
Virtual Crowds: Methods,
Simulation, and Control

iii

Synthesis Lectures on Computer
Graphics and Animation

Editor
Brian A. Barsky, University of California, Berkeley

Interactive Shape Design
Marie-Paule Cani, Takeo Igarashi and Geoff Wyvill
2008

Real-Time Massive Model Rendering
Sung-eui Yoon, Enrico Gobbetti, David Kasik, and Dinesh Manocha
2008

Virtual Crowds: Methods, Simulation and Control
Nuria Pelechano, Jan. Allbeck, and Norman I. Badler
2008

High Dynamic Range Video
Karol Myszkowski, Rafal Mantiuk, and Grzegorz Krawczyk
2008

GPU-Based Techniques For Global Illumination Effects
L’aszl’o Szirmay-Kalos, L’aszl’o Sz’ecsi and Mateu Sbert
2008

High Dynamic Range Imaging Reconstruction
Asla Sa, Paulo Carvalho, and Luiz Velho IMPA, Brazil
2007

High Fidelity Haptic Rendering
Miguel A. Otaduy, Ming C. Lin
2006

A Blossoming Development of Splines
Stephen Mann
2006

Copyright © 2008 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.

Virtual Crowds: Methods, Simulation, and Control
Nuria Pelechano, Jan M. Allbeck, and Norman I. Badler
www.morganclaypool.com

ISBN: 9781598296419 paperback

ISBN: 9781598296426 ebook

DOI: 10.2200/S00123ED1V01Y200808CGR008

A Publication in the Morgan & Claypool Publishers series

SYNTHESIS LECTURES ON COMPUTER GRAPHICS AND ANIMATION #8

Lecture #8

Series Editor and Affiliation: Brian A. Barsky, University of California–Berkeley

Series ISSN

ISSN 1933-8996	 print

ISSN 1933-9003	 electronic

Virtual Crowds: Methods,
Simulation, and Control
Nuria Pelechano
Universitat Politècnica de Catalunya

Jan M. Allbeck and Norman I. Badler
University of Pennsylvania

SYNTHESIS LECTURES ON COMPUTER GRAPHICS AND ANIMATION #8

ABSTRACT
There are many applications of computer animation and simulation where it is necessary to model
virtual crowds of autonomous agents. Some of these applications include site planning, education,
entertainment, training, and human factors analysis for building evacuation. Other applications
include simulations of scenarios where masses of people gather, flow, and disperse, such as transpor-
tation centers, sporting events, and concerts. Most crowd simulations include only basic locomo-
tive behaviors possibly coupled with a few stochastic actions. Our goal in this survey is to establish
a baseline of techniques and requirements for simulating large-scale virtual human populations.
Sometimes, these populations might be mutually engaged in a common activity such as evacuation
from a building or area; other times they may be going about their individual and personal agenda
of work, play, leisure, travel, or spectator. Computational methods to model one set of requirements
may not mesh well with good approaches to another. By including both crowd and individual goals
and constraints into a comprehensive computational model, we expect to simulate the visual texture
and contextual behaviors of groups of seemingly sentient beings.

vi

Keywords
Animated characters, autonomous agents, CAROSA, collision avoidance, computer animation,
crowd simulation, evacuation studies, HiDAC, human behaviors, navigation planning,
parameterized actions, pedestrians, presence, psychological factors, roles, social forces, virtual
environments

vii

Dedication

To our families

viii

We thank the many individuals and organizations that have supported this work with their dona-
tions, intellect, talent, and funding. We are grateful to Autodesk, nVIDIA, and Cal3D for their
continued development of software and hardware that enrich computer graphics in general and
the Center for Human Modeling and Simulation (HMS) at the University of Pennsylvania in
particular. We thank all of the members of HMS for their support of these efforts and individually
recognize Jeff Wajcs, Grace Fong, Funda Durupinar, and Catherine Stocker for their contributions.
Additionally, we appreciate the guidance provided by Joan Pelechano, Mel Slater, and Ali Mal-
kawi. The perceptive comments of the book reviewers are greatly appreciated, which we hope are
reflected in better content, coverage, and structure of this work. Thanks also to our publisher,
Michael Morgan, who encouraged us to undertake this project and whose enthusiasm kept us close
to schedule.

The authors’ research described in this volume was partially supported by the National Sci-
ence Foundation grant IIS-0200983, the Office of Naval Research Virtual Technologies and Envi-
ronments grant N0001 4-04-1-0259, the U.S. Army Research Office grants N61339-05-C-0081
and MURI W911NF-07-1-0216, the T. C. Chan Center Building Simulation and Energy Studies,
a Fulbright scholarship, a Spanish Government grant TIN2007-67982-C02-01, and the School of
Engineering and Applied Science at the University of Pennsylvania. Any opinions expressed are
entirely those of the authors and do not reflect any official positions of the sponsors.

Acknowledgments

ix

1.	 Introduction..1
1.1	 Terminology... 2
1.2 	 Overview.. 4

1.2.1	 Lessons Learned From the Psychology Literature................................. 11
1.2.2	 Main Features in Crowd Simulation Systems.. 13

2.	 Crowd Simulation Methodology Survey.. 15
2.1	 Microscopic and Macroscopic Approaches Used to Model Pedestrian

Movements... 15
2.2	 Microscopic Models... 15

2.2.1	 Social Force Models... 15
2.2.2	 Cellular Automata Models... 18
2.2.3	 Rule-Based Models.. 19

2.3	 Macroscopic Models... 22
2.3.1	 Regression Models... 22
2.3.2	 Route Choice Models... 22
2.3.3	 Queuing Models... 22
2.3.4	 Gaskinetics... 22

2.4	 Current Pedestrian Software Systems... 22
2.5	 Summary of Crowd Models... 32

2.5.1	 Some Limitations of the Current Commercial Software for Crowd
Evacuation... 34

2.6	 Navigation.. 37
2.6.1	 Cell and Portal Graphs... 38
2.6.2	 Flow Tiles and Potential Field Methods.. 39
2.6.3	 Probabilistic Roadmaps.. 39

2.7	 Environment Modeling.. 40

Contents

�  virtual crowds: methods, simulation, and control

3.	 Individual Differences in Crowds.. 43
3.1	 Personality and Emotion Models... 43
3.2	 Physiology.. 44
3.3	 Sociology: Subgroups... 44
3.4	 Culture, Roles, and Status.. 45
3.5	 Summary.. 46

4.	 Framework (HiDAC + MACES + CAROSA).. 47
4.1	 Interaction Between Framework Levels and Psychological Models................... 49
4.2	 Parameters Affecting Crowd Behavior... 52

5.	 HiDAC: Local Motion... 57
5.1	 Introduction.. 57
5.2	 Agents’ Speeds and Densities... 58

5.2.1	 Walking Speeds and Densities When Walking Downstairs................... 62
5.3	 Perception... 62
5.4	 Crossing Portals.. 64
5.5	 The HiDAC Model... 66

5.5.1	 Avoidance Forces.. 68
5.5.2	 Repulsion Forces... 72
5.5.3	 Solution to “Shaking” Problem in High Densities................................. 73
5.5.4	 Organized Behavior: Queuing.. 74
5.5.5	 Pushing Behavior.. 74
5.5.6	 Falling and Becoming Obstacles.. 75
5.5.7	 Panic Propagation... 77

6.	 MACES: Wayfinding With Communication and Roles.. 81
6.1	 Introduction.. 81
6.2	 Navigation Algorithm.. 82

6.2.1	 Exploring the Building... 83
6.2.2	 Communication Affecting Evacuation Times.. 85
6.2.3	 Relevance of Having Trained Leaders vs. Untrained Leaders................ 87
6.2.4	 Importance of Leadership.. 88
6.2.5	 Simulating Psychology Affecting Roles and Navigation........................ 90
6.2.6	 Interactive Navigation and Impatient Agents Avoiding Bottlenecks..... 93

7.	 CAROSA: Functional Crowds.. 97
7.1	 Applications with Actions.. 97
7.2	 Parameterized Action Representation.. 99

contents  xi

7.2.1	 Key Fields of the Action Representation.. 99
7.2.2	 Key Fields of the Object Representation.. 100
7.2.3 	 Four Types of Actions... 101
7.2.4	 Application to Crowds... 105

7.3	 Carosa System Overview.. 106
7.3.1	 PAR System... 108
7.3.2	 Actionary.. 108
7.3.3	 Agent Process... 108
7.3.4	 Processing the Four Action Types.. 110

8.	 Initializing a Scenario... 113
8.1	 Building Modeling... 113

8.1.1	 Cell and Portal Graph Automatic Generation..................................... 114
8.1.2	 Generate Cell and Portal Graph for Each Floor.................................. 115
8.1.3	 Identify Stairs and Link Floors Through New Cells............................ 117
8.1.4	 Identify and Store Walls... 118
8.1.5	 Identify and Store Obstacles.. 119
8.1.6	 Precalculating Data for Real-Time Simulation.................................... 119

8.2	 Layout of Environment.. 123
8.3	 Character Profiles... 123
8.4	 Creating Groups... 125
8.5	 Constructing Actions... 125
8.6	 Refining The Simulation.. 127

8.6.1	 Effects of Changes to the Environment... 127
8.6.2	 Modifying Roles... 128
8.6.3	 Scripting Characters... 129

9.	 Evaluating Crowds... 131
9.1	 Feature Comparison... 131

9.1.1	 Low-Level Features.. 131
9.1.2	 Middle-Level Features... 132
9.1.3	 High-Level Features... 132
9.1.4	 Summary.. 133

9.2	 Comparison to Real-World Data... 133
9.2.1	 Sensor Data.. 133
9.2.2	 Action Statistics.. 133
9.2.3	 Validation Through the Society of Fire Protection Engineers Guide... 134

9.3	 User Evaluations... 135

xii  virtual crowds: methods, simulation, and control

9.4	 Presence in Virtual Worlds.. 136
9.4.1	 Important Egocentric Features... 137
9.4.2	 Experimental Evidence From the Literature.. 139
9.4.3	 Pilot Experiment.. 139
9.4.4	 Initial Results and Future Work... 142
9.4.5	 Conclusions on Presence as a Validation Method.................................. 144

10.	 Summary... 147

Appendix A... 151

Appendix B... 153

Appendix C... 159

References.. 163

Author Biographies... 175

�

Introduction

As we journey through our day, our lives intersect with other people. We see people leaving for work,
waiting for trains, meeting with friends, working at their jobs, and engaging in numerous other
activities. People create a rich tapestry of activity throughout the day, a human texture. We may not
always be conscious of this texture, but we would definitely notice if it were missing, and it is missing
in many computer graphics simulations of 3D environments populated by collections of animated
virtual humans.

There are many applications of computer animation and simulation where it is necessary
to model virtual crowds of autonomous agents. Some of these applications include site planning,
education, entertainment, training, and human factors analysis for building evacuation. Other
applications include simulations of scenarios where masses of people gather, flow, and disperse,
such as transportation centers, sporting events, and concerts. Most crowd simulations include
only basic locomotive behaviors possibly coupled with a few stochastic actions. Our goal in this
survey is to establish a baseline of techniques and requirements for simulating large-scale virtual
human populations. Sometimes these populations might be mutually engaged in a common
activity, such as evacuation from a building or area; other times they may be going about their in-
dividual and personal agenda of work, play, leisure, travel, or spectator. Computational methods
for modeling one set of requirements may not mesh well with good approaches to another. By
including both crowd and individual goals and constraints into a comprehensive computational
model, we expect to simulate the visual texture and contextual behaviors of groups of seemingly
sentient beings.

The structure of this exposition includes surveys of existing computational crowd motion
models, descriptive models originating in data analysis and urban planning, and functional models
of human behavior. We stop short of exploring the details of individual human motion animation
techniques, preferring instead to focus on the collective structure, motion, and control of groups and
the differentiation and individualism of roles within groups. Within this matrix, however, one can
readily embed various computational methods for animating more personal details of individuals
adapted to the spatial context and task execution desired.

chapter 1

�  Virtual Crowds: Methods, Simulation, and Control

1.1	 TERMINOLOGY
A wide variety of terms appear in the literature that refer to humans “inhabiting” virtual worlds.
Avatars are characters that represent and are controlled directly by a real person. The term avatar
is often confused with characters that take their motivations and behaviors from computer pro-
grams and simulators. These computer-driven characters or virtual humans may also be called digi-
tal humans, autonomous agents, or humanoids. We use these terms interchangeably. Although finer
distinctions are plausible, they are not meaningful here: sometimes “autonomous” is equated to “un-
directed” behaviors, but we prefer to consider all action choices as under some sort of computational
control. Different virtual human control mechanisms exist, and we will differentiate their qualities
and characteristics shortly.

Existing terminology used to describe multiple beings can be even more confusing. Artificial
life, “boids,” and multiagent systems simulate more than one (autonomous) character. Other terms
used include crowds, pedestrians, groups, and populations. It is not always clear what is meant by these
terms or the functionality of the individuals that these systems represent. Here we will briefly exam-
ine some of the terminology associated with crowds.

WordNet definitions (Fellbaum 1998):

crowd: a large number of things or people considered together
pedestrian: a person who travels by foot
populace: people in general considered as a whole
population: the people who inhabit a territory or state.

Crowd, populace, and population all inherit from the group hypernym. However, crowd is also
a gathering and a social group, whereas populace and population are people. Hyponyms for crowd
include:

army: a large number of people united for some specific purpose
crush, jam, press: a dense crowd of people
drove, horde, swarm: a moving crowd
huddle: a disorganized and densely packed crowd
mob, rabble, rout: a disorderly crowd of people
lynch mob: a mob that kills a person for some presumed offense without legal authority
phalanx: any closely ranked crowd of people
troop, flock: an orderly crowd.

We are not claiming that WordNet is necessarily the best source for clarification, but we
found it to be a useful jumping off point. Looking at the psychosocial literature on crowds yields,

•
•
•
•

•
•
•
•
•
•
•
•

introduction  �

for example, Figure 1.1, showing a taxonomy of crowds as described by Brown (1954). Here Brown
first makes a division into active (mobs) and passive (audiences) crowds. He then further breaks
down these divisions according to their purpose or feeling. For example, an intentional, recreational
audience may be watching a basketball game.

From a computational perspective, the question is: do all crowd simulators really simulate
crowds? Systems that animate more than a few agents seem to be regarded as crowd simulators by
the research community, but not all are. Terzopoulos and colleagues (Shao and Terzopoulos 2005;
Yu and Terzopoulos 2007) have called their work simulations of “autonomous pedestrians”. As they
simulate commuters in a train station, this seems an apt term. One of the simulations shown by
Treuille et al. (2006), “continuum crowds,” depicts agents on city streets; these might also be deemed
pedestrians. The seminal work by Reynolds (1987) on “flocks, herds, and schools” — generically
called boids — seems to be very appropriately named. Much of the work in crowd simulations has
been for evacuation (Helbing et al. 2000; Pelechano and Badler 2006). Figure 1.1 shows that these
events would be categorized as escapes and may be further broken into events with and without
panic. Here escapes are a type of mob which, in turn, is a type of crowd. For the remainder of this
exposition, we will use the common word crowd to describe simulations of modest numbers of
characters, though for some of the discussions, terms such as pedestrians or populace may be more
appropriate.

FIGURE 1.1:  Mass phenomena from Brown (1954).

�  Virtual Crowds: Methods, Simulation, and Control

To provide an overall structure for the presentation, we use the context of three of our own
simulation systems that have been joined into a single framework. HiDAC was constructed for
simulating high-density crowds, i.e., crushes or presses, but is parameterizable and can also simulate
huddles, mobs, escapes, and flocks, for example. HiDAC combines a social forces model with a rule-
based model to yield interesting emergent behaviors (Section 5.5). MACES builds on HiDAC to
simulate additional behaviors, including evacuation, wayfinding with interagent communication and
certain personal roles (Chapter 6). CAROSA builds on the foundations of HiDAC and MACES,
but moves the focus away from escapes by incorporating a richer role and action representation that
allows the depiction of functional heterogeneous crowds (Chapter 7). CAROSA might be used to
simulate audiences, but would better be described as a system for simulating a populace or popula-
tion of individuals such as the daily activities of inhabits of an office building or neighborhood, or
perhaps even an entire city (Figure 1.2).

1.2	O VERVIEW
Our intention here is to provide insight into crowd simulation software design choices and their re-
sultant characteristics and features. We begin by providing a survey of crowd simulation research.

It can be difficult to compare virtual human technologies. Table 1.1 shows an attempt to
create a few features and points along a scale for each of the features. Appearance fairly straight-
forwardly describes aspects of the visual qualities of characters. Function reflects the capabilities of

FIGURE 1.2:  Examples of crowd behavior simulated with our system. On the left is a drill evacuation
simulation and on the right is a cocktail party simulation, where virtual agents perform several actions to
interact with other agents (Pelechano, Stocker et al. 2008).

introduction  �

the virtual humans. What movements and behaviors are possible and how accurate are they? Are
the behaviors a visualization of the state of the character in terms of injuries and psychology, for
example? Ultimately, can the behaviors of the virtual human coordinate with other virtual humans
to create teams? Time reflects efficiency in computation. Is the computation too heavy for even in-
teractive manipulations? Can the motions be synthesized in real time? Can more than one character
be simulated in real time, and can members of the crowd be coordinated at a viable frame rate?
Autonomy indicates the level at which the character can control itself. Does the character creator
have to specify every moment of the character’s behavior, or can it make its own decisions? Can the
autonomous character aid in the decision making of other virtual humans and, therefore, act as a
leader? Individuality indicates to what level characters can be differentiated from one another in
terms of the other features. Do all of the characters look and behave the same? Can observers recog-
nize cultural distinctions and personality types? Ultimately, can specific individuals be recognized?

Table 1.1 was originally created with one or a few virtual humans in mind. Here we are more
interested in larger numbers. In terms of appearance, we would certainly desire variability for real-
istic scenes. This is also true of functionality. We would not want to see every character in a scene
walking identically, for example. Recent work by McDonnell et al. (2007, 2008) (Figure 1.3) has
explored the amount of differentiation needed in these features for crowds. The time feature already

Table 1.1:  Comparative virtual humans originally published by Allbeck and Badler (2002)

Appearance
2D drawings > 3D wireframe > 3D polyhedra > curved surfaces > freeform
deformations > accurate surfaces > muscles, fat > biomechanics > clothing,

equipment > physiological effects (perspiration, irritation, injury)

Function
cartoon > jointed skeleton > joint limits > strength limits > fatigue >

hazards > injury > skills > effects of loads and stressors > psychological
models > cognitive models > roles > teaming

Time (time to
create movement
at the next frame)

off-line animation > interactive manipulation > real-time motion
playback > parameterized motion synthesis > multiple agents > crowds >

coordinated teams

Autonomy
drawing > scripting > interacting > reacting > making decisions >

communicating > intending > taking initiative > leading

Individuality
generic character > hand-crafted character > cultural distinctions >
sex and age > personality > psychological-physiological profiles >

specific individual

�  Virtual Crowds: Methods, Simulation, and Control

included how many characters can be simulated per frame. Autonomy may be extended to include
mechanisms for characters to coordinate, collaborate, and even compete with other agents. The
characters would themselves decide when a task requires additional personnel and schedule ap-
propriately. Individuality makes crowd scenes more interesting and realistic. Also important is the
formation of groups. People have affiliations with others that change over time and even during the
course of a day. In scenarios with larger numbers of virtual humans, these dynamic changes become
important for realism.

Crowd simulation researchers tend to focus on furthering development in one or perhaps a
couple of these areas. McDonnell and colleagues have focused mainly on overall appearance (McDon-
nell et al. 2007, 2008), but this relates to time in that frame rate is affected by the resolution of the
characters (McDonnell et al. 2005). Ahn et al. (2006) examined using not just the level of detail in
character models but also the level of detail in motion to increase the number of characters that can be
simulated in real time. Many research groups have looked to increase the level of function of crowds
particularly in the area of navigation and collision avoidance (Reynolds 1999; Helbing et al. 2005;
Treuille et al. 2006; Pelechano et al. 2007; Sud, Andersen, et al. 2007). Collaboration and coordination
within crowd simulations has been explored, but much more work is needed (Shao and Terzopoulos
2005; Pelechano and Badler 2006; Yu and Terzopoulos 2007). Individuality has been the focus not only
of many autonomous agents researchers, but also of a few crowd simulation research groups (Musse
and Thalmann 2000; Pelechano et al. 2005; Pelechano and Badler 2006; Durupinar et al. 2008).

Animating virtual crowds is often mediated by local rules (Musse and Thalmann 2001),
forces (Helbing et al. 2000), or flows (Chenney 2004). The goal is usually either to achieve real-time
simulation for very large crowds, where each individual’s behavior is not important as long as the
overall crowd movement looks realistic, or to focus on individual behaviors using complex cognitive
models (but achieving real time only for smaller crowds). Much effort has been put into improving

FIGURE 1.3:  Perception of crowd variety (McDonnell et al. 2008) C 2008 ACM, Inc. Reprinted by
permission.

introduction  �

the behavioral realism of each of these approaches; however, none of those models can realistically
animate the complexity and function of population movements in a large building or a city. Current
work in crowd motion has focused on realistically animating moderate and high-density crowds for
real-time applications, where agents are endowed with psychological elements that will drive not
only their high-level decision making, but also their reactive behavior (pushing, moving faster, being
impatient, etc.) (Pelechano et al. 2007). The task of specifying and animating large collections of
functional individuals is just beginning to be addressed.

On the global navigation level, most approaches either deal with simple environments or
assume that agents have complete knowledge of the environment and move toward their goal as
individuals (without interacting with other agents). Other work has focused on realistically simulat-
ing how communication affects the behavior of autonomous agents (Cassell et al. 1999) and on how
combining different personalities and situations affects an agents’ navigation and the way it interacts
with other agents and the environment (Pelechano and Badler 2006).

To have autonomous agents navigating a virtual environment, it is necessary to endow them
with a wayfinding algorithm to obtain a cognitive map of a building or environment. Wayfinding
is the process of determining and following a route to some destination (Golledge 1999). It deals
with the cognitive component of navigation and, therefore, with the knowledge and the informa-
tion processing required to move (locomote) from an initial position to a goal position. Initially, the
individuals of the crowd may only have partial information about the internal building structure,
but as they explore it and communicate with other individuals in the crowd, they will be able to find
paths toward their goals or exits.

Wayfinding is defined as a spatial problem-solving process with three subprocesses: decision
making, decision execution, and information processing. To carry out wayfinding, each agent would
need:

a cognitive map: a mental model of the space
an orientation: its current position within the cognitive map
exploration: processes to learn the features of the space (doors, walls, hazards, etc).
navigation: the process of making its way through the environment.

There have been several cognitive agent architectures proposed to generate human-like be-
havior. Cognitive architecture features include a broad set of possible requirements, such as percep-
tion, memory, attention, planning, reasoning, problem solving, learning, emotions, and mood. Agent
architectures motivated from a cognitive perspective generally consist of a knowledge representation,
algorithms that learn, and modules that plan actions based on that knowledge (Wray et al. 1999; Yu
and Terzopoulos 2007). Tu and colleagues have worked on behavioral animation for creating artificial
life, where virtual agents are endowed with synthetic vision and perception of the environment (Tu

•
•
•
•

�  Virtual Crowds: Methods, Simulation, and Control

and Terzopoulos 1994; Funge et al. 1999). However, the complexity of these systems often makes
them difficult to scale up and port to new scenarios.

Rule-based schemes are fast enough for use with dozens of agents. Reynolds (1987) described
the first use of a distributed behavioral model to produce a flocking behavior. Brogan and Hodgins
(1997, 2002) used particle systems and dynamics for modeling the motion of groups with signifi-
cant physics. Helbing et al. (2000, 2002) described a microscopic (personal) approach to simulate
pedestrian movement based on a social force model. This approach uses social analogs of physical
forces and solves Newton’s equations of motion for each individual; forces considered include repul-
sive interactions, friction forces, dissipation, and fluctuations. Helbing’s model treats individuals as
particles, and those forces appear from the interaction between particles when their density is great
enough that particles bump into each other. More recently, Lerner et al. (2007) introduced a novel
approach for rule-based simulation based on examples, in which tracking data from real crowds is
used to create a database of examples that is subsequently used to drive the simulated agents’ behav-
ior (Figure 1.4). Other data-driven approaches use learning algorithms based on locally weighted
linear regression to simulate crowd behavior (Lee et al. 2007).

These traditional crowd simulators ignore the differences between individuals and treat ev-
eryone as having the same simple behavior, but there are other models that represent each individual
as being controlled by rules based on physical laws or behavioral models showing individualism
(Braun et al. 2003). In a multiagent crowd system, the agents are autonomous, typically hetero-

FIGURE 1.4:  Crowds by example (Lerner et al. 2007).

introduction  �

geneous, and their concern is with coordinating intelligent behaviors among themselves, that is,
how these agents can coordinate their knowledge, goals, skills, and plans to take action and to solve
problems. Some of these applications include crowd behavioral models used in the training of mili-
tary personnel (Weaver et al. 2001) and crowd motion simulations to support architectural design
for both everyday use (Bouvier and Guilloteau 1996) as well as emergency evacuation conditions
(Musse and Thalmann 2000, 2001; Still 2000).

Hierarchical schemes have been proposed to address scalability (Farenc et al. 2000). In par-
ticular, Musse and Thalmann (2001) provide crowds with different levels of autonomy for hierarchi-
cal crowd behaviors, but complex individual behaviors have not been shown.

Complex behaviors can be facilitated by using an action representation that holds the se-
mantics of the actions and the objects that participate in the actions (Bindiganavale et al. 2000).
Representing this information in a general way such that it is applicable to many scenarios enables
the writing of agent controllers that are more general and require less custom work for new domains.
By adding additional information about the agents being simulated, for example, their roles, and
linking this information to appropriate actions, functional crowds (crowds that perform actions and
interact with the environment in meaningful ways) can be generated. Additionally, different types
of actions can be modeled to enrich a simulation with emergent behaviors. Actions can be catego-
rized in different ways based on their origin. Some actions are planned or scheduled to achieve cer-
tain goals (deliberative actions). Others are reactions to events in the environment (reactive actions).
Some are based on needs such as hunger or energy and may be planned for or woven into existing
plans (opportunistic actions). Finally, some actions seem somewhat random, but often, they have
underlying probabilities (aleatoric or stochastic actions). When coupled with agent descriptions,
these actions are capable of providing agents with meaningful behavior options closer to the real
texture of human activities.

In multiagent systems, each agent needs to sense the environment to perceive changes and
react to them. Perception is often simulated by casting a set of rays and finding their intersection
with obstacles around the object (Pan et al. 2005; Shao and Terzopoulos 2005). Massive SW (Mas-
sive Software Inc. 2005) (used, for example, in the Lord of the Rings movies) has also developed a
crowd simulation system with a vision-based behavior. Individual agents do a low-resolution render
of the scene from their own point of view and use computations based on that image to guide their
actions.

To reduce the complexity of controlling all the agents in the crowd while detailed behav-
iors are still guaranteed, several systems have attached information to the environment (Farenc et
al. 1999; Thomas and Donikian 2000; Tecchia et al. 2001; Pelechano and Badler 2006). Our ap-
proaches also embed information, such as shortest paths, in the environment. Individual agents will
have differential types of access to that information, and they will use it in different ways, depending

10  Virtual Crowds: Methods, Simulation, and Control

FIGURE 1.5:  Treuille et al.’s (2006) continuum crowds C 2006 ACM, Inc. Reprinted by permission.

FIGURE 1.6:  Ten thousand schooling fish at 60 fps in PSCrowd (Reynolds 2006) C 2006 ACM, Inc.
Reprinted by permission.

introduction  11

on their individual behavior at any given moment. In general, the semantic markup of the environ-
ment — which parts of the 3D model have action or behavior significance for the occupants — is a
significant obligation of the scenario author. Later, we will describe one such framework within the
context of an object representation. The automated creation of such markup data remains an open
challenge to crowd modelers.

Other systems use different methods to reduce complexity. To achieve a real-time simulation
of very large crowds, Treuille et al. (2006) used a dynamic potential field to integrate global naviga-
tion with moving obstacles and people. This approach is not agent based, which means that we can-
not have individual goals for each pedestrian; instead, goals are common to all the crowd members.
In this system, motion is calculated as particle energy minimization (Figure 1.5).

Reynolds (2006) achieved real-time rule-based simulation of up to 15,000 individuals (boids)
by using spatial hashing to represent a partitioning of space with a scalable multiprocessor approach
(Figure 1.6).

To carry out collision avoidance while simulating each agent’s navigation toward its goal at
interactive rates, several methods have been introduced. Lamarche and Donikian (2004) combined
topological precomputation of the geometry to enable real-time global path planning for each in-
dividual of the crowd, considering visibility and reactive behaviors. The model suffers from agents
getting stuck in local minima. Sud, Gayle, et al. (2007) used adaptive elastic roadmaps (Figure 1.7)
to simulate large crowds of agents at interactive rates in dynamic environments with each agent
having different goals.

1.2.1	 Lessons Learned From the Psychology Literature
To realistically simulate crowds with a heterogeneous behavior, it is necessary to examine the psy-
chology literature to endow our agents with psychological factors possessed by humans that will

FIGURE 1.7:  Adaptative Elastic ROadmaps (AERO), where the green curves represent links of the
reacting deforming roadmap, and an example of a 3D animated crowd (Sud, Gayle, et al. 2007) C 2007
ACM, Inc. Reprinted by permission.

12  Virtual Crowds: Methods, Simulation, and Control

affect their overall behavior and movement. By using this information, we may produce crowd
animation that is data driven and “prevalidated” by being based on known factors and effects. While
our implementation may still need to be evaluated, this at least ensures that our foundation has an
established basis.

One of the most studied situations in the psychology literature is that of crowd evacuation. A
mass exodus from large and complex spaces, such as a public building, a cruise ship, or an unfamiliar
city center, is usually hindered by a lack of knowledge of the detailed internal connectivity of the
space’s rooms, passageways, or roads. In such circumstances, occupants may not be aware of the exis-
tence of suitable paths for circulation or, in the case of an emergency situation, the most appropriate
paths of escape. This is a well-known problem (Sime 1984): building occupants usually decide to
make use of familiar exits, which are often the way in which they entered the building. Emergency
exits or exits not normally used for circulation are often ignored. When an emergency occurs, such
as when a fire may be blocking some of these known paths and where smoke may also be obscuring
vision, the problem can be fatally aggravated.

Spatial awareness and orientation within buildings is made possible by the five senses. The
perceived space depends on the individual’s ability and psychological condition. Most people react
to time pressure by an increase in the speed of their actions, as well as by subjectively choosing
information. In general, the evacuation of a building due to imminent danger is accompanied by
considerable physical and psychological stress. Since rising stress levels have the effect of diminish-
ing the full functioning of one’s senses, this leads to a general reduction in awareness, especially the
ability to orient oneself quickly in rooms and other surrounding areas (Waldau et al. 2003).

Decision skills in emergency situations are influenced by several factors such as the uncer-
tainty of changes that might occur to the environment and the time pressure under which decisions
have to be taken. If the agents have not been properly trained for these situations, they are likely to
feel stressed and might reach the point where they find themselves incapable of making the right
decision. “Stress occurs when there is a substantial imbalance between environmental demand and
the response capability of the focal organism” (McGrath 1970). Time pressure is given by the dif-
ference between the amount of time available and the amount of required time to make a decision
(Rastegary and Landy 1993).

In contrast, trained individuals such as firefighters deal with a dynamically changing environ-
ment and choose the best sequence of actions based on their prior experience, current perceptions, and
knowledge of the environment. Their decision-making process is biased, and it is based on the impor-
tance that they assign to each evaluative dimension, such as saving lives, keeping fire from spreading,
minimizing risks for themselves or the rest of the team, etc. A specific decision could sometimes lead
to failure, whereas the same decision at a different moment could be the best solution.

In an evacuation situation caused by a fire, the main sources of stress could be too much or
too little information coming at one time (several people in the same room making different deci-

introduction  13

sions and shouting different information about blocked rooms), complex and dynamically changing
situations that result in uncertainty, and time pressure.

People are ultimately individuals, and even in everyday life, their behaviors vary. Researchers
in psychology, physiology, sociology, and other related disciplines have been studying these per-
sonality differences for hundreds of years. This has resulted in many generalizations and proposed
models. For example, one of the most accepted models of personality is the OCEAN (open-
ness, conscientiousness, extraversion, agreeableness, neuroticism) or Five Factor model (Wiggins
1996). This model describes personality in terms of the amount of each factor present. Work in
nonverbal communications has helped link these traits to behaviors (Burgoon et al. 1989; Knapp
and Hall 1992). For example, introverts tend to desire more personal space than extroverts (Knapp
and Hall 1992). This information can be used to parameterize crowd simulations that will more
closely resemble real gatherings (Durupinar et al. 2008) (Figure 1.8).

1.2.2	 Main Features in Crowd Simulation Systems
There are a range of features that characterize crowd simulation systems. In this section, we introduce
a number of them and then provide a brief explanation of our current system within this context.

Crowd size. This feature refers to the number of individuals that the system can simulate in
real time. Some applications for building design purposes need very large crowds to measure both
the overall flow rate in different parts of the environment and percentage of people that can leave
the environment in a given amount of time. Other systems focus on simulating realistic human
behavior within a crowd. They usually work with smaller groups and study the interaction both
between individuals and with the environment.

FIGURE 1.8:  Different crowd behaviors based on the OCEAN model. From left to right: Ring forma-
tion where extroverts (blue suits) are inside and introverts are outside, people with low conscientiousness
and agreeableness value cause congestion, and finally, neurotic and nonconscientious agents (in black
suits) show panic behavior (Durupinar et al. 2008).

14  Virtual Crowds: Methods, Simulation, and Control

Goal. This feature refers to whether individuals have one main task, such as walk toward one
exit, or whether they have several routes to follow. Systems that focus more on individual behaviors
may also have some subgoals within the simulation, such as going through via points, helping others
to an exit or to performing some specific actions.

Type of hazards. Some evacuation systems simulate drills, and therefore, there is no explicit
hazard. Others simulate only fire and the way it propagates, while the most complex ones also
simulate smoke propagation, and the way the level of toxicity affects the individual’s performance.
Other nonevacuation simulations may not need to have overt hazards because their main focus is on
everyday situations, such as people navigating in a train station during rush hour.

Individuality/role. Systems that are concerned with simulating realistic human behavior within
a crowd implement microscopic approaches where individuals have different decision-making pro-
cesses, depending on their internal characteristics. These characteristics are generally given by a set
of parameters whose values are assigned in a probabilistic manner or by the scenario author.

Communication/signaling/alarms. This feature deals with whether there is some kind of in-
teraction between individuals and the environment. Some systems use alarms to start an evacua-
tion process. Others implement simple signaling methods or instructions given by the firemen to
indicate the evacuation routes. Nonevacuation scenarios use agent-to-agent signaling methods or,
in some cases, virtual perception, along with overarching goals to drive the simulation.

Behavior method. At a lower level, an agent’s directional movement choices can be imple-
mented using a number of techniques such as: rule-based models, physical models, cellular au-
tomata, and finite state machines. At a higher level, behavioral choices can be scripted, represented
by rules or automata, programmed into decision networks, planned, or driven stochastically.

Spatial structure. This feature refers to whether the space is represented by a continuous model
(i.e., a 2D plane with real coordinates), or whether it is subdivided into some sort of grid (i.e., the
space is divided into squares or hexagons).

Hierarchical systems. Some systems implement different levels of behavior (scripted, autono-
mous). Also, the crowd could be given as a multilayer architecture where behaviors are associated to
individuals, groups, or the entire crowd. This allows for a wider variety of behaviors.

Environment type. This includes features such as home, train station, ship, multiple story
building, or outdoor environment. The behaviors simulated should be appropriate to this context.

• • • •

15

Crowd Simulation Methodology Survey

There exist many relevant crowd simulation methodologies. Here we present several systems that
have been developed for animation or evacuation dynamics purposes. They all share the requirement
for pedestrian movement models, but differ in techniques for generating motion paths. First we shall
examine microscopic methods, then macroscopic methods, and finally detail several examples.

2.1	 MICROSCOPIC AND MACROSCOPIC APPROACHES USED
TO MODEL PEDESTRIAN MOVEMENTS

Many pedestrian simulation models have been developed over the years in a variety of disciplines
including computer graphics, robotics, and evacuation dynamics. These can be grouped into two
main methodologies: macroscopic and microscopic. Macroscopic models focus on the system as
a whole (characteristics of the flow rather than individual pedestrians), while microscopic models
study the behavior and decisions of individual pedestrians and their interaction with other pedes-
trians in the crowd.

Microscopic models describe the space–time behavior of individual pedestrians. There are
two subcategories: social force models and cellular automata (CA) models. The difference between
them is in the discretization of space and time. Social force models (Helbing et al.) describe pe-
destrian behavior microscopically by social fields (virtual “physical” forces) induced by the social
behavior of the individuals. In the CA approach, the space under study is represented by a uniform
grid of cells with local states depending on a set of rules that describe the behavior of the pedestrians
(Chenney 2004). These rules compute the state of a particular cell as a function of its previous state
and the states of the adjacent cells. Microscopic models are more interesting from the point of view
of animating virtual crowds of agents with realistic autonomous behaviors; therefore, we will explain
those methods in greater detail.

2.2	 MICROSCOPIC MODELS
2.2.1	 Social Force Models
The social force model is a microscopic approach for simulating pedestrian motion. Given “virtual”
social forces analogous to real forces such as repulsive interaction, friction forces, dissipation, and

chapter 2

16  Virtual Crowds: Methods, Simulation, and Control

fluctuations, it solves Newton’s equations of motion for each individual. This model can be suc-
cessfully applied to simulate real-world pedestrian movement scenarios.

Relative to other models, social force models describe pedestrian behavior more realistically.
However, they are designed to be as simple as possible. Every agent is represented in the locomotion
plane by a circle with its own diameter and the model describes continuous coordinates, velocities,
and interactions with other objects. Each force parameter has a natural interpretation, is individual
for each pedestrian, and is often chosen randomly within some empirically found or otherwise plau-
sible interval. Social forces model human crowd behavior with a mixture of sociopsychological and
physical factors. The most important empirically derived social forces model is Helbing’s model.

Helbing’s model. Pedestrians 1 ≤ i ≤ N of mass mi like to move with a certain desired speed
vi

0 in a certain direction ei
0, and they tend to adapt their instantaneous velocity vi within a certain

time interval ti. At the same time, the individuals try to keep a distance from other individuals j and
from the walls w using interaction forces fij and fiw. The change of velocity in time t is given by the
acceleration equation:

	

mi
dvi

dt
= mi

v0
i (t)e

0
i (t) − vi(t)
ti

+ å
j(�=i)

fij +å
w

fiw ,	

while the change of position ri(t) is given by the velocity vi(t = dri /di). This model describes the psy-
chological tendency of two pedestrians i and j to stay away from each other by a repulsive interaction
force Ai exp[(rij - dij)/Bi]nij , where Ai and Bi are constants. The distance between the pedestrians’
centers of mass is dij = ||ri - rj||, and nij = (n1ij , n2ij ) = (ri - rj )/dij is the normalized vector pointing
from pedestrian j to pedestrian i. The pedestrians touch each other if their separation distance dij is
smaller than the sum rij = (ri + rj ) of their radii ri and rj. If this is the case, then two additional forces
are assumed inspired by granular interactions, which are essential for understanding the particular
effects in panicking crowds: a “body force” k(rij - dij )nij counteracting body compression and a “slid-
ing friction force” k(rij – dij )Dvtijtij impeding relative tangential motion, if pedestrian i comes close
to j. The tangential direction is tij = (-n2ij , n1ij ) and Dvtij = (vj - vi )tij is the tangential velocity differ-
ence. The weights k and k represent large constants. This formulation yields:

	
fij =

�
Ai e(rij−dij)/Bi + kg

�
rij − dij

��
nij + kg

�
rij − dij

�
Dvt

jitij ,	

where the function g(x) = x if the pedestrians touch each other (dij < rij) and is otherwise zero.
The interaction with the walls is treated analogously. If diw is the distance to wall W, niw

denotes the direction perpendicular to it, and tiw the direction tangential to it, the corresponding
interaction force with the wall is given by:

Crowd Simulation Methodology Survey  17

	

fij =
�

Ai e(rij−diw)/Bi + kg
�
rij − diw

��
niw + kg

�
rij − diw

�
(vi · tiw) tiw .

	

Helbing’s social forces model applies repulsion and tangential forces to simulate the interac-
tion between people and obstacles, which allows for realistic “pushing” behavior and variable flow
rates (Helbing et al. 2000). Helbing’s model was estimated from real data. The main disadvantage
of this approach is that agents appear to “shake” or “vibrate” in response to the numerous impinging
forces in high-density crowds, which does not correspond to natural human behavior. Figure 2.1
shows a sequence of images from Helbing’s simulation.

There has been a considerable amount of work done using particle simulation approaches for
low-density crowds. Brogan and Hodgins (1997) used particle systems and dynamics for modeling

FIGURE 2.1:  Helbing’s model simulation with 10,000 individuals. Reprinted by permission from
Macmillan Publishers Ltd: Nature (Helbing et al. 2000), copyright 2000.

FIGURE 2.2:  3D environment and its corresponding grid of cells (Klüpfel 2003).

18  Virtual Crowds: Methods, Simulation, and Control

the motion of groups with significant physics. Musse extended the social forces model to include
individualism (Braun et al. 2003).

2.2.2	 Cellular Automata Models
CA (Dijkstra et al. 2000; Kirchner et al. 2003) is an artificial intelligence approach to simulation
modeling defined as mathematical idealizations of physical systems in which space and time are
discrete and physical quantities take a finite set of discrete values. A cellular automaton consists of
a regular uniform lattice (2D array) with one or more discrete variables at each site (cells) (Figure
2.2). Walls and other fixed obstacles are black, while the white cells are areas that can be occupied
by pedestrians.

The state of a cellular automaton is completely specified by the values of the variables at each
cell. A cellular automaton evolves in discrete time steps, with the value of the variable at one cell
being affected by the values of variables at the neighboring cells. The variables at each cell are
updated simultaneously based on the values of the variables in their neighborhood at the previous
time step and according to a set of local rules (Wolfram 1983). These rules describe the (intelli-
gent) decision-making behavior of the automata, thus creating and emulating actual behavior. Each
automaton evaluates its opportunities on a case-by-case basis. Global emergent group behavior is
a result of the interactions of the local rules as each pedestrian examines the available cells in its
neighborhood.

CA in general provide a framework for discrete models with locally homogeneous interac-
tions. They are characterized by the fundamental properties (L, S, N, f) shown in Table 2.1.

The assumption of a regular lattice and a uniform neighborhood is compatible with geom-
etries like those in Table 2.1 since the set of states, S, also contains information about whether a cell
is accessible or not (e.g., doors or walls between cells).

TABLE 2.1:  Definition of a cellular automaton (Weimar 1997)

L Consists of a regular discrete lattice of cells

t → t + 1 Evolution takes place in discrete time steps

S Set of finite states

F: Sn → S
Each cell evolves according to the same rule

(transition function), which depends only on the state
of the cell and a finite number of neighboring cells

N: "c ∈ N, "r ∈ L: r + c ∈L The neighborhood relation is local and uniform

Crowd Simulation Methodology Survey  19

A configuration Ct : L → S is a function that associates a state with each cell of the lattice. The
update function f changes a configuration Ct into a new configuration Ct +1:

	
Ct+1(r) = f ({Ct (i )| i ∈ N(r)}),	

where N (r) is the set of neighbors of cell r, N (r) = {i ∈L| r - i ∈N }. This definition assumes that f
is deterministic, which may not the case.

CA models (Tecchia et al. 2001; Kirchner et al. 2003; Chenney 2004; Torrens 2007), although
fast and simple to implxement, do not allow for contact between agents. Floor space is discrete, and
individuals can only move to an adjacent free cell. This checkerboard approach offers realistic results
for lower density crowds, but unrealistic results when agents in high-density situations are forced
into discrete cells. More realistic longer (nonlocal) paths in the grid can be obtained by precomput-
ing paths toward goals and storing them within the grid (Loscos et al. 2003).

2.2.3	 Rule-Based Models
Rule-based models (Reynolds 1987, 1999) achieve more realistic human movement for low- and
medium-density crowds in a flocking or swarming style, but do not handle contact between indi-
viduals and therefore fail to simulate “pushing” behavior. These models usually adopt a conservative
approach by avoiding contact and, when densities are high, applying “wait” rules to enforce ordered
crowd behavior without the need to calculate collision detection and response. Cognitive models
have been used in combination with rule-based models to achieve more realistic behaviors for pe-
destrian simulation (Shao and Terzopoulos 2005). Different behavioral rules can be applied to the

FIGURE 2.3:  Crowd simulation: (left) CA and (right) underlying 2D grid structure (Tecchia et al.
2001) C 2001 ACM, Inc. Reprinted by permission.

20  Virtual Crowds: Methods, Simulation, and Control

crowd, group, or individuals to achieve more believable overall crowd behavior (Thalmann et al.
1999; O’Sullivan et al. 2002).

The most well-known set of local rules to simulate lifelike complex behavior is Reynolds’
“boids” model (1987). It is an elaboration of a particle system with the simulated entities (boids)
represented as oriented particles with specific control rules. The aggregate motion of the simulated
flock is created by a distributed behavioral model. Each simulated agent is implemented as an inde-
pendent actor that navigates according to its local perception of the dynamic environment, the laws
of simulated physics that rule its motion and a set of behaviors programmed by the animator. The
aggregate motion of the simulated flock is the result of the dense interaction of the relatively simple
behaviors of the individual simulated boids.

The basic model to simulate generic flocking behavior consists of three simple rules that describe
how an individual boid maneuvers based on the positions and velocities of its nearby flockmates:

Separation: steer to avoid crowding local flockmates
Alignment: steer toward the average heading of local flockmates
Cohesion: steer toward the average position of local flockmates

Each boid has access to the whole environment description, but flocking only requires reac-
tion within a specific neighborhood that is given by a distance (from the center of each boid) and
an angle (from each boid’s direction of flight). This neighborhood can be considered as a limited
perceptual field. Each boid will not only avoid collision with other boids but also with obstacles in
the environment.

In addition to the basic three rules used to simulate flocking, Reynolds (1999) introduced
the more general concept of steering behaviors and placed flocking within that context. Steering
behavior enhances the behaviors already present in the original boids model by building parts for

•
•
•

FIGURE 2.4:  Reynolds’ boids (Reynolds 1987) C 1987 ACM, Inc. Reprinted by permission.

Crowd Simulation Methodology Survey  21

complex autonomous systems. Each of these new rules defines only a specific reaction on the simu-
lated environment of the autonomous system.

Simple behaviors for individuals and pairs:

seek and flee
pursue and evade
wander
arrival
obstacle avoidance
containment
wall following
path following
flow field following steering behavior

Combined behaviors and groups:

crowd path following
leader following
unaligned collision avoidance
queuing
flocking

•
•
•
•
•
•
•
•
•

•
•
•
•
•

FIGURE 2.5:  Example of path following from Reynolds’ (1999) steering behaviors.

22  Virtual Crowds: Methods, Simulation, and Control

2.3	 MACROSCOPIC MODELS
Macroscopic models abstract away from individual specialized behaviors in favor of a broader view
of crowd behaviors as flows. Such models can be of value in computing and predicting traffic needs
and capacities for large scale structures such as stadiums or transportation centers.

2.3.1	 Regression Models
Regression models use statistically established relations between flow variables to predict pedestrian
flow operations under specific circumstances. The characteristics of this flow depend on the infra-
structure (stairs, corridors, etc.) (Milazzo et al. 1998).

2.3.2	 Route Choice Models
Route choice models describe pedestrian wayfinding based on the concept of utility. Pedestrians
choose their destinations to maximize the utility of their trip (comfort, travel time, etc.) (Hoogen-
doorn 2003).

2.3.3	 Queuing Models
Queuing models use Markov chain models (Lovas 1994) to describe how pedestrians move from
one node of the network to another. Nodes are usually rooms, and therefore links are usually portals
or doors. Markov chain models are defined by a set of states together with transition probabilities.
At each extrapolation step, a successor state is selected by either sampling from the transition dis-
tribution or identifying the most probable successor. The state transition probabilities are estimated
from the relative frequency of transitions between behavior prototypes observed in the training data,
taking the closest behavior prototype at each time instant. Only transitions causing state change are
considered.

2.3.4	 Gaskinetics
Gaskinetics use an analogy with fluid or gas dynamics to describe how crowd density and velocity
change over time using partial differential equations (Henderson 1971).

2.4	 CURRENT PEDESTRIAN SOFTWARE SYSTEMS
Commercial models of pedestrian traffic also fall into microscopic and macroscopic classes. The
former studies the characteristics of individual pedestrians such as speed and interaction with other
pedestrians, while the latter is concerned with groups of pedestrians rather than individual char-
acteristics, and their analysis focuses on high-density, large-scale systems. Since we are primarily

Crowd Simulation Methodology Survey  23

interested in simulations where each agent is driven by its own goals and has its own personality and
decision-making process, we will focus on microscopic systems.

In computer graphics, research efforts have focused mainly on portraying realistic movements
in each human figure, and on the graphical techniques necessary to render huge numbers (many
thousands) on commodity graphics display systems. These efforts clearly capitalize on microscopic
models, but in addition address realistic body, leg, and torso movements, visual and size variety, and
graphical display realism. These topics are important but outside the scope of our discussion.

This section surveys some of the most relevant systems for crowd simulation that have been
developed both from industry and academia. [Other surveys on academic and commercial software
can be found in papers by Still (2000), Teknomo (2002), and Kuligowski and Peacock (2005).]

Exodus. Exodus was developed by the Fire Safety Engineering Group at the University of
Greenwich (Galea et al. 1993). The system is able to simulate the evacuation of large numbers of in-
dividuals from large multifloor buildings. By adopting fluid dynamic models, coupled with discrete
virtual reality simulation techniques, the program tracks the trajectories of individuals as they make
their way out of the building or are overcome by hazards (e.g., fire and smoke). The output of Exo-
dus includes overall evacuation time, individual waiting and evacuation time, and individual paths
(Galea et al. 1993; Owen et al. 1998) (see Figures 2.6 and 2.7 for some screenshots of the Exodus
SW and the 3D offline tool that provides a higher-quality render of the simulation).

Pedroute. Pedroute was originally developed by London Underground Limited and has been
used extensively to model crowd parameters in underground networks around the world (Buckmann
and Leather 1994). It is a spatial entropy maximizing model that has been used for station design,

FIGURE 2.6:  Density distributions during an evacuation in Exodus (Galea 1993).

24  Virtual Crowds: Methods, Simulation, and Control

including the Olympic Railway Station, Sydney (designed to be capable of handling 50,000 pas-
sengers an hour). The model can simulate train and passenger movements going through a station
or a building. The performance of the building is assessed using service levels, passenger densities,
and delays and provides statistics of their journey times, congestion, and the level of service for each
segment. Passengers are assigned to routes through the station using a dynamic assignment taking
into account bottlenecks and congestion effects. Stations are divided into different blocks (e.g., like
the CA models but larger and with continuous movement within them) representing stairs, escala-
tors, platforms, ticket halls, etc., with each block having different speed of flow curves associated
with the movement of pedestrians through them. The underlying assumptions and principles used
in Pedroute are the same as other spatial interactions/entropy maximizing models and fail to incor-
porate the individual basic mechanisms underlying pedestrian movements. These programs cannot
represent the interaction of each pedestrian with other pedestrians and the external environment,
only their macroscopic behavior.

CROSSES. CROSSES (Crowd Simulation System for Emergency Situations) aims to pro-
vide a virtual reality tool for training people to effectively respond to urban emergency situations
by using a model for generating and simulating a virtual crowd (Ulicny and Thalmann 2001). This
multiagent system allows both scripted and autonomous behaviors of the agents (as well as interac-
tions among them) with the virtual environment and with the real human participants. A layered
approach is used for controlling agents’ behavior, which is based on a combination of rules and finite
state machines.

Simulex. Simulex was developed as an evacuation model with the capability of simulating
a large number of people in geometrically complex buildings (P. Thompson, Integrated Environ-

FIGURE 2.7:  Simulation of an evacuation with building Exodus and its offline visualization in 3D
with vrExodus (Owen 1998).

Crowd Simulation Methodology Survey  25

mental systems, UK) (Thompson and Marchant 1994, 1995). It is based on interperson distances
to specify walking speed of the individuals, and it achieves overtaking, body rotation, sideways
stepping, and small degrees of back-stepping. The interperson distance is defined as the distance
between the centers of the bodies of two individuals. Human body shape is represented by an ellipti-
cal body size defined by one main circle, and two smaller circles bounding each shoulder.

The 2D locomotion space is continuous for pedestrian movement, but discretized to calculate
and store a distance map (Figure 2.8). The distance map is used to direct occupants to the closest
available exit. The velocity of each individual depends on the distance to the people ahead.

Rampage. Rampage is a particle simulation system to animate explosions and other elementary
primitives; it divides human behavior into reflex reactions and decision making based on knowledge
obtained from the scene (Bouvier and Cohen 1995). Its principles for human behavior simulations
are based on the Boltzmann gas equation.

Egress. AEA Technology started the development of Egress in 1991 (AEA Technology
2002). It is a commercial software tool for crowd simulation. The model employs artificial intel-
ligence techniques to determine how a person would react under a variety of circumstances such as
fire and smoke. The output of Egress includes evacuation time analysis, comparison between people
evacuation and progression of hazard, and potential structural and procedural improvements. The
simulation is based on hexagonal grids. The approach is fundamentally a cellular automaton process
in which the transition of people from cell to cell is based on cell occupancy.

Legion. Legion was not designed as a crowd behavioral analysis system but as an investiga-
tional tool for the study of large scale interactive systems (Legion International 2003). The compu-
tational model oversimplifies the behavioral representation of individuals. First, the model employs
only four parameters (goal point, speed, distance to others, and reaction time) and one decision rule

FIGURE 2.8:  Crowd density and simulation in Simulex (Still 2000).

26  Virtual Crowds: Methods, Simulation, and Control

(based on assumption of the least-effort principle) to represent the complex nature of individual
behaviors. Furthermore, all individuals are considered to be the same in terms of size, mobility, and
decision-making process, and the model ignores social behaviors such as herding and leader influ-
ence (Still 2000).

The Legion model works in 2D continuous space, which gives more realistic paths for the
pedestrians than those based on discrete grids (Figure 2.9). Legion claims that occupant movement
is in agreement with extensive empirical research through analysis of video footage of crowd move-
ment and behavior. Movements also depend on specific features of the local geometry, input vari-
ables specified for each person, an individual’s knowledge of the environment, and state of readiness
(meaning interaction with signals) (Legion International 2003).

STEPS. STEPS is an agent-based model with coarse grid geometry (CA) (Figure 2.10) (Mott-
MacDonald 2003). Each individual occupies one cell at any given time and moves in the desired
direction if the next cell is empty. Each occupant has its own characteristics, patience factor, and
familiarity behavior.

In STEPS, the fundamental driving mechanism for individual movement is the desire to
move at a free walking speed toward the next target point in the shortest amount of time and with-
out collision. The decision process is adhered to by every individual in the model. For each target
(exit point), a potential is calculated at each grid cell on the plane. The potential value represents
the distance between individual cells and the targets considering the presence of blockages (walls,
columns, etc.).

At every time step (0.1 s), each target is scored based on the time of arrival. The patience
level modeled into the individual or group is incorporated into the calculation, and a final score is

FIGURE 2.9:  Legion simulation of a train station (Legion 2003).

Crowd Simulation Methodology Survey  27

derived. Based on the derived final score of the target, the individual located in a cell attempts eight
possible directions at every time step to reach the lowest-scored target.

ViCrowd. ViCrowd represents a model to automatically generate human crowds based on
group properties instead of individuals (Musse and Thalmann 1997; Musse et al. 1998). The in-
dividuals within a group would follow the groups’ specifications instead of their own to satisfy
real-time requirements. It is based on Reynolds’ flocking system but includes a simple definition of
behavioral rules using conditional events and reactions.

A sociological model is used to handle affinities and repulsion effects that can emerge in
crowd simulation and create more complex behaviors. In this approach, control is presented through
different degrees of autonomy: guided, programmed, and autonomous crowd, ranging from totally
interactive to totally autonomous control.

OpenSteer. OpenSteer provides a toolkit of steering behaviors defined in terms of an abstract
mobile agent (Figure 2.11) (Reynolds 1999). It is the C++ implementation of Reynolds’ steering
model described in Section 2.2.

Massive SW. This system is based on artificial life technology, using a combination of very
simple rules with fuzzy logic, developed by Massive Software, Inc. (Massive Software, Inc. 2005).
It is a 3D animation tool to simulate large crowds for the special effects industry (Figure 2.12).
Agents are endowed with synthetic vision, hearing, and touch that allow them to react naturally
to their environment. In Massive SW, reactions rely on the environment rather than an internal
model and the agents respond directly to environmental stimuli, using less storage than modeling
the environment internally in each agent. The agents have very simple “brains,” since Massive SW

FIGURE 2.10:  STEPS pedestrian simulation where we can appreciate the underlying 2D grid. Left
image shows the occupied cells in blue, walkable cells in green, and nonwalkable cells in red. On the right
image, we can see a simulation with stairs and most common paths in green (Mott-MacDonald 2003).

28  Virtual Crowds: Methods, Simulation, and Control

FIGURE 2.11:  Screen shot of OpenSteer pedestrians demo (Reynolds 1999).

FIGURE 2.12:  Evacuation simulation with Massive SW for architectural design and evaluation (Mas-
sive Software, Inc. 2008).

Crowd Simulation Methodology Survey  29

FIGURE 2.13:  Reactive navigation (Thomas 2000) C 2000 IEEE.

has been designed to achieve realistic simulation for short periods (under 5 s) but does not deal with
achieving long-term goals and global navigation issues.

Reactive Navigation. The agents of Lamarche and Donikian (2000, 2004) move within com-
plex virtual environments represented with a hierarchical topological structure extracted from the
geometry of the virtual environment (Figure 2.13). This structure allows fast path finding as well as
an efficient reactive navigation algorithm. To avoid collision while reaching their targets, they use
an iterative optimization process. Collision prediction is based on neighborhood computations; it
creates long-distance neighborhood relations in sparse crowds and short-distance relations in dense
crowds. Collision avoidance is achieved by predicting other agents’ positions, and if a collision may
occur, then the agent will modify its speed and orientation vector.

Artificial Fishes. Tu and Terzopoulos(1994) developed an artificial life approach to simulate
the appearance, motion, and behavior of individual fish in a virtual marine world and also the
complex group behaviors observed in real aquatic ecosystems (Figure 2.14). Each fish behaves as
an autonomous agent exhibiting fish behavior such as foraging, preying, schooling, courting, and
collision avoidance. These simple fish models can learn basic motor functions and perceive the
environment.

ACUMEN. ACUMEN is a system for synthesizing and recognizing aggregate movements
in a virtual environment with a natural language interface (Allbeck et al. 2002). Its principal com-
ponents include an interactive interface for aggregate control based on a collection of parameters
extending an existing movement quality model, a feature analysis of aggregate motion verbs, rec-
ognizers to detect occurrences of features in a collection of simulated entities, and a clustering
algorithm that determines subgroups.

The ACUMEN system used the Parameterized Action Representation (Bindiganavale et al.
2000) to capture the semantics of aggregate movement for generation and recognition. Movement
is based largely on a particle system-like model of group simulation, using dynamic forces acting on
rigid bodies to produce the desired movement (Figure 2.15).

ACUMEN extended the EMOTE features (Chi et al. 2000) to group movement by exam-
ining features that characterized verbs that referred to aggregate motions. EMOTE was inspired

30  Virtual Crowds: Methods, Simulation, and Control

by movement observation science, in particular Laban movement analysis (Maletic 1987) and its
“effort and shape” components.

Autonomous Pedestrians. Terzopoulos has been an advocate of an artificial life approach in-
tegrating motor, perceptual, behavior, and cognitive components within a model of pedestrians as
individuals (Shao and Terzopoulos 2005). The environment is represented through hierarchical data
structures that efficiently support perceptual queries from the autonomous pedestrians that drive
their behavioral responses and maintain their ability to plan their actions on a local and global level.

FIGURE 2.15:  ACUMEN system applied to spheres and school children (Allbeck 2002) C 2002 ACM,
Inc. Reprinted by permission.

FIGURE 2.14:  Artificial fishes (Tu 1994) C 1994 ACM, Inc. Reprinted by permission.

Crowd Simulation Methodology Survey  31

FIGURE 2.16:  Autonomous pedestrians (Shao and Terzopoulos 2005) C 2005 ACM, Inc. Reprinted
by permission.

Agents perform six basic reactive behavior routines: avoid static obstacle, avoid static obstacle
in a complex turn, maintain separation in a moving crowd, avoid oncoming pedestrians, avoid dan-
gerously close pedestrians, and verify new directions relative to obstacles. Agents perform collision
avoidance but not response; therefore, if an intersection with another pedestrian is about to happen,
which they detect by using a “front safe area,” the agent will stop, try to turn to face away, and wait
until space is available around its current position (Figure 2.16).

This work also includes a cognitive model for controlling action selection. This selection
mechanism is based on mental state variables that are akin to needs (Shao and Terzopoulos 2007). A
probabilistic decision network model has also been incorporated into this work (Yu and Terzopoulos
2007). Decision trees are constructed for different behaviors, and their probabilities are tuned to
obtain the desired overall behaviors.

Space Syntax. Urban planners have proposed Visibility Graph Analysis for pedestrian move-
ment (Turner and Penn 2002) (Figure 2.17). This method examines how visually accessible points
are within an area to determine a pedestrian’s likely navigation direction. This approach focuses on
using the visual field to guide natural movement, without considering other socioeconomic factors
(reaching for a destination, meeting with people, picking up something, etc.) or granular physics
(moving particles toward a goal, pushing, forming lanes, etc.). To simulate a relatively large crowd,
they calculate an “exosomatic visual architecture” where the connections between mutually visible
locations within a configuration are prestored in a lookup table.

32  Virtual Crowds: Methods, Simulation, and Control

2.5	 SUMMARY OF CROWD MODELS
There has been considerable research and development in crowd or group simulation, especially in
the study of evacuation dynamics. Nevertheless, there is still room for improvement.

The main focus of commercial applications is to validate their systems in terms of egress
(flow rates, densities, congestion areas, evacuation times, etc.). They use either macroscopic or mi-
croscopic approaches. The microscopic models most commonly used in industry applications are
particle simulation and CA models. These methods have proven to lack realism when they are ap-
plied to 3D virtual humans for animation systems because they either look closer to particles than
to real human movement (social forces model and particle simulation in general) or are restricted to
checkerboard configurations (CA).

In contrast, research on developing autonomous agents has focused on their ability to navi-
gate large complex virtual environments while avoiding static obstacles and other agents. Most
cases, however, ignore the problems that arise when dealing with very high-density crowds. These
systems usually apply some sets of rules to avoid collision based on modifying the speed or trajec-
tory of the agents. Consequently, these models are sufficient for medium- and low-density crowds;
however, when the crowd is very dense, they yield unnatural emergent behavior such as individuals
stopping and waiting for space to clear up. There is no concept of body-to-body contact leading to
pushing agents in a crowd or individuals being dragged by the crowd. Further effects such as fall-
ing, injury, incapacitation, and others walking over the fallen agent are also ignored. The system
HiDAC has as its main goal to deal with all these features that emerge in real high-density crowds
(Pelechano et al. 2007; Sunshine-Hill et al. 2007).

FIGURE 2.17:  Visibility graph from Space Syntax (Turner and Penn 2002).

Crowd Simulation Methodology Survey  33

In terms of global navigation, the published systems for crowd simulation assume that agents
have complete information about the environment. An agent can access the entire internal struc-
ture of the environment and use algorithms such as A* (several techniques have been exploited to
achieve real time when performing global path planning for large groups of agents), or else the en-
vironment is discretized as a grid that stores potentials or distance maps that the agents will follow
locally to reach the goal.

It is essential to provide an agent with the ability to explore partly known environments and
learn new features. Another crucial aspect of crowds that is ignored elsewhere is that people have
the ability to communicate with others to exchange salient navigational information.

Our work focuses also on improving the realism of the agents’ behavior by allowing them
to have partial information about the environment and be able to extend their memory (or men-
tal maps) as they explore the environment and communicate with other individuals in the crowd.
Agents can also exhibit different behaviors based on different roles (Pelechano and Badler 2006).

Finally, some psychological factors need to be incorporated with the purpose of modifying
the overall performance of an individual based on its mental state.

Table 2.2 shows a comparison of some of the most significant models in crowd animation.
This emphasizes the main features in multiagent simulations and pedestrian evacuations to com-
pare the contributions of our model (MACES + HiDAC) to others.

2.5.1	 Some Limitations of the Current Commercial Software for
	 Crowd Evacuation
Since most of the commercial tools for crowd evacuation are based on the CA model (e.g., STEPS,
Exodus, Egress), it is important to understand their movement simulation artifacts. We also de-
scribe in this section some of the limitations that current commercial software tools have in terms
of simulating human psychology and physiology (Pelechano and Malkawi 2008). Andersen et al.
(2005) provide a more detailed discussion regarding the limitations of grid-based pedestrian simula-
tion models.

Grid Size. Using a CA model, and therefore having a discrete grid for the simulation, cre-
ates several limitations. Some of the main problems that occur are fixed densities and unrealistic
flow rates through portals. Grid size becomes a crucial parameter to calibrate in order to achieve
the desired behavior. Individuals will move with their desired velocity unless all of the cells around
them are occupied or blocked, which causes the person to wait for the next empty cell in the desired
direction of movement.

Having a fixed grid size limits the maximum densities achievable. For example, if the grid
size is defined as 0.5 m2 the maximum density at any time will be 4 persons/m2, while the literature

34  Virtual Crowds: Methods, Simulation, and Control

in crowd behavior reports densities of 7.4 persons/m2 where people can still move (Andersen et al.
2005).

A second issue arises when the grid is not accurately aligned with the geometry. This can
lead to the appearance of artifacts where only one person at a time can get through a door in the
simulation, when in reality the door size is big enough to fit two people crossing simultaneously. An
example of this situation can be observed in Figure 2.18.

Fatigue Factor. Fatigue factor is not included in the simulation. The speed values given in
the literature are based on those collected during fire drills and normal situations. During an actual

TABLE 2.2:  Comparison of different systems for animation of large groups

Collision
response

Particles
shaking

corrected

Behavior
method

Social forces (Helbing) Yes No Forces

Rule based No Not needed Rules

CA No Not needed CA

Simulex Yes No Distance maps

Egress No Not needed CA

ViCrowd No Not needed Rules + FSM

OpenSteer No Not needed Rules

Legion No Not needed Least-effort

Exodus No Not needed CA

Steps No Not needed CA

Massive SW No Not needed Rules + fuzzy logic

Reactive Navigation No Not needed Rules

Artificial fishes No Not needed Rules

ACUMEN Yes No Particle simulation

Crosses No Not needed Rules+ FSM

Autonomous
Pedestrians

No Not needed Artificial life approach

Space Syntax No Not needed Visibility graphs

MACES + HiDAC Yes Yes Extended social forces

Crowd Simulation Methodology Survey  35

fire evacuation in a high-rise building, slower speeds when walking downstairs have been reported.
This can be the result of fatigue when walking downstairs for long periods (unfit, older, or disabled
people). Fatigue motivates people to take rest stops, which can then precipitate bottlenecks.

Speeds in Stairwells. In some reported scenarios (e.g., the WTC attack), the observed speeds
during the real evacuation descending stairwells was 0.2 m/s, which is half the slowest speed given
by egress when walking downstairs. The reason why these speeds occurred was because there was
an ascending counterflow of firefighters that was blocking the downstairs flow. In 1-m-wide stairs,
it should be possible to have two flows of people moving in opposite directions, but since one of

Communicates
or signals

Individuals
or roles

Real
time

Learning Spatial
structure

for motion

Social forces (Helbing) No Some Yes No Cont.

Rule based No No Yes No Cont.

CA No No Yes No 2D grid

Simulex No Some No No Cont.

Egress No Some No No Hexagonal grid

ViCrowd No Yes Yes No Cont.

OpenSteer No Some Yes No Cont.

Legion some Some No No Cont.

Exodus No Some No No 2D grid

Steps No Some No No 2D grid

Massive SW No Yes No No Cont.

Reactive Navigation No Yes Yes No Cont.

Artificial fishes No Yes Yes Yes Cont.

ACUMEN Yes Yes Yes No Cont.

Crosses No Yes Yes No Cont.

Autonomous
Pedestrians

No Yes Yes No Cont.

Space Syntax No No Yes No Cont.

MACES + HiDAC Yes Yes Yes Yes Cont.

36  Virtual Crowds: Methods, Simulation, and Control

those flows contains firefighters carrying all their gear, it turns out that one of the flows needs to
completely stop to let the other move.

Route Selection. Path finding in grid-based models consists of traversing the centers of squared
cells. Distances between centers can be stored before the simulation takes place. The method is usu-
ally based on “potential maps,” which identifies a discrete approximation of the shortest path toward
the destination and stores this information in the cells to achieve an efficient simulation. The main
problem that potential maps have is that they favor 45-degree diagonal movement, and the resulting
routes are not always realistic.

Figure 2.19 shows the unnatural paths followed by the people in Exodus (gray paths) com-
pared with some of the real paths that should have been followed if the space was continuous (red
dotted lines).

Potential maps computed on grids have the following problems (Andersen et al. 2005): they
yield highly unrealistic space utilization, cannot guarantee equivalence on return trips, artificially
segregate opposite flows, and distort path length and thus pedestrian travel time.

Uneven Use of Stairwells. Uneven use of stairwells occurs because of familiarity or initial
distance to exits, which leads to different utilization of the stairs. Because distances are computed
before the simulation and route selection is based on the potential maps, some stairwells may at-
tract more individuals than others (Figure 2.20). This can have a considerable impact on the overall
evacuation time. This can be a positive emergent behavior if it matches with what would actually

FIGURE 2.18:  Only one person at a time can fit through the opening of the stairwell, when the actual
width is 1 m (Mott-MacDonald 2003).

Crowd Simulation Methodology Survey  37

FIGURE 2.19:  Paths followed based on potential maps in Exodus (AEA-Technology 2002).

FIGURE 2.20:  Uneven utilization of stairwells during route selection (Mott-MacDonald 2003).

38  Virtual Crowds: Methods, Simulation, and Control

occur in the real building, but how to validate the positive impact of this behavior in the accuracy
of the results is unclear.

2.6	 NAVIGATION
Coordinating the movement of groups of agents plays an important role to simulate swarms of
robots, animals, and pedestrians in computer graphics and civil engineering applications. Most re-
search focuses on techniques for modeling individual behavior of flocks inspired by Reynolds’ boids
(Reynolds 1987) and Helbing’s social forces models (Helbing et al. 2000) when moving in continu-
ous space and CA when dealing with discretized grids.

For continuous space, rule-based models and social forces models can be sufficient for simple
environments where agents cannot get locked in local minima; they will have difficulties, however,
when simulating larger and more complex environments. To navigate a complex environment, some
semantically meaningful geometric representation of the environment is essential. Among the most
popular techniques for crowd navigation are cell and portal graphs (CPGs) (Pettre et al. 2005;
Lerner et al. 2006; Pelechano and Badler 2006), potential fields (Galea et al. 1993; Thompson and
Marchant 1994; Chenney 2004), and roadmaps (Kavraki et al. 1996; Bayazit et al. 2002; Sung et
al. 2005).

In CA, navigation can be performed through grid-based search using A* algorithms, poten-
tials, or flow tiles. Computer games have commonly used A* search to generate group motion (Lau
and Kuffner 2005). In this approach, the environment is divided into a heterogeneous grid, and
the search is based on expanding toward the most promising neighbor of already visited positions.
Although A* can find the shortest path to a goal and several improvements have been added to
achieve fast solutions, it is still necessary to run the algorithm again to find a new path for each new
goal and for each agent in the group. Alternatively, potentials or flow tiles preprocess the required
path information and then store it within each cell, so during the simulation, each agent will query
the cell for navigation information.

2.6.1	 Cell and Portal Graphs
CPGs are often used to abstract the geometry. They were introduced by Teller in 1992 (Figure
2.21). In a CPG, navigation becomes a problem of getting from one node of the graph to another
through a sequence of nodes and portals (Pettre et al. 2005; Pelechano and Badler 2006). When
employed for indoor scenes, nodes usually represent the rooms defined by their enclosing walls
and portals correspond to the doors. On top of that partition, an adjacency graph is built where
each portal connects the two rooms on both sides of the door. Outdoor environments can also be
represented with CPGs where cells are pedestrian pathways and portals appear between pedestrian
pathways and crossings (Lerner et al. 2006).

Crowd Simulation Methodology Survey  39

FIGURE 2.21:  Floor plan of a building and its corresponding CPG (Pelechano et al. 2005).

2.6.2	 Flow Tiles and Potential Field Methods
In potential field methods, the environment is usually discretized into a regular grid. Then a po-
tential is associated with each cell, which corresponds to the sum of a repulsive potential generated
by obstacles in the environment and attractive potential generated by the goal. Therefore, gradient
methods can be applied to find a path from any origin in the environment to a goal position. The
method has some problems, such as local minima where the individuals could get stuck and never
reach the goal (Thompson and Marchant 1994; Owen et al. 1998; Loscos et al. 2003).

Flow tiles offer a similar approach (Chenney 2004) where tiling can be constructed to meet
a wide variety of external and internal configurations. Each flow tile contains a small precomputed
vector field, and concatenation of multiple tiles can produce large flows.

Dynamic potential fields (Treuille et al. 2006) have been used to integrate global navigation
with moving obstacles and people, efficiently solving the motion of large crowds without the need
for explicit collision avoidance (Figure 2.22).

FIGURE 2.22:  Continuum crowds general algorithm overview (Treuille et al. 2006) C 2006 ACM,
Inc. Reprinted by permission.

40  Virtual Crowds: Methods, Simulation, and Control

FIGURE 2.23:  Example of a PRM (Bayazit et al. 2002) C 2002 IEEE.

2.6.3	 Probabilistic Roadmaps
Probabilistic roadmaps (PRMs) have been widely used in robotics and navigation for autonomous
agents. The basic idea of a PRM (Kavraki et al. 1996) consists of computing a very simplified
representation of the free space by sampling configurations at random. Then the sampled configura-
tions are tested for collision, and each collision-free configuration is retained as a “milestone.” Each
milestone is linked by straight paths to its k-nearest neighbors. Finally, the collision-free links will
form the PRM (Figure 2.23).

PRMs have been used to generate navigation paths for large groups of autonomous agents.
Bayazit et al. (2002) simulate crowds with various group behaviors like homing, shepherding, and
exploring combined with PRMs to drive the characters toward a goal or to explore a scene; their
main motivation is to expand flocking behaviors by endowing the agents with some global informa-
tion about the environment. Lien et al. (2005) extend that work by introducing multiple shepherds
and allowing them to coordinate without communication. They also incorporated dynamic road-
maps by modifying edge weights as an implicit means of communication between flock members
(Bayazit et al. 2002).

2.7	 ENVIRONMENT MODELING
Haumont et al. (2003) presented an algorithm for volumetric cell-and-portal generation for indoor
scenes based on an adaptation of the 3D watershed algorithm. The watershed is created using a

Crowd Simulation Methodology Survey  41

FIGURE 2.24:  Navigation graphs (Pettre et al. 2005).

flooding analogy in the distance field space. Flooding starts from local minima, and each minimum
produces a region (room). Portals appear where regions meet during the growth. The algorithm
automatically classifies each room as a cell and the openings (doors and windows) as portals, gener-
ating the CPG of any indoor environment.

Pettre et al. (2005) introduced navigation graphs for multilayered and uneven terrain based on
some motion planning methods from robotics (Hait et al. 2002; Chenney 2004). In this approach,
the space is divided into free space and obstacles to be avoided. A Voronoï diagram of the free space
is calculated and then collision-free convex cells are built along the diagram. The navigation graph
is obtained from the adjacency graph of the cells. The novelty of this work is in extending the basic
navigation graph to multilayered terrain by classifying some free-space areas as obstacles based on
the slope of the terrain (Figure 2.24).

Lerner et al. (2006) presented a method to efficiently create CPGs for both interior and
exterior environments. The algorithm input is a set of half edges in 2D that can be extracted from
the geometry. They use a two-pass algorithm: the first step creates an initial partition and then the
second step refines it. Their heuristic strives to create small portals as a means for generating an
effective partition. The method supports incremental changes of the model by locally recomputing
and updating the partition.

Shao and Terzopoulos (2005) represent virtual environments by a hierarchical collection
of maps: (a) a topological map, which represents the connections between different parts of the

42  Virtual Crowds: Methods, Simulation, and Control

virtual world; (b) perception maps, which provide information regarding perceptual queries; and
(c) path maps, which enable online path planning for navigation (Figure 2.25). The topological
map contains nodes corresponding to the environmental regions and edges representing accessibil-
ity between regions. The path maps include a quad-tree map, which supports global, long-range
path planning, and a grid map, which supports short-range path planning.

• • • •

FIGURE 2.25:  Hierarchical representation of a building (Shao and Terzopoulos 2005) C 2005 ACM,
Inc. Reprinted by permission.

43

chapter 3

Individual Differences in Crowds

Real populations and crowds are not homogeneous: they are composed of individuals who differ in a
variety of ways. Naturally, their external appearances vary, which can be accomplished by using dif-
ferent graphical models and materials. Members of real crowds also differ in their behaviors. These
behavioral variations stem from a range of factors, from roles to personality to environment context.
We will outline a few in this chapter.

3.1	 PERSONALITY AND EMOTION MODELS
A major focus of the autonomous agents research community is the modeling of personality
(Rousseau and Hayes-Roth 1996; Moffat 1997; Trappl and Petta 1997; Ball and Breese 2000)
and emotions (Ekman and Friesen 1977; Collier 1985; El-Nasr et al. 1999; Lester et al. 2000;
Schroder 2001; Marsella and Gratch 2002; Gratch and Marsella 2004; Silverman et al. 2006).
Including these aspects of individual differences is meant to create more believable characters with
natural behavioral variations. Mapping these traits to their behavioral effects can be difficult, time-
consuming, and scenario-specific. Many implementations only use one or two dimensions of the
corresponding psychological models (Ortony et al. 1988; Wiggins 1996) and craft the mapping to
behaviors for limited scenarios.

Emotions and mood affect many behaviors and channels of nonverbal communication. The
effect of emotions on facial expressions is well-known and well-studied (Ekman and Friesen 1977),
but other channels are effected as well. Lewis (1998) indicates that tense moods cause postures that
are rigid and upright or slightly leaning forward. Extreme inhibition tends to cause withdrawal
movements and general motor unrest. When depressed, movements are slower, fewer, and hesitat-
ing. By contrast, elation causes fast, expansive, emphatic, spontaneous movements. The embodied
agents research community has studied emotion and mood more than any of the other cognitive
processes (Cassell et al. 2000).

In terms of spatial relations between individuals, introverts generally prefer greater interper-
sonal distances. Aggressive and violence-prone (not agreeable) individuals tend to need even greater
interpersonal distances to feel comfortable. Introverts also tend to resist visual interaction. People

44  Virtual Crowds: Methods, Simulation, and Control

who are more neurotic and introverted have more restrained and rigid behavior and display more
uncoordinated, random movements (Burgoon et al. 1989). More details on a mapping of personality
traits to individuals in crowds can be found in the work of Durupinar et al. (2008).

Like the other processes described below, the modeling of personality may lead to more
consistent characters, and because personality is a pattern of behavior (longer temporal extent), it
should lead to more consistent behavior from situation to situation. This may help observers of the
character to develop a deeper sense of “knowing” the character.

3.2	 PHYSIOLOGY
An individual’s physiology and needs will also impact its decision-making and external behavior
(Maslow 1943). If we examine a crowded shopping mall or an office building, it would not be
unusual to find at least a few people eating or drinking. Likewise, we might find someone dozing
on a bench or even in an office. Implementations of some of these needs in the form of energy
and health levels are common in many video games, but fundamentally emphasized in The Sims
(Wright 2008). The basis of game play in The Sims is to try to fulfill the characters’ needs each day.
The military simulation and autonomous agents research communities have also done work in this
area. PMFserv implements character physiology through a series of reservoirs that empty at various
rates and are replenished through actions that fulfill each need (Silverman et al. 2006). Generally,
physiology changes a person’s priorities. As a level of need increases, so does the priority of actions
that might meet the need.

3.3	 SOCIOLOGY: SUBGROUPS
Often, crowds are not merely composed of individuals navigating from location to location in isola-
tion. While there are certainly individuals in crowds, smaller groups of people may travel together
or stop to chat with one another (Villamil et al. 2003). Consistently depicting these groups impacts
both low and high levels of a crowd implementation. On the lower level, forces or rules need to
be crafted to pull groups together. These groups may separate to better navigate obstacles in the
environment, but should tend to re-form. An implementation should also allow for members to oc-
casionally join and leave the groups. To create a more consistent and natural crowd simulation with
subgroups, these subgroups also need to be represented in some form at a higher level. Groups do
not tend to be composed of random strangers; they tend to contain family, friends, coworkers, or
individuals with some sort of association or common purpose. Creating and storing these associa-
tions enable some logical explanation for the existence of groups, rationale for group formation and
separation (e.g., dropping the kids off at school rather than at a random location), and apparent
social consistency through time.

Individual Differences in Crowds  45

3.4	 CULTURE, ROLES, AND STATUS
It is said that cultural information is a minimum prerequisite for human interaction, and in the
absence of such information, communication becomes a trial and error process (Knapp and Hall
1992). Cultural differences can be extensive and do not only include spoken language. First, differ-
ent cultures have different distances for interacting. In some cultures, standing close and directly in
front of a person while speaking is considered either an intimate or a hostile act. In other cultures,
not standing close and directly facing a person would be considered rude. There are also different
touching behaviors, gestures, and eye gaze patterns (Knapp and Hall 1992).

It is also well-known that there are some similarities across cultures. Studies have shown that
six “universal” facial expressions can be distinguished across cultures (Ekman and Friesen 1977).
Also, some behaviors have cross-cultural similarities, e.g., coyness, flirting, embarrassment, open-
handed greetings, and a lowered posture for showing submission (Knapp and Hall 1992). While
culture is a very important component of human behavior and communication, it has been ne-
glected as a focus for the crowd simulation research community, perhaps due to its interpersonal
complexity.

Every character should have a role or roles that it is playing, whether it is a professor of astro-
physics, a tour guide, or just a man walking down the street. Roles involve expectations, both from
the individual playing the role and from those interacting with the individual playing the role. For a
character to be consistent, it must meet the expectations of the role it is playing, including perform-
ing appropriate actions in appropriate contexts, whether alone or in a group.

Roles are learned, generalized guidelines for behavior. Among other things, a role can stem
from an individual’s occupation, kinship, age, sex, prestige, wealth, or associational grouping. In
a situation, one participant normally establishes his or her role, and the other participant(s) must
either go along or counter with a different role definition. There must be an agreement on the roles
to effectively interact (Burgoon et al. 1989).

Roles influence many of the channels of nonverbal communication. Take for example the
roles of doctor and mechanic. We have certain expectations about these roles. The appearance of a
doctor is expected be clean and neat, while a mechanic may be very messy. We would also expect the
interpersonal distance with a doctor to be smaller and the physical contacts more frequent (when
comforting as well as examining). Confusion and alarm might result from a mechanic standing too
close or touching too often (even if trying to comfort someone after showing them the bill).

In any interpersonal situation, one person’s status is always at least a little above or below the
other person’s (Johnstone 1979), and age is often a component of status. Age and status are reflected
in many different display channels. To present consistent character behavior, these channels should
all indicate the same age and status.

46  Virtual Crowds: Methods, Simulation, and Control

For example, gestures change and become more subtle with age (Lewis 1998), and people of
higher status seem to gesture less frequently (Lewis 1998). Interpersonal distance also changes with
age. Distance seems to increase with age, but is always closer with peers than with those that are
younger or older. Older people are more likely to touch younger people than vice versa (Burgoon
et al. 1989), which is probably a factor of both status and age. People of more dominance are more
likely to engage in unwavering, direct looks. People tend to lower their eyes to show deference to
authority figures, and submission is often marked by raised eyebrows, which connote deference
(Burgoon et al. 1989). Proper posture signals dominance. High-status people are more confident
and therefore comfortable in their space.

The agents research community has, to some extent, modeled status. Hayes-Roth et al.
(1996) have explored the use of status with embodied agents in the form of a master–slave relation-
ship. They illustrate how the postures and actions of the characters change as the servant becomes
the dominant character. Poggi and Pelachaud (2000) model status through facial expressions called
performatives, which are facial expressions that accompany and add interpersonal relationship infor-
mation to speech. Musse and Thalmann (1997) included dominance in their crowd simulations.

3.5	 SUMMARY
Certainly, there are many factors that influence individual differences. We have presented just a few
that might be viable for and have impact on a crowd simulation. Such factors affect the lower level
crowd controls (see Table 4.1), but also the higher level decision-making components that we will dis-
cuss subsequently. For example, an individual’s personality profile might affect their interpersonal space
(lower level), but it is also at the heart of their priorities and hence action choices (higher level).

Not all of the numerous possible factors need to be implemented to create an effective popu-
lation. Factors should be prioritized based on their possible impact on the purpose of the simulation.
Ideas for individual differences that may have an impact on crowd simulations can be found in the
nonverbal communication literature (Burgoon et al. 1989), as well as publications on autonomous
agents and animation (Cassell et al. 2000; Allbeck and Badler 2001, 2002, 2003, 2004; Ashida et al.
2001; Badler et al. 2002).

• • • •

47

chapter 4

Framework (HiDAC +
MACES + CAROSA)

We have developed a framework for high-density multiagent simulation with a bottom-up ap-
proach. On the low-level agents move within a room driven by a social forces model with psy-
chological and geometric rules affecting several parameters that will allow for a wide variety of
emergent and high-density behaviors. Above the motion level, we need a wayfinding algorithm
that will perform navigation in large complex virtual buildings, using communication and roles to
allow for different types of behavior and navigation abilities. Both the motion level and the wayfind-
ing with communication and roles can be affected by psychological factors that are initially given
as personality parameters for each agent, but also can be modified during the simulation to affect
an agent’s behavior. CAROSA (Crowds with Aleatoric, Reactive, Opportunistic, and Scheduled
Actions) is the upper level that provides semantic information about the environment and agents,
including agent roles. It enables functional crowds that perform actions that are appropriate to time
and place. This includes both reactive and deliberative actions as well as opportunistic actions and
actions that are statistically driven.

Agents move within complex virtual environments with several rooms, corridors, obstacles,
stairwells, and doors that can be opened or closed at any time during the simulation (Figure 4.1). To
navigate these virtual environments, route selection is carried out through an interactive high-level
wayfinding algorithm that dynamically calculates the global path based on the agents’ knowledge of
the environment (Pelechano and Badler 2006).

To achieve real-time interactive navigation, some relevant information about the environ
ment is precalculated and stored. Among the information stored are paths toward the exits, distances
from each door to a destination point, and the position of the attractors that will be used during the
local motion to steer the agents. Agents will have access to this information based on their roles.
This allows us to represent different levels of knowledge about the environment, but any other
information required by the agent will have to be gathered through exploration, learning, and com-
munication with other agents.

48  Virtual Crowds: Methods, Simulation, and Control

The navigation process is interactive, meaning that agents are endowed with a decision-
making process that will allow them to follow the known route or make new decisions based on
changes in the environment and their psychological parameters.

Changes in the environment include a door appearing locked, which makes that path invalid
or creates a bottleneck in some part of the desired path. These changes make it more difficult to
reach a goal, and therefore, based on the level of impatience assigned to the agent, a decision could
be made to take a different route.

Each cell of the building stores the shortest path to each exit. There are two ways in which
this information can be interpreted. On the one hand, we can consider that this shortest path stored
in the cell corresponds to the path that an agent in that cell would have followed when entering the
building and therefore is the only one known. On the other hand, we could consider this shortest
path as being the one indicated by the exit signs in a building and therefore would be the ones that
everyone would follow in case of emergency.

Agent spatial knowledge is represented by a graph where the nodes are the rooms and the
arcs are the portals between rooms. This mental graph that represents the memory of the agent will
have more nodes added as it navigates and explores the building. At any time, each agent needs to
know which rooms of the building have been fully explored and which others still have portals that
lead to rooms that have not been visited yet. The mental graph abstracts away the actual geometry

FIGURE 4.1:  Example of a complex building (Pelechano 2006).

Framework (HiDAC + MACES + CAROSA)  49

of the environment. The building geometry is used later to compute locomotion transit times and
portal bottlenecks.

Another crucial source of information is communication with other agents. There are two
pieces of information shared by the agents every time two or more agents meet in a room: locations
of hazards found in the building that are blocking some of the paths and parts of the building that
have been fully explored by other agents and found to have no exit through them. This localized
sharing of mental models is the key to our algorithm’s wayfinding behavior.

Each individual within the crowd will have different behaviors depending on two attributes:
leadership and training:

Leaders and trained agents have complete knowledge about the internal building structure
that would also help others during the evacuation process. An example of this type of agent would
be a firefighter.

Leaders but untrained agents correspond to people that by nature can handle stress better,
tend to help others, and will explore the building searching for new paths.

Nonleaders and untrained (followers) represent dependent people who might panic during an
emergency situation and reach the point where they are incapable of making their own decisions.

4.1	 INTERACTION BETWEEN FRAMEWORK LEVELS AND
PSYCHOLOGICAL MODELS

Our crowd simulation model is a multiagent system without a centralized controller. Each agent has
its own behavior based on roles and personality variables that represent physiological and psycho-
logical factors observed in real people. Agent behaviors are computed at three levels (Figure 4.2):

CAROSA (high-level behavior): character definitions, object and action semantics, and
action selection and control
MACES (middle-level behavior): navigation, learning, communication between agents,
and decision making for wayfinding
HiDAC (low-level motion): perception and a set of reactive behaviors for collision
avoidance, detection, and response in order to move within a room

The parameters describing each agent are stored in CAROSA along with the object and action
semantics. Based on schedules, agent parameters, and percepts from HiDAC, CAROSA determines
what actions an agent should perform and what objects are needed to participate in the action. It then
passes the location where the action is to be performed to MACES so that course can be charted. If
a path to the location is not possible, a failure is generated and passed back to CAROSA.

CAROSA passes the action information to HiDAC where ultimately the motion will be dis-
played. HiDAC returns percepts of the environment and other agents and when necessary failure states.

•

•

•

50  Virtual Crowds: Methods, Simulation, and Control

CAROSA can also both get and set the agent parameters found in MACES and HiDAC. For ex-
ample, CAROSA might determine the leaders in a simulation and set this parameter for the agents in
MACES. In return, MACES might alert CAROSA when an agent becomes panicked, so that it no
longer generates actions for the agent. More information about CAROSA can be found in Chapter 7.

Figure 4.3 shows details of the interaction between MACES and HiDAC. The higher mod-
ule receives information about bottlenecks and door changes that have been perceived by the agent
and makes decisions based on that information and its current knowledge of the environment. Once
this level decides the next room to walk to, it sends the next attractor point to the low-level module
to carry out the required motion to reach it. When the low-level module reaches the attractor, it
queries the higher module for the next attractor in its path toward the destination.

The motion submodule queries the perception submodule about positions and angles of ob-
stacles, crowd density ahead of the agent, and velocity of dynamic obstacles. Based on information
perceived and the internal state of the agent (current behavior, panic, impatience, etc.), the motion
submodule calculates the velocity and next position of the agent and sends a message to the locomo-
tion submodule to execute the correct feet movements.

Both high- and low-level behaviors are affected by a module representing the psychological and
physiological attributes of each agent. The idea of using a psychological model is that agents will oper-
ate independently in perceiving the simulated world and in forming their reactions to it. At no point

FIGURE 4.2:  Framework overview.

Framework (HiDAC + MACES + CAROSA)  51

will they be pre-scripted or programmed via rules or procedures. We only model personality attributes,
and individual agents will make their own decisions that lead to the emergent crowd behavior.

The high-level behavior is affected by changes in psychological elements such as panic or
impatience, by altering the decision-making process (e.g., an impatient agent will select a different
route after perceiving congestion at a door). Other elements such as an agent’s memory and orien-
tation abilities can be affected by a high-level behavior (psychological studies show that a person
under panic may suffer disorientation). Finally, an agent’s psychological state may trigger changes
in roles (e.g., a leader changing to follower when its panic level gets very high or a trained agent
exhibiting untrained behavior when suffering from disorientation).

The low-level behavior is also affected by changes in the psychological state of the agent,
which will trigger modification of the agent’s speed, probability to fall, pushing thresholds, etc. The
psychological model needs to have as input information about environment events detected by the
agent’s perception system and information obtained through communication. Then this informa-
tion will be combined with the agent’s current emotional state to modify it if necessary and send
back the right input to both low- and high-level modules.

In Figure 4.3, we can observe how the psychological model interacts with the navigation and
local motion modules. This psychological module contains information regarding the agent’s state
and psychological factors that are currently affecting its behavior. This module needs to supervise
both high and low levels to detect changes that should alter the internal state of the agent and then
apply the corresponding modification at both decision-making and local motion levels.

FIGURE 4.3:  Architecture overview of HiDAC + MACES with psychological model (Pelechano et al.
2007) C 2007 ACM, Inc. Reprinted by permission.

52  Virtual Crowds: Methods, Simulation, and Control

4.2	 PARAMETERS AFFECTING CROWD BEHAVIOR
Table 4.1 shows the parameters that can be input in our system to specify initial conditions for a
simulation and psychological and physiological personality attributes for the agents. In the current
framework, those parameters are specified by the user through an interface and can be modified
during the simulation. It could also be possible to get those values through an API from a high-

TABLE 4.1:  Parameters affecting behavior

Parameter Type Properties

Leadership Percentage
Percentage of leaders in the crowd (the rest

will be dependent individuals)

Trained Percentage
Percentage of trained (building knowledgeable)

individuals among the leaders

Communication Boolean Whether agents can communicate

Panic Percentage
Percentage of people that will exhibit panic when

an alarm goes off or a hazard is perceived

Panic
propagation

Percentage
Percentage of people with high probability of

exhibiting panic behavior when perceiving other
agents in panic

Impatience Percentage
Percentage of people that will avoid bottlenecks

when other paths are available

Falling Percentage
Percentage of people with high probability to lose
equilibrium under severe pushing (representing

physical abilities)

Pushing
Threshold

Percentage of
people with

{min, medium, max}

Percentages for each distance allowed from other
agents for which repulsion forces will not apply

Right
preference

Percentage
Percentage of people that will tend to move
towards the right when facing opposite flow

Avoidance
Percentage of

people for
{min, medium, max}

Percentage for each magnitude indicating how
abruptly a person will try to avoid others by

walking around instead of forming lines during
normal conditions.

Framework (HiDAC + MACES + CAROSA)  53

level psychological model that would drive the internal emotional state of the agents (Pelechano et
al. 2005).

The current interface allows the user to create either the entire population at once and have
each parameter being distributed among the entire crowd according to the percentage assigned or,
if the user desires to have more control over the individual parameter of the agents, then smaller
groups of agents can be created with specific personality attributes. For example, if the user wants
a population of 40 agents, where 50% are leaders with maximum pushing threshold and the other
50% are dependent agents with minimum pushing threshold, then the user should first create a seg-
ment of 20 agents, with 100% leadership and 100% maximum pushing threshold. Next, add another
segment of 20 agents with 0% leaders and 100% minimum pushing threshold.

Figure 4.4 shows the interface used to create the segments/population. As we can see, the
interface allows the user to specify the size of the segment and the percentages of each parameter
that will affect that group of agents. The user can create as many segments as desired.

Leadership. This specifies the percentage of agents in the crowd that tend to be leaders and
take decisions in terms of global navigation when they find themselves blocked due to a hazard or a
locked door. The rest of the individuals are considered dependent people, which means that in the
situation of not knowing where to go, they would rather follow others than explore the environment
by themselves.

FIGURE 4.4:  MACES + HiDAC interface (Pelechano 2006).

54  Virtual Crowds: Methods, Simulation, and Control

Trained. Among the leaders population, there will be a percentage that will have complete
knowledge about the internal connectivity of the building, and therefore, if the shortest path being
followed becomes invalid, they will immediately know an alternative solution. Basically, their inter-
nal mental map corresponds to the cell and portal graph representing the environment, while the
rest of the agents will only have a subgraph of it at any given time, which will expand as they explore
and communicate with other agents.

Communication. This can be set to true or false based on whether we want the agents to have
the ability to communicate or not during the simulation. Communication is the process that allows
agents to exchange relevant information about the environment, such as “there’s a fire in that room”
or “the door on the left leads nowhere” and so forth.

Panic. Initial percentage of people who will tend to panic when an alarm goes off or when
they see a hazard.

Panic Propagation. Percentage of people who although they will not start to exhibit panic
behavior when the alarm goes off, may change to panic mode after seeing others panic for some
amount of time or by having many individuals around them pushing for a certain period. This is a
very interesting feature that allows our system to exhibit emergent panic propagation that will affect
bottlenecks and flow rates through portals.

Impatience. Overall percentage of people who when observing a bottleneck in their next portal
may reconsider their selection and interactively change their path if they know an alternative short
route.

Falling. To represent the fact that some individuals are more likely to fall when they find
themselves in a high-density crowd (elderly, disabled, weaker people, etc.), we allow the user to
represent this factor by setting a percentage of people that are likely to have equilibrium problems.
For example, in the case where the user needs to simulate an evacuation from a building with 80%
of elderly individuals, this variable can be used to represent the likelihood of some of those people
having difficulties in maintaining their equilibrium when being pushed by others.

Pushing thresholds. Pushing thresholds identify the distance that agents are willing to main
tain to other agents of the crowd, i.e., the “contact distance” between individuals. It can be set to very
small (0), average (1), or large (2). When an agent falls inside that distance, it will provoke a repul-
sion force that pushes it away from the other agent. Pushing behaviors can vary in a crowd, where
some individuals are more likely to try to open their way through a high-density crowd even if it is
at the cost of pushing others.

Right Preference. When people walk in a crowd, they tend to apply social rules that usually
match driving rules. In many countries, people drive on the right, and therefore, when they are
walking and another person is moving in the opposite direction, social rules will make each human

Framework (HiDAC + MACES + CAROSA)  55

try to avoid the other by slightly diverting their paths toward their right-hand side. This parameter
is used to set the percentage of people that will exhibit right preference.

Avoidance. Avoidance factor is linked to collision avoidance behavior. Collision avoidance
deals with applying forces that alter the agent’s trajectory to smoothly avoid static and dynamic
obstacles. The avoidance factor gives the strength of those forces, which requires agents to do more
or less abrupt direction changes. The result affects mainly the width of any line/queue that arises
during normal conditions. We establish three values (weak, medium, and strong) and the percentage
of each of them among the population.

• • • •

57

HiDAC: Local Motion

Local agent motion is based on a combination of geometric information and psychological rules
with a forces model to enable a wide variety of behaviors resembling those of real people. HiDAC
uses psychological attributes (panic, impatience) and geometric rules (distance, areas of influence,
relative angles) to eliminate unrealistic artifacts and allow new behaviors:

preventing agents from appearing to vibrate
creating natural bidirectional flow rates
queuing and other organized behavior
pushing through a crowd
agents falling and becoming obstacles
propagating panic
exhibiting impatience
reacting in real time to changes in the environment

These emergent behaviors are driven by the parameters given in Table 3.1.

5.1	 INTRODUCTION
In terms of defining the motion of each agent, we classified three main approaches: social forces
systems, rule-based models, and cellular automata models. None of these models, however, can re-
alistically animate high-density crowds. HiDAC focuses on the problem of simulating high-density
crowds of autonomous agents moving in a natural manner in dynamically changing virtual environ-
ments. In this section, we will explain how psychological and geometric rules are layered on top of
the basic social forces model to improve high-density crowd movement and add realism. Since ap-
plying the same rules with the same parameters to all agents leads to homogeneous behavior, agents
are given different psychological (e.g., impatience, panic) and physiological (e.g., speed) traits that
trigger heterogeneous behaviors based on crowd density and personality.

Each agent is endowed with perception and reaction to static and dynamic objects and agents
within the current room. Common perception approaches in the literature are based on casting a set

•
•
•
•
•
•
•
•

chapter 5

58  Virtual Crowds: Methods, Simulation, and Control

of rays to calculate intersections. We introduce a simpler approach to perceive the environment and
make decisions while still achieving highly realistic results.

Realistic movement is achieved both in terms of collision avoidance and collision response.
Over longer distances, tangential forces gently steer the agent around obstacles, while over shorter
distances, repulsion forces are applied to enable collision response. Pushing behavior is achieved by
varying the long/short pushing threshold of each individual. Agents in a hurry (moving fast) and
with small pushing thresholds will not respect others’ personal space and will appear to push their
way through the crowd. In contrast, agents with large pushing thresholds (more “polite”) will respect
lines and wait for others to move first.

Each agent scans an ellipse-shaped region in front of them. Relaxed agents temporarily stop
when another agent moves into their path, while impatient agents do not respond to this feedback
and tend to “push.” Our model stops impatient agents from appearing to “vibrate” as they try to
force their way through dense crowds, as we add temporal braking forces to the social force model.
These forces only apply when repulsion forces fall within a specified range of angles opposing for-
ward motion. The angles are set based on agent personality and crowd density.

5.2	 AGENTS’ SPEEDS AND DENSITIES
This section descries the quantitative factors that can be utilized to estimate the pedestrian move-
ment accurately.

There is a large amount of data in the civil engineering and fire evacuation literature to cal-
culate the movement component of total evacuation time. To simulate real pedestrians’ movement,
there are several moving parameters to consider such as

speed: rate of travel along a corridor, ramp, and stairwells;
flow: number of persons passing a particular segment of the egress system per unit of time;
specific flow: flow per unit width of the egress component (persons/second per meter of

doorway width).

•
•
•

TABLE 5.1:  Velocity factors (SFPE 2003)

Egress component K (m/s)

Corridor, doorway 1.40

Stair, riser = 190 mm 1.00

Stair, riser = 272 mm 1.08

Stair, riser = 165 mm 1.19

Hidac: local motion  59

Most of this information on the movement of people, including disabled individuals, has been
collected through fire drills, in stairs and corridors, and through doorways. To accurately simulate
human behavior, we employed the data available in the 2002 Society of Fire Protection Engineers
document, “The SFPE Engineering Guide to Human Behavior in Fire” (SFPE 2003).

Speed is a function of the density of the occupant flow, type of egress component, and mo-
bility capabilities of the individual. Let pers/m2 be the number of people per square meter. For a
density greater than 0.55 pers/m2,

	 v = k − akD ,	 (5.1)

TABLE 5.2:  Mean velocities

Impairment Level walkway
(m/s)

Stairwells:
down (m/s)

Stairwells: up
(m/s)

Electric wheelchair 0.89

Manual wheelchair 0.69

Crutches 0.94 0.22 0.22

Walking stick 0.81 0.32 0.34

No disability 1.24 0.70 0.70

TABLE 5.3:  Fruin levels of service

Fruin level
of service

Density
(pers/m2)

Space
(m2/pers)

Flow rate
(pers/m/s)

Average
speed (m/s)

A <0.31 >3.22 <0.38 1.3

B 0.43–0.31 2.32–3.24 0.38–0.55 1.25

C 0.72–0.43 1.39–2.32 0.55–0.82 1.15

D 1.08–0.72 0.93–1.39 0.82–1.10 1.00

E 2.17–1.08 0.46–0.93 1.10–1.37 0.7

F >2.17 <0.46 >1.37

60  Virtual Crowds: Methods, Simulation, and Control

and for densities less than 0.55 pers/m2, there are not enough people around an individual to impede
its walking speed, therefore maximum walking velocities are defined by

 	 v = 0.85 · k ,	 (5.2)

where v is speed (m/s), a is constant (0.266 m2/pers), k is velocity factor, as described in Table 5.1,
and D is density of occupant flow (pers/m2).

TABLE 5.4:  Summary of walking speeds according to several studies as cited in
Thompson and Marchant (1995)

Study Walking speed (m/s)

Old people Walking speed

Slow Normal Fast Slow Normal Fast

Men Blanke and
Hageman

1.38 1.32

Himann et al. 1.21 1.47

Women Finley et al. 0.7 0.84

Blanke and
Hageman

0.32 1.59

Ferrandez et al. 0.82 1.08

Himann et al. 0.89 1.14

Leiper and Craik 0.96 1.15

Obrien et al. 0.74 0.97

Both Cunningham et al. 1.05 1.33 1.6 1.08 1.39 1.72

Elble et al. 0.94 1.39 1.18 1.67

Waters et al. 0.81 1.22 1.5 0.71 1.32 1.76

Judge et al. 1.06 1.43

Hidac: local motion  61

At lower densities, individuals can move freely in the environment, being able to reach their
desired maximum speed, and at higher densities, velocity will be reduced. Mean velocities for im-
paired individuals and people without disabilities given by Shields et al. (1996) are presented in
Table 5.2.

It is also important to stress the importance of density when simulating high-density crowds.
Real measurements show that crowds can maintain fluid movement even at densities of 7 pers/m2

(Berrow et al. 2005) or in some extreme situations, real densities observed have reached up to 13.5
pers/m2 as reported by Tsuji (2003). Reduction in walking speed is already noticeable for densities
above 2 pers/m2 and congestion appears for densities of 4 pers/m2.

Fruin (1971) introduced a concept of level of service where flow rate is expressed as a function
of density. According to Fruin, a pedestrian area occupied ranges from about 0.5 to 2.3 m2/pers on
walkways and from 0.4 to 0.9 m2/pers on stairways. The corresponding flows range from 0.38 to
1.37, as indicated in Table 5.3.

In our system, agents are given an initial maximum speed following a normal distribution
with mean = 1.24 (standard deviation = 0.2) for rooms and mean = 0.7 (standard deviation = 0.2)
for stairwells. The maximum speed can be increased though when an agent is in panic, where a
running speed will apply (normal distribution with mean = 1.7 m/s and standard deviation = 0.2)
(Table 5.4). As the density increases, individuals will reduce their speed because of interaction and
repulsion forces with other agents and obstacles in the environment. Individuals can also fall as a

TABLE 5.5:  Maximum and ultimate flow rates as cited in Thompson and Marchant (1995)

Source Maximum design
flow (pers/m/s)

Ultimate flow
capacity (pers/m/s)

Fruin 1.37

Predtechenskii and Milinskii 1.83

Daly 1.43

SPFE handbook 1.3

Handkin & Wright 1.48 1.92

Polus et al. 1.25 1.58

Ando et al. 1.8

62  Virtual Crowds: Methods, Simulation, and Control

consequence of the pushing behavior in high-density crowds and later stand up again to continue
with their movement when the area around them clears. Fruin’s levels of service have been used as
a reference to calibrate our system in order to achieve realistic flow rates through doors (up to 1.9
pers/m/s; Table 5.5) and realistic densities, although higher densities than the ones described by
Fruin have been allowed for panic situations as indicated in the literature (TRB 1994; Berrow et al.
2005).

5.2.1	W alking Speeds and Densities When Walking Downstairs
Figure 5.1 shows the relationship between speed and density, and Figure 5.2 shows the relation-
ship between flow and densities both for downstairs movement. This information has been used to
calibrate the agents’ movement when walking downstairs.

5.3	 PERCEPTION
Autonomous agents need to perceive the environment to avoid static and dynamic obstacles while
walking between two attractors. HiDAC provides efficient perception by using the cell and portal
graph. As the agents walk around the environment, the lists of dynamic objects within each room
are rapidly updated. Therefore, an agent can obtain the necessary data by queries to the cell.

For each obstacle, we need to calculate its distance and, if it is close enough to the agent,
the angle between the agents’ desired direction and the line joining the center of the agent and the

FIGURE 5.1: Relationship between speed and density when walking downstairs during evacuation
(SFPE 2003) Reproduced with permission from the SFPE Engineering Guide to Human Behavior in
Fire. Copyright 2003, Society of Fire Protection Engineers.

Hidac: local motion  63

obstacle. The distance and the angle provide enough information to establish how relevant that ob-
stacle is to the trajectory. While the agent looks for possible obstacles, it also updates its perceived
density of the crowd ahead, which will be important in the decision-making process.

Humans can perceive a binocular field of view (FOV) from 120° to 180°, the latter being the
most common. We can simulate human perception by having the virtual agents only be aware of
those objects falling within a specified angle from their direction of movement (assuming the head
is oriented in the same direction). Currently, our system is set to detect objects falling in a FOV of
180° (90° right and left of the direction of movement). This is calculated from the dot product be-
tween the direction of movement vector and the vector joining the current position with each object
in the room. Since the dot product gives us the cosine of the angle between the two vectors, if that
value is bigger than 0, it means the object falls within the agent’s FOV.

Objects within the FOV are perceived but only objects falling within a rectangle area ahead
are relevant in terms of obstacle avoidance. Figure 5.3 shows an agent (A) perceiving several ob-
stacles simultaneously. In reality, we do not give obstacles avoidance preferences based on distance,
but on how much they affect the desired trajectory. In Figure 5.3, we can observe that although the
wall and the column are closer to the agent, our algorithm also factors in angles, which makes the
agent (B) ahead the most important obstacle at this moment.

Since our algorithm only needs distances and angles, it is faster than casting rays for intersec-
tion with every obstacle, since our method has cost O(N ), where N is the number of obstacles in the
room, while ray casting has cost O(R•N ), where R is the number of rays cast and N the number of

FIGURE 5.2: Relationship between flow and density walking downstairs (SFPE 2003) Reproduced
with permission from the SFPE Engineering Guide to Human Behavior in Fire. Copyright 2003, So-
ciety of Fire Protection Engineers.

64  Virtual Crowds: Methods, Simulation, and Control

obstacles. The visual results achieved for our crowd simulation prove our method to be sufficient for
an agent’s environment perception used to make decisions regarding its motion.

5.4	 CROSSING PORTALS
In our model, the desired velocity direction within each room is given by an attractor point that is
located close to the next portal the agent needs to cross (Figure 5.4). This behavior orients the agent
so that its velocity is radially aligned toward the target (attraction point). In the absence of obstacles
or other agents, every agent will flow along the evacuation direction field (passing through the por-
tals unobstructed). Floor is treated as a continuum, not as a discrete regular grid.

Collision detection is performed only with the people within the same room, except when
people are crossing a portal. In this situation, care must be taken to avoid intersection between
agents leaving and agents entering the room. Our approach to this problem consists of keeping
track of the people currently crossing a portal. When an agent is near a door, collision detection is
performed not only with the other agents in the room but also with those currently crossing the
doorway (geometrically located close to the attractors at both sides of the door).

Figure 5.5 shows the different states in which an agent can appear while crossing a door and
the transition between states. To walk from cell N to cell N + 1, an agent will have A as its first
attractor point. When the agent’s position is within half a meter from A, then the high-level algo-
rithm will set B as the next attractor. In this state, the agent will be inserted in the list of current

FIGURE 5.3: Perception for the yellow agent (Pelechano et al. 2007) C 2007 ACM, Inc. Reprinted by
permission.

Hidac: local motion  65

FIGURE 5.4: Agents steered by attraction points.

FIGURE 5.5: Crossing portals states.

66  Virtual Crowds: Methods, Simulation, and Control

agents crossing the portal. When the agent gets close to attractor B, the high-level algorithm will
decide the next door based on the agent’s knowledge about the environment and the desired goal.
In the figure, the next attractor will be A ′. The agent will stay in the list of agents currently crossing
until it moves half a meter away from B, and therefore, there will be no risk of intersection with
agents crossing the portal.

In Figure 5.5, we can appreciate how the agents’ state changes as they walk through the door.
The colored dots above each agent represent the state as indicated in Figure 5.6.

5.5	 THE HiDAC MODEL
HiDAC is a parameterized social forces model that depends on psychological and geometric rules.
Its high-level module determines which attractor point (waypoint or portal) an agent walks to
within a room (Pelechano and Badler 2006). Collision avoidance, detection, and response are per-
formed only with the people in the same room and with static elements of that room (walls and
obstacles). When people are crossing portals, care must be taken to avoid intersection between
agents leaving and agents entering. HiDAC keeps track of the people currently crossing a portal, so
that when an agent is near a door, collision detection is performed against agents in the room and
agents crossing the doorway.

Collision detection and response must be performed with those agents that are overlapping
the agent from any direction. In contrast, collision avoidance is only performed against individuals
that appear in the desired direction of movement and therefore are relevant to an agent’s future
position.

FIGURE 5.6: Agents crossing a portal.

Hidac: local motion  67

The movement of agent i (Fi
To) depends on the desired attractor (Fi

At), while avoiding walls w
(Fwi

Wa), obstacles k (Fki
Ob), and other agents j (Fji

Ot) and trying to keep its previous direction of move-
ment to avoid abrupt changes in its trajectory (Fi

To [n - 1]). All these forces are summed together
with different weights wi that are the result of psychological and/or geometric rules and determine
the importance of each force on the final desired direction of movement:

 	
FTo

i [n] = FTo
i [n − 1] + F At

i [n]w At
i +å

w
FWa

wi [n]wWa
i +å

k
FOb

ki [n]wOb
i + å

j(�=i)
FOt

ji [n]wOt
i

	
(5.3)

The force vector is therefore:

 	

fTo
i =

FTo
i

|FTo
i |

	

(5.4)

Finally, the new desired position pi [n + 1] for agent i is calculated as:

 	
pi[n + 1] = pi[n] + ai[n]vi[n]

�
(1 − bi[n]) f To

i [n] + bi[n]FFa
i [n]

�
T + ri[n],

	
(5.5)

where: vi[n] is the magnitude of the velocity in the simulation step n. The velocity at each time step
is calculated as:

	
vi[n] =

�
vi[n] = vi[n − 1] + aT ifvi[n] < vmax

i

vmax
i otherwise

,

where a is a constant that represents the acceleration of the agent when it starts walking until it
reaches vi

max : the agent’s maximum walking velocity. It can be set to depend on agent capability
(normal, handicapped) and modified dynamically if the agent enters panic mode or is injured. ri
is the result of the repulsion forces that affect the agent when it overlaps with a wall, obstacle, or
another agent; these will be introduced in Section 5.5.2. a represents whether the agent will move
in this step in its desired direction of movement or instead be pushed by a repulsion force.

ai =

�
0 if |ri| > 0 ∨ StoppingRule ∨ WaitingRule
1 otherwise

The StoppingRule and WaitingRule are used to avoid shaking behavior and allow for line forma-
tion, respectively. These rules will be explained in Sections 5.5.3 and 5.5.4 . bi is used to give priority
to avoiding fallen agents on the floor:

	
bi =

�
0.5 if distance to fallen agent < 2 m
0 otherwise

68  Virtual Crowds: Methods, Simulation, and Control

Fi
Fa is the avoidance force to avoid fallen agents and will be explained in detail in Section 5.5.6 . T

is the increment in time between simulation steps.

5.5.1	 Avoidance Forces
Autonomous agents need to perceive the environment to avoid static and dynamic obstacles while
walking to a attractor. HiDAC provides efficient perception through a cell and portal graph. Each
cell corresponds to a room, and contains information about all the static objects within it. As the
agents traverse the environment, the lists of dynamic objects within each room are rapidly updated;
thus, an agent can obtain obstacle data by querying the cell.

For each obstacle, wall, and agent, we need to calculate its distance to agent i and if it is
close enough, then we calculate the angle between agent i ’s desired direction and the line joining
the center of agent i and the obstacle. This information is used to determine whether it falls within
the rectangle of influence (Figure 5.7). The distance and the angle provide enough information to
establish how relevant that obstacle is to the trajectory. As they navigate the environment, agents
also update their perceived density of the crowd ahead, which will be necessary to their decision-
making process.
Wall and Obstacle Avoidance. Avoidance forces are calculated only for relevant obstacles, walls, and
agents: those falling within the rectangle of influence.

The avoidance force for obstacle k is:

 	

FOb
ki =

(dki × vi) × dki

|(dki × vi) × dki|
	

(5.6)

FIGURE 5.7: Perception for the yellow agent i (Pelechano et al. 2007) C 2007 ACM, Inc. Reprinted
by permission.

Hidac: local motion  69

The avoidance force for wall w is:

 	

FWa
wi =

(nw × vi) × nw

|(nw × vi) × nw|
	

(5.7)

Other Agent Avoidance: Overtaking and Bidirectional Flow. To exhibit realistic counterflows and over-
taking behaviors, we include rules that modify some parameters of the forces model. This approach
allows us to simulate human behavior by setting parameters related to real human movement. The
parameters that affect the tangential forces for obstacle avoidance are:

distance to obstacles
direction of other agents relative to agent i ’s desired velocity vector (vi).
density of the crowd

If an agent appears in the rectangle of influence, then tangential forces (described below) will
be applied to slightly modify the direction of movement and make a curve in the trajectory to avoid
collision.

The angle between two agents’ velocity vectors determines whether their movements are con-
fluent or opposed. This angle is also used to simulate human decision making of how to react to an
imminent collision. For example, if we are walking on the left side of a corridor and another person
walks toward us on our right, none of us would change direction, but if we are both walking in the
middle of the corridor, the majority of people have a tendency to move toward their right side. There-
fore, when the velocity vectors are almost collinear, the tangential forces will point to the right.

Suppose an agent i detects agent j and agent l as possible obstacles (Figure 5.8). We calculate
the distance vector toward agent i for each of them (dji and dli). Agent j is farther away than l, but
since it is moving against agent i, the perception algorithm establishes this obstacle as having higher
priority. We select an agent to be avoided if it falls within the influence rectangle, unless that agent
is walking in the opposite direction and with distance smaller than Di − 1.5, where Di is the length
of the rectangle.

The tangential force (tj ) that will steer agent i to avoid j is:

 	
tj =

�
dji × vi

� × dji���dji × vi
� × dji

��
	

(5.8)

Next, the normalized tangential vector is multiplied by two scalar weights to obtain the final
avoidance force

 	
FOt

ji = tj wd
i wo

i 	
(5.9)

•
•
•

70  Virtual Crowds: Methods, Simulation, and Control

where wi
d is the weight due to the distance between agents and increases as the distance between the

two agents becomes smaller. Thus the agent i trajectory will change more abruptly as the distance
to agent j decreases:

 	
wd

i =
�
dji − Di

�2

	
(5.10)

and wi
d is the weight due to the difference in orientation of the velocity vectors. It distinguishes

whether the perceived agent is moving in the same direction as agent i or against it, and thus the
magnitude will be higher to avoid counter-flow.

FIGURE 5.8: Collision avoidance rectangle of influence for agent i (Pelechano et al. 2007) C 2007
ACM, Inc. Reprinted by permission.

FIGURE 5.9: Bidirectional flows. People with blonde hair walk toward the left, while dark-haired
people walk toward the right. (a) Low-density flows, (b) high-density without altering the viewing rect-
angle and right preference, (c) high-density with HiDAC (Pelechano et al. 2007) C 2007 ACM, Inc.
Reprinted by permission.

Hidac: local motion  71

 	

wo
i =

�
1.2 if

�
vi · vj

�
> 0

2.4 otherwise
	

(5.11)

The last parameter to consider is the crowd density, which each agent perceives at any given
time. If the crowd is very dispersed, then people look for avoidance from far away and keep their
preference for the right-hand side of the space (Di = 3 m), but when the crowd is very dense, then
the right preference is not so obvious and several bidirectional flows can emerge (Di = 1.5m). Modi-
fying the length of the collision avoidance rectangle and reducing the angle for right preference
based on perceived density achieves this behavior.

Figure 5.9 shows different bidirectional flow rate formation for low and high densities. Fig-
ure 5.9b shows the result if the length of viewing rectangle and right preference parameters are not
affected by density. The emergent behavior shows an unrealistic “triangle” of people moving in op-
posite directions, and awhile later in the simulation, two perfectly formed groups of people appear
to move in opposite directions, which is less common in real high-density crowds.

HiDAC produces an interesting emergent counterflow behavior for high-density crowds
(Figure 5.9c): the formation of lanes of people moving in the same direction intermingled among
lanes moving in the opposite direction. This is a behavior that is often observed in real crowds, and
it emerges here although it is not explicitly implemented.

Overtaking behavior emerges when a faster agent is walking behind a slower agent and there
is no immediate oncoming traffic. Figure 5.10 gives an example of this behavior. Agent A (marked

FIGURE 5.10: Example of overtaking animation.

72  Virtual Crowds: Methods, Simulation, and Control

with a red circle) is moving faster than the agent right in front of him. For the first five screenshots
of the animation, since there is oncoming traffic within A ’s rectangle of influence, those oncoming
agents have avoidance preference over the ones walking in the same direction. After all the oncom-
ing traffic has walked by, the slow agent right in front of A will get preference when setting the
avoidance forces and consequently A will initiate the overtaking maneuver.

5.5.2	 Repulsion Forces
When an agent’s position overlaps with any static or dynamic obstacle, wall, or agent, then a colli-
sion response force applies. The repulsion force ri from Equation (5.5) is calculated as:

	
ri[n] =å

w
FR Wa

wi [n] +å
k

FR Ob
ki [n] + l å

j(�=i)
FR Ot

ji [n],
	

(5.12)

where F wi
R_Wa is the repulsion force from wall w, F ki

R_Ob is the repulsion force from obstacle k, and
F  ji

R_Ot is the repulsion force from another agent j:

	
FR Wa

wi [n] =
nw (ri + ei − dwi[n])

dwi[n] 	
(5.13)

	 FR Ob
ki [n] =

�
pi[n] − pk[n]

�
(ri + ei + rk − dki[n])
dki[n]

	 (5.14)

	
FR Ot

ji [n] =

�
pi[n] − pj[n]

��
ri + ei + rj − dji[n]

�

dji[n]
,	

(5.15)

where pi is the position of agent i, pj is the position of agent j, and pk is the position of obstacle k.
Radii rk, ri, and rj belong to obstacle k and agents i and j, respectively. Similarly, dji and dki are the
distances between the centers of agent i and j and the centers of agent i and obstacle k; dwi is the
shortest distance from the center of agent i to the wall w.

The parameter l in Equation (5.12) is used to set priorities between agents (that can be
pushed) and walls or obstacles (that cannot be pushed). If there is repulsion from walls or obstacles,
then l is set to 0.3 to give preference to avoiding intersection with walls or obstacles over agents
that can be pushed away.

Finally, ei and ej are small personal space thresholds that the agents have and are used for the
purpose of assigning different pushing abilities based on personality (discussed in Section 5.3).

Hidac: local motion  73

5.5.3	 Solution to “Shaking” Problem in High Densities
When an agent encounters a bottleneck in a high-density crowd, applying a basic forces model
leads to an unnatural behavior where agents appear to vibrate continuously. This behavior must be
avoided. (We have verified that this phenomenon is not based on our physics simulation implemen-
tation or its step size.) In HiDAC, we incorporate “stopping rules.” These rules are applied based
on the personality of the agent, direction of movement of other agents, and current situation (panic
or normal).

When repulsion forces from other agents appear against the agent’s desired direction of
movement, and the agent is not in panic state, then the stopping rule applies:

If ((vj ⋅ Fi
R_Ot [n]) < 0) ∧ (¬panic), then StoppingRule = TRUE.

To avoid deadlocks, a timer is set to a random value within a small range, and when the timer
reaches 0, the agent will set StoppingRule = FALSE, so that in the next simulation step, the agent
will try to move again.

When StoppingRule is TRUE, the parameter ai in Equation (5.53) is set to 0, which implies
that the agent will only change position if it is pushed by other agents; otherwise, it will inhibit the
intention to move for several simulation steps. This effect drastically reduces the shaking behavior
observed in the social forces model without increasing the computational time of the algorithm.

Only forces directed backward are relevant (Figure 5.11). If the forces appear to be toward
our desired movement, we cannot decrease their intensity by not moving forward, and therefore no
reaction is necessary.

This method succeeds in reducing shaking behavior, while still allowing body contact and
thus pushing behavior. Since stopping rules do not apply when the agent is being pushed forward,
this achieves the desired emergent result of people appearing to be pushed through doorways when
there is a high-density crowd behind them.

FIGURE 5.11: Example of repulsion forces that are necessary to apply braking forces (Pelechano et al.
2007) C 2007 ACM, Inc. Reprinted by permission.

74  Virtual Crowds: Methods, Simulation, and Control

5.5.4	O rganized Behavior: Queuing
In a “normal” (non-panic) situation, people will respect lines and wait for others to walk first. Such
organized behavior emerges by adding influence disks ahead of each agent that drive the temporal
waiting behavior; they work similar to the stopping rules. Figure 5.12 shows the area that triggers
waiting behaviors in a non-panicked agent i in a high-density crowd when another agent j, walking
in the same direction, falls within the disk: agent i sets WaitingRule = TRUE and a timer starts.
Agent i moves again when its area of influence does not satisfy the conditions for waiting, or when
the timer reaches the value 0 to avoid deadlocks. The radius of the influence disk depends on
personality (different people tend to respect different distances) and type of behavior desired, e.g.,
panicking agents will not respect these distances.

For simulations of “normal” situations (e.g., individuals leaving a cinema after a movie), all
the agents exhibit waiting behavior when there is no available space ahead of them. The emergent
behavior observed corresponds to queuing. Since agents use tangential forces to move within a
crowd while avoiding others, the strength of those tangential forces will lead to narrow or wide
queues, as can be observed in Figure 5.13. The user can specify those tangential forces to be mini-
mum, medium, or maximum.

5.5.5	 Pushing Behavior
Pushing behavior emerges because HiDAC can handle not only collision avoidance but also col-
lision detection and response. Agents have different behaviors that can be triggered at any time.
During an organized situation, individuals wait for space available before moving, but when in
panic, they try to move until they collide with other individuals who impede forward progress. By
combining both behaviors simultaneously for a heterogeneous crowd, we observe an emergent be-
havior where some individuals that do not respect personal space will get very close to other agents
and push them away to open a path through a dense crowd. The effect of being pushed away is
achieved by applying collision response forces and different personal space thresholds [ei and ej from
the repulsion equations (5.13)–(5.15)].

FIGURE 5.12: Area of influence for waiting behaviors (Pelechano et al. 2007) C 2007 ACM, Inc. Re-
printed by permission.

Hidac: local motion  75

An agent suffers a repulsion force from another agent when its personal space is overlapped.
Figure 5.14 shows a sequence of simulation steps, where a smaller personal space threshold ei allows
agent i to get closer to agent j who has a larger personal space threshold ej . Thus agent i can push
away agent j while agent i is not being pushed and can continue with its desired trajectory.

Figure 5.15 shows an example where the top left room has been filled with panicked people
(represented by redheads) who will tend to push others away, while the other three rooms contain
individuals following more organized behaviors. After a few seconds of simulation, the redheaded
people have managed to almost empty their room by pushing others away in the corridor to reach
the exit faster. Individuals in the other rooms are calmly waiting for their turn to get through the
door.

5.5.6	 Falling and Becoming Obstacles
A benefit to a physical social force model is that one might use it to gauge potential injury arising
from high-density situations. When the majority of pushing forces affecting one individual are

FIGURE 5.13: Examples of thin and wide queues emerging when animating a “normal” scenario.

FIGURE 5.14: Pushing forces (Pelechano et al. 2007) C 2007 ACM, Inc. Reprinted by permission.

76  Virtual Crowds: Methods, Simulation, and Control

approximately in the same direction, the agent will receive a sum of forces with magnitude high
enough to make it lose equilibrium. At this moment, the person may fall and become an obstacle
for the rest of the crowd.

Fallen agents represent a different type of obstacle because, unlike walls and columns, a body
on the floor is an obstacle that should be avoided, but if necessary (or unavoidable) can be stepped
over. In HiDAC, fallen individuals become a rectangular obstacle (a bounding box covering the
torso and head, but not the legs since other individuals can easily step over that part of the agent).
When other agents approach this new obstacle, weak tangential forces are applied to walk around
the fallen agent [in Equation (5.5)], but repulsive forces are not applied. Therefore, when the crowd

FIGURE 5.15: Redheaded people (starting in upper left room) exhibit panic behavior and push oth-
ers to open their way through the crowd (Pelechano et al. 2007) C 2007 ACM, Inc. Reprinted by per
mission.

FIGURE 5.16: Agents avoiding a fallen agent (Pelechano et al. 2007) C 2007 ACM, Inc. Reprinted by
permission.

Hidac: local motion  77

is extremely dense and the pushing forces from behind are strong, the result is that agents may walk
over the body on the floor, as has been observed in actual extreme situations. Figure 5.16 shows an
example of this behavior (where the crowd density is artificially low for visibility).

There are two possible types of avoidance forces. The first one corresponds to the case where
the agent is within a neighboring area of the rectangle bounding the fallen agent, and it is calculated
as tangential to the closest side of the rectangle. The second type corresponds to the case where the
agent is already stepping within the rectangle. In this case, avoidance forces are a combination of
tangential forces and the normal of the side that is closer to the agent. These two types of avoidance
forces can be observed in Figure 5.17, respectively. In the next two animation examples, we can
observe the avoidance behavior of the crowd depending on the density.

In the first example (Figure 5.18), the crowd is relatively dispersed so the avoidance forces
that the fallen agent exerts on the other agents are enough for them to modify their trajectory and
walk around it. In the figure, we have tracked the trajectory of one of the agents (marked with a red
circle) to see the final path followed around the fallen agent.

In the second example (Figure 5.19), we can observe a high-density crowd, where even
though the agents try to walk around the fallen individual, we see how some of them get pushed
and cannot avoid stepping on or walking over the fallen individual. We tracked the path of one of
the agents (marked with a red circle) to show how he gets pushed toward the fallen agent although
he is trying to move around it.

5.5.7	 Panic Propagation
HiDAC can simulate an emergency evacuation. When an alarm goes off, some agents will start in
the panic mode. While in panic, they tend to move faster, push, and exhibit agitated behavior. All
these behaviors depend on the agent personality and levels of panic. As the agents start running,
they may provoke panic in other agents whose behavior will be modified in turn. To propagate
panic, we use either communication between agents (managed by the high-level behavior module)

FIGURE 5.17: Avoidance forces around fallen agents.

78  Virtual Crowds: Methods, Simulation, and Control

or perception to detect relevant changes in low-level behaviors, such as increasing crowd densities
and number of people pushing or both.

As observed in the psychology literature, one of the most distinguishing features of people
under panic is the fact that they will try to do everything faster and thus speed up. This behavior is
easily exhibited by increasing the speed of those agents who tend to panic when an alarm goes off.
In our system, panic will not only change an agent’s speed, but will also affect some low-level behav
iors such as canceling out the waiting behavior and activating instead the pushing behavior while
reducing personal space thresholds. Smaller personal distance thresholds on an agent yield stronger
repulsion forces on the agents surrounding it. Therefore, the agent exhibiting panic behavior can
push others in order to open a path through the crowd.

An interesting effect to simulate is how panic can be spread among a crowd. Some individuals
who will normally not tend to panic during an emergency may exhibit more agitated behavior if
they find themselves within a panicking crowd with people pushing and creating a claustrophobic
effect by leaving little or no space to move in. This effect is also modeled in HiDAC. When an
alarm goes off, some agents will start in the panic behavior mode. In this mode, they tend to push

FIGURE 5.18: Agents avoiding fallen individuals.

FIGURE 5.19: Agents walking over fallen individuals.

Hidac: local motion  79

and exhibit agitated behavior, and some have the ability to avoid bottlenecks. All these behaviors
depend on the agent personality and levels of panic. As the agents start running, they may provoke
panic in other agents who will in turn modify their behavior. To propagate panic, we use either com-
munication between agents (managed by the high-level behavior module), or perception to detect
relevant changes in the scenario such as increasing crowd densities and number of people pushing
(both low-level behaviors).

In Figure 5.20, we can observe a sequence of images where the panic behavior gets gradually
propagated among the crowd. We visually represent people in panic by using redheads.

• • • •

FIGURE 5.20: Panic propagation sequence.

81

MACES: Wayfinding With
Communication and Roles

6.1	 INTRODUCTION
To have agents moving within a dynamic complex environment, we need to have a high-level al-
gorithm that will allow the agents to explore the environment and learn its features to perform the
right navigation. We call this MACES (Multi-Agent Communication for Evacuation Simulation).

Agents move within complex virtual environments with several rooms, corridors, obstacles,
stairwells, and doors that can be opened or closed at any time during the simulation (Figure 6.1).
To navigate this virtual environment, route selection is carried out through an interactive high-level

FIGURE 6.1:  Example of complex building (Pelechano et al. 2007) C 2007 ACM, Inc. Reprinted by
permission.

chapter 6

82  Virtual Crowds: Methods, Simulation, and Control

FIGURE 6.2:  High-level wayfinding diagram (Pelechano and Badler 2006) C 2006 IEEE.

wayfinding algorithm that dynamically calculates the global path based on the agent’s knowledge of
the environment (Pelechano and Badler 2006).

6.2	 NAVIGATION ALGORITHM
Once the environment has been defined and an algorithm automatically calculates the shortest paths
from each room to each exit, the building connectivity is stored in a cell and portal graph (CPG),
with each cell corresponding to a room and each edge representing a door that connects two rooms.
With the information contained in the CPG, the crowd simulation algorithm proceeds through
three main steps (Figure 6.2).

The first step is the communication process. All the agents within a room share their knowl-
edge about the environment (their mental maps containing information about blocked cells and
subgraphs that have been fully explored finding no exit). At every time step, we are computing a
high-level path over the CPG, which contains the information about the order in which the cells
should be visited to get to an exit, and it is thus an ordered sequence of cell identifiers and portals
connecting adjacent cells.

In the second step, each agent checks if the known shortest path has no known hazards, and
if so it will just follow that path while adding the next cell to its mental map.

MACES: Wayfinding With Communication and Roles  83

The third step occurs when there is some hazard in the shortest known path. In this situation,
depending on the type of agent, there are different behaviors. If it is a trained agent, then its mental
map contains the entire graph with all the portals, and therefore, it can just follow the next shortest
path known from its current cell. If it is an untrained agent, then it needs to explore the building
to find new routes toward the exit. This exploration will be done through depth first search (DFS).
Since initially the agent does not have the entire graph in its mental map, this DFS is implemented
in an iterative way, so that it will discover new rooms only when it sees a portal and crosses it. For
untrained agents, it could also be a “follower,” which means that if it does not know what to do and
as long as it can see another agent in the room, it will tend to follow the decisions taken by the other
person instead of doing a DFS of its own.

6.2.1	 Exploring the Building
When the known paths appear to be blocked, each agent needs to perform a graph search to find
its way toward an exit. At this stage, we assume that agents that are not trained know one path to
an exit, which is the one blocked, but have no additional information about any alternative path. In
this case, traditional global path planning techniques such as A * cannot be applied, since the agents
will not know what heuristic to use. The exploration method used in our work is based on a DFS
algorithm (Kwek 1997). At any given time, the mental map that an agent has in its internal memory
will be a connected subgraph of the CPG that represents the environment. As an agent walks to-
ward the exit, each cell visited will be added to its internal mental map (memory) and marked as
VISITED. Initially, the agent knows all the traversed edges (portals) and visited rooms (cells) but
ignores how many rooms the environment has and where each portal that has not been traversed
leads to. When the agent finds its desired path blocked, it then needs to search for an alternative
path. The agent will start exploring those rooms that appear as neither VISITED nor FINISHED.
FINISHED cells are those that have been visited and either there are no more portals leading to
other cells or all the adjacent cells have also been marked as FINISHED. If from the current room
all the adjacent rooms have been either VISITED or FINISHED, the agent will chose a visited one
randomly, since unlike FINISHED cells, visited cells can still lead to new paths. Figure 6.3 shows
very briefly an iteration of the algorithm.

The main difference between DFS in graphs and what our agents perform is that in graph
search, DFS is performed in a sequential manner going through all the cells. Our agents can benefit
from the communication process with other agents, which will allow them to prune their graph
search. When two or more agents meet within a room, they can exchange information about haz-
ards and parts of the building (subgraphs) that have been fully explored by others, where no exit was
found. The mental maps can be updated after visiting a room or after communication with other
agents.

84  Virtual Crowds: Methods, Simulation, and Control

To make the agents’ behavior closer to real humans, we need to keep some considerations in
mind. Consider the following examples.

People during a conversation are unable to give such detailed information in terms of room
connectivity about big subgraphs. Therefore, the information is limited to two levels of
adjacency from the current cell in the CPG representing the virtual environment. We can
think of it as, e.g., “the door on the left leads nowhere,” “the room on the right leads to
another office, where there is no exit either”).
People in panic tend to get disoriented. Therefore, when an agent is in panic, part or all of
its internal memory could be “forgotten.”
People in panic may also change their role from leader to follower. Therefore, an agent that
was performing a search, after being affected by the panic behavior, may start following
others instead of performing its own search.

When dealing with dynamic environments (e.g., portals that are locked or unlocked at differ-
ent times), agents may have explored the entire graph, but if no exit has been found yet, then they
will keep on searching hoping for a door to become unlocked.

•

•

•

FIGURE 6.3:  Exploration diagram.

MACES: Wayfinding With Communication and Roles  85

We ran simulation experiments to investigate emergent properties of MACES:

Comparison of trained leaders vs. untrained leaders
Importance of leadership
Psychology affecting roles and navigation
Interactively modifying navigation based on impatience and changes in the environment.

A random search has been implemented exclusively for benchmarking purposes, since it is
not the most realistic behavior for humans. In Section 6.2, we will appreciate the significant impact
that communication has in the behavior of the crowd when executing wayfinding. Finally, we will
show the impact of having trained agents in the crowd, and we will analyze the percentage of leaders
that is actually useful to speed up the evacuation process.

For the experiments, we use three different buildings, all of them mazelike. Two of them have
been randomly generated, and the third has been created by hand to produce a maze that better
resembles a real building. The three mazes contain 100 rooms, 8 of them blocked by some hazard
such as a stationary fire. For each set of parameters, we have run 25 randomly generated starting
configurations for the crowds.

The populations (N ) used for these tests range from 20 to 200 agents. The levels of leader-
ship range from 0% to 100%. No leaders means they are all followers, and therefore, when several
agents meet in a cell, one random agent makes a decision and the others will just follow. This case
implies dependent agents: when they find themselves in a panic situation, they will always follow
other agents instead of making their own decision. On the other hand, 100% leadership means each
of them will perform its own decision-making process with its current knowledge, which in the case
of trained people should be complete knowledge of the building’s internal structure.

6.2.2	 Communication Affecting Evacuation Times
As expected in real life, people will be able to reach their destination faster if they are able to com-
municate relevant information with other people in the crowd. Thus, we expect our autonomous
virtual agents to also find evacuation routes faster when communication is being simulated.

In Figure 6.4, we can appreciate the different performance of the algorithm with and with-
out communication for 200 agents. We are interested in finding the simulation step at which the
simulation converges to 100%, meaning that the entire crowd has evacuated the building. As Figure
6.4 shows, the simulation with communication converges to 100% in almost half of the time that it
takes the noncommunication case to converge.

Figure 6.5 shows the results obtained for different crowd sizes where all the agents rep-
resent independent individuals (they will make their own decision during wayfinding instead of
following others). In this simulation, we are not yet considering trained agents, therefore, all the

•
•
•
•

86  Virtual Crowds: Methods, Simulation, and Control

FIGURE 6.4:  Communication vs. noncommunication (Pelechano and Badler 2006) C 2006 IEEE.

FIGURE 6.5:  Evacuation time for different crowd sizes using communication: 100% untrained leaders
(Pelechano and Badler 2006) C 2006 IEEE.

MACES: Wayfinding With Communication and Roles  87

individuals in the crowd are unfamiliar with the internal structure of the building and will find
out how to evacuate the building based on their own exploration of the building and their shared
communication. The plot shows the evacuation times for crowds of size 20, 60, 100, 150, and 200
agents.

As we can see, the evacuation time decreases as the crowd size increases. This can be ex-
plained by the fact that for larger crowds, the probability of meeting another agent increases, and
therefore, the important information about hazards in the building and explored areas spreads faster
among the individuals. This information helps agents to prune their graph search and therefore find
a successful path sooner.

It is important to notice though that this holds as long as the crowd is not so large that con-
gestion blocks the doors, which will obviously decrease the evacuation time. This problem can be
observed for crowds of over 500 agents, where the evacuation time is constrained by the number of
exits and the flow rate through each of the doors (Figure 6.6).

6.2.3	 Relevance of Having Trained Leaders vs. Untrained Leaders
Trained leaders are represented by agents that have complete knowledge of the environment,
and therefore, they can provide more reliable information to the rest of the agents in the crowd.
We would expect that the more trained leaders we had, the faster the evacuation would be. It
is important to notice that although we are using an evacuation scenario as an example, trained
leaders are important to consider during any type of crowd simulation. Trained leaders would
always represent those individuals that can help others to reach their destination faster and more
efficiently.

FIGURE 6.6:  Congestion at doors (Pelechano and Badler 2006) C 2006 IEEE.

88  Virtual Crowds: Methods, Simulation, and Control

As an example, we ran 25 simulations using a crowd size of 100 and 0%, 25%, 50%, 75%, and
100% of trained agents. Figure 6.7 shows the average evacuation times. Note that the percentage of
evacuated people converges to 100% faster as the percentage of trained people increases.

Not everyone needs to be trained, however. We can determine the adequate percentage of lead-
ers needed to have a fast evacuation. We have previously observed that there is not a big difference in
the convergence values between 50% and 100% leadership, which means that there is no need to have
a great proportion of leaders. Figure 6.8 shows that smaller percentages of leaders may be adequate.

Here we can conclude that an optimal percentage of trained people during the evacuation
might be only around 10%. For lower values, the evacuation time for the same percentage of evacuees
is at least doubled. On the other hand, having more than 10% trained people would only provide an
evacuation speedup of at most 16%.

6.2.4	 Importance of Leadership
We have shown the behavior of trained leaders against dependent agents with a “follow the leader”
behavior, but there is still another case to consider. In real life some people have a higher probability

FIGURE 6.7:  Evacuation time for 0%, 25%, 50%, 75%, and 100% leadership (Pelechano and Badler
2006) C 2006 IEEE.

MACES: Wayfinding With Communication and Roles  89

FIGURE 6.8:  Evacuation times for small percentages of trained leaders (Pelechano and Badler 2006)
C 2006 IEEE.

FIGURE 6.9:  Sequence of crowd evacuation with high percentage of leadership (Pelechano and Badler
2006) C 2006 IEEE.

90  Virtual Crowds: Methods, Simulation, and Control

of becoming leaders for a group of people when an emergency occurs. They are usually independent
individuals who by nature are able to handle emergency situations better and also tend to help oth-
ers. In MACES, these people correspond to untrained leaders.

We show two images of the evacuation process. The first one (Figure 6.9) corresponds to a
population with a high percentage of leaders, where most of the individuals in the crowd tend to
make their own decisions when attempting to exit the building. The second sequence (Figure 6.10)
corresponds to a population with a high percentage of dependent people, who will tend to follow
any leader instead of deciding routes by themselves.

In the first population, we can observe an emergent behavior with many small groups of
people. In the second population, the emergent behavior shows fewer but larger groups of individu-
als. When the number of dependent individuals is higher, the size of the groups formed tends to
increase, since dependent people will not leave a group to try to explore new paths on their own.
Instead, they tend to stay together and just go where the leader decides to go.

6.2.5	 Simulating Psychology Affecting Roles and Navigation
As described by the psychology literature, people under panic may reach the point where they are
unable to make their own decisions. Most people react to time pressure through an increase in the

FIGURE 6.10:  Sequence of crowd evacuation with low percentage of leadership (Pelechano and Badler
2006) C 2006 IEEE.

MACES: Wayfinding With Communication and Roles  91

speed of their actions, as well as by subjectively filtering information. In general, the evacuation of a
building due to imminent danger is accompanied by considerable physical and psychological stress.
Since rising stress levels have the effect of diminishing the full functioning of one’s senses, this leads
to a general reduction of awareness, especially the ability to orient oneself quickly in rooms and sur-
rounding areas (Waldau et al. 2003).

These behaviors need to be modeled in crowd simulation to improve the realism of its output.
In MACES + HiDAC, stress due to imminent danger is simulated through panic. People under
panic can change their role, going from leader to dependent individual. Therefore, as panic spreads,
more people will become dependent and the overall evacuation time will change since dependent
individuals do not contribute in terms of exploring and sharing information to speed up the way-
finding process of the group as a whole.

It is also necessary to influence the agents’ ability to orient themselves quickly within the vir-
tual environment. When individuals are under high levels of stress due to panic, their memory will
be affected. We alter the mental map of the environment by removing subgraphs of their internal
memory, and therefore these agents may exhibit disorientation by walking again through an area of
the building that they had already visited instead of moving toward unexplored areas.

In Figure 6.11 we can observe the high-level navigation performed by one agent under normal
(non-emergency) conditions. Initially, the agent only has knowledge about one short path to each of
the two exits in the environment. Initially, he tried to reach the north exit, but after finding that door
closed, he starts walking down the corridor toward the south exit. The agent has no knowledge about the
alternative route through the southwest room, so when a door on his known south path blocks him, he
will start to explore the environment as indicated by the white-dotted path. The agent will not walk
again into a room that has already been visited and where no exit or alternative doors were found.

From the psychology literature, we know that a person in panic is very likely to feel disori-
ented, which can be modeled through memory decay based on the level of panic associated with
the agent. We repeat the example above, but this time use an agent suffering from high levels of
panic. Figure 6.12 shows the resulting trajectory. At the beginning, the agent follows the same
trajectory as under normal conditions and tries to exit the building through the known shortest
exits. Once the agent finds those known paths blocked, the exploration stage is initiated. Since
this agent suffers from memory decay, he happens to walk several times in rooms that were pre-
viously explored, which makes the overall evacuation time longer and the path followed more
chaotic.

Figure 6.12 shows six snapshots at different times during a simulation. The path followed in
the period between each snapshot is shown with a white-dotted line. The path that goes from point
0 to 1 indicates the initial trajectory when the agent is following the known shortest paths and, after
finding them blocked, then starts exploring the building in a way similar to the example without

92  Virtual Crowds: Methods, Simulation, and Control

panic. From point 1 to point 2, the agent explores and ends up in the same doorway. From point 2
to point 3, we observe how the agent ends up back in the initial position after trying to explore a
few other rooms on its way. Finally, we can observe how the agent moves from point 3 to point 4
and finds its way out. The last image shows the entire path followed.

FIGURE 6.11:  Autonomous agent exploring a virtual environment under normal conditions.

MACES: Wayfinding With Communication and Roles  93

FIGURE 6.12:  Autonomous agent exploring a virtual environment in panic and therefore exhibiting
disorientation.

6.2.6	 Interactive Navigation and Impatient Agents Avoiding Bottlenecks
In any real-time animation of crowds, it is important to demonstrate autonomous agents showing
both reactive low-level behavior that affects their local motion based on dynamic obstacles or agents

94  Virtual Crowds: Methods, Simulation, and Control

and reactive high-level behavior based on real-time changes in the environment. These changes can
be instigated by environment modifications (such as a door being closed or a hazard such as fire
spreading) or congregations of agents generating bottlenecks. The autonomous agents in our system
can rapidly react to these changes by detecting them and modifying their high-level navigation to
plan an alternative route more applicable to the current situation.

When dealing with high-density crowds in buildings, bottlenecks can appear in the portals.
HiDAC incorporates a high-level decision process that will allow impatient agents to react to this
situation by finding an alternative path. As the low-level algorithm detects the bottleneck, it sends
that information to the high level, which will try to find an alternative route based on what the
agent can perceive from its current position (doors, obstacles) and the knowledge that the agent
has about the internal connectivity of the building. If an alternative path is available, the high level
chooses a new portal as the goal and sets an attractor point to change the direction of movement.
Only impatient agents will exhibit this type of behavior. The user can set the percentage of impa-
tient agents in the population through the parameter impatience from Table 3.1.

Changes due to congestion are driven by the impatience attribute and environment knowl-
edge. Agents will choose alternative routes depending on their personal impatience value, the cur-
rent congestion at the destination door, the distance left to reach that particular door, and the
known alternatives. Figure 6.13 gives three snapshots of an animation where impatient individuals
(represented by redheads) will perform a new high-level planning to choose an alternative route that
allows them to detour around the congested area.

When a change occurs in the environment (e.g., a door is blocked), agents perceive and react
to it. For a door change, the high-level algorithm needs to make a new wayfinding decision. This
decision is sent to the low-level motion by modifying the next attractor point toward which the
agent needs to walk. The agent detects this change in real time and, as the new attractor becomes
available, the agent needs to steer toward the new destination point.

FIGURE 6.13:  Results on interactive planning for impatient agents.

MACES: Wayfinding With Communication and Roles  95

FIGURE 6.14:  Crowd reaction to dynamic changes in the environment (Pelechano et al. 2007) C 2007
ACM, Inc. Reprinted by permission.

96  Virtual Crowds: Methods, Simulation, and Control

Figure 6.14 shows an animated sequence where dynamic wayfinding is exhibited. Figure
6.14a shows the initial configuration consisting of a simple building with one corridor leading to
the exit and four rooms connected to the main corridor. The bottom right room also has an exit
door. Initially suppose that the agents in each of the rooms know about the corridor exit. Only those
agents in the bottom right room can perceive there is another exit. When the simulation starts,
agents walk toward the corridor except those in the bottom right room who walk toward their
closest exit. Figure 6.14b shows the moment in which the exit in that room gets locked. Agents
in this room immediately start moving toward the corridor to get to the next available exit, Figure
6.14c. As the agents walk down the corridor, the second exit also gets locked (Figure 6.14d). At this
moment, the agents do not know how to get out of the building. The high-level module will have
to perform navigation to explore and learn about the environment, while setting new attractors to
animate the agents. For some time, individuals wander around the building looking through doors
trying to find a solution (assuming they did not previously know where the other rooms lead to).
Suddenly, the door in the bottom right corner is opened again (Figure 6.14e). Agents do not know
about this until they walk through the interior door and perceive it (Figure 6.14). Eventually, all
the agents manage to leave the building. This example shows the interaction between high and low
levels to achieve realistic simulations with dynamic changes in the environment geometry.

This interactive planning behavior will be exhibited by those agents that have the ability to
explore the environment — those with a leadership role or those with a dependent role who find
themselves isolated.

• • • •

97

CAROSA: Functional Crowds

7.1	 APPLICATIONS WITH ACTIONS
When creating a simulation with multiple humans such as an urban environment or office building,
many graphical, semantic, and functional elements must be created and brought together. Graphical
models of the environment, objects, and characters need to be created and annotated with informa-
tion that enables them to be reasoned about and interacted with. The behaviors of the characters
and environment need to be described in concert with the objective of the simulation. Animations,
whether motion captured, key-framed, scripted, or procedural, need to be created and linked to the
higher-level behaviors and ultimately back to the characteristics of the characters. Naturally, a simu-
lation framework is required to provide control for the characters and environment. This framework
focuses on adding actions to such simulations by linking human characteristics and high-level be-
haviors to graphical depictions.

There are numerous applications for human crowd simulations. Human factors engineering
and architectural visualizations could advantage these simulations to more efficiently design and lay
out spaces. Military simulations, virtual reality, gaming, and other entertainment enterprises might
better control nonplayer characters and more easily create realistic environments. Even the seem-
ingly standard application of simulated crowds, evacuation scenarios, could be improved by starting
the evacuees in normal starting positions instead of randomly distributing them in the environment.
Finally, as we are able to create simulations that take into account more high-level human charac-
teristics such as roles and individual differences, we may be able to use these simulations as tools for
learning and exploring real human behaviors, observing emergent behaviors, and generating predic-
tive models that can be used as design tools.

This chapter outlines a framework for creating and simulating heterogeneous populations
that depict actions and behaviors linked to human characteristics such as role (see Figure 7.1). To
do so, we need to

specify the characteristics (e.g. roles, goals, constraints) of individuals or groups including
their behaviors and how they might differ from other individuals;

•

chapter 7

98  Virtual Crowds: Methods, Simulation, and Control

establish the temporal (e.g., daily) activities of such individuals or groups according to their
occupations or roles;
access a library of parameterized animated behaviors that can be selected contextually, var-
ied statistically, applied to agents, and executed in real time in a typical simulation environ-
ment;
give the agents enough attention and perception to react to the environment, people, and
events around them.

We will begin by describing a parameterized action representation that is used to represent
the semantics of both actions and objects and links lower-level navigation and motion controls to
higher-level action selectors. We will also describe four different types of actions that we believe
will result in more interesting emergent behaviors. We will then give an overview of the CAROSA
(Crowds with Aleatoric, Reactive, Opportunistic, and Scheduled Actions) system including an

•

•

•

FIGURE 7.1:  All characters are instructed to go to class. Lecturers then go to the front of the class and
students take a seat.

CAROSA: Functional Crowds  99

overview of the processing of Parameterized Action Representation (PAR) actions and how the
system interacts with HiDAC.

7.2	 PARAMETERIZED ACTION REPRESENTATION
PAR was designed as an intermediary between natural language and animation. A software system
for interpreting PARs and animating them has been designed and implemented. PAR has been
used for developing virtual environments for training (Bindiganavale et al. 2000), instructing virtual
humans (Allbeck et al. 2000), controlling virtual aggregates (Allbeck et al. 2002), and validating
maintenance instructions (Badler et al. 2002).

Here we will provide only a quick overview of PAR and its components and will focus on de
velopments needed to successfully use the PAR framework for large-scale crowd simulations. The
details of PAR and the PAR software system can be found elsewhere (Allbeck et al. 2000; Badler
et al. 2000; Bindiganavale et al. 2000; Allbeck and Badler 2003), and the current parameters can be
found in Appendix B.

PARs are stored in two hierarchical databases: an action hierarchy called the Actionary and an
object hierarchy. These hierarchies are based on data from several sources including WordNet (Fell-
baum 1998), the Unified Verb Index, and Cyc (Lenat and Guha 1990). The hierarchical nature of the
databases facilitates the addition of new actions and objects. Once the databases are populated with
base actions and objects, new entries can be added by finding their proper placement in the hierarchy
and simply specifying their distinguishing parameters. Inheritance will fill in all of the other param-
eters. For example, desks may be specified high in the object hierarchy. Computer desks would then be
a child inheriting properties such as the object’s purpose: to be a work surface and container. It might
then also contain information specific to this type of desk, such as containing a keyboard drawer.

7.2.1	 Key Fields of the Action Representation
Participants are the agent and object parameters of PARs. The agent is the virtual human execut-
ing the action. Selected virtual humans from some population can be assigned as single agents. The
object type is defined explicitly for a complete representation of a physical object and is stored hier-
archically in a database. Each object in the environment is an instance of this type and is associated
with a geometric model in a scene graph.

Some of the fields of PAR are designed to aid in or shortcut the task planning process.
The applicability conditions of an action specify what needs to be true in the world to carry out
an action. These can refer to agent capabilities, object configurations, and other unchangeable or
uncontrollable aspects of the environment. The conditions in this Boolean expression must be true

100  Virtual Crowds: Methods, Simulation, and Control

to perform the action. For walk, one of the applicability conditions may be: Can the agent walk? If
these conditions are not satisfied, the action cannot be executed.

Preparatory specifications are a list of <condition, action> statements. The conditions are
evaluated first and must be satisfied before the current action can proceed. If the conditions are false,
then the corresponding action is executed; it may be a single action or a complex PAR with sub-
actions. In general, preparatory specifications produce a limited form of automated planning, e.g., to
indicate explicitly that a handle has to be grasped before it can be turned in order to open a door.

Termination conditions are a list of conditions that, when satisfied, complete the action. Ter-
minations may be caused by success or failure. Particularly in applications dealing with mechanical
devices, termination conditions can be crucial. Actions such loosening and removing a nut would
result in similar performances, but with one terminating before the nut detaches from the bolt and
the other after it separates.

Post assertions are a list of statements or assertions that are executed after the termination
conditions of the action have been satisfied. These assertions update the database to record the
changes in the environment. The changes may be because of direct effects or side effects of the ac-
tion. For example, increasing the energy level of an agent might be a post assertion of that agent
drinking a caffeinated drink.

PARs come in two forms, uPARs and iPARs. uPARs are uninstantiated PARs, lacking char-
acteristics specific to a particular scenario; think of them as patterns. iPARs are uPARs that have
been instantiated. For example, a desk might have its size parameters instantiated with 4′ or 6′. An
action, such as copying (using a copy machine), should be instantiated with the virtual human per-
forming the action and the specific object(s) being used.

7.2.2	 Key Fields of the Object Representation
The object type is defined explicitly for a complete representation of a physical object and is stored
hierarchically in the Actionary. Each object in the environment is an instance of this type and is
associated with a geometric model. Agents are special types of objects that can select actions to
perform.

The state field of an object describes a set of constraints on the object that leave it in a default
state. The object continues in this state until a new set of constraints is imposed on the object by an
action that causes a change in state. Objects also have a list of actions they are capable of participating
in. In a sense, these can be thought of as affordances of the objects (Gibson 1977). These capabilities
can aid in a planning process. For example, an agent might be tasked with pounding a nail, but be
unable to find a hammer. He might then search through the capabilities of the objects available to
him and discover that the stapler and his shoes could be used for pounding. Certainly, this does not

CAROSA: Functional Crowds  101

capture all of the subtleties of interactions in the real world like degrees of hardness and fragility, but
it does provide a bit of information that can improve the robustness of the system.

Other fields in the representation help to determine where an object is. There is a position
field that gives the 3D coordinates, but there is also a location field that provides more semantic-
level information. The location field is a link to another PAR object that the object is contained in.
For example, a desk object’s location would be the room object that it is in. There is also a contents
field that lists all of the containing objects. These fields can help to determine the spatial locations
of resources and aid in navigation on a global level. Navigation and collision detection are often
separate processes with different levels of information required. For an agent to go to an object, the
navigation level would like to know what room the object is in and would plot a course to that room.
The collision detection and avoidance level would ensure that no collisions take place along the way
and help to guide the agent to the object once in the room.

Other important fields include the reference coordinate frame, a list of grasp sites, and direc-
tions defined with respect to the object. These fields can be used by motion generators or animation
components to interact with the objects. For example, an action for sitting on a chair would need to
know where the front of the chair is so that the agent can be maneuvered into place and would need
to know where the seat of the chair is so that the agent sits on that surface.

7.2.3	 Four Types of Actions
Human activity or behavior has been analyzed in many research areas including philosophy, psy-
chology, anthropology, cognitive science, human factors engineering, artificial intelligence, robotics,
and of course computer animation. We are classifying behavior into four types: scheduled, reactive,
opportunistic, and aleatoric. In artificial intelligence and related fields, behavior is often classified
as reactive or planned in accordance to what precipitates the behavior (Russell and Norvig 2002).
Agents whose actions arise through planning are often called deliberative agents and are normally
contrasted with reactive agents.

Hybrid control systems have also emerged. The architecture created by Funge et al. (1999)
is an example. They outline three types of behaviors: goal-directed, predefined, and a middle ground.
Goal-directed behaviors correspond to a deliberative process. Predefined behaviors are reactive rules
that are sometimes programmed as finite-state machines. The middle-ground behaviors combine
elements of both. These behaviors contain precondition axioms and are often complex. Precondi-
tion axioms can be viewed as rules to determine when the behaviors should be performed, like re
active behaviors, but also can aid in the planning process. Complex behaviors combine sub-actions,
therefore requiring fewer actions to be chained together in the planning process. For an overview of
architectures for embodied agents, see Allbeck and Badler (2002).

102  Virtual Crowds: Methods, Simulation, and Control

Scheduled Actions. In our approach, we view scheduled actions as similar to goal-directed,
planned, or deliberative behaviors. CAROSA does not include a sophisticated planner, although
nothing precludes this option. Scheduled activities are not restricted to actions traditionally thought
of as planned; instead, they arise from the specified role of individuals or groups. These roles are
provided by the simulation creator, and therefore, scheduled behaviors are simply actions associated
with a group or individual at a specific time and for certain duration. For our example, scheduled
actions may include arriving at work, attending classes, eating lunch, leaving work, and many others
(see Figure 7.2).

Reactive Actions. Reactive actions are triggered by contextual events or environmental con-
straints. Many of these behaviors arise from the crowd simulator (see Chapter 5). For example, reac-
tive behaviors include a character altering its heading or slowing down to avoid obstacle collisions or
other characters. Recalculating a path is another reactive action that can be handled entirely by the
crowd simulator. Other reactive actions, such as acknowledging someone as they pass in the hallway,
are not handled by the crowd simulator. These reactions will be specified and recognized in a rule-

FIGURE 7.2:  Characters go to classes according to their schedules.

CAROSA: Functional Crowds  103

based attention mechanism. For our example, reactive actions will add richness to the texture of the
simulation by depicting the relationships between characters: a nod of acknowledgement to coworker,
pausing to chat with a friend, or ignoring a stranger.

Opportunistic Actions. Opportunistic actions are our middle ground. They are not scheduled,
but are in a sense planned for and are a reaction to context. They include standing orders, but are
not quite “orders” since they may be taken based on goals and priorities rather than as absolutes.
Opportunistic actions arise from explicit goals and priorities. These behaviors are akin to the hill-
climbing behaviors of characters in the video game The Sims. In The Sims, characters are created
with needs including hunger, hygiene, energy, and bladder depending on the character’s activities, and
these needs are fulfilled or grow more urgent. As needs grow more urgent, activities that will fulfill
these needs gain priority. Without player intervention, actions are chosen based on the current levels
of the needs and proximity to objects required to fill the needs. If the character has hunger and is
near food, it will eat. If the character is near a restroom and has a high bladder need, it will enter
and use it.

While we envision our opportunistic actions similarly, the implementation will be a bit dif-
ferent. In The Sims, current proximity is heavily weighted when choosing an action, and time is
ignored entirely. We plan to take into account time and future proximities. For example, a character
may be working in his office and have a non-emergent energy need and a meeting to attend in a few
minutes. The character could then attempt to address the need by stopping by the lunch room for
a cup of coffee on the way to the meeting. This will require him to leave a couple of minutes early
and to know the lunch room is close to the path to the meeting room.

As these needs increase, so do the priorities of the fulfilling actions. It would be possible for
scheduled actions to be delayed or ignored to fulfill needs, but we intend to balance priorities with
proximity to limit this behavior. If desired, the simulation creator could alter this balance.

Aleatoric Actions. Aleatoric actions are random but structured by choices, distributions, or
parametric variations. Take for example working. For many of the characters in an office building
scenario, this would be a default behavior. If there is nothing scheduled and they have no pressing
needs, they would be seen working. The aleatoric nature of the behavior stems from what the sub-
actions might be and their frequency of occurrence. The management science community has pro-
vided some statistics on the work patterns of managerial organizations (Kurke and Aldrich 1983).
Table 7.1, for example, provides data on the proportion of time managers spend during a day on
desk work and telephone calls (at least circa 1983).

Our aleatoric behaviors are somewhat similar to the stochastic behaviors found in Improv
(Perlin and Goldberg 1996), but are based on real statistical data (to the extent such is available) or
explicit specifications through a suitable user interface. The choice of gesture, while also correlated
with speech, might be determined aleatorically (see Figure 7.3).

104  Virtual Crowds: Methods, Simulation, and Control

TABLE 7.1:  A portion of a table comparing the work of top managers of small, intermediate, and
large organizations taken from the work of Kurke and Aldrich (1983)

Category
Small

Organizations
Intermediate

Organizations
Large

Organizations

Number of activities
per day

77 34 22

Desk work sessions

Number per day 22 11 7

Proportion of time
(%)

35 26 22

Average duration
(min)

6 12 15

Telephone calls

Number per day 29 10 5

Proportion of time
(%)

17 8 6

Average duration
(min)

2 4 6

Schedule meetings

Number per day 3 4 4

Proportion of time
(%)

21 50 59

Average duration
(min)

27 65 68

Unschedule meetings

Number per day 19 8 4

Proportion of time
(%)

15 12 10

Average duration
(min)

3 8 12

Small organizations: three presidents, 6 days of observation (Choran study); intermediate organizations: four top managers, 20 days
of observation (Kurke and Aldrich); large organizations: five chief executives, 25 days of observation (Mintzberg study).

CAROSA: Functional Crowds  105

7.2.4	 Application to Crowds
One of the goals of this work is to be able to more easily create simulations with large numbers of
virtual human characters. In addition to using a standard user interface, we propose reusing PAR
and its database of actions and objects. PAR provides semantics about actions and objects that
enables higher-level systems, such as schedulers and planners, to only consider concepts at that ap-
propriately higher level. PAR can then fill in the information needed to animate the actions and re-
sulting interactions with objects. If done properly, once these semantics are specified for an action or
object, they will not need to be specified again. This means less work in setting up the next scenario.
For example, if an agent’s actions include presenting to a meeting, the present action might include
standing in front of the audience, attending to the audience, talking about a topic, and gesturing.
The specifics of the action, such as the topic, the room, and the manner of the gestures might be
changed from one scenario to another, but PAR would be able to automatically fill in the actions
to get the agent to the meeting room and in place and run through the base animations, altering
them appropriately to these new parameters. This means a scenario creator would only need to

FIGURE 7.3:  Gestures may be modeled as an aleatoric behavior.

106  Virtual Crowds: Methods, Simulation, and Control

update data for fields specific to this scenario, not for creating the semantics from scratch. As noted
earlier, adding new objects and actions also requires less work because of the hierarchical nature
of the databases. This is, of course, after there are a sufficient number of entries to jumpstart the
database.

PAR fills in details for action execution, subject to context and statistical distribution. For
example, consider the start times of actions. All the workers in an office building might finish their
day’s shift at 5 pm. The agents would begin their next task, that of going home, but they do not
start at exactly the same time nor do they teleport there. Each one has to follow a set of waypoints
to reach home, but even that cannot simply be executed. Resource competition, dynamic obstacles,
secondary goals (e.g., stop at market), and crowding with other agents create low-level path and task
decisions at the PAR level that add contextual variation and social realism.

7.3	 CAROSA SYSTEM OVERVIEW
What we ultimately desire is a system that depicts human behavior as a realistic 3D animated back
ground texture. Even being able to automatically distribute individuals in an environment to places
that they would likely be at a certain time of day based on their roles would enhance crowd simula-
tions. As initial positions, this alone would help increase the accuracy of crowd evacuation simula-
tions, for example. Our aim is to create a framework that a scenario author can use, relatively easily,
to create simulations that contain virtual humans with roles and from those roles scheduled behav-
iors that will enrich simulations with apparently purposeful behaviors.

To create a virtual world, there are many components that need to be constructed. Geometric
models of the environment, objects, and agents need to be created and articulated. To interact with
the environment intelligently, both the environment and objects need to be tagged with semantic
data. Animations also need to be created and linked to higher-level behaviors and ultimately agent
roles. These roles need to be specified and assigned to agents. This includes some temporal specifi-
cation of the behaviors during a typical day, reaction to environmental events and other agents, and
a specification of relationships between agents.

Figure 7.4 shows the components and connections of the CAROSA system. The Scheduler
and Actionary exchange data in the form of schedules as well as the definitions of roles and objects.
This data can be created in either module and passed to the other. The scheduler that we are cur-
rently considering is Microsoft Outlook. Microsoft Outlook is off-the-shelf software that is widely
used. It provides an interface for specifying roles and tasks and creating timelines and schedules. We
believe it can be a useful tool for creating agent populations. The Actionary is a MySQL database
containing PARs.

We do not address the actual modeling of the environment, objects, or agents. We believe
there are sufficient software packages available for this purpose. For articulating the figures, we

CAROSA: Functional Crowds  107

have integrated CAL3D (CAL3D 2008), an open-source software package that provides elemen-
tary functionality for animating human figures, into the HiDAC crowd simulator (see Chapter 6).
HiDAC determines the positions and orientations of the human models and what animation clip
to play based on information in PARs. It then calls the necessary display methods to display the
simulation. CAL3D and the display functionality may be replaced to improve both animation qual-
ity and the frame rate. For example, Ahn et al. (2006) has done research on motion level of detail for
crowd simulations. Because of the semantic data available through PAR, we may be able to change
the level of detail based on the importance of the character in the scene.

MACES + HiDAC provides us with the ability to direct agents through an environment
and stop them in certain locations while avoiding collisions and providing other crowd behaviors.
MACES + HiDAC, however, provides only low-level navigation in terms of planning for agents.

FIGURE 7.4:  CAROSA system diagram.

108  Virtual Crowds: Methods, Simulation, and Control

Currently, agents can stop at predetermined locations in a room to perform actions, but these ac-
tions must be scripted by hand and added directly into the code.

The PAR representation enables us to direct the agents at a higher, less-detailed level and
provides us with an architecture that includes at least a minimal amount of planning. Additionally,
it gives us the opportunity to have agents that react to environmental changes more intelligently.
MACES + HiDAC already provides low- and some middle-level locomotive reactions, such as
pushing to get through a crowd, finding an alternative path if a doorway is blocked or overcrowded,
and overtaking behaviors. PAR can add additional richness at higher levels through its use of pre-
paratory specifications as a partial planner. For example, if an agent needs to use a resource such as a
copy machine and finds that it is broken, he may contact the repair service or find another copier.

During a simulation, the PAR system can be viewed as the central controller. Information
about schedules (provided by the Scheduler) and information about the models (populated before
the simulation begins) can be found in the Actionary. The PAR system uses this information and
information about the statuses of dynamic environmental elements provided by HiDAC to help
determine what the characters’ behaviors should be. The PAR System also contains Agent Processes
that control the opportunistic, reactive, and aleatoric actions.

7.3.1	 PAR System
For our purposes, the PAR system has two main components, the Actionary and the Agent Processes
(see Figure 7.4).

7.3.2	 Actionary
All instances of physical objects, agents, and uPARs are stored in a pair of persistent hierarchical
databases. One of the databases contains the objects and agents, and the other contains the uPARs.
During the initialization phase of a simulation, a world model is created from the databases. This
model is constantly updated during the simulation, recording any changes in the environment or in
the properties of the agents and objects.

The agent processes can query the world model for the current state of the environment and
for the current properties of agents and objects in the environment. Additionally, through the Sched-
uler, the simulation creator can update the Actionary during the course of the simulation.

7.3.3	 Agent Process
An agent process controls each instance of an agent, either as an individual character or as a group
of characters with similar behavior patterns. Each agent process has a queue manager that manages

CAROSA: Functional Crowds  109

a priority-based, multi-layered queue of all iPARs to be executed by the agent. The various tasks of
an agent process are to:

add a given iPAR at the top level of the queue;
communicate with other agent processes through message passing;
trigger different actions for the agent based on the agent’s role, messages received from
another agent process, and the existing environmental state;
return the process status (on queue, aborted/pre-empted, being executed, completed, etc.)
of an iPAR;
insure nonrecursive addition of iPARs resulting from rules (i.e., reactive actions).

The queue manager in the agent process is implemented using PaT-Nets (i.e., parallel finite-
state machines) (Badler et al. 1993). Each iPAR is assigned a priority number by the user or by the con
text. At any time, if the first action on the queue has a higher priority than the iPAR currently being
executed, the queue manager pre-empts the current action. In general, either after pre-emption or
completion of an action, a new action is selected to be popped from the top level of the iPAR queue of
the agent and sent to a process manager. The selected new action has the highest priority in the first
subset of monotonically increasing actions (with respect to priorities) at the beginning of the queue.

For each popped iPAR, a process manager first checks the termination conditions. If the
termination conditions are already satisfied, then the action is not performed. If they are not satis-
fied, the applicability conditions are checked. If these conditions are not satisfied, the entire process
is aborted after taking care of failure conditions and proper system updates. If the applicability
conditions are satisfied, the preparatory conditions are then checked. If any of the corresponding
preparatory actions need to be executed, an iPAR is created (using the specified information of the
uPAR, agent, and the list of objects) and added to the agent’s existing queue of iPARs. It should be
noted that the queue of iPARs is a multi-layered structure. Each new iPAR created for a prepara-
tory action is added to a layer below the current one. The current action is continued only after the
successful termination of all the preparatory actions. If the current action is very complex, more
iPARs are generated, and the depth of the queue structure increases. During the execution phase,
a PaT-Net is dynamically created for each complex action specified in the execution steps or in the
preparatory specifications. Each sub-action corresponds to a subnet in the PaT-Net. The PaT-Nets
are also used to ultimately ground the action in parameterized motor commands to the embodied
character. More details of the agent process algorithm can be found in Appendix C.

HiDAC communicates with the PAR system through the agent processor. Each HiDAC
character is linked to a corresponding agent process and, as a result, its iPAR data. Thus, HiDAC
can update the status of each agent it is controlling including reporting failure states. Each agent
process also has a link back to the HiDAC characters it is controlling. When the process manager

•
•
•

•

•

110  Virtual Crowds: Methods, Simulation, and Control

determines that an iPAR is ready to be executed, it places the necessary information (e.g., goal posi-
tion, orientation, motion clip) on each appropriate agent’s action list.

7.3.4	 Processing the Four Action Types
Scheduled actions are simply placed on the agent’s queue as iPARs. These iPARs may have been
created directly in the Actionary or may have originated in the Scheduler. In either case, they contain
all of the needed semantic information for the action, including the start time and duration of the
action. Actions are not processed by the queue manager before their start time, so all of the sched-
uled actions can be sent to the queue at the beginning of the simulation. It is also possible to edit
these actions during the simulation and even to add additional scheduled actions.

Reactive actions are based on observations from the environment. We will need to build a
simple attention mechanism in order to implement these actions. This mechanism will consist of a
list of rules. When the conditions are true, an action in the form of an iPAR will be created and
added to the front of the agent’s queue. The conditions need only include the agent or group of
agents that are subject to this reaction and the property or state of the environment that they are
reacting to. The attention mechanism will then query the state of the simulation through HiDAC
to determine if any of these conditions have been met. These queries will be restricted to the room
or hallway containing the agent.

Opportunistic actions are based on available time, proximity, and level of need or desire. The
PAR representation of each agent will contain values representing their current levels or reservoirs
of needs (Silverman et al. 2003). This value will decay over time until the need is met. Each agent
will also have corresponding actions on their queue that will fulfill these needs. The priority of these
actions will be based on the level of need and on the proximity to objects needed to fulfill the need.
Hence, if the need becomes great enough, the action will take priority over other actions and get
executed. Also, if the level of need is at the middle but an object to fulfill the need is nearby, the
priority will be such that the action will be executed. Time is also a factor in priorities. If the agent
has little time before a scheduled appointment (scheduled future action), it may not stop to fulfill
a need, because the priority of the appointment would be higher. If their schedules permit, agents
may consult their need levels before determining when to leave for a meeting and factor in satisfy-
ing needs.

Another variable would naturally be the nature of the character. Individual differences en-
compass a wide range of properties that may be considered “who a person is.” Our aim is not to
implement all of these properties, but we would like to demonstrate where such factors might easily
be included. This is one such place. We plan to characterize agents as hardworking and uninspired.

CAROSA: Functional Crowds  111

Hardworking agents will be more likely to prioritize scheduled tasks, and uninspired agents will be
more affected by their proximity to need fulfilling objects.

Aleatoric behaviors are statistically driven default or idle behaviors. These behaviors will
appear on an agent’s queue when there are no other actions there with a priority greater than a
threshold. Opportunistic actions will always be found on the queue, but they may have little or
no priority. Generally, we view these behaviors as complex PARs with unordered subactions that
contain information about their frequency supplied from distributions given or found in literature.
When the process manager processes such an action, it chooses sub-actions to perform based on
the distribution information. Durations for these actions are also sometimes available as means and
standard deviations and could be included.

• • • •

113

Initializing a Scenario

Creating a new simulation requires numerous elements. Buildings and spaces need to be created
and laid out with objects such as furniture or vehicles. Character profiles also need to be defined for
the population. This includes roles, relationships, and possible other individual differences such as
personality profiles. These character profiles then need to be linked to actions with motion models
as well as semantic data. In this chapter, we will discuss these aspects of scenario creation.

8.1	 BUILDING MODELING
The navigation of crowds of autonomous agents in complex environments requires having an ef-
ficient abstract representation of the virtual environment where the agents can rapidly perform
wayfinding. This abstract representation can also be used to store some precomputed information
about the environment that will speed up the navigation and also be helpful to achieve fast percep-
tion for local motion computation. Our system (MACES + HiDAC) can handle two types of en-
vironment generation. The first generates a mazelike building environment from input parameters
(dimensions, number of exits, and number of hazards) (Figure 8.1). The second creates a building
(Figure 8.2) from a simple floor plan editor (Appendix A).

FIGURE 8.1:  Example of a maze used for our experiments with two exits and eight hazards (Pelechano
and Badler 2006) C 2006 IEEE.

chapter 8

114  Virtual Crowds: Methods, Simulation, and Control

For any given environment, our system automatically generates a cell and portal graph (CPG)
where each cell represents a room and portals correspond to doors. The stairwells are treated as cells
with two portals, one at each end of the stairwell.

Each room contains information about the list of walls in that room and the list of static ob-
stacles, so when the agents need to perform local motion within the room, they will query the room
for those lists of static obstacles against which they need to perform collision detection.

To achieve real-time interactive navigation, some other relevant information about the en-
vironment is precalculated and stored. Among the information stored are paths toward the exits,
distances from each door to a destination point, and the position of the attractors that will be used
during the local motion to steer the agents. To save space, this environment information is also
considered internal knowledge of the agents; however, since our agents can have different roles, and
therefore exhibit diverse behaviors, they will have access to different levels of information that will
provide diversity in their level of knowledge about the environment.

8.1.1	 Cell and Portal Graph Automatic Generation
Our system receives as an input an arbitrary building model and creates a CPG, identifies all the
walls and obstacles that belong to each cell, and stores that information within the cell. The building
geometry is represented by a grid decomposition that contains different elements representing walls,
doors, obstacles, stairs, windows, etc.

From that representation, an intermediate 2D grid is created for each floor, where the value
0 will be assigned to grid cells representing free space, -1 will be assigned to those grid cells con-

FIGURE 8.2:  Example of building plan used for evacuation simulations (Pelechano and Badler 2006)
C 2006 IEEE.

Initializing a Scenario  115

taining a wall, -2 assigned to grid cells occupied by doors, and other negative values are assigned in
the same manner for holes and stairs. This 2D grid is not employed in the final movement of the
agents as the cellular automata models do, but instead it is used as an intermediate step to obtain
the geometric information of the building.

The algorithm proceeds in four steps:

Generate the CPG for each floor.
Identify stairs and link floors through new cells.
Identify and store walls.
Identify and store obstacles.

The cells in the graph generated correspond to the rooms and determine the continuous
space in which the virtual autonomous agents will perform navigation.

8.1.2	 Generate Cell and Portal Graph for Each Floor
Once we have the grid decomposition where 0 indicates free space and negative numbers indicate
nonempty space (doors, stairs, obstacles, and doors), we start an iterative conquering process start-
ing from the top left corner cell that is empty. We assign a positive number to this cell that will
represent the room ID in the CPG, and then this ID is propagated using a breadth-first traversal.
The propagation of the cell ID continues until the entire room is bounded by cells having either

•
•
•
•

TABLE 8.1:  Algorithm to assign cell IDs to free space

Procedure find_cells (f)
cellID := 1
for f={0…maxFloors}
 for i={0..maxX}
 for j={0…maxZ}
 if grid[f][i][j] = free_space
 create_cell(cellID)
 cellID := cellID + 1
 flood_neighborhood (cellID,f,x,z)
 end_if
 end_for
 end_for
end_for

116  Virtual Crowds: Methods, Simulation, and Control

0 (wall) or -1 (door). The following procedures (Tables 8.1 and 8.2) show the algorithm in detail:
where cellID is the positive number representing the room ID, f  is the floor number, and x and z are
the coordinates of the cell in the 2D grid representation for that floor.

Figure 8.3 shows (a) the initial geometry of the building for one floor and (b) the correspond-
ing grid decomposition where walls, doors, and obstacles have been identified. Figure 8.4 shows
how the algorithm to identify cells propagates the IDs.

Once all the cells have been identified, we need to generate the CPG by joining the rooms
through the doors. This is carried out by traversing the grid representation from left to right, top
to bottom, looking for doors. When a door is found, a portal is created that will join the two cells
appearing at both sides of the door. Two attractor points will be associated with each portal. These

TABLE 8.2:  Algorithm to propagate IDs

Procedure flood_neighborhood (cellID,f,x,z)
 if (grid[f][i][j] = free_space)
 if ((x=0) and (x<maxX) and (z=0) and (z<maxZ))
 flood_neighborhood(cellID,f,x-1,z)
 flood_neighborhood(cellID,f,x+1,z)
 flood_neighborhood(cellID,f,x,z-1)
 flood_neighborhood(cellID,f,x,z+1)
 end_if
 end_if

FIGURE 8.3:  (a) Building geometry and (b) grid partition with walls, obstacles, and door.

Initializing a Scenario  117

attractors are located at both sides of the door (Figure 8.7) and will be used for local motion of the
autonomous agents as steering points.

Once all the doors have been detected and the portals created, we obtain the final CPG for
the floor (Figure 8.5)

8.1.3	 Identify Stairs and Link Floors Through New Cells
If we have a multistory building, then the algorithm will create the CPG for each floor, and then the
stairs will be included as new cells that have portals with the lower and upper floors.

FIGURE 8.4:  Eight first steps of the cell identification and ID propagation algorithm.

FIGURE 8.5:  Cell and portal graph.

118  Virtual Crowds: Methods, Simulation, and Control

After creating all the subgraphs that correspond to each floor of the building, the algorithm
traverses the grid searching for stairwells. When a stairwell is found, a new cell and two new portals
are created. One portal will link the stair cell with the lower floor and the other portal will link it
to the upper floor.

Figure 8.6 shows the CPG of a two story building with one stairwell at the left bottom corner
of the building. Cell 41 in the graph corresponds to the stair.

8.1.4	 Identify and Store Walls
Once the CPG has been generated, we need to create the list of walls corresponding to each room.
From the grid cell decomposition generated after creating the CPG, we will have information about
walls (cells with ID = 0) and room IDs (since each free-space cell now contains the ID of the cor-
responding room in the CPG).

The grid is traversed sequentially from left to right, top to bottom, searching for walls along
the X axis, and then from top to bottom, left to right, searching for walls along the Z axis. Walls
are delimited by corner walls and doors. For each sequence of cells marked with 0’s, between those
delimiters, a wall in the environment will be created and assigned to the rooms at both sides of
the wall. The result of the wall-finding algorithm can be observed in Figure 8.7. For clarity of the
results, each of the walls has been colored to match the color of the cell. In the image, we can also

FIGURE 8.6:  Cell and portal graph with stairwells.

Initializing a Scenario  119

see the attractor points located centered in each doorway and displaced slightly (0.7 m) into each
room.

8.1.5	 Identify and Store Obstacles
Finally, the algorithm searches for obstacles in the environment and assigns them to the room based
on the ID of the adjacent neighboring cells in the 2D grid decomposition. The obstacles can be
observed in Figure 8.7.

8.1.6	 Precalculating Data for Real-Time Simulation
The autonomous agents in the crowd need to interact with the environment to avoid obstacles
and implement global planning. To achieve fast perception of the static obstacles in the environ-
ment, every cell has a list of walls and objects. For each wall, we store the equation of the plane that
defines the wall, with the normal of that plane pointing toward the interior of the room and also
the ending points of that wall segment. For every obstacle, we store its position and dimensions
(obstacles are bounded by cylinder or oriented bounding boxes). The last elements to be stored are
the two door attractors. These attractors are used to steer the agent in a natural manner when cross-
ing portals.

When an agent needs to move from one location to another in a virtual room, it will query
the room for the lists of walls and obstacles and then calculate collision detection with those objects,
while moving from the previous attractor to the next attractor.

FIGURE 8.7:  Walls assigned to each room and door attractors.

120  Virtual Crowds: Methods, Simulation, and Control

To perform global navigation, we also need to store information about paths within the
building from each cell to each of the destination rooms or exits in the building. Each cell will con-
tain one or more alternative paths to each destination or exit. During the simulation, agents will be
able to query the room for different types of information, depending on their roles.

At each room, the information stored will contain for each destination room the sequence
of rooms and doors and the overall distance in meters that correspond to the shortest path. Short-
est path information is calculated by performing a breadth-first traversal starting at the destination
cells and propagating to adjacent rooms. Figure 8.8 shows an example of the breadth first-traversal
algorithm, indicating the propagation order through the rooms with decreasing intensity of color.
The example shows distances to the exit door.

The breadth-first traversal starts from the room that can be a destination room during the
simulation and pushes it in a queue. When we simulate evacuation scenarios, we only consider as
destination rooms the ones with an exit, but for more general simulations where agents could go to
any room in the environment to achieve a given goal, then we need to run this algorithm for all the
rooms in our environment.

The algorithm proceeds iteratively, popping an unvisited node from the queue, visits it, marks
it as visited, adds its neighbors to the queue, and repeats it until all the nodes in the graph have been
visited. As the traversal advances, it updates the distances from each portal to the destination, and if
a cell is reached through several doors, then the algorithm compares the previous shortest distance
stored against the new one, and only if the new distance is shorter, the node will be pushed in the

FIGURE 8.8:  Shortest paths propagation and distances.

Initializing a Scenario  121

list. When two cells are connected through several doors, the one with the minimum global distance
to the destination is chosen as part of the shortest path. The details of the algorithm are shown in
Table 8.3.

If only shortest paths were stored, then when an agent would find the desired path toward a
destination blocked, it would need to perform some search in the environment to find a different
route. Agents with limited knowledge about the environment may not be able to find in their mental
maps an alternative route and therefore need to explore the environment. But for those agents with
complete knowledge about the environment, a search in the complete CPG representing the building
should be feasible. To speed up the simulation time, we calculate this information offline and store
it in the environment. This represents the knowledge of the agents and can be shared among those
with trained roles. The alternative paths are calculated by modifying slightly the previous algorithm.
In the search for alternative paths, when a node is reached through a different route, first of all, the
algorithm checks that the current node is not already contained in the path toward the destination to

TABLE 8.3:  Algorithm for shortest paths propagation

Procedure propagate_shortest_paths
for each destination node E
 push_list(E)
 while list non empty V=pop_list
 mark V as visited
 for each neighbor room N
 if not discovered N
 if N already had a path stored then
 if newGlobalDist < prevGlobalDist
 modify stored shortest path
 push_list(E)
 end_if
 else
 push_list(E)
 end_if
 end_if
 end_for
 end_while
end_for

122  Virtual Crowds: Methods, Simulation, and Control

avoid cycles. Then, if it is not already in the path, this new path is stored in the node as an alternative
route and propagated to all the neighboring nodes except for the one from which it arrived.

The algorithm finishes when all the possible alternative routes have been propagated and
stored. Then, the list of alternative paths is ordered by distances, with the aim of speeding up the
query process from the agents during simulation time. Table 8.4 shows the alternative paths stored
for the current building.

TABLE 8.4:  Algorithm for shortest paths propagation

Node
origin

Shortest
path

Alternative
paths

Node
origin

Shortest
path

Alternative
paths

1 {2,4} {2,3,7,5,4} 11 {8,7,5,4} {8,7,3,2,4}

2 {4} {3,7,5,4} 12 {4}

3 {2,4} {7,5,4} 13 {15,4}

4 {} 14 {17,4}

5 {4} {7,3,2,4} 15 {4}

6 {7,5,4} {7,3,2,4} 16 {17,4}

7 {5,4} {3,2,4} 17 {4}

8 {7,5,4} {7,3,2,4} 18 {17,4}

9 {4} 19 {4}

10 {4} 20 {18,17,4}

Initializing a Scenario  123

8.2	 LAYOUT OF ENVIRONMENT
The environment is not complete with just the layout of rooms and hallways or buildings and
streets. Environments also need furniture, vehicles, street signs, or fire hydrants. These objects need
to be placed appropriately in the environment, and they also need to be labeled with semantic data
that will allow the characters of the simulation to interact with them.

At the basic level, the bounding volume of objects is required for collision detection (see
Section 5.5.1). For characters to interact with objects, other data is required. For example, knowing
the front, back, and sides of objects helps determine where characters should be placed to interact
with them. Other more specialized regions, such as the seat of a chair, provide information needed
to automate other actions (e.g., sitting) (Coyne and Sproat 2001). Some of these features, such as
holes and handles might be able to be detected using computer graphics techniques. Others may
have to be hand tagged, but this may be feasible since objects tend to be reused often. If the scenario
requires more sophisticated planning, information about the purpose and capabilities of objects
should be provided (Bindiganavale et al. 2000).

The placement of objects in the environment can, of course, be done by hand either inter-
actively or by writing coordinates in a file. It might also be possible to tag rooms with information
similar to that provided for objects, including likely regions for the placement of furniture objects.
Figure 8.9 depicts a line of offices with similar furniture placements. If one were to lay out the
basic regions of an office, including the furniture placement relative to other regions such as the
door, even with different room dimensions, furniture layouts for new rooms might automatically be
constructed merely from basic geometric features (e.g., door placement) and its type (e.g., office).
Certainly statistical deviations could be used to create natural variations.

8.3	 CHARACTER PROFILES
Another aspect of setting up a simulation scenario is creating the characters. In many current simu-
lations, the characters are homogeneous or have a few random variations. We would like to have a
much more diverse crowd with meaningful variations. Certainly geometric models of the characters
need to be created or acquired. There is little that can be done to shortcut this necessity aside from
minor statistical variations in form and various attribute changes. Here, however, we are more con-
cerned with character profiles that link to activities.

One option is to associate behaviors and activities with roles. Roles are expected behavior
patterns associated with social status or occupations. By linking actions and their contexts to char-
acters, these roles can be used to create more naturally heterogeneous simulations. Potentially, roles
could even be statistically linked with types of buildings or rooms to create populations more au-
tomatically. If, for example, a building has several classrooms, a large percentage of the population
could be created as students and a small percentage as instructors. These might be a good starting

124  Virtual Crowds: Methods, Simulation, and Control

point for a simulation creator. From here, the designer could change the percentages or age ranges
and sprinkle in a few other roles such as janitors and cooks.

Some roles have inherent status hierarchies: instructor/student, parent/child, and supervi-
sor/worker. As discussed in Section 3.4, status relationships affect that way that people interact
both verbally and non-verbally. Depicting these variations in interactions can add to the realism
of the simulation. Status relationships not implicit in the roles can be assigned randomly or by the
scenario creator.

FIGURE 8.9:  Office environment with sparse furniture.

Initializing a Scenario  125

8.4	 CREATING GROUPS
People have relationships outside of status relationships. These relationships also affect the way
that people interact with each other. Even actions as simple as passing in a hallway are affected by
relationship. People who know each other tend to at least acknowledge each other. Friends may stop
to chat. Enemies may purposefully ignore each other.

In a crowded environment, people in some way associated with each other (e.g., co-workers,
family, friends) tend to clump together and navigate the environment together. Rarely are crowds
composed solely of individuals. They more often contain groups of varying sizes. Groups may enter
the environment together or form organically as they traverse. Generally, these groups continu-
ously evolve, gaining and losing members, and separating and reforming as the group navigates
obstacles.

How can we create simulations depicting these groups? Certainly we could randomly choose
agents to pull together into groups. For many simulations where the mass of the agents are just
background characters, this might work fine. For others, observers may note odd associations or the
lack of expected associations. We could make an effort to create and represent different relationships
by hand, but for large simulations, this task would be overwhelming. Instead, it may work to use
location demographics. As noted above, groups tend to form from people who know one another
from work, home, school or some other mutual activity. Demographic data for the area or areas
being simulated might be used to create and associate a reasonable population to locations. For
example, an apartment is assigned a woman and two school-aged children. These three characters
then become a family group and may be drawn together when they are in the same area. The same
woman might also be assigned to an office building and the children to a school. These location
associations would add them to groups of co-workers and classmates that would stochastically also
tend to form groups when in proximity.

Certainly human relationships and groups are more complicated than described here and
much more work could be done. This may, however, provide a basis from which to work. People
who cross paths could also randomly form friendships and therefore display more friendly behavior
and tend to group. These friendships and relationships may also fade from time to time. Specific
groups may also be hard-coded into the simulation by its creator to serve an important role in the
simulation.

8.5	 CONSTRUCTING ACTIONS
In Section 7.2.3, we introduced four action types, all of which can be represented as Parameterized
Action Representations (PARs). Ultimately, we envision an Actionary full of these actions that
can be pulled from the database either automatically in accordance with the character roles or, if

126  Virtual Crowds: Methods, Simulation, and Control

required, by the simulation creator through a simple interface. There may, however, always be more
actions and associations required for new simulations, and therefore, there needs to be a way to cre-
ate new actions and edit existing ones.

Creating parameterized actions that are general enough to be used in many scenarios but
detailed enough to fit into the contexts appropriately can be a difficult knowledge engineering prob-
lem. Using the inheritance provided by the Actionary hierarchy eases this burden. By properly plac-
ing new actions in the tree, many of their parameters will be inherited from their parent and need
not be set manually. The action author can then focus on just those parameters that differentiate it
from existing actions. The Actionary is stored as a MySQL database, and as such, any interface to
the database software can be used to enter the necessary data. Custom graphical user interfaces can
also be created to help an action creator access and enter data. These actions will then need to be
linked to their associated motion generator or animation clip. This is currently done by providing a
pointer to the function that initiates the motion.

Creating actions for scenarios (i.e., iPARs) entails choosing the actions from the Actionary,
filling in the necessary parameters that link them to the characters and environment, and where
necessary indicating the start times or orderings of the actions. Much of this can be done automati-
cally through character roles and the automated code based on the parameters of the four action
types.

Scheduled actions need to have their start time, duration, location, and participants speci-
fied. The most natural interface for specifying such information may be a calendar program. Such
programs are used by people everyday and are designed to be easy to use. We have explored using
Microsoft Outlook as an interface for specifying scheduled actions. Microsoft Outlook allows for
numerous calendars, which for our purposes represent scheduled actions for the different roles of
characters. Certainly individual characters could also be scheduled through this interface. A com-
mercial software package called GeniusConnect (2007) provides the necessary connection to the
Actionary, a MySQL database.

Reactive actions are PAR actions that are associated with states of the world. When the
specified state of the world is detected, the action is performed by every character or characters who
have been assigned the reaction. States may include properties or states of objects and agents in the
world. They may also be spatial configurations such as two agents being near one another. These
spatial configurations require recognizers. An interface for constructing such actions may simply
include lists of agents, objects, actions, properties, states, and prepositions. The rules for reaction
actions could be created just by choosing the appropriate components.

An interface for creating opportunistic actions could work similarly. This interface, however,
would include a list of needs, fields for specifying growth and decay rates, and then the actions
or objects needed to fulfill the needs. It would also be possible to include data that allows the

Initializing a Scenario  127

growth rates and decay rates to vary depending on the actions or the objects or even the agents
themselves.

Aleatoric actions can be specified as a special type of complex PAR. The choices of action
are specified as sub-actions and their distribution as means and standard deviations. Certainly more
complex functions for choosing between the actions could be provided if desired. Because the sub-
actions of a complex PAR are also just PAR actions, these actions would already have been specified
and stored in the Actionary.

8.6	 REFINING THE SIMULATION
Once a simulation has started, there will inevitably be modifications desired by the simulation
author. A tool that does not provide this capability is not a very useful tool. The aim of the CAROSA
framework is not only to provide a mechanism for quickly creating realistic scenarios with many
characters, but also provide the author with enough control to refine the scenario to fit future needs.
This might include changes to the environment or modifying the characters or perhaps even script-
ing the behaviors of some of the characters.

8.6.1	 Effects of Changes to the Environment
Changing the structure of the building or city that is the backdrop for the simulation could affect
the characters’ ability to successfully navigate it. Adding or removing a room or moving a doorway
could potentially require reformulating the data required by the navigation processes. However, the
structure that we use, a CPG (Section 2.6.1), is created automatically from the environment file. As
a result, changes to the structure of the environment require no additional effort from the simula-
tion creator.

The environment may also be modified by changing the objects found there. One object, such
as a desk or a fire hydrant, may be swapped for another. An object may also be added, removed, or
simply moved. This has two potential impacts on the successful execution of the simulation. The
first is the ability of the characters to navigate through the environment without colliding with ob-
jects. In our framework, collision detection with objects is based on their bounding volume, which is
computed as the objects are loaded, and their current position (Section 8.1.5). Thus, changes to the
objects in the environment do not require any additional specification in the collision detection.

The second potential impact arises from the objects’ roles in character actions. If a character
is assigned a task of photocopying a report, a photocopier needs to be available. Simply moving ob-
jects to new locations will not require any additional data entry from the scenario creator. The posi-
tions of the objects are acquired automatically during the simulation and planned for appropriately.
Problems may, however, arise if objects necessary to actions are not present in the environment. If

128  Virtual Crowds: Methods, Simulation, and Control

there is no photocopier present in the environment, the photocopying action will fail. These failures
are captured by the CAROSA framework. Presently, the failures are ignored during the simulation
and the next actions are attempted. The system does, however, provide support for failure reporting,
including the cause of the failures. This would help the scenario creator to fix the failure if desired.
It is important that the simulation framework does not fail entirely even as a result of user error. We
cannot guarantee that the resulting simulation will meet the desires of the author, but it should not
fail completely.

We also see a potential for automated processes that alter the environment during the simu-
lation. Certainly, hazards such as smoke, fire, or blocked hallways are one set of possible changes
(Section 5.5.6). These changes would impact the navigation of the characters through the environ
ment and depending on their nature could also impact their decision-making (Section 5.5.7). Hazards
such as fire could be programmed to start in user-specified or random locations and spread accord-
ing to known patterns (McGrattan et al. 2008). There are, however, other potentially interesting
processes that could be included to enrich the environment. In a building environment, systems and
equipment could be programmed to fail either randomly or as scheduled by the simulation creator.
If an elevator is suddenly broken, the characters would be forced to use the stairs. If a photocopier is
broken, they would need to locate another or notify service personnel.

In a city environment, a process simulator might be used to simulate traffic and traffic signals.
The entire operation of a city can be impacted by the ability or inability of its inhabitants to travel
through it. Vehicles and signals would be PAR objects and as such could be interact with all other
objects. We can envision characters waiting for buses or taxis and perhaps even forming relation-
ships as they do so (Section 3.3).

8.6.2	 Modifying Roles
After seeing an initial run of a simulation, the author may also wish to change the characters.
Changing the number of characters in each role is as simple as changing the number in the quantity
field. An author may also wish to redefine the roles and other individual differences of the char-
acters. Creating new roles would require the same effort as creating the original simulation roles
(Section 8.3). Roles may also be modified by changing the associated actions or their placement in
the status hierarchy.

Character roles are linked to different types of actions. In particular, scheduled and aleatoric
actions have a direct impact on the characters’ association with roles. A simulation creator can
change the scheduled actions for a role simply by changing their placement on the calendar for
that role. They may change an entry on the calendar to another action or change its time, duration,
or location. In the CAROSA framework, default actions are often represented as aleatoric actions

Initializing a Scenario  129

(Section 7.2.3). Here the action chosen and its duration are based on a distribution for all of the
associated actions (sub-actions). If the scenario creator would like to see the characters of a certain
role performing an action more or less than was seen previously, only the distribution needs to be
altered accordingly.

Other actions are less directly linked to the roles of the characters. These actions are primarily
associated with character needs and reactions. In the CAROSA framework, needs are easy to create
and modify. If one wanted to create characters that appear a bit neurotic, they might create an energy
need that is fulfilled by drinking coffee. They would then specify a relatively large decay rate. This
would result in the characters constantly running to get coffee as their need for energy would be
felt often. Decreasing the decay rate would make them feel the need less often and therefore drink
coffee less often. Needs do not need to correlate with an actual human need. For example, an author
could create a fidget need that is fulfilled by clicking on and off marker caps. Altering and creating
needs can be done through a simple interface as described earlier.

Reactions could also be modified using an interface similar to the one used to create them.
A user could modify either the impetus for the reaction or the reaction itself. This might include
defining an aleatoric action as the reaction. In this way, characters would not always react to an event
in the same way. Their reactions would vary from one instance to the next. No action could also be
included as one of the aleatoric subactions, resulting in no reaction taking place from time to time,
which is natural behavior.

8.6.3	 Scripting Characters
While the CAROSA framework is designed to create realistic, but general behaviors for many
characters, there will likely be a few characters that the simulation author would like to control more
precisely and in more detail. Toward this end, an author could construct calendars for the characters
needing scripted behaviors. Our current calendar interface, Microsoft Outlook, provides temporal
resolution of 1 minute, so through this interface a simulation author could give characters differ-
ent actions for every minute of the day. We believe that for many scenarios, this will be more than
adequate, particularly for background characters.

There may, however, be circumstances where even finer temporal resolution is required. In
these cases, character behavior could be created through connections to a complex PAR action.
For example, an author may want to focus on the actions of a particular character that will have
an impact on the purpose of the simulation, by choosing actions from the Actionary and combine
them into a PAR constraint graph. A PAR constraint graph indicates the ordering of the actions in
a complex PAR (Bindiganavale et al. 2000).

• • • •

131

chapter 9

Evaluating Crowds

One of the most difficult aspects of doing research in crowd simulation is evaluation. The real world
and its real characters are very complex, making it difficult to compare a simulation to events that
might happen in reality. Another option for evaluation is performing user studies to try to deter-
mine if the desired qualities for the simulation have been met. Finally, technology may aid in this
endeavor. In this chapter, we will outline a few methods of evaluating crowd simulations.

9.1	 FEATURE COMPARISON
An issue with doing a feature comparison of crowd simulation models is determining what fea-
tures are priorities for the application. To aid in this determination, features might be segregated
into low, middle, and high levels. Low-level features would include the quality of the graphics and
animations. Middle-level features would include more behavioral aspects of the simulation, such
as navigation ability and physical-level agent interactions. High-level features would include more
deliberative processes, functional crowds, and behavioral heterogeneity.

9.1.1	 Low-Level Features
There are a number of low-level features that may vary in importance and therefore quality from
one simulation to another. First, there are the graphical models of the characters, objects, and en-
vironment. These may vary from simple line figures and primitive shapes, to cartoon characters, to
photorealistic figures. The quality of the characters will have an impact on the frame rate that can be
achieved for any given number of characters and the perceived “human-ness” of other aspects of the
simulation (Mori 1970). For example, the level of detail and visual quality of the character models
set an expectation about the realism of their behaviors. For even marginally realistic characters, foot
skate (sliding) becomes a distraction to most who observe the simulation. In crowd simulation, there
are rarely any actual interactions with objects. Characters may push a button on an object or perhaps
carry an object through the environment, but they very rarely operate a device at any level of detail.
Crowd simulations have been more concerned with performing collision detection and recovery
than object interactions. This may change as technology progresses.

132  Virtual Crowds: Methods, Simulation, and Control

In addition to the quality of animation, animation transition quality can have a large impact
on the effectiveness of the simulation. Popping from one animation clip to another or other inad-
equate transitions often detract from simulations. Finally, rendering quality may be considered a
low-level feature of a crowd simulator. Can the crowd simulator render shadows or lighting effects
or special effects like fire and smoke? These elements can have an impact on the effectiveness of the
simulation.

9.1.2	 Middle-Level Features
Middle-level features build on the lower-level graphics and animation features to develop more
sophisticated behaviors. These features might include how well the characters can navigate through
the environment and how well they react to dynamic environments. If a passageway is blocked, can
the characters discover an alternate route? If there are vehicles on the roads, can they avoid being hit
by them? A part of this process is the characters’ need to have fast perception of their environment.
Perception can be done in several ways with different levels of accuracy and realism. Methods in-
clude using techniques from computer vision to more realistically sample what the characters might
see or else simply assume that characters have complete knowledge of their entire environment or
a limited area near them.

There are numerous other features that have emerged from both the crowd simulation com-
munity and the crowd psychology community. Some of these include natural bidirectional flow
and overtaking, emergent queuing behavior, realistic pushing behavior, falling agents and other
obstacles, and panic propagation. Researchers also strive to eliminate side effects of their implemen-
tations, such as eliminating shaking behavior. Ideally, whatever the method chosen, the simulator
should be robust. Appropriate and consistent behavior should result whatever the environment,
overall context, or number of agents.

9.1.3	 High-Level Features
In some ways, high-level features are used to create crowds more specific to the purpose of the simu-
lation. An author should be able to create behaviors typical to the scenario desired. This includes
both deliberative and reactive actions. For many scenarios, characters in the crowd need to appear
purposeful or functional. A viewer should be able to discern character goals. At the same time, the
characters should be able to react to the world around them and adhere to the constraints and needs
of real humans.

Furthermore, these various types of actions and behaviors should be allocated to the charac-
ters in a manner that results in a heterogeneous yet plausible crowd. Assigning actions of the char-
acters randomly would result in a chaotic simulation. Allocating actions according to character traits
should create a more realistic simulation. There are numerous human traits as studied in psychology,

Evaluating Crowds  133

sociology, physiology, and many other disciplines. The challenge in finding a reasonable set of traits
to create rich characters but not overwhelm scenario creation continues.

9.1.4	 Summary
As discussed, there are many possible crowd simulation features. Table 2.2 compares some of the
major systems based on just a few features. Constructing a simulator that includes them all can be
challenging, but the biggest challenge is also making sure that the simulator is robust and modifi-
able. It should be able to handle many scenarios and crowd sizes and it should be able to be tweaked
for specialized scenarios. Comparison of speed vs. quantity is also a consideration. How many char-
acters can the system simulate while maintaining a viable frame rate? Not all simulations need to be
real-time or even interactive, but even offline systems should be as efficient as possible to facilitate
the necessary testing and scenario exploration.

9.2	 COMPARISON TO REAL-WORLD DATA
Naturally, one method of evaluation for crowd simulations is to compare it with real-world data.
Although such data may not encompass all of the features we wish to analyze, there may be enough
data to do a baseline comparison.

9.2.1	 Sensor Data
The Mitsubishi Electric Research Laboratories recently recorded a year’s worth of motion sensor
data from their offices (Wren et al. 2007). Motion detectors were placed in the public spaces of their
offices and recorded data 24 hours a day. This data is limited to activations of motion sensors at 1-s
resolution but does provide a cursory sense of the flows of people. These flows could be compared
with simulation flows and temporal densities (Sunshine-Hill et al. 2007).

The computer vision community has also done research in tracking the flows of crowds and
even tracking individuals (Kang-Hoon et al. 2007a, 2007b). This type of data can help to illuminate
how people navigate an environment and cluster together. Other behavior, such as the type of ac-
tions performed and their frequency, could also be obtained from video clips. Missing from such
footage are the character traits and goals. We may be able to determine what the characters are do-
ing and where, but we still do not know why. In any case, it may provide a basis for comparison for
simulations.

9.2.2	 Action Statistics
Evaluating whether the characters in a simulation are performing appropriate actions in appropriate
proportions can be done by comparing the frequencies with the distributions acquired by various

134  Virtual Crowds: Methods, Simulation, and Control

communities. For example, studies have been done in management science to determine what per-
centage of time office workers spend on various tasks (Kurke and Aldrich 1983). The U.S. Depart-
ment of Labor also has a Bureau of Labor and Statistics, which provides some information about
the actions performed by various types of workers (last visited February 2008). Such resources can
provide information on both the demographics of the area to be simulated as well as the activities of
the population. This data could either be used to set up the simulation or for verification.

9.2.3	 Validation Through the Society of Fire Protection Engineers Guide
Guaranteeing safe egress is an important design requirement for any building size. There has been
considerable work trying to simulate human movement to be able to study egress, but validation of
those models is still a challenge. Some researchers have undertaken evacuation drills with humans
to compare the results against the simulation (Still 2000). Others are studying how to use tracking
data from real crowd movement to create data-driven methods by recording videos of real crowds,
extracting the 2D moving trajectories of each pedestrian and then learn an agent model from ob-
served trajectories (Kang-Hoon et al. 2007; Lerner et al. 2007). The final goal of fully validating a
crowd model in terms of human decision-making, psychological elements affecting human behav-
ior, individuals’ knowledge of the building affecting the simulation, or signaling and communication
having an impact on evacuation times has not been successfully carried out yet. So although there is
still much work that needs to be done before being able to move in that direction, currently we can
use quantitative data such as that provided by the Society of Fire Protection Engineers handbook
(SFPE 2003) to validate the accuracy of human movement for an evacuation application. Current
quantitative data can be used to validate egress (overall evacuation time, flow rates, and densities).
The SFPE guide is generally used by fire protection engineers to guarantee the evacuation of a
building within a required time. It is important to consider though that it is based on a hydraulic
model and therefore does not include the large variety of behaviors that humans can exhibit.

The Society of Fire Protection Engineers Model. The SFPE Engineering Guide to Human Be-
havior in Fire presents a hydraulic model to calculate human movement. The required evacuation
time (Trevac) is defined as the overall time from the moment the fire starts until the entire building
is evacuated. Trevac is defined as:

	 Trevac = td + ta + tp + ti + te ,	

where td is the detection time (time passed since the beginning of the fire until it is detected), ta is
the alarm time (time passed since the detection of the fire until the occupants of the building are
alerted), tp is the perception time (time passed until the building occupants perceive the fire), ti is

Evaluating Crowds  135

the interpretation time (time passed since the fire perception and decision-making, until the actual
evacuation starts), and te is the evacuation time (time passed since the evacuation starts until every-
body has left the building).

Accurately calculating Trevac is a difficult problem, since it depends on different elements that
can greatly differ between scenarios, based on the fire alarm systems, building knowledge of the oc-
cupants, individuals’ decision making, etc. For this reason, the time that is usually calculated and for
which we will carry out the validation of our model is te (time passed since occupants start moving
until the building has been completely evacuated).

According to the SFPE handbook, speed depends on the density and a constant k, which var-
ies depending on whether we are calculating speeds for a corridor, ramp, or staircases (k values can
be found in the SFPE handbook). The speed vs. density relationship is defined as:

	 0.85 · k if d ≤ 0.54 pers/m2	

	
v (m /s) =

 { k - 0.266 · k · d if d > 0.54 pers/m2	

For density values below 0.54 pers/m2, people move freely and independently of other oc-
cupants’ speed of movement.

The specific flow rate is the flow of occupants through a point of the evacuation route per
width unit and time. The flow rate vs. density curve stated by the SFPE follows the equation:

	 F = (1 - 0.266 · d ) · k · d ( pers/m/s)	

This curve indicates that as the density increases, the flow rate (persons per meter per second)
increases, but after a certain density, the flow rate starts decreasing because of the bottleneck that
appears in the doorway when many people are pushing to cross at the same time. We can therefore
ensure that these equations are satisfied by our simulation so that it closely matches real crowds’
densities, speeds, and flow rates.

9.3	 USER EVALUATIONS
One of the more common techniques for evaluating simulators is performing user studies. Studies
are set up to try to determine if the objectives of the simulations are being met or if the viewers are
being distracted by other elements of the simulation. These evaluations may include side-by-side
comparisons of different models or techniques. This may be used to determine the effectiveness of
different features or implementations of the simulation. Ablation studies can also be used to deter-
mine what features add to the simulation and which are simply not noticed. To obtain more hard
data, eye trackers might be considered. This would help to underline what is capturing viewers’ at-
tention and what is not being seen.

136  Virtual Crowds: Methods, Simulation, and Control

Another important aspect of crowd simulation evaluation is determining the amount of effort
needed to create and modify the simulations. User studies can also help to make this determination.
By asking subjects to create a new simulation or modify an existing one and then answer a few ques-
tions about the process, we may gain insight about authoring effort.

9.4	 Presence in Virtual Worlds
Large animated groups of autonomous agents are being widely used for computer graphics applica-
tions, video games, training, and education. An important practical problem in this research lies in
how to validate the models. There has been considerable work done in validating egress for evacua-
tion simulations based on the literature on human movement behavior, but there is no quantitative
data on how to validate human behavior when it comes to decision-making in this context.

Controlled experiments are therefore needed where human behaviors in response to differ-
ent crowd models can be tested. For example, during a fire, which exit routes would people select?
If there are leaders giving instructions, how many people would follow them? If there are strangers
communicating information, how much would others trust them? What motion paths are taken
and what movements are made by an individual in a crowd?

These experiments are usually either difficult to replicate in real life or simply impossible to
run in the first place (i.e., actual fire evacuation). Experiments in virtual environments (VEs) could
be invaluable for gathering the behavioral information necessary to improve current crowd simula-
tion models and consequently experimentally validate them.

To gather accurate information, it is essential to achieve presence so that a subject immersed in
the virtual experiment will behave as close as possible to real life (Sanchez-Vives and Slater 2005).
Presence is described as the extent to which people respond realistically to virtual events and situa-
tions. Responding realistically implies realism at many levels, ranging from physiological through
behavioral, emotional, and cognitive behaviors (Sanchez-Vives and Slater 2005).

An accepted method of measuring presence has yet to be agreed upon. Classic presence work
relied on questionnaires, but since questionnaires depend entirely on users’ subjective views of their
experience (Usoh et al. 2000), researchers found it necessary to develop other supplementary meth-
ods (Freeman et al. 1999). Those methods include behavioral measurements (social and postural re-
sponses, etc.) (Freeman et al. 2000; Bailenson et al. 2003), physiological measurements (galvanic skin
response, heart rate, etc.) (Slater et al. 2006), task performance measurements (completion times,
error rates, etc.) (Basdogan et al. 2000), and counting breaks in presence (Slater and Steed 2000).

Using one or more measuring methods, a number of findings have been published about
presence:

Being able to physically manipulate objects (Schubert et al. 2001) and communicate with
virtual humans in a VE increases a sense of presence (Slater et al. 2006).

•

Evaluating Crowds  137

Unnatural interactions with the VE, such as using a joystick to maneuver, can reduce the
sense of presence when compared with techniques that resemble real-life navigation such as
“walking in place” (Slater et al. 1995).
Breaks in presence (Slater et al. 2006) have been used to count the transitions from the vir-
tual to the real world. These transitions can be triggered by occurrences such as bumping
into a wall in an immersive environment, tripping over cables, and whiteouts (Slater and
Steed 2000).

These findings are important to consider when designing a realistic crowd simulation model.
Although crowd simulation validation currently exists for safe egress during evacuation by using
engineering guidelines, there has yet to be any validation based on human behavior during decision
making in more dangerous situations. With the knowledge that people act in a VE as if they are in
a real-world situation when they experience a high sense of presence, we believe that a good crowd
simulation model should promote this sense of presence. Once we have crowds that provide a high
sense of presence, we can confidently run simulations to study human behavior and use the resulting
data both to validate and improve current models.

Our interest lies in differentiating external crowd motion features from internal or egocentric
features. The computer animation community has been primarily concerned with the former, as a
good simulation will produce crowd movements that appear realistic to an outside observer. Ego-
centric features, on the other hand, are about what an active participant in the crowd simulation
would perceive visually or kinesthetically and thus provide computable measures of presence for the
subject.

This section first surveys the different crowd simulation models in the literature. We discuss
egocentric features that may affect presence and then qualitatively analyze which of these features
may break or increase presence. Finally, we present a pilot experiment and the results obtained.

9.4.1	 Important Egocentric Features
For the purpose of this study, we focus on four models that have been widely used for crowd simula-
tion [social forces (Helbing et al. 2000), rule-based (Reynolds 1987; Reynolds 1999), and cellular
automata (CA; Kirchner et al. 2003)] and the hybrid approach [HiDAC, Pelechano et al. 2007)]
explained in this book.

The main egocentric features that we can extract from these crowd models, which we
believe are significant factors influencing presence in VEs, are shaking, discrete/continuous move-
ment, overlapping, communication, and pushing. We will now describe how each of these fea-
tures is present or absent in each of the four models used for our study (a summary appears in
Table 9.1).

•

•

138  Virtual Crowds: Methods, Simulation, and Control

Shaking: how much the agents appear to vibrate while trying to move. Force-based models
are unstable and thus the position of each agent is slightly modified for each time step,
which yields the illusion of agents shaking continuously. In contrast, CA or rule-based
models do not suffer from this artifact, and HiDAC, although built on top of a forces
model̃, corrects this behavior through rules.
Discrete/continuous movement: how the agent moves from one position to another and
whether it is discretized or continuous in space. In CA models, agents move between dis-
crete adjacent cells in one time step, limiting turn direction options. The other models do
not discretize the space and therefore allow the agent to move within continuous space.
Overlapping: whether overlapping with other agents can occur. This effect can be observed
in some rule-based models where only collision avoidance is performed but not collision
response. Later versions of these models apply stopping rules to prevent overlapping (Shao
and Terzopoulos 2005). Although CA models avoid collisions by not allowing agents to
move to occupied cells, they allow agents to seemingly cross through each other. This oc-
curs when two agents simultaneously wish to move into each other’s occupied cells. Be-
cause the cells are occupied, they choose instead to move diagonally to the empty cells next
to the occupied ones, resulting in the trajectories of the agents crossing each other within
one simulation step. Social forces models and HiDAC do perform collision detection and
response to minimize overlapping.
Communication: represents the ability of the agents to exchange information about the
VE (Pelechano and Badler 2006). The original social forces, rule-based, and CA models
do not include this feature. HiDAC as well as some later versions of rule-based models

•

•

•

•

TABLE 9.1:  Simulation methodology impact on presence

Social forces Rule-based CA HiDAC

Shaking avoidance - + + +

Continuous movement + + - +

Overlapping avoidance + * - +

Communication - * - +

Pushing + - - +

+ indicates that the model readily admits this feature; -, it does not
*Later versions of this model have built these features on top of the original model.

Evaluating Crowds  139

incorporate communication as a way of sharing information about the environment and
giving instructions to other members of the crowd.
Pushing: having physical contact between the agents’ bodies. If this interaction occurs, then
one agent should be able to push others through the crowd. This feature is exhibited by
social forces models and HiDAC, but it is not performed in rule-based or CA models.

9.4.2	 Experimental Evidence From the Literature
There have been many experiments to date studying which elements of a VE could enhance or
reduce presence.

Slater et al. (2006) discovered that when a whiteout occurs while a participant is immersed in
a VE, there is a break in presence. This effect occurs, for example, if while navigating a VE the par-
ticipant walks through a virtual object or agent. The observed result would be as if the VE had sud-
denly disappeared. Based on these results, we conclude that it is essential there be no overlapping.

According to Schubert et al. (2001), “Presence is observable when people interact in and with
a virtual world as if they were there, when they grasp for virtual objects or develop fear of virtual
cliffs.” Interaction means “the manipulation of objects and the influence on agents.” Accordingly
we conclude that to enhance the sense of presence, a participant must be able to manipulate virtual
objects. One way a participant could feel as if they were affecting the virtual world would be by
pushing other agents they came into contact with.

Another way of interacting that increases the sense of presence is through communication
with the virtual agents. Some studies show that the heart rate of a participant increases when spoken
to by a virtual agent (Slater et al. 2006).

Studies show that discontinuous movement or jerkiness reduces presence. Jerkiness can be
observed when, for example, the VE suffers from low frame rate. As Barfield and Hendrix (1995)
concluded, “The subjective report of presence within the VE was significantly less using an update
rate of 5 and 10 Hz when compared to update rates of 20 and 25 Hz.” Therefore we can expect that
crowd models suffering from agents shaking, jerking back-and-forth or appearing to move between
separated discrete positions will likewise diminish the participant’s sense of presence.

9.4.3	 Pilot Experiment
For this work, we carried out a pilot experiment to closely study the behavior of people interacting
with a virtual crowd (Pelechano, et al. 2008).

For the experiment, we created a virtual scenario simulating a cocktail party. At the party
were virtual partygoers who walked around “mingling” with others through nonverbal communica-
tion and gestures. After a specified time, a bell rang and the virtual agents calmly exited the party.

•

140  Virtual Crowds: Methods, Simulation, and Control

The virtual agents were rendered using Cal3D (2008) and they had several animations as-
signed, including different walking styles that could be blended smoothly, and a set of idle and
gesturing animation clips that could be used when agents stop walking or gather around a table.

Figure 9.1 shows a crowd of virtual agents interacting during a cocktail party. People gather
around the tables to eat and engage in (nonverbal) conversation with others. On the right, we can
observe a close-up of one of the tables.

The scenario used for all four crowd models was a large room with round tables distributed so
that virtual agents could move around and stop around any of them to engage in nonverbal conver-
sation with other members of the crowd. When the bell rings, they all start walking calmly toward
the door with the exit sign above it. As the participant will walk within the crowd as another agent,
individuals will react depending on the crowd model being used [i.e., perform collision avoidance
(in rule-based and HiDAC), respond to interactions such as being pushed (in HiDAC and social
forces), not occupy the same cell (in CA), etc.]

Setup. Participants were members of a university community. They were recruited throughout
the campus by posting signs. Each volunteer subject was randomly assigned to a group when they
arrived.

The stimulus was a 3D model of a building, populated with virtual characters and furniture,
and presented using an eMagin Z800 3DVisor head-mounted display (with a resolution of 800 ×
600, field of view of 40°, and refresh rate of 60 Hz). In addition, participants wore four head sensors
that are part of the ReActor2 suit, an optical motion capture system from Ascension Technology.
The head sensors were used to determine where participants were looking and located in the VEs.

FIGURE 9.1:  Virtual crowd in a cocktail party (Pelechano, Stocker et al. 2008).

Evaluating Crowds  141

Task. Each subject was placed in the same VE with the same virtual characters, varying only
in the crowd model implemented (social forces, rule-based, CA, HiDAC) according to their group.
They were told that the purpose of the research was to assess the validity of the VE that we had
created. The potential risks of the experiment — eyestrain and nausea — were explained to them,
and they were told that they could withdraw at any time. The experimental protocol was formally
approved by our institution’s IRB.

The subject’s first experience in the virtual world was to locate three objects in the environ-
ment while the virtual characters in the environment were stationary. This was used as a training
phase to get them comfortable with moving through the environment, but not influenced by a
particular crowd model.

The subject was then assigned the task of walking around the cocktail party, counting the
number of red-haired partygoers and leaving when an alarm sounded. They were told to feel free to
explore the environment after finishing their task, but not to leave the room until they heard the bell
sound. When the alarm sounds, all of the partygoers also exit. We included this part of the experi-
ment so that each subject was guaranteed to experience a high-density crowd.

After completing the task, subjects were administered a questionnaire to help us determine
the level of presence that they experienced during their time in the VE. They were questioned about

FIGURE 9.2:  Participant during the experiment (Pelechano, Stocker et al. 2008).

142  Virtual Crowds: Methods, Simulation, and Control

their experience with video games and VEs to ensure that the independent variable (the different
crowd models) was the only contributing factor to the differences in achieved presence.

After the first questionnaire was completed, they returned to the virtual cocktail party and
were asked to count the number of red-haired partygoers again. As in the first part of the experiment,
they were asked to exit the room when a bell sounded. This time, the partygoers were driven by a dif-
ferent crowd model. After the second experience, they filled out another copy of the questionnaire.

All the participants were videotaped during their participation for collection of data that
could be used to study their involvement with the virtual people. After the experiment, participants
would answer several questions regarding their experience.

Figure 9.2 shows a participant during the experiment wearing the head-mounted display and
a large screen showing what the participant is observing. By videotaping the subject’s behavioral
response together with the scene we can simultaneously study the response of the person to the
behavior of the virtual crowd.

9.4.4	 Initial Results and Future Work
The goal of this pilot experiment was to examine whether participants interacting with a virtual
crowd experience would react to the virtual crowd as they would do in a similar real situation.

From our current experiments, we have been able to observe that some participants did ex-
hibit some behaviors consistent with the notion that they were responding to the crowd realistically.
As we indicated above, each participant did two experiments, the scenarios were exactly the same,
but in each case, we used a different crowd simulation model. Our goal for this pilot experiment is
to study presence in a virtual crowd regardless of the crowd model being implemented.

The results obtained for this study came from standard questionnaires that contained a part
with general questions and a part where participants could give any comments they had about their
experience. The other source of results came from the authors’ observing the subject’s behavioral
response from the videos. The part on questions was done initially to study the differences when
running different crowds models and the part on gathering their comments and observing the
videos were done to evaluate their presence in (by reactions to) a virtual crowd. In this section, we
will focus on the comments and the behavioral response, since the questionnaires did not provide
significant differences. As indicated in the literature on presence, questionnaires are not good enough
by themselves, and therefore, in future work, we should include other methods such as galvanic skin
response, ECG, respiration, administering personality tests, etc.

From the comments that our participants provided after doing the experiments, it is worth
mentioning a few:

“The sense of crowd movement was most compelling during the evacuation.”
“I felt bad whenever I bumped into someone.”

Evaluating Crowds  143

“The second time, everyone immediately started leaving, and it made me really want to leave as
well.”

These examples show that some people do think about the interaction with virtual agents in
a similar way as when they interact with real people.

In addition to administering a questionnaire, we also gained insight by examining videotapes
of participants’ behavioral responses. In those videos, we observed people moving backward after
bumping into a virtual agent, stepping sideways to avoid a virtual agent walking into them, and
turning their head to watch an agent walk around them. One of the participants even waved back
in response to a virtual agent’s wave.

The pilot experiment had background crowd noise as well as the noise of the bell. A participant
reported after the experiment, “I don’t remember if the tables or people made sounds when I bumped
into them. If they didn’t, that might have helped knowing when I hit something.” This comment is
very interesting from two perspectives; on the one hand, it shows such a high level of presence that the
person is not even aware of what he has or has not heard during the experiment; on the other hand,
it provides us with a valuable way of improving the next experiments. Given that it is not feasible to
provide force feedback for such a scenario, it would be interesting to have some “natural” feedback
that could allow the participant to realize that there is something wrong about the interaction or help
in feeling more immersed in the VE. There were more comments from several participants regard-
ing this topic, and although in general they were all pleased by the background noise enhancing their
experience in a virtual crowd, several improvements should be made in the future such as:

including stereo sound through headphones to enhance presence by being able to realize
when, as a participant, you are bumping into an object or a person in the virtual crowd (i.e.,
when you bump into virtual agent you hear a noise or complaint);
making the sound localized and clearer as the participant approaches a small group of
people engaged in conversation, so that the participant can hear what they are talking about
instead of just the noise of background voices.

As introduced in Section 4.2, during our pilot experiment, participants were first given a
training session where they learned to navigate the environment, followed by two identical scenarios
where different crowd simulation models where used. During training, participants were allowed
to walk around and observe the environment until they located all three objects. This time varied
from subject to subject. After the objects were located, subjects returned to the center of the room,
and the crowd of agents began to move according to the crowd simulation model being used. The
vast majority of the participants reported feeling more comfortable with the interaction during the
second experiment, probably because the training time was not long enough or should have in-
cluded agent movement.

•

•

144  Virtual Crowds: Methods, Simulation, and Control

“Much easier to navigate the second time. I had a feel for how fast I would be moving in the virtual
world and felt like I could pay more attention to the task and less on walking/looking.”

An additional finding from the comments that were made about the insufficient training is
that people appear to gauge their virtual movement based on the relative movement of others. Since
subjects claim to not have understood their movement relationship with the world until they saw
the virtual humans move, this is evidence that they are very sensitive not only to the general move-
ment of the members of the virtual crowd but specifically to the inconsistencies between their own
real movement and the artificial crowd movements. If this is the case, it is essential for the crowd
members to move in a realistic way that the subject expects and can mimic.

Another important element that is mentioned in Section 3.1 is the communication factor,
which would significantly increase the feeling of being part of a virtual crowd and the level of in-
teraction with the agents:

“It would be more realistic to be able to make out conversations while close to groups of people.”
Finally, it is worth mentioning the current limitations of the equipment, mainly the low reso-

lution of the head-mounted display and the narrow field of view:
“Restricted field of view made it harder, but I’m used to that from (other) games.”
“Low resolution made identifying the shrimp hard. . . .”
In the future, we are considering using equipment that can provide higher levels of immer-

sion and increase the feeling of presence, such as an immersive display room, which offers higher
resolution and wider field of view.

9.4.5	 Conclusions on Presence as a Validation Method
Crowd simulation models are currently lacking a commonly accepted validation method. We sug-
gest the sense of presence in immersive VE as a possible method of validation. With the experimental
evidence found in the presence literature, we can make a decision on which features a crowd simula-
tion model should have to achieve high levels of presence.

Using egocentric features based on established presence-enhancing experiences, we hypoth-
esize that interacting with the other agents in a crowd (by our virtual representation being pushed
physically and by communicating with them) and being able to materially affect the movements
of other members of the crowd (by pushing on them and having them avoid collisions with the
user) will likely enhance a subject’s sense of presence. Arranging for the virtual crowd to push back
(physically) on the subject is clearly more difficult, and we may be able to explore a haptic solution
using vibrotactile elements (Bloomfield and Badler 2007). Experiments are in progress to test these
hypotheses.

Evaluating Crowds  145

Virtual reality experiments with virtual crowds are necessary to study human behavior under
panic or stressful situations that cannot be evaluated in the real world (i.e., building evacuation
because of fire). To carry out those experiments, it is necessary to use a crowd simulation model in
which a real person is seamlessly immersed and experiences a high sense of presence when interacting
with such a crowd.

With a participant immersed in a VE crowd, we expect to observe the same type of behavior
as in real life. Therefore, we could run experimental scenarios to study human behavior and decision
making in stressful situations. Immersive VEs have successfully been applied to cure some phobias,
such as fear of public speaking, heights, flying, etc. Likewise, we could use a VE for two new pur-
poses: studying human behavior to improve current crowd simulation models and employing this
VE for building design simulations.

• • • •

147

chapter 1 0

Summary

We have presented a framework to realistically simulate crowds affected by psychological and physi-
ological elements within complex virtual environments. The framework also includes contextual
actions performed by agents with roles to create functional, heterogeneous crowds. To deal with the
simulation of wayfinding and communication for each agent, we described the MACES system,
and for low-level navigational movement of the agents, we presented the HiDAC system. To create
functional crowd animations, the CAROSA system incorporates higher-level control and authoring
of human textures.

CAROSA provides a framework for authoring simulations of everyday life. It is not lim-
ited to simulating evacuation scenarios, but it could be used to provide starting positions for such
simulations. It aims to simulate the rich tapestry of human behaviors found in real-world scenarios.
Attributes of the CAROSA framework include:

the simulations of functional crowds depicting agents performing actions appropriate to
the context;
a parameterized action representation, and a persistent reusable database for storing them,
that holds general semantics for both actions and objects, providing a baseline of informa-
tion from which new scenarios can be constructed;
four action types grounded in parameterized action representations that enrich the simula-
tion with a variety of behaviors and can be fine-tuned to particular scenarios;
behaviors that are emergent from the interaction of the four action types in a rich, dynamic
environment;
heterogeneous crowds that stem from both parameters available in MACES and HiDAC
and from parameters used to link character traits to specific actions and contexts;
interfaces designed to ease the burden of scenario creation and modification.

MACES implements wayfinding and inter-agent communication during an evacuation sce-
nario for crowds unfamiliar with the internal structure of the environment. It considers individual-
ism by assigning different roles to each agent (trained leaders, untrained leaders, and followers). The

•

•

•

•

•

•

148  Virtual Crowds: Methods, Simulation, and Control

flexibility of the model allows for variations in the number of people, building structure, number of
hazards, and combinations of roles for the agents.

The main contributions of MACES are:

A wayfinding algorithm to allow individuals in a crowd to explore an unfamiliar building
in order to find exits during an emergency;
using inter-agent communication to share knowledge of the building during building ex-
ploration and wayfinding;
inclusion of roles to provide individualism into the crowd. Agents have a given personality
that will drive high-level behavior, while they are also endowed with psychological ele-
ments such as impatience and panic that can affect internal state at any time and conse-
quently modify overall behavior;
inclusion of psychological elements (panic and impatience) that affect agents’ wayfinding
by introducing orientation difficulties and interactive path planning based on changes in
the environment and bottlenecks.

The low-level system, HiDAC, can be tuned to simulate different types of crowds, ranging
from extreme panic situations (fire evacuation) to high-density crowds under calm conditions (leav-
ing a cinema after a movie). The system has been calibrated using data from real human behavior to
exhibit reasonable velocities, flow rates, and densities.

At the local motion level, we introduced a list of techniques to achieve realistic high density
crowd simulation including:

eliminating shaking behavior implicit in the basic social forces model. The method consists
of applying braking forces to the social forces model when repulsion forces coming from
other agents appear opposite to the desired direction of movement.
fast perception method based on having influence rectangles and prioritizing obstacles
based on distances, angles, and directions of movement;
natural bidirectional flows and overtaking based on a combination of variable length rect-
angles of influence, differential right preferences, and relative direction between autono-
mous agents;
emergent queuing behavior by using influence discs that trigger waiting behavior based on
agent direction. This, combined with different tangential weights for the avoidance forces,
yields a variety of line and queue formations.
realistic pushing behavior achieved by applying collision response based on pushing thresh-
olds and personal distances;

•

•

•

•

•

•

•

•

•

Summary  149

falling agents becoming new obstacles. These obstacles are addressed by applying weak
tangential forces (but not repulsion forces), which do not guarantee that the agents will
always walk around the fallen victim.
panic behavior and panic propagation. Panic does not only serve to increase the velocity
of the agents. In HiDAC, panic affects velocities and overall behavior by driving agents
to not respect lines and by modifying pushing thresholds. Panic behavior can be perceived
by other agents in the crowd and, given their personality parameters, who may also start
exhibiting that type of emergent behavior.

By combining high-level action selection for functional crowds (CAROSA), mid-level deci-
sion making including navigation driven by communication and roles (MACES) and a low-level
local motion system (HiDAC), groups of agents exhibit a large variety of emergent behaviors. The
three systems interact in real time while being driven by a set of psychological and physiological
parameters that allow the user to have control over the initial setup and final behavior exhibited by
the crowd.

• • • •

•

•

151

Simple Building Plan Editor

To facilitate rapid generation of a wide variety of large complex environments in which we could run
our crowd simulation model, we implemented a building editor (Figure A.1).

This editor allows us to create buildings of any number of floors while we can simultaneously
visualize them in both 2D and 3D (Figure A.2). The 2D view allows visualizing one floor at a time
and specifying the geometry of the layout by locating walls, columns, stairs, windows, etc. just by
clicking with the mouse in the position where we want to place the element selected from the right
panel.

Once the building is created, we can save it in ASCII format that can be loaded afterward in
our crowd simulation system to generate the cell and portal graph in which the autonomous agents
can navigate. The ASCII format used allows easily picturing the final layout and also straightfor-
wardly adding changes to the geometry without even needing to employ the editor.

FIGURE A.1: Building editor.

A P P E N D I X A

152  Virtual Crowds: Methods, Simulation, and Control

Although this building editor is very limited in the type of buildings that we can create,
it was out of the scope of this work to develop as complete a building editor as the commercial
software tools available, but instead, our goal was to have our own fast and simple way of creating
new buildings complex enough to test all the abilities of the crowd simulation system presented
in this book. In the future, we would like to load appropriate CAD files as well and create the cell
and portal graphs from those files that are necessary for our crowd simulation system.

FIGURE A.2: Example of high-rise building editing and some 3D views.

type parameterized action =

(name: STRING;

participants: agent-and-objects;

applicability conditions: BOOLEAN-expression;

preparatory specification sequence conditions-and-actions;

termination conditions BOOLEAN-expression;

post assertion: STATEMENT;

during conditions: STATEMENT;

purpose: purpose-specification;

subactions: par-constraint-graph;

parent action: parameterized action;

previous action: parameterized action;

concurrent action: parameterized action;

next action: parameterized action;

start: time-specification;

duration: time-specification;

priority: INTEGER;

data: ANY-TYPE;

kinematics: kinematics-specification;

dynamics: dynamics-specification;

manner: manner-specification;

adverbs: sequence adverb-specification).

Parameterized Action
Representation

A P P E N D I X b

153

154  Virtual Crowds: Methods, Simulation, and Control

type agent-and-objects =

(agent: agent representation;

objects: sequence object representation).

type conditions-and-actions =

(condition: BOOLEAN-expression;

actions: parameterized action).

type purpose-specification =

(achieve: BOOLEAN-expression;

generate: sequence parameterized action;

enable: sequence parameterized action).

type par-constraint-graph = (SEQUENTIAL,

PARALLEL,

PARALLEL-JOIN,

PARALLEL-INDEPENDENT,

WHILE).

type time-specification =

(type: (ABSOLUTE,

PAR-RELATIVE),

units: (FRAMES, SECONDS);

value: REAL).

type kinematics-specification =

(time: time-specification;

velocity: vector;

acceleration: vector;

position: site;

path: path-specification).

type dynamics-specification =

(force: vector;

torque; vector).

type vector =

(x: REAL;

	

y: REAL;

z: REAL).

type site =

(position: vector;

orientation: vector).

type path-specification =

(direction: sequence direction-specification;

start: location-specification;

end: location-specification;

distance: REAL;

modifiers: (single-path-modifiers, aggregate-path-
modifiers)).

type direction-specification =

(direction: (ACROSS,

CLOCKWISE,

TO,

AROUND,

DOWN,

. . .),

object: object representation).

type location-specification = (site, sequence position-specification).

type position-specification =

(position: (ON,

AT,

IN,

…),

object: object representation).

type single-path-modifiers = (FOLLOWING,

GUIDING,

SHADOWING,

 . . .

PARAMETERIZED ACTION REPRESENTATION  155

156  Virtual Crowds: Methods, Simulation, and Control

type aggregate-path-modifiers = (SWARMING,

CONGREGATING,

DISPERSING,

. . .).

type manner-specification =

(effort: effort-specification;

shape: shape-specification).

type effort-specification =

(space: REAL;

weight: REAL;

time: REAL;

flow: REAL).

type shape-specification =

(vertical: REAL;

lateral: REAL;

sagittal: REAL;

shapeflow: REAL).

type adverb-specification =

(name: (SLOWLY,

HAPPILY,

EXCITEDLY,

DIRECTLY,

STRONGLY,

HAPHAZARDLY,

. . .),

modifiers: (EVEN,

MORE,

. . .)).

type object representation =

(name: STRING;

is agent: BOOLEAN;

properties: sequence property-specification;

status: status-specification;

posture: posture-specification;

location: object representation;

contents: sequence object representation;

capabilities: sequence parameterized action;

relative directions: sequence relative-direction-specification;

special directions: sequence special-direction-specification;

sites: sequence site-type-specification;

bounding volume: bounding-volume-specification;

coordinate system: site;

position: vector;

velocity: vector;

acceleration: vector;

orientation: vector;

data: ANY-TYPE.

type property-specification =

(name: STRING;

value: ANY-TYPE).

type status-specification = (NONE/DEAD,

IDLE/OPERATIVE,

ACTIVE(parameterized action).

type posture-specification = (NONE,

NEUTRAL,

SIT,

STAND,

CROUCH,

PRONE,

PARAMETERIZED ACTION REPRESENTATION  157

158  Virtual Crowds: Methods, Simulation, and Control

SUPINE,

KNEEL,

OPEN,

CLOSE,

AJAR,

. . .).

type relative-direction-specification =

(name: relative-orientation;

value: site).

type relative-orientation = (FRONT,

BACK,

LEFT,

RIGHT,

TOP,

BOTTOM).

type special-direction-specification =

(name: STRING;

value: site).

type site-type-specification =

(name: (GRASP,

APPROACH,

BASE,

. . .),

sites: sequence site).

type bounding-volume-specification =

(type: (SPHERE,

BOX,

CONVEXHULL);

value: sequence site).

AgentProc::update() //executed for each agent in the simulation
{

// Reactive actions
attendToEnv(getCurrentRoom()) // reactive actions added to action queue

	
// Opportunistic actions

updateNeeds()
checkNeeds() // updates the priority of the associated ipars on the queue
scheduleOpportunistic() // determines if any of the opportunistic actions need

to be scheduled and updates the queue
	

//Scheduled actions
sort(actionQueue, priority) // queue manager functionality

foreach ipar in the actionQueue { // starting with highest priority and going to lowest
if (ipar.actionType == reactive) {
suspendCurrentAction(); // stop current action and return it to the queue with the highest

priority
perform(ipar); // execute the reactive ipar, perform is the

process manager
}
else if(ipar.startTime <= currentTime)

perform(ipar); //if there are conflicting actions, the perform function will keep processing
the highest priority action

}
if (status == idle) { //if there are currently no actions being performed. Note:

opportunistic actions don’t have startTimes below a certain needLevel

Agent Process Algorithm

A P P E N D I X c

159

160  Virtual Crowds: Methods, Simulation, and Control

perform(defaultIpar); // the specific sub-action will be chosen from
the distribution in the perform procedure

}	
}

AgentProc::perform(ipar)
{

if (!ipar.terminationConditions() && // check termination conditions
 ipar.applicabilityConditions()) { // check applicability conditions
	 handlePrepSpecs(ipar) // check preparatory specifications and add any necessary actions

if (ipar.actionType == aleatoric)
ipar.setSubActions(ipar.duration) // choose the sub-actions and their durations

according to the distributions
execute(ipar) // send the ipar to the motion generators (HiDAC) to be performed

 while (ipar.getStatus == executing) {
 if(ipar.terminationConditions()) {

ipar.terminate() // end action
ipar.postAssert() // assert post assertions including reaction statuses, locations, etc.

 }
else updateStatus() // query or process updates from the motion generators, including

during conditions and failures
 }

}

//if action was a reaction, the post-assert updates the reaction.status to completed for that room
and marks the time. When the agent leaves the room, completed is reset to pending.
void AgentProc::attendToEnv(int roomID) {

foreach reaction on reactionlist {
if (reaction.status == completed && currentTime - reaction.lastTime > delta) // reset the

reactions after a predetermined time
 reaction.status = pending

// if the condition holds and the reaction isn’t happening
if (HiDAC->checkStatus(reaction.condition, roomID) && reaction.status == pending)

reaction.ipar.priority = highest on queue // could be based on individual
						 differences (personal priorities)

reaction.agents->addToQueue(reaction.ipar)
reaction.status = reacting

			 }
		 }
}

void AgentProc::updateNeeds() {
foreach need on needlist
need.level = need.level – need.rate // each need may have a different deterioration rate, which

should be much less than the additive rate
}

// There is currently one action that will fulfill each need and the action is always on the queue (if
not being executed)
void AgentProc::checkNeeds() {

foreach need on needlist
need.ipar.priority = f(need.level) // priority is a function of need level

}
void AgentProc::scheduleOpportunistic() {

sort(needlist, -need.level) // prioritize needs with high levels
foreach need on needlist {

availableTime = getSlackTime(timeWindow); // timeWindow would be how far in the
future to look for available time

proximity = f(need.level) // if the need is great the agents are willing to travel further
resource = getClosestResource(proximity, getCurrentLocation(),

getNextAction(), need); // returns resource with proximity to the path to the next action
		 if (canSchedule(resource, getNextAction()->location, availableTime, need.ipar.
duration))

{
 // time to resource + action time + time to end goal

ipar = createComplexIpar(need.ipar, getNextAction) // combine
the two ipars

addToQueue(ipar)
}

}
}

AGENT PROCESS ALGORITHM  161

163

AEA-Technology (2002). A Technical Summary of the AEA EGRESS Code.
Ahn, J., Oh, S. and Wohn, K. (2006). Optimized Motion Simplification for Crowd Animation.

Computer Animation and Virtual Worlds. 17: 155–165. doi:10.1002/cav.119
Allbeck, J. and Badler, N. (2002). Embodied Autonomous Agents. Handbook of Virtual Environ-

ments: Design, Implementation and Applications. K. Stanney (ed.). Lawrence Erlbaum As-
sociates, Philadelphia, PA: 313–332.

Allbeck, J. and Badler, N. (2003). Representing and Parameterizing Agent Behaviors. Life-like
Characters: Tools, Affective Functions and Applications. H. Prendinger and M. Ishizuka (eds.).
Springer, Germany: 19–38.

Allbeck, J. and Badler, N. (2004). Creating Embodied Agents with Cultural Context. Agent culture:
Designing virtual characters for a multi-cultural world. R. Trappl and S. Payr (eds.). Lawrence
Erlbaum Associates, New York: 107–126.

Allbeck, J., Bindiganavale, R., Kipper, K., Moore, M., Schuler, W., Badler, N., Joshi, A. K. and
Palmer, M. (2000). Authoring Embodied Agents’ Behaviors through Natural Language
and Planning. In. Proc. Workshop on Key Problems for Creating Real-time Embodied Autono-
mous Agents at Autonomous Agents Conference, Barcelona, Spain.

Allbeck, J., Kipper, K., Adams, C., Schuler, W., Zoubanova, E., Badler, N., Palmer, M. and Joshi,
A. (2002). ACUMEN: Amplifying Control and Understanding of Multiple Entities. In.
Proc. Autonomous Agents and Multi-Agent Systems, Bologna, Italy, ACM Press. New York,
USA: 191–198.

Allbeck, J. M. and Badler, N. I. (2001). Consistent Communication with Control. In. Proc. Work-
shop on Non-Verbal and Verbal Communicative Acts to Achieve Contextual Embodied Agents at
the 5th International conferences on Autonomous Agents, Montreal (Canada): 21–26.

Andersen, R., Berrou, J. L. and Gerodimos, A. (2005). On Some Limitations of Grid-Based (CA)
Pedestrian Simulation Models. In. Proc. First International Conference on Crowds Simulation.
V-CROWD’05, Lausanne (Switzerland).

Ashida, K., Lee, S.-J., Allbeck, J.M., Sun, H. and Badler, N. I. (2001). Pedestrians: Creating Agent
Behaviors through Statistical Analysis of Observation Data. In. Proc. Computer Animation,

References

http://dx.doi.org/10.1002/cav.119

164  Virtual Crowds: Methods, Simulation, and Control

Seoul, Korea, IEEE Computer Society. Washington, DC, USA: 84–92. doi:10.1109/
CA.2001.982380

Badler, N., Allbeck, J., Zhao, L. and Byun, M. (2002). Representing and Parameterizing Agent
Behaviors. In. Proc. Computer Animation, Geneva, Switzerland, IEEE Computer Society
Washington, DC, USA: 133–143. doi:10.1109/CA.2002.1017521

Badler, N., Erignac, C. and Liu, Y. (2002). Virtual Humans for Validating Maintenance Proce-
dures. Communications of the ACM. 45(7): 56–63. doi:10.1145/514236.514264

Badler, N., Phillips, C. and Webber, B. (1993). Simulating Humans: Computer Graphics, Animation,
and Control. Oxford University Press, New York.

Badler,N. I., Bindiganavale, R., Allbeck, J., Schuler, W., Zhao, L. and Palmer, M. (2000). Parame-
terized Action Representation for Virtual Human Agents. Embodied Conversational Agents.
J. Cassell (ed.). MIT Press, Cambridge, MA, USA: 256–284.

Bailenson, J. N., Blascovich, J., Beall, A. C. and Loomis, J. M. (2003). Interpersonal Distance in
Immersive Virtual Environments. Personality and Social Psychology Bulletin. 29: 1–15.

Ball, G. and Breese, J. (2000). Emotion and Personality in a Conversational Character. Embodied
Conversational Agents. J. Cassell, J. Sullivan, S. Prevost and E. Churchill (eds.). MIT Press,
Cambridge, MA: 189–219.

Barfield, W. and Hendrix, C. (1995). The Effect of Update Rate on the Sense of Presence within
Virtual Environments. Journal of the Virtual Reality Society. 1(1): 3–16. doi:10.1007/
BF02009709

Basdogan, C., Ho, C., Srinivasan, M. A. and Slater, M. (2000). An Experimental Study on the Role
of Touch in Shared Virtual Environments. ACM Transactions on Computer Human Interac-
tion. 7(4): 443–460. doi:10.1145/365058.365082

Bayazit, O. B., Lien, J.-M. and Amato, N. M. (2002). Roadmap-Based Flocking for Complex
Environments. In. Proc. Pacific Conference on Computer Graphics and Applications, Beijing,
China, IEEE Computer Society Washington, DC, USA: 104–113.

Berrow, J. L., Beechan, J., Quaglia, P., Kagarlis, M. A. and Gerodimos, A. (2005). Calibration and
Validation of the Legion Simulation Model using Empirical Data. In. Proc. Pedestrian and
Evacuation Dynamics. (PED), Viena, Springer Berlin: 167–181.

Bindiganavale, R., Schuler, W., Allbeck, J., Badler, N., Joshi, A. and Palmer, M. (2000). Dynami-
cally Altering Agent Behaviors Using Natural Language Instructions. In. Proc. Autonomous
Agents, ACM New York, NY, USA: 293–300. doi:10.1145/336595.337503

Bloomfield, A. and Badler, N. (2007). Collision Awareness using Vibrotactile Arrays. In. Proc.
IEEE Virtual Reality Conference, Charlotte, NC, USA: 163–170.

Bouvier, E. and Cohen, E. (1995). Simulation Of Human Flow With Particles Systems. In. Proc.
Simulators International XII, Phoenix.

http://dx.doi.org/10.1109/CA.2001.982380
http://dx.doi.org/10.1109/CA.2001.982380
http://dx.doi.org/10.1109/CA.2002.1017521
http://dx.doi.org/10.1145/514236.514264
http://dx.doi.org/10.1007/BF02009709
http://dx.doi.org/10.1007/BF02009709
http://dx.doi.org/10.1145/365058.365082
http://dx.doi.org/10.1145/336595.337503

References  165

Bouvier, E. and Guilloteau, P. (1996). Crowd Simulation in Immersive Space Management. In.
Proc. Eurographics Workshop on Virtual Environments and Scientific Visualization, Springer-
Verlag. Berlin: 104–110.

Braun, A., Musse, S. R., de Oliveira, L. P. L. and Bodmann, B. E. J. (2003). Modeling Individual Be-
haviors in Crowd Simulation. In. Proc. Computer Animation and Social Agents (CASA), IEEE
Computer Society. Washington, DC, USA: 143–148. doi:10.1109/CASA.2003.1199317

Brogan, D. and Hodgins, J. (1997). Group Behaviors for Systems with Significant Dynamics. Au-
tonomous Robots. 4: 137–153.

Brogan, D. and Hodgins, J. (2002). Simulation Level of Detail for Multiagent Control. In. Proc.
Autonomous Agents and Multiagent Systems, Italy, ACM Press. New York, USA: 199–
206 doi:10.1145/544741.544789

Brown, R. W. (1954). Mass Phenomena. Handbook of social psychology. G. Lindzey (ed.). Addison-
Wesley, Cambridge, Mass. 2: 833–876.

Buckmann, L. T. and Leather, J. (1994). Modelling Station Congestion the PEDROUTE Way.
Traffic Engineering and Control. 35(6): 373–377.

Burgoon, J. K., Buller, D. B. and Woodall, W. G. (1989). Nonverbal Communication, The UnSpoken
Dialgue. Harpor and Row, New York.

CAL3D(2008). 3D Character Animation Library: http://home.gna.org/cal3d/.
Cassell, J., Bickmore, T., Billinghurst, M., Campbell, L., Chang, K., Vilhjalmsson, H. and Yan, H.

(1999). Embodiment in Conversational Interfaces. In. Proc. Special Interest Group on Com-
puter-Human Interaction SIGCHI, Pittsburgh, USA: 520–527. doi:10.1145/302979.303150

Cassell, J., Sullivan, J., Prevost, S. and Churchill, E. (2000). Embodied Conversational Agents. The
MIT Press, Cambridge, MA, USA.

Chenney, S. (2004). Flow Tiles. In. Proc. ACM SIGGRAPH/ Eurographics Symposium on Computer
Animation, Grenoble, France: 233–242. doi:10.1145/1028523.1028553

Chi, D., Costa, M., Zhao, L. and Badler, N. (2000). The EMOTE Model for Effort and Shape.
In. Proc. ACM SIGGRAPH, New Orleans, LA, ACM Press. New York, USA: 173–183.
doi:10.1145/344779.352172

Collier, G. (1985). Emotional Expression. Lawrence Erlbaum, Hillsdale, NJ.
Coyne, B. and Sproat, R. (2001). WordsEye: An Automatic Text-to-Scene Conversion System. In.

Proc. ACM SIGGRAPH, ACM Press. New York, USA: 487–496. doi:10.1145/383259.38
3316

Dijkstra, J., Timmermans, H. J. P. and Jessurun, A. J. (2000). A Multi-Agent Cellular Automata
System for Visualizing Simulated Pedestrian Activity. In. Proc. Theoretical and Practical Is-
sues on Cellular Automata. Cellular Automata for research and Industry, Springer-Verlag. Ber-
lin: 29–36.

http://dx.doi.org/10.1109/CASA.2003.1199317
http://dx.doi.org/10.1145/544741.544789
http://home.gna.org/cal3d/
http://dx.doi.org/10.1145/302979.303150
http://dx.doi.org/10.1145/1028523.1028553
http://dx.doi.org/10.1145/344779.352172
http://dx.doi.org/10.1145/383259.383316
http://dx.doi.org/10.1145/383259.383316

166  Virtual Crowds: Methods, Simulation, and Control

Durupinar, F., Allbeck, J., Pelechano, N. and Badler, N. (2008). Creating Crowd Variation with the
OCEAN Personality Model. In. Proc. Autonomous Agents and Multi-Agents Systems, Estoril,
Portugal, ACM Press. New York, NY, USA: 1217–1220.

Ekman, P. and Friesen, W. V. (1977). Manual for the Facial Action Coding System. Consulting Psy-
chologists Press, Palo Alto, CA.

El-Nasr, M. S., Ioerger, T. R. and Yen, J. (1999). Petteei: A Pet with Evolving Emotional Intelli-
gence. In. Proc. 3rd International Conference on Autonomous Agents, Seattle, WA, ACM Press.
New York, USA: 9–15. doi:10.1145/301136.301150

Farenc, N., Boulic, R. and Thalmann, D. (1999). An Informed Environment Dedicated to
theSimulation of Virtual Humans in Urban Context. In. Proc. Eurographics: 309–318.
doi:10.1111/1467-8659.00351

Farenc, N., Musse, S. and Schweiss, E. (2000). A Paradigm for Controlling Virtual Humans in
Urban Environment Simulations. Applied Artificial Intelligence 14: 69–91. doi:10.1080/
088395100117160

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. The MIT Press, Cambridge, MA.
Freeman, J., Avons, S. E., Meddis, R., Pearson, D. E. and IJsselstijn, W. A. (2000). Using Behav-

ioral Realism to Estimate Presence: A Study of the Utility of the Postural Responses to
Motion Stimuli. Presence: Teleoperators and Virtual Environments. 9: 149–164.

Freeman, J., Avons, S. E., Pearson, D. E. and IJsselstijn, W. A. (1999). Effects of Sensory Informa-
tion and Prior Experience on Direct Subjective Ratings of Presence. Presence: Teleoperators
and Virtual Environments. 8(1): 1–13. doi:10.1162/105474699566017

Fruin, J. J. (1971). Pedestrian Planning and Design. 2nd. Ed., Elevator World, Mobile AL. 1987.
Funge, J., Tu, X. and Terzopoulos, D. (1999). Cognitive Modeling: Knowledge, Reasoning, and

Planning for Intelligent Characters. In. Proc. SIGGRAPH, Los Angeles, USA: 29–38.
Galea, E. R., Perez Galparsoro, J. M. and Pearce, J. (1993). A Brief Description of the EXODUS

Evacuation Model. In. Proc. International Conference on Fire Safety, San Francisco, USA:
149–162.

GeniusConnect. (2007). GeniusConnect. http://www.geniusconnect.com/articles/Products/2/3/.
Gibson, J. J. (1977). The theory of affordances. Perceiving, Acting and Knowing. R. Shaw and J.

Bransford (eds.). Erlbaum, Hillsdale, NJ.
Golledge, R. G. (1999). Wayfinding behavior: cognitive mapping and other spatial processes. Johns

Hopkins University Press, Baltimore, MD, USA.
Gratch, J. and Marsella, S. C. (2004). Evaluating the modeling and use of emotion in virtual hu-

mans. In. Proc. Autonomous Agents and Multiagent Systems, New York, ACM Press. New
York, USA: 320–327.

http://dx.doi.org/10.1145/301136.301150
http://dx.doi.org/10.1111/1467-8659.00351
http://dx.doi.org/10.1080/088395100117160
http://dx.doi.org/10.1080/088395100117160
http://dx.doi.org/10.1162/105474699566017
http://www.geniusconnect.com/articles/Products/2/3/

References  167

Hait, A., Siméon, T. and Taïx, M. (2002). Algorithms for Rough Terrain Trajectory Planning. Ad-
vanced Robotics. 16(8). doi:10.1163/15685530260425693

Haumont, D., Debeir, O. and Sillion, F. (2003). Volumetric cell-and-portal generation. Computer
Graphics Forum. 22(3): 303–312.

Hayes-Roth, B., Van Gent, R. and Huber, D. (1996). Acting in Character, Knowledge Systems
Laboratory, Stanford University, Stanford, CA, USA.

Helbing, D., Buzna, L., Johansson, A. and Werner, T. (2005). Self-Organized Pedestrian Crowd
Dynamics. Transportation Science. 39(1): 1–24. doi:10.1287/trsc.1040.0108

Helbing, D., Farkas, I., Molnar, P. and Vicsek, T. (2002). Simulation of Pedestrians Crowds in
Normal and Evacuation Situations. In. Proc. Pedestrian and Evacuation Dynamics, Springer-
Verlag. Berlin: 21–58.

Helbing, D., Farkas, I. and Vicsek, T. (2000). Simulating Dynamical Features of Escape Panic.
Nature. 407: 487–490.

Henderson, L. F. (1971). The Statistics of Crowd Fluids. Nature. 229: 381–383. doi:10.1038/
229381a0

Hoogendoorn, S. P. (2003). Pedestrian Travel Behavior Modeling. In. Proc. Travel Behavior Research
Lucerne, Elsevier: 10–15.

Johnstone, K. (1979). Status: Impro: Improvisation and the Theatre. Theatre Arts Books, New York,
NY, USA.

Kavraki, L., Svestka, P., Latombe, J. and Overmars, M. (1996). Probabilistic Roadmaps for Path
Planning in High-Dimensional Configuration Spaces. IEEE Transaction on Robotics and
Automation. 12(4): 566–580. doi:10.1109/70.508439

Kirchner, A., Namazi, A., Nishinari, K. and Schadschneider, A. (2003). Role of Conflicts in
the Floor Field Cellular Automaton Model for Pedestrian Dynamics. In. Proc. 2nd In-
ternational Conference on Pedestrians and Evacuation Dynamics. (PED), London, UK:
51–62.

Klupfel, H. (2003). A Cellular Automaton Model for Crowd Movement and Egress Simulation.
PhD thesis, University of Duisburg-Essen.

Knapp, M. L. and Hall, J. A. (1992). Nonverbal Communication in Human Interaction. Harcourt
Brace Jovanovich College Publisher, Fort Worth, TX.

Kuligowski, E. D. and Peacock, R. D. (2005). A Review of Building Evacuation Models, Fire Re-
search Division. Building and Fire Research Laboratory. National Institute of Standards
and Technology.

Kurke, L. B. and Aldrich, H. E. (1983). Mintzberg was Right!: A Replication and Extension of the
Nature of Managerial Work. Management Science. 29(8): 975–984.

http://dx.doi.org/10.1163/15685530260425693
http://dx.doi.org/10.1287/trsc.1040.0108
http://dx.doi.org/10.1038/229381a0
http://dx.doi.org/10.1038/229381a0
http://dx.doi.org/10.1109/70.508439

168  Virtual Crowds: Methods, Simulation, and Control

Kwek, S. (1997). On a Simple Depth-First Search Strategy for Exploring Unknown Graphs. In.
Proc. Workshop on Algorithms and Data Structures (WADS), Springer Lecture Notes in Com-
puter Science: 345–353.

Lamarche, F. and Donikian, S. (2004). Crowd of Virtual Humans: a New Approach for Real Time
Navigation in Complex and Structured Environments. Computer Graphics Forum. 23(3):
509–518. doi:10.1111/j.1467-8659.2004.00782.x

Lau, M. and Kuffner, J. (2005). Behavior Planning for Character Animation. In. Proc. ACM SIG-
GRAPH/EUROGRAPHICS Symposium on Computer Animation, ACM Press. New York,
USA: 271–280. doi:10.1145/1073368.1073408

Lee, K. H., Choi, M. G., Hong, Q. and Lee, J. (2007). Group Behavior from Video: A Data-Driven
Approach to Crowd Simulation. In. Proc. ACM SIGGRAPH / Eurographics Symposium on Com-
puter Animation, San Diego, Eurographics Association Aire-la-Ville, Switzerland: 109–118.

Legion. (2003). Legion International Ltd. from http://www.legion.biz.
Lenat, D. and Guha, R. V. (1990). Building Large Knowledge-Based Systems: Representation and In-

ference in the Cyc Project. Addison-Wesley, Cambridge. MA, USA.
Lerner, A., Chrysanthou, Y. and Cohen-Or, D. (2006). Efficient Cells-and-Portals Partitioning.

Computer Animation & Virtual Worlds. Wiley, NY, USA. 17(1): 21–40. doi:10.1002/cav.70
Lerner, A., Y., C. and Lischinski, D. (2007). Crowds by Example. Computer Graphics Forum. Black-

well Publishing Ltd. 26: 655–664. doi:10.1111/j.1467-8659.2007.01089.x
Lester, J. C., Towns, S. G., Callaway, C., Voerman, J. L. and FitzGerald, P. J. (2000). Deictic and

Emotive Communication in Animated Pedagogical Agents. Embodied Conversational
Agents. J. Cassell, J. Sullivan, S. Prevost and E. Churchill (eds.). MIT Press, Cambridge,
MA, USA: 123–154.

Lewis, H. (1998). Body Language, a guide for professionals. Response Books, New Dehli, India.
Lien, J. M., Rodriguez, S., Malric, J. P. and Amato, N. M. (2005). Shepherding Behaviors with

Multiple Shepherds. In. Proc. IEEE Robotics and Automatation (ICRA), Barcelona, Spain:
3402–3407.

Loscos, C., Marchal, D. and Meyer, A. (2003). Intuitive Crowd Behaviour in Dense Urban Environ-
ments using Local Laws. IEEE Theory and Practice of Computer Graphics: 122. doi:10.1109/
TPCG.2003.1206939

Lovas, G. C. (1994). Modeling and Simulation of Pedestrian Traffic Flow. Transportation Research
28(6): 429–443. doi:10.1016/0191-2615(94)90013-2

Maletic, V. (1987). Body, Space, Expression: The development of Rudolf Labans Movement and Dance
Concepts. Mouton de Gruyter, New York.

Marsella, S. C. and Gratch, J. (2002). A Step Toward Irrationality: Using Emotion to Change Be-
lief. In. Proc. 1st International Joint Conference on Autonomous Agents and Multiagent Systems,
Bologna, Italy, ACM Press. New York, USA: 334–342. doi:10.1145/544818.544821

http://dx.doi.org/10.1111/j.1467-8659.2004.00782.x
http://dx.doi.org/10.1145/1073368.1073408
http://www.legion.biz
http://dx.doi.org/10.1002/cav.70
http://dx.doi.org/10.1111/j.1467-8659.2007.01089.x
http://dx.doi.org/10.1109/TPCG.2003.1206939
http://dx.doi.org/10.1109/TPCG.2003.1206939
http://dx.doi.org/10.1016/0191-2615(94)90013-2
http://dx.doi.org/10.1145/544818.544821

References  169

Maslow, A. (1943). A theory of human motivation. Psychological Review. 50: 370–396. doi:10.1037/
h0054346

Massive Software, Inc. “3D animation system for crowd-related visual effects.” Massive Software,
Inc. http://www.massivesoftware.com (accessed 2005).

Massive Software, Inc. “Artificial Life Solutions.” Massive Software, Inc. http://www.massivesoftware
.com/architecture-engineering-construction (accessed September 19, 2008).

McDonnell, R., Dobbyn, S. and O’Sullivan, C. (2005). LOD Human Representations: A Compar-
ative Study. In. Proc. International Workshop on Crowd Simulation (V-CROWDS), Lausanne,
Switzerland: 101–115.

McDonnell, R., Larkin, M., Dobbyn, S., Collins, S. and O’Sullivan, C. (2008). Clone Attack!
Perception of Crowd Variety. ACM Transactions on Graphics (SIGGRAPH 2008). 27(3).
doi:10.1145/1360612.1360625

McDonnell, R., Newell, F. and O’Sullivan, C. (2007). Smooth Movers: Perceptually Guided Hu-
man Motion Simulation. Eurographics/ACM SIGGRAPH Symposium on Computer Anima-
tion. San Diego, CA, ACM Press. New York, USA.

McGrath, J. E. (1970). A Conceptual Formulation for Research on Stress. Social and Psychological
Factors in Stress. J. E. McGrath (ed.). Holt Rinehart and Winston, New York: 10–21.

McGrattan, K., Hostikka, S., Floyd, J., Baum, H. and Rehm, R. (2008). Fire Dynamics Simulator
(Version 5) Technical Reference Guide. NIST Special Publication 1018-5, National Institute
of Standards and Technology (NIST).

Milazzo, J. S., Rouphail, N. M., Hummer, J. E. and Allen, D. P. (1998). The Effect of Pedestrians
on the Capacity of Signalized Intersections. Transportation Research Record. 1646: 37–46
doi:10.3141/1646-05

Moffat, D. (1997). Personality Parameters and Programs. Creating Personalities for Synthetic Actors.
R. Trappl and P. Petta (eds.). Springer, New York: 120–165. doi:10.1007/BFb0030575

Mori, M. (1970). The Uncanny Valley. Energy. 7(4): 33–35.
Mott-MacDonald (2003). STEPS Simulation of Transient Evacuation and Pedestrian Movements

User Manual, Mott MacDonald.
Musse, S. R., Babski, C., Capin, T. and Thalmann, D. (1998). Crowd Modelling in Collaborative

Virtual Environments. In. Proc. ACM Virtual Reality Software and Technology (VRST), Tai-
pei, Taiwan: 115–123. doi:10.1145/293701.293716

Musse, S. R. and Thalmann, D. (1997). A Model of Human Crowd Behavior: Group Inter-
Relationship and Collision Detection Analysis. In. Proc. Workshop of Computer Animation
and Simulation of Eurographics, Budapest, Hungary: 39–51.

Musse, S. R. and Thalmann, D. (2000). From One Virtual Actor to Virtual Crowds: Require-
ments and Constraints. In. Proc. Autonomous Agents, ACM Press. New York, USA: 52–53.
doi:10.1145/336595.336975

http://dx.doi.org/10.1037/h0054346
http://dx.doi.org/10.1037/h0054346
http://www.massivesoftware.com
http://www.massivesoftware.com/architecture-engineering-construction
http://www.massivesoftware.com/architecture-engineering-construction
http://dx.doi.org/10.1145/1360612.1360625
http://dx.doi.org/10.3141/1646-05
http://dx.doi.org/10.1007/BFb0030575
http://dx.doi.org/10.1145/293701.293716
http://dx.doi.org/10.1145/336595.336975

170  Virtual Crowds: Methods, Simulation, and Control

Musse, S. R. and Thalmann, D. (2001). Hierarchical Model for Real Time Simulation of Virtual
Human Crowds. IEEE Transaction on Visualization and Computer Graphics 7(2): 152–164.
doi:10.1109/2945.928167

O’Sullivan, C., Cassell, J., Vilhjalmsson, H., Dobbyn, S., Peters, C., Leeson, W., Giang, T. and
Dingliana, J. (2002). Crowd and Group Simulation with Levels of Detail for Geometry,
Motion and Behavior. In. Proc. Third Irish Workshop on Computer Graphics: 15–20.

Ortony, A., Clore, G. L. and Collins, A. (1988). The Cognitive Structure of Emotions. Cambridge
University Press, Cambridge.

Owen, M., Galea, E. R., Lawrence and Filippidis, L. (1998). The Numerical Simulation of Aircraft
Evacuation and its Applications to Aircraft Design and Certification. The Aeronautical Jour-
nal. 102(1016): 301–312.

Pan, X., Han, C. S. and Law, K. H. (2005). A Multi-agent Based Simulation Framework for the
Study of Human and Social Behavior in Egress Analysis. In. Proc. The International Confer-
ence on Computing in Civil Engineering, Cancun, Mexico.

Pelechano, N. (2006). Modeling Realistic Autonomous Agent Crowd Movement: Social Forces,
Communication, Roles and Psychological Influences. PhD thesis, Computer and Informa-
tion Science, University of Pennsylvania.

Pelechano, N., Allbeck, J. and Badler, N. (2007). Controlling Individual Agents in High-Density
Crowd Simulation. In. Proc. ACM SIGGRAPH / Eurographics Symposium on Computer Ani-
mation (SCA), San Diego, CA, ACM Press. New York, USA: 99–108.

Pelechano, N. and Badler, N. (2006). Modeling Crowd and Trained Leader Behavior during Build-
ing Evacuation. IEEE Computer Graphics and Applications. 26(6): 80–86.

Pelechano, N. and Malkawi, A. (2008). Evacuation Simulation Models: Challenges in Modeling
High Rise Building Evacuation with Cellular Automata Approaches. Automation in Con-
struction (Elsevier). 17(4): 377–385. doi:10.1016/j.autcon.2007.06.005

Pelechano, N., O’Brien, K., Silverman, B. and Badler, N. (2005). Crowd Simulation Incorporating
Agent Psychological Models, Roles and Communication. In. Proc. First International Work-
shop on Crowd Simulation. (V-CROWDS ‘05), Lausanne, Switzerland: 21–30.

Pelechano, N., Stocker, C., Allbeck, J. and Badler, N. (2008). Being a Part of the Crowd: Towards
Validating VR Crowds Using Presence. In. Proc. Autonomous Agents and Multiagent Systems
(AAMAS), Estoril, Portugal, ACM Press. New York, NY, USA: 136–142.

Perlin, K. and Goldberg, A. (1996). Improv: a System for Scripting Interactive Actors in Virtual
Worlds. In. Proc. ACM SIGGRAPH, ACM Press. New York, USA: 205–216. doi:10.1145/
237170.237258

Pettre, J., Laumond, J.-P. and Thalmann, D. (2005). A Navigation Graph for Real-Time Crowd
Animation on Multilayered and Uneven Terrain. In. Proc. First International Workshop on
Crowd Simulation (V-CROWD’05), Lausanne, Switzerland: 81–90.

http://dx.doi.org/10.1109/2945.928167
http://dx.doi.org/10.1016/j.autcon.2007.06.005
http://dx.doi.org/10.1145/237170.237258
http://dx.doi.org/10.1145/237170.237258

References  171

Poggi, I. and Pelachaud, C. (2000). Performative Facial Expressions in Animated Faces. Embodied
Conversational Agents. J. Cassell, J. Sullivan, S. Prevost and E. Churchill (eds.). MIT Press,
Cambridge, MA, USA: 155–188.

Rastegary, H. and Landy, F. J. (1993). The Interaction Among Time Urgency, Uncertainty, and
Time Pressure. Time Pressure and Stress in Human Judgement and Decision Making. O.
Svenson and A. J. Maule (eds.). Plenum Publishing Corporation, New York: 217–240.

Reynolds, C. (1987). Flocks, Herds, and Schools: a Distributed Behavior Model. In. Proc. ACM
SIGGRAPH: 25–34. doi:10.1145/37402.37406

Reynolds, C. (1999). Steering Behaviors for Autonomous Characters. In. Proc. Game Developers
Conference: 763–782.

Reynolds, C. (2006). Big Fast Crowds on PS3. In. Proc. Sandbox (ACM SIGGRAPH symposium on
Videogames), Boston, USA: 113–121.

Rousseau, D. and Hayes-Roth, B. (1996). Personality in Synthetic Agents, Knowledge Systems
Laboratory, Stanford University. CA, USA.

Russell, S. J. and Norvig, P. (2002). Artificial Intelligence: A Modern Approach. Prentice Hall, New
Jersey, USA. doi:10.1038/nrn1651

Sanchez-Vives, M. V. and Slater, M. (2005). From Presence to Consciousness Through Virtual
Reality. Nature Reviews Neuroscience. 6(4): 332–339.

Schroder, M. (2001). Emotional Speech Synthesis: A Review. In. Proc. Eurospeech, Aalborg:
561–564.

Schubert, T., Friedmann, F. and Regenbrecht, H. (2001). The Experience of Presence: Factor Ana-
lytic Insights. Presence: Teleoperators and Virtual Environments. 10(3): 266–281. doi:10.116
2/105474601300343603

SFPE (2003). The SFPE Engineering Guide to Human Behavior in Fire. Society of Fire Protection
Engineers, Bethesda, MA. doi:10.1145/1073368.1073371

Shao, W. and Terzopoulos, D. (2005). Autonomous Pedestrians. In. Proc. ACM SIGGRAPH / Eu-
rographics Symposium on Computer Animation, Los Angeles, California ACM Press. New
York, USA: 19–28. doi:10.1016/j.gmod.2007.09.001

Shao, W. and Terzopoulos, D. (2007). Autonomous Pedestrians. Graphical Models. 69: 246–274.
Shields, T. J., Dunlop, K. and Silcock, G. (1996). Escape of Disabled People from Fire. A Measure-

ment and Classification of Capability for Assessing Escape Risk, British Research Estab-
lishment, Borehamwood, London, UK.

Silverman, B., Bharathy, G., Cornwell, J. and O’Brien, K. (2006). Human Behavior Models for
Agents in Simulators and Games: Part II -Gamebots for a Foreign Culture. Presence. 15(2):
163–185. doi:10.1162/pres.2006.15.2.163

Silverman, B. G., Cornwell, J. and O’Brien, K. (2003). Human Performance Simulation. Metrics
and methods in human performance research toward individual and small unit simulation.

http://dx.doi.org/10.1145/37402.37406
http://dx.doi.org/10.1038/nrn1651
http://dx.doi.org/10.1162/105474601300343603
http://dx.doi.org/10.1162/105474601300343603
http://dx.doi.org/10.1145/1073368.1073371
http://dx.doi.org/10.1016/j.gmod.2007.09.001
http://dx.doi.org/10.1162/pres.2006.15.2.163

172  Virtual Crowds: Methods, Simulation, and Control

J. W. Ness, D. R. Ritzer and V. Tepe (eds.). Human Systems Information Analysis Center,
Washington, DC.

Sime, J. (1984). Behavior In Fire: ‘Panic’ Or Affiliation? Department of Psychology, University of
Surrey, UK.

Slater, M., Guger, C., Edlinger, G., Leeb, R., Pfurtscheller, G., Antley, A., Garau, M., Brogni,
A. and Friedman, D. (2006). Analysis of Physiological Responses to a Social Situation in
an Immersive Virtual Environment. Presence: Teleoperators and Virtual Environments. MIT
Press, Cambridge, MA, USA. 15(5): 553–569. doi:10.1162/pres.15.5.553

Slater, M. and Steed, A. (2000). A Virtual Presence Counter. Teleoperators and Virtual Environ-
ments. 9: 413–434. doi:10.1162/105474600566925

Slater, M., Usoh, M. and Steed, A. (1995). Taking Steps: the Influence of a Walking Technique
on Presence in Virtual Reality. In. Proc. ACM Transactions on Computer-Human Interaction
(TOCHI): 201–219. doi:10.1145/210079.210084

Still, G. K. (2000). Crowd Dynamics, Warwick University, Coventry, UK.
Sud, A., Andersen, E., Curtis, S., Lin, M. and Manocha, D. (2007). Real-time Path Planning for

Virtual Agents in Dynamic Environments. In. Proc. IEEE Virtual Reality, IEEE Computer
Society, Washington, DC, USA: 91–98.

Sud, A., Gayle, R., Andersen, E., Guy, S., Lin, M. and Manocha, D. (2007). Real-time Navigation
of Independent Agents Using Adaptive Roadmaps. In. Proc. ACM Symposium on Virtual
Reality Software and Technology, Newport Beach, CA, USA: 99–106. doi:10.1145/131518
4.1315201

Sung, M., Kovar, L. and Gleicher, M. (2005). Fast and Accurate Goal-Directed Motion Synthesis
for Crowds. In. Proc. Symposium on Computer Animation: 291–300. doi:10.1145/1073368.
1073410

Sunshine-Hill, B., Allbeck, J. M., Pelechano, N. and Badler, N. I. (2007). Generating Plausible
Individual Agent Movement from Spatio-Temporal Occupancy Data. In. Proc. Workshop of
Massive Datasets at the 9th International Conference on Multimodal Interfaces, Nagoya, Japan,
ACM Press. New York, USA: 5–7. doi:10.1145/1352922.1352924

Tecchia, F., Loscos, C., Conroy, R. and Chrysanthou, Y. (2001). Agent Behavior Simulator (ABS): A
Platform for Urban Behavior Development. In. Proc. ACM/EG Games Technology Conference.

Teknomo, G. (2002). Microscopic Pedestrian Flow Characteristics: Development of an Image Pro-
cessing Data Collection and Simulation Model. Department of Human Social Information
Sciences, Graduate School of Information Sciences, Tohoku University.

Teller, S. (1992). Visibility Computations in Densely Occluded Polyhedral Environments, UC
Berkeley, CA, USA.

Thalmann, D., Musse, S. R. and Kallmann, M. (1999). Virtual Humans’ Behavior: Individuals,
Groups, and Crowds. In. Proc. Digital Media Futures: 13–15.

http://dx.doi.org/10.1162/pres.15.5.553
http://dx.doi.org/10.1162/105474600566925
http://dx.doi.org/10.1145/210079.210084
http://dx.doi.org/10.1145/1315184.1315201
http://dx.doi.org/10.1145/1315184.1315201
http://dx.doi.org/10.1145/1073368.1073410
http://dx.doi.org/10.1145/1073368.1073410
http://dx.doi.org/10.1145/1352922.1352924

References  173

Thomas, G. and Donikian, S. (2000). Virtual Humans Animation in Informed Urban Environ-
ments. In. Proc. Computer Animation, IEEE Computer Society. Washington, DC, USA:
112–121. doi:10.1109/CA.2000.889057

Thompson, P. A. and Marchant, E. W. (1994). Simulex: Developing New Computer Modelling
Techniques for Evaluation. In. Proc. Symposium Fire Safety Science 613–624. doi:10.3801/
IAFSS.FSS.4-613

Thompson, P. A. and Marchant, E. W. (1995). Testing and Application of the Computer Model
Simulex. Fire Safety Journal 25: 149–166. doi:10.1016/0379-7112(95)00020-T

Torrens, P. M. (2007). Behavioral intelligence for geospatial agents in urban environments. In. Proc.
IEEE Intelligent Agent Technology, Los Alamitos, CA, IEEE: 63–66.

Trappl, R. and Petta, P. (1997). Creating Personalities for Synthetic Actors: Towards Autonomous Per-
sonality Agents. Springer Verlag, Berlin, Germany.

TRB (1994). Highway Capacity Manual Special Report, Transportation Research Board (TRB).
Treuille, A., Cooper, S. and Popovic, Z. (2006). Continuum Crowds. In. Proc. ACM Transactions on

Graphics (SIGGRAPH 2006): 1160–1168. doi:10.1145/1179352.1142008
Tsuji, Y. (2003). Numerical simulation of pedestrian flow at high densities. In. Proc. Pedestrian and

Evacuation Dynamics (PED), CMS Press, London, UK: 27–38.
Tu, X. and Terzopoulos, D. (1994). Artificial Fishes: Physics, Locomotion, Perception, Behavior. In.

Proc. ACM SIGGRAPH, ACM Press. New York, USA: 43–50. doi:10.1145/192161.192170
Turner, A. and Penn, A. (2002). Encoding Natural Movement as an Agent-based System: an Investi-

gation into Human Pedestrian Behaviour in the Built Environment. Environment and Plan-
ning B: Planning and Design. Pion Limited, London. 29: 473–490. doi:10.1068/b12850

Ulicny, B. and Thalmann, D. (2001). Crowd Simulation for Interactive Virtual Environments
and VR Training Systems. In. Proc. Eurographics Workshop on Animation and Simulation.,
Springer-Verlag. Berlin: 163–170.

US Department of Labor. (Last visited 2008, 2008). Bureau of Labor and Statistics. from http://
www.bls.gov/.

Usoh, M., Catena, E., Arman, S. and Slater, M. (2000). Using Presence Questionnaires in Reality. Pres-
ence: Teleoperators And Virtual Environments 9(5): 497–503. doi:10.1162/105474600566989

Villamil, M. B., Musse, S. R. and Oliveira., L. P. L. d. (2003). A Model for Generating and Animating
Groups of Virtual Agents. In. Proc. Intelligent Virtual Agents, Irsee, Germany: 164–169.

Waldau, N., Schreckenberg, M. and Gatermann, P. (2003). Design Criteria Related to Orientation
in Buildings during High-stress Situations Crowd Simulation Models and their Applica-
tions. In. Proc. Pedestrian and Evacuation Dynamics. (PED): 307–318.

Weaver, R., Silverman, B., Shin, H. and Dubois, R. (2001). Performance Moderator Functions for
Modeling Adversary Organizations in Asymmetric Conflicts. In. Proc. 10th Conference on
Computer Generated Forces and Behavioral Representation.

http://dx.doi.org/10.1109/CA.2000.889057
http://dx.doi.org/10.3801/IAFSS.FSS.4-613
http://dx.doi.org/10.3801/IAFSS.FSS.4-613
http://dx.doi.org/10.1016/0379-7112(95)00020-T
http://dx.doi.org/10.1145/1179352.1142008
http://dx.doi.org/10.1145/192161.192170
http://dx.doi.org/10.1068/b12850
http://www.bls.gov/
http://www.bls.gov/
http://dx.doi.org/10.1162/105474600566989

Wiggins, J. S. (1996). The Five-Factor Model of Personality: Theoretical Perspectives. The Guilford
Press, New York.

Wolfram, S. (1983). Statistical Mechanics of Cellular Automata. Reviews of Modern Physics. 55(3):
601–644. doi:10.1103/RevModPhys.55.601

Wray, R., Chong, R., Phillips, J., Rogers, S. and Walsh, B. A Survey of Cognitive and Agent Ar-
chitecture. from http://ai.eecs.umich.edu/cogarch0/.

Wren, C. R., Ivanov, Y. A., Leigh, D. and Westhues, J. (2007). The MERL Motion Detector
Dataset: 2007 Workshop on Massive Datasets, Mitsubishi Electric Research Laboratories,
Cambridge, MA, USA. doi:10.1145/1352922.1352926

Wright, W. (2008). The Sims. I. Electronic Arts.
Yu, Q. and Terzopoulos, D. (2007). A Decision Network Framework for the Behavioral Animation

of Virtual Humans In. Proc. ACM SIGGRAPH/Eurographics symposium on Computer anima-
tion, San Diego, California Eurographics Association: 119–128.

http://dx.doi.org/10.1103/RevModPhys.55.601
http://ai.eecs.umich.edu/cogarch0/
http://dx.doi.org/10.1145/1352922.1352926

175

Author Biographies

Jan M. Allbeck is a PhD candidate in the Department of Computer and Information Science,
which is a part of the School of Engineering and Applied Science of the University of Pennsylvania.
Dr. Norman I. Badler is her advisor. She is also the Associate Director of the Center for Human
Modeling and Simulation (HMS), where she coordinates and participates in the research projects
affiliated with HMS as well as coordinates the operational aspects of the laboratory facility. Allbeck
has bachelor’s degrees in mathematics and computer science from Bloomsburg University and a
master’s degree in computer and information science from the University of Pennsylvania. She has
explored many aspects of computer graphics, but is most drawn to research at the crossroads of
animation, artificial intelligence, and psychology in the simulation of virtual humans. Her current
research focuses on the creation and simulation of functional crowds.

Nuria Pelechano-Gomez is an associate professor of Llenguatges i Sistemes Informàtics at the Uni-
versitat Politècnica de Catalunya, UPC (Spain), where she is a member of the MOVING and Event
Lab groups. Her research interests include modeling and simulation of large crowds with het-
erogeneous behaviors, interaction between virtual agents and real people in virtual environments,
real-time 3D graphics, and presence. Pelechano received a BSc in computer science engineering
from the Universitat de València (Spain) in 2001, an MSc with honors in vision, imaging and virtual
environments (computer science) at the University College London (UK) in 2002, and a PhD in
computer and information science at the University of Pennsylvania (USA) in 2006 as a Fulbright
Scholar. Pelechano also completed her postdoctoral research at the University of Pennsylvania in
the Center for Human Modeling and Simulation and in the T. C. Chan Center for Building De-
sign and Energy Studies (School of Design), where she carried out numerous studies on building
design based on pedestrian movement. She has published papers on crowd simulation in a number
of international journals and conferences.

Norman I. Badler is a professor of computer and information science at the University of Penn-
sylvania and has been on that faculty since 1974. Active in computer graphics since 1968 with
more than 200 technical papers, his research focuses on human modeling and animation control

176  Virtual Crowds: Methods, Simulation, and Control

with real-time 3D graphics. His current research interests include embodied agent animation and
simulation, human–computer interfaces, crowd modeling and control, and computational connec-
tions between language and action. Badler received his BA degree in creative studies mathematics
from the University of California at Santa Barbara in 1970 and his MSc in mathematics and PhD
in computer science from the University of Toronto in 1971 and 1975, respectively. He is the co-
editor of the Elsevier journal Graphical Models. He was the Cecilia Fitler Moore Department Chair
of Computer and Information Science from 1990 to 1994. He directs the SIG Center for Computer
Graphics and the Center for Human Modeling and Simulation at the University of Pennsylvania.
Among the Center’s achievements are the human modeling software system Jack, which was the
basis for a spin-off company in 1996; the software is now marketed by Siemens. He is the Director
of the Digital Media Design undergraduate degree program in computer science at the University
of Pennsylvania. During 2001–2005, he was also the Associate Dean of the School of Engineering
and Applied Science.

	Virtual Crowds: Methods, Simulation, and Control
	Synthesis Lectures on Computer Graphics and Animation
	ABSTRACT
	Keywords
	Dedication
	Acknowledgments
	Contents

	Chapter 1 Introduction
	1.1 TERMINOLOGY
	1.2 OVERVIEW
	1.2.1 Lessons Learned From the Psychology Literature
	1.2.2 Main Features in Crowd Simulation Systems

	Chapter 2 Crowd Simulation Methodology Survey
	2.1 MICROSCOPIC AND MACROSCOPIC APPROACHES USED TO MODEL PEDESTRIAN MOVEMENTS
	2.2 MICROSCOPIC MODELS
	2.2.1 Social Force Models
	2.2.2 Cellular Automata Models
	2.2.3 Rule-Based Models

	2.3 MACROSCOPIC MODELS
	2.3.1 Regression Models
	2.3.2 Route Choice Models
	2.3.3 Queuing Models
	2.3.4 Gaskinetics

	2.4 CURRENT PEDESTRIAN SOFTWARE SYSTEMS
	2.5 SUMMARY OF CROWD MODELS
	2.5.1 Some Limitations of the Current Commercial Software for Crowd Evacuation

	2.6 NAVIGATION
	2.6.1 Cell and Portal Graphs
	2.6.2 Flow Tiles and Potential Field Methods
	2.6.3 Probabilistic Roadmaps

	2.7 ENVIRONMENT MODELING

	Chapter 3 Individual Differences in Crowds
	3.1 PERSONALITY AND EMOTION MODELS
	3.2 PHYSIOLOGY
	3.3 SOCIOLOGY: SUBGROUPS
	3.4 CULTURE, ROLES, AND STATUS
	3.5 SUMMARY

	Chapter 4 Framework (HiDAC + MACES + CAROSA)
	4.1 INTERACTION BETWEEN FRAMEWORK LEVELS AND PSYCHOLOGICAL MODELS
	4.2 PARAMETERS AFFECTING CROWD BEHAVIOR

	Chapter 5 HiDAC: Local Motion
	5.1 INTRODUCTION
	5.2 AGENTS’ SPEEDS AND DENSITIES
	5.2.1 Walking Speeds and Densities When Walking Downstairs

	5.3 PERCEPTION
	5.4 CROSSING PORTALS
	5.5 THE HiDAC MODEL
	5.5.1 Avoidance Forces
	5.5.2 Repulsion Forces
	5.5.3 Solution to “Shaking” Problem in High Densities
	5.5.4 Organized Behavior: Queuing
	5.5.5 Pushing Behavior
	5.5.6 Falling and Becoming Obstacles
	5.5.7 Panic Propagation

	Chapter 6 MACES: Wayfinding With Communication and Roles
	6.1 INTRODUCTION
	6.2 NAVIGATION ALGORITHM
	6.2.1 Exploring the Building
	6.2.2 Communication Affecting Evacuation Times
	6.2.3 Relevance of Having Trained Leaders vs. Untrained Leaders
	6.2.4 Importance of Leadership
	6.2.5 Simulating Psychology Affecting Roles and Navigation
	6.2.6 Interactive Navigation and Impatient Agents Avoiding Bottlenecks

	Chapter 7 CAROSA: Functional Crowds
	7.1 APPLICATIONS WITH ACTIONS
	7.2 PARAMETERIZED ACTION REPRESENTATION
	7.2.1 Key Fields of the Action Representation
	7.2.2 Key Fields of the Object Representation
	7.2.3 Four Types of Actions
	7.2.4 Application to Crowds

	7.3 CAROSA SYSTEM OVERVIEW
	7.3.1 PAR System
	7.3.2 Actionary
	7.3.3 Agent Process
	7.3.4 Processing the Four Action Types

	Chapter 8 Initializing a Scenario
	8.1 BUILDING MODELING
	8.1.1 Cell and Portal Graph Automatic Generation
	8.1.2 Generate Cell and Portal Graph for Each Floor
	8.1.3 Identify Stairs and Link Floors Through New Cells
	8.1.4 Identify and Store Walls
	8.1.5 Identify and Store Obstacles
	8.1.6 Precalculating Data for Real-Time Simulation

	8.2 LAYOUT OF ENVIRONMENT
	8.3 CHARACTER PROFILES
	8.4 CREATING GROUPS
	8.5 CONSTRUCTING ACTIONS
	8.6 REFINING THE SIMULATION
	8.6.1 Effects of Changes to the Environment
	8.6.2 Modifying Roles
	8.6.3 Scripting Characters

	Chapter 9 Evaluating Crowds
	9.1 FEATURE COMPARISON
	9.1.1 Low-Level Features
	9.1.2 Middle-Level Features
	9.1.3 High-Level Features
	9.1.4 Summary

	9.2 COMPARISON TO REAL-WORLD DATA
	9.2.1 Sensor Data
	9.2.2 Action Statistics
	9.2.3 Validation Through the Society of Fire Protection Engineers Guide

	9.3 USER EVALUATIONS
	9.4 Presence in Virtual Worlds
	9.4.1 Important Egocentric Features
	9.4.2 Experimental Evidence From the Literature
	9.4.3 Pilot Experiment
	9.4.4 Initial Results and Future Work
	9.4.5 Conclusions on Presence as a Validation Method

	 Chapter 10 Summary
	References
	Author Biographies

