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ABSTRACT
Providing an intuitive modeling system, which would enable us to communicate about any

free-form shape we have in mind at least as quickly as with real-world tools, is one of the

main challenges of digital shape design. The user should ideally be able to create, deform,

and progressively add details to a shape, without being aware of the underlying mathematical

representation nor being tied by any constraint on the geometrical or topological nature of the

model.

This book presents the field of interactive shape design from this perspective. Since

interactively creating a shape builds on the humans ability of modeling by gesture, we note that

the recent advances in interactive shape design can be classified as those that rely on sculpting

as opposed to sketching metaphors. Our synthetic presentation of these strategies enables us

to compare the different families of solutions, discuss open issues, and identify directions for

future research.

KEYWORDS
Geometric modeling, Digital shape editing, Geometric design, Surface representations,

Sculpting, Sketching



MOCL007-FM MOCL007-FM.cls August 8, 2008 9:7

vii

Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Designing Shapes in the Real World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Sculpting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

1.2.2 Sketching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 A Brief History of Shape Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Seventies: From Solid Primitives to Free-Form Surfaces . . . . . . . . . . . . . . 5

1.3.2 Eighties: Constructive Implicit Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Nineties: Subdivision and Multiresolution Surfaces . . . . . . . . . . . . . . . . . . . 9

1.3.4 Recently: Meshes Versus Meshless Representations . . . . . . . . . . . . . . . . . 10

1.4 Shape Representations versus Shape Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. Sculpting Metaphors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Background: Deforming Digital Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Model-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Space Deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Surface-Based Deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.4 Deforming versus Sculpting a Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Volumetric Sculpting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Geometric Representation for Clay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Providing a Multiresolution, Unbounded Clay Model . . . . . . . . . . . . . . . 21

2.2.3 Adding, Carving, and Smoothing Clay . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

2.2.4 User Interaction: Visual and Haptic Feedback . . . . . . . . . . . . . . . . . . . . . . 24

2.2.5 Limitation: Volumetric Clay Does Not Deform! . . . . . . . . . . . . . . . . . . . . 25

2.3 Physically based Virtual Clay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Physical Models for Clay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 A Layered Model for Virtual Clay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2.1 Large-Scale Deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



MOCL007-FM MOCL007-FM.cls August 8, 2008 9:7

viii INTERACTIVE SHAPE DESIGN

2.3.2.2 Mass Conservation Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2.3 Surface Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.3 Interacting with Virtual Clay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Sculpting with Sweepers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Sweepers: Space Deformations Controlled by Gesture . . . . . . . . . . . . . . . 33

2.4.2 Constant Volume Swirling Sweepers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

2.4.3 Vector Field–Based Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Conclusion: Where Shall we Stop Toward Virtual Clay? . . . . . . . . . . . . . . . . . . . . 37

3. Sketching Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

3.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

3.1.1 2D Depiction of 3D Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 Human Perception of the Third Dimension . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Sketching Mesh Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1.1 Creating a New Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1.2 Extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1.3 Cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1.4 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1.5 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Sketching Implicit Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.2 Extraction of a Skeleton From 2D Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.3 Construction of a Convolution Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.4 Progressive Blending and Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Sketching Optimization Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1.1 Sketching Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

3.4.1.2 Deformation Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.1.3 Rubbing Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1.4 Erasing Tool and Type Change Tool . . . . . . . . . . . . . . . . . . . . . . 59

3.4.2 Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

3.4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



MOCL007-FM MOCL007-FM.cls August 8, 2008 9:7

CONTENTS ix

3.5 Conclusion: What is the Best Representation for Sketch-Based

Modeling? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4. Future directions: Modeling by Gesture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

4.1 Modeling through Adding and Erasing Gestures . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Enabling Deformation Gestures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Toward Fast and Easy Creation of Digital Content . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Author Biography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



MOCL007-FM MOCL007-FM.cls August 8, 2008 9:7

x



MOCL007-FM MOCL007-FM.cls August 8, 2008 9:7

xi

List of figures

1.1 Shape design in the real world: these examples of clay modeling, wood carving,

and sketching show the importance of the artist’s hand gestures in the design

process. 2

1.2 Constructive solid geometry (CSG) expresses shapes from a construction tree,

which shows how they are progressively built out of solid primitives. 5

1.3 Tensor product, parametric surfaces built from a grid of control points, are not

convenient for representing branching structures, for which either n-sided

patches or smooth junctions between an arbitrary number of square patches

need to be modeled. 7

1.4 Constructive implicit surfaces are defined as isosurfaces of a scalar field

function. The last is typically a decreasing function of the distance to the

skeleton (left and middle). The most standard ones are distance surfaces (top

right), for which the contribution of skeletal elements are computed using

closest points and then summed, generating bulges at junctions. Convolution

surfaces (bottom right) avoid the problem by integrating the field contribution

along the skeleton curves or surfaces. 7

1.5 Subdivision surfaces are procedurally defined through an iterative subdivision

scheme to be applied to their control mesh. 9

1.6 Point-based, or meshless representations, rendered using oriented splats, have

proved to be a good alternative to standard mesh representations for visualizing

huge unstructured data sets. 10

1.7 Differential mesh representations enable us to change global shape attributes

while preserving surface details. 11

2.1 Space deformations warp space, deforming all the embedded objects. 16

2.2 Distance fields (left) require global edits and are discontinuous in concave

areas, while density fields (middle) are local. They can be stored in

multiresolution grids that are refined according to the tool’s shape, leading to

the easy sculpting and storage of large to fine structures (right). 21

2.3 Data structures for the virtual unbounded grid, stored in three hash tables:

nonempty cells, cells crossing the surface, and surface triangles. These three

structures are locally updated after each user edit, so rendering is real-time. 22



MOCL007-FM MOCL007-FM.cls August 8, 2008 9:7

xii INTERACTIVE SHAPE DESIGN

2.4 Sculpting tools are either analytic implicit primitives (e.g. spheres and

ellipsoids) or discrete implicit shapes sculpted within the application. 23

2.5 Using haptic feedback accelerates volumetric sculpting, since it eases the

positioning of the tools. The figure on the left (from [88]) was sculpted in 3

hours using a simple mouse, while the one on the right (from [90]) was

sculpted in 1 hour using haptic feedback. 25

2.6 A geometric solution for mimicking the local deformation produced by a rigid

tool: matter is suppressed inside the tool and added in an outside ring, forming

a bulge. 26

2.7 Global deformations such as bending and twisting are of a different nature

from local ones, since they can propagate outside of any predefined boundary of

the tool’s influence. 26

2.8 Viscous fluids have been modeled using particles surrounded by an implicit

surface (picture from [92]). 27

2.9 A layered model for virtual clay. Large-scale deformations produced by the first

layer modeling plasticity (left). Local deformations generated by the second

layer insure constant volume (middle). The third layer generates an internal

rigidity which prevents clay from spreading over space (right). 29

2.10 Comparison between real clay and Dewaele’s virtual clay. Local and global

deformations at constant volume are adequately modeled. They can be

controlled by an arbitrary number of tools. 32

2.11 Three possible interfaces for interacting with virtual clay: using a single tool,

moved in 3D using a force feedback device (left); capturing the deformations

the user applies on a real object serving as an avatar (middle); and controlling

the gestures of a virtual hand interacting with the clay (right). 32

2.12 Sweepers use the user’s translation gestures to wrap space in a foldover. Small

steps used to make the deformation foldover free (left). The user positions a

tool in intersection with a shape, the tool’s region of influence being depicted in

yellow (right): when applied and moved, the tool sweeps a part of the shape

with it while keeping it smooth. 34

2.13 Constant volume swirls (left) are placed along rings to move matter along a

translation vector defined by the user’s gesture (center). In practice, the use of

swirls is transparent to the user. He or she simply sweeps constant volume clay

by gesture (right). 35

2.14 Examples of shapes modeled from a ball of clay in a few minutes, using swirling

sweepers. 36



MOCL007-FM MOCL007-FM.cls August 8, 2008 9:7

LIST OF FIGURES xiii

3.1 Line drawing of real-world objects. 40

3.2 Silhouette rendering in object space method (left) and image space method

(right). 40

3.3 3D surface reconstructions from 2D contours. 41

3.4 Creation. 43

3.5 Extrusion. 44

3.6 Cutting. 44

3.7 Smoothing. 45

3.8 Transformation. (Red lines are reference stroke and blue lines are target

strokes.) 45

3.9 Internal representation: (a) after creation, (b) after extrusion, and (c) after

cutting. 46

3.10 Finding the skeleton: (a) initial 2D polygon, (b) result of CDT, (c) chordal

axis, (d) fan triangles, (e) resulting spline, and (f) final triangulation. 46

3.11 Polygonal mesh construction: (a) before, (b) elevate skeletons, (c) elevate edges,

and (d) sew elevated edges. 47

3.12 3D models designed by novice users. 48

3.13 Unintuitive extrusion results. 48

3.14 Progressive implicit modeling by sketching: simple implicit primitives drawn

from different viewpoints are blended using a zoom-dependent sharpness

(from [120]). 50

3.15 (a), (b) Creating a part. (c), (d), (e) Adding a part to an object. (f),(g),(h)

Carving. (i),(j),(k) Thickness control (side view). 50

3.16 Algorithm overview: (a) user strokes, (b) identification of the object

boundaries, (c) WDT transform, (d) iteratively thinning with preservation of

the CMDs, (e) iteratively thinning without preservation of the CMDs, (f)

sampling the segments, (g) sampling and triangulating the polygons, (h) final

skeleton graph, and (i) final convolution surface. 52

3.17 Objects modeled with the system. The user took 2–5 minutes for modeling

each object and used three to nine strokes, each of them modeling a different

object part. 55

3.18 Sketching operations of FiberMesh, modifying geometry. 57

3.19 Sketching operations of FiberMesh, adding control curves. 58

3.20 Pulling a curve. The deformed curve segment is determined by how much of it

the user peels off. 58

3.21 Rubbing (smoothing) a curve. 59



MOCL007-FM MOCL007-FM.cls August 8, 2008 9:7

xiv INTERACTIVE SHAPE DESIGN

3.22 Erasing a control curve: (left) before erasing, (middle) immediately after

erasing, and (right) after optimization. 59

3.23 Changing curve type: (left) before the change, (middle) immediately after the

change, and (right) after optimization. 59

3.24 3D models designed using FiberMesh. 62



MOCL007-FM MOCL007-FM.cls August 8, 2008 9:7

xv

Acknowledgments

A work of this kind depends on the cooperation of many people, students, colleagues, and

researchers who have published with us. We would like to specially thank Marc Alexa, Anca
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1

C H A P T E R 1

Introduction

1.1 INTRODUCTION
Being able to communicate about a shape is important for both professional purposes and

self-expression. However, it is not as straightforward for humans as expressing a new idea of

motion or of tune: while we can use our body to mimic motion or hum out a melody, we need

the help of an external device to express our idea of a shape.

Sculpting and sketching have been the main techniques used by humans to communicate

about shapes. In the first case, the shape is directly made out of dough, clay, wood, or soft rock.

Although most people had a chance to play with dough as children, only skilled artists are able

to create the shape they want. Even then they are constrained by the limitations and properties

of the material they have chosen to work with. Clay, for example, may dry and crack, deform

under gravity, or limit the size of the smallest representable feature.

Carrying dough or clay would be unusual in our culture, but we are likely to find paper

and pen whenever needed, so most people are more familiar with sketching. However, a sketch

will not directly communicate the shape we have in mind. We need to draw several views of

it and many if it is complicated or of an unfamiliar type. Such drawings take a great deal of

skill, and this restricts the medium to trained and experienced designers. We still lack a simple

medium for describing 3D shapes.

Can computers be turned into usable devices to communicate imagined 3D shapes? Can

digital design be enhanced to provide the public with user-friendly free-form modeling tools,

as well as enabling skilled artists to express any complex shape they can think of? These are

the questions we are addressing. Centering our analysis on the different ways to control shapes

gives us a particular and possibly unusual viewpoint of the field of digital shape modeling. It

also helps us to investigate why, despite more than 30 years of effort toward the development

of new surface representations and of algorithms to edit them, most artists first sketch or sculpt

in the real world before using a computer.
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2 INTERACTIVE SHAPE DESIGN

1.2 DESIGNING SHAPES IN THE REAL WORLD
Let us start with a quick analysis of the way free-form shapes are created in the real world. This

will give us some motivation for developing digital modeling techniques and some hints about

the users’ expectations, when they try to use such systems.

1.2.1 Sculpting
Whatever the material and the approach used, sculpting is characterized by the progressive

creation of a physical 3D model, which the user can manipulate and watch from different

viewpoints at any stage of the process. In this book, our use of the word sculpting will mainly

refer to modeling with clay or dough, as depicted in Fig. 1.1 (left). Firstly, this technique is

less technical than extracting a shape from hard material, so it is more familiar to, the public.

Secondly, it offers more choice of interaction modes. The user does not only use carving tools but

FIGURE 1.1: Shape design in the real world: these examples of clay modeling, wood carving, and

sketching show the importance of the artist’s hand gestures in the design process.
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can also extend the model by adding new chunks of clay and apply local or global deformations

at any stage. For instance, a human figure may be sculpted in a symmetrical resting pose to give

it the right proportions before being bent or twisted into a livelier posture. Note that applying

such deformations is distinct from the action of adding or removing material. Each deformation

preserves the model’s volume. Lastly, we can, to some extent, change the nature of the material

we are using: according to need, we can add some water to make the clay more fluid and the

deformations more local or wait till the clay dries a little before adjusting the surface on a larger

scale.

In the real world, sculpting techniques are limited by the constraints of the physical

medium used. This restricts their practical use in everyday life. Let us look at some of the

motivation for using an ideal virtual clay as opposed to a real one: Virtual clay would not be

affected by unwanted drying or cracking, enabling the user to pause at any time without worrying

about the material changing. The material could be made to mutate back and forth between

softer and drier states, enabling more or less local deformation. Gravity could be switched off,

so we could model thin shapes without having them collapse under their own weight. The artist

would be able to work from many directions, turning the work as easily as in the real world and

at several different scales, making the size of tools arbitrary with respect to the model’s size and

thus simplifying the production of fine details as well as of global features. Repetitive operations

such as smoothing could be made automatic. Lastly, virtual modeling would allow copy–paste

and undo–redo as well as more clay-specific operations such as temporarily removing a part of

the model to ease the editing of hard-to-reach areas.

However, let us keep in mind the main features one takes for granted when using clay:

direct interaction with the 3D model (ideally through both vision and touch), being able to

add and remove material (which includes digging holes through a shape or reconnecting parts),

applying constant volume deformations, and tuning the locality of interactions. These will be

among the user’s expectations, when he or she is offered a sculpting metaphor. This gives the

first idea of the difficulty of providing an effective virtual sculpting system. We will come back

to the advances made toward this goal in Chapter 2.

1.2.2 Sketching
In real life, the media required for sketching is very common, and this technique is somewhat

more familiar to the public than sculpting. One needs only a support surface (generally paper), a

pencil, and, ideally, an eraser to enable undo–redo operations. Unlike sculpting, sketching is an

indirect way of communicating about a shape. It relies on the sense of human perception: Since

our brain is able to interpret the 2D images captured by the eyes into 3D scenes, sketching a

shape is most often done by simply drawing a general view as opposed to a special view along

an axis or feature. This requires some kind of projection, usually a normal perspective, and a
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given mode of depiction such as a line drawing of silhouettes and contours, possibly enhanced

by some shading.

Sketching is usually, like sculpting, a progressive process, acting from coarse to fine:

The user will most often start with the largest features or even with some construction lines,

using light strokes to indicate uncertainty; then he or she will progressively refine the shapes

by oversketching the main lines and incorporating finer details. Lastly, he or she may enhance

the perception of 3D by shading the sketch.

Communicating shapes through sketches works pretty well when the sketch represents a

well-known object, easy to recognize from its silhouette (say, a tree). Then the 3D details will be

automatically inferred from the a priori knowledge humans have of such objects. The method

is also effective for simple, unknown shapes, given the principle of minimal perception [1]:

basically, humans will always perceive the simplest 3D shape that matches a sketch. However, in

the general case of a complex, unknown free-form shape, we will need to show it from several

viewpoints, raising the problem of maintaining coherency between the different views. Although

it can be done, sketching with several views is much more technical and time consuming. This

leads us to the advantages digital sketching would have, regarding the expression of imagined

3D shapes: in addition to being able to reproduce a paper–pencil–eraser interface from a given

viewpoint, it would enable us to move the camera as soon as the first simple shape is constructed.

Then, the user could observe it from different angles and progressively modify its silhouette or

add more details without any problem of correspondence between views. As in virtual sculpting,

he or she could zoom in to work on fine features and out again for a general view or to make

global changes and would expect undo–redo, copy–paste, and automatic smoothing operations.

Lastly, he or she would not need to shade the scene by hand (which requires special skills): an

appropriate rendering technique would do it automatically.

Providing a digital 2D to 3D sketching system is unfortunately at least as difficult as in

virtual sculpting: indeed, the user will take for granted that the system will reconstruct the 3D

shape he or she perceives from the sketch! This requires understanding human perception and

extracting the rules needed to infer the third dimension. We will review the different solutions

proposed so far in Chapter 3.

1.3 A BRIEF HISTORY OF SHAPE REPRESENTATIONS
Before focusing on the recent advances toward virtual sculpting and sketching, let us look at a

brief overview of digital shape modeling. We use a historical perspective to introduce the surface

representations developed in the field and discuss their contribution to free-form shape control.

Although this section gives the minimal background for understanding the following chapters,

a detailed presentation of the mathematical representations used for 3D shapes is beyond the

scope of this book. The interested reader should refer to standard texts such as [2, 3, 4].
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FIGURE 1.2: Constructive solid geometry (CSG) expresses shapes from a construction tree, which

shows how they are progressively built out of solid primitives.

1.3.1 Seventies: From Solid Primitives to Free-Form Surfaces
The early work on digital shape design did not focus on easing user interaction toward the

creation of complex shapes but rather tackled the problem of developing new shape representa-

tions. There are several reasons for that: The first users of digital shape modeling were engineers

who wanted to make the production of real pieces, usually made out of metal, more systematic

and exact, as well as to provide a straightforward link between shape design and manufacturing.

The time spent for creating the initial design of these shapes was not seen to be the problem:

the expectations in terms of user interface were low, and the advantage over sculpting physical

models was obvious.

One of the first digital representations introduced was to express shapes in terms of solid

primitives such as spheres, cylinders, and cubes, defined by their mathematical equations. More

interestingly, it enabled engineers to describe the steps needed for the manufacture of a given

shape: the geometric primitives were combined into a tree of successive operations such as

union, intersection, and difference, expressing the history of manipulations in a constructive

solid geometry (CSG) formalism [5] (Fig. 1.2). The CSG tree and the primitive’s mathematical

representations were used for ray tracing the shape, leading to a far from interactive but usable

design process: the user controlled the design through an explicit text-based description of the

shape; he or she could then visualize it from a given viewpoint, after several minutes to several

hours of computation.

Although CSG worked well for designing exact, regular shapes, it was clearly insufficient

for the field of automotive industry, where free-form surfaces were required. Car structures made

of folded pieces of metal needed some careful design before being built. Once again, a way of

mathematically expressing these shapes into a computer—after an early design phase through

real sketching and sculpting—was strongly needed: in addition to enabling previsualization,

such digital representations were required for simulating deformations under constraint forces,

one more step toward the industrial production. In this context, Pierre Bézier, a French engineer
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working for Renault, took inspiration from metal splines early to introduce Bézier curves and

surfaces [6, 7]. The use of parametric surfaces spread in the ’80s [2], when Bezier surfaces

were generalized by the introduction of B-splines, Cardinal splines, Beta-splines, and NURBS

(nonuniform rational B-Splines)—the last providing an exact representation of circles and

ellipses at the expense of a rational formulation and more user-specified parameters. These

free-form parametric representations defined tensor product surfaces1 S(u, v) through the input

of a grid of arbitrary control points. The last were either interpolated or approximated by a

smooth, parametric surface, usually defined using piecewise polynomial or rational functions

(fraction of polynomials) of (u, v). Being at least C1 or C2 (the minimal level of continuity to

get a nice, smooth shading), the spline surfaces could be sampled as precisely as necessary into

discrete, smooth-looking triangular meshes used for display.

While developing these representations, researchers discovered the benefits of local shape

control: using a series of low degree surface patches, each defined from a few of the control

points, had several benefits over embedding all the degrees of freedom into a high degree

equation. In addition to being less expensive to compute, it enabled us to deform the surface

locally, without having to redesign and recompute everything. Moreover, it was the right way

toward an intuitive modeling system, since due to the principle of minimal perception already

mentioned the user would expect to get the simplest shape defined from the control points.

Only a few contributions specifically addressed the creation or the editing of parametric

surfaces: since directly defining a grid of 3D points is difficult using 2D devices such as a mouse,

the control points were either captured from a real model or derived from simple 2D to 3D

methods such as surfaces of revolution, lofting, and sweeping techniques. Once a base shape

was created, it could be edited by moving the control points one by one, thanks to a graphical

interface providing multiple views. In standard spline-based modeling systems, refining the

surface by adding more control points in an area of interest, although possible in theory, was

not really usable, since it would add a full line or column of new control points, affecting the

locality of deformations elsewhere. Moreover, no way of changing the grid-based topology of

the control structure was provided. Due to this structure, the control points could not smoothly

represent complex geometries (e.g. branching structures such as a human hand, see Fig. 1.3)

and topologies (e.g. closed surfaces with several handles). This lead to the development of

complex, nonsquare parametric patches: Bézier and NURBS triangles; Gregory, Loops, and

Coons surfaces; and more recently T-splines [8, 9, 10]. While enabling us to design more

complex shapes, these representations were costlier, since they typically used high degree

functions with rational terms. Moreover, ensuring continuity between these complex patches,

even when solvable mathematically, often resulted in strange, nonnatural shapes (starting with

1Products of spline curves in the u and v parameters, respectively.
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FIGURE 1.3: Tensor product, parametric surfaces built from a grid of control points, are not convenient

for representing branching structures, for which either n-sided patches or smooth junctions between an

arbitrary number of square patches need to be modeled.

the continuity problem at nonregular vertices between Bézier triangles). These new parametric

representations thus mostly remained on the research side rather than becoming standards.

1.3.2 Eighties: Constructive Implicit Surfaces
Implicit surfaces were introduced in the eighties as an alternative to parametric representations,

since although smooth and compact the latter were obviously not convenient for representing

closed shapes with branches and holes or animating large deformations or topological changes.

Like spline surfaces, the first implicit surfaces introduced in computer graphics—called

blobs, metaballs or soft objects [11, 12, 13]—used control points but in a totally different way

[Fig. 1.4 (center)]. Each point generated a 3D scalar field decreasing with the distance. These

fields were summed into a global scalar field f , and the surface was defined as an isosurface of

FIGURE 1.4: Constructive implicit surfaces are defined as isosurfaces of a scalar field function. The

last is typically a decreasing function of the distance to the skeleton (left and middle). The most standard

ones are distance surfaces (top right), for which the contribution of skeletal elements are computed using

closest points and then summed, generating bulges at junctions. Convolution surfaces (bottom right)

avoid the problem by integrating the field contribution along the skeleton curves or surfaces.
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f , using the implicit definition:

S =

{

P ∈
R3

f (P )
= c

}

.

This provided several benefits: Implicit surfaces came with a built-in in/out function charac-

terizing not only the surface but also the interior volume of an object. Therefore, they correctly

defined closed surfaces with no self-intersections. The in/out function could be used directly for

ray tracing the surface or for converting it into a triangular mesh using a continuation method,

later called marching cubes [13, 14, 15]. The surface would deform in an intuitive way when the

point moved. This technique was later extended with the use of more complex implicit prim-

itives such as those generated by skeleton curves or surfaces, the design of blending operators

other than the sum and the storage of the constructive operations toward a shape within a

construction tree similar to CSG and including deformation nodes [16, 17].

Regarding user control, some local control was provided, thanks to finite-support field

contributions. However, the early implicit surfaces could not be edited in an interactive modeling

system, since they could not be displayed in real-time: extracting an isosurface—allowing one to

interactively change the viewpoint—took a few minutes and ray tracing from a single viewpoint

a few hours. So in a similar way to CSG, nice, complex models were designed using a text file to

describe the primitives and the blending operations. The first interactive modeling systems with

implicit surfaces [18,19] promoted point-based visualization techniques long before the use of

meshless representations spread in computer graphics. However, the shapes created using these

interactive techniques never reached the level of complexity of those created by describing the

implicit primitives with a text file. The reason is probably that, as the shape was interactively

constructed, the number of implicit primitives to be blended increased, so field queries were

less and less efficient, causing interactivity to be lost after a while.

As with parametric surfaces, most research work in the implicit modeling domain

addressed the improvement of the mathematical representations [20, 21]. Convolution sur-

faces [22] were introduced to avoid the unwanted bulges at junction between implicit primi-

tives [Fig. 1.4 (right)] and later generalized to analytical convolution, reducing computational

costs [23]. The addition of a topological skeleton was investigated to solve the “unwanted

blending” problem to prevent parts of the surface close in space, but far from each other along

the object’s surface, from merging [24,25]. Although the solution works for some applications,

this is still an open problem. As soon as one imposes a structure to say which primitives will

blend, one loses the underlying, attractive simplicity of the method. Also the more complicated

blending rules sometimes produce surface tangent discontinuities. As in the spline surface case,

none of these more expensive and intricate representations spread sufficiently to become a

standard.
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FIGURE 1.5: Subdivision surfaces are procedurally defined through an iterative subdivision scheme to

be applied to their control mesh.

1.3.3 Nineties: Subdivision and Multiresolution Surfaces
Multiresolution interactive modeling was first introduced in computer graphics by the early work

of Forsey and Bartels [26]: relying on standard tensor product spline surfaces, they replaced the

grid of control points by a hierarchical structure, where local grids were progressively introduced

to refine the surface with local details. By only editing the adequate control points, these local

grids stayed stitched to their parent across the borders, with the desired degree of smoothness.

Moreover, expressing the new control points in local frames attached to the parent surface

enabled editing the model at a coarser scale when necessary, without altering the details. Since

such multiresolution parametric surfaces lacked, until recently [27], the ability of represent

arbitrary topologies, the more general framework of multiresolution, subdivision surfaces was

quicker to become a standard.

Subdivision surfaces [28] can be seen as a superset of Bézier and B-splines surfaces:

they define a shape from an arbitrary control polygon of any topology (which can be a grid

of control points and also a cube or a structure with several handles). The control polygon is

progressively refined using a given subdivision scheme, leading to finer and finer representations

that either interpolate or just approximate the initial set of control points (Fig. 1.5). Most of

the early work was devoted to the design of subdivision schemes and to the study of smoothness

properties of the limit surface [29, 30, 31]. Although a subdivision surface is not parametric

in the general case, it was proved to a be spline surface around regular vertices for several of

the most standard subdivision schemes [32]. Subdivision was soon extended to more general

multiresolution curves and surfaces with the more general idea of incorporating details (through

extra point displacements) after each subdivision step [33, 34].

Multiresolution, subdivision surfaces were incorporated into standard interactive model-

ing systems—and proved very successful. Their advantages with respect to spline surfaces were

made evident by their use in several productions: Pixar switched from the use of NURBS in Toy

Story 1 to the use of subdivision surfaces in Toy Story 2 to get rid of the discontinuity problems

between spline patches. The advantages of subdivision surfaces were made even more obvious
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by the short movie Gerry’s Game where to get the desired result, the smoothing subdivision

was disabled along some of the edges to model skin wrinkles [35]. However, as spline surfaces,

subdivision surfaces only provide indirect editing through a control structure, making it difficult

to focus on the surface without being aware of the mathematical representations. Moreover,

the explicit storage of the control mesh’s topology makes it difficult to take into account topo-

logical changes such as digging holes into a shape. These have up to now restricted their use in

free-form sculpting systems.

1.3.4 Recently: Meshes Versus Meshless Representations
The free-form representations introduced so far were all defined through a limited number

of control elements (control meshes for parametric and subdivision surfaces and skeletons

for implicit models), making it possible for a user to manually define a shape from scratch

and reducing the memory storage requirements to represent a smooth shape. In parallel,

meshes attracted interest both as a final representation for models created from the previous

high-level models and as the output representation for scanned objects. In the latter case,

unorganized 3D data points were converted into a mesh using Delaunay triangulation, most

often after a denoising step. The resulting meshes were automatically faired, simplified, or

remeshed at different levels of detail, before other operations such as parameterization or

editing [36, 37, 38, 39].

Since 2000, the generalization of 3D scanners and the increase of available memory and

processing power have made it much easier to capture and process surface data captured from

existing objects. Therefore, much of the recent research effort has been put into geometry

processing and editing of huge geometric data sets rather than into the improvement of inter-

active methods for directly modeling digital shapes. The work in geometry processing led to

the emergence of several new representations.

As triangulation has become more and more intractable with the huge data sets output

by 3D scanners, the direct use of point-based, also called meshless, representations has been

FIGURE 1.6: Point-based, or meshless representations, rendered using oriented splats, have proved to

be a good alternative to standard mesh representations for visualizing huge unstructured data sets.
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FIGURE 1.7: Differential mesh representations enable us to change global shape attributes while

preserving surface details.

explored (Fig. 1.6). Instead of drawing connected triangles on the screen, the models were

rendered by drawing a large number of disconnected splats while carefully adjusting their size

to avoid gaps between them [40]. Variational implicit representations [41] based on RBF (radial

basis functions) and moving least squares were used to reconstruct the surface between the

existing samples, making it possible to compute local geometric quantities such as normals.

These models were later extended to allow progressive levels of detail [42].

Being able to fair or globally edit a large mesh while preserving fine surface details led

to the introduction of differential representations for meshes [43]. The most popular is vertex

laplacian,

L(xi ) = xi −
∑

j∈Ni

xi

which defines the position of a vertex relative to the average of the neighboring vertices [44].

The advantage of representing a mesh by its differentials is that it provides an efficient storage

of the local high frequency details on the surface. Given the local geometry represented by such

differentials, the system typically recomputes the mesh by solving a global optimization problem

(in the form of a large, sparse linear or nonlinear system of equations), which is feasible thanks

to the recent availability of fast matrix solvers (Fig. 1.7). For example, this representation can

be used to achieve efficient geometry compression, preserving high frequency details. It also

proved very useful for surface fairing, geometry transfer, and hole filling.

Point-based models basically lack an abstract governing structure which would help the

user to quickly modify the shape in a meaningful way. They can, however, be combined with

higher level laws [45], in the spirit of the early work on interactive modeling with oriented

particles [46]. But as yet, they have not been used much for interactive shape design. In contrast,

differential representations are intrinsically well suited to shape editing, since they enable us to
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deform a model—for instance, in order to satisfy user-defined constraints—while preserving

local details [47, 48].

1.4 SHAPE REPRESENTATIONS VERSUS SHAPE DESIGN
Although they were all combined at some point with an interactive modeling interface, most

of the representations we just discussed were not especially designed to ease creativity or to

enhance shape control. As shown by our short overview, they were most often developed to

answer specific needs such as representing a given class of existing shapes, easing visualization,

allowing computations at different levels of detail, providing a compact way of storing or

transmitting geometric data, and optimizing automatic operations like fairing or smoothing.

In many cases, user interaction was introduced as a necessary step toward testing the system

but had no influence on the mathematical representation developed.

This raises the question: can we identify the important features of a representation that

make it suitable for the interactive design of free-form shapes? Firstly, enabling real-time display

is an essential feature for interaction. Secondly, the representation must be general enough: it

should allow modeling shapes of any topology and geometry, including holes and branching,

and, if possible, enable changing the surface’s genus as part of the editing process. If the aim

is to design solid models, a representation restricted to closed surfaces surrounding a volume

can be a good choice, since it will avoid having to explicitly take care of self-intersections and

will provide an inside/outside test. To allow long-lasting interactive design sessions, using a

representation whose complexity will not increase with each user’s interaction gesture is also

highly desirable. The complexity of the representation will of course need to increase somewhat

to represent all the details progressively added to a shape: to reduce the limits on complexity,

a representation enabling visualization and editing at different levels of detail (LODs) may be

necessary. Lastly, the shape representation should ideally provide enough degrees of freedom

for global and local deformation while incorporating mechanisms to smooth the shape or refine

it. In some cases, other features such as deforming at constant volume can be incorporated

within the representation rather than be enforced by a deformation technique. We will see

in the following chapters that both simple surface-based representations such as meshes and

more indirect representations such as implicit surfaces have successfully been used for free-form

modeling purposes, although this choice affects the kind of editing techniques that can be

developed.

The remainder of this book specifically addresses the problem of interactive shape design,

defined as the interactive creation and subsequent refinement of a free-form shape. The methods

we present belong to either a sculpting or a sketching metaphor. Taking inspiration from clay

modeling, the first group of methods allows us to interactively mould or carve a 3D shape and
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to deform it either globally or locally. The methods from the second group, which have become

more popular recently in computer graphics, address the creation and progressive refinement of

a 3D shape from 2D hand-drawn strokes. As with sketching techniques in the real world, they

are great for quickly creating a shape but do not enable us to describe deformations, although

oversketching can be used for local editing.
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C H A P T E R 2

Sculpting Metaphors

A number of interactive shape modeling and editing techniques are based on the metaphor of

sculpting soft materials such as clay. After giving some background on deformation techniques

in computer graphics, we detail three modeling metaphors closely inspired from clay modeling:

volumetric sculpting, physically based virtual clay, and sweepers. These methods enable the

interactive creation of a shape from scratch as well as its subsequent refinement and deformation.

We show the importance of gesture-based constant volume deformations in this context and

discuss the implications of the alternative virtual clay models regarding user interaction.

2.1 BACKGROUND: DEFORMING DIGITAL SHAPES
Deformations are essential to an interactive sculpting metaphor inspired from the manipulation

of clay. They have been studied for years, mostly in the context of editing existing models. We

stress the difference between model-based methods, which directly act on the available parameters

of a given model, and space deformations and surface deformations, which focus on defining a

deformation function. With these methods, the deformation is either built everywhere in the

embedding space or directly constructed on the surface to be deformed. This presentation is

not exhaustive. Other excellent surveys of the same can be found in [49, 44].

2.1.1 Model-Based Methods
A first method for deforming a shape consists in directly editing the available variables or

parameters of the original model: interfaces for interactively moving the control points of a

spline surface, or for editing the skeletons of an implicit surface, belong to this approach.

Although computer artists used this approach as the only available one in the first

generation of modeling systems, editing a complex model this way takes time and effort and

can be far from intuitive: model-based deformation methods are based on the assumption that

the designer has a perfect understanding of the underlying shape representation and is thus able

to optimally use the built-in handles they provide. For instance, he or she will have to predict

the locality of the deformations from the mesh resolution, the number of control points, or the

size and shape of field functions defining implicit primitives. Moreover, the control he or she
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FIGURE 2.1: Space deformations warp space, deforming all the embedded objects. Courtesy of Alexis

Angelidis.

gets is often indirect, as control points or skeletons do not lie on the surface to edit. Directly

editing a lower level representation, such as a triangular mesh, does not solve the problem

either. The editing is tiresome, and smoothness may soon be lost. Besides, a triangular mesh

contains no hint of the structural intent of the original design, which makes very difficult to

obtain aesthetically pleasing result.

Research in the area addressed these issues by providing specific interfaces for easing

the editing of geometric models [50, 51]. Multiresolution representations were developed to

provide the user with explicit handles on the locality of deformations [52, 38]. Lastly, some

methods made the model’s behavior more intuitive by mixing the geometric representation with

physical laws [53]. The two first sculpting techniques presented later in this chapter belong to

this category of approaches, although their choice for the geometric representation of the shape

is quite different.

Overcoming the need for manually controlling a large number of variables also led to

the development of alternative space-based and surface-based deformation methods. The latter

automatically compute the changes in the model’s parameters from intuitive, user-specified

constraints on the deformation.

2.1.2 Space Deformations
Space deformations are any warping F from R3 to R3 (Fig. 2.1). Unlike model-based deforma-

tions, they are defined and tuned independently of the model they are applied to: all the objects

embedded in the deformed portion of space, whatever their representation, will be deformed

by the warping. To ease the representation of the deformed surface, applying a space deforma-

tion is often done in an indirect way, such as applying the transformation to the vertices of a

mesh or to the control structure of a spline or a subdivision surface. The surface reconstructed

from the deformed control structure is then only an approximation of the space deformation

applied to the original shape. In contrast, space deformations can be exactly applied to implicit

surfaces, but having an expression for the inverse of F is necessary: if the implicit surface is
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defined {P, f (P ) = c } then its deformed image will be {P, f (F−1(P )) = c }. In practice, this

has restricted the class of space deformations applied to implicit models.

Space deformations were first introduced as global deformations defined by a trans-

formation matrix, such as taper, bend, and twist [54]. Subsequent work extended them to

user-controlled free-form local deformations. The basic idea in most of these methods is to use

a tool to deform space. More precisely, the following steps are applied:

1. the user creates and positions the deformation tool in 3D and presses a “freeze” button;

2. the system attaches the object to be deformed to it, by expressing the object’s control

points or parameters with respect to the tool;

3. the user edits the tool by manually moving and deforming it; and

4. the object is deformed by recomputing its points or parameters from the new tool

position and shape.

If this approach seems indirect, it has the advantage of enabling the user to choose the

minimal number of degrees of freedom when creating the tool: this usually makes it much

easier to specify the desired deformation and tune its area of influence, among others. Note

that the tool’s deformation is usually specified using a model-based approach, which is effective

if the tool remains quite simple. The different space deformation methods differ by the type of

tool they use, the control they give over the locality of deformations, and the way they attach

the objects points or parameters to the tool. They can be classified according to the tool’s

dimension [49].

The first class of free-form space deformations introduced, called FFD (free-form de-

formations) [55], used 3D lattices of control points as tools: the object’s points were attached

to the tool by considering their space coordinates as (u, v, w) coordinates in a Bézier volume

defined by the tool. This was next extended to more general lattices (EFFD [56]) and, by the

use of Bspline, NURBS, or subdivision volumes (SFFD [57]) instead of the Bézier formulation,

to ease the definition of smooth, local deformation. Among the practical problems raised by

this approach were a poor control of the locality of deformations and the time-consuming and

indirect nature of the editing task, done by selecting and dragging lattice control points not

belonging to the surface of interest.

Similarly, surface-based tools have been defined for space deformations: the object to

be deformed was usually attached to a 2D lattice by projection along the surface’s normal.

The tools used were often very simplified versions of the object’s surface, making it behave

similar to multiresolution, subdivision surfaces. Recently, T-FFD [58] used a triangle soup of

disconnected, possibly overlapping triangles instead of a lattice, with the advantage that the
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spherical influence of each vertex could be tuned independent of the others. Applying the tool

to the object used a weighted sum of the displacements dictated by each triangle.

Axial deformations based on 1D tools, dedicated to applying local bends, elongations,

or twists to parts of an object, proved very useful in practice, since they are much easier to

control [59,60]. One of the problems solved was to attach each point of the model to the curve

tool, so that there is no discontinuity due to the curve’s concavities. The “wires” technique [61]

extended curve-based methods by enabling a network of 1D curves to deform a model, thanks

to an adequate, normalized blending of deformations: the influence of each wire was defined

by a smooth density function similar to those used in constructive implicit modeling, resulting

in smooth, local space deformations.

Lastly, using 0D tools was also investigated through the selection and displacement of

a set of constraint points, usually located on the model. An optimization method, usually in

the form of a system of equations to be solved, was used to find a space deformation fitting

these constraints [62, 63, 64]. More recently, a shape editing method using such point/target

constraints (modeled and combined using radial basis function) was implemented in real-time

on the GPU (graphics processing unit) [65].

An advantage of space deformations is that this formalism eases the expression of constant

volume constraints [66,67,68]: if a space deformation does not compress or dilate space (which

can be checked easily from the determinant of its Jacobian matrix), all the objects embedded

in space will retain their initial volume. The last sculpting metaphor described in this chapter

belongs to space deformations and relies on this property.

2.1.3 Surface-Based Deformations
There is an inherent limitation of space-based methods. Because the deformation is defined in

space, it takes no account of the geometry of the model. Suppose, for example, that you want to

use deformation to animate the fingers of a hand. The finger tips may be close together in space

but need to move independently under deformation. Controlling the locality of deformation

then becomes a problem. Points that are close together in space but far apart along the model

surface need different treatment.

Surface-based boundary constraint methods address this problem by computing deforma-

tion on the surface rather than in space. Like the last group of space deformations we described,

they enable the user to define the deformation by defining target positions for a number of

surface points, the changes to the representation’s parameters being computed automatically.

These methods, also called variational modeling [19,69,70,71,72], rely on optimization tech-

niques. They automatically move the control points of a parametric surface, the skeletons of an

implicit one, or the vertices of a mesh to fit the user’s constraints. The system solves for the

surface minimizing a functional or deforms the surface along the gradient of a functional.
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Most recent surface-based methods are based on a differential representation of the

surface (see Section 1.3.4) and solve a large, sparse linear or nonlinear system of equations to

obtain the result [47, 73, 74]. They focus on generating a deformation that will consistently

preserve small details in terms of shape and relative orientation. The main difficulty is the

treatment of rotational invariance of local frames on the surface. Various approximation methods

to represent rotations in a linear system have been proposed, and the recent trend is to solve

this nonlinear problem by using an iterative solver in a reduced domain. Some extensions were

proposed to generate constant volume surface-based deformations [75, 76].

Surface-based methods heavily rely on the topology of the original mesh structure. They

require a good sampling quality for the initial shape, since the solution explicitly uses the initial

number of degrees of freedom of the original surface. A more serious problem is that the result

of deformation can vary for an identical user control, depending on the sampling of the surface

geometry. Therefore, they are better suited for the modification of existing fine meshes than

for applying successive deformations to a shape to model it from a simple primitive.

2.1.4 Deforming Versus Sculpting a Shape
Most of the deformation methods we have reviewed are not easily predictable for the user

without some insight about either the shape representation they apply to or the mathematical

model used for the tool. Moreover, they have complex interfaces requiring several steps of

manipulation. None of them allows the user to apply a quick series of real-time modeling

gestures, an important mechanism in real life for enabling artists to shape a model quickly. This

explains why these methods were mostly illustrated by the editing of existing shapes rather than

by the creation of complex models from scratch.

The remainder of this chapter studies in detail three sculpting methods dedicated to

interactive shape design. All of them enable gesture-based interaction and address both the

quick creation of a rough shape at the early stages of design and its subsequent refinement

through deformation. The first two are model-based: they rely on a volumetric representation

for clay, the model’s surface being an isosurface of a 3D density field. They include a geometric

method proven sufficient for adding and carving material and a physically based one for local

and global deformations visually close to those of real clay. The last method belongs to space

deformations: it sweeps the portion of the model to be deformed, at constant volume if desired,

along paths defined by the user’s gestures.

2.2 VOLUMETRIC SCULPTING
The first question when developing a virtual clay model is can a purely geometric approach

be sufficient, or will a physically based model need to be introduced? If available, a geometric
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approach will be more efficient and will avoid lots of difficulties raised by physically based

modeling, such as time integration, stability, and the like.

This section investigates the use of a purely geometric approach, showing its benefits

but also its limitations. We first discuss the geometric representation for clay and describe

an implementation which avoids bounding the extent of the sculpted shape in space or in

resolution. Then we discuss the different tools which can be introduced for user interaction, as

well as the visual and haptic feedback this representation can provide.

2.2.1 Geometric Representation for Clay
Let us think about real clay and its properties, with a view to creating a deformable model:

what would be the most appropriate geometric representation for clay, which would provide

adequate degrees of freedom—and those only?

Clay is a soft material, able to take any shape, be cut into pieces, and be reconnected, and

out of which holes can be dug. The surface of a virtual clay model should thus be free-form,

smooth, or easy to smooth out and be a closed surface with no self-intersections, delimiting an

interior volume. Therefore, the most standard explicit surface representations such as meshes,

spline, and subdivision surfaces are not appropriate. The remaining choices are between an

explicit volume representation, such as parametric and subdivision volumes, and implicit repre-

sentations. We explained in Section 1.3 why implicit surfaces belong to volumetric modeling.

Although B-spline and subdivision volumes have been explored for virtual clay [77,78,79] and

subdivision volumes enable progressive refinement of the model, we concentrate here on the use

of implicit surfaces, which have the advantage of making topological changes straightforward.

The next question is which kind of implicit surface? As we have seen, implicit surfaces

are isosurfaces of 3D scalar fields. The first option is to represent this field in a constructive

manner, using a successive combination of implicit primitives [80, 81]. However, if each tool

action creates a new primitive, the complexity of the shape continually increases while editing,

even if the user erases most of the shape. Field queries then become more and more expensive,

which could eventually make interaction impossible after enough operations.

An alternative, used in most previous work in the area [82, 83, 84, 85, 86, 87], is to

represent the field function by a number of discrete sample values stored in a grid. Interpolation

between these sample values is used to calculate the field. The immediate advantage is that each

field query takes a constant time, whatever the length of the sculpting session. Moreover, this

representation allows for multiresolution editing if some kind of multiresolution grid is used

for storing the field samples (Fig. 2.2).

Next, the kind of discrete scalar field to be used is to be discussed. Signed distance fields,

whose “outside part” stores an approximation of the Euclidian distance to the sculpted shape,

are used for sculpting purposes [85,86]. They ease the construction of a shape from real data or
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FIGURE 2.2: Distance fields (left) require global edits and are discontinuous in concave areas, while

density fields (middle) are local. They can be stored in multiresolution grids that are refined according to

the tool’s shape, leading to the easy sculpting and storage of large to fine structures (right). From [89].

its conversion from another representation. However, a distance field requires global editing, as

the value of closest distance may need to be updated in an unbounded region while editing the

shape. Moreover, this field is discontinuous in concave regions, so smoothed approximations

of it need to be computed to preserve a good level of continuity for the isosurface. In this book,

we rather advocate the use of a scalar field representing the density of clay. Firstly, this is a

more intuitive choice which makes, as we will see in Section 2.2.3, the creation of intuitive

editing tools quite straightforward. Secondly this representation reduces memory requirements:

the density field being zero where there is no clay, these regions do not need to be explicitly

stored (and practical implementation will be described in Section 2.2.2). Where clay is present,

the density value smoothly rises (ideally with a constant slope everywhere) from zero to a given

maximal constant value inside the clay. In this book, we take the usual convention that the

maximal value is 1, the clay surface being the isosurface at density 1/2. Such a density field still

locally provides a local distance to the clay in the outside regions where the density is not zero.

The closest point on the clay will lie approximately in the direction of the field’s gradient.

Moreover, it makes field updates more efficient, since they are now local: using a tool

to locally edit the surface will not require recomputing anything outside of the relatively small

area of influence for the tool.

2.2.2 Providing a Multiresolution, Unbounded Clay Model
The early work [82] used a fixed coarse grid for storing the density field. The drawback of this

simple representation is that a very large grid is needed to provide an extent of space, big enough

for the sculpture while offering sufficient precision. Such a large fixed grid wastes memory, as

the user will fill only part of it with clay. It also restricts the user’s actions, since extending

the shape outside of the grid is not possible. Also, the user will soon be limited in resolution:

applying large, smooth tools will take time because of all the field samples to be updated, while

tiny details will soon be missing in the locations the user would like to refine. To overcome the
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space extent problem, the commercial application using this method started with a rectangular

block of material which could only be carved; but we are discussing here a sculpting system

where the user can both add and remove material.

A practical solution to these problems is proposed by Ferley et al. [88]: the density field

is stored in a virtual unbounded grid, implemented using hash tables. Cells are created and

deleted when and where needed, only nonempty cells being stored in the hashing structure.

This framework can easily be extended to multiresolution [89], enabling to sculpt fine details

with virtually no bounds on the space resolution: the unbounded virtual grid is now a multigrid,

whose cells can be split on demand into a fixed number of subcells. In practice, the local

resolution in a given area is dictated by the size of the editing tools used. A different hash

table stores field samples at each different resolution, and each update after an editing action

is progressive, from coarse to fine, in order to always provide an interactive display. The finest

resolutions can be updated, if necessary, at idle moments when the user is not editing.

Although volumetric rendering could be used, the commonest way of visualizing the

sculpted isosurface is to convert it into triangles using a continuation algorithm such as marching

cubes (see Section 1.3). Once this conversion is done, the mesh representation enables the user

to rotate the model and view it from any direction at interactive rates. This visualization method

can be efficiently used in the unbounded virtual grid representation we just discussed. In practice,

Ferley recommends using three hash tables instead of one: in addition to the main grid storing

the nonempty cells with their field values, two structures are added to optimize visualization—a

hash table storing the set of cells that cross the isosurface and one storing the current surface

triangles (Fig. 2.3). After each surface edit, the three structure are updated in the influence

region covered by the tool. Each new cube crossing the surface is converted, on the fly, into

surface triangles, and each one removed from the second structure results in the removal of the

associated triangles. Visualization is then done using the surface triangle structure. This leads

to a real-time incremental tessellation. In the multiresolution case (Fig. 2.2 right), tessellation

FIGURE 2.3: Data structures for the virtual unbounded grid, stored in three hash tables: nonempty

cells, cells crossing the surface, and surface triangles. These three structures are locally updated after each

user edit, so rendering is real-time. From [88].
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FIGURE 2.4: Sculpting tools are either analytic implicit primitives (e.g. spheres and ellipsoids) or

discrete implicit shapes sculpted within the application. From [88].

is performed at each level of detail. The field updates are computed from coarse to fine, and

the visualization uses the finest up-to-date surface in each area. With this method, the surface

display is sometimes coarse, and cracks may appear between regions tessellated at different

resolutions, but it ensures a real-time visual feedback to the user, whatever the number or speed

of his or her editing actions, which is the essential point for effective, interactive sculpting.

2.2.3 Adding, Carving, and Smoothing Clay
Let us now discuss the different tools which can be provided for progressively creating and

editing a shape in a volumetric sculpting system: The user may want to add some matter, carve

it, or locally smooth out the shape. All these operations will be performed by locally editing

the clay density values sampled over the 3D space. Locally increasing density will add material,

decreasing it will remove some, while applying local smoothing filters to the density field will

smooth the isosurface.

The simplest solution to achieve these editing actions is inspired by the constructive

implicit surfaces methodology presented in Section 1.3. We define a sculpting tool (Fig. 2.4)

as a couple formed by a local implicit primitive and a given action:

The implicit primitive is any smooth continuous field function of finite support attached

to a local frame called the tool frame. It can be either analytically defined, from a set of

skeletal elements or a construction tree, or a discrete implicit surface itself, previously

sculpted with the system.

The action describes the way the tool’s contribution is to be combined with the clay

density values covered by the tool’s support. Typical actions are sum to add some more

clay and difference to remove some.

Tools used to add and remove material are usually represented as opaque rigid objects,

visualized at their isosurface 0.5. Intuitively, the volume they cover is added to or removed from
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the clay. If their field contribution smoothly drops to zero, the shapes modeled progressively by

their application will have the same degree of smoothness when correctly sampled. Other tools,

such as those used for smoothing or painting the clay, just apply a specific action over their

regions of influence, which can be visualized directly. Smoothing can be implemented using a

low pass filter which recomputes each field value covered by the tool as a mean of itself and of

its closest neighbors, using a matrix of coefficients approximating a Gaussian curve. Painting

just changes the color attributes of the underlying field samples affected by a given tool.

Note that an adding tool can be extended to implement copy–paste and cut–paste actions:

a part of the model is copied or cut, attached to a user-controlled local frame, and then used to

add the same field contribution elsewhere. In addition to being moved the copied part can be

scaled and rotated before pasting.

2.2.4 User Interaction: Visual and Haptic Feedback
One of the advantages of the volumetric sculpting approach we have just described is that the

user directly interacts with the model’s surface, without any need to be aware of its underlying

mathematical representation. Therefore, he or she can just concentrate on shape design.

To enable a proper interaction, the user interface should however be designed with care.

Firstly, the user should always get a good perception of the 3D shape he or she is sculpting.

If a standard 2D display is used, then the perception of the third dimension can be improved

using environment textures [88]. The use of 3D glasses is also a good solution (Fig. 2.11).

Secondly, if sculpting tools are to be positioned with a 2D mouse while using a trackball to

change viewpoint, it will be tiresome to move in the third dimension to reach the next location

on the surface for editing. Using a device with 3–6 degrees of freedom is thus much preferable.

Six degrees of freedom enables us to change the tool’s position and orientation within the

same gesture. Lastly, the user needs to know exactly whether the tool is slightly in front of,

intersecting, or inside the model before applying any action. Therefore, Ferley et al. [88, 89]

has used a semitransparent surface for the model, so that the tool’s color changes when it is

behind the surface. This however proved insufficient for sculpting complex models. Adding

actions are usually made just in contact with the existing clay. Very often they were made too

much in front by mistake, so the shape in Fig. 2.5 was achieved in only 3 hours, with lots of

undo–redo operations.

A much easier and more effective positioning was achieved using force feedback [90].

Blanch and Ferley studied the use of a phantom device for haptic interaction and discussed

several solutions to generate a useful feedback force in real-time (at 1000 Hz). Basically, two

useful forces can be computed in real-time at the center of the tool: a viscous friction force,

computed by multiplying the local clay density value by the tool’s speed, and applying the force

to reduce this speed; and a contact force, oriented along the field gradient and active when the
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FIGURE 2.5: Using haptic feedback accelerates volumetric sculpting, since it eases the positioning of

the tools. The figure on the left (from [88]) was sculpted in 3 hours using a simple mouse, while the one

on the right (from [90]) was sculpted in 1 hour using haptic feedback.

tool touches the surface. By analogy with nonphotorealistic expressive rendering, Blanch has

proposed a “non-hapto-realistic” or “expressive” way to combine these forces while giving as

much useful feedback to the user as possible. The idea is to use both forces but to modulate

their action according to the “applied” or “nonapplied” status of the tool. When the user moves

a tool before applying it, he or she needs to feel the surface, to be able to position the tool with

respect to it: then, a larger coefficient is used for the contact force. During tool application, the

user should be able to move in space but feel the density of clay he or she is traversing. So a

larger coefficient is used for viscous friction.

This methodology proved really efficient: the user could feel the virtual clay with the tool

and position it much faster with respect to the model. The dancer of Fig. 2.5 could be sculpted

in only 1 hour with some copy–paste editing for the legs.

2.2.5 Limitation: Volumetric Clay Does Not Deform!
The approach we described up to now is a good solution for adding or carving claylike material.

This mode of interaction, which enables no deformation, is somewhat similar to painting and

erasing matter in a 3D space. However, when offered a clay modeling metaphor, a user would

expect much more as stressed in Section 1.2.1: clay should be able to deform, as real clay does.

In real life, clay deformations are used for two purposes: local deformations made by

pushing clay with rigid tools or with the fingers help to shape the model’s details (e.g., eye cavities
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FIGURE 2.6: A geometric solution for mimicking the local deformation produced by a rigid tool:

matter is suppressed inside the tool and added in an outside ring, forming a bulge. From [88].

and eyebrows are usually achieved with such gestures). Secondly, models such as characters are

first created in a standard posture, which eases finding the right proportions, before large scale

deformations such as bends and twists are used to make them more expressive. Note that both

of these local and global deformations are done at constant volume.

A geometric solution for mimicking the action of a rigid tool locally pushing clay in front

of it was proposed in [88]. The tool used had a smooth field contribution going from negatives

values inside the displayed surface for the tool to positive ones in an outside ring around it and

then smoothly back to zero. Applying such a tool with an additive action would thus remove

material inside the tool while adding some around it, mimicking the bumps a print leaves on

real clay (Fig. 2.6). However, no way of ensuring that such an action would preserve volume

was proposed: the profile of the local deformation field function was interactively tuned by the

user, and its exact effect on the clay it was applied to, such as reducing or increasing volume,

would depend on the local slope of the density of clay function.

Applying large scale deformations in the volumetric sculpting approach we described is

still more of a challenge. These deformations are different in nature from local ones: indeed, they

should be able to propagate outside any predefined boundary of the tool’s influence (Fig. 2.7).

FIGURE 2.7: Global deformations such as bending and twisting are of a different nature from local

ones, since they can propagate outside of any predefined boundary of the tool’s influence.
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Obviously, the purely geometric model we have discussed for the clay is not sufficient anymore:

some kind of physically based modeling is required.

2.3 PHYSICALLY BASED VIRTUAL CLAY
This section describes a real-time simplified physically based model for clay which was set up

for interactive sculpting purposes. Like the previous one, this model belongs to a model-based

approach to deformations. Geometrically speaking, it relies on the same representation for clay,

namely a density field stored in a grid. After describing a method for simulating real-time

constant volume deformations in this framework, we discuss the benefits of this model in terms

of visual results and its consequences for user interaction.

2.3.1 Physical Models for Clay
The properties of real clay lie between those of plastic solids and viscous liquids [91]. Clay

can undergo local and global deformations, including changes of topology such as splitting and

merging. Among the most important properties of clay for sculpting purposes are plasticity

and mass conservation. The shape of a plastic object depends on its initial shape and on the

history of deformations applied to it. This is unlike an elastic object whose shape at any time

is a rest shape modified by applied external forces. At the speed and scale at which a user

applies interaction, clay deforms to its new shape with almost no dynamical effect such as

vibrations and waves. Such effects are almost ideally damped. Mass conservation during defor-

mations implies the geometric property of constant volume, since clay is incompressible within

the range of forces a human hand applies. Lastly, clay does have some rigidity: otherwise, it

would progressively spread under its own weight when lying on a table. In the absence of

gravity, this rigidity can be modeled by “surface tension” opposing any spreading into empty

areas next to the clay.

FIGURE 2.8: Viscous fluids have been modeled using particles surrounded by an implicit surface

(picture from [92]). c© 1997 IEEE.



book MOCL007.cls August 4, 2008 19:46

28 INTERACTIVE SHAPE DESIGN

Standard physically based deformable models in computer graphics include Lagrangian

(Fig. 2.8) and Eulerian approaches. Let us discuss their benefits and limitations as regards

modeling clay in real-time.

Lagrangian models use markers such as mass points and nodes to follow matter as it moves

in space. Networks of mass nodes of a fixed topology have been used to simulate deformations,

combined with smooth deformable models such as NURBS [53]. To get models that can

change topology, particle systems where interactions are based on the distance between a pair

of mass points are more appropriate. The first ones used Lennard-Jones forces [92,93] inspired

from molecular dynamics, later extended to smoothed particles (SPH) whose kernels model

the mass distribution around them [94]. All these particle systems preserve mass. They model

compressible material (the internal forces being due to a local change of density and thus of

pressure) but tend to come back to their initial volume after deformation. The last model of

that kind proposed an efficient implementation, real-time up to 2000 particles, and introduced

a surface tension effect thanks to a double kernel mechanism and modeled plasticity thanks to

breakable springs [95]. However this material is still very far from the clay we need for sculpting.

When the interactions are frozen into springs, it oscillates like jello after deformations, and

without them, it spreads flat when lying on a table. Lastly, the use of a Lagrangian approach

in an interactive sculpting process would require adding more and more smaller particles as

details are sculpted, but one needs to be able to sculpt at constant cost whatever the length of

the session.

Eulerian approaches which consider a fixed grid over space and express the flow of

matter through the grid cell are closer to the geometric representation we studied in the

previous section. These models were used for simulating realistic viscous fluids [96, 97], but

however not in real-time due to the free surface to be tracked. Even if they were done in

real-time, viscous liquids models would spread too much to be usable for clay, for which a

specific physically based model needs to be designed. Closer to the work presented below,

local claylike deformations have been modeled within a Eulerian representation using cellular

automata [91].

A final way of using physically based modeling, when accuracy is not the main goal, is to

follow the layered models methodology first introduced by [98]. The idea is to combine simple

submodels to get a complex behavior more efficiently. The best adapted submodels are designed

for each of the physical properties we would like to get; these models are then connected or

combined to get a coherent general behavior, leading to the efficient animation of complex

models, at the expense of physical accuracy. The requirement of real-time response is more

important than physical accuracy for an interactive virtual clay model. The next section presents

an approach based on this layered model methodology.
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FIGURE 2.9: A layered model for virtual clay. Large-scale deformations produced by the first layer

modeling plasticity (left). Local deformations generated by the second layer insure constant volume

(middle). The third layer generates an internal rigidity which prevents clay from spreading over space

(right). From [99].

2.3.2 A Layered Model for Virtual Clay
We describe here a model loosely inspired by physics, which visually mimics clay and is real-

time [99, 100]. It overcomes the difficulties of standard physically based modeling, since it is

static instead of dynamic and has thus no problem with time integration.

As discussed earlier, the three main properties we would like to get for clay are:

1. large-scale, plastic, fully damped deformations;

2. volume conservation; and

3. some inherent surface tension, preventing clay from spreading too much over space.

Let us discuss independent submodels for each of these properties. During simulation, these

submodels will be emulated in turn, over the same virtual clay representation (the 3D grid

storing the density field), each resulting in some transport of clay material from one grid cell

to another. The underlying common geometric representation will ensure the coherency of the

whole animation. Figure 2.9 gives a schematic representation of the three layers.

2.3.2.1 Large-Scale Deformations

This first layer should allow the user to bend or twist parts of the sculpted model using several

rigid tools. The deformations are plastic: the clay will not come back to its initial state after the

deformation is applied. Moreover, there is no need of a dynamic model here: getting a static

“equilibrium shape” after each user’s action is sufficient.

The aim is thus to compute the displacement δ to apply to the clay material lying

in each grid cell as some combination of the displacements dictated by the different tools

simultaneously acting on the clay. Let us get loosely inspired by physics: Since clay is a viscous

fluid, the displacement of a user-controlled tool basically moves the clay around it in the same
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direction. Then, this action decreases with the distance. However, it is not the Euclidian

distance which is important here but rather the shortest path inside the clay between the tool

and the current cell. When several tools are applied at once, these pseudodistances inside clay

can be combined to define something akin to Voronoi regions around the tools. More precisely,

Dewaele and Cani [99,100] computes the weighting coefficient ki to be applied to the motion

of each tool Ti as follows:

ki =
1 −

di −min j (d j )
min j (di j )

2
and δ =

∑

i kiδi
∑

i ki
, (2.1)

where j refers to all the other tools involved, di is the pseudodistance from the current cell to

Ti , and di j is the pseudodistance between two tools. The pseudodistance is computed using a

propagation mechanisms from each tool position. This approach results in Voronoi-like regions

of influence for each tool but with a continuous blending on the generated displacements

between them.

Up to this point, we assumed that the tools’ motion would be translations when they

are in contact with the clay. However, the user may also rotate tools, expecting to produce

rotations or twists in the clay. The motion of a solid rotating object cannot be described by a

simple displacement vector. Instead, a point A rigidly linked to the tool moves according to

displacement field:

δA = δO + O A × ω, (2.2)

where δO is the translation of point O (the center of the tool), and ω is the twist applied to

the tool. To take into account the rotation of the tool, we simply replace the previous δi in

Eq. (2.1) by the δA which would be obtained at the correct cell using Eq. (2.2) for tool i . This

way, more general deformations can be generated. For instance, a bar of clay can be twisted by

simply turning a tool at one end of the bar.

2.3.2.2 Mass Conservation Layer

Nothing in the deformation generated by the first layer ensures that volume, or even mass,

will be preserved. The displacement field generated can easily send too much clay to one cell.

Thanks to the underlying density grid representation, detecting such excesses of clay is easy:

they are the cells whose density value exceeds 1.

Let us take some loose inspiration again from fluid mechanics. In a fluid, when there

is an excess of pressure locally, a flow will be generated from the area of high pressure to

areas with lower ones until the pressure is uniform. Unlike fluids, clay should remain solid

(density 1) rather than spread and occupy the whole space to equalize pressure. We thus use a

slightly different iterative mechanism: The clay in excess in a dense cell is poured into its six
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neighboring cells, regardless of their own density. If those cells are not full, then the process

terminates. If there is an excess of matter, they distribute it among their closest neighbors, and

so on. Matter will move from cells to cells and finally reach the object’s border, where it will find

some room to remain. This results of iterating this very simple process over the dense regions

of the grid results in intuitive folds and local bulges when the user deforms or presses the clay.

2.3.2.3 Surface Tension

After several deformations using the two layers above, the matter tends to become less and less

compact. Clay pushed by the tools can be dispersed around the object, and the transition from

inside (density 1) to outside (void cells) gets slower and slower. One of the problems with cells

with low densities is that the user does not see them, so strange effects can arise if a tool pushes

these small quantities of clay in front of it: clay popping from nowhere when density, due to

action of the tool, rises to the threshold; inaccurate changes of the surface location; and so on.

Moreover, since matter in cells of low density is no longer visible, the object’s volume will seem

to decrease, even if matter does not really disappear.

The surface tension layer used in [99] aims at limiting these problems. It keeps the

gradient of density near the surface of the clay to an acceptable value. Basically, matter in

cells with very low densities is moved to nearby cells with higher densities along the gradient

direction. This way, the object remains compact.

2.3.3 Interacting with Virtual Clay
The user can use three kinds of tool. In addition to tools for adding or erasing clay, which work

just the same as in the previous volumetric sculpting system, he or she is provided with rigid

tools to interact with the clay at constant volume. As with volumetric sculpting, rigid tools are

modeled using implicit surfaces. When a rigid tool touches the clay, it affects its deformations

in two ways: the tool’s displacement and rotation are communicated to the surrounding clay

through the first layer, while the clay inside cells covered by the tool is poured to the neighboring

cells in an outward direction with respect to the tool. This can produce both large-scale and

local deformations.

Figure 2.10 shows the ability of the model to take into account both translations and

rotational motion of the tools in contact with the clay, as well as the use of an arbitrary number

of tools. The side-by-side comparison with photographs shows that this model adequately

captures the main features of real clay. However, there is a good reason why this virtual clay

model was only used, up to now, to perform very simple, proof-of-concept deformations: the

closer a model is to real clay, the more difficult the interaction is. Let us discuss the interface

needed for interaction.
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FIGURE 2.10: Comparison between real clay and Dewaele’s virtual clay. Local and global deformations

at constant volume are adequately modeled. They can be controlled by an arbitrary number of tools.

From [99].

Although possible in theory, sculpting a complex shape using a single rigid tool controlled

with the mouse such as in Fig. 2.10 (right) would be difficult and time-consuming. Indeed,

most people would use their ten fingers and maybe the palm of their hand for modeling real

clay. Simultaneously interacting with an arbitrary number of tools is possible with the model

we just described, but it is far from sufficient. An easy way of interactively controlling these

multiple tools needs to be defined.

The most intuitive solution is to provide some real-time control of virtual hands inter-

acting with the clay, for instance, by duplicating the motion of the user’s hands, using either a

data glove or a system based on cameras designed to do so (Fig. 2.11). However, one doubts the

user’s ability to model a shape without touching it. Without the sense of contact with virtual

clay, it is very likely that the real hands’ gestures would overshoot their target. In real life,

designers use the compliance of their hands and the interaction forces with real clay to finely

tune their gestures. We discuss this in more detail in Chapter 4.

FIGURE 2.11: Three possible interfaces for interacting with virtual clay: using a single tool, moved

in 3D using a force feedback device (left); capturing the deformations the user applies on a real object

serving as an avatar (middle); and controlling the gestures of a virtual hand interacting with the clay

(right). Left from [90], Right courtesy of Paul Kry.
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This leads to the question: how far should a digital model for clay try to mimic the

behavior of real material? The last section in this chapter studies a totally different way of

modeling the constant volume deformations which characterize real clay: instead of using a

model-based deformations, it investigates the use of space deformations but keeps the clay

modeling metaphor in that the deformation is controlled interactively by the user’s gestures.

2.4 SCULPTING WITH SWEEPERS
This section presents a sculpting metaphor based on space deformations. It is applicable to

virtually any model representation. In practice, the sculpted shape needs to be accurately, yet

efficiently, represented: an adaptive mesh automatically refining where needed is a good solution.

Typically, an edge splits whenever a deformation would otherwise take its midpoint too far away

from the average of its new end points. The sweepers’ method focuses on generating intuitive

space deformations, controlled by the user’s gestures. It can be extended to constant volume

swirling sweepers, still using the same kind of interaction. Note that other similar methods

such as warp sculpting [101], and constant volume vector field–based deformation [102] were

developed in parallel. We focus on the sweepers’ version [103, 104], since the simple gesture-

based interface it provides makes it a very relevant solution toward virtual clay.

2.4.1 Sweepers: Space Deformations Controlled by Gesture
We already reviewed space deformations in Section 2.1. As we have seen, most of them use a

tool to define the deformations: the user freezes the tool within the object, interactively deforms

it, and then applies the resulting deformation to the model, which takes typically a few seconds

to compute. Even if it is only a fraction of a second we have a step-by-step process where we

make a deformation abstractly and then see it applied in each step. In contrast, a sweeper is

a space deformation defined by gesture: more precisely, the user sweeps a geometric tool that

deforms space along a motion path. The region of space covered by the tool, where the model

to deform is partly embedded, follows its motion, while the deformation smoothly vanishes

outside the tool’s region of influence. This way, the user can ignore the fact he or she defines a

space deformation and rather concentrate on real-time interaction with the sculpted surface.

The challenges are first to find a way of defining a smooth deformation that sweeps space

with the tool while vanishing at a distance and second to ensure that this deformation is foldover

free: preventing space foldover will prevent the sculpted shape from self-intersecting, whatever

the user does. This is mandatory, since changing a closed surface into a self-intersecting shape

would be very bad in terms of the clay modeling metaphor. Moreover, if the model did self-

intersect, no subsequent space deformation would be able to set it back to a nonintersecting

state.
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FIGURE 2.12: Sweepers use the user’s translation gestures to wrap space in a foldover. Small steps used

to make the deformation foldover free (left). The user positions a tool in intersection with a shape, the

tool’s region of influence being depicted in yellow (right): when applied and moved, the tool sweeps a

part of the shape with it while keeping it smooth. From [104].

Angelidis et al. [103] defines a tool very closely to the way it was done by Ferley and

Dewaele and Cani [88, 99]: a tool is a 3D shape defined by a user-controlled moving frame

and a field function ϕ(P ) ∈ [0, 1], modeling its influence in space, which smoothly decreases

and vanishes at a distance. It is visualized as an isosurface of the influence function.

Intuitively, sweeping means weighting over space the transformation M defined by the

tool’s motion with the local influence value ϕ. The transformation is given by a 4 × 4 matrix, a

combination of scale, translation, and rotation, defined by a gesture such as a mouse move. But

what is a natural way of weighting a transformation, to apply just a portion of it? The answer is

to take a power of the matrix. As shown by Alexa [105], this can be implemented using matrix

logarithm and exponentiation and leads to the formulation:

F(P ) = (ϕ(P ) ⊙ M) · P (2.3)

where F is the deformation function for this gesture, and the operator ⊙ is defined by α⊙ M =

exp(α log(M)) (see [105]).

Self-intersections of the deformed shape could occur if the above deformation was used

directly. In practice, the deformation is instead applied in a series of small steps, computed so

that space foldover is prevented (see [103] for details).

2.4.2 Constant Volume Swirling Sweepers
Sweepers, as just presented, compress and dilate space and thus perform a function equivalent

to adding and removing material from the sculpted shape. As we have already emphasized,

constant volume deformations are much more intuitive. Let us discuss an extension of sweepers

to achieve constant volume.

In order to set up constant volume deformations, Angelidis et al. [104] introduces a

particular case of sweeper—a swirl, defined as a rotation whose magnitude decreases away from

its center, and smoothly vanishes at a distance. Formally, a swirl is defined by a center point
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FIGURE 2.13: Constant volume swirls (left) are placed along rings to move matter along a translation

vector defined by the user’s gesture (center). In practice, the use of swirls is transparent to the user. He

or she simply sweeps constant volume clay by gesture (right). From [104].

C together with a rotation of angle θ around an axis V [Fig. 2.13 (left)]. A radial function

ϕ defines how the amount of rotation decreases away from C , within a sphere of radius λ.

Informally, a swirl twists space locally around axis V without compression or dilation (see proof

and implementation details in [104]). It thus preserves the volume of any shape embedded in

the deformed space.

Although rotations can be useful for bending and twisting 3D shapes, being able to

define a constant volume sweeping gesture is mandatory for being able to sculpt a shape

through deformations. To convert swirls into translations, Angelidis uses a ring of swirls: n

swirls are positioned around a circle, their axes being along the local tangent direction to the

circle. Each of them swirls matter through the inside of the circle. Summing their contribution

has the effect of locally puling space through the circle, at constant volume.

A way for the artist to control the amount of deformation is still to be defined. Obviously,

he or she would like to control the amount of translation locally applied to the shape and its

space extent, but one does not need to be aware of the underlying mathematical model such

as the ring of swirls. Therefore, Angelidis computes the parameters of each swirl from the

translation T the user would like to apply and which is defined, for basic sweepers, by sweeping

a spherical tool over space. At each deformation step, n swirls (usually eight) are placed along a

circle perpendicular to the current translation vector T. The swirl’s common radius of influence

is twice the circle’s radius r . The angle θi of each swirl is set up so that a point at the center of

the user-controlled tool is translated to its position plus T, using:

θi =
2‖T‖

nr
. (2.4)

Figure 2.13 (right) illustrates the deformation applied to a shape.
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2.4.3 Vector Field–Based Deformation
The key to volume preservation is that the swirl defines a divergence-free vector field, and their

combination is still divergence-free. A volume-preserving deformation can be constructed from

any such field, and, more recently, von Funck et al. [102] have done this in a more general

way. They construct a divergence-free vector field from two scalar field functions, p and q ,

using v(x, y, z) = ∇ p(x, y, z) × ∇q (x, y, z). By choosing different ways to construct the field

they produce deformations from a swept tool in the manner of swirling sweepers and also a

variety of other deformations including twists and bends. Volume is preserved and large-scale

deformation can be done in a way that preserves local detail.

2.4.4 Results and Discussion
As the results show, the use of a geometric constraint such as constant volume deformations can

be sufficient to get very natural deformations, with no need of any physically based simulation.

With swirling sweepers, the model behaves very much like a physical piece of soft clay. Swirling

FIGURE 2.14: Examples of shapes modeled from a ball of clay in a few minutes, using swirling sweepers.

From [104].
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sweepers were illustrated by the creation from scratch of a series of complex shapes, represented

using adaptive meshes (Fig. 2.14). They attest to the practical usability of the method.

Let us however discuss the limitations of this approach, thinking of the different expec-

tations we listed in Section 1.2.1 for sculpting metaphors:

A first problem is the space-based nature of the definition of a tool’s area of influence:

When the shape to be sculpted is complex, all the parts of it that come close to the tool will be

deformed at once. The user thus has to sculpt from coarse to fine levels, with smaller and smaller

tools to avoid deforming the neighboring regions. And he or she cannot easily apply large-scale

deformations to a detailed model, although this can be done to some extent (see [102]). As

with Dewaele’s virtual clay model [99,100], the deformation should rather propagate according

to the shortest path inside clay between the location on which the deformation is applied and

the current point. However, this would then be a model-based deformation rather than a space

deformation, since the shape of the model would affect the result.

A second expectation to be discussed is the ability of the method to model large-scale

deformations such as bending or twisting parts of the shape. Although Angelidis chose to only

use translation gestures, a single swirl could be used to apply a local bend or a twist. These

rotation-based tools were specifically introduced in other similar formalisms, such as vector

field based deformations [102]. However, as shown by this work, to specify these deformations

requires an interface in the spirit of standard space deformation tools. This supports the idea

that such deformations cannot easily be controlled interactively by gestures or, at least, by 2D

gestures specified with the mouse.

Lastly, the use of foldover-free space deformation makes it impossible to change an

object’s topology, such as digging holes in soft material and welding two pieces together.

Although less general, the method is still very useful in an interactive sculpting context, where

the user starts with a simple primitive of same volume and topology as the model he or she

wants to create and applies translation gestures to shape it.

2.5 CONCLUSION:
WHERE SHALL WE STOP TOWARD VIRTUAL CLAY?

This chapter has described three approaches based on a sculpting metaphor. Although the first

and the third ones could be successfully used to create complex shapes from scratch, none of them

provides a full solution, answering all that one would expect for sculpting metaphors: The first

system basically enables us to deposit and to erase matter in 3D, providing an effective, but quite

limited, version of sculpting. The second one successfully incorporates claylike deformations

in the first method but is limited in practice by the lack of proper user interface for applying

deformations. The third system just borrows from clay modeling the ideas of modeling by

gesture and of constant volume deformations. In practice, the gestures are translation gestures
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controlled by the mouse in which the user sweeps matter along paths, which deforms the model

at constant topology and without any rotation-based deformation.

If the first and third models proved immediately usable, it could be because they could

rely on 2D rather than 3D sculpting gestures from the user: most of the models were created

with a simple 2D mouse and translation gestures while progressively changing the viewpoint.

The third model is able to pull or push the clay instead of just depositing or erasing it. An

advantage of 2D gestures is that they are less tiring and thus much more precise than a 3D

gesture without an adequate sense of touch. In contrast, the second model raised the questions:

Where shall we stop toward virtual clay? If provided with an ideal, hyperrealistic virtual clay

model, would we be able to develop the proper interface to use it on a computer? The future

directions of research this question raises will be discussed further in Chapter 4.

An alternative to making 3D sculpting usable is to switch from sculpting to sketching

metaphors: the latter would intuitively be the most appropriate way of taking a full benefit of the

user’s 2D input gestures. As we will see in the next chapter, these systems also raise a number

of challenges.
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C H A P T E R 3

Sketching Systems

Sketching systems allow the user to construct a 3D shape via sketching. The user draws the out-

line of the desired shape as a 2D sketch, and the system automatically generates a corresponding

3D model. This chapter first describes the background of the approach, discussing how people

depict 3D shapes in 2D form and how people perceive a 3D shape from a 2D representation.

Then we describe three sketch-based shape modeling approaches that use different surface

representations, plain mesh, implicit surfaces, and optimization surfaces. Each representation

has its own strengths and limitations, and we describe how sketching interfaces are adapted to

these representations.

3.1 BACKGROUND
Sketching methods are built on top of knowledge in art and science. Here we describe two

important ingredients.The first is from art: how people depict a 3D shape using a 2D medium.

The second is from science: how people perceive the third dimension from a 2D medium. We

first describe what has been discussed before the emergence of computers and then describe

computational methods to replicate these processes.

3.1.1 2D Depiction of 3D Shapes
Humans have a long history of depicting 3D shapes and scenes in 2D form. Cave painting

is considered to be the beginning of such activity. Line drawing is a specific form of such

depiction, where the artist depicts 3D shapes via a collection of lines. These lines are roughly

divided into three categories: silhouettes, features, and shading (Fig. 3.1). A silhouette line

shows the boundary of the shape. One side of the line is the inside of the object, and the other

side is the outside. A feature line shows that there is a discontinuity on the surface such as a

sharp edge. Shading lines are used to indicate shading. Willarts discusses how silhouette lines

and feature lines are used to represent shapes [106]. In the case of objects with planar faces,

lines denote edges and line junctions indicate corners and occlusions. In the case of smooth

objects, lines denote contours and line junctions indicate occlusions. Various labeling schemes

have been proposed to analyze such drawings.
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FIGURE 3.1: Line drawing of real-world objects.

Automatic construction of line drawings from given 3D shapes has been the subject

of experiment since 1990 as a part of the so-called nonphotorealistic rendering techniques.

Instead of shading all visible surfaces, these techniques depict the given 3D scene as a 2D line

drawing, combining silhouette, feature, and shading lines. They are roughly divided into two

approaches (Fig. 3.2). One is image space processing, and the other is object space processing.

Image space methods generate silhouettes in image space [107, 108]. A popular method is to

render a depth image and a normal image and then trace discontinuities in these images. Object

space approaches explicitly detect silhouette edges that are adjacent to both back-facing and

front-facing faces and render them on the screen [109,110]. Shape modeling by sketching can

FIGURE 3.2: Silhouette rendering in object space method (left) and image space method (right).
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be seen as the reverse of such 2D depiction. Given a 2D line drawing consisting of silhouette,

feature, and shading lines, the system automatically generates a 3D shape whose 2D depiction

matches the input.

3.1.2 Human Perception of the Third Dimension
How does the human brain convert a single 2D picture into a mental 3D shape? This is

an important problem in cognitive psychology, and many descriptions have been proposed.

One way to describe the process is the notion of maximal simplicity, that is, humans will

imagine the 3D shape as the simplest way to connect the depicted lines. The question is

what is a simple shape for a human? Most people seem to consider that it is the shape which

will minimize the variations of curvature, which leads to setting up a curvature in the third

dimension which fits the one we observe of the 2D silhouette strokes. Some cognitive studies

seem rather to show that humans tend to imagine developable surfaces [111].

Hoffman suggests that, when a person see a 2D image, the human visual system infers

the most stable 3D structure whose appearance does not change significantly when the viewing

angles changes slightly [1]. This leads to more detailed rules useful for reconstructing 3D

geometry from give 2D line drawings. One example is that human vision assumes one silhouette

is hidden behind another silhouette when seeing T-shaped silhouette line. Another example

is that human vision assumes a convex surface when seeing a convex silhouette and assumes a

saddle-shaped surface when seeing a concave silhouette (Fig. 3.3).

When they recognize a well-known object from a sketch, humans will unconsciously use

a priori knowledge they have about the object to infer the third dimension. For example, if a

person knows that what he is looking at is a flat cloth, he can predict its complete geometry

with high accuracy from a single view. Similarly, a person can infer the depth of body parts

very accurately when seeing a 2D stick figure, using the knowledge of human body constraints.

Although we can leverage this ability in designing shape modeling systems, we will not discuss

FIGURE 3.3: 3D surface reconstructions from 2D contours.
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this issue of modeling with a priori knowledge in this book because our main focus is on general

free-form shape design. Interested readers are requested to refer to the literature on this, such

as garment design [112], posing of human models [113], and plant modeling [114].

Computational methods to mimic such 2D to 3D conversion are relatively new. The

computer vision community has focused on the problem of constructing 3D shapes from

natural images captured by camera. However, if the source image is a hand drawn sketch, the

process is entirely different. The information in a natural image is created by the interaction of

light with the 3D shape. A sketch is deliberately designed to communicate the shape to another

human using knowledge about how it will be interpreted. Reconstruction of objects consisting

of planar surfaces is relatively well studied [115], but reconstruction of free-form surfaces only

dates back to the seminal work by Williams in the early 90s. He generated a 3D surface by

inflating a closed region, using a level set method [116]. The systems described in the following

sections extend this idea by combining various gestural operations.

There are two distinguishable approaches for 3D model construction by means of 2D

line drawings. One is to complete a single complex sketch from a fixed viewpoint and then ask

the computer to reconstruct a 3D geometry [117,118]. The other is to progressively construct a

complex geometry by interweaving sketches with viewpoint changes [119, 120, 121]. All three

systems we describe next follow this progressive approach. The first approach more closely

follows the convention of traditional artwork and can appear more intuitive for first time users.

However, there is too much ambiguity in a complex sketch, and it is very difficult to build

a practical system based on this approach. The second approach addresses the problem by

decomposing complex sketches into many small steps to clearly capture the user’s intention,

opening a way to build practical modeling systems using sketching.

3.2 SKETCHING MESH MODELS
This section describes a sketching interface for constructing polygonal mesh models. The

prototype implementation is called Teddy [119]. The user interactively draws the silhouette of

the target model, and the system automatically generates a plausible 3D mesh. Polygonal mesh

representation is chosen instead of volume, since sketching directly specifies and operates on

surfaces, and it is easy to apply global deformation to a mesh. The Teddy system is recognized

as one of the first sketch-based modeling systems that extensively use gestural operations.

Instead of trying to infer a 3D shape from a single static 2D line drawing, the user interactively

constructs a shape, combining sketching and view control.

3.2.1 User Interface
The Teddy system emphasizes a simple pen-and-ink drawing metaphor, and most operations

are done by drawing simple free-form strokes on the canvas. The user draws interactively, and
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FIGURE 3.4: Creation. From [119]. c© 1999 ACM, Inc. Reprinted by permission.

the system applies an appropriate operation to the model, depending on the location and shape

of the stroke. The user can also change viewing angle and zoom level at any time with a simple

dragging operation.

3.2.1.1 Creating a New Object

Starting with a blank canvas, the user creates a new object by drawing its silhouette as a closed

free-form stroke. The system automatically constructs a 3D shape based on the 2D silhouette.

Figure 3.4 shows examples of input strokes and the corresponding 3D models. The algorithm

to calculate the 3D shape is described in detail in the next section. Briefly, the system inflates

the closed region with the amount depending on the width of the region: that is, wide areas

become fat, and narrow areas become thin.

3.2.1.2 Extrusion

Extrusion is a two-stroke operation: a closed stroke on the surface and a stroke depicting the

silhouette of the extruded surface. When the user draws a closed stroke on the object surface, the

system highlights the corresponding surface line in red, indicating the initiation of “extrusion

mode.” The user then rotates the model to bring the red surface line sideways and draws a

silhouette line to extrude the surface. This is basically a sweep operation that constructs the

3D shape by moving the closed surface line along the skeleton of the silhouette. The direction

of extrusion is always perpendicular to the object surface, not parallel to the screen. Users can
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FIGURE 3.5: Extrusion. From [119]. c© 1999 ACM, Inc. Reprinted by permission.

create a wide variety of shapes using this operation, as shown in Fig. 3.5. They can also make a

cavity on the surface by drawing an inward silhouette.

3.2.1.3 Cutting

A cutting operation starts when the user draws a stroke that runs across the object, starting and

terminating outside its silhouette. The stroke divides the object into two pieces at the plane

defined by the camera position and the stroke. What is on the screen to the left of the stroke

is then removed entirely (as when a carpenter saws off a piece of wood). The user can also bite

the object using the same operation (Fig. 3.6).

3.2.1.4 Smoothing

One often smoothes the surface of clay models to eliminate bumps and creases. Teddy lets

the user smooth the surface by drawing a scribble during “extrusion mode.” The system first

FIGURE 3.6: Cutting. From [119]. c© 1999 ACM, Inc. Reprinted by permission.
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FIGURE 3.7: Smoothing. From [119]. c© 1999 ACM, Inc. Reprinted by permission.

removes all the polygons surrounded by the closed red surface line and then creates an entirely

new surface that covers the region smoothly (Fig. 3.7). This operation is useful for removing

unwanted bumps and cavities or smoothing the creases caused by earlier extrusion operations.

3.2.1.5 Transformation

This operation distorts the model while preserving the polygonal mesh topology. It starts when

the user presses the “bend” button and uses two free-form strokes called the reference stroke

and the target stroke to modify the model. The system moves the vertices of the polygonal model

so that the spatial relation between the original position and the reference stroke is identical to

the relation between the resulting position and the target stroke. This movement is parallel to

the screen, and the vertices do not move perpendicular to the screen. This algorithm is described

in [122]. Transformation can be used to bend, elongate, and distort the shape (Fig. 3.8). A

couple of extensions to this transformation operation have been proposed recently [123, 124].

3.2.2 Algorithms
This section describes how the system constructs a 3D polygonal mesh from the user’s free-form

strokes. A model is represented as a polygonal mesh. Each editing operation modifies the mesh

to conform to the shape specified by the user’s input strokes (Fig. 3.9). The resulting model

FIGURE 3.8: Transformation. (Red lines are reference stroke and blue lines are target strokes.) From

[119]. c© 1999 ACM, Inc. Reprinted by permission.
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FIGURE 3.9: Internal representation: (a) after creation, (b) after extrusion, and (c) after cutting. From

[119]. c© 1999 ACM, Inc. Reprinted by permission.

is always topologically equivalent to a sphere. We focus on the main creation operation here.

See [119] for the detail of other modeling operations.

The system creates a new closed polygonal mesh model from the initial stroke. The over-

all procedure is this: we first create a closed planar polygon by connecting the start point and

end point of the stroke and determine the skeleton or axes of the polygon using the chordal axis

introduced in [125]. We then elevate the vertices of the skeleton by an amount proportional to

their distance from the polygon. Finally, we construct a polygonal mesh wrapping the skeleton

and the polygon in such a way that sections form ovals. When constructing the initial closed

FIGURE 3.10: Finding the skeleton: (a) initial 2D polygon, (b) result of CDT, (c) chordal axis, (d) fan

triangles, (e) resulting spline, and (f) final triangulation. From [119]. c© 1999 ACM, Inc. Reprinted by

permission.
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planar polygon, the system makes all edges a predefined unit length [Fig. 3.10(a)]. The edges

of this initial polygon are called external edges, while edges added in the following triangula-

tion are called internal edges. The system then performs constrained Delaunay triangulation

of the polygon [Fig. 3.10(b)]. We then divide the triangles into three categories: triangles

with two external edges (terminal triangle), triangles with one external edge (sleeve triangle),

and triangles without external edges (junction triangle). The chordal axis is obtained by con-

necting the midpoints of the internal edges [Fig. 3.10(c)], but our inflation algorithm first

requires the pruning of insignificant branches and the retriangulation of the mesh.

The pruning process starts from each terminal triangle and remove triangles inward as

long as the removed vertices are within a semicircle whose diameter is the interior edge. When

the eating stops, the system generates fan triangles by connecting the midpoint of the last interior

edge and removed vertices [Fig. 3.10(d)]. The pruned skeleton is obtained by connecting the

midpoints of remaining sleeve and junction triangles’ internal edges [Fig. 3.10(e)]. The next

step is to subdivide the sleeve triangles and junction triangles to make them ready for elevation.

These triangles are divided at the skeleton, and the resulting polygons are triangulated, so that

we now have a complete 2D triangular mesh between the skeleton and the perimeter of the

initial polygon [Fig. 3.10(f)].

Next, each vertex of the skeleton is elevated proportionally to the average distance between

the vertex and the external vertices that are directly connected to the vertex [Figs. 3.11(a) and

3.11(b)]. Each internal edge of each fan triangle, excluding skeleton edges, is converted to a

quarter oval [Fig. 3.11(c)], and the system constructs an appropriate polygonal mesh by sewing

together the neighboring elevated edges, as shown in Fig. 3.11(d). The elevated mesh is copied

to the other side to make the mesh closed and symmetric. Finally, the system applies mesh

refinement algorithms to remove short edges and small triangles.

3.2.3 Results and Discussions
Figure 3.12 shows a couple of examples of 3D models created by novice users using Teddy. It

shows that a wide variety of 3D shapes can be created by combining basic editing operations.

FIGURE 3.11: Polygonal mesh construction: (a) before, (b) elevate skeletons, (c) elevate edges, and

(d) sew elevated edges. From [119]. c© 1999 ACM, Inc. Reprinted by permission.
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FIGURE 3.12: 3D models designed by novice users. From [119]. c© 1999 ACM, Inc. Reprinted by

permission.

It is important that it uses pen-and-ink style rendering to give an impression that the model is

incomplete or imprecise. It hides the irregularity of the underlying mesh and allows the user to

concentrate on the overall shape without worrying about the details. A problem occurs when

one wants to use the resulting 3D model outside of Teddy, for example, putting them in a 3D

scene designed using standard modeling software. Then, the roughness of the polygonal mesh

model becomes apparent, and better surface representation becomes necessary.

The creation and extrusion algorithms described here essentially generate a surface around

a skeleton, so implicit surface representation can be a natural choice. Teddy chose not to

use implicit surface and directly constructed a mesh combining sequential mesh processing

operations. This is mainly due to the performance reasons at the time when the system was

developed (1998), but this heuristic method fails for unexpected inputs as shown in Fig. 3.13.

More seriously, the polygonal mesh is not associated with any high-level semantics, and it

is difficult to edit the geometry afterward in a consistent way. Different representations for

sketch-based modeling to address these problems will be introduced next.

FIGURE 3.13: Unintuitive extrusion results. From [119]. c© 1999 ACM, Inc. Reprinted by permission.

3.3 SKETCHING IMPLICIT MODELS
A common approach to construct a smooth surface or any topological genus is the use of implicit

representation (Section 1.3.2). This section describes a sketching interface that uses such an

implicit representation. Unlike the mesh-based model introduced in the previous section, the
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system described here computes a globally smooth 3D field function in space from the user

input and then extracts an isosurface of this field. It gives a more natural definition to the surface

geometry and makes it easier to add new parts to the shape while preserving smoothness.

There are two distinct approaches for defining an implicit surface. One is a variational

approach that computes a surface interpolating the sketched contour via optimization [41,126].

This approach can generate globally smooth surfaces, but the optimization step is rather costly

and it is difficult to obtain local control. Similarly, Schmidt [127] uses the fitting of a 2D

variational curve to the sketch and conversion into a field image before inflation to 3D; the

successively drawn primitives are then composed using implicit CSG operations. The other

approach is to infer a skeleton from the input sketch (as in the previous section) and then

construct a volumetric implicit surface thanks to the skeleton-based implicit surface formalism

(Section 1.3.2).

This gives a more straightforward definition to the surface and is well suited for subsequent

editing (changing thickness, skeleton-driven deformation, and so on). Alexe has shown that

the use of convolution surfaces of varying radius enables us to fit the contour without any

optimization step [120]. This is the approach we describe here.

The system described in this section is different from the one in the previous section in

several ways. Firstly, the user input is not limited to a single stroke. The user can paint a rather

complicated shape using multiple strokes before sending it to the surface construction process.

Secondly, the surface is everywhere smooth, even at the junctions between the different parts.

Thirdly, the user can adjust the thickness of each part. Finally, although it is not explicitly

addressed in the prototype system introduced here, it is also easy to deform the model by

manipulating the skeleton.

3.3.1 User Interface
The user constructs a model by progressively adding or removing parts to or from a shape. Each

part is generated from a user-drawn sketch by means of inflation. The user can create either a

rotund part by drawing a closed stroke or a tubular shape by drawing an open stroke. Moreover,

these shapes can be made flat with no extra effort, thanks to the embedded thickness control

mechanism. Figure 3.14 shows an example of this iterative sketching process.

Part construction starts with 2D sketching. The system uses a graphical tablet and a

digital pen to obtain pressure and inclination information. The user sketches with as many

strokes as he or she wants. As long as the strokes have not been used for reconstruction, one is

free to erase and modify them.

Once the contour has been completed the user strongly presses the digital pen against the

tablet, requesting 3D surface construction. The system then constructs a 3D shape component

such that its projection on the screen fits the user-drawn contour [Figs. 3.15(a) and 3.15(b)].
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FIGURE 3.14: Progressive implicit modeling by sketching: simple implicit primitives drawn from

different viewpoints are blended using a zoom-dependent sharpness (from [120]). From [120].

FIGURE 3.15: (a), (b) Creating a part. (c), (d), (e) Adding a part to an object. (f),(g),(h) Carving.

(i),(j),(k) Thickness control (side view). From [120].
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The user controls the thickness of the shape through the pen’s angle when he or she presses

the tablet to call reconstruction: if the pen is held orthogonal to the tablet while pressing, the

shape is a flat one [Fig. 3.15(k)], otherwise it is a thicker one [Fig. 3.15(i)].

The interface for extending or carving an existing shape is the same as for creating the

first component. When the user sketches over an existing surface, the point where the sketch

first covers the object gives the depth of the new shape component to be constructed. When

the new set of strokes is completed, the user presses the stylus on the tablet to add the shape

to the existing object, or the eraser at the other end of the pen to carve it into the object. See

Figs. 3.15(c)–3.15(h). Small details can be modeled by zooming in to get closer to the object.

While large object parts smoothly blend with each other, the smaller components (e.g., eyes and

nose of a character) are automatically composed using a detail-preserving, sharper blending.

3.3.2 Extraction of a Skeleton From 2D Sketch
The first step of the algorithm is to extract a geometric skeleton from the sketch. It gives a basis

for a volumetric, implicit reconstruction of the shape.

Skeleton extraction has been studied for years in computer vision for various purposes such

as shape matching and classification. The method described here is tailored to the subsequent

construction of organic shapes as convolution surfaces. A popular representation for a skeleton

is the medial axis (defined as the locus of centers of maximal balls included in the 2D shape),

but such linear geometry can only support tubular shapes or rounded cross-sections when used

as skeletons for generating implicit surfaces. In order to be able to reconstruct both flat and

rounded shapes according to the user-controlled thickness, the system generates a skeleton

which includes both polygonal and linear components.

When the stylus pressure indicates that the drawing is finished, the strokes’ image is

converted to a bitmap. Its size is decreased using a pixel averaging technique in order to smooth

out the input and to reduce the amount of computation for the skeleton. The computation then

proceeds as follows:

1. The object is separated from the background [Fig. 3.16(b)].

2. The weighted distance transform (WDT) is computed [Fig. 3.16(c)]. The system then

detects the set of centres of maximal discs (CMDs) which will be used in skeleton

extraction.

3. The object is thinned iteratively keeping all the CMDs. This produces a connected

pixel graph [Fig. 3.16(d)], which is pruned to eliminate the insignificant branches. This

graph provides the line segments of the skeleton.

4. The second pass is performed on the initial WDT image and thins the object without

preserving the CMD, the result being an eroded shape of the object [Fig. 3.16(e)].
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FIGURE 3.16: Algorithm overview: (a) user strokes, (b) identification of the object boundaries,

(c) WDT transform, (d) iteratively thinning with preservation of the CMDs, (e) iteratively thinning with-

out preservation of the CMDs, (f) sampling the segments, (g) sampling and triangulating the polygons,

(h) final skeleton graph, and (i) final convolution surface. From [120].

This image is used to compute the skeleton’s polygons, as described in the rest of the

steps.

5. The image from Fig. 3.16(e) is subtracted from Fig. 3.16(d), and the result is a collection

of free-form lines of one pixel width. Each line is resampled to reduce the number of

segments [Fig. 3.16(f)].

6. To compute polygons, the object contour is recovered from the eroded image

[Fig. 3.16(e)] and sampled [Fig. 3.16(g)]. If the image has several disconnected com-

ponents, then each part produces a polygon. The polygons are split into triangles using

constrained Delaunay triangulation [Fig. 3.16(g)].

7. The graph connections are computed from the two images in Figs. 3.16(f) and 3.16(g).

This produces the final geometric skeleton, made of triangles and line segments

[Fig. 3.16(h)].

3.3.3 Construction of a Convolution Surface
Standard distance-based implicit surfaces [11] would produce bulges at joints between skeleton

components. To get a nice, smooth implicit shape from the complex skeleton generated from

the sketch, a convolution surface is required. Moreover, a formulation enabling a varying radius
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is needed. Alexe uses Angelidis’s closed-form convolution surfaces with varying radius [25]. In

their method, a convolution surface is defined as an isosurface of a field function defined in

space as the convolution product of a geometric skeleton function g(p) and a kernel function

h(p), which smoothly varies according to weights attached to the skeleton vertices:

f (p) =

∫

r∈S

g (r )h(p − r )dr = c . (3.1)

To fit the sketched contour, the weights have to be chosen according to the distance

from the vertex to the contour (which can be directly read from the WDT image) and the

level of zoom. In practice, these weights are set from a table of precomputed correspondence

values, with polynomial interpolation to get intermediate values. This results in a smooth

approximation of the user-drawn sketch, which avoids any unwanted oscillation of the surface

[Fig. 3.16(i)].

The control of the object’s thickness orthogonal to the viewing direction is achieved by

providing every implicit shape with a depth-scaling factor: The field function is composed with

a scale in the depth direction, the scaling factor being computed from the angle between the

pen and the tablet, when the user clicks to construct the shape component. The reconstructed

shape is positioned either at a default depth or at a depth computed from the existing object

covered by the sketch, allowing progressive addition of details to a shape in an intuitive way.

3.3.4 Progressive Blending and Rendering
Each time the user draws a new shape component, the level of detail of the geometric skeleton

remains constant in the image space, so it increases with respect to the 3D shape when the

user zooms in. This zoom-dependent level of detail is also used to determine the sharpness of

blending with the existing object and the size of the polygonization cell for the shape to be

reconstructed.

The way the new shape blends with the previously existing object is described by a

blending function. Alexe uses the functions defined by Barthe et al. [128], setting the blending

parameter according to the current zoom level. This ensures that small details are added using

a sharper blending than large ones. Otherwise they tend to fade out when they are composed

with a much larger shape.

The polygonization of the new object part is computed and displayed immediately. If

the component is to be subtracted from the existing shape it is displayed semitransparently.

Meanwhile, a process in the background computes the final surface polygonization, taking the

blending between surface components into account, and the user continues his modeling task.

When the full polygonization is available, the final mesh is displayed, replacing the disconnected

meshes. If the object has already been updated, the polygonizing process is notified, and it
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restarts the computation. This maintains interactive rates during the modeling process, so that

the user feels free to pursue his modeling activity.

3.3.5 Results and Discussion
The system we just presented reduces user interface to sketching and navigation actions, with

no need to use menus or scroll bars: all the parameters are set up automatically from the sketch

and the current zoom factor; the user just has to adjust the viewpoint, sketch a shape with no

restriction of topology or geometry, and click to either add or remove this new component—

being careful of pen orientation to get the desired thickness. This provides an intuitive interface

for quick shape prototyping: the results in Fig. 3.17 show a wide variety of free-form shapes,

modeled in less than 5 minutes each.

Looking into the underlying shape representation, the method relies on the computation

of a nonmanifold geometric skeleton (a graph of branching polylines and polygons) coated

by a convolution surface of varying radius. This formulation yields several advantages: No

optimisation step is required for fitting the 3D shape to the 2D contours, which ensures

interactive performance and avoids any accidental oscillation of the reconstructed surface. Each

shape component can have an arbitrary topological genus and can vary, according to the user’s

desire, between rounded and flat shapes. Moreover, both smooth blending and smooth removal

operations can be performed. Lastly, the implicit CSG operators used include sharpness control

parameters, so small features are not simply blurred into a larger shape.

One of the modeling choices is still to be discussed: this system represents the final shape

analytically as a hierarchy of blended implicit primitives. This has the benefits of providing an

explicit skeleton which can be used for subsequent shape edition, deformation, or animation.

However, as noted in Chapter 2, this may lead to shapes which become costlier and costlier

to compute and display if the sketching session lasts a long time. Thanks to the rendering

process which first displays disconnected primitives, the user will still get some real-time

feedback, but he or she will have to wait longer and longer before getting a smooth view of

the shape.

An alternative would be to combine this way of constructing implicit primitives with the

data structure described in the volumetric sculpting system presented in Chapter 2. The field

function would be stored in a discrete way within a multiresolution, adaptive data structure. It

would still be edited by the blending of new analytic shape components after each reconstruction

step, keeping the same method for skeleton extraction and component construction while

adapting the volumetric grid to the level of zoom. Such a system would be an interesting

direction for future work. Note that a volumetric representation for sketch-based modeling,

based on a constant resolution storage of volumetric data, was already investigated in [129] and

gave good results when no sharp feature was required.
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FIGURE 3.17: Objects modeled with the system. The user took 2–5 minutes for modeling each object

and used three to nine strokes, each of them modeling a different object part. From [120].

3.4 SKETCHING OPTIMIZATION SURFACES
This section describes a sketch-based modeling system that uses surface optimization for the

geometry construction. The implicit representation described in the previous section is defined

in space, and the surface is constructed by means of isosurface extraction. In contrast, the
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method described in this section uses surface-based representation. It starts with a manifold

mesh and moves vertices so as to minimize local variation of curvature without changing mesh

topology. This process is essentially the variational modeling method described in Section 2.1.1

but is tailored for interactive modeling by using the original sketching as a means to define

locality of optimization.

Surface-based representation has several advantages over implicit representation. Firstly,

surface-based representation makes it possible to control the surface by means of constraints

on the surface. This is more direct than controlling implicit surface by means of constraints

along the axis. Secondly, it is easier to implement locally sharp features. Typical implicit

representation is globally smooth, and it is not easy to represent sharp features. CSG operation

makes it possible to represent sharp features by subtraction, but it is not easy to represent locally

sharp features smoothly disappearing to smooth regions (Fig. 3.22). Thirdly, surface-based

representation makes it possible that two different surface areas coexist in the same spatial

location. For example, when the user defines a snake-shaped model where the head and the tail

are touching, the head area and the tail area require different geometry definition, although they

are at the same spatial location. It is straightforward to treat them differently in surface-based

representation, but it requires special treatment when using simple implicit representation.

This section introduces a prototype implementation called FiberMesh [121]. Its inter-

face closely follows that of the original Teddy (Section 3.2). However, unlike Teddy, the user’s

original stroke stays on the model surface and serves as a handle for further geometry control.

The user can push and pull these curves interactively, and the surface geometry changes ac-

cordingly. In addition, the user can freely add and remove control curves on the surface. These

extensions enable the design of far more elaborate shapes than those possible with sketching

alone (Fig. 3.24).

3.4.1 User Interface
The system provides several modeling tools, and the user selects a tool by pressing a GUI

(graphical user interface) button. A sketching tool allows the user to construct a model by

drawing free-form strokes on the screen. Other tools are provided to edit control curves to

obtain fine control of surface geometry.

3.4.1.1 Sketching Tool

The sketching tool is basically identical to that of Teddy. The user can create, cut, and extrude

a model by drawing free-form strokes. Unlike the original Teddy, the user’s original strokes

stay on the surface as control curves that define the surface geometry. In the case of creation, a

single loop control curve appears around the model created [Fig. 3.18(top)]. The curve is shown

in blue, indicating that it is a smooth constraint (requiring normal continuity across the curve).
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FIGURE 3.18: Sketching operations of FiberMesh, modifying geometry. From [121]. c© 2007 ACM,

Inc. Reprinted by permission.

In the case of a cut, a single loop control curve appears at the boundary of the cross-section

[Fig. 3.18(middle)]. The curve is shown in red, indicating that it is a sharp constraint and does

not require normal continuity. In the case of extrusion, a red closed curve appears at the base

of extrusion and a blue open curve appears at the side of the extrusion [Fig. 3.18(bottom)].

The user can also add a new control curve at an arbitrary location by drawing a free-form

stroke. When the stroke starts and ends on the surface, it becomes an open control curve on

the surface [Fig. 3.19(top)]. The user can also put a closed loop control curve on the surface

by drawing a closed loop on the surface [Fig. 3.19(middle)]. When the stroke starts and ends

outside the surface crossing the surface in the middle, it generates a closed loop control curve

on the surface beneath the stroke [Fig. 3.19(bottom)].

3.4.1.2 Deformation Tool

The deformation tool allows the user to grab a curve at any point and pull the curve in the desired

direction. The curve deforms accordingly, preserving local details as much as possible [130], and

the surface geometry is updated accordingly (Fig. 3.20). Editing operations are always applied

to the control curves, not directly to the surface. Surface geometry is automatically defined by

the optimization process, and the user is not allowed to control it directly. If the user wants

more control, he or she must explicitly add new control curves on the surface. This two-step

process can be seen as a bit awkward. However, if we allow the user to directly deform a surface

independent of control curves, the definition of the surface becomes invisible, and it becomes
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FIGURE 3.19: Sketching operations of FiberMesh, adding control curves. From [121]. c© 2007 ACM,

Inc. Reprinted by permission.

difficult to maintain global smoothness. Explicit addition of control curves makes the structure

of the surface clearer, and each curve serves as a convenient handle for further editing.

The system uses a peeling interface for the determination of deformed area (region of

interest, ROI) [130]. The size of the curve segment to be deformed is proportional to the

amount of dragging. The more the user pulls, the larger the segment of the curve deformed.

This frees the user from manually specifying the ROI before starting deformation and allows

the user to dynamically adjust ROI during deformation. This peeling effect propagates to the

other curves connected to the deformed curve and allows the user to deform larger areas of the

surface.

3.4.1.3 Rubbing Tool

A rubbing tool is used for smoothing a curve. As the user drags a mouse back and forth

(rubs) near the target curve, the curve gradually becomes smooth. The more the user rubs, the

FIGURE 3.20: Pulling a curve. The deformed curve segment is determined by how much of it the user

peels off. From [121]. c© 2007 ACM, Inc. Reprinted by permission.
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FIGURE 3.21: Rubbing (smoothing) a curve. From [121]. c© 2007 ACM, Inc. Reprinted by permission.

FIGURE 3.22: Erasing a control curve: (left) before erasing, (middle) immediately after erasing, and

(right) after optimization. From [121]. c© 2007 ACM, Inc. Reprinted by permission.

smoother the curve becomes (Fig. 3.21). This tool is very important because the curves resulting

from sketching always contain some noise, and deformation can also introduce roughness to

a curve. It might be possible automatically to apply denoising after each user interaction, but

the amount of smoothing to apply is not clear. The rubbing tool provides an intuitive and

convenient interface for specifying the target area for smoothing as well as the amount of

smoothing to apply.

3.4.1.4 Erasing Tool and Type Change Tool

The erasing tool works as a standard eraser. The user drags the cursor along a control curve

to erase it (Fig. 3.22). This is equivalent to removing constraints that define the surface. The

system applies functional optimization on the fly as the user erases a stroke to observe the

consequence of the erasing operation. The change tool is for changing the type of a control

curve. Like the erasing tool, the user drags the cursor along a curve to change the property

(Fig. 3.23). If the curve is a sharp curve, it converts it to smooth curve, and vice versa. As

FIGURE 3.23: Changing curve type: (left) before the change, (middle) immediately after the change,

and (right) after optimization. From [121]. c© 2007 ACM, Inc. Reprinted by permission.
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with the erasing tool, the system continuously updates the surface geometry according to the

property changed and presents the result to the user.

3.4.2 Algorithm
We describe here how to compute the surface geometry for a given set of control curves. The

curve geometry is given by a sketching operation and subsequent deformation operations. The

topology of the surface is defined when the surface mesh is first constructed by sketching

operations. The surface construction algorithm described here computes the position of mesh

vertices, so that the resulting surface is locally smooth everywhere except on the red control

curves. We do not describe the curve deformation algorithm here. Interested readers may refer

to the original paper [121].

The system generates a fair surface that interpolates the control curves specified by the

user by means of functional optimization. There are a couple of possible objective functions to

choose. Welch and Witkin minimized squared mean curvatures [131], and Moreton and Se-

quin minimized variation of curvature [132]. Bosch compared optimization results minimizing

various degrees of linear differentials and showed that higher order differentials produce better

results but become unstable [133]. Based on these previous results and some experiments, min-

imizing the variation of curvature is chosen in FiberMesh. Since it is a nonlinear optimization

problem and is too expensive to obtain an exact solution, the FiberMesh system approximates

the computation in a specific way to solve it efficiently, using a fast sparse linear solver.

The method used in FiberMesh is based on a hole-filling fair surface construction method

presented by Schneider and Kobbelt [134]. Their basic idea is to factorize the fourth-order

problem into two second-order problems and solve them sequentially to achieve interactive

speed and obtain stability. They first compute target mean curvatures that smoothly interpolate

the curvatures specified at the boundary and then move the vertices to satisfy the target curvature

one by one. Since prescribed curvature values are not given at the boundary, the FiberMesh

system computes curvatures together with the vertex positions. Since it is a nonlinear problem,

an iterative approach is adopted to quickly obtain an approximate solution. Starting from

an approximate initial mesh, the current curvatures are computed first, and then the target

curvature values are obtained by smoothing (diffusing) the current curvatures. The system

solves the following least squares minimization problem to obtain smoothly varying scalar

curvature values:

arg min
c

{

∑

i

‖L(c i )‖
2 +

∑

i

‖c i − c ′
i‖

2

}

, (3.2)

where L(·) denotes the discrete graph Laplacian, which approximates scalar mean curva-

ture values. The first term requires that the neighboring curvature values be close (smooth),
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and the second term requires that the resulting curvatures at all vertices be near the current

curvatures.

To obtain a geometry that satisfies these target curvatures they use the uniformly dis-

cretized Laplacian as an estimator of the integrated mean curvature normal [135]. The inte-

grated target Laplacian δi = Ai · c i · ni per vertex is given as the product of an area estimate

Ai for vertex i , the target curvature c i , and the normal ni from the current face normals. Then

new positions could then be computed by solving the following global least squares system:

arg min
v

{

∑

i

‖L(vi ) − δi‖
2 +

∑

i∈C

‖vi − v′
i‖

2

}

, (3.3)

where the first term requires that the vertex Laplacians be close to the integrated target Lapla-

cians, and the second term places positional constraints on all vertices in the control curve set C.

However, the assumption that the uniformly discretized Laplacian estimates the mean

curvature does not hold when the edges around a vertex are not of equal length. Rather than use

a geometry-dependent discretization, which would require us to recompute the system matrix in

each iteration, the system tries to achieve equal edge lengths by prescribing target edge vectors.

For this, the system first computes desired scalar edge lengths, similar to the computation of

desired target curvatures, by solving:

arg min
e

{

∑

i

‖L(e i )‖
2 +

∑

i

‖e i − e ′
i‖

2

}

(3.4)

for a smooth set {e i} of target average edge lengths from the current set of the average lengths

e ′
i of edges incident on vertex i . Again, the iteration starts by using only the edge lengths along

the given boundary curve. Note that the matrix for this linear system is identical to the system

for computing target curvatures, so that one can reuse the factored matrix. From these target

average edge lengths, the system derives target edge vectors for a subset B of the edges in the

mesh:

ηi j = (e i + e j )/2 · (vi − v j )/‖vi − v j‖. (3.5)

Using this set of target edge vectors, they modify the linear system in Eq. 3.3 to derive the

updated vertex positions as follows:

arg min
v

{

∑

i

‖L(vi ) − δi‖
2 +

∑

i∈C

‖vi − v′
i‖

2 +

∑

(i, j )∈B

‖vi − v j − ηi j‖
2

}

.

(3.6)
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It has been found that it is sufficient only to constrain edges incident to the constrained

curves, as setting the uniformly discretized Laplacian equal to vectors in the normal direction

automatically improves inner fairness at all free vertices [136]. The two-step process, consisting

of solving for target curvatures and edge lengths and then updating the positions, is repeated

until convergence. In practice, it is observed that the computation converges rather quickly,

in approximately five to ten iterations. The system needs to repeatedly solve a few sparse

linear systems, but the expensive matrix factorizations are required only once at the beginning

(because left-hand side matrices remain unchanged during iteration). The system only needs

to run backsubstitutions during the iterations, which is very fast.

3.4.3 Results and Discussion
Figure 3.24 shows a couple of 3D models designed using FiberMesh. These detailed mod-

els cannot be created using the original Teddy system. It is also difficult to represent these

surface details containing both sharp and smooth features with implicit representation. The

combination of sketching and subsequent curve editing interface efficiently support the skill

transfer from traditional 2D sketching to 3D modeling. the artist, Uruma, tried the system and

commented, “One great thing about this system is that one can start doodling without having

a specific goal in mind, as if doodling on paper. One can just create something by drawing a

stroke, and then gradually deform it guided by serendipity, which is very important for creative

FIGURE 3.24: 3D models designed using FiberMesh.
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work. Traditional modeling systems (parametric patches and subdivision surfaces) require a

specific goal and careful planning before starting to work on the model, which can hinder the

creative process.”

The surface-based method described in this section and the skeleton-based method

described in the previous section are complementary to each other. The surface-based method

is good for representing surface features such as a human face but not very good with protruding

structures such as arms and legs. Interesting future direction would be to combine these two

methods as seen in the early work by Welch and Witkin [WW92], where they used both surface

constraints and axial constraints. Using the curves as animation control is another promising

future direction.

3.5 CONCLUSION: WHAT IS THE BEST REPRESENTATION FOR
SKETCH-BASED MODELING?

This chapter has described three sketch-based modeling systems that use different geometrical

representations: plain mesh, implicit surfaces, and optimization surface. Plain mesh is simple

and fast but lacks surface smoothness and is not suitable for detailed control. Hierarchical

implicit surface can generate perfectly smooth surfaces and makes subsequent deformation

possible, driven by a skeleton. However, it is difficult to define features directly on the model

surface. Optimization surface allows the user to directly specify the features on the surface

and can continuously present a smooth surface to the user for subsequent deformations. Part

of the reason for this progression is the availability of computational resources. Interactive

optimization became feasible only recently thanks to ever-increasing CPU speed and fast

matrix libraries.

What else to do? One interesting research direction is to consider physical properties in

the modeling process. The essence of sketching interface is that the system automatically infers

missing information using some assumption or some rule. Domain specific physical constraint

is a natural choice, and a few experiments have been reported. We have already seen some

consideration of physical properties in Section 2.3. Other existing experiments include garment

draping for sketching [112], virtual garments, and simulation of stuffed materials for plush toy

design [137].
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C H A P T E R 4

Future directions: Modeling
by Gesture

The defining feature of any interactive modeling process in the real world is that the shape

progressively emerges from a large series of repetitive user gestures. Even for skilled users, a first

gesture is often not exactly the right one due to the physical interaction with the support paper

or surface. Oversketching a stroke several times, or repeating a sculpting gesture to remove or

add more material, are extremely common ways to progressively improve and refine a shape. In

the real world, gestures are enhanced by the feeling of the interaction with the support paper

or sculpted surface; this feeling can of course be much more difficult to communicate in the

virtual context. In addition, while each real gesture has an immediate effect on the shape, it

does not necessarily increase its complexity: many gestures are rather aimed at simplifying the

feature lines or smoothing the shape. An important observation is that even when changing

the viewpoint is possible, as in sculpting, a typical user will not do it as frequently as applying

the gestures that create the shape. This is to be expected since reaching visual harmony in shape

design requires us to model parts from a consistent viewing angle.

Let us discuss the ways the digital modeling systems we have reviewed exploit users’

gestures. This will enable us to identify the main challenge and indicate some open directions

for future research.

4.1 MODELING THROUGH ADDING AND ERASING GESTURES
Let us first discuss the interactive modeling systems which do not use any kind of deformations

but rather enable the user to design a 3D shape by progressively adding matter to and removing

matter from it.

If we try to identify the differences between sculpting and sketching systems of this kind,

we come to the following observations:

Sculpting systems enable the user to drag volumetric tools along paths that correspond

to the geometric skeleton of a shape to be added to or removed from the work. In contrast,

sketching systems enable the user to sketch contours and will somehow compute a geometric
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skeleton from them to infer 3D. In theory, sculpting gestures can indeed be more complex,

since they do not need to be planar. However, without a proper interaction with a physical

surface, moving in 3D is tiresome and can be less precise: in practice, 2D gestures similar to

sketching are mostly used. So, is it more effective to sketch a contour of a shape or to sketch

the skeleton? Although some proper user studies would be required here, designing shapes from

contours looks more intuitive, since it is closer to the way humans perceive real shapes.

A second difference between progressively sculpting and progressively sketching by blend-

ing primitives is that 3D sculpting systems require the user to define explicitly the positions

of the 3D parts he or she adds or removes. As we have seen in Chapter 2, this either requires

using a multiple DOF (depth of field) device with some force feedback or changing viewpoint

to check for contacts with the already existing parts of the model. In contrast, most sketching

systems automatically guess a relative position for successive primitives, with the hypothesis

that when the user oversketches some existing part, the new primitive will be located at the

same depth. This hypothesis has proved very effective in practice. It greatly reduces the need

for changing viewpoint, which as mentioned above, helps to reach a harmonious design.

These two remarks are probably the reasons why, at least for common shapes, simple

sketching systems based on 2D contours can be much faster to use than volumetric sculpting,

with about the same quality of results.

4.2 ENABLING DEFORMATION GESTURES
Enabling deformations is indeed one of the main advantage of sculpting systems. In a nonvirtual

modeling context, one of the most important factors that affects the artist’s technique is the

amount of available material. This notion is not only familiar to professional artists but also to

children who play in kindergarten with dough and to adults through everyday life experience.

A sculpting technique that preserves volume will take advantage of this familiarity and will

hopefully be genuinely intuitive to use. As has been demonstrated by Aardman Studios in

the Wallace and Gromit series, successive constant volume deformations can even be used to

animate a shape, while sketching would more or less require the artist to start again from scratch

and great skill to ensure consistency.

However, even if all the elements are there to provide real-time deformable models

behaving as constant volume real clay, an effective method for the user to define deformation

gestures is still needed. Although local deformations such as pushing and pulling material based

on translation gestures can be easily controlled even with a mouse, large-scale deformations

such as bending and twisting a shape are much harder to specify. They may require using,

in the virtual world, an avatar object such as a sponge, so that the user has something in his

hands during manipulation [138]. However, an avatar object will never be as good as the clay

model, with the right shape: In real life, the mastery we have of physical interactions helps us

to manipulate clay gently enough not to apply unwanted local prints but still strongly enough
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to deform it at a large scale. This range from local to global would probably be much harder to

create in the virtual world, although extra interfaces such as interaction capture systems [139]

could be used. In summary, there is still a long way to go for offering a really usable virtual clay

modeling system.

An alternative open research direction would be to find out how sketches could depict

deformations and try to incorporate these in sketch-based designs. To our knowledge, this is

still an open issue: only local deformations based on oversketching have yet been incorporated

into sketching interfaces.

4.3 TOWARD FAST AND EASY CREATION OF
DIGITAL CONTENT

To conclude, let us step backward and look at the whole field of the creation of digital content:

with the improvement of computer speed and memory capacities, the demand for complex

digital scenes has grown higher and higher. There is an increasing gap between the scenes

a computer can handle in real-time and those the artists can interactively create. This is a

reason for the recent developments in capturing and processing real-shapes as well as for all

the image-based techniques proposed in the field. However, relying on existing objects is more

restrictive, and physically building them is much costlier than creating them as virtual objects.

We thus believe that there is some strong motivation for developing interfaces which

will accelerate the creation of digital content. In addition to the problem of individual shape

modeling studied in this book, specifying the relative placements of objects in a scene, or quickly

indicating the amount of similarity between and variety of a large number of elements [140], are

important input needed for digital content. In this context, sketching has been exploited only a

little, although it has huge potential. This opens interesting challenges: the ability to interpret

complex sketches drawn from a single viewpoint and the utilization of the combination of

sketching and procedural methods for creating complex scenes.
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[7] P. Bézier. General distortion of an ensemble of biparametric patches. Computer Aided

Design, 10(2):116–120, 1978. doi:10.1016/0010-4485(78)90088-X

[8] L. Piegl. Coons-type patches. Computers and Graphics, 12(2):221–228, 1988.

doi:10.1016/0097-8493(88)90033-7

[9] T. DeRose and C. Loop. The S-patch: A new multisided patch scheme. ACM Trans-

actions on Graphics, 8(3):204–234, 1989. doi:10.1145/77055.77059

[10] Thomas W. Sederberg, Jianmin Zheng, Almaz Bakenov and Ahmad Nasri.

2003. T-splines and T-NURCCs. ACM Transactions on Graphics, 22, 3, 477–484.

doi:10.1145/882262.882295

[11] James F. Blinn. A generalization of algebraic surface drawing. ACM Transactions on

Graphics, 1(3):235–256, 1982. doi:10.1145/357306.357310

[12] T. Nishimura, M. Hirai, T. Kawai, T. Kawata, I. Shirakawa and K. Omura. Object

modeling by distribution function and a method of image generation (in Japanese).

Journal of Papers at Electronics Communication Conference’85, J68-D(4):718–725,

1985.

[13] B. Wyvill, C. McPheeters and G. Wyvill. Data structure for soft objects. The Visual

Computer, 4(2):227–234, August 1986. doi:10.1007/BF01900346

http://dx.doi.org/10.1093/comjnl/16.2.157
http://dx.doi.org/10.1016/0010-4485(78)90088-X
http://dx.doi.org/10.1016/0097-8493(88)90033-7
http://dx.doi.org/10.1145/77055.77059
http://dx.doi.org/10.1145/882262.882295
http://dx.doi.org/10.1145/357306.357310
http://dx.doi.org/10.1007/BF01900346


book MOCL007.cls August 4, 2008 19:46

70 INTERACTIVE SHAPE DESIGN

[14] W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3d surface con-

struction algorithm. In Computer Graphics (Proceedings of ACM SIGGRAPH 87), 21, 4,

ACM, 163–169. doi:10.1145/37402.37422

[15] J. Bloomenthal. Polygonization of implicit surfaces. Computer Aided Geometric Design,

5:341–355, 1988. doi:10.1016/0167-8396(88)90013-1

[16] A. Pasko, V. Adshiev, A. Sourin and V. Savchenko. Function representation in ge-

ometric modeling: Concepts, implementation and applications. The Visual Computer,

11(8):429–446, 1995. doi:10.1007/BF02464333

[17] Brian Wyvill, Eric Galin and Andrew Guy. Extending the csg tree. Warping, blending

and boolean operations in an implicit surface modeling system. Computer Graphics

Forum, 18(2):149–158, June 1999. doi:10.1111/1467-8659.00365

[18] J. Bloomenthal and B. Wyvill. Interactive techniques for implicit modeling. Computer

Graphics, 24(2):109–116, March 1990. doi:10.1145/91394.91427

[19] Andrew P. Witkin and Paul S. Heckbert. Using particles to sample and control implicit

surfaces. Proceedings of ACM SIGGRAPH 1994, Orlando, Florida, 269–277.

[20] B. Wyvill and G. Wyvill. Field functions for implicit surfaces. The Visual Computer,

5:75–82, December 1989. doi:10.1007/BF01901483
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