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ABSTRACT
Artificial systems that think and behave intelligently are one of the most exciting and chal-
lenging goals of Artificial Intelligence. Action Programming is the art and science of devising
high-level control strategies for autonomous systems which employ a mental model of their
environment and which reason about their actions as a means to achieve their goals. Appli-
cations of this programming paradigm include autonomous software agents, mobile robots
with high-level reasoning capabilities, and General Game Playing. These lecture notes give an
in-depth introduction to the current state-of-the-art in action programming. The main topics
are

� knowledge representation for actions,
� procedural action programming,
� planning,
� agent logic programs, and
� reactive, behavior-based agents.

The only prerequisite for understanding the material in these lecture notes is some general
programming experience and basic knowledge of classical first-order logic.

KEYWORDS
Agent programming, cognitive robotics, knowledge representation



MOCL008-FM MOCL008-FM.cls July 5, 2008 10:6

vii

Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Mathematical Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2.1 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Logic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3. Procedural Action Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Setting the Stage: Defining Fluents and Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 GOLOG Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Action Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Signatures with Relational Fluents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.2 Signatures with Functional Fluents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 GOLOG Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
3.5 A GOLOG Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Extensions: Concurrency and Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.7 Action Programs with Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4. Action Programs and Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1 Planning with Plan Skeletons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Planning with Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Planning with Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5. Declarative Action Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1 Agent Logic Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 ALP Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.1 Declarative Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 An ALP Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Agent Logic Programs with Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



MOCL008-FM MOCL008-FM.cls July 5, 2008 10:6

viii CONTENTS

6. Reactive Action Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1 BDI-Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 AgentSpeak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 An AgentSpeak Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4 Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Suggested Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Author Biography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



main MOCL008.cls July 5, 2008 10:2

1

C H A P T E R 1

Introduction

Artificial systems that think and behave intelligently are one of the most exciting and challenging
goals of Artificial Intelligence (AI). Important examples of such systems are autonomous
software agents, mobile robots with high-level reasoning capabilities, and general game playing
programs. All of these have in common the need for advanced cognitive functions such as the
ability to follow complex and long-term strategies, to make rational decisions, to devise suitable
plans, and to react sensibly in unexpected situations. These capabilities are characteristics of
human-like intelligence and ultimately distinguish thinking systems from mere autonomous
machines.

A fundamental paradigm in AI research says that higher intelligence is grounded in
a mental representation of the world and that intelligent behavior is the result of correct
reasoning with this representation. Action Programming is the art and science of devising high-
level programs for a system which employs its own mental model to reason about its actions as
a means to achieve its goals.

Research on how to design an automatic system that reasons about its actions has a
long history in Artificial Intelligence (McCarthy, 1958). The classic, formal model for rep-
resenting actions and for planning is the Situation Calculus, whose roots trace back to the
early days of AI (McCarthy, 1963; McCarthy and Hayes, 1969). Over the years other general
formalisms of similar expressiveness have been developed, most notably the Event Calcu-
lus (Kowalski and Sergot, 1986; Shanahan, 1997) and the Fluent Calculus (Thielscher, 1999).
A recent variant of the Situation Calculus is the Game Description Language (Genesereth et al.,
2006), a tailor-made but very expressive language that allows us to formalize the rules of
arbitrary games. Other, more restricted formalisms, like the Planning Domain Definition
Language (McDermott, 2000), have been introduced to admit particularly efficient reasoning
systems.

Special-purpose languages not only underlie the many existing, efficient planning sys-
tems, they are also employed in agent frameworks (Georgeff and Lansky, 1987) such as
AgentSpeak (Rao, 1996), SPARK (Morley and Meyers, 2004), or 3APL (Hindriks et al., 1999)
and many others, which allow us to control agents on the basis of formal, symbolic world
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models. The more expressive Situation Calculus and similar approaches, on the other hand,
provide the formal underpinnings for the general, high-level action programming languages
GOLOG (Levesque et al., 1997) and FLUX (Thielscher, 2005), which support the design of
control programs for systems that reason about their actions and devise plans.

These lecture notes give an in-depth introduction to the current state-of-the-art in
action programming. After a short recapitulation of some mathematical notions and notations
in Chapter 2, we begin, in Chapter 3, with an introduction to the underlying principles
for representing action knowledge that are common in a variety of diverse applications such as
software agents, robots with high-level reasoning capabilities, and general game playing systems.
For this representation we introduce a general action calculus, which abstracts from existing
languages like the Situation Calculus or the Game Description Language. This introduction
is followed by the main topic of this chapter, the procedural action programming language
GOLOG, including advanced techniques such as concurrency, interrupts, and sensing.

Chapter 4 is devoted to the specific problem of planning in action programs. It is shown
how efficient planning algorithms can be integrated into high-level languages like GOLOG. A
special focus lies on the use of domain-specific heuristics for speeding up the planning process.
This is followed by an account of recent developments concerning the problem of planning
with additional preferences.

In Chapter 5 we turn to declarative action programming languages, specifically the
concept of Agent Logic Programs. It is shown how the principles of logic programming can
be adapted to specify agent behavior. A declarative semantics for these programs is given on
the basis of the Fluent Calculus, complemented by an operational semantics along with an
introduction to a programming system for declarative action programs.

Action programming for reactive, behavior-based agents are the main topic of the final
Chapter 6. It contains a detailed account of the generic programming framework of Procedural
Reasoning Systems (PRS), which builds on the standard BDI-model (for: Belief, Desire,
Intention) for rational behavior. The programming features available in specific PRS-systems
are introduced together with an account of their operational semantics.

The only prerequisite for understanding the material in these lecture notes is some
general programming experience and basic knowledge of classical first-order logic. Although not
essential, previous exposure to the use of logic in Artificial Intelligence may be helpful and can be
gained through most standard AI textbooks, including (Nilsson, 1998) and (Russell and Norvig,
2003). While Chapter 2 includes a brief introduction to the basics of logic programming,
some experience in the logic programming language Prolog will make it easier to understand
the implementation details in Sections 3.5, 5.3, and 6.3. Standard textbooks in this area
include (Bratko, 2000) and (Clocksin and Mellish, 2003).
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C H A P T E R 2

Mathematical Preliminaries

2.1 LOGIC
Classical logic will play a prominent role throughout these lecture notes. Formulas are built
up from atoms, i.e., predicate symbols with terms as arguments, and the standard logical
connectives, stated in order of decreasing priority: ∀ (universal quantification), ∃ (existential
quantification), ¬ (negation), ∧ (conjunction), ∨ (disjunction), ⊃ (implication), and ≡ (equiv-
alence). Sequences of terms like x1, . . . , xn are often abbreviated as �x. Variables outside the
range of the quantifiers in a formula are implicitly assumed universally quantified. We also
use the equality predicate “=”, which is always assumed to be interpreted as the identity
relation.

We use a sorted logic language, where sorts are used to define the range of the arguments
of predicates and functions. Sorts need not be disjoint; e.g., the natural numbers N are a sub-sort
of the real numbers R. Variables in formulas are sorted, too, and may be substituted by terms of
the right sort only. For conventional sorts like the natural numbers, we use the standard
arithmetic operations with their usual interpretation.

A substitution is a function that replaces a finite set of variables by terms, written as
{x1/t1, . . . , xn/tn}. The application of a substitution θ to an expression E is denoted by Eθ .

When logic is used to represent knowledge, it is common to make the so-called
unique name-assumption, which says that different symbols mean different things. Formally,
let h1, . . . , hn be a sequence of function symbols (including constants), then UNA[h1, . . . , hn]
abbreviates the formula

n−1∧

i=1

n∧

j=i+1

hi (�x) �= h j (�y) ∧
n∧

i=1

[hi (�x) = hi (�y) ⊃ �x = �y].

The first part of a unique-name axiom stipulates that terms with different leading function
symbol are unequal; e.g., Location(3) �= Color(3). The second part implicitly says that terms
are unequal which start with the same function symbol but whose arguments differ; e.g.,
Location(3) �= Location(4) given that 3 �= 4.
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2.2 LOGIC PROGRAMMING
A logic program is a finite set of clauses of the form p(�t ) :- L1, . . . , Ln, where p(�t ) is an atom
and L1, . . . , Ln are literals, that is, atoms or negated atoms. If n = 0, then the clause is a
fact, simply written as p(�t ). By convention, variables in logic programs start with an uppercase
letter. An example is the following set of clauses, whose purpose is to decide whether a terminal
position has been reached in the well-known Tic-Tac-Toe game:

terminal:- line(xsymb).

terminal:- line(osymb).

terminal:- not open.

line(S):- row(S).

line(S):- col(S).

line(S):- diag(S).

row(X) :- holds(cell(M,1,X)), holds(cell(M,2,X)), holds(cell(M,3,X)).

col(X) :- holds(cell(1,N,X)), holds(cell(2,N,X)), holds(cell(3,N,X)).

diag(X):- holds(cell(1,1,X)), holds(cell(2,2,X)), holds(cell(3,3,X)).

diag(X):- holds(cell(3,1,X)), holds(cell(2,2,X)), holds(cell(1,3,X)).

open:- holds(cell(M,N,blank)).

The semantics of a program is to regard all clauses with the same leading predicate p as the
logical definition of p. Formally, let p be any predicate symbol of the underlying signature such
that

p(�t1) ← L11, . . . , L1n1

...
p(�tm) ← Lm1, . . . , Lmnm

are the clauses for p in a program P (m ≥ 0). Take a sequence �x of pairwise different variables
not occurring in any of the clauses, then the logical definition for p in P is given by the formula

p(�x) ≡
m∨

i=1

(∃�yi ) (�x = �ti ∧ Li1 ∧ . . . ∧ Lini )

where �yi ’s are the variables of the respective clause. The completion of a program P , written
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COMP[P], is the set of definitions of all predicates in P along with unique-name axioms for
all function symbols. For example, the completion of the Tic-Tac-Toe program from above is,
after some straightforward simplification of equalities,

Terminal ≡ Line(XSymb) ∨ Line(OSymb) ∨ ¬Open
Line(s ) ≡ Row(s ) ∨ Col(s ) ∨ Diag(s )
Row(x) ≡ (∃m) (Holds(Cell(m, 1, x)) ∧ Holds(Cell(m, 2, x)) ∧ Holds(Cell(m, 3, x)))
Col(x) ≡ (∃n) (Holds(Cell(1, n, x)) ∧ Holds(Cell(2, n, x)) ∧ Holds(Cell(3, n, x)))

Diag(x) ≡ Holds(Cell(1, 1, x)) ∧ Holds(Cell(2, 2, x)) ∧ Holds(Cell(3, 3, x))
∨
Holds(Cell(3, 1, x)) ∧ Holds(Cell(2, 2, x)) ∧ Holds(Cell(1, 3, x))

Open ≡ (∃m, n) Holds(Cell(m, n, Blank))

A query Q to a logic program P is a sequence of literals. It encodes the question whether
(∃�x)Q is a logical consequence from COMP[P]. Queries are computed by derivations, by
which a query is successively rewritten. A single derivation step for a query Q = L1, L2, . . . , Ln

produces a new query as follows:

� Suppose L1 is a positive atom. Let C :-C1, . . . , Cm be a clause in P (with all variables
renamed) for which there exists a substitution θ such that L1θ = Cθ . The application
of this clause results in the new query Q′ = (C1, . . . , Cm, L2, . . . , Ln)θ .

� Suppose L1 is a negative literal ¬A. If no successful derivation for A itself exists, then
the new query is simply Q′ = L2, . . . , Ln (the negation as failure-principle).

A successful derivation ends with the empty query, denoted by �. In a successful derivation,
the substitutions used in each derivation step can be combined and then restricted to the
variables in the original queries. The resulting substitution is called the computed answer. This
computation mechanism is known to be semantically correct, that is, if θ is a computed answer
for a query Q given program P , then Qθ is a logical consequence of the program, written
COMP[P] |= Qθ .

As an example, suppose the program for Tic-Tac-Toe is augmented by the following
encoding of a concrete position:

holds(cell(1,1,xsymb)). holds(cell(1,2,osymb)). holds(cell(1,3,xsymb)).

holds(cell(2,1,blank)). holds(cell(2,2,osymb)). holds(cell(2,3,xsymb)).

holds(cell(3,1,osymb)). holds(cell(3,2,blank)). holds(cell(3,3,xsymb)).
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In this situation there is a successful derivation for the query terminal:
terminal
line(xsymb)

col(xsymb)

holds(cell(1,N,xsymb)), holds(cell(2,N,xsymb)), holds(cell(3,N,xsymb))

holds(cell(2,3,xsymb)), holds(cell(3,3,xsymb))

holds(cell(3,3,xsymb))

�
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C H A P T E R 3

Procedural Action Programs

3.1 SETTING THE STAGE: DEFINING FLUENTS AND ACTIONS
A standard computer program is mainly concerned with the manipulation of variables. The vari-
ables are defined prior to their use, they get an initial value, and a basic statement in a computer
program is the assignment of a new value to a variable. The values of all variables together at
some point during the execution of a program form an internal state. A new variable assignment
then corresponds to a state transition, and the execution of a program results in a sequence of
transitions from the initial state, i.e., the initial variable settings, to some terminal state.

Action programs differ from standard programs in that the basic statements can be
arbitrary actions, which are to be performed by an agent in its environment. These actions
typically affect the environment, and the goal of an action program is to generate an action
sequence that brings the initial state of the environment into some desired goal state. In order
to achieve this, the relevant properties of the environment need to be symbolically represented
in an action program. The definition of these properties, which are traditionally called fluents,
is necessary for every action program and corresponds to the declaration of variables in standard
programs.

In action programs, a single action denotes a specific way of interacting with the environ-
ment. Actions may change the outside world, e.g., when a robot picks up an object or a software
agent orders a product over the Internet. Other actions only change the status of the physical
agent itself, e.g., when a robot moves to a new position. Finally, actions may just provide the
agent with information about the environment, e.g., when a robot senses whether a door is
open or a software agent compares prices at different online stores. While a single action can
be a very complex behavior on the level of the physical agent, actions are taken as elementary
entities on the level of action programs.

Example: Mail Delivery Robot
Imagine a robot sitting in a hallway with a number of offices in a row. The robot is an automatic
post boy, whose task is to pick up and deliver packages exchanged among the offices. Figure 3.1
depicts a particular scenario in an environment with six offices, a robot that can carry at most
three packages at a time, and nine packages waiting for delivery. The action programming task
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1 2 3 4 5 6

P1 :2

P2 :5

P3 :3

P4 :5

P5 :5

P6 :2 P7 :5 P8 :1

P9 :4

B1
B2
B3

FIGURE 3.1: The initial state of a package delivery problem. All three mail bags of the robot are
empty, and there are currently nine packages waiting for delivery. The associated number indicates their
destination.

here is to write a control program that sends the robot up and down the hallway and tells it
where to collect and drop packages.

Assuming that people in the offices can issue an unbounded number of delivery requests,
the environment can be in any of an unbounded number of different states. To encode these
states, the following parameters—fluents—shall be used, where package shall be the set of
package identifiers, room = {1, . . . , 6}, and bag = {B1, B2, B3} the three mail bags:

Symbol Type
At room �→ fluent
Empty bag �→ fluent
Carries bag × package × room �→ fluent
Request package × room × room �→ fluent

All these fluents are relational , that is, they are either true or false in a state of the environment.
Specifically, At(r ) is true if the robot is at room r , Empty(b) means that the robot’s mail
bag b is empty, Carries(b, p, r ) indicates that bag b carries package p with destination r ,
and Request(p, r1, r2) denotes the request to deliver package p from room r1 to r2. All four
expressions are terms of a special sort fluent.

The robot can manipulate the state variables with the help of the following symbolic
actions, which will constitute the basic statements of the action program for the robot:

Symbol Type
Go direction �→ action
Pick package × bag �→ action
Drop bag �→ action
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• • •• •• •• •
• • •• •• • • •• •

a b c d e f g h
1

2

3

4

5

6

7

8

FIGURE 3.2: On a cylindrical checkerboard, the a-file borders on the h-file. Therefore, the white piece
now on a7 could move to h8 to promote. If it is Black’s move, then the piece on a5 could promote on a1
by a double jump via g3, thereby capturing the white pieces on h4 and h2.

Suppose direction = {Up, Down}, then action Go(d ) means to move up or down the hallway
to the next office; action Pick(p, b) asks the robot to pick up package p and put it in bag b; and
action Drop(b) denotes the delivery of the contents of bag b at the current location.

Example: Cylindrical Checkers
A General Game Player is a system that understands the formal description of an arbitrary game
and learns to play this game well without human intervention. As an example, let us consider
a slight variant of the well-known game of Checkers with the standard rules but played on a
cylindrical board; cf. Figure 3.2. The rules of this game can be formalized on the basis of just
two fluent symbols, which can be combined into any of the possible board positions:

Symbol Type Range
Cell file × row �→ fluent {Blank, White, WhiteKing, Black, BlackKing}
Control �→ fluent {White, Black}

Both these fluents are functional , that is, in every state of the environment they take any of
the values from the given range. Specifically, Cell(x, y) is the contents of a particular cell, and
the value of Control is the party whose move it is in the current position. The various possible
moves of the two players in Checkers can be encoded by a single action:

Symbol Type
Move file × row × file × row �→ action
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An instance Move(x1, y1, x2, y2) may be either a straight move or a jump of either a piece or a
king from square (x1, y1) to (x2, y2). Double and triple jumps etc. can be encoded as sequences
of single jumps.

3.2 GOLOG PROGRAMS
Having defined the fluents and primitive actions at the disposal of an agent, action program-
ming is the art of designing complex behaviors out of the basic actions. The action program-
ming language GOLOG, an acronym for Algol in Logic, combines actions and fluents with
standard constructs from procedural programming languages. A GOLOG program itself is a
sequence of definitions for any number of procedures p1(�v1), . . . , pn(�vn) followed by a main
body:

proc p1(�v1) δ1 endProc ; . . . ; proc pn(�vn) δn endProc ; δ

where n ≥ 0. The main body δ as well as the body δi of a procedural definition is built on
the syntactic elements shown in Figure 3.3. The basic commands in every GOLOG program
are the primitive actions of the underlying domain. Conditions (tests) are based on the fluents
defined in the domain. GOLOG has several nondeterministic features, whose semantics will be
made precise in the following section. First, however, let us have a look at an example program,
which illustrates the typical use of the various programming constructs.

Command Meaning
nil empty program
a primitive action
φ ? test

δ1 ; δ2 sequential composition
δ1 | δ2 nondeterministic choice of sub-program

πx. δ(x) nondeterministic choice of argument
δ∗ nondeterministic iteration

p(�t) | procedure call
if φ then δ1 else δ2 endIf conditional
while φ do δ endWhile loop

FIGURE 3.3: The syntactic elements of GOLOG programs. The expression φ is a logic formula based
on the fluents of the domain. The sub-programs δ, δ1, δ2 are recursively defined using all programming
constructs.
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A GOLOG Program for Mail Delivery
It is quite straightforward to come up with a simple, effective strategy for the mail delivery
problem. As long as the robot finds itself at some office for which it carries one or more packages,
it should select these packages, in no particular order, for immediate delivery. Conversely, if the
robot happens to be at some place where packages are waiting to be collected and the mailbags
are not yet full, then nondeterministically one package after the other gets chosen and put into
one of the empty mailbags. If, however, no more packages can be dropped nor collected at its
current location, the robot makes an arbitrary decision to move either up or down the hallway
toward some office for which it has mail or where packages are still waiting.

Using the fluents and actions defined earlier, this algorithm can be implemented by a
GOLOG program as follows. To begin with, consider these two simple procedure definitions:

proc Deliver
πb. Drop(b)

endProc;

proc Collect
πb. πp. Pick(p, b)

endProc;

The first procedure nondeterministically selects a bag and leaves its contents at the current
location. As will be shown in Section 3.3, the execution model for GOLOG ensures that only
those arguments b are selected for which the action is actually possible in the current state of
the environment. In a similar fashion, the second procedure selects a package p to be picked
up and put in one of the mail bags.

The third procedure to be used in the control program handles the case where the delivery
robot has to decide to move either up or down the hallway to the next office:

proc Continue
if (∃b) ¬Empty(b) then

πb. πp. πr. πr ′. (At(r ) ? ; Carries(b, p, r ′) ? ;
if r < r ′ then Go(Up) else Go(Down) endIf )

else
πp. πr. πr1. πr2. (At(r ) ? ; Request(p, r1, r2) ? ;

if r < r1 then Go(Up) else Go(Down) endIf )
endIf

endProc;
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The intuition is as follows: if there is a non-empty mail bag, then a room is (nondeterministically)
chosen for which a package is being carried, and the robot moves up or down the hallway
depending on whether this room is to the left or right of the current location. More specifically,
values b, p, r , and r ′ are selected for a bag, a package, the current location, and the destination,
respectively, so that the tests At(r ) ? and Carries(b, p, r ′) ? succeed, and then the choice of the
Go action to be performed depends on whether or not r < r ′. If, on the other hand, all mail
bags are empty, then one of the remaining requests is nondeterministically chosen and the robot
moves toward the location where the respective package can be picked up.

The following main control procedure completes the GOLOG program for the mail
delivery problem:

proc Control
while (∃b) ¬Empty(b) ∨ (∃p, r1, r2) Request(p, r1, r2) do

if (∃b, p, r ) (Carries(b, p, r ) ∧ At(r )) then
Deliver

else
if (∃b, p, r1, r2) (Empty(b) ∧ Request(p, r1, r2) ∧ At(r1)) then

Collect
else

Continue
endIf

endIf
endWhile

endProc;

The main body of the program shall be a simple call to this control procedure, so that the entire
GOLOG program is

proc Deliver . . . proc Control . . . endProc; Control

Following this strategy, our robot in Figure 3.1 would pick up the two packages in the first
room and then move up to room number 2, where it delivers P1. Thereafter, it selects two of
the three packages waiting there and continues to move to the right. Provided that no further
request is issued during the execution of this program, it eventually terminates with all delivery
requests satisfied.

GOLOG programs that make use of nondeterminism may admit various execution traces.
This gives rise to two conceptually different modes of execution: online execution means to run
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the program step-by-step, and whenever this requires to do a primitive action, then this action
is carried out immediately by the physical agent. This is the standard way of implementing
control programs on physical agents. Running a program in this mode means to commit to
every nondeterministic selection, because actions cannot just be taken back once they have been
performed by the agent. This may have the disadvantage that the chosen course of actions
eventually leads to a dead-end, that is, where the program cannot be completed although a
different run would have been successful.

In offline execution, on the other hand, a program is first run in simulation. This allows
us to check several, possibly all, ways to finish a program prior to having an agent commit to a
particular trace. In this way, it is guaranteed that a successful execution will be found whenever
one exists. A further advantage of this execution principle is that it allows us to find the most
economical way of running a program (say, in terms of the number of primitive actions to
be performed) prior to having the agent actually perform actions. The disadvantage, however,
is that the longer a program the more possible execution paths it tends to have, so that it is
practically impossible to check them all. Moreover, pure offline execution is not applicable if the
agent has to use its sensing capabilities to acquire important information at runtime and which
is available only after parts of the program have been executed. A sequence of actions generated
by offline execution may also become invalid if exogenous actions occur, that is, actions besides
those performed by the agent. A mixture of both execution modes combines the best of both
worlds—more to this in Section 3.7.

No matter which execution mode is chosen, running an action program requires to
evaluate conditions which depend on the current state of the environment in which the agent
lives. Since these properties frequently change as the program proceeds and not all of them may
be directly observable by the agent, executing a program requires to maintain an internal model
of the environment, which throughout the execution of the program conveys the necessary
information about the relevant fluents. The model needs to be updated after each action in
accordance with the effects of the action. The execution of a GOLOG program therefore relies
on an action knowledge base, in which the preconditions and effects of the actions are specified.
The aim of action calculi is to use classical logic to axiomatize actions and their effects.

3.3 ACTION CALCULI
3.3.1 Signatures with Relational Fluents
As we have seen, fluents and actions are the fundamental domain-dependent ingredients of every
action program. Therefore, fluents and actions are the basic sorts in the sorted logic language
we are going to define. Action calculi also need to distinguish different points in time in order
to axiomatize the changes caused by actions. As a third fundamental sort, we therefore assume
an abstract notion of time. A simple example of a time structure are the natural numbers, which
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model a linear, discrete time line. More complex notions of time involve continuous change
(e.g., modeled by the positive rationals) or a branching time structure to denote different
potential evolutions of the environment.

The three basic sorts are used for three fundamental predicates. The relation t1 < t2
denotes a (possibly partial) ordering on the time structure. Predicate Holds( f, t) is used to say
that fluent f is true at time t. Finally, the intended meaning of expression Poss(a, s , t) is that it
is possible to do action a beginning at time s and ending at time t. These predicates, along with
the three fundamental sorts, form the basis of a domain signature in a general action calculus.

Definition 3.3.1. A domain signature is a finite, sorted logic language which includes the sorts
fluent, action, and time along with the predicates

<: time × time
Holds : fluent × time

Poss : action × time × time

As usual, s ≤ t stands for s < t ∨ s = t. �

Throughout the lecture notes we denote variables of sort action by the letter a , variables of
sort fluent by f and g , and variables of sort time by s and t. We tacitly assume uniqueness-
of-names for all fluents and actions. That is to say, different fluent terms denote different state
properties, and different action terms denote different things, too.

Next, we define the notion of a state formula, which allows us to express properties of a
domain at given times.

Definition 3.3.2. Let �t be a non-empty sequence of variables of sort time in a given domain
signature. A state formula in �t is a first-order formula �[�t ] in which the variables in �t occur free and
such that

� for each occurrence of Holds( f, t) in � we have t ∈ �t;
� predicate Poss does not occur in �. �

We are now in a position to define, in our general calculus, the two basic elements
of a knowledge base for actions to be used as the background theory for an action program:
precondition axioms, which define the conditions for actions to be applicable, and effect axioms,
which define the consequences of actions. For the latter, we use a general form that allows us
to define different “cases” i = 1, . . . , k of updates ϒi [s , t] (cf. axiom (3.1)). Each of these
sub-formulas defines the fluents that hold after the action, at time t, relative to the state when
the action starts, at time s.
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Definition 3.3.3. Consider a domain signature, and let A be a function into sort action.

� A precondition axiom is of the form

Poss(A(�x), s , t) ≡ πA[s ]

where πA[s ] is a state formula in s with free variables among s , t, �x.
� An effect axiom is of the form

Poss(A(�x), s , t) ⊃ ϒ1[s , t] ∨ . . . ∨ ϒk[s , t] (3.1)

where k ≥ 1 and each ϒi [s , t] (1 ≤ i ≤ k) is a formula of the form

(∃�yi )(�i [s ] ∧ (∀ f ) [�+
i [s , t] ⊃ Holds( f, t)]

∧ (∀ f ) [�−
i [s , t] ⊃ ¬Holds( f, t)])

(3.2)

in which �i [s ] is a state formula in s with free variables among s , �x, �yi ,1 and both �+
i [s , t]

and �−
i [s , t] are state formulas in s , t with free variables among f, s , t, �x, �yi .

A domain axiomatization consists of precondition and effect axioms, one each for every function into
sort action. �

Prior to being treated to some example axioms, recall that the purpose of an action
program is to trigger the agent to do the right action at the right time. Every agent program
computes a sequence of actions to be executed by the agent. In order to distinguish the different
possible executions of a program, it is convenient to resort to a branching time structure, based
on the concept of a situation. Lending the Situation Calculus its name, a situation denotes the
sequence of actions that have been performed up to a certain stage of an actual program run.
The special constant S0 denotes the initial situation at the beginning of a program, when no
primitive action has yet been performed. The constructor Do(a, s ) then maps an action a and
a situation s to the situation after the performance of the action. Hence, action sequences are
nested terms of the form Do(an, . . . , Do(a1, S0) . . .). The situations can be visualized as the
nodes of a tree rooted in S0; see Figure 3.4. Each branch in this tree is a potential run of a
program for the agent.

Example: Mail Delivery Axioms
Based on the branching time structure, the preconditions for the three actions in the mail
delivery world can be formalized as follows. Going up the hallway is possible unless the
robot happens to be at the upper end of the hallway; in other words, the actions is possible

1The purpose of sub-formula �i [s ] is to define possible restrictions for case i to apply.
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S0

Do(αk, S0)

Do(α1, S0)

...

...

...

...

...

...

�

�

�

�

�

�

· · ·

· · ·
· · ·

· · ·
Do(α1, Do(α1, S0))

Do(αk, Do(α1, S0))

Do(α1, Do(αk, S0))

Do(αk, Do(αk, S0))

FIGURE 3.4: A tree of situations.

from situation s to situation t whenever the robot is at a room r < 6 in situation s and
t = Do(Go(d ), s ) with d = Up. Similarly, to be able to go down the robot must be at some
office r > 1. Picking up a package p and putting it into mail bag b is possible in a situation in
which bag b is empty and the robot is at room r such that there is the request to take package p
from r to some r1. Finally, the contents of a bag b can be dropped whenever the robot carries a
package in b and this package is for the room where the robot currently is. This is summarized
in the following precondition axioms:

Poss(Go(d ), s , t) ≡ t = Do(Go(d ), s ) ∧
(∃r ) (Holds(At(r ), s ) ∧ [d = Up ∧ r < 6 ∨ d = Down ∧ r > 1])

Poss(Pick(p, b), s , t) ≡ t = Do(Pick(p, b), s ) ∧
(∃r, r1) (Holds(At(r ), s ) ∧ Holds(Request(p, r, r1), s ) ∧

Holds(Empty(b), s ))

Poss(Drop(b), s , t) ≡ t = Do(Drop(b), s ) ∧
(∃p, r ) (Holds(At(r ), s ) ∧ Holds(Carries(b, p, r ), s ))

(3.3)

As an example, consider the formal description of the initial situation depicted in Figure 3.1:

Holds( f, S0) ≡ f = At(1) ∨ f = Empty(B1) ∨ f = Empty(B2) ∨ f = Empty(B3) ∨
f = Request(P1, 1, 2) ∨ f = Request(P2, 1, 5) ∨ . . .∨
f = Request(P8, 6, 1) ∨ f = Request(P9, 6, 4)

(3.4)

The precondition axioms then imply, for instance, that Poss(Go(Up), S0, Do(Go(Up), S0)) but
not Poss(Go(Down), S0, t) for any t. Moreover, with two packages at the current location
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and all three mail bags empty, there are six possible ways of picking up a package, e.g.,
Poss(Pick(P1, B3), S0, Do(Pick(P1, B3), S0)).

The effects of the three actions are formalized as follows. To begin with, action Go(d ) has
two alternative effects, depending on whether d = Up or d = Down. In the former case, the only
positive effect is that fluent At(r + 1) becomes true, where r is the current location of the robot.
Likewise, if the robot moves down the hallway, then the only positive effect is that At(r − 1)
becomes true. The only negative effect in both cases is that At(r ) itself becomes false. All other
fluents keep their truth-value from s to t. This is summarized in the following effect axiom:

Poss(Go(d ), s , t) ⊃
d = Up ∧ (∃r ) (Holds(At(r ), s ) ∧

(∀ f ) [ f = At(r + 1) ∨ (Holds( f, s ) ∧ f �= At(r )) ⊃ Holds( f, t)]
∧
(∀ f ) [ f = At(r ) ∨ (¬Holds( f, s ) ∧ f �= At(r + 1)) ⊃ ¬Holds( f, t)] )

∨
d = Down ∧ (∃r ) (Holds(At(r ), s ) ∧

(∀ f ) [ f = At(r − 1) ∨ (Holds( f, s ) ∧ f �= At(r )) ⊃ Holds( f, t)]
∧
(∀ f ) [ f = At(r ) ∨ (¬Holds( f, s ) ∧ f �= At(r − 1)) ⊃ ¬Holds( f, t)] )

(3.5)

For instance, given that Poss(Go(Up), S0, S1), where S1 = Do(Go(Up), S0), the effect ax-
iom entails Holds(At(2), S1) given that Holds(At(1), S0). Also, ¬Holds(At(3), S1) since
¬Holds(At(3), S0) and At(3) �= At(2), etc.

Turning to the action of putting a package into a mail bag, the only positive effect is
that the package in question is now being carried. A negative effect is that the bag is no longer
empty, and a further negative effect shall be that the corresponding request is no longer present.
Formally,

Poss(Pick(p, b), s , t) ⊃
(∃r1, r2) (Holds(Request(p, r1, r2), s ) ∧

(∀ f ) [ f = Carries(b, p, r2) ∨ (Holds( f, s ) ∧ f �= Empty(b) ∧ f �= Request(p, r1, r2))
⊃ Holds( f, t)]

∧
(∀ f ) [ f = Empty(b) ∨ f = Request(p, r1, r2) ∨ (¬Holds( f, s ) ∧ f �= Carries(b, p, r2))

⊃ ¬Holds( f, t)] )

(3.6)

Considering initial situation (3.4) again, we have already seen that Poss(Pick(P1, B3), S0, S1)
with S1 = Do(Pick(P1, B3), S0). The effect axiom then entails all that can be concluded about
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the resulting situation, that is,

Holds( f, S1) ≡ f = At(1) ∨ f = Empty(B1) ∨ f = Empty(B2) ∨ f = Carries(B3, P1, 2) ∨
f = Request(P2, 1, 5) ∨ . . . ∨ f = Request(P8, 6, 1) ∨ f = Request(P9, 6, 4)

Hence, bag B3 now carries the package in question and is no longer empty, while the request
for P1 has disappeared and all other fluents remain unchanged.

To complete this example, here is a suitable specification of the effects of dropping the
contents of a mail bag:

Poss(Drop(b), s , t) ⊃
(∃p, r ) (Holds(Carries(b, p, r ), s ) ∧

(∀ f ) [ f = Empty(b) ∨ (Holds( f, s ) ∧ f �= Carries(b, p, r )) ⊃ Holds( f, t)]
∧
(∀ f ) [ f = Carries(b, p, r ) ∨ (¬Holds( f, s ) ∧ f �= Empty(b)) ⊃ ¬Holds( f, t)] )

(3.7)

With the help of a precondition and effect axiom for each of the three actions, and given the
specification of an initial situation, it is possible to infer the executability of arbitrary action
sequences and to compute the overall resulting situation.

3.3.2 Signatures with Functional Fluents
It is often more compact to use functional fluents instead of relational ones. While the latter
are binary (because they are either true or false in a state), the values of a functional fluent are
taken from an arbitrarily chosen range. This requires a slightly modified definition of a domain
signature, where the predicate Holds( f, t) is replaced by the function Val( f, t), indicating the
value of a fluent at time t.

Definition 3.3.4. A functional domain signature is as in Definition 3.3.1 but with an additional
sort value and where predicate Holds is replaced by the function

Val : fluent × time �→ value

Consider a functional domain signature, and let �t be a non-empty sequence of variables of sort time
and A be a function into sort action.

� A state formula in �t is a first-order formula �[�t ] in which the variables in �t occur free and
such that
– for each occurrence of Val( f, t) in � we have t ∈ �t;

– predicate Poss does not occur in �.
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� A precondition axiom is of the form

Poss(A(�x), s , t) ≡ πA[s ]

where πA[s ] is a state formula in s with free variables among s , t, �x.
� An effect axiom is of the form

Poss(A(�x), s , t) ⊃ ϒ1[s , t] ∨ . . . ∨ ϒk[s , t] (3.8)

where k ≥ 1 and each ϒi [s , t] (1 ≤ i ≤ k) is a formula of the form

(∃�yi )(�i [s ] ∧ (∀ f, v) [�i [s , t] ⊃ Val( f, t) = v]) (3.9)

in which �i [s ] is a state formula in s with free variables among s , �x, �yi , and �i [s , t] is a
state formula in s , t with free variables among f, s , t, �x, �yi , v. �

Example: Axiomatizing Checkers
The rules of arbitrary games can be formalized with the help of precondition and effect axioms
for the possible moves. As an example, the conditions for a legal move in the cylindrical variant
of Checkers may look like this—where, for the sake of simplicity, we resort to a linear and
discrete time structure and use an auxiliary predicate to specify the actual occurrence of an
action:

Poss(Move(x1, y1, x2, y2), s , t) ≡
Occurs(Move(x1, y1, x2, y2), s ) ∧ t = s + 1 ∧
[LegalWhiteMove ∨ LegalBlackMove ∨ LegalKingMove ∨ LegalJump]

Here, each of the four disjuncts encodes the conditions for one of the possible legal moves, so
that, say, LegalWhiteMove is

Val(Control, s ) = White ∧ Val(Cell(x1, y1), s ) = White ∧ Val(Cell(x2, y2), s ) = Blank ∧
y1 < 8 ∧ y2 = y1 + 1 ∧ NeighborFiles(x1, x2)

The auxiliary relation NeighborFiles allows us to distinguish cylindrical Checkers from the
standard variant by including NeighborFiles(a, h) and NeighborFiles(h, a) in its definition. The
other sub-formulas in the precondition axiom can be likewise specified according to the laws
of Checkers; the details shall be omitted here.
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The position change caused by a move in Checkers can be axiomatized by the following
effect axiom:

Poss(Move(x1, y1, x2, y2), s , t) ⊃ LegalWhiteMove ∧ WhiteMoveUpdate ∨
LegalBlackMove ∧ BlackMoveUpdate ∨
LegalKingMove ∧ KingMoveUpdate ∨
LegalJump ∧ JumpUpdate

where, for example, WhiteMoveUpdate abbreviates the sub-formula

(∀ f, v)[ f = Cell(x1, y1) ∧ v = Blank ∨
f = Cell(x2, y2) ∧ ((y2 < 8 ∧ v = White) ∨ (y2 = 8 ∧ v = WhiteKing))∨
f = Control ∧ v = Black ∨
f �= Cell(x1, y1) ∧ f �= Cell(x2, y2) ∧ f �= Control ∧ v = Val( f, s )
⊃ Val( f, t) = v]

Put in words, moving a white piece has the effect of cell (x1, y1) becoming blank, cell (x2, y2)
housing a white piece or a white king (in case of a promotion on the 8th row), and control
going to Black. All other fluent values remain unchanged. The remaining cases of legal moves
can be formulated in a straightforward fashion; again we omit the details.

3.4 GOLOG SEMANTICS
The underlying knowledge base for the elementary actions is needed to execute a GOLOG
program. Specifically, because conditionals are evaluated against the current state of the envi-
ronment, the internal world model must at any time correctly reflect this state. A successful run
of a program determines a particular sequence of primitive actions being executed by the agent.
A specific run therefore corresponds to a particular branch in the situation tree, determining a
final situation. Consequently, the semantics of a GOLOG program is given by a characteriza-
tion of the situations that correspond to a successful execution of the program. This is formally
expressed by a relation DO(δ, s , s ′) with the intended reading that starting in situation s , the
(sub-)program δ can be successfully executed ending in situation s ′. This relation is inductively
defined over the various programming constructs as follows:2

DO(nil, s , s ′) def= s ′ = s empty program
DO(a, s , s ′) def= Poss(a, s , s ′) ∧ s ′ = Do(a, s ) primitive action

DO(φ?, s , s ′) def= φ[s ] ∧ s ′ = s test
DO(δ1; δ2, s , s ′) def= (∃s ′′) (DO(δ1, s , s ′′) ∧ DO(δ2, s ′′, s ′)) sequence
DO(δ1|δ2, s , s ′) def= DO(δ1, s , s ′) ∨ DO(δ2, s , s ′) choice 1

DO(πx.δ(x), s , s ′) def= (∃x) DO(δ(x), s , s ′) choice 2

2For the sake of simplicity, we refrain from stating the precise definition for procedure calls, as this requires more
involved a semantics in case of recursive procedures.
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The expression φ[s ] in the definition for a test stands for formula φ with all occurrences
of a fluent f replaced by the atom Holds( f, s ) (or Val( f, s ) in case of functional fluents).
These definitions are straightforward given the intuitive meaning of the various programming
constructs. The semantics for nondeterministic iteration is more involved as it requires transitive
closure, which can only be defined by a second-order logic formula.

Second-order logic adds sorted variables for predicates and functions to the language of first-
order logic. Interpretations for second-order formulas assign relations (of the right arity and
sort) to predicate variables, and mappings (of the right arity and sort) to function variables.
The second-order formula (∀P )(∃x) P (x), for example, is unsatisfiable, because there exists
an assignment for variable P , namely, the empty relation, which is false for any x. Sub-
stitutions for predicate and function variables in formulas use λ-expressions. These are of
the form λx1, . . . , xn.τ with n being the arity of the variable and where τ is a first-order
formula or term, respectively. The result of the substitution is that the variable expression
P (t1, . . . , tn) (or f (t1, . . . , tn), respectively) is replaced by τ {x1/t1, . . . , xn/tn}. For example,
applying the substitution {P/λx. Holds(Empty(B1), x) ∧ ¬Holds(Empty(B1), x)} to the for-
mula (∃s ) P (s ) results in the (inconsistent) first-order formula (∃s ) (Holds(Empty(B1), s ) ∧
¬Holds(Empty(B1), s )).

With the help of second-order quantification, the semantics of nondeterministic iteration can
be given by the following formula:

DO(δ∗, s , s ′) def= (∀P ) ([(∀s1) P (s1, s1) ∧ (∀s1, s2, s3) (P (s1, s2) ∧ DO(δ, s2, s3) ⊃ P (s1, s3))]
⊃ P (s , s ′))

Put in words, executing δ zero or more times takes one from situation s to situation s ′ just in
case (s , s ′) is in every set (hence, the smallest set) such that

� (s1, s1) is in the set for all situations s1;
� whenever (s1, s2) is in the set and doing δ in situation s2 takes one to s3, then (s1, s3)

is in the set.

The last two missing commands in GOLOG programs, conditionals and loops, can be
expressed as mere abbreviations using the other constructs:

if φ then δ1 else δ2 endIf def= (φ ? ; δ1) | (¬φ ? ; δ2)
while φ do δ endWhile def= (φ ? ; δ)∗ ; ¬φ ?

(3.10)
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As an example, recall the procedure Collect in the mail delivery program. Its semantics is
given as

DO(Collect, s , s ′) def= DO(πb.πp.Pick(p, b), s , s ′)
def= (∃b)(∃p) (Poss(Pick(p, b), s , s ′) ∧ s ′ = Do(Pick(p, b), s ))

Hence, given initial situation (3.4) along with the underlying domain axiomatization, there are
a total of six possible executions of this procedure, including s = Do(Pick(P1, B3), S0). This
is also one of the six elementary actions that can start the execution of the main body of the
GOLOG program (cf. page 12): the while-condition is true in S0, the first if-condition is
false, but the second if-condition holds. Due to the nondeterministic features, there are many
successful executions of the program, each corresponding to a sequence of primitive actions
after which all requests have been carried out. All of these runs include nine instances of Pick
and Drop actions, but they may differ in the number of Go actions. The shortest of the possible
resulting situations has a total number of 32 primitive actions, the longest needs 34 actions.

3.5 A GOLOG INTERPRETER
This section gives a brief introduction to the use of logic programming to implement an
interpreter for GOLOG programs. This includes a method to specify a background theory as
part of the logic program. In accordance with the branching time structure used in the semantics
for GOLOG, the domain axiomatization is based on the concept of a situation. In this setting,
also known as the Situation Calculus, all precondition axioms are of the simplified form

Poss(A(�x), s ) ≡ πA[s ]

with the understanding that an action always ends in the successor situation Do(A(�x), s ), so
that the above is a mere abbreviation of the standard axiom

Poss(A(�x), s , t) ≡ πA[s ] ∧ t = Do(A(�x), s )

The effects of actions are encoded by so-called successor state axioms, which are a compact form of
general effect axioms under the assumption that all actions are deterministic. A single successor
state axiom always defines the truth-value of a specific fluent in a new situation relative to
both the preceding situation and the action that has been performed. Formally, if F is a fluent
function, then a successor state axiom for this fluent is a formula

Holds(F(�y), Do(a, s )) ≡ γ +
F [a, s , �y] ∨ (Holds(F(�y), s ) ∧ ¬γ −

F [a, s , �y]) (3.11)

Here, γ +
F is a state formula describing the conditions on situation s , action a , and parameters �y

under which F(�y) is a positive effect of the action. Likewise, γ −
F describes the conditions under

which the fluent is a negative effect. Although these axioms appear considerably different from
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the effect axioms we have considered so far, it is possible to rewrite a set of successor state
axioms in a way that makes clear that they are a specific instance of a set of general effect
axioms. Let, to this end, A(�x) be an action, then the successor state axioms (3.11) together are
mapped onto this general effect axiom:

Poss(A(�x), s , t) ⊃ (∀ f ) [
∨

F (∃�y) ( f = F(�y) ∧ �A,F[�x, s ]) ⊃ Holds( f, t)
∧
(∀ f ) [

∨
F (∃�y) ( f = F(�y) ∧ ¬�A,F[�x, s ]) ⊃ ¬Holds( f, t)

(3.12)

Here, the disjunctions
∨

F range over all fluent functions F and �A,F[�x, s ] stands for the
formula

γ +
F [a/A(�x), s , �y] ∨ (Holds(F(�y), s ) ∧ ¬γ −

F [a/A(�x), s , �y])

Intuitively, �A,F is true if and only if, according to its successor state axiom, fluent F holds
after action A. In this way, axiom (3.12) summarizes all positive and negative effects of A(�x)
by instantiating the successor state axioms for each fluent by this action.

A domain axiomatization in the Situation Calculus is accompanied by foundational
axioms which formally define the underlying time structure:

(∀s ) S0 ≤ s
(∀a, a ′, s , s ′) (Do(a, s ) = Do(a ′, s ′) ⊃ a = a ′ ∧ s = s ′)
(∀a, s , s ′) (s < Do(a, s ′) ≡ s ≤ s ′)

(3.13)

These axioms characterize a branching, tree-like time structure rooted in S0 and where the
partial ordering s < t indicates that t can be reached from s by further actions.

Precondition and successor state axioms can be straightforwardly encoded as logic pro-
grams. As an example, the following clauses form a suitable logic program for the background
theory in the mail delivery world:

poss(go(up),S) :- holds(at(R),S), R<6.

poss(go(down),S) :- holds(at(R),S), R>1.

poss(pick(P,B),S) :- holds(at(R),S), holds(request(P,R,R1),S),

holds(empty(B),S).

poss(drop(B),S) :- holds(at(R),S), holds(carries(B,P,R),S).

holds(at(R),do(A,S)) :- holds(at(R1),S), R=R1+1, A=go(up)

holds(at(R),do(A,S)) :- holds(at(R1),S), R=R1-1, A=go(down)

holds(at(R),do(A,S)) :- holds(at(R),S), not A=go(D).
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holds(empty(B),do(A,S)) :- A=drop(B)

holds(empty(B),do(A,S)) :- holds(empty(B),S), not A=pick(P,B).

holds(carries(B,P,R),do(A,S)) :- A=pick(P,B), holds(request(P,R1,R),S)

holds(carries(B,P,R),do(A,S)) :- holds(carries(B,P,R),S), not A=drop(B).

holds(request(P,R1,R2),do(A,S)) :- holds(request(P,R1,R2),S),

not A=pick(P,B).

The reader may verify that with regard to the standard completion semantics of these clauses
(cf. Section 2.2), a comparison of the successor state axioms via scheme (3.12) shows that the
encoding is equivalent to the precondition and effect axioms we used in Section 3.3.1. The
background theory is completed by the encoding of a particular initial situation, e.g.

holds(at(1),s0).

holds(empty(b1),s0).

holds(empty(b2),s0).

holds(empty(b3),s0).

holds(request(p1,1,2),s0).

...

holds(request(p9,6,4),s0).

The resulting logic program allows us to derive executability of actions and state properties in
any concrete situation, e.g.

poss(pick(p1,b3),s0),

holds(carries(b3,p1,2),do(go(up),do(pick(p1,b3),s0)))

The computation method implicit in the definition of successor state axioms is known as
regression: a query of the form Holds( f, Do(αk, Do(αk−1, . . . , Do(α1, S0) . . .))) is derived by
repeatedly applying successor state axioms, by which the situation term is successively reduced,
first to Holds( f, Do(αk−1, . . . , Do(α1, S0) . . .)) and then all the way down to S0, for which all
state properties can be decided by the given initial state.

Based on a logic program for computing the executability of actions and evaluating
conditionals in GOLOG programs, a logic program that acts as an interpreter can be obtained by
a direct translation of the semantics for the individual programming constructs; see Figure 3.5.
The various clauses of this generic interpreter are straightforward encodings of the semantic
definition of the various GOLOG programming constructs given in Section 3.4.
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do([],S,S).

do(A,S,do(A,S)) :- poss(A,S).

do([E|L],S,S1) :- do(E,S,S2), do(L,S2,S1).

do(?(P),S,S) :- holds(P,S).

do(E1#E2,S,S1) :- do(E1,S,S1).

do(E1#E2,S,S1) :- do(E2,S,S1).

do(pi(V,E),S,S1) :- sub(V,X,E,E1), do(E1,S,S1).

do(star(E),S,S1) :- do([]#[E,star(E)],S,S1).

do(if(P,E1,E2),S,S1) :- do([?(P),E1]#[?(neg(P)),E2],S,S1).

do(while(P,E),S,S1) :- do([star([?(P),E]),?(neg(P))],S,S1).

do(P,S,S1) :- proc(P,E), do(E,S,S1).

FIGURE 3.5: A generic GOLOG interpreter. Sequential composition of program statements is en-
coded by a list using the standard Prolog list notation, [Head|Tail]. In particular, the empty program
is represented by the empty list [ ]. Furthermore, the hash symbol and the keywords pi and star stand
for, respectively, nondeterministic choice of sub-programs, nondeterministic choice of arguments, and
nondeterministic iteration. Auxiliary predicate sub(V, X, E, E1) means that the GOLOG statement E1
is as E but with term V substituted by new variable X. It is assumed that the procedures of a GOLOG
program are encoded using the predicate proc(Name, Body). For the sake of simplicity, clauses for
evaluating non-atomic tests have been omitted.

3.6 EXTENSIONS: CONCURRENCY AND INTERRUPTS
3.6.1 Syntax
Basic GOLOG has a number of restrictions which make it difficult to write programs for more
complex applications. Most notably, it is assumed that actions are strictly sequential and that the
agent for which a program is written is the only acting entity in the environment. The language
ConGOLOG (for concurrent GOLOG) augments the basic language by commands for dealing
with concurrent executions and interrupts. The latter allows us to account for changes in the
environment caused by other agents. Figure 3.6 shows the additional commands.

Example: Mail Delivery in a Dynamic Environment
The control program for the mail delivery robot in Section 3.2 has been written under the
assumption that all delivery requests are given initially and that the work is done once all
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Command Meaning
δ1 || δ2 concurrent execution
δ1 〉〉 δ2 concurrent execution with priority

δ|| concurrent iteration
〈φ → δ〉 interrupt

FIGURE 3.6: The additional syntactic elements of ConGOLOG programs. The expression φ is a logic
formula based on the fluents of the domain, and the sub-programs δ, δ1, δ2 are recursively defined using
all elements given here and those from basic GOLOG.

requests have been carried out. In a practical setting, however, it should be possible at any
time to dynamically issue a new request (or, for that matter, to cancel an existing one). The
robot must then be on the alert at any time and react sensibly to changes as soon as they occur.
Most agents are in fact embedded in an environment which includes other active entities, be it
humans, fellow agents, opponent players, etc. As a consequence, some state properties may not
be under the sole control of one agent. Agents must therefore take into account actions besides
their own when maintaining their internal world model.

From the subjective perspective of an agent, an action is exogenous if it is not performed
by the agent itself but does affect fluents that are relevant to the agent. For a dynamic version of
the control program for the mail delivery robot, we introduce two new actions for the addition
and cancellation of requests, and an action for the robot to idly wait for requests if there is none
at the beginning.

Symbol Type
AddRequest package × room × room �→ action
CancelRequest package �→ action
Idle �→ action

The interaction can happen at any time during the execution of the control loop. In order to
account for this, the GOLOG program is extended by the following procedure:

proc Interaction
πp. πr1. πr2. AddRequest(p, r1, r2) | πp. CancelRequest(p)

endProc;

That is to say, an interaction consists of the addition of an arbitrary request, or a cancellation.
The main body is then replaced by the parallel execution of the usual control routine and any
number of interactions.
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proc Deliver . . . endProc;
. . .

proc Interaction . . . endProc;
Interaction∗ || ( while ¬(∃p, r1, r2) Request(p, r1, r2) do Idle endWhile; Control )

In this way, the interaction part runs asynchronously with, and outside of, the main control
program. The program itself acts as a simulator, because it generates arbitrary, nondeterministic
interactions. Of course the addition and cancellation of requests need to follow some rules, too.
Specifically, a request can only be added for a package that has not already been requested or
collected, and only those requests can be canceled that are actually present. Idling, on the other
hand, has no preconditions. Formally,

Poss(AddRequest(p, r1, r2), s , t) ≡ t = Do(AddRequest(p, r1, r2), s ) ∧
¬(∃r ′

1, r ′
2) Holds(Request(p, r ′

1, r ′
2), s ) ∧

¬(∃b, r ′) Holds(Carries(b, p, r ′), s ) ∧
r1 �= r2

Poss(CancelRequest(p), s , t) ≡ t = Do(CancelRequest(p), s ) ∧
(∃r1, r2) Holds(Request(p, r1, r2), s )

Poss(Idle, s , t) ≡ t = Do(Idle, s )

(3.14)

Whenever an addition or cancellation happens, the internal state variables for the control
program need to be updated accordingly. Idling has no effect at all (except that time progresses,
of course). This is formalized in the following effect axioms for the three new actions:

Poss(AddRequest(p, r1, r2), s , t) ⊃
(∀ f ) [ f = Request(p, r1, r2) ∨ Holds( f, s ) ⊃ Holds( f, t)]
∧
(∀ f ) [ f �= Request(p, r1, r2) ∧ ¬Holds( f, s ) ⊃ ¬Holds( f, t)]

Poss(CancelRequest(p), s , t) ⊃
(∃r1, r2) (Holds(Request(p, r1, r2), s ) ∧

(∀ f ) [Holds( f, s ) ∧ f �= Request(p, r1, r2) ⊃ Holds( f, t)] (3.15)
∧
(∀ f ) [ f = Request(p, r1, r2) ∨ ¬Holds( f, s ) ⊃ ¬Holds( f, t)] )

Poss(Idle, s , t) ⊃
(∀ f ) [Holds( f, s ) ⊃ Holds( f, t)]
∧
(∀ f ) [¬Holds( f, s ) ⊃ ¬Holds( f, t)]
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3.6.2 Semantics
The semantics of basic GOLOG is based on the definition of programs as macros, which are
unfolded into a single formula in the underlying action calculus. The introduction of concurrency
and interrupts requires a different form of semantics, which is generally known as transitional
semantics. It is based on the definition of a single execution step of a program. Formally, the
semantics is given by a predicate Trans(δ, s , δ′, s ′). The intuitive meaning is that, for a program δ

and a situation s , executing one step of δ takes one from s to situation s ′, and program δ′ is
what remains of program δ after this one step. This definition is accompanied by a predicate
Final(δ, s ), with the intended meaning that δ can be considered completed in situation s.

For the sake of simplicity, we again ignore the introduction of procedures and tacitly
assume that a ConGOLOG program is just a main body. The definition of the transition
relation is as follows:

Trans(nil, s , δ′, s ′) ≡ False empty program
Trans(a, s , δ′, s ′) ≡ Poss(a, s , s ′) ∧ δ′ = nil ∧ s ′ = Do(a, s ) primitive action

Trans(φ?, s , δ′, s ′) ≡ φ[s ] ∧ δ′ = nil ∧ s ′ = s test
Trans(δ1; δ2, s , δ′, s ′) ≡ (∃δ′

1) (Trans(δ1, s , δ′
1, s ′) ∧ δ′ = (δ′

1 ; δ2)) sequence
∨
Final(δ1, s ) ∧ Trans(δ2, s , δ′, s ′)

Trans(δ1|δ2, s , δ′, s ′) ≡ Trans(δ1, s , δ′, s ′) ∨ Trans(δ2, s , δ′, s ′) choice 1
Trans(πx.δ(x), s , δ′, s ′) ≡ (∃x) Trans(δ(x), s , δ′, s ′) choice 2

Trans(δ∗, s , δ′, s ′) ≡ (∃δ′′) (Trans(δ, s , δ′′, s ′) ∧ δ′ = (δ′′; δ∗)) sequential iteration
Trans(δ1||δ2, s , δ′, s ′) ≡ (∃δ) (Trans(δ1, s , δ, s ′) ∧ δ′ = (δ||δ2)) concurrency

∨
(∃δ) (Trans(δ2, s , δ, s ′) ∧ δ′ = (δ1||δ))

Trans(δ1〉〉δ2, s , δ′, s ′) ≡ (∃δ) (Trans(δ1, s , δ, s ′) ∧ δ′ = (δ〉〉δ2)) priority
∨
(∃δ) (Trans(δ2, s , δ, s ′) ∧ δ′ = (δ1〉〉δ))

∧¬(∃δ′′, s ′′) Trans(δ1, s , δ′′, s ′′)
Trans(δ||, s , δ′, s ′) ≡ (∃δ′′) (Trans(δ, s , δ′′, s ′) ∧ δ′ = (δ′′||δ||)) parallel iteration

In addition, the conditional and loop statements from basic GOLOG are redefined in such a
way that test and continuation are synchronized, in order to prevent interrupts in between:

Trans(if φ then δ1 else δ2 endIf, s , δ′, s ′) ≡ φ[s ] ∧ Trans(δ1, s , δ′, s ′)
∨
¬φ[s ] ∧ Trans(δ2, s , δ′, s ′)

Trans(while φ do δ endWhile, s , δ′, s ′) ≡ (∃δ′′) (φ[s ] ∧ Trans(δ, s , δ′′, s ′) ∧
δ′ = (δ′′; while φ do δ endWhile))



main MOCL008.cls July 5, 2008 10:2

PROCEDURAL ACTION PROGRAMS 29

In contrast to macro definition (3.10), where test and continuation are separated by the se-
quential operator “ ; ”, the new definition requires that the transition continues in the same
situation s to which the test is applied. This guarantees that no concurrent process or interrupt
can invalidate the test condition prior to the execution of the body of an if-statement or a
while-statement. Finally, interrupts can be defined using the other constructs as follows:

〈φ → δ〉 def= while True do
if φ then δ else False? endIf

endWhile

By this definition, an interrupt is blocked as long as condition φ is false. As soon as this
condition is triggered, the interrupt repeatedly executes sub-program δ. Since both the while-
and the if-statement have been defined as synchronous, the interrupt is executed immediately
after the triggering condition becomes true. If it is desired that the interrupt is terminated after
it has been executed once, rather than being executed repeatedly, this can be achieved with the
help of a special fluent that is initially true and set to false by δ.

The accompanying predicate Final(δ, s ) determines whether a program can be considered
to be completed in a situation. It is defined as follows:

Final(nil, s ) ≡ True empty program
Final(a, s ) ≡ False primitive action

Final(φ?, s ) ≡ False test
Final(δ1; δ2, s ) ≡ Final(δ1, s ) ∧ Final(δ2, s ) sequence
Final(δ1|δ2, s ) ≡ Final(δ1, s ) ∨ Final(δ2, s ) choice 1

Final(πx.δ(x), s ) ≡ (∃x) Final(δ(x), s ) choice 2
Final(δ∗, s ) ≡ True sequential iteration

Final(δ1||δ2, s ) ≡ Final(δ1, s ) ∧ Final(δ2, s ) concurrency
Final(δ1〉〉δ2, s ) ≡ Final(δ1, s ) ∧ Final(δ2, s ) priority

Final(δ||, s ) ≡ True parallel iteration
Final(if φ then δ1 else δ2 endIf, s ) ≡ φ[s ] ∧ Final(δ1, s ) synchronized if

∨
¬φ[s ] ∧ Final(δ2, s )

Final(while φ do δ endWhile, s ) ≡ ¬φ[s ] ∨ Final(δ, s ) synchronized while

As an example, if we start with an initial situation without any delivery requests, then
our control program for the mail delivery robot can provably evolve into the following final
situation:

Do(Drop(B1), Do(Go(Up), Do(Pick(P2, B1), Do(Go(Down),
Do(CancelRequest(P1), Do(AddRequest(P2, 1, 2),

Do(Go(Up), Do(AddRequest(P1, 2, 1), Do(Idle, S0)))))))))
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As usual, the situation has to be read in reverse order. Hence, after idling until the first
request comes in, the robot heads toward office 2, from where the request has been issued.
However, this request is canceled before the robot has a chance to pick it up. Therefore, the
robot immediately goes back to office 1 to fetch package P2, which has been requested in the
meantime. The program ends with a successful delivery in room 2.

The definition of the semantics is completed by redefining predicate DO as the transitive
closure of program transition. This requires to appeal to second-order logic in much the same
way as the definition of iteration did. Let, to this end,

Trans∗(δ, s , δ′, s ′) def= (∀P ) ( [(∀δ1, s1) P (δ1, s1, δ1, s1)
∧ (∀δ1, . . . , s3) (P (δ1, s1, δ2, s2) ∧ Trans(δ2, s2, δ3, s3)

⊃ P (δ1, s1, δ3, s3))]
⊃ P (δ, s , δ′, s ′))

Then

DO(δ, s , s ′) def= (∃δ′) (Trans∗(δ, s , δ′, s ′) ∧ Final(δ′, s ′)).

3.7 ACTION PROGRAMS WITH SENSING
The programs we have considered thus far were all written under the tacit assumption that the
agent has complete knowledge of all relevant features of its environment. Even in the setting
where users may add or cancel requests, the execution of the control program requires that
the agent knows about the occurrence of these actions, so that its internal world model is
always in accordance with the actual world. Many realistic environments do not comply with
the ideal case of complete knowledge. In highly dynamic environments, for instance, changes
may happen without the agent always being aware of them. Competitive environments, too,
are often characterized by an information asymmetry among the participants. The distinction
between complete and incomplete information is also made in game playing, where for example
most card games are characterized by the fact that the players have only partial information
about the distribution of the cards.

Agents with incomplete information use sensors to acquire additional information about
the environment. These sensing actions can be used in action programs in the same way normal
actions are employed, except that the former normally do not affect the environment but
enhance the knowledge of the agent.

Example: Robot in a Maze
Suppose a robot has to find a path through an unknown maze. Initially, it has no knowledge at
all of the structure of the maze, but it is equipped with a sensor that tells it whether it is facing
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a wall. The use of this sensor obviously does not change the position of the robot, nor does it
have any effect on the environment. Nonetheless, without a sensor the problem could not be
solved, because the robot lacks sufficient knowledge at the beginning, and sensing helps it to
acquire this knowledge.

For GOLOG programs with sensing actions, the pure offline execution is no longer
meaningful. The reason is that the outcome of a sensing action cannot be predicted in advance;
if it were otherwise, the sensing action would not be needed. Programs with sensing actions are
therefore executed online. A simple strategy to negotiate an unknown maze, for example, is to
turn right whenever possible.3 This is implemented by the following basic GOLOG program:

proc TakeNextStep
TurnRight;
SenseBlocked ;
while Blocked do

TurnLeft; SenseBlocked
endWhile;
GoForward

endProc;

while ¬At(Exit) do TakeNextStep endWhile

Here, TurnRight, TurnLeft, and GoForward are physical actions of the agent with the obvious
meaning. The action SenseBlocked is a pure sensing action by which is checked whether the path
is blocked in the direction the robot currently faces. Fluent Blocked shall be true whenever this
is the case. Without full knowledge of the layout of the maze, this GOLOG program cannot be
executed offline. Specifically, without sufficient knowledge of the truth-value of fluent Blocked
in the relevant situations the semantics does not entail a sequence of actions which determines a
successful run of the program. Online execution, on the other hand, should provide the control
program with sufficient information about this fluent at the time it is needed to evaluate the
condition in the loop of procedure TakeNextStep.

In more complex environments, however, it may be desirable to retain the advantage
of offline execution. For this purpose, a search operator can be used, denoted by the symbol
�. This operator allows us to execute designated parts of a program offline, having the agent
search for an appropriate action sequence in specific situations prior to actually executing it.
This results in an interleaved online/offline execution model. To illustrate this, consider the

3If the maze allows closed cycles, additional measures need to be taken to prevent the agent from walking in circles.
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following GOLOG sequence:

� { ( PlanA | PlanB ); SubGoal?}; ( ActC | ActD ); Test?

This is to be understood as follows. First, the control program nondeterministically executes
either PlanA or PlanB in such a way as to make sure that SubGoal is true afterwards. Being in
the scope of the search operator, this nondeterministic choice is made offline, which allows us
to select the right plan to achieve this goal, if there is any. After leaving the scope of the search
operator, the chosen plan is actually executed according to the online-execution paradigm. This
is followed by a nondeterministic choice between ActC and ActD, but now the selection has to
be made online. That is to say, the control program commits to its choice prior to verifying
that Test holds. In practice, this requires some care on the side of the programmer, who needs
to make sure that the program terminates no matter which nondeterministic choice is made
outside of a search operator.

The effects of sensing actions are axiomatized with the help of a special predicate. For the
sake of simplicity, we only consider binary sensing actions, that is, which tell the agent whether a
specific state property is true or false. The effects of these actions are described via the predicate
SF (a, s ), which, if true for situation s , indicates that (sensing) action a would result in the
answer “yes.” For the sake of uniformity, SF may range over all actions, whether they involve
sensing or not, and then be defined as “true” in all situations for every non-sensing action of
a domain. For instance, the background axiomatization for the robot-in-a-maze domain may
include the formulas

SF (SenseBlocked, s ) ≡ Holds(Blocked, s )

and SF (a, s ) ≡ True for all other actions a .
The definition of the execution of a GOLOG program with sensing is based on the

concept of a history. This is a sequence of pairs (a, v), where a is an action and v a sensing
result, that is, either of the values true or false. Intuitively, a history like

(TurnRight, true), (SenseBlocked, false), (GoForward, true), . . . (3.16)

describes a sequence of actions along with an actual sensing result associated with each action.
We use two abbreviations related to histories: if h is a history

(a1, v1), (a2, v2), . . . , (an, vn)
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then by End[h, s ] we mean the situation Do(an, . . . , Do(a2, Do(a1, s )) . . .). By Sensed[h, s ]
we denote the formula that encodes the entire sensing information given in the history,
that is,

{¬}SF (a1, Do(a1, s )) ∧ {¬}SF (a2, Do(a2, Do(a1, s ))) ∧ . . . ∧ {¬}SF (an, End[h, s ])

where the “¬” is placed just in case vi is false. Thus, for instance, the history in (3.16) provides
the controller with the following sensing information:

Turn ∧
¬Holds(Blocked, Do(SenseBlocked, Do(TurnRight, S0))) ∧
Turn ∧ . . .

Based on the concept of a history, the semantics for GOLOG is easily adapted to
programs with sensing actions as follows. Recall the expression Trans(δ, s , δ′, s ′), which means
that, given a program δ and a situation s , executing one step of δ takes one from s to situation s ′,
and program δ′ is what remains of the program δ after this one step. In the presence of
sensing, the validity of a transition step may depend on the results of the preceding sensing
actions, that is, on the history. Specifically, given a history h starting in some situation s ,
a transition step is possible if the domain axiomatization along with Sensed[h, s ] entails that
Trans(δ, End[h, s ], δ′, s ′) for some δ′ and s ′. Similarly, a program may terminate after a history h
if the domain axiomatization and Sensed[h, s ] entail Final(δ, End[h, s ]). The only actual
extension of the semantics is required for the search operator, whose semantics is defined as
follows:

Trans(�δ, s , δ′, s ′) ≡ (∃δ′′) (Trans(δ, s , δ′′, s ′) ∧ δ′ = �δ′′ ∧
(∃δe , s e ) (Trans∗(δ′′, s ′, δe , s e ) ∧ Final(δe , s e )))

Final(�δ, s ) ≡ Final(δ, s )

Put in words, a transition is possible under the search operator if (δ, s ) can evolve to (δ′′, s ′)
and it is possible to reach some final configuration (δe , s e ) from there. The latter condition
is precisely what characterizes the search operator: prior to making a single transition step,
it needs to be ensured that the sub-program which is subject to search can be successfully
completed.

3.8 EXERCISES
3.1. Consider the precondition and effect axioms for the mail delivery world along with the

action closure axiom

(∀a) [ (∃d ) a = Go(d ) ∨ (∃p, b) a = Pick(p, b) ∨ (∃b) a = Drop(b) ]



main MOCL008.cls July 5, 2008 10:2

34 ACTION PROGRAMMING LANGUAGES

Suppose that the robot is equipped with three mail bags, which are all empty initially,
and that there are just two initial requests. Use the induction axiom

(∀P ) { P (S0) ∧ (∀a, s ) [P (s ) ⊃ P (Do(a, s ))] ⊃ (∀s ) P (s ) }

to formally prove that in this case there is no reachable situation without an empty mail
bag!

3.2. (a) Let δmailbot denote the GOLOG program for the mail delivery robot from Sec-
tion 3.6, which accounts for the dynamic addition and cancellation of requests.
Find an initial situation and an infinite sequence of situations S1, S2, S3, . . .

such that Trans(δmailbot, S0, δi , Si ) holds for all i = 1, 2, 3, . . . (and the appropriate
δ1, δ2, δ3, . . .) and where one of the initial requests is never picked up!

(b) A general solution to this problem is to give requests increasing priority the longer
they have been around. One way of implementing this is to extend the domain
axiomatization by a fluent Time(t) such that t indicates the number of Go actions
the robot has performed since the beginning. Redefine, to this end, the fluents
Request(p, r1, r2) and Carries(b, p, r ) so as to include the information at what time
the request in question has been issued, and modify the effect axioms accordingly!
Program a refined control strategy by which every request is guaranteed to be
carried out eventually! Take care also that the robot does not carry around some
package forever!

3.3. Specify the rules of the game Tic-Tac-Toe by appropriate precondition and effect
axioms using the relational fluents

Symbol Type
Cell {1, 2, 3} × {1, 2, 3} × {X, O} �→ fluent
Control {XPlayer, OPlayer} �→ fluent

and the actions

Symbol Type
Mark {X, O} × {1, 2, 3} × {1, 2, 3}

Modeling the moves of the opponent by exogenous actions, write a ConGOLOG for
optimal play!

3.4. Specify the rules of the game Connect Four (cf. Figure 3.7) in the Situation Calculus
using functional fluents! Define, to this end, a variant of the successor state axioms (3.11)
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FIGURE 3.7: The two-player game Connect Four: Red and Black take turn in dropping discs of their
own color into one of the seven columns. The player wins who is the first to have four connecting discs
horizontally, vertically, or diagonally. In the present situation, for example, Black should drop a disc in
column c to prevent Red from completing a diagonal b–e. Incidentally, this happens to be a forced win
for Black, because Red cannot hinder it to get four discs in a row with the next move.

suitable for functional fluents! Accordingly, take the GOLOG interpreter from Sec-
tion 3.5 and replace the basic predicate holds(F, S) by val(F, V, S) for functional
fluents, meaning that fluent F has value V in situation S. Encode the precondition
and successor state axioms accordingly and write and implement a GOLOG program,
possibly including the search operator, that plays Connect Four well—ideally so well
as to win whenever it has the first move!
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C H A P T E R 4

Action Programs and Planning

Planning is the process of searching for a suitable, goal-oriented strategy by the agent itself.
An agent that plans entertains the effects of various possible action sequences before starting
to act. The ability to find plans on their own increases the autonomy of agents and makes
programming much easier in cases where it would require considerable effort to implement a
pre-defined strategy which is good for all situations that the agent may encounter.

4.1 PLANNING WITH PLAN SKELETONS
We consider the basic definition of a planning problem, where the planning agent has complete
control of the part of its environment that is relevant for the planning task at hand. In particular,
the agent plans under the assumption that no other agent may hinder it to take a suitable course
of actions. Single-player games provide a good metaphor for this kind of planning problems.
Consider, as an example, the puzzle depicted in Figure 4.1. This game can be formulated as a
search problem in an action domain as follows. The various positions (states) in this game are
described with the help of a single fluent, Cell(x, v), which means that at position x = a, . . . , h
lie v ∈ {0, 1, 2} coins. The initial state is then given by the formula

Holds( f, S0) ≡ f = Cell(a, 1) ∨ f = Cell(b, 1) ∨ f = Cell(c , 1) ∨ f = Cell(d , 1) ∨
f = Cell(e , 1) ∨ f = Cell( f, 1) ∨ f = Cell(g , 1) ∨ f = Cell(h, 1)

There is only one action the agent can perform, Jump(x, y), meaning to take the coin on x and
place it on y . Using situations as the underlying time structure, these are the preconditions of
this action according to the rules.

Poss(Jump(x, y), s , t) ≡ t = Do(Jump(x, y), s ) ∧
Holds(Cell(x, 1), s ) ∧ Holds(Cell(y, 1), s ) ∧
CoinsBetween(x, y, s ) = 2

Auxiliary function CoinsBetween(x, y, s ) is assumed to count the number of coins that lie
between the positions x and y in situation s . The effect of jumping is to change the number of
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FIGURE 4.1: A simple one-player game: starting with eight coins in a row, jump with a single coin
over two coins onto another single coin. Repeat until you end up, after four moves, with four stacks of
two coins each. For example, it is a valid first move to place the coin from a onto the one in d , and then
the coin from c can be put onto the one in e . This, however, would lead to a position in which no further
move can be taken.

coins at the two positions as follows:

Poss(Jump(x, y), s , t) ⊃
(∀ f ) [ f = Cell(x, 0) ∨ f = Cell(y, 2) ∨ (Holds( f, s ) ∧ f �= Cell(x, 1) ∧ f �= Cell(y, 1))

⊃ Holds( f, t)]
∧
(∀ f ) [ f = Cell(x, 1) ∨ f = Cell(y, 1) ∨ (¬Holds( f, s ) ∧ f �= Cell(x, 0) ∧ f �= Cell(y, 2))

⊃ ¬Holds( f, t)]

Put in words, the number of coins in x changes from 1 to 0 and the number of coins in y from 1
to 2. The goal is to reach a state in which all stacks are of size two, that is,

Goal(s ) def= (∀x, v) (Holds(Cell(x, v), s ) ⊃ v = 0 ∨ v = 2)

We have now defined all components of a planning problem: given an initial state and a
definition of the possible actions, the task is to find an action sequence—a.k.a. plan—that leads
to a situation in which the goal is satisfied.

This example planning problem can actually be easily solved by a complete search through
the entire tree of situations. The branching factor is comparably low (8 at the beginning and
then decreasing) and the reachable situations have a maximal length of 4. The following simple
GOLOG program can thus be used to have the agent solve the puzzle on its own:

while ¬Goal do
πa . a

endWhile

If executed offline (in ConGOLOG this sequence would have to be included in the scope of
the search operator �; cf. Section 3.7), any successful run of this nondeterministic program
establishes a sequence of executable actions that leads to a situation in which the goal is satisfied.
In other words, this generic program generates plans for the planning problem which is given
by the definition of the goal predicate along with the appropriate background theory.
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FIGURE 4.2: An instance of a non-trivial planning problem, known as Peg Solitaire: jump with one
peg over another into an empty spot. Repeat until you end up with one single peg in the center square.

In contrast to this simple example, many planning problems are too complex to be tackled
by blind search. Figure 4.2 shows another single-player game that falls into this category.
Although this is a comparably small board, a successful plan has to be of length 35 because
the goal is to get rid of all but one of the 36 pegs and every action removes one of them.
Furthermore, although initially there are just 4 possible actions, the branching factor quickly
increases after a few jumps as more holes become available. This results in a total search space
too large to be solved in reasonable time by simple brute-force search.

There are several well-known, domain-independent approaches to tackle large planning
problems by reducing the search space. An example is the use of hash tables, also known as
transposition tables, in which all intermediate states are saved. This allows us to cut off branches
in the search tree which lead to states that have been searched earlier via a different action
sequence. A more involved approach is to use symmetries to avoid searching twice different
but symmetric action sequences. This requires to find suitable symmetries in a problem, like
the obvious rotational and reflectional symmetry on the Solitaire board. Since symmetries can
often be derived fully automatically from the formal specification of a planning problem, this
search strategy also falls into the category of domain-independent techniques.

But while domain-independent planning methods may help in some cases, they often
do not scale up well to larger problem instances and thus do not suffice to solve problems that
occur in practice. A much better performance can be obtained if the type of planning problem
is known in advance so that strong, tailor-made search strategies can be integrated into the
planning algorithm.

Example: A Planning Strategy for Peg Solitaire
A good, domain-dependent planning strategy for any kind of Peg Solitaire board is to succes-
sively identify and solve certain small patterns. Figure 4.3(a) depicts three common patterns,
which suffice to solve most Peg Solitaire boards. A search strategy based on these patterns is
obviously domain-dependent, but on the other hand it is still general enough to be applicable to
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FIGURE 4.3: (a) Each of these three patterns for Peg Solitaire can be completely removed by a sequence
of jumps given that one of the cells marked by “×” contains a peg. (b) A weight function for the Peg
Solitaire board, which has the property that positions in which the weighted sum of all occupied squares
falls below zero lead to a dead end.

any type of board and initial configuration. The following GOLOG program has the planning
agent systematically locate and clear patterns on an arbitrary Peg Solitaire board until a goal
position is reached:

proc SolvePattern(p)
while ¬Solved(p) do

πx. π y . πz. ( y ∈ p ?; Jump(x, y, z) )
endWhile

endProc;

while ¬Goal do
πp. (IsPattern(p) ?; SolvePattern(p) )

endWhile

In this program, Jump(x, y, z) represents the action of jumping with the peg currently in posi-
tion x over y into square z. Expression IsPattern(p) is an auxiliary fluent that is assumed to be true
if region p matches against one of the given patterns; Solved(p) should be defined in such a way
as to hold if pattern p has been completely removed from the board; and x ∈ p, finally, denotes
that cell x is contained in the set of cells p describing a pattern. These expressions need to be for-
mulated as fluents in the underlying action theory because GOLOG does not include language
elements that allow us to define auxiliary predicates outside of the underlying domain language.1

1In Chapter 5 on declarative actions programs, we show how this restriction is overcome by combining reasoning
about actions with general logic programming.
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The GOLOG program describes a sophisticated divide-and-conquer solution to a com-
plex planning problem. It is obviously nondeterministic, hence defines a tree of possible runs
when executed offline—which is necessary since not all sequences of pattern removals allow
us to clear the entire board. On the other hand, it is much more focused than the generic
search program considered earlier, which includes just any executable action sequence. The
new, tailor-made GOLOG program can be viewed as a compact way of defining a plan skele-
ton. Thanks to its nondeterministic programming constructs, GOLOG provides an elegant
way to program such skeletons for a given class of planning problems. It should be noted
that the strategy of using patterns is not strongly complete, meaning that there are success-
ful action sequences which lie outside the defined skeleton. This is so because there may be
useful patterns other than the ones defined for the program and also because in general the
process of clearing an individual pattern may be interleaved with the solution of another pat-
tern, whereas the control program requires to completely remove one pattern before turning to
the next.

Another way to cut down the search space for a planning problem is to use a generic
definition of a plan skeleton which defines local constraints on the selection of an action. This
can be illustrated with an alternative solution to Peg Solitaire. Figure 4.3(b) shows what is
known as “resource count.” This function has the property that it can only decrease after a legal
move in any situation. Hence, given that the resource count in the final position is 0, there can
be no solution in which the sum of the values of all occupied cells turns negative. This gives rise
to a local cut-off criterion, namely, as soon as an action leads to a position that determines a
negative resource count. Constraints of this nature can be combined with the following generic
GOLOG program for planning:

while ¬Goal do
πa . a ; Allowed?

endWhile

In the Peg Solitaire case this program would be accompanied by the definition

Holds(Allowed, s ) ≡ ResourceCount(s ) ≥ 0

where ResourceCount(s ) is the sum of the weights of all occupied positions in situation s . Since
there can be no solution to Solitaire in the course of which the resource count becomes negative,
this plan skeleton encompasses all successful plans. Hence, as opposed to the strategy based on
patterns, this alternative heuristics is strongly complete.
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4.2 PLANNING WITH PRUNING
The last, generic GOLOG program for planning uses constraints on situations as a domain-
dependent pruning technique, by which unsuccessful branches of the search tree are cut off at an
early stage. These constraints are local because they refer solely to the current situation. Complex
planning problems often require a more expressive pruning technique, using constraints that
combine properties of past actions with the present situation. Linear Temporal Logic provides a
purely declarative way of encoding such search control rules.

Linear Temporal Logic extends classical logic by the following modal operators:

symbol meaning
©φ φ holds next
�φ φ always holds
♦φ φ eventually holds
φ U ψ φ holds until ψ

The following formula, for example, may express the control rule that whenever some con-
tainer x is in a vehicle y , then the container should stay there until the vehicle reaches the
goal location of x:

� [ In(x, y) ⊃ In(x, y)U At(y, GoalLocation(x)) ]

Linear, temporal formulas are interpreted w.r.t. infinite sequences S0, S1, S2, . . . of situations
as follows. A formula φ is true in a particular situation Si , written Si |= φ, if

� Holds(φ, Si ), where φ is atomic;
� Si+1 |= ψ , where φ is ©ψ ;
� Sj |= ψ for all j ≥ i , where φ is �ψ ;
� Sj |= ψ for some j ≥ i , where φ is ♦ψ ;
� Sj |= ψ2 for some j ≥ i such that Sk |= ψ1 for all i ≤ k < j, where φ is ψ1 U ψ2.
� Si |= ψ , where φ is ¬ψ ; likewise for the other logical connectives.

Example: A Logistics Problem
To illustrate the usefulness of control rules, consider a problem in logistics where two types of
vehicles are used to transport goods: trucks, which operate within a city, and airplanes, which
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operate between cities. A planning problem in this setting consists of an initial configuration of
a set of goods at various locations and the goal to redistribute these objects to their individual
destination. The actions in this domain are to load and unload objects into and off vehicles,
and to move trucks and fly planes to new locations:

Symbol Type
Load object × vehicle �→ action
Unload object × vehicle �→ action
Move vehicle × location �→ action
Fly vehicle × location �→ action

For the sake of simplicity, assume that trucks and planes have sufficient capacity, so that resource
constraints need not be considered. Still, due to exponential explosion, a complete tree search in
this domain is practically impossible. Even a small problem with, say, just ten goods, four cities,
in each city two locations and a truck, and three airplanes has a total state space of 6 × 1014

and a search tree that is larger by several magnitudes.
A few simple control rules, however, suffice to make this planning problem manageable.

When searching for a plan, the agent should consider to

1. move a vehicle only if there are no objects at its present location which need to be
loaded into or unloaded from the vehicle;

2. move a vehicle only to locations where it needs to pick up or to drop goods;

3. load objects only into the kind of vehicle (truck or plane) with which they need to be
transported;

4. unload objects only where they need to be unloaded.

The formalization of these rules with the help of temporal modalities requires two auxiliary
predicates that are derived from the goal specification: MustBeMovedBy(o , v) means that,
according to the planning goal, object o has to be moved by the type of vehicle (truck or airplane)
to which v belongs.2 MustBeUnloadedAt(o , l) means that, according to the goal, object o must
be unloaded at location l .3 With this, the control rules translate into the following temporal
logic formulas, where free variables are universally quantified as usual.

2This holds for all trucks and an object whose goal location differs from its initial location, and for all airplanes and
an object whose goal location is in a different city.

3This holds for an object and its goal location, as well as for an object and the city airport of both its initial and final
location provided the object requires air transportation.
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1. Blocking condition for moving a truck or flying an airplane:

� [ Location(v, l) ∧ (∃o ) (At(o , l) ∧ MustBeMovedBy(o , v)) ⊃ ©Location(v, l) ]
� [ Location(v, l) ∧ (∃o ) (In(o , v) ∧ MustBeUnloadedAt(o , l)) ⊃ ©Location(v, l) ]

The fluents Location(v, l) and At(o , l) mean that, respectively, vehicle v and object o
are currently at l , and fluent In(o , v) means that object o has been loaded into vehicle v.

2. Conditions for moving or flying a vehicle:

� [ Location(v, l) ∧ ©Location(v, l ′) ∧ l �= l ′ ⊃
(∃o ) (At(o , l ′) ∧ MustBeMovedBy(o , v) ∨ In(o , v) ∧ MustBeUnloadedAt(o , l ′)) ]

3. Blocking condition for loading an object:

¬MustBeMovedBy(o , v) ⊃ �¬In(o , v)

4. Blocking condition for unloading an object:

� [ In(o , v) ∧ Location(v, l) ∧ ¬MustBeUnloadedAt(o , l) ⊃ ©In(o , v) ]

As control rules, linear temporal logic formulas are used to ensure that a given sequence
of actions satisfies them. Every action sequence determines a sequence of situations, against
which the validity of a control formula can be checked. Furthermore, the formulas can be used
actively, that is, the search tree gets pruned as soon as a situation is reached which violates
one of them. This is the case whenever no continuation of the current action sequence could
eventually satisfy the formula in question.

Evaluating temporal logic formulas in every state can be costly, however, as it may require
to check the entire past action sequence. As the search tree grows deeper, this can considerably
slow down the computation of the pruning condition. Fortunately it is possible to use the
control formulas in a local fashion by progressing them to each new situation. If progression
fails, then this indicates that the current sequence of actions violates the formula, whereas if
it succeeds, then a plan satisfies the formula provided the progressed formula will be satisfied
by the future action sequence. For example, a rule �φ is valid just in case φ holds now and
�φ holds in the next situation. Or, a rule ♦φ is valid just in case φ holds now or ♦φ holds
in the future. The full, recursive definition of the result of progressing a formula φ, written
Progress(φ), is as follows, where S refers to the current situation:

� True (respectively, False) if φ is atomic and Holds(φ, S) (respectively, ¬Holds(φ, S));
� ψ , if φ is ©ψ ;
� Progress(ψ) ∧ �ψ , if φ is �ψ ;
� Progress(ψ) ∨ ♦ψ , if φ is ♦ψ ;
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� Progress(ψ2) ∨ (Progress(ψ1) ∧ ψ1 U ψ2), if φ is ψ1 U ψ2;
� Progress(ψ1) ∧ Progress(ψ2), if φ is ψ1 ∧ ψ2; likewise for the other logical connectives;
�

∧
c Progress(ψ{x/c }), if φ is (∀x) ψ ;

�

∨
c Progress(ψ{x/c }), if φ is (∃x) ψ .

The last two items imply a restriction of the progression method. For if the scope of a quantifier
includes a modal operator, then progression requires to instantiate the variable by all objects of
the right sort. This is possible only in case finitely many such objects exist.

The correctness of the use of progression relies on the fact that, given a sequence S0, S1, . . .

of situations, a formula φ is entailed at situation Si just in case Progress(φ) (through Si ) is entailed
at Si+1. Control rules can thus be used for planning in an active and local manner, where search
is stopped as soon as a rule can no longer be progressed through the current situation. A few
strong control rules can cut down the search space considerably. Experiments with the logistics
domain, for example, have shown that the four control rules from above allow us to manage
problems with a total state space of 1060 and beyond.

4.3 PLANNING WITH PREFERENCES
A crucial feature of the classical definition of a planning problem is that all solutions are
considered equal. The only requirement is that a plan leads to a state which satisfies the goal
condition—how it does this, and which of potentially many different concrete goal states
it achieves, is irrelevant. In many practical settings, this homogeneous treatment of a possible
multitude of plans is often inappropriate. Two action sequences may be of very different quality,
and if both achieve the goal, then the agent should always take the preferred one. To this end,
a basic planning problem can be extended by preference information in addition to the mere goal
specification. The task, then, is to find plans of high quality, that is, which are preferred over
all other plans that also happen to achieve the goal.

One obvious way of expressing preference is to define a numeric objective function, which
assigns a real number to all action sequences. While this is arguably the conceptually simplest
way of handling preference information, the major disadvantage is that it can be quite difficult
to fully quantify a given preference if this is only partially known and of qualitative nature.
A more sophisticated and flexible way of formalizing preferences adopts the modal operators
of the previous section and uses them to express preferences in terms of desirable, but not
mandatory, properties of plans.

Consider, to this end, a formal language consisting of a set of fluents and actions for a
concrete planning domain. Preferences are then defined using linear temporal logic based on
fluents as atoms and two additional, special atomic expressions: final( f ) and occurs(a). The
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former is used to stipulate that in the final state fluent f holds, while the latter requires action a
to occur next. This allows us to formulate basic desires such as the eventual occurrence of a
certain action, e.g.,

♦occurs(Load(Package6, Truck1))

or the wish that some property continues to hold until a given action is executed, as in

At(Truck1, Station3)U occurs(Move(Truck1, Airport))

Preferences are based on these desires, which are formally defined as follows:

Definition 4.3.1. A basic desire formula can be

� a fluent;
� the atomic final( f ), where f is a fluent;
� the atomic occurs(a), where a is an action;
� any combination of the above using the logical connectives and the modalities of linear temporal

logic. �

Two or more basic desire formulas can be brought into a specific order, which allows us to
express preferences among alternatives.

Definition 4.3.2. An atomic preference formula is of the form

ϕ0 ≺ ϕ1 ≺ . . . ≺ ϕn

where n ≥ 0 and the ϕi ’s are basic desire formulas. If n = 0, then a preference formula coincides with
a basic desire formula. �

A simple example of an atomic preference formula is

♦occurs(Load(Package6, Truck1)) ≺ ♦occurs(Load(Package6, Truck2)) (4.1)

Put in words, all else being equal it is preferred to transport Package6 with Truck1 rather than
with Truck2.

Finally, atomic preference formulas can be combined into complex preferences with the
help of special logical connectives.
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Definition 4.3.3. A general preference formula can be

� an atomic preference formula;
� a conditional ϕ ⇒ �, where ϕ is a basic desire formula and � a general preference formula;
� a general conjunction �1 & . . . & �n, where n ≥ 2 and the �i ’s are general preference

formulas;
� a general disjunction �1 | . . . |�n, where n ≥ 2 and the �i ’s are general preference

formulas. �

The intuitive meaning of a conditional is to say that some preference holds under certain
conditions only. For example, the formula

final(Location(Truck2, Airport)) ⇒ (4.1)

expresses a preference for transporting Package6 with the first truck (cf. formula (4.1)), if the
second truck happens to end up at the airport.

The purpose of specifying preferences is to find plans that satisfy them as far as possible.
Since each plan determines a sequence of situations S0, S1, . . . , Sn, preference formulas can
be evaluated against this sequence in much the same way as control rules are. For basic desire
formulas, the temporal modalities (“next,” “always,” “eventually,” and “until”) are interpreted as
usual, and the validity of the two special atoms is defined by

� Si |= final( f ) if Holds( f, Sn), and
� Si |= occurs(a) if Si+1 = Do(a, Si ).

Based on the evaluation of all basic desire formulas, a weight ω can be defined which
indicates to what extent a plan violates the given preferences. Intuitively, a weight of 0 charac-
terizes an ideal plan, in which all preferences are satisfied. Let, to this end, S0, S1, . . . , Sn be
the sequence of situations determined by a plan, then a basic desire formula ϕ determines the
weight

ω(ϕ) =
{

0 if S0 |= ϕ

1 otherwise.

The weight of an atomic preference formula is defined as the lowest rank of a basic desire that
is satisfied by the plan at hand. In other words, the more preferable desires that are not satisfied,
the worse the weight gets. Formally,

ω(ϕ0 ≺ . . . ≺ ϕn) =
{

min{i : ω(ϕi ) = 0} if it exists
n + 1 otherwise.
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Thus the weight remains 0 if the most preferred desire is satisfied, and it becomes n + 1 if
none of the desires have been achieved. Finally, the weight of an arbitrary preference formula
is defined recursively as follows:

ω(ϕ ⇒ �) =
{
ω(�) if ω(ϕ) = 0
0 otherwise

ω(�1& . . . &�n) = ∑
i ω(�i )

ω(�1| . . . |�n) = mini ω(�i ).

Given a preference specification, the association of a weight with every sequence of
situations provides a straightforward measure by which plans can be compared according to the
extent to which they take into account the preferences. An ideal plan leads to an overall weight
of 0 for all preferences, and if we have two plans p1 and p2, then one is preferred over the other
just in case it determines a lower overall weight. Planning with preferences thus means to find
an action sequence which achieves the goal and at the same time has the lowest weight of all
successful sequences.

Clearly, the incorporation of preferences can only add to the complexity of planning. In
particular, the evaluation of the preferences for each and every successful plan can be very costly,
as it normally requires to go through each action sequence to determine the associated weight.
Fortunately it is possible to avoid evaluating the preference formulas separately for each plan.
The idea is to resort to the progression principle again. A basic desire formula can be progressed
in exactly the same way as a temporal control formula and with the following definition for
the special atoms. If, as before, Progress(φ) denotes the progression through a situation S,
then

� Progress(final( f )) is final( f ); and
� Progress(occurs(a)) is next(a), with the auxiliary definition

Si |= next(a) if Si = Do(a, s ) for some s ;
Progress(next(a)) is True if S = Do(a, s ) for some s , else False.

The progression of atomic preference formulas and general preference formulas is a straight-
forward generalization of this definition, applying progression to all basic desire formulas
inside.

The correctness of progression relies on the fact that—w.r.t. a sequence S0, S1, . . . , Sn

of situations—a preference formula � has the same weight in situation S0 as the formula
Progressn(�) has in situation Sn. The preference formulas can thus be evaluated across different
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plans when searching for a plan. Moreover, a so-called best-first search strategy can be applied
by ordering partial plans according to their current weights.

4.4 EXERCISES
4.1. Specify the 15 Puzzle (cf. Figure 4.4) as a planning problem in the Situation Calculus!

Write a GOLOG program that defines a suitable plan skeleton to solve this puzzle
for any given initial configuration!

4.2. Specify precondition and effect axioms for the Container Stacking Problem depicted
in Figure 4.5! Find useful temporal logic formulas to be used as control rules for a
forward chaining planner! Define, to this end, suitable auxiliary predicates that can

XI V XII XIV

XV II IX I

XIII VII VI VIII

III X IV

I II III IV

V VI VII VIII

IX X XI XII

XIII XIV XV

FIGURE 4.4: An instance of the 15 Puzzle: starting with the configuration shown on the left hand side,
a single move consists in sliding a tile into the empty space. The problem is solved if the configuration
shown on the right hand side is reached.
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FIGURE 4.5: A Container Stacking Problem: starting with the configuration shown on the left hand
side, find a minimal sequence of actions by a forklift to reach the ordered configuration shown on the
right hand side. Assume that the forklift can lift only one container at a time and that there is sufficient
space on the ground to put down a container.
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be derived from a given goal configuration. Aim at a set of control rules which are so
strong that they allow no branching at all, so that planning is linear in the number of
containers while it is guaranteed that a plan with minimal number of actions is found!

4.3. Show the correctness of the progression operator for preference formulas: for a pref-
erence formula � and a sequence S0, S1, . . . , Sn of situations, let w1 = ω(�) w.r.t. S0

and � = Progressn(�). Prove that if w2 = ω(�) w.r.t. Sn, then w1 = w2!

4.4. Extend the axiomatization of the mail delivery world by allowing users to give different
priorities to their requests! Add appropriate preference formulas for priority handling!
Extend the generic GOLOG interpreter from Chapter 3 by an evaluation mechanism
for preference formulas, and modify the GOLOG program for the mail delivery robot
so as to generate the most preferred one of all plans with minimal number of actions!
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C H A P T E R 5

Declarative Action Programs

5.1 AGENT LOGIC PROGRAMS
Declarative action programs combine reasoning about actions with the declarative programming
paradigm. Agent Logic Programs, or short ALPs, are an amalgamation of standard logic
programs with the actions and fluents of an agent and its environment. As such, an ALP looks
a lot like a standard logic program, but it uses special elements which capture the dynamics of
actions and change.

Similar to the procedural action programming language GOLOG, declarative action
programs are based on the specification of the actions an agent can take and the fluents
which describe the environment of the agent. In contrast to a procedural action programming
language, however, the high-level strategy of the agent is given by a logic program that uses its
own signature with arbitrary additional predicates and functions. The two signatures intersect
via two special predicates that form the core of an ALP. One, written do(a), represents the
execution of an action a by the agent, and the other, written ?(φ), denotes the condition φ on
the state of the environment in which the agent lives.

Example: An ALP for Peg Solitaire
Recall the Peg Solitaire domain from the previous chapter. In Section 4.1, we have seen that
a general strategy for solving instances of this problem consists in successively identifying and
solving specific, small patterns. The procedural action program written for this purpose required
the use of additional fluents for the purpose of defining these patterns and other basic properties,
like set membership. ALPs allow for a clear separation of the fluents and actions of a domain
on the one hand, and the predicates needed to describe a strategy on the other hand. In the
following, we give a declarative action program for Peg Solitaire using the fluent Peg(x) to
denote that cell x houses a peg, and action Jump(x, y, z) to denote the action of jumping with
the peg in x over the peg in y into cell z. To begin with, this ALP clause defines a predicate
that is true if the board has been solved, which shall be the case when a single peg remains in
the center square 45 on the board:

BoardSolved :- ?(peg(45) and forall(X, X=45 or not peg(X))).

The keywords not, and, or, and forall stand for the corresponding logical connectives.
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As before, the solution strategy is based on the recognition of specific patterns. Recall
that a pattern is a set of pegs in a specific arrangement along with a single “catalyst,” as depicted
in Figure 4.3(a). For the ALP, an instance of a pattern is encoded as a list of cells, the first of
which denotes the position of the catalyst peg. The way to solve a pattern can then be defined as

patternSolved(P) :- member(Y,P), do(jump(X,Y,Z)), patternSolved(P).

Put in words, a pattern is solved by repeatedly jumping over a selected peg from the pattern
until this situation is reached:

patternSolved([Catalyst|P]) :- ?(peg(Catalyst)), empty(P).

Put in words, the catalyst position is occupied while all other cells of the pattern, given in the
tail list P, no longer contain a peg:

empty([]).

empty([X|L]) :- ?(not peg(X)), empty(L).

The solution of a single pattern is embedded in the definition of the overall solution
strategy for the Peg Solitaire agent:

strategy :- boardSolved.

strategy :- isPattern(P), patternSolved(P), strategy.

Intuitively, the query strategy can be inferred from these clauses just in case there is a sequence
of pattern-solving moves which leads from a given initial board configuration to a solved board.
The program is completed by the encoding of suitable patterns, e.g., the ones depicted in
Figure 4.3(a). For example, given the encoding of the cells as exemplified in Figure 5.1, the

14 15 16

23 24 25 26 27

32 33 34 35 36 37 38

42 43 44 45 46 47 48

52 53 54 55 56 57 58

63 64 65 66 67

74 75 76

FIGURE 5.1: An example encoding for the cells of a Peg Solitaire board.
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3-pattern can be defined by the ALP clauses

isPattern([C,X1,X2,X3]) :- ?(peg(C)),

X1 = C+1, X2 = X1+10, X3 = X1+20,

?(peg(X1) and peg(X2) and peg(X3)).

isPattern([C,X1,X2,X3]) :- ?(peg(C)),

X1 = C-1, X2 = X1+10, X3 = X1+20,

?(peg(X1) and peg(X2) and peg(X3)).

Similar clauses can be used to encode the same pattern but with different orientation, as well
as the other patterns.

The example ALP highlights the characteristics of declarative action programs: the syntax
is similar to that of a standard logic program augmented by two special predicates linking the
program to an underlying action domain. For the sake of simplicity, we consider only ALPs
without negative body or query literals.

The syntax of agent logic programs over an action domain axiomatization � is defined as
follows:

� The signature of the ALP includes all terms of sort fluent and action from �.
� If p is an n-ary relation symbol that does not occur in the signature of � and t1, . . . , tn

are terms, then p(t1, . . . , tn) is a program atom.
� If a is an action term in �, then do(a) is a program atom.
� If φ is a state property composed of fluent terms from �, then ?(φ) is a program

atom.
� If H, B1, . . . , Bn are program atoms (n ≥ 0), then H :- B1, . . . , Bn is an ALP clause (with

head H and body B1, . . . , Bn). If n = 0, this is simply written as H.
� An agent logic program is a finite set of ALP clauses.
� An ALP query is a finite sequence of program atoms Q1, . . . , Qn.

5.2 ALP SEMANTICS
5.2.1 Declarative Semantics
ALPs combine logic programs, which are static in nature, with reasoning about actions, which
describe changes over time. To understand its semantics, an ALP is expanded into a set of axioms
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in which the temporal aspect is made explicit. Specifically, every predicate p(�x) defined in the
logic program is extended by two arguments of sort time, thus becoming p(�x, s , t). So doing
transforms the static predicates into dynamic ones, stipulating their temporal truth between
two (possibly identical) time points. The special predicates, do(a) and ?(φ), are likewise
extended by arguments of sort time. Together with the underlying domain axiomatization,
these expanded clauses provide the declarative semantics of the ALP itself.

Formally, an ALP is expanded by expanding each of its clauses H :- B1, . . . , Bn (where
n ≥ 0) according to the following procedure. Let s1, . . . , sn+1 be a sequence of time variables:

� For i = 1, . . . , n,
– If Bi is of the form p(t1, . . . , tm), it is expanded to p(t1, . . . , tm, s i , s i+1);

– If Bi is of the form do(a), it is expanded to Poss(a, s i , s i+1);

– If Bi is of the form ?(φ), it is expanded to φ[s i ], and s i+1 = s i .
As usual, φ[s ] stands for formula φ with all occurrences of a fluent f replaced by the
atom Holds( f, s ).

� The head H = p(t1, . . . , tm) is expanded to p(t1, . . . , tm, s1, sn+1).
� The symbols “:-” and “,” are replaced by the implication “⊂” and the conjunction “∧”,

respectively.

For example, the two clauses describing the strategy in the program for Peg Solitaire are
expanded to the implications

Strategy(s1, s2) ⊂ BoardSolved(s1, s2)
Strategy(s1, s4) ⊂ IsPattern(p, s1, s2) ∧ PatternSolved(p, s2, s3) ∧ Strategy(s3, s4)

The meaning of the clause that defines a solved board is given by

BoardSolved(s , s ) ⊂ Holds(Peg(45), s ) ∧ (∀x) (x = 45 ∨ ¬Holds(Peg(x), s ))

It is important to realize that, unlike in standard logic programs, the order in which
atoms occur in the body of a clause is crucial and needs to be respected when adding the time
arguments to the individual atoms. Thus an ALP clause like, say,

p :- ?(f), do(a).

differs considerably from the clause

p :- do(a), ?(f).
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In the first case, fluent f must hold prior to the execution of action a , whereas in the second
clause the test applies to the situation after the action.

Queries to ALPs are expanded from left to right exactly like the body of a clause. The
only difference is that the first time argument of the first atom is the initial timepoint of the
time structure in the underlying action domain axiomatization. Thus the query strategy, for
example, translates to the question whether the formula (∃s ) Strategy(S0, s ) is logically entailed
by the expanded program along with the underlying domain theory.

Time Structures for ALPs
The expansion of an ALP does not assume a particular time structure, so that the underlying
action domain may use either linear or branching time. This is another difference to the
procedural programming language GOLOG, whose semantics is closely coupled with the
branching Situation Calculus. This notwithstanding, the expansion of an agent logic program
does rely on a few assumptions about the underlying action domain regarding the time.

First and foremost, the execution of actions in ALPs is strictly sequential. Each atomic
do(a) is expanded into Poss(a, s , t) with s the initial and t the resulting timepoint. The
underlying assumption, therefore, is that time progresses when an action is performed and that
actions never overlap. Formally, the axiomatization of time in the underlying domain must
entail

Poss(a, s , t) ⊃ s < t

and

Poss(a, s , t) ∧ Poss(a ′, s ′, t′) ⊃ (t < t′ ⊃ t ≤ s ′) ∧ (t = t′ ⊃ a = a ∧ s = s ′)

This condition is always satisfied, for instance, in a domain axiomatization based on situations
where all precondition axioms are of the form

Poss(a, s , t) ≡ t = Do(a, s ) ∧ . . .

and where the standard foundational axioms on the ordering of situations hold (cf. (3.13) in
Section 3.5).

A second assumption about the executability of actions is made when expanding sequences
of actions by identifying the timepoint after an action with the initial timepoint of the following
action, as in this expansion of the clause body do(a), do(b):

Poss(A, s1, s2) ∧ Poss(B, s2, s3) (5.1)

This assumes that possible actions can begin right after a previous action has finished. If a
domain violates this assumption, then queries which are intuitively true do in fact not follow
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from the expanded program. As an example, consider the two precondition axioms

Poss(A, s , t) ≡ s = 0 ∧ t = 1
Poss(B, s , t) ≡ s = 2 ∧ t = 3

(5.2)

along with the ALP clause p :- do(a), do(b). Intuitively, it should be possible to do
action A followed by action B and hence to derive query p; however, because A ends at time 1
and B cannot start before time 2, the expanded clause body, (5.1), does not follow from the
domain axiomatization (5.2). This cannot happen if the background action theory satisfies the
assumption that possible actions can always follow immediately after each other; formally,

(∃t) Poss(a, s , t) ∧ (∀ f ) (Holds( f, s ) ≡ Holds( f, s ′)) ⊃ (∃t′) Poss(a, s ′, t′)

Put in words, if the environment is in the same state at times s and s ′, then every action that is
possible at s is also possible at s ′. Under this assumption it is justified to link action execution
in the way the expansion of an ALP does. This condition, too, is satisfied in every standard
situation-style action domain axiomatization, but it is also worth realizing that this restriction
can be lifted by modifying the definition of expansion in such a way that the starting point of
an action is not identified with the termination of the preceding action.

5.2.2 Operational Semantics
In addition to the logical semantics, an operational semantics can be given for ALPs in the
form of a proof calculus for query answering. Computing with an ALP requires to combine
the standard derivation technique for logic programs with a reasoner for the underlying action
domain axiomatization. The latter is needed to compute the special program atoms that refer,
respectively, to the execution of an action, do(a), and to properties of the environment of the
agent, ?(φ).

Consider an expanded query Q to an expanded ALP P , and let � be the axiomatization
of the underlying action domain. As an adaptation from the usual derivation technique for
logic programs, the proof calculus establishes that � ∪ P |= Qθ for some substitution θ , by
systematically resolving the atoms in the query against applicable program clauses. The two
special atoms are evaluated against �. Hence, the proof calculus relies on an appropriate
derivation mechanism for the action domain, which takes care of the inference steps � |=
Poss(a, s , t) and � |= φ[s ]. Beginning with the given query, each derivation step maps a query
to a new one, and a successful derivation ends with the empty query. A derived state indicates a
failed derivation if none of the derivation rules applies. The derivation rules are as follows.
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� Standard Atoms:

Q1 ∧ Q2 ∧ . . . ∧ Qn

(B1 ∧ . . . ∧ Bm ∧ Q2 ∧ . . . ∧ Qn)θ

where Q1 is a literal defined in the ALP and H ⊂ B1 ∧ . . . ∧ Bm is the expansion of a
clause in the ALP such that Q1θ = Hθ , for some substitution θ .

� Actions:

Poss(a, s , t) ∧ Q2 ∧ . . . ∧ Qn

(Q2 ∧ . . . ∧ Qn)θ

where � |= Poss(a, s , t)θ with substitution θ on the variables in Poss(a, s , t).
� Tests:

φ[s ] ∧ Q2 ∧ . . . ∧ Qn

(Q2 ∧ . . . ∧ Qn)θ

where � |= φ[s ]θ with substitution θ on the variables in φ.

If a derivation is successful, then the substitutions used in each derivation step can be combined
and then restricted to the variables in the original queries. The resulting substitution is the
computed answer.

To illustrate the use of these derivation rules, consider the program

office(alice, 101).

office(bob, 102).

deliver :- ?(hasPackageFor(P)), office(P,R), do(go(R)).

along with the query deliver. The expansion of the program is

Office(Alice, 101, s , s )
Office(Bob, 102, s , s )
Deliver(s1, s3) ⊂ Holds(HasPackageFor(p), s1) ∧ Office(p, r, s1, s2) ∧ Poss(Go(r ), s2, s3)

Suppose the background theory � includes the fact Holds(HasPackageFor(Bob), S0) along with
the precondition axiom

Poss(Go(r ), s , t) ≡ t = Do(Go(r ), s )

Figure 5.2 depicts a successful derivation for the expanded query, Deliver(S0, s ), based on
this background theory. The substitutions used in the individual derivation steps are, θ1 =
{s1/S0, s3/s }, θ2 = {p/Bob} (following from the background theory), θ3 = {r/102, s2/S0}, and
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Deliver(S0, s )

Holds(HasPackageFor(p), S0) ∧ Office(p, r, S0, s2) ∧ Poss(Go(r ), s2, s )

Office(Bob, r, S0, s2) ∧ Poss(Go(r ), s2, s )

Poss(Go(102), S0, s )

�

FIGURE 5.2: A derivation for an (expanded) ALP query.

θ4 = {s /Do(Go(102), S0)} (which again is computed from the background theory). The last
replacement for variable s of the original query is also the computed answer.

Under the condition that the reasoner for the underlying action theory is correct, the
derivation mechanism for ALPs is semantically correct. That is to say, if there exists a suc-
cessful derivation for a query Q with computed answer θ , then the expanded program and the
background theory together entail Qθ . The proof calculus is in general not complete, however,
if the agent has incomplete knowledge according to the underlying domain axiomatization. To
illustrate this, consider the simple program

p :- ?(f).

p :- ?(not f).

Its expansion is obviously equivalent to the formula P (s , s ) ≡ True, which entails that
(∃s ) P (S0, s ). However, there is no successful derivation for this query if the agent does not
know whether or not fluent f holds initially.

5.3 AN ALP INTERPRETER
This section gives a brief introduction into the use of logic programming itself to implement
a reasoner that is suitable for being combined with an ALP. As in case of the interpreter for
GOLOG in Section 3.5, this includes a specific instance of an action calculus to specify a
background theory as part of the logic program.

The Fluent Calculus is a variant of the Situation Calculus which uses the same branching
time structure but adds a sort state as an explicit representation for states. Intuitively, a state
is identified with the fluents that hold in it. The state in situation s is denoted by the standard
function State(s ). By definition, each fluent itself is a (singleton) state, and if z1 and z2 are
states, then so is their composition denoted by z1 ◦ z2. The empty state is represented by
the special constant ∅. By convention, state variables in Fluent Calculus axiomatizations are
always denoted by z, possibly with subscripts or superscripts. The behavior of the function “◦”
is governed by the following foundational axioms, which essentially define states as non-nested
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sets of fluents:

(z1 ◦ z2) ◦ z3 = z1 ◦ (z2 ◦ z3) z1 ◦ z2 = z2 ◦ z1

¬Holds( f, ∅) Holds( f1, f ) ⊃ f1 = f
Holds( f, z1 ◦ z2) ⊃ Holds( f, z1) ∨ Holds( f, z2) (∀ f ) (Holds( f, z1) ≡ Holds( f, z2)) ⊃ z1 = z2

(∀P )(∃z)(∀ f ) (Holds( f, z) ≡ P ( f ))

Here, Holds( f, z) is used as an abbreviation for the equational formula (∃z′) z = f ◦ z′, which
amounts to an axiomatic characterizations of set membership. The last axiom, where P is a
second-order predicate variable of sort fluent, stipulates the existence of a state for any (possibly
infinite) set of fluents. These axioms are accompanied by the axiomatization of branching time
as in the Situation Calculus (axioms (3.13) in Chapter 3).

The explicit notion of a state allows a simple and natural specification of positive and
negative effects of actions, by a purely axiomatic characterization of subtraction and addition
of fluents from and to states:

z2 = z1 + f def= z2 = z1 ◦ f
z2 = z1 − f def= (z2 = z1 ∨ z2 + f = z1) ∧ ¬Holds( f, z2)

(5.3)

These macros can be straightforwardly generalized to the subtraction and addition of finitely
many fluents.

Using the explicit concept of a state, action domains are axiomatized in the Fluent
Calculus as follows, where the expression Holds( f, s ) in state formulas is now used as a mere
abbreviation for Holds( f, State(s )). Precondition axioms, one for every action A(�x), are of the
form

Poss(A(�x), s ) ≡ πA[s ] (5.4)

where πA[s ] is a state formula in s with free variables among s , �x. As in the Situation Calculus,
the understanding is that an action always ends in the successor situation Do(A(�x), s ).

The effects of actions are specified by state update axioms, one for every action A(�x),
which are of the form

Poss(A(�x), s ) ⊃ (∃�y1) (�1[s ] ∧ State(Do(A(�x), s )) = State(s ) − ϑ−
1 + ϑ+

1 )
∨ . . . ∨
(∃�yn) (�n[s ] ∧ State(Do(A(�x), s )) = State(s ) − ϑ−

n + ϑ+
n )

(5.5)

where each �i [s ] is a state formula in s with free variables among s , �x, �yi ; and ϑ−
i (the

negative effects) and ϑ+
i (the positive effects) stand for zero or more subtractions and additions,

respectively, of fluent terms with variables among �x, �yi . A crucial property of the equations
between a state and its successor is that the updated state always contains the positive effects
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plus all fluents in the preceding state except for the negative effects. This follows from the
foundational axioms of the Fluent Calculus and definition (5.3), which entail that

State(Do(a, s )) = State(s ) − g1 − · · · − gm + f1 + · · · + fn

implies

Holds( f, State(Do(a, s ))) ≡ [
∨

i

f = fi ] ∨ [ Holds( f, State(s )) ∧
∧

j

f �= g j ]

With this fundamental property of the Fluent Calculus, state update axioms can be understood
as special instances of general effect axioms. Specifically, a state update axiom (5.5) corresponds
to the effect axiom

Poss(A(�x), s , t) ⊃
(∃�y1)(�1[s ] ∧ (∀ f ) [

∨
i f = f1i ∨ Holds( f, s ) ∧ ∧

j f �= g1 j ⊃ Holds( f, t)]
∧ (∀ f ) [

∨
j f = g1 j ∨ ¬Holds( f, s ) ∧ ∧

i f �= f1i ⊃ ¬Holds( f, t)])
∨ . . . ∨
(∃�yn)(�n[s ] ∧ (∀ f ) [

∨
i f = fni ∨ Holds( f, s ) ∧ ∧

j f �= gnj ⊃ Holds( f, t)]
∧ (∀ f ) [

∨
i f = gnj ∨ ¬Holds( f, s ) ∧ ∧

i f �= fni ⊃ ¬Holds( f, t)])

Here, the fki and gk j are the fluent terms that occur in ϑ+
k and ϑ−

k , respectively. The reader may
verify that this formula is equivalent to the state update axiom provided the latter is coherent,
that is, fluents never occur as both positive and negative effect in the same update equation.

As an example of how to use the Fluent Calculus to specify an action domain, recall
the one-player game from the beginning of Chapter 4 (cf. Figure 4.1). As a game with full
information, its initial state is given by a complete collection of fluents.

State(S0) = Cell(a, 1) ◦ Cell(b, 1) ◦ . . . ◦ Cell(h, 1) (5.6)

The conditions for action Jump(x, y), that is, to jump with the coin on position x onto the coin
in place y , are formalized by the axiom

Poss(Jump(x, y), s ) ≡ Holds(Cell(x, 1), s ) ∧ Holds(Cell(y, 1), s ) ∧
CoinsBetween(x, y, s ) = 2

Again, auxiliary function CoinsBetween(x, y, s ) counts the number of coins that lie between
position x and y in State(s ). The following state update axiom formalizes the effect of this
action:

Poss(Jump(x, y), s ) ⊃ State(Do(Jump(x, y), s )) = State(s ) −Cell(x, 1) − Cell(y, 1)
+ Cell(x, 0) + Cell(y, 2)
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The basic version of the Fluent Calculus-based interpreter for agent logic programs is
suitable for settings where agents have complete information about the state of their environ-
ment. Under this assumption, the state of the environment at any time during the computation
is a finite collection of ground fluents, as in (5.6). These states are encoded by lists of fluents
in the ALP interpreter, and a state is updated by standard operations on lists. To this end,
the following basic and generic logic program uses the standard membership predicate, written
member(X,Y), for atomic Holds statements, on the basis of which compound state formulas can
be evaluated, too. The following program also uses a ternary version member(X,Y,Z) which
means that X occurs in Y and Z is Y without X:

holds(F,Z) :- member(F,Z).

minus(Z,[],Z).

minus(Z,[F|Fs],Z2) :- member(F,Z,Z1), minus(Z1,Fs,Z2).

minus(Z,[F|Fs],Z2) :- not member(F,Z), minus(Z,Fs,Z2).

plus(Z,[],Z).

plus(Z,[F|Fs],Z2) :- not member(F,Z), plus([F|Z],Fs,Z2).

plus(Z,[F|Fs],Z2) :- member(F,Z), plus(Z,Fs,Z2).

update(Z1,ThetaP,ThetaN,Z2) :- minus(Z1,ThetaN,Z), plus(Z,ThetaP,Z2).

With the help of these basic definitions, the axioms of a concrete agent domain can be
implemented straightforwardly. As an example, consider the encoding of the initial state along
with the precondition and state update axioms in the single-player game from above:

init(Z0) :- Z0=[cell(a,1),cell(b,1),cell(c,1),cell(d,1),

cell(e,1),cell(f,1),cell(g,1),cell(h,1)].

poss(jump(X,Y),Z) :- holds(cell(X,1),Z), holds(cell(Y,1),Z),

between(X,Y,Z,2).

do(Z1,S,jump(X,Y),Z2,do(jump(X,Y),S)) :-

update(Z1,[cell(X,0),cell(Y,2)],[cell(X,1),cell(Y,1)],Z2).

The last axiom illustrates how the notion of a state allows us to maintain an explicit state in
addition to the situation term. This method is known as progression, where the world model,
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i.e., the state, is updated whenever an action is performed. The advantage of so doing is that the
updated state can be used directly for the evaluation of state properties. This is in contrast to the
regression method used in the interpreter for GOLOG in Section 3.5, where state properties
are rolled back to the initial situation prior to evaluation.

As a logic program, the background theory of an agent domain can be combined with
the ALP itself. If the Fluent Calculus is used with its duality of states and situations, then
the expanded ALP can use this pair, too, in the place of a single timepoint. This is illus-
trated in the following encoding of an (expanded) ALP that defines a complete search for the
Coin game:

strategy(S) :- init(Z0), plan(Z0,s0,Z,S).

plan(Z,S,Z,S) :- goal(Z).

plan(Z1,S1,Z3,S3) :- poss(A,Z1), do(Z1,S1,A,Z2,S2),

plan(Z2,S2,A,Z3,S3).

goal(Z) :- holds(not exists(X, cell(X,1)),Z).

According to this definition, a goal state is reached if no single coin is left, which is equivalent to
the requirement that all stacks have two coins. Among the answers to the query strategy(S)

is

S = do(jump(e,h),do(jump(a,c),do(jump(f,b),do(jump(d,g),s0))))

5.4 AGENT LOGIC PROGRAMS WITH SENSING
The encoding of states as ground lists of fluents in the basic ALP interpreter is suitable only
for domains in which the agent has complete information about its environment. A more
sophisticated state representation is required in the general case of incomplete knowledge and
if agents not only act but also sense.

Sensing actions can be modeled in declarative action programs in much the same way as
described in Section 3.7 for procedural action programs. For the sake of simplicity, we again
consider binary sensing actions only, that is, which allow the agent to learn the truth-value of a
specific fluent. Sensing actions and their outcomes can be integrated into an ALP by using, as
before, the concept of a sensing history. Recall that the expressions SF (a, s ) and Sensed[h, s ]
denote domain-specific formulas that encode, respectively, the effect of sensing action a and
the entire sensing information given in history h beginning with situation s .
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To compute ALPs which include sensing actions, the histories play a role when inferring
the special atoms. To this end, the two derivation rules for these cases are generalized as
follows:

� Actions:

Poss(a, s , t) ∧ Q2 ∧ . . . ∧ Qn

(Q2 ∧ . . . ∧ Qn)θ

where � ∪ {Sensed[h, s ]} |= Poss(a, s , t)θ with substitution θ on the variables in
Poss(a, s , t).

� Tests:

φ[s ] ∧ Q2 ∧ . . . ∧ Qn

(Q2 ∧ . . . ∧ Qn)θ

where � ∪ {Sensed[h, s ]} |= φ[s ]θ with substitution θ on the variables in φ.

The encoding of states in the ALP interpreter can be extended to incomplete knowledge
with the help of constraint logic programming. To this end, incomplete states are encoded by
open-ended lists of fluents, now possibly containing variables,

Z = [F1,...,Fk | Z1 ]

where the tail Z1 is a variable indicating that more fluents may hold but which are, at present,
unknown. If the arguments of all fluents are encoded by numbers, then a standard arithmetic
solver can be used for constraints on partially known arguments. Negative and disjunctive state
knowledge is then expressed by additional state constraints. A basic set of these constraints
is depicted in Figure 5.3. While a variety of state formulas can be encoded with the help of
just these three, they do not cover full first-order logic, and specific applications may require
additional or other constraints. An auxiliary constraint, written duplicate free(Z), is needed
to stipulate that a list of fluents contains no multiple occurrences of the same fluent.

Constraint Meaning
not_holds(F,Z) ¬Holds( f, z)

not_holds_all(F,Z) (∀�x) ¬Holds( f, z), �x variables in f
or_holds([F1,...,Fn],Z)

∨n
i=1 Holds( fi , z)

FIGURE 5.3: Constraints to express atomic negative state knowledge, universally quantified negations,
and disjunctions.
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The ALP interpreter described in the previous section can be extended by a method to
handle the state constraints using a general technique of specifying, in a declarative way, rules
for processing constraints.

A constraint handling rule is of the form

H1, . . . , Hm ⇔ G1, . . . , Gk | B1, . . . , Bn (5.7)

where

� the head H1, . . . , Hm is a sequence of constraints (m ≥ 1);
� the guard G1, . . . , Gk and the body B1, . . . , Bn are queries (k, n ≥ 0).

An empty guard is omitted; the empty body is denoted by True. The declarative interpretation
of such a rule is given by the formula

(∀�x) ( G1 ∧ . . . ∧ Gk ⊃ [H1 ∧ . . . ∧ Hm ≡ (∃�y) (B1 ∧ . . . ∧ Bn)] ) (5.8)

where �x are the variables in both guard and head and �y are the variables which additionally
occur in the body.
The procedural interpretation of a constraint handling rule is given by a transition in a
constraint store: if the head can be matched against elements of the constraint store and the
guard can be derived, then the constraints which match the head are replaced by the body.

Figure 5.4 depicts suitable constraint handling rules for some of the basic state constraints.
These can be extended by rules for the disjunctive constraint as well as for other constraints that
constitute the elements for encoding state knowledge in a tailor-made interpreter for ALPs.
Based on their declarative interpretation, the correctness of a set of constraint handling rules
can be proved against the foundational axioms of the Fluent Calculus.

not_holds(_,[]) <=> true.

not_holds(F,[F1|Z]) <=> neq(F,F1), not_holds(F,Z).

duplicate_free([]) <=> true.

duplicate_free([F|Z]) <=> not_holds(F,Z), duplicate_free(Z).

FIGURE 5.4: Constraint handling rules for the negation constraint and the constraint on multiple
occurrences of fluents. Auxiliary constraint neq(f1, f2) means the inequality of fluents f1 and f2.
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The incorporation of constraints and constraints handling rules into the interpreter for
ALPs allows us to write control programs for agents with incomplete knowledge of their
environment. In each computation step, the current world model is given by an incomplete
list of fluents plus a set of constraints. Tests are then evaluated against this incomplete model,
and the state encoding is updated to a new list and a modified set of constraints whenever an
action is performed. If the ALP includes the use of sensing actions, then whenever the agent
learns the truth-value of a state property, this information is incorporated into the current state
description.

Example: Exploration Agent
Consider the model of an adventure game depicted in Figure 5.5. An agent is placed somewhere
in an environment of unknown size. Its task is to find as many gold items as possible and to
take them to the depot. The agent must, however, avoid falling into any of the pits. The agent
is equipped with a sensor which tells it whether it is in a location next to a pit but without
revealing the direction in which the pit actually is. A second sensor is activated whenever the
agent is in a cell containing gold. Besides sensing, the basic actions of the agent shall be to
move to the adjacent cell in any direction and to pick and drop gold. A suitable control program
should have the agent systematically explore the environment to collect gold while avoiding to
enter a square with a pit. This problem illustrates two challenges raised by incomplete state
knowledge: agents have to act cautiously, and they need to interpret and logically combine
sensor information acquired over time.

The formal description of this problem must include the effects of the two sensing actions
with the help of the predicate SF (a, s ). Let the fluent Gold(x, y) describe the presence of a

• • •
•

••
•

• •• •
FIGURE 5.5: The task of the agent in this world is to explore the initially unknown environment with
the goal to find and collect as many of the four gold nuggets as it can safely get without risking to fall
into any of the circular pits. While the agent can sense the presence of a pit if standing next to one, it
is unable to tell in which direction the pit lies. This actually makes it impossible to safely collect the
leftmost gold nugget in the particular scenario depicted here.
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gold nugget in cell (x, y), then the action SenseGold(x, y) is suitably described by the axiom

SF (SenseGold(x, y), s ) ≡ Holds(Gold(x, y), s )

Slightly more involved is the definition of the effect of sensing a pit, which means that at least
one of the four squares around the agent houses a pit:

SF (SensePit(x, y), s ) ≡ Holds(Pit(x + 1, y), s ) ∨ Holds(Pit(x, y + 1), s ) ∨
Holds(Pit(x − 1, y), s ) ∨ Holds(Pit(x, y − 1), s )

In the ALP interpreter, these two axioms can be encoded with the help of the state
constraints from Figure 5.3 as follows, where the acquired sensor information, true or false,
is evaluated against a given, incomplete state Z:

sf(senseGold(X,Y),true,Z) :- holds(gold(X,Y),Z).

sf(senseGold(X,Y),false,Z) :- not_holds(gold(X,Y),Z).

sf(sensePit(X,Y),true,Z) :-

X_east=X+1, X_west=X-1, Y_north=Y+1, Y_south=Y-1,

or_holds([pit(X_east,Y),pit(X,Y_north),

pit(X_west,Y),pit(X,Y_south)],Z).

sf(sensePit(X,Y),false,Z) :-

X_east=X+1, X_west=X-1, Y_north=Y+1, Y_south=Y-1,

not_holds(pit(X_east,Y),Z), not_holds(pit(X,Y_north),Z),

not_holds(pit(X_west,Y),Z), not_holds(pit(X,Y_south),Z).

Whenever the agent makes an observation and incorporates it into the state description, the
constraint solving mechanism combines the new information with what the agent already
knows. For example, suppose the current incomplete state is given by the incomplete list
Z=[at(3,5)|Z1] (that is, the only fluent known to be true is the agent’s position) along with
the two constraints not_holds(pit(3,4),Z1) and not_holds(pit(4,5),Z1). If in this
situation the agent senses both gold and the presence of a nearby pit, then solving the two
atoms

sf(senseGold(3,5),true,Z),

sf(sensePit(3,5), true,Z)
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results in the substitution {Z1/[gold(3,5)|Z2}} and gives rise to the extended state descrip-
tion

Z=[at(3,5),gold(3,5) | Z2],

not_holds(pit(3,4),Z2),

not_holds(pit(4,5),Z2),

or_holds([pit(3,6),pit(2,5)],Z2).

The last disjunction reflects the fact that the agent is uncertain about whether a pit is to the left
or above the current location (or both). This can only be further resolved if later and in another
square, say (1,5), the agent’s sensor would not be activated, implying that actually it must be
cell (3,6) that houses a pit.

The specification of the sensing actions of the agent can be extended by suitable precon-
dition and state update axioms for the other actions. The resulting logic program can then be
combined with an arbitrary ALP acting as the actual control program for the agent.

5.5 EXERCISES
5.1. Axiomatize an elevator control scenario under the assumption that the destinations of

all passengers are known initially! Write an ALP which tries to minimize the number
of stops for people inside the elevator!

5.2. (a) Prove that the foundational axioms of the Fluent Calculus entail each of the
following:
� z ◦ z = z
�

∧n
i=1 Holds( fi , z) ⊃ z + f1 + · · · + fn = z

�

∧n
i=1 ¬Holds( fi , z) ⊃ z − f1 − · · · − fn = z

(b) Show that the foundational axioms of the Fluent Calculus are mutually indepen-
dent, by finding a model for the negation of each axiom with all other axioms
satisfied!

5.3. Axiomatize the Knight’s Tour Problem for boards of various sizes; see Figure 5.6!
Find a good solution strategy for this problem (an example could be a heuristics by
which the “mobility” of the knight is maximized in every situation) and write an ALP
that implements a solution strategy for this problem! Run this ALP using the logic
program from Section 5.3!

5.4. Modify the elevator control axiomatization from Exercise 5.1 as follows. The desti-
nations are not known initially; instead, people press a button when they enter the
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FIGURE 5.6: The Knight’s Tour Problem: a knight is placed somewhere on a chess board. The task
is to find a sequence of knight moves by which each square is visited exactly once. For illustration, the
eight possible moves of a knight on e4 are depicted. A knight at the border or in a corner has similar but
fewer moves. For a simpler variant of the problem, assume that the left and right hand side of the board
as well as the top and bottom are connected, so that the knight has eight moves from all squares.

elevator. Furthermore, the capacity of the elevator is limited. Write an ALP and
implement it using the constraint logic program from Section 5.4!

5.5. Write and implement an ALP for the gold mining agent to find and collect as many
gold items as possible in scenarios such as the one depicted in Figure 5.5! Assume that
initially the agent only knows that it starts at the depot and that the four cells that
border this base location are safe.



main MOCL008.cls July 5, 2008 10:2

69

C H A P T E R 6

Reactive Action Programs

A procedural or a declarative action program, possibly coupled with planning, provides a
complex and long-term strategy for an autonomous agent. These approaches are suited for
agents that live in a structured, reasonably well-behaved world, over which they have sufficient
control. In environments which are highly dynamic and much less controllable, however,
elaborate strategies and plans are often inappropriate. Frequent and unforeseeable changes
require flexible control programs, which allow agents to constantly assess their current strategy
and to quickly adapt when necessary. Software agents in an open world or autonomous robots in
unfamiliar environments are examples of systems for which a sophisticated strategy is unsuited
because it is likely that they are unable to complete any long-term behavior without the need to
adapt to unexpected circumstances. Under these conditions, reactive action programs are often
a better choice. As a form of behavior-based control, reactive programs require the agents to
constantly choose short-term goals which can be easily achieved but also quickly abandoned in
case of unexpected changes in the environment.

6.1 BDI-AGENTS
Instead of following a single, elaborate strategy, a behavior-based agent has at its disposal a
variety of comparably simple behaviors (usually called procedures in this context) which they select
according to their current needs. A single procedure is meant to achieve a short-term goal, and
agents can quickly abandon a chosen behavior and adopt a new one if necessary. Programming
a reactive agent thus requires to provide these short-term procedures along with suitable criteria
under which they can and should be adopted. The standard approach to this form of agent
programming is the BDI-model , where the capitals stand for Belief, Desire, and Intention.

In the BDI-model, the state of an agent at any time is characterized by three components.

� Beliefs constitute the internal world model: They describe what the agent currently
believes about the environment and its own tasks.
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� Desires are derived from the beliefs and describe what the agent currently tries to
achieve.

� Intentions are the behaviors (procedures) which the agent has adopted and is currently
following in order to meet its desires.

A Procedural Reasoning System (PRS) combines the state components of a BDI-based agent
with a library of programmed procedures and a reasoner to control the behavior of the agent.
Figure 6.1 depicts the basic architecture of a PRS containing these modules along with a
connection to the outside world through the sensors and effectors of an agent. Being a general
and abstract framework for reactive action programs, the BDI-model can be instantiated with
different languages for the specification of beliefs and desires and for the programming of
procedures.

Beliefs
The database containing the current beliefs of an agent during the execution of a reactive
action program is the PRS-equivalent of the internal world model maintained in procedural
or declarative programs. Hence, beliefs are held about the fluents which describe the relevant
properties of the environment of the agent. As usual, the beliefs are affected by both the agent’s
actions and the acquired sensing information. Besides knowledge of fluents, a belief base may
include static knowledge of the environment, which corresponds to domain constraints in
general action calculi. A specialty of the state representation in reactive action programs is
that it may also include properties which characterize the current behavioral stance of the agent
itself. Like all dynamic state components, these “mental” fluents may be affected by both actions
and sensing information, in which case they take the agent into a different state of mind.

Reasoner

Beliefs Intentions

Desires Procedures

Sensors Effectors

�
�

�
� 	

	



�

FIGURE 6.1: A general PRS-architecture for BDI-based agents.
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Desires
Desires are formalized as properties of the environment that the agent currently wants to
achieve. The simple form of a desire is a goal formula, indicating that the agent aims at a state
in which the goal is satisfied. These correspond to goals in planning problems, but are typically
short-term and an agent can have several of these desires at the same time. More expressive
settings support temporally extended desires, such as the maintenance of a state property over
a certain time interval, similar to the temporal logic formulas used in Chapter 4 for control
formulas and preferences.

Intentions
Intentions are collections of instantiated procedures which the agent has selected in order to
achieve its desires. Intentions can be active or passive, and only in the former case can the agent
select its next action according to this intention. Typically, intentions are partially ordered, in
which case only the intentions on top are active and all others remain passive until the preceding
intentions have been successfully completed.

Procedures
The procedures constitute the behavioral knowledge of the agent about how to achieve goals
or how to react under given circumstances. In the simple case, a procedure is a sequence of
actions, while more expressive languages allow conditionals and loops as in a procedural action
program or in an agent logic program. Procedures correspond to, typically short, GOLOG
procedure definitions or to clausal definitions in an ALP. Each procedure is associated with a
condition that defines the desires for which the behavior is suitable. A procedure may affect the
behavioral stance of the agent if it includes actions which change the beliefs that encode this
mental state.

Reasoner
The reasoner controls the execution of a reactive action program. Executing usually happens
in form of a cycle, where sensing is followed by selection and then acting. Starting with an
initial belief base, the reasoner derives the desires that follow from the beliefs and then chooses
appropriate intentions for these desires. This is followed by selecting an active intention and
then executing the next step of this behavior. This results in an updated set of beliefs according
to the effect of the chosen action and possibly acquired sensing information, and then the cycle
continues. The program ends when a belief state is reached which implies no more desires.

6.2 AGENTSPEAK
AgentSpeak is a simple programming language for reactive agents based on the BDI-model.
It provides a syntax for encoding the belief base and for defining a set of procedures for an
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agent. The language admits a formal operational semantics which follows the general PRS-
architecture. Borrowing many of the principles of logic programming, AgentSpeak can be easily
implemented in a declarative fashion.

6.2.1 Syntax
A world model in AgentSpeak is composed of belief atoms representing the relevant properties
of the environment. This includes both static and dynamic beliefs. The latter correspond to
fluents and may be affected by the actions of the agent or otherwise change while the agent
program is executed. Besides predicates for beliefs, a domain signature contains predicates
representing the possible actions of the agent.

Definition 6.2.1. An AgentSpeak domain signature includes a finite set of belief predicates and a
finite set of action predicates. A belief literal is an atom with a belief predicate or its negation. �

The beliefs of an agent at any time are given by a set of variable-free atoms. For the purpose of
inference, these atoms are treated as (dynamically changing) facts in a logic program.

Example: Reactive Robot
Consider an environment similar to the one depicted in Figure 5.5 but with less regular a
structure and where instead of static pits there are moving obstacles which from time to time
prevent the agent from entering a specific location. The environment shall be described with
the help of the following belief predicates:

Symbol Type
Adjacent cell × cell
At {Agent, Gold, Obstacle, Depot} × cell
Carries {Agent} × {Gold}

Thus the (static) layout is encoded by an adjacency relation for the locations, and the fluent
At is used for the (static and dynamic) positions of the various objects and the agent itself. An
initial database of beliefs may then be given by

Adjacent(A, B)
Adjacent(B, C)
At(Agent, A)
At(Gold, A)
At(Depot, C)
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Suppose further that the agent has at its disposal the following three action predicates:

Symbol Type Meaning
Pick {Gold} pick up a gold item
Drop {Gold} drop a gold item
Move cell × cell move to an adjacent cell

In order to keep the definition of individual behaviors conceptually simple, behaviors in
AgentSpeak are mere sequences of elementary steps. Such a step can be an action of the agent
or the addition of a new goal. There are two kinds of goals: achieving a specific property, written
! f , where f is a belief atom; or establishing that a property holds, written ? f . Sequences of
actions and goals are treated like queries in a logic program. An example of such a sequence is

Pick(Gold), !At(Agent, y), Drop(Gold) (6.1)

This behavior, when adopted for some given y , causes the agent to pick up gold, then to set the
goal to be at location y , and finally to drop the gold after this goal has been achieved. Another
example of a behavior is

?At(Gold, x), !At(Agent, x)

This sequence requires the agent to find an instance for location x of which it believes that gold
can be found there, and then to set the goal to be at this x.

Each procedure definition needs to be accompanied by a condition under which the
specified behavior can be adopted by the agent. This condition consists of two parts: a triggering
event, which must have arisen and for which the sequence is appropriate, and a context defining
preconditions for the applicability of the procedure. Triggering events can be the addition or
removal of either a belief or a goal.

Definition 6.2.2. If f is a belief atom, then ! f and ? f are goals. A triggering event is any of + f ,
− f , +g , −g , where f is a belief atom and g a goal.

A procedure is an expression

e : b1, . . . , bm ← p1, . . . , pn

where e is a triggering event, b1, . . . , bm (the context) are belief literals (m ≥ 0), and p1, . . . , pn

(the body) is a sequence of action atoms or goals (n ≥ 0). An empty context or body is denoted by
True. �

An example of a procedure for the gold mining agent is the following, which uses the
three-step sequence (6.1) from above:

+At(Gold, x) : At(Agent, x), At(Depot, y) ← Pick(Gold), !At(Agent, y), Drop(Gold)
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This procedure is triggered if the agent has learned that gold is in cell x, and the behavior can
be adopted if the agent happens to be at x and the location y of the depot is known. The body
of this procedure has the agent pick up the gold, then to set the goal to be at the depot, and
finally to drop the gold. This behavior may be accompanied by two procedures that tell the
agent what to do to safely reach a specific location:

+ !At(Agent, x) : At(Agent, x) ← True

+ !At(Agent, x) : At(Agent, y), x �= y, Adjacent(y, z), ¬At(Obstacle, z)
← Move(y, z), !At(Agent, x)

(6.2)

The first procedure says that the goal to be at some location is achieved if the agent is already
there, and the second procedure says that the same goal can be achieved by a behavior that first
takes a single step to an adjacent, currently unobstructed cell and then to pursue again the goal
to reach x.

6.2.2 Operational Semantics
The generic PRS-architecture determines the underlying execution principle for agent programs
written in AgentSpeak. With the help of the BDI-model, the state of the agent at any time is
characterized by the following three sets:

� B, a set of variable-free belief atoms.
� I, a set of intentions. A single intention is an ordered set

[P1; . . . ; Pk]

where each Pi is a procedure body, possibly with some variables instantiated (k ≥ 0).
The first procedure, P1, is always the one with the highest priority and thus the only
one in the intention that is currently active.

� D, a set of desires, each of which is of the form 〈e ; i〉 where e is a triggering event and
i an intention.

In general, the second component of a desire, i , encodes the remaining steps of the procedure
which has generated event e . For example, executing the second step of sequence (6.1) may
yield the desire

〈+!At(Agent, C); [Drop(Gold)]〉

This indicates that the agent desires At(Agent, C) in order to be able to continue with the
procedure body [Drop(Gold)]. A special form are external desires given to the agent by its user.
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These desires are formalized as

〈e , [ ]〉

where e is a triggering event representing an external goal.
The three standard components of a BDI-agent are accompanied by these three selection

functions:

� SD selects an element from the current desires;
� SI selects an element from the current intentions;
� SP selects an applicable procedure for a triggering event.

Function SP selects applicable procedure instances in accordance with the following definition:

Definition 6.2.3. Consider a set B of variable-free belief atoms. Let e be a triggering event and P
a procedure

d : b1, . . . , bm ← p1, . . . , pn

Then P is relevant for e if dθ = eθ for some substitution θ . If, furthermore, a substitution η exists such
that (b1 ∧ . . . ∧ bm)θη is a logical consequence of B, then the procedure instance Pθη is applicable
to e (w.r.t. B). �

Derivability follows the usual definition of logic programs, including the principle of negation-
by-failure. For example, assuming the initial database from above which includes At(Agent, A)
and Adjacent(A, B) but not At(Obstacle, B), consider the triggering event +! At(Agent, C).
While both procedures in (6.2) are relevant in this case, only the second one is applicable,
determining the substitutions θ = {x/C} and η = {y/A, z/B}. The resulting behavior is then
given by the instance

Move(A, B), !At(Agent, C)

Derivation Rules
The operational semantics of AgentSpeak is given by a set of derivation rules on agent configu-
rations. At any time during the execution of an AgentSpeak program, the agent is characterized
by a 4-tuple (B,D, I, σ ) consisting of sets of beliefs, desires, and intentions, along with a
parameter σ ∈ {Sense, Select, Act} denoting the current stage in the sense-select-act cycle.
The procedure definitions are not part of a configuration as they are assumed to be given and
constant. The initial state is (B, {}, {}, Sense), where B is an arbitrary initial set of belief atoms.
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The only derivation rule for the stage in which the agent senses is

(B,D, I, Sense)
(B′,D′, I, Select)

whereB′ is obtained by updatingB according to the sensing result and whereD′ isD augmented
by all external desires sensed by the agent.

For the selection of a desire, four cases are distinguished. If there are no desires, the
agent proceeds by acting according to one of its intentions. If the selected desire has no relevant
procedure, it is dropped as the agent will never be able even to intend it. If there is a relevant
procedure for the selected desire but none that is currently applicable, then the agent keeps the
desire but continues with selecting an action for an existing intention. Finally, in case there
are applicable procedures for a selected desire, a selected procedure instance is added to the
intentions and the agent continues with choosing an action.

1. For D = {},
(B, {}, I, Select)

(B, {}, I, Act)
.

2. If SD(D) = 〈e ; i〉 such that there is no relevant procedure for e , then

(B,D, I, Select)
(B,D \ {〈e ; i〉}, I, Select)

.

3. If SD(D) = 〈e ; i〉 such that there is a relevant procedure for e but none that is applicable
w.r.t. B, then

(B,D, I, Select)
(B,D, I, Act)

.

4. If SD(D) = 〈e ; i〉 and SP (e ) = Pθη, then
(a) for external desires, where i = [ ],

(B,D, I, Select)
(B,D \ {〈e ; [ ]〉}, I ∪ {[Pθη]}, Act)

;

(b) for internal desires, where i = [P1; . . . ; Pk]

(B,D, I, Select)
(B,D \ {〈e ; i〉}, I ∪ {[Pθη; P1; . . . ; Pk]}, Act)

.

For the last step in the sense-select-act cycle, if there are no intentions, then nothing
changes and the agent simply starts the cycle again. Otherwise the next step in a selected
intention is executed. If this is an action, then the actual execution of the action is reflected in
an updated belief base according to the effects of that action. If it is an achievement goal ! f ,
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then a new desire is obtained with this goal as triggering event. If the goal is to establish a
property, ? f , then either this can be established from the current belief base, or a new desire is
generated with triggering event +? f .

In case the executed step happens to be the last one in a procedure body, the next
procedure in the intention stack becomes active, and if there is no further procedure, then the
intention has been fully achieved. In any case, the sense-select-act cycle starts again after the
execution of one step of an intention.

1. For I = {},
(B,D, {}, Act)

(B,D, {}, Sense)
.

2. If SI (I) = [a, P1; . . . ; Pk] with a an action, then

(B,D, I, Act)
(B′,D, I \ {[a, P1; . . . ; Pk]} ∪ {[P1; . . . ; Pk]}, Sense)

where B′ is the result of updating B by the effects of action a .

3. If SI (I) = [! f, P1; . . . ; Pk], then

(B,D, I, Act)
(B,D ∪ {〈+! f ; [P1; . . . ; Pk]〉}, I \ {[! f, P1; . . . ; Pk]}, Sense)

.

4. If SI (I) = [? f, P1; . . . ; Pk] and θ is a substitution such that B entails f θ , then

(B,D, I, Act)
(B,D, I \ {[? f, P1; . . . ; Pk]} ∪ {[P1; . . . ; Pk]θ}, Sense)

.

5. If SI (I) = [? f, P1; . . . ; Pk] while there is no θ such that B entails f θ , then

(B,D, I, Act)
(B,D ∪ {〈+? f ; [P1; . . . ; Pk]〉}, I \ {[? f, P1; . . . ; Pk]}, Sense)

.

6. If SI (I) = [True; P2; . . . ; Pk], then

(B,D, I, Act)
(B,D, I \ {[True; P2; . . . ; Pk]} ∪ {[P2; . . . ; Pk]}, Sense)

.

7. If SI (I) = [ ], then

(B,D, I, Act)
(B,D, I \ {[ ]}, Sense)

.

For illustration, Figure 6.2 shows the initial steps of a derivation with an initial desire triggered
by the fact that the agent in the gold mining scenario has just detected gold at location A.
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B = {At(Agent, A), At(Gold, A), At(Depot, C)}
D = {〈+At(Gold, A); [ ]〉}
I = {}
σ = Select

B = {At(Agent, A), At(Gold, A), At(Depot, C)}
D = {}
I = {[Pick(Gold), !At(Agent, C), Drop(Gold)]}
σ = Act

B = {At(Agent, A), Carries(Agent, Gold), At(Depot, C)}
D = {}
I = {[!At(Agent, C), Drop(Gold)]}
σ = Sense

B = {At(Agent, A), Carries(Agent, Gold), At(Depot, C)}
D = {}
I = {[!At(Agent, C), Drop(Gold)]}
σ = Select

B = {At(Agent, A), Carries(Agent, Gold), At(Depot, C)}
D = {}
I = {[!At(Agent, C), Drop(Gold)]}
σ = Act

B = {At(Agent, A), Carries(Agent, Gold), At(Depot, C)}
D = {〈+!At(Agent, C); [Drop(Gold)]〉}
I = {}
σ = Sense

FIGURE 6.2: The initial steps in an AgentSpeak derivation. At the beginning, an appropriate instance
of the applicable procedure for the external goal +At(Gold, A) is selected. In the next step, the first
action, picking up the gold, is executed and the beliefs are updated accordingly. The last step shown
executes the goal !At(Agent, C), giving rise to a new, internal desire. For the sake of simplicity, the static
beliefs about the adjacency relation are not shown.

6.3 AN AGENTSPEAK INTERPRETER
Because AgentSpeak shares many basic principles of logic programming, such as term unifica-
tion and sequential execution of queries, a basic interpreter can be obtained by rewriting the
derivation rules of the operational semantics as clauses of a logic program. To this end, consider
the following example encoding of the reactive agent program from above:

adjacent(a,b).

adjacent(b,c).

at(agent,a).

at(gold,a).

at(depot,c).
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do(pick(gold)) :- at(agent,X),

retract(at(gold,X)),

assert(carries(agent,gold)).

do(move(X,Y)) :- at(agent,X),

retract(at(agent,X)),

assert(at(agent,Y)).

do(drop(gold)) :- at(agent,X),

retract(carries(agent,gold)).

procedure(+(at(gold,X)),P) :-

at(agent,X), at(depot,Y),

P = [do(pick(gold)), !(at(agent,Y)), do(drop(gold))].

procedure(+(!(at(agent,X))),P) :- at(agent,X), P=[].

procedure(+(!(at(agent,X))),P) :-

at(agent,Y), not X=Y, adjacent(Y,Z), not at(obstacle,Z),

P = [do(move(Y,Z)), !(at(agent,X))].

The beliefs are directly specified as facts, which are dynamically changed when an action is
executed that affects some of the beliefs. In accordance with Definition 6.2.2, the specification
of a procedure consists of a triggering event, conditions on the beliefs, and a sequence of
actions or goals.

Based on an AgentSpeak program, which contains an initial belief base along with a
specification of the actions and procedure definitions, a logic program that acts as an interpreter
can be obtained by a direct translation of the derivation rules from above; see Figure 6.3. The

desire(E,I) :- procedure(E,P), intention([P|I]).

intention([[do(A)|P]|I]) :- do(A), intention([P|I]).

intention([[!(F)|P]|I]) :- desire(+(!(F)),[P|I]).

intention([[?(F)|P]|I]) :- F, intention([P|I]).

intention([[?(F)|P]|I]) :- desire(+(?(F)),[P|I]).

intention([[]|I]) :- intention(I).

intention([]).

FIGURE 6.3: A generic AgentSpeak interpreter.
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only restriction in comparison to the general operational semantics is that desires cannot be
dropped and that desires and intentions are selected in the order in which they arise. This does
not allow us to delay the adoption of a desire in case a relevant but no currently applicable
procedure exists. The interpreter does not include a definition for sensing, which requires the
addition of an interface to the execution body of the agent with its sensors.

Consider, as an example, the query desire(+(at(gold,a)),[]). It admits a successful
derivation, in which the intention of the agent evolves as follows:

[[do(pick(gold)), !(at(agent,c)), do(drop(gold))]]

[[!(at(agent,c)), do(drop(gold))]]

[[do(move(a,b)), !(at(agent,c))], [do(drop(gold))]]

[[!(at(agent,c))], [do(drop(gold))]]

[[do(move(b,c)), !(at(agent,c))], [], [do(drop(gold))]]

[[!(at(agent,c))], [], [do(drop(gold))]]

[[], [], [], [do(drop(gold))]]

[[], [], [do(drop(gold))]]

[[], [do(drop(gold))]]

[[do(drop(gold))]]

[[]]

[]

6.4 SPARK
The language and system SPARK (an acronym for the Stanford Research Institute Procedural
Agent Realization Kit) has been developed for large-scale, practical applications of reactive
agent programs. It, too, builds on the PRS-architecture and the underlying BDI-model for
behavior-driven agents. SPARK, in comparison with AgentSpeak, provides more expressive
means for encoding and controlling agents in rich and dynamic domains.

6.4.1 Syntax
The world model of a SPARK agent is based on a domain-specific set of belief atoms but may
contain negative beliefs, too. A belief literal is a belief atom or its negation. At any state, a belief
base consists of a finite set of variable-free belief literals. A negated literal is true only if it occurs
explicitly in the belief base, which is in contrast to AgentSpeak, where negation-as-failure is
applied to evaluate negated conditions against a belief base of atoms. A belief formula is built
from the belief atoms and the standard logical connectives.

A domain signature in SPARK includes a set of action symbols to form actions. These
represent all primitive actions that an agent can directly perform in its environment, but also
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Task Meaning
noop do nothing
fail fail

conclude ϕ add the fact to the beliefs
retract ϕ delete the fact from the beliefs

do a perform the action
achieve ϕ attempt to achieve ϕ

seq(τ1, τ2) execute τ1 then τ2

if(ϕ, τ1, τ2) if ϕ is true, execute τ1, else τ2

try(τ, τ1, τ2) if τ succeeds, execute τ1, else τ2

wait(ϕ, τ ) wait until ϕ is true, then execute τ

while(ϕ, τ1, τ2) repeat τ1 until ϕ has no solution, then execute τ2

FIGURE 6.4: The basic and compound elements of SPARK task descriptions. The expressions ϕ and
a denote an arbitrary belief literal and action, respectively. The sub-tasks τ, τ1, τ2 are recursively defined
using all available programming constructs.

abstract names for more complex behaviors. The desire to perform an action a , be it primitive
or not, is always expressed in the belief base using the special belief atom Desire(a). Further
pre-defined belief expressions are Success(a) and Fail(a), and similarly Desire(ϕ), Success(ϕ), and
Fail(ϕ) for belief literals ϕ. Triggers for procedures in SPARK are of the form Do(a), where a
is a non-primitive action; Achieve(ϕ), where ϕ is a belief literal whose achievement is desired;
or +ϕ, indicating that the agent just came to believe literal ϕ.

SPARK supports a rich programming language for the specification of complex behaviors,
so-called task descriptions; see Figure 6.4. A procedure in SPARK is then defined as an expression

e : φ ← τ

where e is a trigger, φ (the applicability condition) a belief formula, and τ a task description.
As a small example, consider these two procedures for a software agent that filters

incoming messages:

Do(ForwardMessage(x)) : ¬IsSpam(x) ← try (achieve ClassifyMessage(x, y),
do AddToFolder(x, y),
do Forward(x)
)

Do(ForwardMessage(x)) : IsSpam(x) ← do Delete(x)

(6.3)
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Put in words, if the non-primitive action ForwardMessage(x) is desired and x is not believed to
be spam, then the agent tries to classify the message to be about some topic y . If this succeeds,
the message is added to a folder named y , otherwise it is forwarded to the user. If message x is
believed to be spam, it is simply deleted.

6.4.2 Operational Semantics
The operational semantics for SPARK can be given by a set of derivation rules in a similar
fashion as in the case of AgentSpeak. The main difference between the two languages lies in
the expressive programming language for procedures. Their semantics is defined in SPARK
using the concept of a finite state machine.

State Transitions
The operational meaning of a complex task definition is described by a state transition system.
Each such automaton has an initial state, denoted by s0, and at least one, possibly both, of two
distinct terminal states: s +, the success state, and s −, the failure state.

A single state transition is labeled with conditions for its applicability along with its
effects on the knowledge base. A condition is a sequence c 1, . . . , c n of expressions c i = ϕ or
c i = ϕ, where ϕ requires this belief literal to be entailed by the belief base while ϕ requires that
this is not the case. Thus there is a distinction between the absence of a belief, say, Obstacle(B),
and the presence of the explicitly negated belief ¬Obstacle(B). The effect of a state transition is
a sequence e1, . . . , em of expressions e i = ϕ or e i = ϕ where ϕ can be any belief atom.

A state transition with conditions �c and effects �e is denoted by s
�c | �e−→ s ′. Empty conditions

and effects are simply omitted. The construction of a finite state machine M(τ ) for an arbitrary,
complex task description τ is defined recursively through the construction of a state machine
for each task expression. For the basic tasks, the construction is as follows:

M(noop) def= {s0−→s +}
M(fail) def= {s0−→s −}

M(conclude ϕ) def= {s0
|ϕ−→ s +}

M(retract ϕ) def= {s0
|ϕ−→ s +}

M(do a) def= {s0
|Desire(a)−→ s , s

Success(a)|−→ s +, s
Fail(a)|−→ s −}

M(achieve ϕ) def= {s0
ϕ|−→ s +, s0

ϕ|Desire(ϕ)−→ s , s
Success(ϕ)|−→ s +, s

Fail(ϕ)|−→ s −}

According to this definition, the task to do an action is executed by adding the corre-
sponding desire. It succeeds if at some point Success(a) occurs in the belief base and fails
if eventually Fail(a) is believed. The task to achieve something succeeds immediately if the
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property happens to be true, otherwise a corresponding desire is added and its success or failure
determines the final state transition.

The finite state machine for a compound task expression is obtained by recursively
combining the individual state machines for each component, thereby applying appropriate
substitutions of states and, in some cases, adding conditions to some of the state transitions.
The latter is denoted by c ⇒ M(τ ), meaning that condition s is added to the sequence of
conditions for all transitions in M(τ ) leading away from s0.

M(seq(τ1, τ2)) def= M(τ1){s +/s } ∪ M(τ2){s0/s }
M(if(ϕ, τ1, τ2)) def= ϕ ⇒ M(τ1) ∪ ϕ ⇒ M(τ2)
M(try(τ, τ1, τ2)) def= M(τ ){s +/s1, s −/s2} ∪ M(τ1){s0/s1} ∪ M(τ2){s0/s2}
M(wait(ϕ, τ )) def= {s0−→s } ∪ ϕ ⇒ M(τ ){s0/s }

M(while(ϕ, τ1, τ2)) def= {s0−→s } ∪ ϕ ⇒ M(τ1){s0/s , s +/s } ∪ ϕ ⇒ M(τ2){s0/s }

Put in words, the sequential execution of two tasks corresponds to the sequential combination
of the individual state machines in such a way that the second task can only be started if the first
one ends in the success state, and then the success of the second one determines whether the
entire sequence is successful. A conditional is modeled by adding the corresponding condition
to the tasks representing the two cases. For the statement try(τ, τ1, τ2), the initial state of τ1

is identified with the success state of τ while the initial state of τ2 is identified with the failure
state of τ . Waiting for a condition before executing a task is modeled by a state transition to
an internal state after which the task execution is possible only if the condition holds. Finally,
the loop requires an initial state transition to an internal state s to which the execution of
the repeated task returns until the condition is no longer satisfied, and then the exiting task is
executed from s . For illustration, Figure 6.5 depicts the two finite state machines that constitute
the operational semantics of the bodies of the two example procedures in (6.3).

Derivation Rules
With the help of the finite state machines as models for complex task descriptions, the opera-
tional semantics of SPARK can be given by a set of derivation rules which are similar to those in
AgentSpeak. At any time during the execution of a SPARK program, the agent is characterized
by a 4-tuple (B,D, I, σ ) again, where σ ∈ {Sense, Select, Act} denotes the current stage in
the sense-select-act cycle as before. In SPARK, the belief base B is a set of belief literals; the
desires D are of the form Desire(a), Desire(ϕ), or +ϕ; and each intention in I is a tuple 〈d , S, s 〉
consisting of a desire d , an instance S of a finite state machine, and the current local state s
in S. The initial configuration is (B, {}, {}, Sense) with B being an arbitrary initial set of belief
literals.
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s0 �
ClassifyMessage(x, y) |

�
| Desire(AddToFolder(x, y))

s +�
Success(AddToFolder(x, y)) |

ClassifyMessage(x, y) |
Desire(ClassifyMessage(x, y))

�
Success(ClassifyMessage(x, y)) |

�

�
Fail(ClassifyMessage(x, y)) |

�
| Desire(Forward(x))

s −�
Fail(AddToFolder(x, y)) |

�
Fail(Forward(x)) |




Success(Forward(x)) |

s0 s +

s −

� �

�

| Desire(Delete(x)) Success(Delete(x)) |

Fail(Delete(x)) |

FIGURE 6.5: Finite state machines for two example procedures.

As in AgentSpeak, there are three selection functions:

� SD selects an element from the current desires;
� SP selects an applicable procedure for a desire;

� SI selects an element 〈d , S, s1〉 ∈ I with an allowed state transition s1
�c | �e−→ s2.

The only derivation rule for the stage in which the agent senses is,

(B,D, I, Sense)
(B′,D′, I, Select)

where B′ is obtained by updating B according to the sensing result and where D is updated to
D′ by adding all desires thus sensed.

For the selection of a desire, three cases are distinguished. If there are no desires, the
agent proceeds by selecting an intention. If the selected desire is of the form Desire(x), then an
applicable procedure is selected and added to the intentions if one exists, otherwise a “failure
machine” is added to the intentions. If the selected desire is of the form +ϕ, then all applicable
procedures are added to the intentions.
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1. If D = {}, then

(B, {}, I, Select)
(B, {}, I, Act)

.

2. Suppose SD(D) = Desire(x), where x is action a or belief literal ϕ.
(a) If there is a procedure for Do(a) or Achieve(ϕ), respectively, that is applicable

w.r.t. B, then

(B,D, I, Select)
(B,D \ {Desire(x)}, I ∪ {〈Desire(x), S, s0〉}, Act)

where S is the state machine for the task of the selected procedure instance
SP (Desire(x)).

(b) If there are no such procedures that are applicable w.r.t. B, then

(B,D, I, Select)
(B,D \ {Desire(x)}, I ∪ {〈Desire(x), S, s0〉}, Act)

where S = {s0
|Fail(x)−→ s +}.

3. Suppose SD(D) = +ϕ.
(a) If there is a procedure for +ϕ that is applicable w.r.t. B, then

(B,D, I, Select)
(B,D \ {+ϕ}, I ∪ I ′, Act)

where I ′ is the set of triples 〈+ϕ, S, s0〉 for all procedure instances applicable to
+ϕ w.r.t. B.

(b) If there are no procedures for +ϕ that are applicable w.r.t. B, then

(B,D, I, Select)
(B,D \ {+ϕ}, I, Select)

.

For the last step in the sense-select-act cycle, if there are no intentions at all or no
applicable state transition in any of the current intentions, then nothing changes and the agent
simply starts the cycle again. Otherwise the next step in the selected behavior is executed. In
case this state transition happens to end in one of the two possible terminal states, the intention
is removed and, if it was for some Desire(x), the outcome (success or failure) is added to the
belief base.

1. If I = {}, then

(B,D, {}, Act)
(B,D, {}, Sense)

.
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2. Let SI (I) be 〈d , S, s1〉 along with the transition step s1
�c | �e−→ s2.

(a) If s2 �∈ {s +, s −}, then

(B,D, I, Act)
(B′,D′, I \ {〈d , S, s1〉} ∪ {〈d , S, s2〉}, Sense)

;

(b) If d = +ϕ and s2 ∈ {s +, s −}, then

(B,D, I, Act)
(B′,D′, I \ {〈d , S, s1〉}, Sense)

;

(c) If d = Desire(x) and s2 = s +, then

(B,D, I, Act)
(B′ ∪ {Success(x)},D′, I \ {〈d , S, s1〉}, Sense)

;

(d) If d = Desire(x) and s2 = s −, then

(B,D, I, Act)
(B′ ∪ {Fail(x)},D′, I \ {〈d , S, s1〉}, Sense)

.

In each case, B′ and D′ are the results of updating B and D, respectively, by the effects �e
of the state transition.

This completes the definition of the operational semantics for SPARK programs. Avail-
able implementations of this language include several features that have not been treated in
this introduction, such as the parallel execution of sub-tasks or the use of meta-beliefs and
meta-procedures to modify the general behavioral stance of an agent.

6.5 EXERCISES
6.1. Extend the example AgentSpeak procedures from Section 6.2 to a complete program

for a gold mining agent! Extend the generic interpreter by an interface to some agent
executor and write a simulator to test the program with different scenarios similar to
the one shown in Figure 5.5!

6.2. Specify the three AgentSpeak procedures from Section 6.2 in SPARK! Construct the
corresponding finite state machines and find a complete derivation starting with the
same initial beliefs as in Figure 6.2!

6.3. Extend the domain from Exercise 6.1 to allow for both dynamic as well as static
obstacles, whose locations the agent should memorize! Assume a multiagent setting,
where four agents collaborate in a team and write four different SPARK programs for
these agents such that each team member takes a different role, for example explorer
or collector!
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2. Giuseppe De Giacomo, Yves Lespérance, and Hector Levesque. ConGolog, a concurrent
programming language based on the situation calculus. Artificial Intelligence 121(1–2):109–
169, 2000.
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the semantics of deliberation in IndiGolog—from theory to practice. In Proceedings of the
International Conference on Principles of Knowledge Representation and Reasoning, pages 603–
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4. Erik Mueller. Commonsense Reasoning. Morgan Kaufmann 2006.
5. Raymond Reiter. Knowledge in Action. MIT Press 2001.
6. Murray Shanahan. Solving the Frame Problem: A Mathematical Investigation of the Common
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PLANNING
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2. Meghyn Bienvenu and Sheila McIlraith. Planning with qualitative temporal preferences.
In Proceedings of the International Conference on Principles of Knowledge Representation and
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DECLARATIVE ACTION PROGRAMS

1. Thom Frühwirth. Theory and practice of constraint handling rules. Journal of Logic
Programming 37(1–3):95–138, 1998.

2. Michael Thielscher. Reasoning Robots: The Art and Science of Programming Robotic Agents.
Kluwer 2005.
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REACTIVE ACTION PROGRAMS

1. Rafael Bordini, Jomi Hübner, and Michael Wooldridge. Programming Multi-Agent Systems
in AgentSpeak using Jason. Wiley 2007.

2. Viviana Mascardi, Daniela Demergasso, and Davide Ancona. Languages for program-
ming BDI-style agents: an overview. In Proceedings of the Workshop From Objects to Agents,
pages 9–15, Camerino, Italy, 2005.

3. SPARK Reference Manual. www.ai.sri.com/~spark.
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