

[J3, /] =[J%J1=0 (E.9)
U3 71=0J3J.1=0 (E.10)
but that
[J% Jy.] = 2ih(J 1 J 5y — T2 J1y) # 0 (E.11)
[J2 J,.] = 2ih(J 3 d 1, — J 13 2,) # 0 (E.12)

Hence two possible commuting sets of observables are
I3 J1z I3, T

and
J2, 03, % J,

The eigenstates |jym,j,m,) of the first commuting set obey the eigenvalue
equations

T jimyjamyy = ji(iy + DA jimyjamy) (E.13)
f1z|j1m1j2m2> = mh|jm, j,m,) (E.14)
f§|j1m1j2m2> = j,(j, + DA?|jymyjomy> (E.15)
Taoljsmyjamyy = myhljymy jomy) (E.16)

and are referred to as the uncoupled‘ representation of the resultant angular
momentum states. Since J? does not commute with J,, or J,,, these uncoupled
states are not eigenfunctions of J2 in general, and the value of J? is indefinite.
For the second commuting set of observables, it is possible to construct a
complete set of eigenstates |j, j, jm) which simultaneously obey

T3 jrjzimy = ji(jy + DA?ljjajm) (E.17)
T3 jrjzimy = ja(jz + DA?|jyjzjm) (E.18)
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T2 jyjajmy = j(j + D2 jy jojm) (E.19)
T jrizjmy = mhlj j,jm) (E.20)

This is the coupled representation. For a given combination of j, and j,, the
possible values of the resultant angular momentum quantum number j are given
by the Clebsch-Gordan series

J=U1+i Gi+iz =1, -5 iy —Jal (E21)

(P. W. Atkins, Molecular Quantum Mechanics, 2d ed., Oxford Univ. Press,
London, 1983). For given j, the quantum number m can assume one of (2j + 1)
values ranging between +m and —m. The coupled states |j,j,jm) are not
generally eigenstates of J,, or J,, (cf. Egs. E.11, E.12) and so the values of J,,
and J,, are generally indefinite in these states.

The pictorial vector models of the uncoupled and coupled representations
(Fig. E.1) embody the physical consequences of the angular momentum
commutation rules. In the uncoupled representation, the vectors J, and J, can
lie anywhere on their respective cones with their tips on the edges of the cones.
Since these cones are invariant to rotations about the z axis, they represent

states with fixed |J| = A /j,(j; + 1) and fixed |J,| = A, /j,(j, + 1). The pro-

jections of all vectors J; on the lower cone have the definite value m,h. Since all

z

|

l -
[ |
Figure E.1 Vector models for the uncoupled representation (left) and the coupled
representation (right). J2, J,,, J2, and J,, are constants of the motion in the
uncoupled representation; J2, J2, J2, and J, are constants of the motion in the
coupled representation.
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orientations of J, on the cone are equally likely, its projections J,, and J, , along
the x and y axes are indefinite. Similar observations apply to J,: J,, is fixed,
while J,, and J,, are indefinite. Since the projections of J, and J, on the xy
plane are uncorrelated (i.e., the phases of J; and J, fluctuate independently),
neither the orientation nor magnitude of their vector sum J is a constant of the
motion in the uncoupled representation. (However, J does exhibit a definite
projection J, = J,, + J,, = (m; + m,)h along the z axis.)

In the vector model of the coupled representation, the vector J can be found
anywhere on the large cone. It exhibits fixed length |J| = . /j(j + 1) and fixed
projection J, = mh along the z axis. The individual angular momentum vectors
J; and J, have the fixed lengths 4. /j,(j; + 1) and A./j,(j, + 1), respectively.
Since their resultant |J| must also be of constant length, the coupled vector
model depicts J, and J, precessing together, head to tail, to produce a resultant
vector J of fixed length. (In quantum mechanical language, the relative phase of
J; and J, is fixed.) It is clear from the coupled vector model that the motions of
J, and J, on their respective cones do not yield fixed projections J,, and J,,
along the z axis; their sum J, = mh is, of course, definite. Such vector models
prove to be useful in discussion of the anomalous Zeeman effect in atoms
(Section 2.6) and angular momentum coupling in diatomics (Chapter 4).

Since the uncoupled states |j,m, j,m,) form a complete set of eigenstates, the
coupled states |j, j,jm) may be expressed as the linear combinations

[J1j2jm) = Z [jimyjamy><jimyjamy|jyj,jm) (E.22)

m2

where the coefficients {j,m,;j,m,|j,j,jm)> are known as the Clebsch-Gordan
coefficients. Techniques for obtaining these coefficients using the
raising/lowering operators J1 = Jy4+ + J»4 are described in Section 2.2



Appendix F

GROUP CHARACTER TABLES
AND DIRECT PRODUCTS

c, | E G
A 1 1 z, R, x2, y2, 22, xy
B 1 -1 | x,9» R, R, xz, yz
C; | E C, C? & = exp(2mi/3)
A 1 1 1 z, R, x% +y?, 22
g |1 e & | { (%) (xz, yz)
1 & (R, R) (x> — y2, xy)
C, E C, C,y C3
A 1 1 1 1| zZR, | x4y 2
B 1 1 -1 -1 x2 — y%, xy
1 —1 i —i (x, y)
E {1 1 - i {(Rx, R)| %72
Cs E Cs C? C} (or4 & = exp(2ni/5)
Al 1 1 1 1 1 2 R, X2 4y, 2
, 1 € & g e* (x, ¥)
E {1 84 83 82 e {(Rxa Ry) (XZ, yz)
1 & e* € & 2
E {1 &3 e &4 &2 (x* —y%, xy)
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A 1 1 1 1 z, R, x? +y% 22
B 1 —1 1 —1 1 —1
, 1 € g2 & &t & X,
E {1 85 84 83 82 e {(Rf J;g ) (XZ, yz)
x> Ny
Y &2 &t 1 g2 et
E {1 & &2 1 pe &2 (x* — ¥ xy)
D, ' E G o G | ‘
A, 1 1 1 1 x2, y2, 22
B, 1 -1 - z R, xy
B, 1 —1 1 — ¥, R, Xz
B, 1 —1 —1 1 x, R, yz
D, E 2¢, 3G
A, 1 1 z, R, x? +y?, 22
A, 1 1 -
E 2 —1 0 (%, ») { (xz, yz)
{(Rx’ Ry) (x2 - yza x)’)
D, | E C, 20, 20, 2C
A, 1 1 1 1 1 x? +'y?, 22
A, 1 1 1t -1 -1 ]| zR,
B, 1 1 -1 1 -1 x? —y?
B, 1 1 —1 -1 1 xy
(x, y)
E 2 -2 0 0 0 { (xz, yz)
(R4, R,)
Ds | E 2C, 2C2 5C, ¢ =21/5
A, 1 1 1 x? + y?, 22
A, 1 1 1 - Z R,
(x, y)
E, 2 2 cos ¢ 2 cos 2¢ { (xz, yz)
(Rx, Ry)
E, 2 2cos2¢  2cos 4¢ 0 (x? — y?, xy)
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D | E C, 2¢, 2c, 3C, 3C,
A, 1 1 1 1 x2 + y% 22
A, | 1 T 1 1 -1 - 2 R,
B, 1 -1 1 —1 —
B, 1 -1 1 -1 —1
x, y)
E 2 -2 —1 1 0
1 {(Rx’ R) (xz, yz)
E, 2 2 -1 -1 0 (x? — y?, xy)
C2v E CZ(Z) Oy 0’:1 |
A, 1 1 1 1 z x2, y2, 22
A, 1 1 -1 -1 R, xy
B, 1 -1 1 -1 x, R, xz
B, 1 -1 —1 1 y, R, yz
¢, | E  2¢, 3o,
A, 1 1 1 z x? + y2, 22
A, 1 1 -1 R,
2 _ 2
E 5 1 0 { (x, ¥) {(x 2 xy)
(R4, Ry) (xz, yz)
Cap E C, 2C, 20, 20,
A, 1 1 1 1 z x? + y?%, 2%
A, 1 1 1 -1 — R,
B, 1 1 —1 1 — x2 — y?
B, 1 1 -1 —1 Xy
x, »
E 2 -2 0 0 0 (xz, yz)
{(Rxa R,
Cs, E 2C; 2C2 50, ¢ =2n/5
A, 1 1 1 1 z x? + )%, 22
A, 1 1 1 —1 R,
(x, ¥)
E,; 2 2 cos ¢ 2 cos 2¢ 0 { (R, R,) (xz, yz)
E, 2 2cos2¢  2cos 4¢ 0 (x? = y2, xy)
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Cs, E C, 2C;  2C4 30, 30,
A, 1 1 1 1 1 1 z x2 +y? 22
A, 1 1 1 1 -1 -1 R,
B, 1 -1 1 -1 -1 1
B, 1 —1 1 —1 1 -1
(*, y)
E 2 -2 -1 1 0 0 g
1 {(Rx’ R) (xz, yz)
E, 2 2 -1 -1 0 0 (x® = y%, xy)
Cun E Oh | \
A 1 1 | x, 5 R, | x%y% 2% xy
A" 1 — R.,R,z xz, yz
C2h E Cz Oy i
A, 1 1 1 R, x%, y2, 22, xy
A, 1 1 — -1 z
B, 1 -1 — 1 R,, R, Xz, yz
B, 1 -1 -1 X, y
C3h E C3 C% O'h S3 O’hcg &= exp(zni/3)
A1 1 1 1 1 R, X2 + 2, 22
A" 1 1 1 -1 — -1 z
1 € g2 1 € &2
E’ 2 .2
{1 &2 . | g . 6y | T =y xy)
1 € &2 -1 —& —¢
E/I
{1 82 P _1 —82 —e (Rx> Ry) (XZ, yZ)
C4h = l X C4 CSh = O.h X C5 C6h = i X C6
S, | E i |
A, 1 1 | R, R, R, | x% % 2%, xy, xz, yz
A, 1 —1 X, ), 2
S, E C, S, Si
A 1 1 1 1 R, x? +y% 22
B 1 1 —1 -1 z
E { 1 -1 i —~i (x, ) { (xz, y2)
1 -1 —i i . (R,, R) (x2 — y2, xy)
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SG = i X C3
D,, E C, 28, 2C, 20,
A, 1 1 1 1 x2 +y?, 22
A, 1 1 1 -1 — R,
B, 1 1 -1 1 —1 x2 —y?
B, 1 1 —1 —1 z xy
(x, y)
E 2 -2 0 0 0 { (xz, y2)
(R4, Ry)
D;;=ix D, D,,=ixD,
D5, E oy 2C; 28,4 3C, 30,
A 1 1 1 1 1 1 x2 + y?, z?
5 1 1 1 1 -1 -1 R,
Af 1 -1 1 —1 1 —1
A} 1 —1 1 -1 —1 1 z
E |2 2 -1 -1 0 0 x, 9 | (x* =% xy)
E” 2 -2 —1 1 0 0 (R, R)) (xz, y2)
D4h=i X D4 D5h=0'h X D5 D6h=i X D6
T E 3C, 4C, 4C5 | & = exp(2mi/3)
A 1 1 1
1 ¢ &2
E 1 &2 €
T 3 -1 0 0 {(R’" R, R.)
x, y, 2)
T; E 8C, 3C, 60, 6S,
A, 1 1 1
A, 1 1 1 —1 -1
E 2 -1 2 0
Tl 3 O _1 _1 (Rx’ Rya Rz)
Tz 3 0 _1 1 - (x, ya Z)
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O | E 8C; 13C, 6C, 6C,
A |1 1 1 1
A, | 1 1 1 -1 -1
E | 2 ~1 2 0 0 (x* —y% 322 —1r?)
RX’ R b RZ
T, | 3 0 -1 -1 1 {( » R2)
x, ¥, 2
T, | 3 0 —1 1 -1 (xy, yz, zx)
Oh = i X 0
Cowo E 2C, o,
x* 1 1 1 z x? + y%, 2%
- 1 1 -1 R,
I 2 2cos ¢ 0 | (), (R, R)| (xz,y2)
A 2 2 cos 2¢ 0 (x* — y% xy)
D..| E 2C, C, i 28, o,
D I | 1 11 1 1 x> +y? z?
DI | 1 -1 -1 -1 1 z :
c |1 1 -1 1 1 —1 R,
= |1 1 1 —1 ~1 —1
I, | 2 2cos ¢ 0 2 —2cos¢ 0] (R, R) (xz, yz)
I, | 2 2cos ¢ 0 -2 2 cos ¢ 0 (x, y)
Ay | 2 2cos2¢ O 2 2cos2¢ O (x? — y?, xy)
A, | 2 2cos2¢ 0 —2 —2cos2¢ O

A set of rules for obtaining the direct product of two irreducible represen-
tations in any point group was set down by E. B. Wilson, Jr., J. C. Decius, and P.
C. Cross in their classic book, Molecular Vibrations, McGraw-Hill, New York,
1955. The multiplication properties are as follows:

A®RA=B®B=A
A®B=B
A®E=B®E=E
A®T=BT=T
g®g=uu=g
g®u=u
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A®E1=El B®E1=E2
) A®E2=E2 B®E2=E1

For subscripts on A and B representations,

1I®1=2®2=1
1®2=2

in all groups except D, and D,,; for these,

1®2=3
2®3=1
1®3=2

In all groups except C,, C,,, Cap, Dyg, Dy, Dy, and Sy,

E1®E1=E2®E2=A1@A2@E2
E,®E, =B, ®B,®E,

In the exceptions noted above,
E®E=Al ®A2®B1@B2
In the point groups T,, 0, O,

E®T1=E®T2=T‘®T2
T1®T1=T2®T2=A1®E@T1@T2
T,T,=A,@E®T,®T,

In the linear point groups C, and D,

PIF=X L =2
TTI T =X"
FRI=X NO=I
TPRA=Z"Q®A=A
NnNn=*exz oA
ARA=Z"®T @I
NA=IN®
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Appendix G

TRANSFORMATION BETWEEN
LABORATORY-FIXED

AND CENTER-OF-MASS
COORDINATES IN A
DIATOMIC MOLECULE

The positions of the nuclei with masses M ,, My in a diatomic molecule may be

specified by the vectors R,, Ry with respect to an arbitrary space-fixed origin (cf.
Fig. 3.1). They may also be specified using the vectors

Rim = (MR, + MgRy)/(M, + My) (3.1)

R=R; —R, (3.2)

where M = (M, + Mp) is the total nuclear mass. The nuclear kinetic energy in
the diatomic molecule is

T = iM,R} + $MgR} 3.3)
Using the inverse
My
= R —_— | — .
R, =R, ( M) R G.)
M
R; =R, + (ﬁ‘) R (G.2)
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372 TRANSFORMATION IN A DIATOMIC MOLECULE
of the laboratory to center-of-mass transformation (Egs. 3.1-3.2), the kinetic

energy becomes

M
= $MRZ, + 3uyR? (G3)

My 2'2 1 M, 2‘2
=%MAR3m+%MBR3m+%MA — | R* +3Mjy ﬁ R

where puy = M,Mg/(M, + My) is the nuclear reduced mass of the diatomic
molecule. The first term in the kinetic energy is associated with translation of the
molecule’s center of mass. The second term 1uR? may be separated into
1uR? + 1uR?H?, representing the kinetic energies of molecular vibration
(changes in the length of the internuclear axis) and molecular rotation through
an angle § about an axis perpendicular to the molecular axis R.
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SUBJECT INDEX

Absorbance, 357
Absorption coefficient:
decadic, 357
molar, 357
Absorption spectra:
atomic, 34
diatomic electronic, 108
far-infrared, rotational, 74-75, 8587
near-infrared, vibrational —rotational, 7677
Acetylene, see C,H, (acetylene)
Acridine dyes, 294
Allowed transitions, 22
Angular momentum:
diatomic rigid rotor, 83-104
orbital, 25, 37
rigid rotor, 166—176
body-fixed, 167, 170-172
spaced-fixed, 170-172
spin, 45
vibrational, 211
Angular momentum coupling:
atoms, 47-51, 58—62
diatomics, 141-146
Anharmonic oscillator, 100
Aniline, see C¢HsNH, (aniline)
Anthracene, see C,,H,,
Anti-Stokes Raman transitions, 309, 329, 332
Ar atom, 10
Ar,, 86, 94
Aufban principle, 58
Avoided crossing, 82. See also Noncrossing rule
Axial modes, 297-303

B,, 131, 132
Balmer series, 34-35

Bandhead, 108, 153

BaO, 86, 94

Be,, 131-132

Beer’s law, 284, 326, 357

Benzene, see CsHg (benzene)

BF;, 209

Birge—Sponer extrapolation, 101-102

Blackbody distribution, see Planck blackbody
distribution

Born—Oppenheimer approximation, 77-83

Born-Oppenheimer states, 79, 250-260, 322

Born-Oppenheimer theory of vibronic coupling,
245-249

Bosons, 149

C atom, 149
C,, 131-132
CARS (Coherent Anti-Stokes Raman scattering),
341-348

momentum conservation, 346

resonant, 342
Cascading, 287
Center-of-mass coordinates, 74, 371
Centrifugal distortion, 98—-100
Centrifugal potential, 87
CH radical, 218
C,H, (acetylene), 203-207, 209, 329~-330
C,H, (ethylene), 264
Ce¢Hg (benzene), 217-218, 242-245, 249-250,

259, 265, 318

C,0Hs (naphthalene), 218, 225, 239-242
C,4H,, (anthracene), 218
C,sH,, (tetracene), 263
CH,C1, 7, 179-180
Chemiluminescence, 33

375
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C¢H,F,, 307-309, 324-325

C¢H;N; (s-triazine), 263

C¢H;sNH, (aniline), 235-245

CH,0 (formaldehyde), 165, 261

Clebsch—Gordan coefficients, 47, 362

Clebsch—Gordan series, 361

C1F;, 199-203

CO, 7, 86, 94, 282

CO,, 210-213, 231, 264

Coherence length, 341

Combination levels, 208

Configurational interaction, 57, 135

Correlation of diatomic and electronic states,
113-121

Correlation error, 55

Correlation functions, see Electric dipole
correlation functions

Coulomb gauge, 13

Coulomb integral, 125, 164

Coumarin dyes, 294295

Coupled representation, 46, 361

Creation operator, 91

Cross sections:

absorption, 327
Raman scattering, 327-328
Cs atom, 10
CS,, 221, 231

A states, 113 ‘

Density of states, 258260

Deslandres analysis, 141, 163

Destruction operator, 91

Diagrammatic perturbation theory, 334-338

Diffuse series, 35, 36

o-Difluorobenzene, see C¢H,F,

Dipole moment, see Electric dipole moment;

Magnetic dipole moment

Dirac delta function, 27, 268
“energy-conserving”, 27
integral representation, 27

Dissociation energy, 101

Doppler broadening, 273 -274

Doppler-free spectroscopy, 275, 315-321

A=doubling, 143

Dyson series, 23

Effective vibrational potential, 87
Einstein coefficients, 275
Electric dipole correlation functions, 267,
281-282
Electric dipole moment, 2, 355
induced, 7
instantaneous, 7
permanent, 7

Electric dipole (El) transitions, 22, 26
Electric field, 3

Electric quadrupole (E2) transitions, 22, 26
Electric susceptibility tensor, 331
Electromagnetic spectrum, 34
Electronic—rotational interactions, 143
Electrostatic potential, 3

Emission spectra, atomic, 33-36
Eosin, 293

Etalon, 299-300

Ethylene, see C,H,

Euler angles, 170-171

Exchange integral, 125, 164

F,, 129, 131

Fermions, 149

Fermi resonance, 220

FG matrix method, 196

Figure axis, 169

Fine structure constant, 72

Fluorescein, 293

Fluorescence excitation spectra:
aromatic hydrocarbons, 236-237, 240-241
diatomic, 108-109

Fluorescence spectra, diatomic, 105-109

FNO, 182

Forbidden transitions, 22

Force constant, 88

Force constant matrix, 195

Formaldehyde, see CH,O

Franck—Condon factor, 137

Fundamental series, 35-36

Gauge transformation, 13
Gaussian lineshape, 273
Gaussian type orbitals (GTOs), 135
Generalized coordinates, 14, 192
g-factor, 44
G (kinetic energy) matrix, 196
Golden rule, 268
Grotrian diagrams:

He atom, 63

Hg atom, 64

K atom, 43

Na atom, 50

H atom, 10, 29, 34-35, 41, 149
H,, 86, 94, 149
H,*, 122-127, 130-131
Hamiltonian:
classical, 15
molecules in radiation field, 17
quantum mechanical:
diatomic electronic, 122-123



diatomic molecule, 78
diatomic rigid rotor, 83
diatomic vibrational, 87
harmonic oscillator, 89, 90
hydrogenlike atom, 36
many-electron atoms, 51
molecule in radiation field, 17
polyatomic molecule, 251
polyatomic vibrational, 197
rigid rotor (nonlinear):
oblate top, 170
prolate top, 170
spherical top, 169
Harmonic approximation, 185
Hartree—Fock equation, 56, 134
HBr, 7
HCl, 7, 74-77, 86, 93-94, 97, 100
HCN, 221
He atom, 10, 52-58, 63, 149
Heisenberg representation, 269-270
Herzberg diagrams, 147155
Herzberg—Teller theory of vibronic coupling,
245-249
HF, 86
Hg atom, 35-36, 64
H,0, 7
Homogeneous broadening, 273
Homogeneous wave equation, 30, 339
Hot bands, 210
Hund’s coupling cases, 141-146
Hund’s rule, 61
Hyperfine structure, 317
Hyper-Raman scattering, 336

I,, 86, 94, 99-100, 116-117, 145, 153, 161, 280
IC1, 86-87, 93-94, 154-155

Index-matching, 341

Inhomogeneous broadening, 274
Intensity-borrowing, 247

Internal conversion (IC), 249-250

Internal coordinates, 194

Intersystem crossing (ISC), 249-250

jj-coupling, 61
K atom, 10, 35-36, 43

A, 14

A-doubling, 143

Laboratory coordinates, 74, 371
Lagrangian equations, 14, 186
Lagrangian function, 14, 186
Landé g factor, 70

Landé interval rule, 47
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Laporte selection rule, 139
“Large-molecule” behavior, 249, 260
Laser cavity, 285
Lasers:
argon ion, 286, 291, 303
CO,, 333
dye, 291, 320
He/Ne, 286, 287-297
krypton ion, 105
N,, 161, 320
Nd3*:YAG, 287, 291, 303, 333, 338
LCAO-MO, 122-136,
Li atom, 10
Li,, 131-132
Li,*, 131-132
Lifetime broadening, 27, 271-273
Lineshape function, 269
Local modes, 218-220
Longitudinal modes, see Axial modes
Lorentz force, 16
Lorentzian lineshape, 272
Loss coefficient, 285
Lyman series, 34-35
Lyot plate, 296297

Magnetic dipole moment, 26
Magnetic dipole (M1) transition, 26
Mass-weighted coordinates, 185
Maxwell’s equations, 11
MCSCEF calculation, 135
Metastable states, 42, 288
Microwave spectroscopy, 178180
Stark-modulated, 179
Minimal basis set, 135
Mode-locking, 301-303
acoustooptic, 303
passive, 303
Molecular orbital, 134
Molecule-fixed coordinates, 146
Morse potential, 100
Multipole expansion, 3, 353-355

Na atom, 10, 50, 149, 316318

N atom, 10, 149

Na,, 86, 94, 105 ff, 120-121, 151-153, 155, 158,
249

NaCl, 86, 94

NaH, 86, 94, 100, 114-116

Naphthalene, see C,,Hg

Ne atom, 10

NF;, 179

NH,, 182

NO, 86, 94, 154

NO,, 7, 231
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Noncrossing rule, 62, 82 Li,, 121
Nonlinear susceptibility, 333 N2, N, N;7, 160
Normal coordinates, 191-194 Na,, 97, 107, 121, 158
symmetry classification, 198—207 NaH, 116
N,, 86, 94, 131-132, 160 0,, 0,*, 0,7, 159
N,*, 160-161 Preston’s law, 70
N,", 160-161 Principal rotational axes, 167
Nuclear exchange symmetry, 148 Principal series, 35-36
Nuclear spin angular momentum, 148, 317 Progressions, 233
Nuclear spin statistics, 149
Number operator, 92 Q-branch, 95
Quadrupole moment, electric, 4, 355
Q, 115 Quantum yield, fluorescence, 279
O atom, 10, 149
OCsS, 182, 231 Racah notation, 290
Octupole moment, electric, 4 Radiationless relaxation, 249-260
OH, 86, 94 Raman spectroscopy, 321-333
One-photon processes, 22-28 Rayleigh scattering, 328, 332
Optical density, 357 R-branch, 95
Oscillator strengths, 277-280 Recurrence time, 259
0,, 86, 94, 131-132, 134, 149, 159, 161 Reduced mass:
0,*, 159, 161 atomic, 36
0,7, 159, 161 nuclear, 74
0,, 231, 347-348 Resonance Raman scattering, 325
Overlap integral, 123, 164 time-resolved, 326
Overtone levels, 208 Rhodamine 6G, 280, 281
Overtone transitions, 93 Ritz combination principle, 27
Oxazine dyes, 294 Ritz—Paschen series, 34-35
Rotational constants:
IT states, 113 diatomic, 84
Pair coupling, 288 polyatomic, 168
Parallel bands, 139, 213 Rotational contours, 108109, 237-238
P-branch, 95 Rotational inertia tensor, 166
PCl1;, 181-182 Rovibrational structure, 105
Perpendicular bands, 139, 213 Russell—Saunders coupling, 59
Perturbation theory: Rydberg—Klein—Rees calculations, 156161
stationary-state, 6
time-dependent, 17-22 T, 114
PF;, 181-182 Scalar potential, 3, 11
Pfund series, 34-35 Schrodinger equation:
Phenolphthalein, 293 time-dependent, 5
Phosphorescence, 250 time-independent, 5
Planck blackbody distribution, 276 Schrodinger representation, 269
Polarizability, electric: Second harmonic generation (SHG), 333, 338341
dynamic, 323 Second quantization, 90
static, 7, 10 Selection rules:
Polarization, 331 El, M1, E2, 28
Population inversion, 284287 electronic transitions:
Potential energy curves: alkali atoms, 42, 51
alkali halide MX, 80-81 diatomic molecules, 136138, 139-140
H,', 123 rotational fine structure, 146-155
harmonic oscillator, 88 vibrational bands, 137-138

I, 117 hydrogenlike atorhs, 40, 51



many-electron atoms, 65
pure rotational transitions:
diatomic, 84
polyatomic, 176178
vibrational transitions:
diatomic, 93
. polyatomic, 208213
Raman, 323
vibration-rotation transitions:
diatomic;. 94
polyatomic;213-22
Self-consistent field, 56, 134-135
Sharp series, 35-36
SI (International Standard) units, 11
Slater determinant, 55
Slater diagram, 60
Slater-type orbitals (STOs), 53, 135
S0,, 231
Sommerfeld condition, 156
Space-fixed coordinates, 146
Spherical top, 168
Spin-orbit coupling:
atoms, 43
diatomics, 78, 8283, 115, 120, 141
Spontaneous emission, 275
X states, 133
¢ states, 113
Stimulated emission, 275-276
Stokes Raman transition, 308, 332
s-Triazine, see C¢H;N;
Sudden approximation, 31
Sum frequency generation, 336
Sum rule, 138
Supersonic jets, 108-109, 141, 241, 275
Symmetric product representations, 209
Symmetric top:
accidental, 169
oblate, 168, 173188
prolate, 168, 174—188 .
Symmetry-adapted linear combinations (SALCs),
228-234

SUBJECT INDEX

Symmetry coordinates, 201

Term symbols:
atoms, 47
diatomic, 113
Tetracene, see C,sH,,
Third harmonic generation, 333
Three-photon absorption, 335

“Time—energy uncertainty principle”, 27

Time-ordered graphs, 311-313
Triplet—triplet absorption, 292
Turning points, classical, 156—158
Two-photon absorption, 313-321
Two-photon emission, 311-313
Two-photon processes, 22, 309-313

Uncoupled representation, 45, 360

Variational theorem, 52

Vector models for coupled and uncoupled

representations, 361
Vector operators, 177
Vector potential, 11
Vibronic coupling, 233, 241, 244-245
quantitative theories, 245
Virtual states, 311-312
Voigt lineshape, 274

Walsh’s rules, 231
Wavefunctions:
diatomic rigid rotor, 84
harmonic oscillator, 89
hydrogenlike, 37-39
polyatomic vibrational, 197
symmetric top, 173

Xanthene dyes, 294
Zeeman effect:

anomalous, 67-71
normal, 66
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