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Mobile computing and pervasive computing represent major evolutionary steps in distributed sys-
tems, a line of research and development that dates back to the mid-1970s. Although many basic 
principles of distributed system design continue to apply, four key constraints of mobility have forced 
the development of specialized techniques. These include unpredictable variation in network quality, 
lowered trust and robustness of mobile elements, limitations on local resources imposed by weight 
and size constraints, and concern for battery power consumption. Beyond mobile computing lies per-
vasive (or ubiquitous) computing, whose essence is the creation of environments saturated with com-
puting and communication yet gracefully integrated with human users. A rich collection of topics lies 
at the intersections of mobile and pervasive computing with many other areas of computer science.
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Abstract
Managing data in a mobile computing environment invariably involves caching or replication. In 
many cases, a mobile device has access only to data that is stored locally, and much of that data 
arrives via replication from other devices, PCs, and services. Given portable devices with limited 
resources, weak or intermittent connectivity, and security vulnerabilities, data replication serves to 
increase availability, reduce communication costs, foster sharing, and enhance survivability of critical 
information. Mobile systems have employed a variety of distributed architectures from client–server 
caching to peer-to-peer replication. Such systems generally provide weak consistency models in 
which read and update operations can be performed at any replica without coordination with other 
devices. The design of a replication protocol then centers on issues of how to record, propagate, or-
der, and filter updates. Some protocols utilize operation logs, whereas others replicate state. Systems 
might provide best-effort delivery, using gossip protocols or multicast, or guarantee eventual consis-
tency for arbitrary communication patterns, using recently developed pairwise, knowledge-driven 
protocols. Additionally, systems must detect and resolve the conflicts that arise from concurrent up-
dates using techniques ranging from version vectors to read–write dependency checks. This lecture 
explores the choices faced in designing a replication protocol, with particular emphasis on meeting 
the needs of mobile applications. It presents the inherent trade-offs and implicit assumptions in 
alternative designs. The discussion is grounded by including case studies of research and commercial 
systems including Coda, Ficus, Bayou, Sybase’s iAnywhere, and Microsoft’s Sync Framework.

Keywords
mobile data management, replication, caching, mobility, ubiquitous computing, 
disconnected operation, intermittent connectivity, data consistency, conflict detection, 
update propagation, epidemic algorithms
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Mobility has become increasingly important for both business and casual users of computing tech-
nology. With the widespread adoption of portable computing devices, such as laptops, PDAs, tablet 
computers, music players, and cell phones, people can have almost constant access to their personal 
data as well as to information that is shared with others. A user drinking coffee in a cybercafé in 
India can access e-mail residing on a mail server in Seattle. A doctor in New York can monitor the 
health of patients in remote parts of Africa. A mother waiting to pick up her children after school 
can be instantly notified that her daughter’s soccer practice has been moved to a new location. 
Teenagers congregating at the mall can use their cell phones to locate not only their buddies but 
also the hottest sales. Advances in wireless technology, such as WiFi and WiMax, allow people to 
communicate from their computers with friends, colleagues, and services located around the world. 
However, providing users anytime, anywhere access to contextually relevant information presents 
substantial challenges to designers of mobile computing systems.

Compared with distributed systems in which powerful computers are connected over a fixed 
networking infrastructure, such as the ubiquitous Internet, mobile computing environments differ 
in a number of fundamental ways. Specifically, mobile computing systems must accommodate three 
novel aspects:

 Portable devices with limited displays, CPU resources, storage, battery life, and security: With 
improvements in flash memories and digital media cards, handheld devices can hold 
gigabytes of information, making them capable of storing much of a person’s personal 
information such as appointments, addresses, e-mail, and even a substantial music col-
lection. Similarly, faster CPUs make these devices capable of running a broad spectrum 
of both data-intensive and computing-intensive applications. However, portable devices 
will always lag behind desktop computers and server machines in computing and storage 
capacity. Moreover, the physical size of such devices places a premium on screen space 
and prohibits conventional input capabilities such as keyboards. Battery life will remain a 
critical resource. Since computation and communication both consume energy, mobile ap-
plications must conserve battery life by limiting all forms of resource usage. Furthermore, 
mobile devices are less secure and less robust than server or desktop machines. In particular, 
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they are routinely lost, damaged, or stolen, thereby demanding new approaches to informa-
tion privacy and preservation.
 Intermittent, low-bandwidth, high-latency network connections: Although wireless networks, 
such as metropolitan area WiFi networks, are being deployed at a rapid pace, ubiquitous 
connectivity for mobile devices remains an elusive goal. For instance, although the WiMax 
standard for broadband wireless access was recently approved, practical deployments are 
not expected until late 2008 at the earliest. The good news is that new cell phones and  
PDAs are shipping with Bluetooth networking, and near-field communication technology 
is being integrated into some devices, making them capable of direct communication with 
nearby neighbors. Such devices allow people in the same vicinity to directly share informa-
tion including music, photos, and schedules. Wireless mesh networks can be established 
for communicating over larger distances. However, such connections are temporary at best, 
since they break when the device owners move to new locations. Additionally, communica-
tion delays can be high because of long network discovery times and multiple hops. Thus, 
mobile systems must accommodate intermittent and generally low-bandwidth, high-latency 
wireless connectivity between devices while being able to exploit higher bandwidth, more 
robust communications when the opportunity arises.
 Changing environmental conditions and contexts: A person’s context, including his location, 
time of day, schedule, colleagues, deadlines, and interests, affects his information needs  
and hence the service desired from mobile applications. Such applications must therefore 
adapt their behavior to each user’s changing context as well as to changes in the available 
computing resources, including network bandwidth and remaining battery life. An appli-
cation’s adaptability can have a drastic impact on its overall usability. Location-aware data 
delivery, for example, can tailor the information communicated to mobile users based on a 
user’s current location or intended destination. Similarly, social networks constructed from 
buddy lists are gaining popularity as a means of sharing information, but such networks 
often experience rapid flux.

Techniques that have been developed specifically for mobile computing systems include replication 
and caching of data for off-line access, remotely accessing data that resides on other machines, off-
loading computation onto servers or surrogate PCs, and adapting system policies and mechanisms to 
users’ changing context and hence changing information needs. This lecture focuses primarily on the 
first of these issues, replication, although adaptation also plays a role. Replication among networked 
services, stationary PCs, and mobile devices serves to reduce access costs, increase availability, and 
enhance survivability for personal, public, and enterprise information. In other words, replicated data 
management will remain an essential aspect of mobile computing for the foreseeable future.

2.

3.
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1.1	 HISTORICAL PERSPECTIVE
Mobile computing is a recent phenomenon, having taken off in the past 10 to 15 years. However, 
the fundamental technologies used in mobile computing systems were developed starting in the 
late 1960s and 1970s. From a hardware viewpoint, the 1970s saw the invention of PCs, such as the 
Xerox Alto, and wireless communication networks, such as the ALOHA network; the Dynabook 
concept, a vision of an intensely personal mobile computing device, inspired researchers for decades 
to come. In terms of software, this is when personal computing environments were developed along 
with the first replication protocols.

The key concepts presented in this lecture started emerging in the early 1980s, although initially 
without mobility as a focus. Table 1.1 summarizes many of the key technology innovations that relate to 
replicated data management for mobile computing, together with significant commercial and research 
systems. To provide some context for these developments, this table also includes major hardware and 
platform milestones. The dates shown indicate when papers on the systems were first published, when 
technical specifications were made available, or when commercial products hit the market.

The Grapevine system, developed at Xerox PARC and first published in 1981 [9], was a re-
search prototype providing a replicated directory and e-mail service. It was deployed on a couple of 
dozen geographically distributed servers and widely used throughout Xerox. Perhaps most signifi-
cantly, although previous replication protocols focused on maintaining mutually consistent replicated 
databases, Grapevine demonstrated the benefits of weak consistency replication and showed that 
applications could be designed to tolerate temporarily inconsistent data access, a hallmark of virtually 
all mobile systems today. This work not only led to a commercial product, called the Xerox Clearing-
house, which was the first system to propagate data among replicas using epidemic algorithms [12], 
but also planted the seeds for the Bayou project a decade later.

Locus was a distributed operating system developed at UCLA starting in 1979 that, among 
other novel features, included a replicated, network file system [100]. Notably, Locus allowed us-
ers of stationary computers to continue to access files despite failed servers and network partitions. 
Version vectors, developed to detect concurrent file updates [64], have been widely adopted for 
conflict detection in mobile systems (see Section 6.2.4). A sequence of follow-on research projects 
at UCLA, extending through the 1990s, explored replicated file systems for mobile users. These in-
cluded Ficus [24, 73], one of the first mobile file systems with a peer-to-peer replication model and 
automatic conflict resolution, and Roam [74], which increased the scalability of Ficus by grouping 
devices into “wards.”

The mobile computing community has also benefited from techniques for managing concur-
rent updates that were developed for collaboration systems, also known as groupware, starting in the 
mid-1980s. Such systems often allow users to operate on shared data in parallel while merging and 
resolving conflicting operations after the fact. For example, a group editor called Grove pioneered 
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TABLE 1.1:  Timeline of significant events in mobile computing

Year
System/ 

technology
Significance

1981 Grapevine Showed that practical systems could use weak consistency replication

1983 Locus Devised version vectors for conflict detection

1987 Clearinghouse Commercial product relying on epidemic algorithms for update 
propagation

1987 Laptops Provided a truly mobile platform for serious computing

1989 Grove Group editor using operation transformation

1989 Lotus Notes Commercial product for document replication via periodic bidirec-
tional data exchanges

1990 Coda First distributed file system to support disconnected operation; later 
explored weakly connected operation and automatic conflict resolution

1991 GSM Second-generation cellular telephone network launched in Finland

1991 Ubiquitous  
computing

Vision for mobile computing pioneered at Xerox PARC

1993 Apple  
Newton

First commercial PDA

1993 Ficus Peer-to-peer replicated file system with conflict resolution

1994 Bayou Replicated database with application-specific conflict management 
and session guarantees

1994 Bluetooth Industry standard short-range wireless protocol developed, although 
devices did not hit the market until several years later

1996 Palm Pilot First widely adopted PDA with sync capability

1997 WiFi High-speed wireless local-area networking standard

1997 WAP Forum established to standardize wireless Web access

1998 Roam Introduced ward model for scalable peer-to-peer replication

1999 BlackBerry Commercial cell phone popularizing mobile e-mail access

2001 IceCube Allowed application-provided ordering constraints on operations

2002 TACT Explored alternative, bounded consistency models

2004 PRACTI Separated invalidation notifications from updates in a log-based 
replication system
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the notion of operation transformation [17], which permits operations from different users (or dif-
ferent mobile devices) to be applied in whatever order they arrive while guaranteeing that replicas 
reach a mutually consistent state (see Section 4.4.6). The Lotus Notes system, also targeted at col-
laborative applications, further validated the acceptance of weak consistency replication and demon-
strated peer-to-peer synchronization for document databases.

Many innovations in the mobile computing space came out of the Coda project at Carne
gie Mellon University (CMU), which started in 1987 and is still going strong [86]. The project’s 
initial focus was on extending the Andrew File System (AFS) to provide increased fault tolerance 
through replication of file volumes across servers. Mobility was not an issue because laptops were 
just entering the market in earnest. However, Coda’s client–server model with client-side caching 
proved attractive to the rapidly growing community of laptop users in the early 1990s. Thus, Coda 
was well-positioned to be at the forefront of mobile computing research. The project gained wide-
spread recognition for its development of disconnected operation and followed up with advances in 
file hoarding, trickle reintegration, automatic conflict resolution, and a variety of other file service 
enhancements intended to better support mobile users, many of which are reported on in later 
sections.

Around 1990, researchers at Xerox PARC articulated a vision, called “ubiquitous computing,” 
in which varied devices situated in the environment seamlessly interact with mobile users to pro-
vide continuous access to data and other computing resources [107]. Shortly thereafter, the Bayou 
project emerged with the goal of designing a data management platform in support of ubiquitous 
computing applications [13]. Bayou, in contrast to Coda, explored a peer-to-peer replication model 
for relational databases. Unlike previous systems that stressed replication transparency, Bayou was 
novel in its support for application-specific communication patterns, conflict management, and 
consistency guarantees.

In the past decade, along with an upsurge of mobile devices and wireless networks, mobile 
computing research has taken off with yearly conferences presenting significant advances and fresh 
applications. Systems such as IceCube [43], TACT [104], and PRACTI [8] have extended the state 
of the art in mobile data management by building on previous work. The contributions of these 
more recent projects are sprinkled throughout this lecture.

1.2	 LECTURE ORGANIZATION
This lecture covers the basic techniques used for managing data replicas across mobile devices. It is 
organized as follows:

Chapter 2 presents the basic terminology used throughout this lecture and describes vari-
ous system models involving mobile devices, including commonly used client–server and 

•
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peer-to-peer architectures. Replication requirements are extracted from these models and 
data usage patterns.
Chapter 3 defines a variety of consistency guarantees that may be provided by a replicated 
system. Within the class of weak consistency protocols suitable for intermittently con-
nected devices, “eventual consistency” is the most popular property, but others are possible, 
ranging from best effort convergence to bounded inconsistency and hybrid schemes.
Chapter 4 provides the core lecture material, namely, the detailed design and implemen-
tation of a broad spectrum of replication protocols. Issues covered include representing, 
tracking, propagating, and ordering updates. The trade-offs and assumptions behind dif-
ferent approaches are discussed.
Chapter 5 extends the protocols discussed in Chapter 4 to allow partial replicas that store 
select items from a large data collection.
Chapter 6 focuses on an important issue faced by weak consistency replication protocols: 
how to detect and resolve conflicting updates made concurrently on different devices.
Chapter 7 presents several research and commercial systems as case studies, referring back 
to the main techniques presented in earlier chapters.
Chapter 8 concludes with general observations about mobile data management.

The bibliography contains a compilation of publications on topics related to this lecture. 
Throughout this lecture, citations are included to these published papers from the mobile computing 
literature. The interested reader should consult these papers for additional material.

•  •  •  •

•

•

•

•

•

•
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Mobile systems have used a number of different models for how data is accessed, where it is stored, 
who is allowed to update it, how updated data propagates between devices, and what consistency 
is maintained. This chapter explores some common alternative models and concludes with the 
requirements they place on replication protocols. Think of these as choices that one faces when de-
signing a mobile system. In practice, some systems fall squarely in one design space, whereas others 
are a hybrid with a mixture of system models. Before describing the models, the next section intro-
duces the basic components that are common to all systems and the terminology used throughout 
this lecture.

2.1	 BASIC COMPONENTS AND TERMINOLOGY
A mobile system comprises a number of devices with computing, storage, and communication capa-
bilities. A wide variety of mobile devices may participate in a system, including laptops, tablet PCs, 
PDAs, cell phones, music players, video players, navigation systems, portable game players, digital 
cameras, electronic photo frames, health monitors, and smart watches. All such devices are capable 
of storing and communicating significant amounts of information. Mobile devices also include 
computing, storage, and communication components that are attached to moving vehicles, such as 
buses and trains, and even to animals. Mobile devices may interoperate not only with other mobile 
devices but also with stationary devices, such as desktop PCs and server machines.

Devices can communicate with each other over a spectrum of networking technologies. Most 
devices come equipped with an Ethernet port for connecting to wired networks such as the Internet as 
well as USB ports for connecting directly to other devices. Mobile devices also frequently, but not al-
ways, have one or more wireless networks, such as WiFi (i.e., IEEE 802.11), Bluetooth, and/or cellular.

Two devices are connected if they can send messages to each other, either over a wireless or 
wired network. Weakly connected devices can communicate, but only using a low-bandwidth, high-
latency connection. A device is said to be disconnected if it cannot currently communicate with 
any other device. In practice, a given device may be connected to some devices and disconnected 
from others. Devices may experience intermittent connectivity characterized by alternating periods 
in which they are connected and disconnected.

chapter        2

System Models



�  Replicated data management for mobile computing

An item is the basic unit of information that can be managed, manipulated, and replicated 
by devices. Items include photos, songs, playlists, appointments, e-mail messages, files, videos, con-
tacts, tasks, documents, and any other data objects of interest to mobile users. Some items, such as 
digital photos, may exist only in the electronic world, whereas others, such as address book entries, 
may contain information about physical objects. Each item can be named by some form of globally 
unique identifier.

A collection is a set of related items, generally of the same type and belonging to the same 
person. For example, “Joe’s e-mail” is a collection of e-mail messages, “Mary’s calendar” is a collec-
tion of appointments, and “Suzy’s picture gallery” is a collection of digital photos. A collection is an 
abstract entity that is not tied to any particular device or location or physical storage representation. 
Like items, each collection has a globally unique identifier so devices can refer to specific collections 
in replication protocols.

Collections can be shared and replicated among devices. A replica is a copy of items from a 
collection that is stored on a given device. A replica is a full replica if it contains all of the items in 
a collection. As new items are added to a collection, copies of these items automatically appear in 
every full replica of the collection. A partial replica contains a subset of the items in a collection. 
Devices maintain their replicas in local, persistent storage, called data stores, so that the replicated 
items survive device crashes and restarts.

Software applications running on a device can access the device’s locally stored replicas and 
possibly replicas residing on other connected devices. Such applications can perform four basic 
classes of operations on a replica:

A read operation returns the contents of one or more items from a replica. Read operations 
include retrieving an item by its globally unique identifier, as in a conventional file system 
read operation, as well as querying items by content.

A create operation generates a new item with fresh contents and adds it to a collection. This 
item is first created in the replica on which the create operation is performed, usually the 
device’s local replica, but is then replicated to all other replicas for the same collection.

A modify operation changes the contents of an item (or set of items) in a replica, producing 
a new version of that item. A file system write operation is an example of one that modifies 
an item. A SQL update statement on a relational database is also a modify operation.

A delete operation directly removes an item from a replica and the associated collection. 
Because the item is permanently deleted from its collection, it will be removed from all 
replicas of that collection. By contrast, a device holding a partial replica may choose to 
discard an item from its replica to save space without causing that item to be deleted from 
the collection.
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An update is a generic term for a create, modify, or delete operation. The replication protocols 
discussed later are mainly concerned with propagating updates between replicas. When an update 
is made directly to an item in a device’s replica, that device is said to have updated the item. Not all 
operations can necessarily be performed on all replicas. For instance, a read-only replica residing on 
a device might allow read operations but prevent update operations. In some of the system mod-
els discussed below, items are created but never modified. In this case, replicas contain read-only 
items.

2.2	 REMOTE DATA ACCESS
Perhaps the most basic model for providing anytime, anywhere access to shared information is to 
store such information on a server machine from which it can be remotely fetched by mobile and 
wireless devices. For example, as depicted in Figure 2.1, a user can browse the Web from his cell 
phone using the standard wireless access protocol (WAP). Other examples include accessing large 
databases from a laptop or PDA using WiFi. Such databases include those used for customer rela-
tionship management, enterprise resource planning, personal e-mail, and digital libraries. 

A key benefit of this model is support for arbitrary types of information and arbitrary data 
management systems. The server need only provide methods for querying or accessing the stored 
information over a network. Devices need means for retrieving and displaying items in standard 
formats, such as Web pages and JPEG images. Hence, this model is sometimes called thin-client 
access. Moreover, since the data is centrally maintained, access controls governing who is allowed to 
read and write various information items can be readily enforced. Data consistency is not an issue 
since all updates are performed directly at the server; devices that fetch data directly from the server 
always get the most recently written version.

FIGURE 2.1: Web access from a cell phone using WAP.
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The main drawback of this approach is that data is inaccessible if a network connection to 
the server cannot be established or if the server is temporarily unavailable. Also, access time to the 
data is limited by the round-trip communication latency between the mobile device and the stor-
age server, which can be substantial over certain wireless networks, such as cellular and especially 
satellite networks. Furthermore, such communication consumes valuable battery life on the mobile 
device and may incur network charges. For these reasons, the following alternative models explore 
different means for replicating information on mobile devices, where it can be accessed locally.

2.3	 DEVICE–MASTER REPLICATION
Commonly, portable devices store full or partial replicas of data collections whose authoritative copy 
resides on a master site. The master source may be a shared server, such as a mail server, or a pri-
vate computer to which the portable device is at least occasionally connected. These days, laptops, 
PDAs, music players, and even cell phones have enough storage capacity to replicate significant 
amounts of data from various sources. Even if a device has continuous connectivity to the master, 
entirely replicating databases, such as a person’s address book and calendar, guarantees instant ac-
cess to frequently used information and allows local searching. For mobile devices that have only 
occasional connectivity to information sources, replication is essential. For instance, a person’s iPod 
may download music from the home PC (or indirectly from the Internet) only when connected by 
a USB cable. Without the ability to store music locally, the iPod would be useless.

Two broad approaches have been taken to ensure that a mobile device has ready access to 
critical data obtained from the master. One option is for devices to cache recently accessed data in 
local storage as a simple extension to the remote data access model. A related option is for devices 
to maintain an actively managed, user-visible replica of the master’s data.

By caching data, mobile devices can amortize the cost of retrieving that data over several read 
operations and can retain access to that data when the device becomes disconnected from the master 
storage server. A laptop, for example, may cache files that have been fetched from a file server along 
with the set of recently browsed Web pages as shown in Figure 2.2. 

In a caching model, data generally is fetched into a device’s cache on-demand. That is, when 
the laptop user tries to access a file or Web page, the laptop’s cache is first consulted to see if the 
data is already available. If the desired data is not cached (or if the cached copy is determined to be 
out-of-date and the user desires the most recent data), then the device may contact the appropriate 
server to fetch the data; in this case, the fetched data is stored in the cache for future access.

Devices can control the size of their caches and shrink or grow the cache based on their 
available storage. Since the cache size is limited, items may need to be discarded to free up space 
according to some cache replacement policy, such as removing the items that have been used least 
recently. For well-connected devices, a small cache may be sufficient to hold their working set of 
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frequently accessed data and provide substantial performance benefits by avoiding much (but not 
all) communication with the server.

The drawback of on-demand caching is that information requested by a user will not be 
available if it is not cached and the server is not reachable. Such cache misses will occur for data  
that has not been recently accessed, or perhaps that has never been accessed. To minimize cache 
misses, hoarding (or stashing) can be used during periods of server connectivity to preemptively load 
data objects into a device’s cache in anticipation of future use. Hoard profiles indicate which files or 
data objects a device is likely to access in the near future, perhaps while disconnected. Such profiles 
can be specified by users based on their anticipated needs or automatically generated from observa-
tions of past user behavior.

Replicating data on a mobile device is similar to caching in that the device stores data whose 
master copy lives elsewhere. However, the replication model differs from device-side caching in a 
number of key ways. One, a whole or partial data collection is copied onto a device at one time, rather 
than as individual objects are accessed, and explicitly refreshed periodically through a synchroniza
tion protocol. Two, attempts to read a data object fail if the data is not resident on the accessing 
device, rather than resulting in a cache miss and a remote access to the master. Three, data objects  
are implicitly added to a device’s replica when new objects become part of the replicated data collec-
tion. Four, when a device deletes a replicated object, that object is removed from the data collection 
and all of its other replicas, rather than simply being discarded from the device’s local storage.

FIGURE 2.2: Laptop caching files and Web pages.
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Although a wide variety of replication techniques have been developed for nonmobile devices, 
including quorums and other techniques that provide strong mutual consistency guarantees, most of 
these are not applicable for mobile computing. To permit access to data replicated on disconnected 
devices, mobile systems rely on weaker consistency guarantees. In particular, users typically are 
permitted to read and write any data that is replicated on their devices without coordinating with 
other devices that may be sharing the same data. This read-anywhere, write-anywhere replication  
model is well suited to mobile devices with high-capacity storage but intermittent or weak connec-
tivity and limited battery life. It is widely used for both consumer and enterprise applications [78].

Updates originating at a mobile device to a cached item are generally not only written to the 
cached copy but also written directly to the master server so that the updated item is immediately 
available to other devices. If a connection to the server is not currently possible, then updates may be 
performed locally and queued for later transmission. Updates made by other devices are not neces-
sarily reflected immediately in a device’s local cache. Although methods can be used for ensuring 
that caching clients always read the data that was most recently written, these techniques do not 
work for intermittently connected devices. Therefore, in mobile settings, a device usually is permit-
ted to read old items from its cache, and thus the user may see stale information. Of course, if a user 
accesses data that only he updates, such as his personal calendar, then consistency is not an issue.

In the replication model, updates to replicated items are handled similarly. Data that is up-
dated on a device are uploaded to the master site, and updates made on other devices are downloaded 
from the master site. Essentially, all updates are sent to the master site, which then distributes them 
to other devices holding replicas of the information. The process of communicating with the master 
to upload and download updated data objects is called synchronization. The term reconciliation or 
reintegration is also sometimes used for this process.

Synchronization takes place as connectivity permits and policy dictates. A device without 
wireless networking hardware, whose only means of communicating with a PC is through a wired 
sync cradle, for instance, synchronizes with the attached PC whenever the device is placed in the 
cradle (as shown in Figure 2.3). A device with wireless connectivity to the master site, such as a cell 
phone that synchronizes e-mail with a mail server, may synchronize its data periodically, say, every 
5 minutes or when explicitly requested by a user.

One consequence of a write-anywhere replication model is that two users may independently 
update the same data item on different devices, thereby introducing conflicting updates. Even con
current updates to different objects may conflict if, taken together, they violate some invariant that 
should hold on the data. In a device–master replication model, the master is responsible for de-
tecting when two devices produce conflicting updates. In some cases, the master may be able to 
automatically resolve conflicts that arise, whereas in other cases, such conflicts may require human 
attention.
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2.4	 PEER-TO-PEER REPLICATION
In a peer-to-peer replicated system, all devices holding a replica play (nearly) identical roles. In 
other words, there is no master replica. As with device–master replication, updates are generally 
propagated via pairwise synchronization operations. By relying only on communication between 
pairs of devices, peer-to-peer replication can effectively deal with varying connectivity between 
peers. Devices form an overlay network of arbitrary topology in which neighbors periodically syn-
chronize with each other to propagate updates. Each node in the overlay network is a fixed or 
mobile device, and each edge represents a synchronization partnership between two devices with  
at least occasional network connectivity (as illustrated in Figure 2.4). Updated data objects flow 
between devices via the overlay network. Compared with the device–master model, peer-to-peer 
replication over arbitrary overlay topologies requires more complicated synchronization protocols 
but offers a number of key advantages.

With peer-to-peer replication, a device that belongs to a community of replicas can invite 
others to join the community simply by establishing local synchronization partnerships. The overlay 
topology can grow organically without informing other devices. Users need not even be aware of the 
full set of devices that are sharing data. Synchronization partnerships can come and go as long as the 
overlay network of replicas remains well-connected. If a mobile device opportunistically encounters 
another device that has data in common, these two devices can synchronize with each other without 
any prior arrangement or synchronization history.

The peer-to-peer replication process is tolerant of failed devices and network outages. If the 
master is temporarily unavailable in the device–master model, then devices cannot propagate new 

FIGURE 2.3: Synchronization between a PDA and home PC using a sync cradle.
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updates among themselves until the master recovers or reconnects. In a more general topology sup-
ported by peer-to-peer replication, such as a fully connected clique in which any device can directly 
exchange updates with any other device, the loss of a single device does not prevent updates from 
propagating along different paths.

One of the main advantages given for peer-to-peer replication is that it allows updates to 
propagate among devices that have internal connectivity but no connection to the Internet at large. 
For example, suppose that colleagues are holding an off-site meeting at a remote location without 
an Internet connection but want to collaboratively edit a document and share their edits between 
their laptops. The laptops may be connected by a local WiFi network or use point-to-point Blue-
tooth or infrared connectivity to exchange new versions of the document. As another example, 
teenagers may wish to send songs, ring tunes, and playlists directly between their portable music 
players or cell phones that are in close proximity.

Even when mobile devices are well-connected, nontechnical (e.g., political) concerns may 
lead organizations to favor configurations that do not rely on a master replica. Specifically, using 
peer-to-peer replication, also known as multimaster replication, puts all participants on an even foot-
ing. Studies of the role of information technology in disaster situations, for example, have shown 
that the various relief organizations that need to share emergency information wish to be viewed as 
equal partners. The peer-to-peer replication model supports collaborators operating as peers when 
managing shared data.

The principal cost of peer-to-peer replication is that it requires more complex protocols for 
ensuring that updated data objects reach each replica while efficiently using bandwidth. Also, update 

FIGURE 2.4: Peer-to-peer synchronization between mobile devices.
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conflicts may be more prevalent than in the device–master model, and conflicts may be detected 
during synchronization between devices that did not introduce the conflicting updates. Overall, 
mobile users must deal with a more complex model resulting from the absence of a master replica, 
the lack of knowledge about the full replication topology, and decentralized conflict handling.

2.5	 PUBLISH–SUBSCRIBE SYSTEMS
Publish–subscribe (or “pub–sub”) systems are characterized primarily by their pattern of informa-
tion dissemination. Small snippets of information, such as news articles, weather reports, and event 
notifications, are broadcast from a central site, the publisher, to a number of subscribers. Generally, 
information is group into topic-based channels, allowing devices to subscribe to items of interest. 
The information may reach subscribers directly or via other subscribers, who may be organized in a 
tree topology with the publisher at the root. The publisher and subscribers may be either mobile or 
fixed devices with wireless or wired communication capabilities.

From the perspective of mobile data management, a common and increasingly important 
scenario is a fixed publisher broadcasting information via wireless networks to mobile devices. For 
example, users may receive sport scores on their cell phones. Cellular providers offer such informa-
tion services to attract customers and provide additional revue streams. Figure 2.5 depicts another 
example in which users receive news, weather, and sports on their watches.

FIGURE 2.5: Smart watch receiving news, weather reports, and other notices that are broadcast from 
a central publishing site.
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Like other replication models, once a user subscribes to a channel, such as news or weather, 
new items published to that channel are automatically replicated to the user’s device(s). Such items 
are treated as read-only and created only at the publisher. Data replicated to mobile devices via a 
pub–sub system may be only of ephemeral interest; that is, the data is often discarded once they 
have been read by the user.

2.6	 RELATED TECHNOLOGIES AND MODELS
A number of pervasive computing technologies and mobile systems that have received a fair amount 
of recent attention relate to the system models just presented. These are briefly discussed in the fol-
lowing subsections. These systems generally extend or combine the basic replication models.

2.6.1	 Ad Hoc Wireless Sensors Networks
Much attention has been focused recently on small nodes equipped with computing resources, 
short-range wireless communication, and sensors for gathering temperature readings, motion, 
lighting, location, and a variety of other environmental properties. Such nodes can be configured, 
or automatically configure themselves, into ad hoc sensor networks that enable radically new moni
toring and control applications. Sensors are being used for everything from monitoring volcanic/
earthquake activity to tracking wildlife. In a sensor network, nodes may have short-range wireless 

FIGURE 2.6.: Sensor nodes exchanging data via a mesh network and connected to a controlling PC.
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connections over which they replicate sensor data and no or intermittent connectivity to a larger 
network [6]. As in the peer-to-peer replication model, sensor data is routed, and hence replicated, 
between nodes over a mesh of interconnected neighboring nodes (as shown in Figure 2.6).

Data management issues include replicating sensor data to the nodes that need to process  
it and aggregating such data as it propagates throughout the network. Generally, data is being  
collected continually and may demand real-time processing. Energy-efficient algorithms and pro-
tocols are required because sensor nodes often have severely limited battery life. In most cases, sen-
sor nodes are homogeneous in form and function and hence operate as peers. However, the sensor 
network may include special nodes with increased computing, storage, battery, and communication 
capacity; such nodes may play a greater role in managing data collected from other sensor nodes. 
For example, ZebraNet sensors attached to wildlife regularly replicate data among nearby animals 
but only occasionally come within range of a long-range communication base station [55]. Thus, 
managing data in sensors networks involves a mixture of peer-to-peer and device–master models as 
well as in-network data filtering and aggregation.

2.6.2	 Delay-Tolerant Networking
In a system in which two mobile devices that wish to communicate never (or rarely) are directly 
connected, messages can be routed between the devices via intermediate nodes over a delay-tolerant 
network [18, 39]. For example, Figure 2.7 shows a bus that picks up information at one bus stop and 
delivers it to a person waiting at a different bus stop. In this scenario, the two mobile devices that are 
communicating have only intermittent WiFi connectivity to the moving bus. Similar scenarios arise 

FIGURE 2.7: Mobile vehicle serving as a data mule for devices at a bus stop.
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in battlefield situations where the communication infrastructure connecting troops and vehicles 
may be changing and intermittent. Delay-tolerant networks can even be formed among humans 
through their chance encounters; these have been called proximity social networks.

Delay-tolerant networks resemble the overlay networks used in peer-to-peer replication. 
However, the objects being replicated between devices are messages rather than data items. Of 
course, such messages may include data such as Web pages, file contents, or news stories, but they 
are explicitly addressed to a particular device or set of devices. The topology of a delay-tolerant 
network may be fluid to take advantage of opportunistic encounters between devices. Unlike in 
the peer-to-peer model where all participating devices have a long-term interest in the data being 
replicated, the intermediate devices in a delay-tolerant networks are simply acting as good citizens 
in temporarily storing messages that are in transit to their destinations. Typically, once a message 
has been passed to a device that is presumed to be “closer” to the message’s destination, the relay-
ing device no longer stores the message. Because connectivity between devices cannot always be 
predicted, messages may be replicated among nodes in the network to increase their chance of suc-
cessful delivery.

Delay-tolerant networks constructed from mobile devices face the challenge of deciding how 
best to route messages. In particular, two devices that come into contact must determine which of 
them is closer to a message’s destination. Aggressively flooding messages among devices can be 
effective in maximizing the probability of delivery and minimizing the delivery latency. However, 
flooding also wastes bandwidth and consumes battery, both of which can be scarce commodities 
in mobile environments. It also presents another problem not faced in peer-to-peer replication, 
namely how to detect that a message has been delivered so that it can be safely discarded.

2.6.3	 Infostations
A variant of the pub–sub model that incorporates ideas from delay-tolerant networking uses fixed 
devices, called infostations or waystations, as points from which mobile devices can receive infor
mation wirelessly [20]. Each infostation has both a wired connection to the Internet from which it 
receives information and a wireless network, typically WiFi, over which it broadcasts information to 
nearby devices. Infostations may be deployed in public places such as coffee shops and train depots.

Infostations provide convenient places where mobile devices can pick up (and potentially 
drop off ) shared, replicated, contextually relevant information. Publishers in a pub–sub system 
might push selected channels to infostations from where the published information can be retrieved 
by subscribers that are passing by. For example, commuters might have news and weather informa-
tion automatically downloaded into their laptops as they pick up their morning coffee (as shown in 
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Figure 2.8). Such information can even be tailored to the location of the establishment containing 
the infostation. Messages directed to particular devices, as in a delay-tolerant network, can also be 
replicated to infostations in places that are frequented by the target device. In this case, infostations 
serve as last-hop relays in the delay-tolerant network. 

Because infostations are nonmobile devices, they avoid the storage and energy limitations 
faced by mobile devices. However, system designers do need to decide what information should 
be replicated to which infostations and for how long based on expected user needs and mobility 
patterns. Also, infostations should avoid sending information to mobile devices that have already 
received that information. Thus, they require efficient delivery mechanisms that are similar to the 
protocols used in peer-to-peer replication.

2.7	 REPLICATION REQUIREMENTS
Table 2.1 summarizes the previous system models and their variations. These system models share, 
update, and distribute data in different ways. Thus, they place varied requirements on the replica-
tion protocols needed to support such systems. Table 2.2 summarizes the needs of the four basic 
system models regarding the following six environment and replication properties:

Continuous connectivity: Does the system only operate when devices are well-connected?
Update anywhere: Can any device update data items that then must be propagated to  
other replicas?

FIGURE 2.8: Internet-connected infostations deliver news that is picked up by a customer in a coffee 
shop.
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TABLE 2.1:  Data sharing models of mobile systems

DEVICES DATA READS UPDATES

Remote  
access

Server plus 
mobile devices

Web pages, files, 
databases, etc.

Performed at 
server

Performed at server

Device  
caching

Server plus 
mobile devices

Web pages, files, 
databases, etc.

Performed on local 
cache; performed 
at server for cache 

misses

Performed at server 
and (optionally) in 

local cache

Device– 
master  

replication

Master replica 
plus mobile 

devices

Calendars, 
e-mail, address 

book, files,  
music, etc.

Performed on  
local replica

Performed on local 
replica; sent to  
master when  

connected

Peer-to-peer 
replication

Any mobile 
or stationary 

device

Calendars, 
e-mail, address 

book, files,  
music, etc.

Performed on  
local replica

Performed on local 
replica; synchronized 

with others lazily

Pub–sub Publisher plus 
mobile devices

Events, weather, 
news, sports, etc.

Performed at 
subscriber’s local 

replica

Performed at  
publisher; dissemi-
nated to subscribers

Sensor  
network

Sensor nodes Environment 
data, e.g.,  

temperature

Performed at 
nodes that  

accumulate and 
aggregate data

Real-time data 
stream at each node; 
routed to others over 

ad hoc network

Delay- 
tolerant 

networking

Any mobile 
devices

Messages 
(including files, 
Web pages, etc.)

Performed by 
message recipient

Message created by 
sender; routed to 

destination through 
intermediaries

Infostations Publishers, 
infostations, 
plus mobile 

devices

News, messages, 
advertisements, 
events, music, 

etc.

Performed at 
infostation or on 

local replica

Performed at  
publisher; relayed to 
infostations; picked 
up by nearby devices
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TABLE 2.2:  Replication requirements for basic data-oriented system models

REMOTE 
ACCESS

DEVICE–
MASTER

PEER- 
TO-PEER

PUB–SUB

Continuous connectivity ÖÖ Ö

Update anywhere ÖÖ ÖÖ

Consistency ÖÖ ÖÖ ÖÖ

Topology independence ÖÖ

Conflict handling ÖÖ ÖÖ

Partial replication Ö Ö ÖÖ

Consistency: Does the system require mechanisms to enforce consistency guarantees, such 
as eventual consistency (as discussed in Chapter 3)?
Topology independence: Is the connectivity between devices that replicate data uncon-
strained, i.e., defined by an arbitrary graph?
Conflict handling: May devices perform conflicting updates that need to be detected and 
resolved (as discussed in Chapter 6)?
Partial replication: Do devices wish to replicate some portion of a data collection?

In Table 2.2, each row presents the answers to one of the questions posed above, and each 
column presents the results for a given system model. Two check marks appear in a table entry if the 
answer to the corresponding question is “yes” when asked about the corresponding system model. A 
single check mark indicates that the feature is not required but is desirable. Not surprisingly, support 
for partial replication is a requirement of almost any mobile system due to a mobile device’s limited 
storage and communication capacity, whereas the peer-to-peer replication model places the most 
demands on a replication protocol.

•  •  •  •
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The consistency provided by a replicated system is an indication of the extent to which users must  
be aware of the replication process and policies. Systems that provide strong consistency try to  
exhibit identical behavior to a nonreplicated system. This property is often referred to as one-copy 
serializability. In practice, it means that an application program, when performing a read opera-
tion, receives the data resulting from the most recent update operation(s). Update operations are 
performed at each device in some well-defined order, at least conceptually. Maintaining strong 
consistency requires substantial coordination among devices that replicate a data collection. Typi-
cally, all or most replicas must be updated atomically using multiple rounds of messages, such as a 
two-phase commit protocol.

Relaxed consistency or optimistic models have become popular for replicated systems because 
of their tolerance of network and replica failures and their ability to scale to large numbers of repli-
cas. These characteristics are especially important in mobile environments. Rather than remaining 
mutually consistent at all times, replicas are allowed to temporarily diverge by accepting updates 
to local data items; such updates propagate lazily to other replicas. Read operations performed on 
a device’s local replica may return data that does not reflect recent updates made by other devices. 
Thus, users and applications must be able to tolerate potentially stale information. Mobile systems 
generally strive for eventual consistency, guaranteeing that each replica eventually receives the lat
est update for each replicated item. However, other stronger (and weaker) consistency guarantees 
are possible as discussed in this section.

3.1	 BEST EFFORT CONSISTENCY
Many replication protocols simply make a best effort to deliver updates to all replicas. In such a 
case, read operations performed at different replicas may return different answers, even if no updates 
have been performed recently and hence no replication is in progress. Even systems that strive for 
eventual consistency, often fail to achieve it. Replicas may not converge to a mutually consistent 
state for any of number of reasons.

For one, all updates may not make it to all replicas. This can occur if updates are sent over a 
mostly, but not totally, reliable communication channel. For example, the Grapevine system propagated 

chapter        3
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updates between replicas using e-mail, which is commonly viewed as being a reliable transport mecha-
nism but is actually not [88]. Gossip protocols, as discussed in Section 4.3.3, make only probabilistic 
guarantees about message delivery.

Despite reliable delivery, replicas will not converge if

updates are performed differently at different replicas (i.e., the application of an update 
is not deterministic);
updates are applied in different orders at different replicas and are not commutable;
replicas have different conflict resolution policies (as discussed in Section 6.3.1);
metadata, such as deletion tombstones, are discarded too early;
replicas lose or corrupt data, such as when a replica is restored from an old backup; or
the system is improperly configured, such as when the synchronization topology is not a 
well-connected graph.

Replicated systems may intentionally provide no real consistency guarantees or unintention-
ally provide inconsistency through poor design, invalid operating assumptions, or misconfiguration.

3.2	 EVENTUAL CONSISTENCY
A system providing eventual consistency guarantees that replicas would eventually converge to a 
mutually consistent state, i.e., to identical contents, if update activity ceased. Naturally, ongoing 
updates may prevent replicas from ever reaching identical states, especially in a mobile system where 
communication delays between replicas can be large due to intermittent connectivity. Thus, a more 
pragmatic definition of eventual consistency is desired.

Practically, a mobile system provides eventual consistency if (1) each update operation is 
eventually received by each device, (2) noncommutative updates are performed in the same order 
at each replica, and (3) the outcome of applying a sequence of updates is the same at each replica. 
Replication protocols that meet these requirements, as well as some that do not, are discussed in 
Chapter 4.

Eventually consistent systems make no guarantees whatsoever about the freshness of data 
returned by a read operation. Readers are simply assured of receiving items that result from a valid 
update operation performed sometime in the past. So, a person might, for instance, update a phone 
number from her cell phone and then be presented with the old phone number when querying the 
address book on her laptop. Techniques have been developed for providing stronger read guarantees 
while still allowing eventual update propagation. Some of these are applicable to mobile systems, 
and are discussed in the next sections.

•

•
•
•
•
•
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3.3	 CAUSAL CONSISTENCY
In a system providing causal consistency, a user may read stale data but is at least guaranteed to 
observe states of replicas in which causally related update operations have been performed in the 
proper order. Specifically, suppose an update originates at some device that had already received and 
incorporated a number of other updates into its local replica. This new update is said to causally 
follow all of the previously received updates. A causally consistent replicated system ensures that if 
update U2 follows update U1, then a user is never allowed to observe a replica that has performed 
update U2 without also performing update U1. If two updates are performed concurrently, that is, 
without knowledge of each other, then they can be incorporated into different devices in different 
observable orders. Protocols that use update logs, as presented in Section 4.2.1, can readily maintain 
causal ordering guarantees.

3.4	 SESSION CONSISTENCY
One potential problem faced by users who access data from multiple devices is they may observe 
data that fluctuates in its staleness. For example, as explained above, a user may update a phone 
number on her cell phone and then read the new phone number from her PDA but later read the 
old phone number from her laptop. Session guarantees have been devised to provide a user (or ap-
plication) with a view of a replicated database that is consistent with respect to the set of read and 
update operations performed by that user while still allowing temporary divergence among replicas 
[94]. For example, the “read your writes” guarantee ensures that the user only reads from replicas 
that have already received previous writes issued by the user. This solves the just-mentioned prob-
lem of reading an old phone number. Similarly, “monotonic reads” ensures that the user observes 
increasingly up-to-date data, “writes follow reads” ensures that a write operation initiated by a user 
is ordered after any writes previously observed by this user on any devices, and “monotonic writes” 
ensures a causal ordering on writes issued by the same user.

Unlike causal consistency, which is a systemwide property, session guarantees are individually 
selectable by each user or application. Application designers can choose the set of session guarantees 
that they desire based on the semantics of the data that they manage and the expected access patterns.

Session guarantees can be easily implemented on mobile devices, provided some small state 
can be carried with the user as she switches between devices. More practically, this state can be 
embedded in applications that access data from mobile devices. However, systems providing session 
guarantees on top of an eventually consistent replication protocol may need to occasionally prevent 
access to some device’s replica. That is, availability may be reduced to enforce the desired consis-
tency properties, which could adversely affect mobile users. One practical option is for the system 



26  REplicated data management for mobile computing

to simply inform the user (or application) when an operation violates a session guarantee but allow 
that operation to continue with weaker consistency.

3.5	 BOUNDED INCONSISTENCY
In some cases, bounds can be placed on the timeliness or inaccuracy of items that are read from a  
device’s local replica, providing bounded inconsistency. For example, an application may desire to  
read data that is no more than an hour old, in which case, the system would guarantee that any up-
dates made more than an hour ago have been incorporated into the device’s replica before allowing a 
local read operation. Similarly, a system may enforce bounds on numerical error or order error as in 
the TACT framework [105, 106]. This requires replicas to know about updates made elsewhere and 
generally relies on regular connectivity between replicas. Thus, techniques for ensuring bounded 
inconsistency may not be applicable to all mobile environments.

3.6	 HYBRID CONSISTENCY
Consider a system model in which updates originate at a single site, such as with device-side caching, 
pub–sub systems, or even perhaps device–master replication. In this case, applications can be pre-
sented with a choice of strong or weak read consistency. For applications running on a mobile device 
that require strong consistency, read operations can be directed to the master (or publisher), assuming 
the device is wirelessly connected to the master. Read operations that can tolerate stale data should be 
directed to the device’s local replica, which may or may not contain the most recent updates from the 
master. Thus, when connected, applications face a trade-off between consistency and latency. When 
disconnected, strong-consistency read operations will fail, in which case, the application can either 
halt or accept potentially inconsistent data.

•  •  •  •
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The designer of a replication protocol must deal with the following issues and fundamental questions:

Consistency: What consistency guarantees are desired and how are they provided?
Update format: Do replicas exchange data items or update operations?
Change tracking: How do devices record updates that need to be propagated to other 
devices?
Metadata: What metadata is stored and communicated about replicated items?
Sync state: What state is maintained at a device for each synchronization partnership?
Change enumeration: How do devices determine which updates still need to be sent to 
which other devices?
Communication: What transport protocols are used for sending updates between devices?
Ordering: How do devices decide on the order in which received updates should be applied?
Filtering: How are the contents of a partial replica specified and managed?
Conflicts: How are conflicting updates detected and resolved?

This chapter explores the range of practical answers to each of these questions (except for 
the last one on conflict handling, which is covered in Chapter 6). Consistency guarantees were 
discussed in the previous chapter. Unless otherwise stated, it is assumed in the following discussion 
that updates can be performed at any device (an update-anywhere model) and that eventual consis-
tency is desired. That is, an application-initiated update operation is performed at a single device, 
causing that device to modify its local replica or possibly one or more remote replicas. The update 
is then propagated to other replicas over a wired network, wireless broadcast channels or device-to-
device connections, which may be intermittent. A variety of replication protocols can be used for 
reliably and efficiently spreading updates.

4.1	 REPRESENTING UPDATES
One of the most basic choices faced by a replication protocol designer is what to send between rep-
licas to bring them into a coherent state. Each device’s data store, whether a file system or database, 

chapter        4
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provides an application programming interface (API) that applications call to perform update op-
erations. Each operation, in turn, modifies the contents (and metadata) of one or more data items, 
such as files or rows in a database. Replicas can either exchange the operations performed by an 
application or the updated items resulting from those operations.

4.1.1	O peration-Sending Protocols
In an operation-sending protocol, replicas record and send operations to each other. Each device  
independently performs each received operation on its local replica. To achieve eventual consistency, 
replicas must not only receive the same operations (or correctly transformed operations as discussed 
in Section 4.4.6) but must also execute operations in a deterministic manner. Unless operations are 
idempotent, meaning that multiple executions have the same effect on the underlying data store,  
the replication protocol must ensure that operations are delivered exactly once to each replica. Also, 
the order in which operations are performed is often important (and suitable ordering techniques 
are discussed in Section 4.4).

4.1.2	 Item-Sending Protocols
Alternatively, replicas can propagate data items, resulting in an item-sending protocol. Received up-
dated items are added to a device’s replica, normally replacing older items with the same unique identi-
fier. The same item can be received multiple times by a device since replacing an item is an idempotent 
operation, but duplicate delivery should be avoided when possible since it wastes resources, which are 
precious on a mobile device. Ordering mechanisms (see Section 4.4) may be needed to determine if a 
received item is obsolete, i.e., is an older version of a previously received item.

4.1.3	 Comparisons
There can be a fine line between operation-sending and item-sending protocols. In particular, items 
sent during replication can be viewed as very simple operations that completely replace the contents 
of a single item. However, operations can, and usually do, have higher-level semantics and may 
affect multiple items. More importantly, item-sending and operation-sending replication schemes 
differ fundamentally in what needs to be standardized among replicas. Whether standardizing on 
schemas or operations is preferable probably depends on the set of applications and devices that 
must be supported.

In item-sending protocols, replicas must share a common item layout, i.e., physical schema, 
since they exchange data items. However, different devices can run different applications with cus-
tom APIs for accessing different replicas of the shared collection. A pocket PC device, for instance, 
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might run applications with more limited operations than the desktop PC with which it synchronizes. 
Moreover, APIs can evolve over time and new applications can be supported without affecting the 
replication process as long as the physical schema remains the same.

In operation-sending protocols, replicas must agree on the supported operations but are free 
to provide different implementations. Replicas may even have different physical schemas. For ex-
ample, a pocket PC device may synchronize photos with a desktop PC but store them in a reduced 
resolution format. A photo editing application running on the desktop PC would send high-level 
operations, such as “crop this region of the photo,” and the Pocket PC would need to apply such 
operations to its low-resolution version.

Most of the protocols discussed later can propagate items or operations. The generic term 
update is used to refer to either an updated item or an update operation.

4.2	 RECORDING UPDATES
In the world of update-anywhere replication protocols, two basic schemes have been used to record 
the set of updates that need to be exchanged between replicas. In the log-based scheme, each device 
maintains a log of updates. Each update that originates at a device is stored in the device’s log in 
addition to being applied to its local data store. Logged updates are delivered to other replicas as a 
background activity, and updates received from other devices by the replication protocol are added 
to the receiving device’s log. In the state-based scheme, rather than keeping update logs, devices 
simply apply local update operations to their replicas. During replication, devices directly compare 
the contents of their replicas and exchange updated items.

4.2.1	 Log-Based Systems
Systems that use update logs can either log operations or items, although such systems usually 
maintain operation logs. Thus, log-based systems are generally associated with operation-sending 
protocols. The replication process is concerned with propagating logged entries between devices, 
often ignoring the devices’ data stores, as depicted in Figure 4.1. Different mechanisms for dissemi-
nating logged operations are presented in Section 4.3.

Replicas will converge to a consistent state provided that (1) each replica eventually receives 
and executes each update operation, (2) noncommutative operations are executed in the same order 
at each replica, and (3) operations have deterministic executions, i.e., an operation produces the 
same result at each replica given the same initial database state. This style of log-based replication 
has been used in a number of systems, including Coda for reintegration of disconnected clients (see 
Section 7.1) and Bayou as its sole means of ensuring replica convergence (see Section 7.3).



30  REplicated data management for mobile computing

In general, the size of a device’s operation log is unbounded and depends on the size of up-
date operations, the update rate, and the propagation latency. Log-based systems must decide when 
logged operations can be safely discarded, i.e., when the log can be pruned. The answer is simple: a 
logged operation is no longer needed when it has fully propagated to all replicas or has been made 
obsolete by other operations occurring later in the log. Some systems provide log compaction mecha-
nisms that discard obsolete operations, but determining obsolescence can be tricky for arbitrary op-
erations. In a client–server system, such as Coda, clients can discard their logs once they successfully 
replay them to the servers. In a peer-to-peer system, such as Bayou, the mechanism for determining 
whether an operation is globally known is nontrivial, representing an additional implementation 
burden and source of bugs.

4.2.2	 State-Based Systems
State-based systems invariably rely on item-sending protocols. Specifically, devices directly compare 
and exchange items from their local data stores, thereby avoiding the need for maintaining opera-
tion logs. This style of replication, shown in Figure 4.2, has been used in replicated file systems, such 
as Ficus, and even some database management systems.

FIGURE 4.2: State-based replication.

FIGURE 4.1: Log-based replication.
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To determine which items in a device’s replica have been updated recently and also to cor-
rectly determine the latest version of an item during synchronization, the device’s data store at-
taches metadata to each item. This additional metadata could be as small as a single modified bit 
(see Section 4.3.5), an update timestamp, or a version number. As with log-based replication, newly  
updated data items can be disseminated among replicas using a variety of mechanisms, including 
reliable multicast or peer-to-peer synchronization.

One issue that arises in a state-based replication protocol is how to handle deleted items. In 
a log-based system, delete operations are simply added to a device’s log and propagate like all other 
logged operations. In a state-based system, if a delete operation simply removes an item from the 
initiating device’s replica, this can cause problems. In particular, during synchronization between 
two replicas, if one replica holds an item and the other replica does not, the replicas cannot deter-
mine whether (1) the second replica never learned of the item and hence should receive the item or 
(2) the second replica deleted the item, in which case the first replica should also delete the item. 
This is known as the create–delete ambiguity.

The solution adopted by most systems is to mark items with a special “deleted” bit rather 
discarding them. Such deleted items are known as tombstones or death certificates. Tombstones rep-
licate among devices just like other items. However, they are not visible to applications that access 
a device’s replica.

4.2.3	 Comparisons
State-based, item-sending replication protocols and log-based, operation-sending replication proto-
cols can be compared along several dimensions. Table 4.1 presents a side-by-side technical comparison. 

TABLE 4.1:  Comparison of state-based and log-based replication

State-based Log-based

Updates sent as Data items Operations

Metadata Per-item modified bit, timestamps,  
or versions plus deleted bit

Operation log

Deleted items Maintained as tombstones Removed from database  
immediately, but delete  

operation logged

Physical item layout Identical at all replicas May vary across replicas

Operations (API) May vary across replicas Identical at all replicas
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Although both styles of replication can provide the same high availability and eventual consistency, 
they differ in a number of key functional aspects.

The amount of metadata maintained in a state-based replication scheme is likely less since an 
operation log is not needed. For log-based systems, an operation log could easily grow larger than 
the replica itself. On the other hand, if delete operations are common, then the space needed to 
retain tombstones in a state-based scheme could be significant.

State-based systems can potentially reduce the overall message traffic. Whereas log-based 
systems always send each update operation to each replica, assuming log compaction is not possible, 
state-based replication naturally collapses a series of updates to each item into its latest version that is 
sent during synchronization. Thus, if a user is editing a document and saving it periodically, say, once 
per minute, but synchronizing with other users once per hour, the message traffic could be reduced 
by a factor of 60 compared with a log-based system that sends a steady stream of updates. On the 
other hand, log-based systems can often significantly reduce the size of their logs through effective 
log compaction techniques. Moreover, state-based systems typically send the entire contents of an 
updated item, even if a small portion of the item was modified. Sending high-level operations could 
be more efficient.

In essence, state-based replication is a special case of log-based replication in which the op-
erations exchanged during replication are limited to single-item update and delete statements. This 
restriction allows the system to operate without an operation log, simplifies the implementation, 
and may provide performance benefits.

The downside is that state-based replication systems cannot provide the rich semantics or 
flexibility of log-based systems. Specifically, state-based systems lack three types of information that 
are captured in operation logs:

the sequence of operations that produced an item’s current value,
the order in which items were updated, and
the set of items updated in a single operation (or transaction).

Applications that access data items may not care about this information, but it can be valu-
able in detecting semantic conflicts, enforcing atomicity, and preserving integrity constraints.  
For instance, log-based replication can, in theory, take into account the semantics of operations 
when detecting update conflicts, a potential advantage over state-based replication. However, as 
discussed in Section 6.2.7, exploiting operational semantics when detecting conflicts is difficult 
in practice. Additionally, a state-based replication protocol cannot guarantee that a set of updates 
that were performed atomically on the original replica will be performed atomically on other  
replicas.

1.
2.
3.
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4.3	 SENDING UPDATES
This section considers a variety of protocols for exchanging operations or updated items, simply 
called updates, between replicas. For the most part, it assumes that replicas are interested in all items,  
that is, data collections are fully replicated. This assumption is relaxed in Chapter 5 where tech-
niques for partial replication are discussed.

4.3.1	 Direct Broadcast
Perhaps the simplest technique for disseminating updates is for a device that performs a local up-
date operation to immediately send that update to all other replicas. For example, if all subscribers 
in a pub–sub system on are the same wireless network, the publisher can broadcast updates to each 
device. Multicasting updates to mobile devices in a cellular network is possible but expensive and 
not totally reliable [1]. In a mesh network, such as an ad hoc sensor network, devices could flood  
updates throughout the network by sending each received update to each neighbor. In a more gen-
eral network setting, an updating device could send TCP/IP packets directly to each replica.

Directly sending updates between replicas avoids the need to log such updates. However, it of-
ten requires a device to know the complete set of replicas for a data collection. Moreover, devices that 
are currently unavailable, perhaps because they are out of network range or have a dead battery, may 
miss updates. To provide stronger delivery guarantees, more robust replication protocols are needed or 
the direct broadcast method must be augmented with one of the other protocols mentioned later.

For example, clients of the Coda file system, when in connected mode, multicast each update 
operation to the set of available servers that replicate the file being updated. If a server misses an update, 
this is detected by some client at a later time and a server-to-server repair mechanism is invoked.

As another example, Groove, a commercial collaboration system, directly sends update op-
erations to each replica of a shared work space. Groove uses “relay servers” to support devices that 
are off-line and hence cannot currently receive updates and to accommodate devices that cannot 
directly communicate with each other, e.g., because they are behind firewalls. When a Groove client 
that is broadcasting an update determines that another replica of the shared space is unreachable, it 
sends the update message to that replica’s relay server. The relay server simply queues each message 
it receives until the appropriate replica contacts it to retrieve the queued updates. If a relay server is 
unavailable, then a Groove client has no way of getting the update messages that are queued on that 
server even if other replicas of the shared work space are reachable.

4.3.2	 Full Replica or Log Exchange
A simple and very robust protocol can be obtained by having pairs of devices periodically exchange 
the full contents of their replicas (in a state-based system) or logs (in a log-based system). When a 
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device receives another device’s replica (or log), it discards any duplicate items (or operations). For 
each of the remaining items, the receiving device needs to decide which version is the most recent; 
techniques for ordering versions of items are discussed later in Section 4.4. Obsolete versions are 
discarded. The device is left with a replica (or log) in which the data stored by it and its synchro-
nization partner have been merged. Therefore, the two synchronizing devices become mutually 
consistent. Eventual consistency is easily achieved as long as each device holding a replica directly 
or indirectly communicates with all other replicas. Unfortunately, this simple protocol is not ap-
propriate for most mobile systems since repeated exchanges of the same data items waste substantial 
bandwidth, consume CPU resources, and reduce battery life. Mobile devices require protocols that 
are both robust and network-efficient, i.e., that incrementally disseminate updated items.

4.3.3	G ossip Protocols
Randomized gossiping is one example of a replication technique that sends incremental updates 
between replicas. A variety of gossip protocols have been devised [12]. The basic characteristic of 
such protocols is that a device periodically sends a randomly selected update (or set of updates) to 
some other device. In one example, called rumor mongering, updates that are not widely known are  
treated as “hot rumors” and are actively propagated between devices. Devices randomly select updates 
from their list of hot rumors to send to other devices. These hot rumors can be stored either in the 
device’s replica (in a state-based system) or in a separate log. When a device tries to deliver a hot 
rumor, it may discover that the updated item is already known to the target device. After a certain  
number of such failed delivery attempts, the device removes the item from the hot rumor list. Al
ternatively, updates can be removed from the hot rumor list after a fixed expiration period or based on  
some other policy. Such a gossip protocol is also call an epidemic algorithm because updates propa
gate in a style resembling epidemic diseases. Think of devices with hot rumors as being infected and 
actively trying to infect other devices (in a beneficial way).

Gossip protocols are simple to implement, make minimal assumptions about device connec-
tivity, require only a small amount of metadata (the hot rumor list), and are reasonably robust. They 
support opportunistic encounters between devices. That is, two devices that have never previously 
been connected can exchange selected hot rumors while knowing almost nothing about each other.

The downside of gossip-style protocols is that an update may not reach all replicas. For in-
stance, in the rumor mongering protocol described above, a rumor might propagate between a set 
of well-connected replicas and be declared cold before a disconnected mobile device has a chance to 
learn of it. To guard against this, devices may choose to occasionally send cold rumors. In any case, 
the protocol can make only probabilistic delivery guarantees and hence cannot ensure eventual con-
sistency. In fact, as shown by Demers et al. [12], gossip protocols face a tradeoff between consumed 



Replicated Data Protocols  35

bandwidth and residual delivery probabilities. Protocols that send updates more often or that less 
aggressively prune the hot rumor list can reduce the probability of incomplete delivery to a negligible 
amount but at the cost of sending more data.

Replication protocols that guarantee eventual consistency while maintaining tight bounds 
on the network resources required per update may be more suitable for intermittently and weakly 
connected mobile devices and are the focus of the remainder of this chapter. In some cases, other 
replication protocols can be used effectively in conjunction with a gossip-style protocol. In particu-
lar, devices might use a gossip protocol to quickly propagate recent updates among nearby neighbors 
and then a more expensive protocol, such as full replica exchange or anti-entropy, to ensure eventual 
delivery to all devices.

4.3.4	 Message Queue Protocols
A reliable messaging system, such as IBM’s MQ Series or Microsoft’s SQL Service Broker, can 
also serve as a simple mechanism for propagating updates. The replica that performs an update 
operation simply places this update on queues to be delivered to all other replicas. In effect, the 
delivery queues managed by the messaging system serve as destination-specific operation logs that 
get pruned as updates are successful received.

Each replica need not have a direct connection to each other replica. A practical approach 
is to set up a multicast tree in which a replica sends updates to its child replicas, who, in turn, send 
each update to their children, and so on. Although it would be possible to have multiple multicast 
trees rooted at different nodes, the simplest scheme is to have a single tree. All updates are sent to 
the root of this multicast tree, which initiates the downward propagation. As long as message delivery 
is guaranteed, each replica will eventually receive every update.

Reliable multicast relies on having a multicast tree in which each replica occurs at least once. 
Efficient propagation relies on having a multicast tree in which each replica occurs exactly once. 
The replication topology must be a well-formed tree to avoid loops and ensure that each update 
operation is delivered only once. Configuring this tree as devices create and remove replicas can be 
challenging. Moreover, if the path from the root of the tree to some device involves intermediate 
mobile devices that are intermittently connected, then updates may propagate slowly.

Layering replication on top of a messaging infrastructure can potentially simplify the imple-
mentation but is also a cause for concern regarding eventual convergence. Even “reliable” multicast 
services are not entirely reliable. Years ago, the Grapevine system ran into this problem while using  
e-mail as its method for distributing updates [88]. Messaging services typically guarantee that either 
a message is delivered to the intended recipients or the sender is notified that it could not be deliv-
ered. The nondelivery case should be rare but must be handled by the replication layer nonetheless.
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4.3.5	 Modified Bit Protocol
Consider a situation in which two devices synchronize only with each other, such as a cell phone 
and home PC that share a copy of a person’s address book. In this case, each device can keep track 
of which items have been updated by associating a modified bit with each data item. Initially, the 
modified bits for every item in the device’s replica are set to zero. When an item is updated by a local 
operation, in addition to changing the item’s contents, the item’s modified bit is set to one. During 
synchronization, a device sends all of the items with a nonzero modified bit and receives such items 
from its partner device. When the synchronization protocol completes, all of the modified bits are 
reset to zero.

This modified-bit protocol is widely used in synchronization products for cell phones and 
PDAs, such as Palm’s HotSync protocol. By maintaining only a single bit per item, it ensures that 
both replicas receive all updated items and provides eventual consistency. Additionally, if a given 
item is updated concurrently in two places, this condition can be detected by observing that the 
modified bits are set on both devices. However, as stated, this synchronization protocol only works 
for two devices.

The protocol can be extended for three or more replicas by having each device maintain a set 
of modified bits for each of its regular synchronization partners. A local update operation would 
then set the bits associated with each partner for each updated item. During synchronization, only 
the bits for the current synchronization partner are used to determine which items to send and are 
cleared at the successful completion of the process. If each device directly synchronizes with all 
other devices, at least occasionally, then this extended modified-bit protocol is efficient in that each 
update is sent exactly once to each device.

If two devices never directly communicate, that is, if two devices rely on intermediary de-
vices for propagating updates between themselves, then a slightly adapted protocol is required. In 
particular, modified bits must be set not only for local update operations but also for updated items 
received during synchronization. This has the side effect of sending updated items over every path 
between two replicas, thereby wasting bandwidth but arguably increasing robustness and possibly 
reducing the replica convergence time.

In summary, the modified-bit protocol is a simple, low-overhead synchronization technique 
that works well for a small number of devices that directly communicate with each other or are 
configured in a star topology. It works less well for rapidly changing replica sets and does not al-
low incremental update exchange between devices that do not have an established synchronization 
partnership. In practice, storing a single modified bit for each item is much easier than managing 
an extensible set of modified bits for multiple synchronization partners, which explains why small 
mobile devices, such as cell phones and PDAs, are often limited to synchronizing with a single  
PC.
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4.3.6	 Device–Master Timestamp Protocols
The device–master model (as introduced in Section 2.3), compared with peer-to-peer models, al-
lows a simpler replication protocol since fixed and mobile devices always receive updates from one 
source, the master. The modified-bit protocol is one example of a method for device–master syn-
chronization but requires the master to maintain modified bits for each client device. This section 
considers alternatives that can handle any number of potentially changing clients.

One technique is for the master to assign update timestamps to each item that it updates lo-
cally or for which it receives an update from a client device. In other words, whenever the master 
receives or generates a new version of an item, it records the time obtained from the master’s local 
clock as part of the item’s metadata. The master’s clock is assumed to be monotonically increasing, 
but need not be synchronized with the clocks on other devices or even be accurate with respect to 
the real time. So, for example, a simple update counter that is incremented and recorded for each new 
version could be used instead of timestamps.

Each client (or the master) records the time of its last synchronization with the master. When 
initiating a new synchronization session, the client first sends to the master this last synchronization 
time. The master then returns any items with more recent update timestamps, i.e., versions that have 
been produced since the last synchronization and hence are missing from the client. The master also 
returns its current clock value, which the client device records as its last synchronization time.

Having clients record last synchronization times frees the master from needing to maintain 
any long-term, client-specific synchronization state. Replicas can come and go without affecting 
the master’s state. The master need only store per-item update timestamps (or update counters). 
Alternatively, the master could record last synchronization timestamps for each device holding a 
replica of the master’s data collection. This would avoid the need for clients to provide this informa-
tion at the start of each synchronization protocol and allow the master to initiate synchronization. 
A similar technique can be used for propagating updates that originate on a client device back to 
the master. In particular, a client can assign update timestamps to locally updated objects and also 
record the time of last synchronization with the master as measured by the client’s local clock. Dur-
ing synchronization, the client sends any items updated since the last synchronization and then 
updates its last synchronization time. Note that unless clients and the master have synchronized  
clocks, which is unlikely in a mobile environment, each client must record two separate last syn-
chronization times, one taken from the client’s clock and one reported by the master.

4.3.7	 Device–Master Log-Based Protocol
Another option for device–master replication is for client devices to maintain update logs. That 
is, each client stores its local update operations in a log and then sends the queued updates during  
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synchronization. This requires no extra per-item metadata. After a successful synchronization with 
the master, a client can discard its complete log. So, log management is trivial. Coda, for instance, 
uses client logging during periods of disconnection and replays logged updates during reintegration.

For update operations that originate at the master or that are received by the master from a 
device and need to be propagated to other devices, master-maintained update logs are also possible, 
but less desirable. The master would either need to store a separate log for each client device or need 
to record per-client synchronization information to decide when updates can be discarded from a 
shared log.

4.3.8	 Anti-Entropy Protocols
In a peer-to-peer replication model in which devices can obtain updated items directly from other 
devices without relying on a designated master site, additional challenges arise. Assume that each 
device can independently choose its synchronization partners and when to initiate or accept syn-
chronization requests. Efficient pairwise synchronization between devices requires exchanging 
more metadata since a device cannot be certain about the state of its synchronization partners. 
Timestamp protocols, as discussed above for device–master replication, can be made to work cor-
rectly but are not bandwidth efficient. In particular, if a device records last synchronization times for 
each regular sync partner and uses this timestamp to decide which items to send, then each device 
will receive each update from each of its partners.

Ideally, a device should receive each update exactly once regardless of its communication pat-
terns. This requires means for a device to determine which updated items may have been delivered 
to its sync partners via other devices. Additionally, a device should be able to synchronize with a new 
device that it encounters, assuming the two devices hold replicas of the same data collection(s), which 
also requires the ability to effectively determine what versions of items are already held by a replica.

A basic synchronization protocol that works for any pair of devices can be obtained by having 
one device send version metadata for all items in its replica so that the second device can determine 
what versions it is missing. Suppose that a laptop is synchronizing with a PDA over a wireless con-
nection. The laptop would initiate the synchronization process by sending the unique identifier for 
each item that it stores along with the item’s version and metadata, such as version vectors, that are 
needed to order versions (as discussed in Section 4.4) and detect conflicts (as discussed in Section 
6.2). The PDA, upon receiving this information from the laptop, could then determine the items 
that it is missing and items for which the laptop has a more recent (or conflicting) version. The 
PDA would then explicitly fetch the missing versions from the laptop. The PDA can also determine 
which versions it stores that are unknown to the laptop and send these.

This metadata exchange protocol, also known as anti-entropy [12], makes minimal assumptions 
about the transport protocol used to send items during synchronization. Items can arrive in any 
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order. If a message is lost, thereby causing an item to not arrive at the destination device, that item 
will be sent again during the next synchronization session. Thus, the protocol is robust enough to 
operate over lossy wireless networks. Importantly, it guarantees that a device receives an updated 
item at most once regardless of its synchronization partners and frequency. This synchronization 
protocol is particularly well-suited for state-based replication but could also be used for log-based 
systems by exchanging metadata about log entries.

Unfortunately, exchanging full metadata is expensive if collections are big, even if data com-
pression is used over the network. Imagine sending information about all files in a large replicated 
file system during every synchronization session. Consider a system in which replicas synchronize 
with each other frequently so that updates propagate in a timely manner but items are infrequently 
updated. In this case, devices during synchronization will often already have consistent replicas and 
hence have no items to send. Sending the list of items and their metadata simply wastes networking 
and processing resources.

4.3.9	 Anti-entropy With Checksums
One performance improvement on the basic anti-entropy protocol is for a device to first send a 
checksum (or one-way hash) computed over the contents of its local replica. The partner device 
could then compare the received checksum with its own computed checksum to see if the two rep-
licas are identical. If the checksums match, then no further communication is needed at this time. 
If they do not match, then the full metadata exchange protocol can be used.

A variation on this scheme computes and exchanges checksums on sets of items, such as di-
rectories in a hierarchical file system [61]. This allows synchronizing devices to narrow down where 
differences in their replicas may reside and only send metadata for items in question.

Another variation is based on the observation that synchronizing devices, if not totally con-
sistent, are generally missing but a few recent updates. Thus, devices can maintain a relatively short 
log of recent updates. During synchronization, devices first exchange metadata for the items in their 
logs, then send missing log entries, and finally, after adding the received items to their replicas, com-
pute and exchange checksums. The checksums will fail to match only in the case that a device was 
missing an update that was not in the other device’s log. In this rare case, resorting to the expensive 
anti-entropy protocol is acceptable.

Yet another variation uses a technique called peel-back checksuming [12]. Suppose that devices 
can deterministically order their items using timestamps or maintain an ordered update log. Two 
synchronizing devices first exchange and compare checksums. If the checksums do not match, then 
the device with the latest timestamped item (or latest log entry) sends that item to its partner. The 
receiving device, after applying the received item, incrementally recomputes the checksum for its 
replica. If the new checksum still does not match the other device’s checksum, then this process of 
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sending items in reverse timestamp order and comparing updated checksums continues until the 
devices have matching checksums. This technique reduces the network traffic but may increase the 
overall synchronization latency.

4.3.10	 Knowledge-Driven Log-Based Protocols
Having each device maintain knowledge about the set of versions or operations that have been in-
corporated into its local replica enables a class of efficient, knowledge-driven replication protocols. 
Let us start by considering log-based systems in which each device maintains a log of every update 
operation that it has received. Conceptually, a device’s knowledge is the set of unique identifiers 
for all operations that are stored in its local log. Whenever an update operation is performed on a 
device’s replica and added to its log, that operation’s ID is added to the device’s knowledge. A device 
always knows about the updates that it has initiated and learns about other operations when they 
are received during synchronization.

By exchanging their knowledge, devices can ensure that they do not receive redundant up-
dates, even in a system that permits peer-to-peer replication over an arbitrary overlay network. 
Specifically, one device, the “target,” initiates synchronization by sending its knowledge to one of its 
synchronization partners, the “source.” The source device can determine from the target’s knowledge 
which operations in the source’s log are not already known to the target, i.e., are not also included 
in the target’s log. These operations are sent from the source to the target. Received operations are 
added to the target device’s log and applied to its replica. After synchronization, the source need not 
remember the target’s knowledge, and indeed, doing so would be fruitless since this information 
would become out-of-date as the target synchronizes with other partners. This is an example of a 
“pull” protocol since updates flow in one direction to the device that initiated the synchronization. 
To arrive at a mutually consistent state, two devices must pull from each other.

This knowledge-driven protocol resembles the metadata exchange protocol described in the 
previous section and can be considered another example of an anti-entropy protocol. The key dif-
ference, however, is that a device’s knowledge can be represented in a much more compact form 
than the metadata for each item. In particular, the Bayou system demonstrated that knowledge can 
be condensed into a vector containing an entry for each replica rather than an entry for each item. 
In most systems, the number of replicas is substantially smaller than the number of items in a data 
collection, perhaps by several orders of magnitude.

A knowledge vector is a data structure containing a set of <replica, accept-stamp> pairs. Sup-
pose that a device, when performing an operation on its local replica, assigns a unique accept-stamp 
to the logged operation consisting of the unique identifier of the device’s replica along with a coun-
ter that gets incremented for each operation performed by the device (but not for each operation 



Replicated Data Protocols  41

received during synchronization). Timestamps can be used instead of update counters as long as 
they are taken from a monotonically increasing clock, and no two updates from the same device 
are assigned the same timestamp. Each operation’s accept-stamp is logged with the operation and 
transmitted during device-to-device synchronization. A device’s knowledge vector contains a single 
entry for each replica (i.e., device) in the system. The knowledge vector entry associated with a rep-
lica indicates the accept-stamp of the latest update operation initiated at that replica that is known 
to the local device.

As long as update operations originating at a device are received by other devices in the order 
in which they were performed, a knowledge vector can precisely represent all of the operations that 
are stored in a device’s log. For example, if Bill’s laptop receives an operation whose accept-stamp 
indicates that it is the fifth update performed by Joe’s PDA, then Bill’s laptop must have already re-
ceived the PDA’s first four updates. Thus, after receiving this operation (either directly or indirectly 
from Joe’s PDA), the knowledge vector for Bill’s laptop should contain the entry <Joe’s PDA, 5>. 
A partner receiving Bill’s laptop’s knowledge during synchronization can conclude that the laptop 
already knows about updates one through five from Joe’s PDA.

Using knowledge vectors, the synchronization protocol operates as follows. The target device 
sends its knowledge vector to the source. The source runs through all of the entries in its log, start-
ing at the beginning, until it finds an operation whose accept-stamp is unknown to the target. To 
determine whether an operation is known, the source uses the accept-stamp’s replica ID as an index 
into the target’s knowledge vector and then compares the counter of this knowledge entry with the 
counter in the accept-stamp. Note that known and unknown operations may be interleaved in the 
source device’s log, and thus the source must continue to check accept-stamps against the target’s 
knowledge. By sending operations in the order that they appear in the source’s log using a transport 
that provides reliable, ordered delivery, such as a TCP or HTTP connection, the target can imme-
diately append received operations to the end of its log and update its knowledge vector using the 
operations’ accept-stamps. A device is free to reorder the operations in its log (as discussed in Section 
4.4) as long as it maintains the property that two operations that originated at the same replica appear 
in the log in the order in which they were performed.

As with the metadata exchange protocol, this knowledge-based, peer-to-peer protocol is ef-
ficient, robust, and flexible. It guarantees that each operation is received by each device exactly 
once regardless of the synchronization partnerships between devices. If the synchronization process 
between two devices is interrupted, it can be resumed later. Any operations received before the 
interruption can be logged and applied to the receiving device’s replica. As long as the synchroniza-
tion topology graph is well-connected, it is guaranteed that each replica will eventually receive all 
updates. Loops and multiple paths between devices are allowed (and even encouraged). Therefore, 
each replica can unilaterally decide what other replicas to synchronize with and on what schedule.  
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The topology of which replicas synchronize with which other replicas is flexible and can vary 
over time. The full set of replicas need not be known to anyone. Adding a new replica can be 
achieved by simply creating a replica with an empty log and zero knowledge; this replica’s device will  
receive a full set of items when it first synchronizes with another device.

For mobile devices, maintaining full operation logs is usually infeasible. One option to reduce 
logging requirements is for devices to run a distributed protocol to determine which operations 
have fully propagated to all devices. Devices can safely remove such operations from their logs. 
Distributed garbage collection protocols are often too complicated or too expensive for mobile 
environments.

Another option is to allow each device to independently discard operations from the begin-
ning of its log. Provided that a prefix of the log is pruned, a knowledge vector, known as the omitted 
vector, can precisely characterize the set of discarded entries. Each device that has pruned its log 
must persistently store an omitted vector. For example, a device that completely erases its opera-
tion log would store its current knowledge vector as its omitted vector. During synchronization, the 
source device can compare its own omitted vector against the target device’s knowledge vector to 
determine whether it has discarded any operations that are not yet known to the target. If so, then 
the source can either decline the target’s synchronization request or the two devices can resort to a 
more expensive synchronization protocol such as a metadata exchange protocol (as in Section 4.3.8) 
or having the source device send its full replica (as in Section 4.3.2).

4.3.11	 Knowledge-Driven State-Based Protocols
Some mobile devices, such as cell phones and PDAs, are not equipped to store or manage any sort 
of operation log. To accommodate such devices, the WinFS system demonstrated that a variation 
of this knowledge-driven protocol can be used for state-based systems in which devices do not 
maintain update logs [62]. Each item in a replica is stored with a unique version number that is 
updated whenever the item is updated. The version number is assigned by the device that performs 
an update operation and propagates with the updated item during synchronization. As discussed 
above, each device maintains knowledge in a compact representation, namely as a knowledge vector. 
However, for state-based systems, the knowledge vector is conceptually a set of versions rather than 
a set of operations. Each entry in a device’s knowledge vector is a <replica, version number> pair 
indicating the highest version known to the device that originated at the given replica.

The knowledge-driven, state-based synchronization protocol is essentially the same as that 
described above, but with a few wrinkles. As usual, a replica first sends it knowledge to its syn-
chronization partner in a request message. The partner replica then searches its replica (rather 
than a log) for versions not included in the received knowledge and sends these data items to the 
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target device. Received items replace those items with the same unique identifier in the target’s 
replica, assuming the target determines that a received version supersedes its own version (as 
discussed in Section 4.4). However, two key differences arise compared with a log-based scheme:  
(1) updated items may be received in any order and (2) overwritten versions of an item may never 
be received.

Because no log exists to maintain the causal order between versions, updated items can be sent 
by the source in any order. Typically, the source device runs a query to enumerate the items in its 
replica. To avoid having to sort the complete replica by version number, which may not be possible 
because of memory limitations on a small mobile device, items are sent to the target in whatever 
order is returned by the query processor. Thus, the target may receive an item assigned version 5 by 
Joe’s PDA before it receives a different item that was also updated by Joe’s PDA and assigned ver-
sion 3. This means that when receiving Joe’s PDA’s version 5, the target device cannot update its 
knowledge vector to contain the entry <Joe’s PDA, 5>. This would incorrectly imply that the device 
has received versions 1 through 5 from Joe’s PDA.

To cope with this issue, WinFS introduced the notion of a knowledge exception, a version that 
is explicitly added to a device’s knowledge that is not covered by the device’s knowledge vector. In 
the previous example, when the target received version 5 assigned by Joe’s PDA, it would add a 
knowledge exception for this version. That is, the target’s knowledge vector might contain the entry 
<Joe’s PDA, 2> plus an exception for <Joe’s PDA, 5>. If the device later receives version 3 and ver-
sion 4 from Joe’s PDA, then it can update its knowledge vector to contain the entry <Joe’s PDA, 5> 
and remove the knowledge exception. Note that when sending its knowledge during synchroniza-
tion, a device includes both its knowledge vector and knowledge exceptions. This technique allows 
items to arrive in any order and thus can tolerate lost, reordered, or duplicated messages. The main 
cost of out-of-order delivery is that a device’s knowledge increases in size because of knowledge 
exceptions, but such increases should be temporary.

A more serious problem stems from the fact that state-based synchronization protocols only 
send the latest version of an item (because that is all that is stored in a device’s replica). Consider the 
case where Joe updates an item, such as an address book entry, on his PDA, producing version 4, and 
later updates the same item, producing version 5. Suppose that Bill’s laptop has a knowledge vector 
indicating that it knows up to version 3 from Joe’s PDA. When Bill’s laptop synchronizes with Joe’s 
PDA (or some other device that had already synchronized with Joe’s PDA), it will receive version 5 
of this updated item. Bill’s laptop will therefore create a knowledge exception for this version. How-
ever, the laptop will never receive version 4, which was overwritten by version 5. Thus, Bill’s laptop 
will be left with a knowledge exception indefinitely unless other steps are taken.

To cope with this issue, WinFS added a step to the end of the synchronization protocol in 
which the source device sends its current knowledge as learned knowledge. The key insight is that 
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at the end of the synchronization process, assuming the target device successfully receives all of the 
items that were sent by the source, the target should know about all of the versions that were known 
to the source. Thus, the target device applies the received items to its replica and, if no problems 
are encountered or messages lost, adds the received learned knowledge to its local knowledge. Two 
knowledge vectors can be combined by taking the maximum version for each entry. With this appli-
cation of learned knowledge, exceptions that are added to a device’s knowledge as items are received 
during synchronization can be discarded when the synchronization process terminates successfully. 
Thus, devices end up with compact knowledge vectors in the steady state.

4.4	O RDERING UPDATES
To reach eventual consistency in a state-based replication protocol in which devices send updated 
items, devices must agree on which version of each item is the latest version. In other words, when 
receiving an item via the replication protocol, a device must decide whether the received version is 
later than its stored version of this item. If yes, the device should replace its version with the newly 
received version. If the received version is not more recent, then the device should ignore it. Un-
less devices make identical decisions on how to order updates, i.e., versions of items, they will not 
converge to a consistent state.

Similarly, in a log-based protocol, when two devices exchange log entries, newly received up-
dates cannot simply be appended to the end of a device’s log. The order in which noncommutative 
operations are applied to a replica may be significant. Since update operations are not always com-
mutative, i.e., different execution orders can produce different end results, devices invariably need to 
agree on the order in which updates should appear in their merged logs and executed. Thus, techniques  
for deterministically ordering updates are an important component of most replication protocols.

4.4.1	O rdered Delivery
One approach is for the replication protocol to ensure that updated items (or update operations) 
reach all devices in the same order. In this case, each device can simply apply the updates as they 
are received. This may be practical in a pub–sub or other system where updates originate at a single 
device and propagate via a reliable, ordered transport protocol, but guaranteeing ordered delivery in 
other situations is not generally feasible. Ordered multicast protocols, for instance, require multiple 
rounds of messages and make assumptions that do not often apply in mobile environments.

4.4.2	 Sequencers
Another approach is for one designated device, called a sequencer, to assign sequence numbers to 
items or operations. Each update operation causes the updated item to receive a new, higher se-
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quence number (or update counter). When receiving updates during synchronization, devices can 
easily and deterministically order them according to their assigned sequence numbers. This scheme 
may work well for configurations in which all updates flow through a single device before being 
disseminated to other devices, such as in a hub-and-spoke synchronization topology or a device– 
master replication scheme. The downside, of course, is that the sequencer may become a bottleneck, 
and failure of the sequencer prevents updates from propagating. Alternatively, replicas could run a 
distributed agreement protocol, such as Lamport’s Paxos protocol. However, this would require a 
replica to contact a majority of the other replicas, which is often not possible in mobile systems.

4.4.3	U pdate Timestamps
A commonly used decentralized technique that works with almost any replication protocol is to as-
sign a timestamp to each update. When an item is updated, the updating device records the time as 
indicated on its local clock. This update timestamp stays with the item or operation as it propagates 
via the replication process.

Given two versions of an item in a state-based replication scheme, such as its stored version 
and one received during synchronization, a device can compare timestamps and keep the version 
with the latest timestamp. This assumes that each device’s clock is monotonically increasing. It also 
assumes that two updates to the same item by different devices are not assigned the same timestamp, 
which is easy to guarantee by appending a device’s identifier to timestamps that it generates.

Importantly, with this use of timestamps for ordering versions (or operations), no assump-
tions need to be made about the transport protocol, other than eventual delivery. Updates can arrive 
in any order and can be delivered multiple times. Clock synchronization is not required for eventual 
consistency, but reasonably accurate clocks are desired for other reasons. If a device has a clock that 
is too far in the past, its updates may be ignored, whereas a device with a clock too far in the future 
may prevent other devices from updating items that it has created.

Logical clocks can ensure that versions are ordered according to the “happens-before” rela-
tion as defined by Lamport [53]. For example, suppose that a file is updated on a person’s laptop and 
then replicated to his home PC, where it is updated again. Ideally, the version produced on the PC 
should be retained as the latest version in all replicas. This requires the PC version to be assigned a 
larger timestamp, which is guaranteed if timestamps are taken from logical clocks that are updated 
using the algorithm suggested by Lamport.

4.4.4	U pdate Counters
Per-item update counters can also be used to produce an ordering on versions that is consistent 
with the order in which updates are performed. Stored (and sent) with each item is an integer that 
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counts the number of updates that have been performed on the item. When an item is first cre-
ated, its update counter is set to one. Subsequent updates by any device increment the item’s update 
counter. A received item is applied to a device’s replica, provided its associated update counter is 
greater than that of the replica’s stored version. One minor complication is that two devices that 
concurrently update an item will produce versions with the same update counter. To consistently 
order such concurrent updates, the item’s metadata should also include the identifier of the last 
updating device; these device identifiers can be used to distinguish different versions with identical 
update counters.

4.4.5	 Version Vectors
Version vectors are another ordering technique that preserves the causal order of updates to an item. 
Conceptually, a version vector is a set of update counters, one per device. Each item is assigned its 
own version vector. When an item is created, its version vector contains a zero value for each device 
except for the creating device, for which it contains a one. To save space, entries with zero-valued 
counters can be omitted from a saved or communicated version vector. When a device updates an 
item, the device increments its own entry in the item’s version vector. One version vector is said 
to dominate another if, for each device, the counter in the first version vector equals or exceeds the 
counter in the second version vector and, for at least one device, the first version vector’s counter 
is greater than that of the second version vector. A received version of an item is ordered after the 
previously stored version of this item if the received version vector dominates the stored version vec-
tor for the item. Version vectors, although more complex than simple update counters, cannot only 
consistently order versions but also detect versions that were produced concurrently and hence are 
considered conflicting (as discussed in Section 6.2.4).

Strictly speaking, each entry in a version vector need not be an update counter. The entry for 
a device need only increase on each update performed by that device. So, variations on the basic 
version vector scheme are possible in which timestamps or other types of counters are used in place 
of update counters.

4.4.6	O peration Transformation
Another approach that has been extensively studied but rarely, if ever, used, involves operation trans-
formation [17, 59, 79]. Rather than undoing operations that arrive “out-of-order,” each replica per-
forms operations in the order in which they are received, perhaps modifying an operation such that 
its effect on the replica’s state is that same as if it had been received in the proper order.

For example, suppose two people are concurrently editing a replicated text file using a col-
laborative document editor. They both start with identical copies of the file. Alice inserts the six 
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character adjective “mobile” at character position 10 in the file while Bob deletes a five-character 
word, e.g., “fixed,” that starts at position 22. Alice immediately performs her insert operation on 
her local replica of the file and then later receives the delete operation from Bob. Suppose that all 
of the replicas agree that Bob’s delete operation occurs after Alice’s insert operation using any of the 
techniques previously discussed for producing a global update order. When Alice’s replica receives 
Bob’s delete operation, it cannot simply delete five characters starting at position 22 since that 
would result in deleting a different five characters than were deleted by Bob. Instead, Alice’s replica, 
before executing the operation received from Bob, transforms this delete operation to account for 
the fact that Alice already performed a concurrent insert operation. Specifically, Bob’s operation is 
transformed into an operation that deletes five characters starting at position 22 + 6 = 28. Similarly, 
when Bob receives Alice’s insert operation, it must transform it into an alternative operation whose 
effect is equivalent to Bob’s replica having performed the insert operation before its own delete. In 
this example, no transformation is needed by Bob’s replica, although the operations were received 
and performed out-of-order. Bob can simply insert “mobile” at position 10 in the file, as did Alice. If 
Alice’s insert had been at a different position in the file, say, after position 22, then Bob would have 
needed to transform this operation appropriately. Alice and Bob will both end up with identical 
replicas of the shared file despite performing different operations in different orders.

Operation transformation requires the same techniques for logging and ordering operations 
as other log-based replication protocols, but has the benefit of allowing replicas to perform opera-
tions in any order. On the downside, application designers are burdened with the task of producing 
appropriate transformations for all possible operations and their orderings. Such transformations 
must take into account not only the semantics of the operations but also their parameters and 
intended ordering. For n operations, n2 operation transformations are required. As an application 
evolves to support additional functionality, new operations and associated transformations will 
likely be needed. As one might imagine, producing and maintaining correct operation transforma-
tions is a challenging endeavor. For this reason, transformations have only been devised for simple 
data structures with a small number of operations, such as text strings. Even so, most of the papers 
published on this subject include bugs in their reported transformations [38]. Moreover, it is not 
always possible to produce semantically correct transformations for all concurrent operations. In 
such cases, the concurrent operations will be treated as conflicting and must be resolved as discussed 
in Chapter 6.

4.4.7	O ther Ordering Issues
One problem in log-based systems is how to deal with operations that are received before their 
global order is known. For instance, updates performed on a disconnected laptop can be logged  
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locally, but their global order relative to other concurrently executed operations cannot be deter-
mined until the laptop is able to communicate with other replicas. Some reliable multicast systems 
wait to deliver messages until a global order can be established. This is not practical in a replicated 
data system since it would mean that locally performed updates are not immediately visible, even 
to the local replica. Users would find it very disturbing, for example, to update their calendar on a 
disconnected laptop and have those updated entries not show up until the laptop reconnects.

Thus, systems using log-based replication generally apply local updates immediately to the 
local replica. This is referred to as “tentative” execution since the local updates may need to be un-
done and performed in a different order as new update operations are received from other replicas 
and the global order is agreed upon. The system provides mechanisms not only for determining a 
global order on operations but also for undoing operations that were tentatively executed out of 
order. This is a substantial implementation effort that is unnecessary in state-based replication sys-
tems where whole contents of data items are exchanged during replication and the order in which 
different items are updated at the target replica does not matter.

If the system understands which operations are commutative, then it can avoid undoing/ 
redoing operations whose order of execution produces the same result as the global order. The Ice-
Cube system, for instance, provides an API for indicating ordering constraints on operations [43]. 
Each replica is then free to choose a local execution schedule that is equivalent to that defined by 
the global order, that is, a schedule that does not violate any of the specified constraints.

•  •  •  •
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As shown in Section 2.7, many mobile scenarios involve devices that store partial replicas containing 
only a subset of the items in a data collection. Partial (or filtered) replication supports devices with 
limited storage and can reduce communication by selectively disseminating items only to the de-
vices where they are needed. The replication protocols and techniques described above ignore issues 
that arise with partial replicas. These issues include

How do devices decide which items to retain in their partial replicas, i.e., specify the items 
of interest?
When and where are filters applied to items propagating between replicas?
What happens when a device changes its interests?
What happens when items are updated causing them to move in or out of a device’s  
interest set?
What constraints must be placed on synchronization topologies that include partial replicas?

This chapter addresses these issues for a variety of partial replication schemes characterized 
primarily by the means in which devices select the items of interest.

5.1	 ACCESS-BASED CACHING
In a device-side caching scheme (as explained in Section 2.3), the number of items replicated onto 
a device is limited by the size of its cache, and the choice of which items to cache is generally de-
termined by the device’s access patterns. For example, a cache in one’s laptop or PDA may contain 
recently accessed Web pages. The main issue is how to ensure that cached items remain (reasonably) 
up-to-date. When an item is updated elsewhere, a device should eventually learn that its cached 
copy is invalid or else receive the updated contents. Similarly, when a cached item is updated locally, 
the update should eventually propagate to other devices that cache or replicate this item. This is 
a replication problem, and many of the previously discussed replication protocols could be used to 
provide eventual cache consistency.

•

•
•
•

•

C hapter       5

Partial Replication
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One commonly used technique involves a server machine (or designated full replica) record-
ing which items are cached at other devices (i.e., partial replicas). When the server receives an up-
dated item (by way of any replication mechanism), the server immediately informs devices that have 
the item cached using what is known as a callback. Similarly, when a device performs a local update 
operation, it can immediately send the updated item to the server (or group of devices). This is an 
example of the direct broadcast scheme discussed in Section 4.3.1. It propagates items as quickly as 
possible, thereby minimizing cache inconsistency.

One concern, however, is that a device that is down or disconnected will miss callbacks. To 
recover, some systems take the conservative approach of discarding all cached entries when a de-
vice is rebooted or reconnected, which may be a common occurrence for mobile devices. A more 
attractive alternative is to use a replication protocol that can tolerate intermittent connectivity and 
deal with dynamic cached contents, such as the modified-bit protocol (Section 4.3.5), the update 
timestamp protocol (Section 4.3.6), a metadata exchange protocol (Section 4.3.8), or a knowledge-
driven protocol (Section 4.3.11). The replication protocol could periodically be initiated by a device, 
in addition or instead of relying on server-provided callbacks. Moreover, peer-to-peer replication 
could allow caching devices to receive updates (or invalidations) from a number of other devices.

Another problem with callback schemes and most replication protocols is that the server 
must be aware of the items that are cached on each device. During synchronization with a partial 
replica on a mobile device, the server wants to avoid sending updated items that the device no longer 
stores (or perhaps never stored). This is problematic for two reasons. First, mobile devices that dis-
card cached items to free up storage must inform the server, thereby requiring extra communication. 
If the device discards cached items during periods of disconnection, the server’s records may become 
out-of-date. Second, in peer-to-peer scenarios, devices may obtain items from multiple sources and 
thus may require additional communication to establish callbacks with the designated server.

Replication protocols that do not rely on callbacks circumvent these problems of maintain-
ing server state about device caches, thereby allowing devices to operate while disconnected and 
unilaterally modify their cached contents. However, they still face the fundamental problem that 
the set of items cached on a device cannot be compactly conveyed. Consider knowledge-driven 
protocols (Section 4.3.11). A device could conceivably retain a knowledge vector characterizing the 
versions of items in its local cache and then pass this knowledge to a synchronization partner to poll 
for items that have been updated. However, the partner device would need additional information 
about the set of cached items to determine which updates/invalidations to return, that is, to avoid 
returning information about noncached items. For network efficiency, knowledge-driven protocols 
assume that the synchronizing devices store the same sets of items (or at least are aware of each oth-
ers’ interests), which is not a valid assumption for access-based caches.
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Anti-entropy protocols in which a device sends metadata about all items in its partial replica 
(called metadata exchange protocols in Section 4.3.8) would appear more suitable for device-side 
caches. However, such protocols are expensive if the amount of metadata is large. To minimize 
communication, the device that stores the fewest items, which would be a caching device when 
synchronizing with a full replica, should initiate synchronization.

5.2	 POLICY-BASED HOARDING
Hoarding is technique that preloads items into a device-side cache so that the items are available 
during periods of disconnection. While a device is connected to a server machine or peer replicas, 
the hoard process, sometimes called a hoard walk, decides which items should be stored in the  
device’s cache and explicitly fetches (or replicates) such items. This decision may be based on system- 
defined or user-specified policies that can take into account the set of items needed to perform 
specific tasks or other user preferences. For instance, a person who is writing a paper at night while 
away from the office and hence disconnected from the company’s network-based file server could 
specify in her profile that all of the files related to this paper should be retained on her laptop, in-
cluding not only the main document but also the figures, related work, and experimental results that 
are being incorporated.

Before disconnecting, a device should synchronize with the server machine or one or more 
peer devices to ensure that its hoarded items are up-to-date. When a device reconnects after a pe-
riod of disconnected operation, it should once again synchronize to propagate locally updated items 
and receive updated items. As with access-based caching, a variety of synchronization protocols can 
be used.

5.3	 TOPIC-BASED CHANNELS
In a pub–sub system (Section 2.5), published information may be categorized by topic (or other cri-
teria) into channels. Devices can subscribe to just those channels of interest. For example, one person 
may want to receive sports scores on their cell phone, whereas another only wants current events. A 
device receives all of the items published in any of its subscribed channels.

For purposes of replication, each channel can be treated as an independent data collection. 
While broadcast or tree-based multicast techniques are typically used in pub–sub systems, any rep-
lication protocol could be used, and arbitrary synchronization topologies can be supported. For 
example, gossip-style protocols (Section 4.3.3) could disseminate breaking news stories among  
mobile devices that encounter each other. In such a scenario, full propagation to all devices may not 
be necessary.
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Using peer-to-peer synchronization, mobile devices can share channel data even when a con-
nection to the publisher is unavailable or accommodate multiple independent publishers. A device 
could have different synchronization partners for different channels or one set of partners used for 
all of its subscribed channels. In the later case, two devices during synchronization will send items 
for channels in which they have common interests and ignore other channels. With a knowledge-
driven protocol, a device should maintain a separate knowledge vector for each channel to which it 
subscribes. In this case, an article that is published in multiple channels will be delivered multiple 
times. Alternatively, the device could maintain a single knowledge vector that records items it has 
received over any subscribed channels. It could then obtain new items for multiple channels in one 
synchronization session. However, in this case, two problems arise. First, when a device synchro-
nizes with a partner that contains some but not all of the same subscribed channels, the device 
cannot accept learned knowledge (as described in Section 4.3.10) since this may cause it to miss 
updates on other channels. Second, a device that changes its subscriptions may need to discard its 
knowledge and essentially restart.

5.4	 HIERARCHICAL SUBCOLLECTIONS
For data collections that are organized hierarchically, devices may choose to replicate some subset 
of the collection, called a subcollection. As an example, a person may want all of his e-mail folders 
available on his desktop PC but only the messages in his inbox replicated into his cell phone. Simi-
larly, a file server may store a person’s complete file system, whereas a laptop stores only those files 
in specific directories. In these examples, the set of items partially replicated on the mobile device 
can be easily named (e.g., the name of an e-mail folder or file directory).

In a device–master model where the device holds a partial replica of data stored on the master, 
synchronization is straightforward. Modified bits, update timestamps, or other methods can be used 
to track which items have been updated on the device or master or both. When synchronizing to 
the device, the master only sends updated items that are included in the device’s subcollection. If 
operation logging is used, the master must be able to determine which operations affect items in 
the subcollection.

In a peer-to-peer model, a device holding a subcollection can synchronize with any partner 
that holds either the full data collection or a larger subset of the collection. For example, a PDA 
holding all files in the “/User/Joe/Pictures/SamsBirthday/” directory can synchronize from a lap-
top storing the “/User/Joe/Pictures/” directory or with the file server storing all of Joe’s files. Any 
replication protocol can be used, but a device’s synchronization request needs to explicitly indicate 
the folder or directory that is being synchronized so the source device can verify that it stores this 
information and return only items in the specified folder.
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Knowledge-driven protocols must address the issue of how to manage knowledge for subcol-
lections. Having each device maintain a single knowledge vector for all items in its stored subcol-
lection may not always be possible. Consider a system with three devices as described above: the 
file server holds all of Joe’s files, the laptop stores files in “/User/Joe/Pictures/,” and the PDA stores 
“/User/Joe/Pictures/SamsBirthday.” Suppose that an application directly accessing the file server 
places a new photo in “/User/Joe/Pictures/Hawaii” with version F6 and also edits a photo stored in 
“/User/Joe/Pictures/SamsBirthday,” resulting in version F7. Now when the PDA synchronizes from 
the file server, it will receive the edited photo (version F7) but not the new Hawaii photo. How does 
the PDA update its knowledge? You might think that it could simply update its knowledge vector  
to indicate that it knows all versions from the file server up to F7; that is alright if the PDA only 
synchronized with the file server. However, consider what happens when the laptop synchronizes 
from the PDA. The PDA will send the laptop the updated birthday photo but not the Hawaii photo 
(since the PDA does not store this photo). If the laptop then updates it knowledge to indicate that 
it knows up to version F7, it will not be sent the Hawaii photo during its next synchronization with 
the file server. As suggested above for channel-based systems, one solution is to maintain a separate 
knowledge vector for each folder in a collection, but this approach quickly becomes unmanageable 
for file systems with lots of directories. Another approach is to associate knowledge vectors with 
subcollections. When synchronizing from a partial replica, a device will receive learned knowledge 
that is tagged with the partner’s subcollection. As described in Section 4.3.10, this learned knowl-
edge is added to the device’s existing knowledge. This means that devices may need to store multiple 
knowledge vectors for different subcollections.

5.5	 CONTENT-BASED FILTERS
In general, a mobile device with limited storage may specify, via a content-based filter, the items 
that it wishes to receive and retain in its local replica. Think of a filter as an arbitrary query over the 
contents of a collection (including its metadata). For example, Bob’s cell phone may store phone 
numbers of people in his address book marked as “personal,” his e-mail messages that are from his 
boss and have not yet been read, evening appointments from his wife’s calendar, and low-resolution 
versions of family photos with a five-star rating.

For complex filters, one option is to propagate all updates to all devices and have each device 
discard the items that do not match its filter. This requires few, if any, changes to the discussed rep-
lication protocols and works for both state- and log-based protocols. It also permits devices to use 
any filtering techniques without standardizing on a filter query language. The drawback, of course, 
is that network resources are consumed propagating a potentially large number of updates to mobile 
devices that are not interested in them.
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A more network efficient alternative is for a device to communicate its filter to its synchro-
nization partners. This could happen on each synchronization request or only as needed when the 
filter changes (assuming the partners are willing to retain filter information across synchronization 
sessions). The process of filtering items can then take place on the sending side of a synchronization 
protocol, thereby limiting the items sent over the network. A standard language for specifying filters 
is required as well as universal mechanisms for applying filters. If a filter is a Boolean predicate over 
a single data item, a device during synchronization can decide whether to send an updated item 
without consulting other items in the collection.

For device–master state-based replication protocols, filtered synchronization is relatively easy. 
The metadata required are the same as for full replication, and the only difference is that the master 
applies a filter to the updated items that it sends. The device, when sending items to the master, does 
not apply any filters. For systems that use operation logs, filtering is more difficult. In particular, 
filters need to apply to operations rather than items. In practice, this means that devices can filter 
updates based on the type of an operation or the items that it updates, which is rarely as effective as 
content-based filters.

One slight complication arises with content-based filtering, called the move-out problem.  
For a partial replica defined by a filter, the device usually wants to store items that match the filter 
and only those items. If an item that previously did not match the device’s filter is updated so that it 
now matches the filter, the updated item should be sent to the device. That happens automatically 
in any of the replication protocols. If an item that previously matched a filter is updated so that it 
no longer matches the filter, then the item should be discarded by the device. This is the tricky part. 
Filtered synchronization, as described above, would simply ignore such items. Thus, the partial 
replica would retain the old version of the updated item. One solution is for the device to (at least 
periodically) inform the master of the complete set of items that it stores. The master can then re-
turn special move-out notifications for items that no longer match the device’s filter. This technique 
can also be used when a device changes its filter.

Filtering in the context of peer-to-peer replication protocols is challenging. For one thing, 
constraints must be placed on the synchronization topology to ensure eventual convergence for 
full replicas. As an example, consider a system with two full replicas and one partial replica. If the 
devices with full replicas never synchronize directly but only synchronize through the device with a 
partial replica, then an item created in one full replica that does not match the partial replica’s filter 
will never propagate to the other full replica, and vice versa. One, but certainly not the only, way to 
guarantee converge is to ensure that all full replicas have a well-connected synchronization topology 
and that partial devices only synchronize with full replicas.

Metadata exchange protocols can support content-based filtering and move-outs in a peer-
to-peer topology since each synchronization involves sending the partial replica’s full metadata. 
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How to support peer-to-peer replication among filter-defined partial replicas while obtaining the 
efficiency benefits of a knowledge-driven protocol remains an open issue for future research.

5.6	 CONTEXT-BASED FILTERS
An extension of content-based filtering takes into account the context of the device or user when 
filtering items. A person’s context might include his recent and upcoming appointments, business 
and personal contacts, current location, important tasks, and critical business variables, such as in-
ventory levels. By examining contextual data, a relatively static context-based filter can anticipate 
the person’s changing information needs. For example, a mobile salesperson may want information 
about each customer that she is visiting this week to be replicated automatically onto her lap-
top. Items of interest might include customer profiles, outstanding product orders, notes from past 
meetings, and even the location of nearby coffee houses. Next week, when the salesperson visits  
a completely different set of customers, she wants different information (without changing her 
context-based filter).

Although replication protocols supporting context-based filters are similar to those for content- 
based filters (discussed in the previous section), the fundamental difference is that the devices that 
apply filters need access to the relevant contextual information. Filtering is based not only on the 
contents of an individual item but also on data that exists outside the replicated data collection. For 
instance, in the salesperson example above, the filtering process needs access to the person’s calendar 
(and perhaps their customer relationship database) to determine this week’s customer visits.

As an example, Cogenia’s Context Server allowed contextual filters to be specified for each 
mobile device in an organization [71]. These filters ran on a centralized server that stored not only 
the customer data that was selectively replicated onto devices but also each employee’s calendar 
and location. With context-based filters, the items of interest to a person (and her mobile device) 
can vary drastically over time, making efficient support for move-outs critical. The Cogenia server 
maintained a snapshot of each device’s replica, recording the items and versions currently stored on 
the device. Context-based filters were run periodically on the server to determine the items that 
should be on the device and then incremental updates computed based on the server-maintained 
snapshots. Thus, when a mobile device connected to the server, the set of updates for the device was 
already prepared.

•  •  •  •
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To reduce reliance on network connectivity, minimize response times, and maximize data avail-
ability, mobile devices generally allow their users to update locally stored information at any time. 
Policies for updating local data objects fall into two categories, those that permit conflicting updates 
and those that avoid conflicts.

Conflict avoidance techniques either require a device to contact most replicas when updating 
a data object, using algorithms such as weighted voting [21], or to obtain a lock on the object before 
updating it. Given the unreliable nature of mobile devices and wireless networks, communicating 
with other replicas when performing updates is problematic, to say the least. In principle, a device 
could proactively obtain exclusive locks on a set of objects while connected to a lock granting service 
and later update those objects while disconnected. Unfortunately, this requires a person to anticipate 
the objects he might want to update in disconnected mode, prevents others from updating such 
objects even if the lock holder does not actually need all of the locks that it obtained, and neces-
sitates techniques for recovering locks from poorly behaving or permanently disabled devices. Thus, 
conflict avoidance techniques are rarely used in mobile systems.

Commonly, mobile systems allow both read and write operations to be performed on locally 
replicated data objects without coordination with other replicas. Concurrent attempts to update one 
or more data objects may conflict. This chapter explores the nature of such conflicts, presents alter-
native mechanisms for detecting conflicting updates, and discusses automatic conflict resolution.

6.1	 WHAT IS A CONFLICT?
The one common attribute of all conflicts is that they result from concurrent updates. Two updates 
were performed concurrently if they were made independently without knowledge of each other. 
Conflicts involving two update operations are called write/write conflicts; read/write conflicts go 
undetected in most mobile systems since reads are allowed to return stale data. Even just consider-
ing update conflicts, different definitions and types of conflicts are possible.

Many systems only concern themselves with single-object concurrency conflicts, that is, concur-
rent updates to the same data object. In such systems, different objects are treated independently.

A generalization of this conflict model is multiobject concurrency conflicts, in which concurrent 
updates to any of a set of objects are considered to be conflicting. For example, all of the entries in 
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a person’s calendar might be considered an object set for purposes of conflict detection. Any inde-
pendent updates or additions to the calendar would be viewed as potentially conflicting. Generally, 
such a definition overstates the set of operations that actually conflict.

In the database world, optimistic concurrency control is based on the notion of transactional 
conflicts. A transaction reads some objects and updates some possibly different objects. Two transac-
tions, T1 and T2, are determined to conflict if T1’s read-set includes some object that was written 
by T2 and T2’s read-set includes some object written by T1. In other words, the transactions, when 
executed concurrently, do not produce the same result as their serial execution. If each transaction is 
restricted to reading and writing a single object, then transactional conflicts are identical to single-
item concurrency conflicts.

Some collaborative systems detect operational conflicts. Such systems define conflicts using a 
two-dimensional table in which each row and each column is an operation that can be performed 
on replicated data objects. Each cell of the table indicates whether the two operations specified by 
the associated row and column conflict if executed concurrently. For example, in a banking appli-
cation, concurrent deposit operations never conflict, whereas withdrawals may conflict with other 
withdrawals since they could cause one’s bank account balance to dip below zero.

Finally, a system might support semantic conflicts defined by arbitrary constraints between 
items. The classic database integrity constraint that says an employee cannot make more money 
than his manager is one example. An update conflict occurs when concurrent operations cause a 
constraint to be violated, although each operation individually may succeed. File systems, for ex-
ample, generally require each file in a directory to have a unique name. If a new file is created on one 
machine and another file created concurrently on different machine with the same name, then those  
two files’ create operations conflict. As another example, consider a calendar application in which two  
appointments conflict only if they involve a common participant and overlap in time. Such conflicts 
might arise if two people are simultaneously adding appointments to a shared calendar from dif-
ferent replicas. For this application, single-item concurrency would fail to detect such conflicts, and 
multi-item concurrency applied to the whole calendar would detect far too many conflicts. Seman-
tic conflicts are also called application-specific conflicts since the constraints being enforced depend 
heavily on the application and types of objects that it manages.

6.2	 CONFLICT DETECTION
6.2.1	 No Conflict Detection
The simplest approach for dealing with conflicting updates is just to ignore them. This does not, 
however, imply that the system cannot provide eventual consistency. Suppose, for example, that 
an update timestamp is included in the metadata associated with each version of an object. When 
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an object is updated, the updating device reads it local clock to generate a new update timestamp. 
When a device receives a new version of an object via replication, it compares the new version’s 
timestamp to its currently stored timestamp for this object. Each replica keeps the version with the 
latest timestamp, and discards older versions. This technique was used in the Grapevine system [9]. 
Essentially, timestamps provide a global order for all versions of all objects; other ordering mecha-
nisms are possible. Having a global order on updates ensures that replicas eventually converge to 
a consistent state. The downside is that, when conflicting updates do occur, the update that was 
performed “last” according to the generated timestamps always “wins” and the other conflicting up-
dates are quietly discarded. If a mobile device has a slow clock, it runs the risk of having its updates 
disregarded.

6.2.2	 Version Histories
To reliably detect all single-object concurrency conflicts, a system may record the complete version 
history for each data object (or set of objects when detecting multiobject concurrency conflicts). 
Conceptually, a version history is a directed graph in which each node is a version and each edge 
represents a causal dependency between versions. When an object is updated, its new version is 
added to its version history with a link from the previous version that was stored by the updating de-
vice. During replication, versions are sent with their version histories. Two version histories for the 
same object can easily be merged. Two versions conflict if they appear in the same version history 
and no directed path exists from one to the other. This indicates that the versions were produced 
concurrently.

Version histories are sufficient for detecting concurrency conflicts but have the unfortunate 
property of growing proportional to an object’s update rate. Their unbounded size can be a problem 
for mobile devices with limited storage. Some systems truncate version histories by removing ver-
sions that are older than a threshold, say 1 month, or by keeping a fixed number of the most recent 
versions. Although this saves space, this can lead to missed or false conflicts.

6.2.3	 Previous Versions
Some systems, such as PRACTI [8], maintain the previous version of each item in addition to its 
current version. Think of this as an extremely truncated version history in which only the latest edge 
is kept. When an item is updated, its current version is stored as the previous version and then a new 
current version is generated. The replication protocol sends both the current and previous versions 
of each updated item. Two different versions of an item are judged to be conflicting if they have the 
same previous version. This clearly indicates that the two versions were produced independently 
from the same base version.
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Unfortunately, this simple scheme can miss conflicts if the replication protocol does not de-
liver all versions to all replicas, such as in a state-based system. As an example, consider a scenario 
in which device A updates version V0 of an item producing version A1. Device A, before synchro-
nizing with any other device, updates the same item a second time, producing version A2. Con-
currently, device B updates the item, producing a conflicting version B1. When device A receives 
version B1, it will not detect a conflict since versions B1 (with a previous version of V0) and A2 
(with a previous version of A1) have different previous versions. Similarly, device B will not detect a 
conflict when receiving version A2, although it would have if it first received version A1.

One might be tempted to think that changing the conflict detection algorithm could solve 
this problem without requiring additional metadata. In particular, suppose that two different ver-
sions are deemed conflicting if neither is the other’s previous version. In this case, versions A2 and 
B1 in the previous scenario would be correctly determined to conflict. However, this revised conflict 
definition can lead to false conflicts. Consider the scenario where device A produces version A1 
based on version V0 and then produces version A2. Device B receives version A2 of this item and 
then updates it, producing version B1. No conflicting updates have been performed. However, sup-
pose that device C stores version A1 for this item with previous version V0 and then receives version 
B1 with previous version A2. Device C would incorrectly deduce that versions A1 and B1 conflict.

These two scenarios point out the subtle difficulty of detecting conflicts without maintaining 
complete version histories. Nevertheless, previous versions can be used to reliably detect conflicting 
updates in some replication protocols. In particular, in a log-based system in which each replica re-
ceives all updates and updates are consistently ordered in each replica’s log, conflicting versions can 
be detected as follows. Suppose that update operations with associated versions are applied to each 
replica in the order in which they appear in the log and that this order is consistent with the order 
in which these versions were produced. When applying a logged update, a conflict is detected if the 
current version of the item being updated is not the same as the previous version associated with 
this update. In the case of concurrent update operations, the first operation that appears in a device’s 
log will succeed, whereas the second operation will be detected as a conflict (since the execution of 
the first conflicting operation would have changed the version to one that differs from the previous 
version expected by the second operation).

6.2.4	 Version Vectors
Version vectors (as described in Section 4.4.5) were designed for the Locus-replicated file system [64], 
and it has been shown that they can determine whether any two operations in a distributed system 
were performed concurrently. Thus, versions vectors are widely used in replication protocols to detect 
single-object concurrency conflicts. Specifically, a version vector is stored with each item, updated 
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when the item is updated, and propagated along with the item. Given two versions of an item with 
their associated version vectors, the versions conflict if neither version vector dominates the other.

Essentially, a version vector captures the item’s version history in a compact form. Instead of 
growing proportional to the number of updates, a version vector remains a fixed size that is based 
on the number of replicas. A new replica need only be added to the version vectors of items that it 
updates. Retired replicas must be retained in version vectors indefinitely. Thus, systems with dy-
namically changing replica membership will experience version vectors that grow over time even if 
the number of active replicas remains relatively constant. For large numbers of replicas and small 
items, the overhead of storing a version vector for each item may be substantial.

6.2.5	 Made-With Knowledge
To detect concurrency conflicts, knowledge-driven protocols have used a scheme that it similar to 
version vectors. Each version of an item is associated with a knowledge vector called made-with 
knowledge. Recall from Section 4.2.11 that each device maintains a knowledge vector to compactly 
record the versions that have been incorporated into its replica. When a device updates an item, in 
addition to producing a new version for the item, it stores its current knowledge as the made-with 
knowledge for the updated item.

As with versions vectors, made-with knowledge is sufficient for detecting concurrent, and 
therefore conflicting, operations on individual data items. Suppose that Bob and Alice both update 
the same item, producing new versions. Bob’s version follows Alice’s version if and only if Alice’s ver-
sion was included in Bob’s knowledge at the time that Bob updated the item, that is, Bob’s version was 
produced on a device that was aware of Alice’s version. These two versions conflict if neither follows 
the other, that is, if both (1) Alice’s version is not included in the made-with knowledge of Bob’s ver-
sion and (2) Bob’s version is not included in the made-with knowledge of Alice’s version. Note that, 
unlike version vectors, the made-with knowledge of different versions is never directly compared.

Remarkably, the WinFS system showed that per-item made-with knowledge need not be 
stored explicitly, thereby substantially reducing the amount of persistent metadata [57]. In particu-
lar, a replica’s base knowledge can be used in place of each item’s made-with knowledge. Although 
the replica’s knowledge contains many versions that would not be contained in an item’s made-with 
knowledge, these extra versions do not affect the determination of whether two versions of the same 
item conflict.

6.2.6	 Read-Sets
In systems that support atomic transactions, a device may read and write multiple items in a single 
transaction. When a transaction commits, a device should record the versions of items read by 
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a transaction along with the updated items (in a state-based system) or logged operations (in a 
log-based system). The item’s read-set, consisting of a <item ID, version> pairs, can later be used 
to detect transaction conflicts [11]. A conflict is detected when, at the time that an updated item 
or update operation is received and processed by a device, some item in the received read-set has 
a stored version in the device’s replica that differs from the version recorded in the read-set. This 
implies that a previously received or local update modified some item on which the newly received 
update depends.

6.2.7	O peration Conflict Tables
For systems that provide operation logging, conflict tables can be defined to indicate which concur-
rent operations conflict with which other operations. An e-mail application, for example, might 
provide a conflict table indicating that “mark message as read” never conflicts with “mark message as 
spam” even if they both update the same item. Conceptually, when receiving a new operation to be 
performed, a replica can detect conflicts by searching for conflicting operations in its log. Although 
conceptually clean, conflict tables are not practically useful, in general, for two basic reasons. First, 
whether two operations conflict often depends not only on the types of the operations but also on 
the parameters to these operations and perhaps on other state. For example, two debit operations  
on a bank account conflict only if the total amount being debited exceeds the balance in the account. 
Second, the cost of conflict detection grows with the size of the operation log since the arrival of a 
new operation via replication requires finding and checking all concurrent operations in the local 
log. In practice, this is expensive, and it is not possible unless an infinite log is maintained.

6.2.8	 Integrity Constraints
Checking arbitrary integrity constraints can be done by database triggers when an update is per-
formed for both state-based and log-based replication. If a constraint is violated, then the update is 
determined to conflict with some previously performed update. Application-specific conflicts need 
only be specified in term of the data invariants that the application is expected to maintain. Such 
invariants can apply to any number of data items.

Multi-item constraint checking is possible in state-based replication but is not well-suited to 
the replication model. The problem is not in checking the constraints. The problem is that state-
based replication assumes that data items can be treated independently and, thus, during synchro-
nization, sends updated items in an arbitrary order. Unfortunately, reordering updates can cause a 
remote replica to detect a constraint violation even for a valid sequence of local operations, thereby 
resulting in false conflicts. Consider the following scenario. A user moves his dentist appointment 
from Monday morning to Tuesday afternoon and then adds a haircut appointment for Monday 
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morning. If the new haircut appointment is sent to a remote device before the modified dentist 
appointment, the device will detect a violation of the constraint that the user cannot get his hair 
cut and teeth checked at the same time. This problem with constraint checking does not arise for 
log-based replication because the operation log naturally maintains the order of local operations, 
and the replication protocol preserves this order.

6.2.9	 Dependency Checks
As another approach to detecting semantic conflicts, the Bayou system associated an application-
provided dependency check with each logged update operation (or transaction). As the term implies, 
each dependency check is intended to capture the state on which an operation depends and is a pre-
condition for the operation’s successful execution. In Bayou, a dependency check is represented as 
query and an expected set of results. Before applying a received update operation, a device first runs 
the dependency check’s query against its local replica and confirms that the returned query results 
match the expected results. If the expected results are obtained, i.e., the dependency check succeeds, 
then the update operation is performed. If the dependency check fails, then the operation conflicts 
with some operation that appeared earlier in the device’s log.

Dependency checks are powerful enough to implement a variety of conflict detection tech-
niques. For example, the “previous version” scheme can be obtained by having the query in a de-
pendency check return the current version of the item being updated and expecting the result to 
be the updating device’s previous version. Read-sets can be emulated in a similar fashion by query-
ing the versions of each item in the operation’s read-set. To enforce application-specific integrity 
constraints, the dependency check can query for any items that violate the constraint and expect 
no results. For example, when creating a new file, a file system could use a dependency check that 
queries for existing files with the same name and expect no such files to be found. A calendar system 
could use dependency checks to query for conflicting appointments, i.e., appointments that overlap 
in time.

The main disadvantage of dependency checks is the cost of storing, transmitting, and execut-
ing them for each update operation. Also, application writers must provide the appropriate depen-
dency checks when items are updated, but this is an inherent burden in any application-specific 
conflict detection scheme.

6.3	 CONFLICT RESOLUTION
Once a conflict is detected, steps must be taken to resolve the conflict. Resolution involves choosing 
new contents for the item that was updated concurrently and generating a new version that super-
sedes previous known versions. The item’s new contents could be taken from one of the conflicting 
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versions or produced by merging the conflicting versions in some manner. In any case, when all con-
flicts have been resolved, the system should be left with a single latest version of each data item. Issues 
in conflict resolution include how, when, and where to resolve conflicts as well as how to ensure that 
all replicas eventually agree on the conflict resolution and thereby converge to a consistent state.

6.3.1	 How Are Conflicts Resolved?
Mobile systems have generally used one of three main approaches for resolving conflicts. Each of 
these approaches may be preferred in some environments and may better meet the needs of particu-
lar applications. Therefore, some systems provide all three as options.

One, the system can rely on users to choose the “winner” from among two or more conflicting 
versions of an item, which is referred to as manual conflict resolution. When a conflict is detected at 
device, that device simply records this fact and takes no other action. The device temporarily retains 
multiple conflicting versions of an item in its local replica or in a special conflict log. Sometime later, 
the conflicting versions are presented to a human, perhaps through a special conflict resolution tool, 
and the user selects which version should be kept. Of course, if the user is not happy with either of 
the versions or wishes to produce a merged version, the user can resolve the conflict and then im-
mediately update the item with the desired contents, thereby overwriting the resolution. Thus, this 
approach is simple and flexible. The main drawback is that it places an added burden on users. In 
some situations, the device that detects a conflict may not have originated either of the conflicting 
updates; it merely received them from others. In this case, asking this device’s owner to resolve the 
conflict may be impractical since this person may be unaware of the correct resolution.

Two, a system can have a built-in conflict resolution policy or allow system administrators to se-
lect from a well-defined set of policies that are applied to each detected conflict. When a conflict is 
detected, the winning version is chosen without human involvement based on the configured policy. 
For instance, a “last writer wins” policy may be enforced, in which the conflicting version with the 
latest update timestamp is retained. Alternatively, if the detected conflict involves an update that 
was performed locally and one that originated on another device, then a “local update wins” (or 
perhaps a “remote update wins”) policy may be preferred. In a device–master replication model, a 
“master wins” policy may be chosen. Different conflict resolution policies could be enforced for dif-
ferent types of items. Policy-based conflict resolution ensures that conflicts are resolved in a timely 
manner, most likely immediately after detection, and requires no human interaction or application 
extensions. Assuming that devices enforce identical policies, it also ensures that devices will resolve 
conflicts identically. Unfortunately, mobile devices that wish to replicate data are often owned by 
different people who administer their own devices independently. Expecting device owners to set 
uniform policies may be unrealistic.
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Three, a system can allow applications to register conflict resolvers that are automatically in-
voked when a conflict is detect. Such resolvers are software routines that are presented with the con-
flicting versions, allowed to take arbitrary action, and expected to return new contents for the item 
in conflict. For state-based replication, resolvers can be registered for various types of data items, 
providing type-specific resolution procedures. As an example, suppose that a person maintains a 
list of favorite Web sites on both her mobile phone and her laptop. In case of conflicting updates 
to this person’s favorites list, a special resolver could be invoked that merges the conflicting lists 
while removing duplicate entries rather than simply choosing one version over the other, thereby 
losing entries. For operation-sending protocols, resolvers can be associated with operation types, 
thereby ensuring that their actions are consistent with the semantics of the intended operations. For 
example, Coda provides special built-in resolution mechanisms for handling conflicting directory 
operations, such as name conflicts. Conflict resolvers allow applications to extend the set of auto-
matic conflict resolution policies provided by a system. They are a powerful mechanism for dealing 
with conflicts in an application-specific manner but do raise concerns about safety, since resolvers 
perform arbitrary computations, and about replica convergence as discussed below.

6.3.2	 Where Are Conflicts Resolved?
Regardless of the approach taken to resolve conflicting items, a question remains about when and 
where conflict resolution takes place. In other words, which devices in a system are responsible for 
performing manual or automatic conflict resolution? There are two basic alternatives: the resolve-
everywhere model and resolve-anywhere model.

In the resolve-everywhere scheme, conflicting versions of an item fully propagate to all repli-
cas, and each device independently detects conflicts and resolves them locally. Resolutions do not 
propagate to other devices; they simply affect a device’s local replica. This is the approach that has 
been taken by most replication systems.

This scheme is unsuitable if the system relies on manual conflict resolution since the owners 
of each device would be asked to independently resolve each conflict, which, besides being a signifi-
cant annoyance, can lead to owners making inconsistent decisions. Thus, this technique is mainly 
used when conflicts are resolved automatically.

With automatic conflict resolvers, the main drawback of this approach is that it relies on 
deterministic conflict resolution at each device to achieve overall replica convergence. This means 
that each device needs to (1) have the same conflict resolvers installed and (2) execute these re-
solvers deterministically. Bayou solved the first issue by including conflict resolution code (called 
mergeprocs) with each propagated update [95], which uses extra bandwidth to send the resolvers and 
assumes that devices are willing to run conflict resolution code that they receive from others. Even 
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so, ensuring deterministic execution among a diverse set of mobile devices can be tricky. Moreover, 
this approach uses computational resources at each device to run conflict resolvers, and it uses net-
work bandwidth to fully propagate conflicting updates. Thus, it consumes mobile devices’ precious 
energy.

In the resolve-anywhere scheme, when a device detects a conflict and resolves it locally, the 
device also propagates its resolution to other replicas. Conflict resolution produces new updates that 
are sent via the normal replication protocol and overwrite the conflicting versions. This works well 
in systems with manual resolution since a human need only resolve a conflict on one device, as well 
as in systems that combine manual and automatic conflict resolution. In systems with automatic 
conflict resolvers, it allows certain devices, such as those with excess resources, to be configured as 
conflict resolution sites, whereas others simply log conflicts until they learn of the chosen resolution. 
Conflict resolvers need no special privileges; they behave like any other application-level program 
that reads and writes replicated data. This is the approach taken in WinFS.

The principal advantage of this scheme is that convergence is guaranteed even if different 
replicas have different conflict resolvers (or if their conflict resolvers are nondeterministic) as long 
as the replication protocol reliably propagates updates. This approach also potentially reduces the 
bandwidth usage since conflicting versions need not be sent to all replicas, only their resolution. 
In particular, if all devices have automatic conflict resolvers, then a conflict is resolved when first 
detected by any device.

One drawback of this scheme is that conflicts may be concurrently detected at multiple de-
vices that will then introduce concurrent, and hence conflicting, resolutions. Detecting identical 
updates can eliminate “false” conflicts in many cases but does not completely solve the problem. 
Consider the case where two devices make conflicting updates to an item. Two other devices, C and 
D, detect the conflict and run their automatic conflict resolver, which is deterministic and produces 
the same result at C and D. So, if devices C and D synchronize at this point, then we have no 
problem. But before synchronizing with anyone, suppose the user at C makes a subsequent update, 
perhaps because he did not like the result of the automatic resolution. Now, user C’s update will be 
detected as conflicting with the D’s resolution, although it should not.

Additionally, concurrent conflict resolution could lead to a “conflict resolution war,” that is, 
an indefinite sequence of conflict resolutions where conflict resolvers try to resolve conflicts pro-
duced by conflict resolvers. Consider the following scenario involving devices A, B, C, and D with 
replicas of some collection. Assume that all of the replicas start out in a mutually consistent state. 
A performs a local update. B also performs a local update, thereby introducing a conflict. A now 
syncs with C. B now syncs with D. So far, A and C have the same data, and B and D have the same 
data. A now syncs with B. At this point, A or B, whichever first receives the other’s update, detects 
a conflict and resolves it. Suppose that A detects the conflict and decides that its local change wins. 
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After two-way synchronization, A and B will now have A’s change. C and D now sync with each 
other. Suppose that D detects the conflict between A and B’s changes and decides that B’s change 
wins. C and D now end up with B’s change. Now, A and C sync again, and B and D sync again. 
Again, they detect conflicts and resolve them differently. This can continue indefinitely without the 
replicas ever converging to the same state.

To avoid conflict resolution wars, a system can ensure that automatic conflict resolvers make 
deterministic decisions regardless of where and when they are invoked. This means that even if two 
devices independently detect and resolve a conflict, they will choose the same version. Alternatively, 
the system can maintain a flag associated with each version of an item indicating whether this ver-
sion was produced by a human or by a conflict resolver. If a conflict is detected between two versions 
produced by conflict resolvers, it is not automatically resolved. Such conflicts can be ignored if the 
two versions have identical data (and the smallest version can be retained as the current version). 
If two conflict resolvers produced different data, then their conflicting resolutions can either be 
resolved according to a deterministic policy, such as “last writer wins,” or logged as a conflict that 
needs to be resolved manually.

•  •  •  •
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This chapter presents the design of a number of systems that have been developed to support replication 
of data among mobile devices. The intent is to show how designers have chosen techniques outlined in 
previous chapters and integrated them into practical systems with varying characteristics. Some of the 
systems discussed are research prototypes, whereas others are products that are available today. Table 7.1 
compares these systems using the fundamental questions posed at the beginning of Chapter 4.

7.1	 CODA
7.1.1	 History and Background
The Coda research project at CMU has had a remarkable history of innovation in the mobile com-
puting space. The project started in 1987 as a follow-up to the Andrew File System with the intent 
of building a highly available file system. Early focus was on replicating files among servers. Soon, 
the demand for running Coda file system clients on laptops, which were just starting to gain popular 
use in the research community, forced the Coda project to explore support for disconnected opera-
tion; wireless networks were not yet common, and hence, laptops spent a considerable amount of 
time without any network connectivity. Later, the project investigated weakly connected operation, 
namely, how to take advantage of low bandwidth connectivity to perform functions such as trickle 
reintegration. More recently, the project tackled issues such as translucent caching, isolation-only 
transactions, and operation shipping. As a research project, Coda produced impactful results for 
more than twelve years, and as a deployed system, Coda is still in use today [86].

7.1.2	 Target Applications
Having been developed in a university environment, Coda’s main user community consisted of students 
and faculty. Hence, it supported users editing papers, developing code, producing talk slides, sending e-
mail, and so on. In general, any application that reads and writes Unix files could store its data in Coda.

7.1.3	 System Model
One of Coda’s key design tenets was that authoritative data should reside on servers, which can 
be locked in machine rooms and maintained to provide a secure computing environment. Clients, 
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including mobile devices, who are inherently untrustworthy, store cached copies of files that only 
they access. Thus, there is a strong client–server model with a rigid division of responsibilities 
between first-class replicas (on servers) and second-class replicas (on client devices). Files are 
organized into volumes, which denote subdirectories in the file name space. Each volume can be 
replicated on a set of stationary servers. Clients cache a subset of the files in a volume, i.e., perform 
whole-file caching.

TABLE 7.1:  Comparison of select systems

System Dates Data Model Consistency Protocol Conflicts

Coda 
(CMU)

1987– Files Client–
server

Weak while 
disconnected, 
isolation-only 
transactions

multiRPC to 
servers, log  

reintegration 
after  

disconnection

Per-file  
timestamps,  
automatic  

conflict resolvers

Ficus,  
Rumor, 
Roam 

(UCLA)

1990–
1998

Files Peer-to-peer Weak Best-effort 
multicast plus 

state-based 
anti-entropy

Per-file version 
vectors,  

automatic  
conflict resolvers

Bayou  
(Xerox 
PARC)

1992–
1997

Databases Peer-to-peer Eventual,  
session  

guarantees

Pairwise log 
reconciliation 

Per-update  
application- 

specific  
dependency 

checks and merge 
procedures

Sybase  
iAnywhere

~1995– Databases Client–
server

Weak while  
disconnected

Timestamp-
based row 
exchange

Per-row  
previous version, 

automatic conflict 
resolvers

Microsoft 
Sync  

Framework 
(MSF)

2001– XML, 
databases, 

files

Peer-to-peer Eventual Pairwise  
state-based 

reconciliation

Per-replica  
version  

vectors, manual 
or automatic 

resolution
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While connected to one or more servers, a client device accesses files from the servers and 
caches them on its local disk. Write operations are performed on all available servers in parallel. 
Hoarding is used to preload files into the client’s cache in anticipation of disconnection. While 
disconnected, the device’s cache serves application read requests, emulating responses that would 
be received from a server. Write operations, as well as file create and delete and other directory 
operations, are recorded in a local log on the disconnected device. When communication with 
the servers is restored, a reintegration process replays the logged operations to bring the servers 
up-to-date. In summary, each Coda client is in one of three states: hoarding, emulation, or rein-
tegration [45].

7.1.4	 Consistency
Coda’s semantics might be described as “accessible” consistency. When connected, a client retrieves 
file metadata from all available servers to ensure that it reads the most recent version of the file; 
the client’s update operations are performed on all available servers, thereby keeping the servers 
in a mutually consistent state. However, network partitions and server failures may cause server 
replicas to diverge and clients to access out-of-date file copies. When a partition is restored or a 
server recovers, clients are responsible for detecting inconsistencies and initiating recovery to bring 
the servers back into a consistent state. Additionally, servers send callbacks to inform clients when 
cached files have been updated.

Thus, when all servers and clients are well-connected, Coda provides reasonably strong con-
sistency. However, when failures occur, the system falls back into a weak consistency mode. Clients 
in different partitions, for instance, may update disjoint sets of servers and observe different file 
contents. Similarly, when clients become disconnected, either voluntarily or involuntarily, such cli-
ents may continue operation by reading stale data, and any updates produced will not be available 
to others until reintegration occurs.

7.1.5	 Replication Mechanisms
Coda provides two basic replication protocols, one for server replication and one for client–server 
reintegration. During normal (nondisconnected) operation, a client sends operations to the avail-
able volume storage group (AVSG) using a special multiRPC protocol. For read operations, servers 
return their latest “storeid,” which the client uses to decide from which server it should retrieve the 
file contents and also to determine whether the servers in the AVSG are inconsistent and need to 
be repaired. For write operations, the client assigns a unique storeid consisting of the client’s unique 
identifier and an update counter. Each available server performs the write operation and returns 
an acknowledgment to the client including a version vector (called the CVV) that indicates the 
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updates it has performed and which updates it knows have been performed by other servers. The 
client then reports to the AVSG which members successfully completed the write by sending a final 
CVV. Directory operations are handled in a similar manner.

During reintegration following a period of disconnection, a client sends its entire replay 
log in parallel to the servers in the AVSG, and servers perform each logged operation just as they 
would during normal operation, except that all operations are committed in a single transaction 
[45]. Log compaction is performed so that obsolete log entries can be discarded, such as when a file 
is written multiple times during disconnected operation or when a file is created and then deleted 
before reintegration. Once the reintegration process completes, a client frees its replay log. Later 
versions of Coda included techniques for trickle reintegration, whereby logged operations can be 
incrementally and asynchronously applied to servers when there is a low-bandwidth, high-delay 
connection [58].

7.1.6	 Conflict Handling
Coda uses version vectors (see Section 6.2.4) to detect conflicting updates performed in different 
partitions of a volume storage group. To detect conflicts performed by clients while disconnected, 
the latest storeids recorded at the client and servers are compared during the reintegration process.

For conflicting directory operations, Coda uses built-in resolution procedures based on the 
semantics of Unix directories (as was proposed in the Locus system) [49]. For resolving write con-
flicts on files, clients can automatically invoke application-specific resolvers [50, 51]. Such resolvers 
run on the client and produce a new file content that is written to the servers. Appropriate resolvers  
are selected based on rules that can include file types and pathnames. For cases where no application- 
specific resolvers are suitable, Coda provides a repair tool that allows users to carry out manual 
resolution.

7.2	 FICUS
7.2.1	 History and Background
The Ficus distributed file system was developed at UCLA starting in the late 1980s [24, 25, 63]. 
It was an intellectual descendant of the Locus distributed operating system, which included a file 
system that could tolerate network partitions. Ficus carried this work forward by concentrating on 
an NFS-compatible file system with a peer-to-peer model, more scalable algorithms than Locus, 
and additional support for conflict resolution. Motivated by the needs of mobile computing us-
ers, the Rumor [26] and then Roam [74] file systems followed Ficus with a similar peer-to-peer 
architecture. Much of the basic design discussion below applies to Rumor and Roam as well as to 
Ficus.
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7.2.2	 Target Applications
Like Coda, Ficus was designed as a Unix file system. Thus, it can store files for any Unix file-based 
application.

7.2.3	 System Model
Ficus uses a peer-to-peer model, and all replicas behave as equals. File volumes can be replicated on 
any Ficus node. Ficus clients can access replicas on their local disk and can also mount remote file 
systems that are accessed via the NFS protocol. Early versions of Ficus used whole volume replica-
tion. Selective replication was added later so that a device, such as a mobile device with limited disk 
space, could choose to store an arbitrary subset of the files in a volume [72]. Devices keep track of 
where files are replicated using the same optimistic replication protocol used to propagate updated 
files and directories.

7.2.4	 Consistency
Clients can read and update any locally or remotely accessible file without coordinating with other 
devices. In other words, Ficus provides a read-anywhere, update-anywhere model that the develop-
ers call one-copy availability. It guarantees eventual consistency through pairwise reconciliations.

7.2.5	 Replication Mechanisms
Each update operation in Ficus performs the update on a single replica of a file. Other available 
replicas are notified that the file has been updated using a best-effort messaging protocol. Upon 
receiving notice that a file has been updated, a replica explicitly “pulls” the new file contents from  
the replica holding the latest version. It can do this immediately or delay retrieval until a more suit-
able time or until a later notification arrives for the same file, in which case, the previous notification 
can be ignored.

Since a device may miss update notifications because of unreliable message delivery or be-
cause it was disconnected from the updating device, a directory reconciliation protocol is used to 
detect missing updates. Reconciliation involves direct communication between pairs of devices. 
Each device periodically contacts another device that replicates the same file volume(s) and retrieves 
metadata about each remotely stored file and directory. These metadata are compared with that of 
locally stored files to determine which files on the remote device are more recent and need to be 
fetched. Reconciliation is a heavyweight process as it requires a device to potentially examine, com-
municate, and process information about each file. Timestamps can be used to narrow down the set 
of files that must be considered during reconciliation.
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Although Ficus supports any reconciliation topology, having each of n replicas reconcile with 
all other replicas would result in n2 reconciliations. To reduce this cost, replicas typically are ar-
ranged in a ring so that each replica has two regular reconciliation partners. The ring topology is 
adaptable so that disconnected replicas can be removed and later reinserted when they reconnect. In 
a system with partial replicas using selective replication, a separate ring may be needed for each file 
since different files can be stored at different sets of replicas [72].

Rumor uses a reconciliation protocol that is similar to that developed for Ficus but skips the 
best-effort update notification step. That is, Rumor simply relies on periodic reconciliation between 
replicas to propagate updates (as is done in Bayou). The reasoning is that notification is ineffective 
for primarily disconnected mobile devices. Roam adopts a similar approach but, for increased scal-
ability, organizes replicas into a two-level “ward” model rather than a single adaptable ring. In the 
ward model, nearby replicas are grouped into wards, and replicas within a ward reconcile with each 
other on a regular basis. Less-frequent reconciliation occurs between ward leaders.

To avoid create/delete ambiguities, deleted files are retained by a device in its local replica 
until the device knows that every other device knows that it is aware of the deletion. This requires a 
two-phase garbage collection protocol [25].

7.2.6	 Conflict Handling
Ficus relies on per-file version vectors to detect update conflicts. Version vectors were invented 
for Locus and inherited by Ficus, Rumor, and Roam. Concurrent updates to a directory or a 
given file are detected during reconciliation (or when the file is fetched following an update noti-
fication) by comparing the version vectors associated with the directory or file stored on different 
replicas.

Conflicting directory information is automatically resolved using built-in policies based on 
the semantics of Unix file directories (as was done in Locus and Coda). For example, current up-
dates to a directory are resolved by merging the directory contents from the conflicting versions.

When a replica detects a conflict on a file, it searches for a locally registered conflict resolver 
based on the type of the file and the file name. A conflict resolver is a program that takes two con-
flicting versions of a file and produces new file contents. A number of different conflict resolvers 
were developed for Ficus, including ones for mail directories, log files, and control files [75]. If a 
suitable automatic resolver is not found, then the file’s owner is sent an e-mail message reporting 
the conflict and is expected to manually resolve it. When a file conflict is resolved, either auto-
matically or manually, its version vector is updated to dominate those of the previously conflicting 
versions.
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7.3	 BAYOU
7.3.1	 History and Background
The Bayou system was developed at Xerox PARC between 1982 and 1986 as part of its research 
program on ubiquitous computing. It borrowed ideas from previous work at PARC on epidemic 
algorithms while explicitly targeting mobile computing devices with intermittent connectivity.

7.3.2	 Target Applications
Bayou’s aim was to support interpersonal collaborative applications. Several sample applications 
were designed and built including a mail reader called BXMH, a calendar sharing application, and 
a shared bibliographic database.

7.3.3	 System Model
Bayou provides a peer-to-peer model in which each mobile device stores a full copy of a shared 
relational database. Update transactions can be initiated at any device. Periodically, a device chooses 
another replica from which to pull updates that it does not yet know, i.e., updates propagate via a 
pairwise synchronization protocol. When a device receives a new update, either from a local ap-
plication or during synchronization, it adds the update to its log. A device’s database is obtained, at 
least conceptually, by applying all updates in the order that they appear in its log. All devices play 
identical roles in Bayou except for one designated primary replica, which takes on the additional 
burden of choosing a final commit order for all updates.

7.3.4	 Consistency
The Bayou system was designed to ensure eventual and causal consistency (see Section 3.3) while 
accommodating arbitrary update operations and communication topologies. It accomplished this 
through a fault-tolerant log-based delivery mechanism coupled with a means for globally ordering 
updates. Applications could choose to read tentative data that might be undone later because of 
conflicting operations or restrict their access to committed results. Additionally, applications could 
select from four different session guarantees that offer increased consistency (see Section 3.4).

7.3.5	 Replication Mechanisms
Bayou used a log-based, knowledge-driven protocol (as discussed in Section 4.3.10). Each update 
is assigned a version stamp consisting of the device originating the update and an update counter. 
Each device maintains a version vector to capture the set of versions that has been received, stored 



76  REplicated data management for mobile computing

in its log, and applied to its database replica. One device initiates reconciliation with another device 
by sending its version vector. The second device responds by returning any updates stored in its 
log whose versions are not covered by the received version vector. To preserve causal consistency, 
updates are sent in the order that they appear in the sending device’s log over an order-preserving 
transport protocol, such as TCP. A device’s version vector is incrementally updated as new updates 
arrive.

To ensure that replicas converge to a mutually consistent state, updates are ordered consis-
tently at all replicas using their version stamps along with commit stamps assigned by the primary 
replica. Since updates originating at different devices may arrive at other devices in different orders 
and since updates are applied to a device’s replica as soon as they are received, reconciliation may 
cause previously received updates to be rolled back and reapplied after newly arriving updates. The 
designated primary replica assigns commit stamps indicating the final order for all updates. Once 
a device learns the commit stamps for updates in a prefix of its log, it can be certain that these 
updates will not need to be rolled back. Such updates move from the “tentative” to the “commit-
ted” state.

7.3.6	 Conflict Handling
Perhaps Bayou’s greatest contribution was its development of application-specific techniques for 
detecting and resolving conflicts. In particular, as discussed in Section 6.2.9, each logged update 
operation is accompanied by a dependency check used to detect semantically conflicting operations. 
Dependency checks are more powerful than the per-item version vectors used in many systems 
since they can detect conflicts involving multiple items. For resolving conflicts, each update opera-
tion also included a merge procedure, which was an interpreted code fragment that could read the 
database and issue a new update based on the current state.

7.4	 SYBASE iANYWHERE
7.4.1	 History and Background
Sybase was founded as a database company in 1984 and emerged as the leader in mobile database 
management software in the mid- to late 1990s. Today, its iAnywhere suite of mobile software 
includes the SQL Anywhere DBMS and the MobiLink synchronization technology. SQL Any-
where is a full-featured relational database management system that runs on a variety of computing 
platforms from large servers to laptops. For small-footprint mobile devices, such as smartphones, 
Sybase’s UltraLite database runs on Windows Mobile, Palm OS, and Symbian operating systems. 
MobiLink allows intermittently connected devices to synchronize data with enterprise servers.
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7.4.2	 Target Applications
Sybase focuses mainly on business applications in which access to enterprise data is critical. Cus-
tomers include everything from salespeople, who share product catalogs and sales records, to 
shipping companies that track the locations of goods on trucks, planes, and ships.

7.4.3	 System Model
MobiLink allows synchronization between a centralized database server, called the consolidated database, 
and any number of remote databases running on fixed or mobile devices. Remote databases must be either 
SQL Anywhere or UltraLite databases, whereas the server can run any of the major relational database 
management systems, including SQL Anywhere, Oracle, IBM DB2, or Microsoft SQL Server.

A remote database may be a partial replica of the consolidated database through both hori-
zontal and vertical partitioning. That is, a device may hold a subset of the database tables, rows, or 
columns. This subset can be defined by an arbitrary SQL query that filters data sent to the device. 
In some cases, the remote database may have a different database schema altogether, although that 
requires special schema mapping scripts to be installed on the server.

While disconnected from the server, a device can run applications that perform local transac-
tions to read and write its remote database. The inserted, updated, and deleted rows resulting from 
such transactions are logged on the device. If a device wishes to discard some rows without having 
those rows deleted from the server (and all other devices), it can run a delete transaction with log-
ging turned off. Periodically, each device with a remote database contacts the server to upload locally 
logged transaction results and download updates made by other devices that have been uploaded 
since its last synchronization.

7.4.4	 Consistency
Devices are allowed to read stale data and perform conflicting updates; in other words, the sys-
tem provides a weak consistency model. However, all transactions are serialized and transactional 
boundaries are preserved, meaning that all of the writes in a device-local transaction are performed 
atomically at the server.

7.4.5	 Replication Mechanisms
The MobiLink replication protocol is a relatively straightforward example of the timestamp scheme 
presented in Section 4.3.6. A device sends its entire transaction log to the server over a wired or 
wireless network connection using TCP or a similar reliable transport mechanism. When the server 
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has received all of the device’s updates, it applies them to the consolidated database atomically as 
one server-side transaction. This server transaction may abort because of interference from other 
activity on the server database but will be retried until it commits successfully. The server database 
includes a timestamp column that records when each row was last updated. Deleted rows are not 
actually deleted from the server; they are simply marked as deleted in the server database using a 
special status column or recorded in a special shadow table.

To download updates to the device, the server then runs a query to select those rows that have 
been updated (or deleted) since the device’s last synchronization and that match the device’s filter. 
Of course, this data set includes updates made by the device itself that were just uploaded. The server 
uses the log that it received from the device to filter out any such updates. The remaining batch of 
updated rows, which were obtained from other remote databases or from transactions run directly 
against the server database, are then downloaded to the device. The device applies updates that it 
receives from the server in a single local transaction. This transaction, in addition to modifying the 
device’s database, updates the device’s timestamp of when it last synchronized with the server.

The device treats the response from the server as an acknowledgment that its log was success-
fully uploaded. The device can thus discard its logged updates. The server may request an acknowl-
edgment from the device, but need not. If the data sent from the server is not received by the device, 
it will be resent during the next synchronization.

7.4.6	 Conflict Handling
A conflict occurs when a row has been updated on both the device and the server since the device’s 
last synchronization. Concurrent updates are detected at the server using per-row timestamps. If the 
“old” timestamp included in rows that are uploaded from a device does not match the last-updated 
timestamp in the same rows stored on the server, the server detects a conflict. As an option, the 
server may be configured to perform column-based rather than row-based conflict detection. This 
requires an update timestamp for each column. Conflict checking is fairly expensive since it must be 
done for each row before the server can apply new updates. For this reason, some customers choose 
to run their servers without conflict detection.

7.5	 MICROSOFT SYNC FRAMEWORK
7.5.1	 History and Background
In November 2007, Microsoft announced a new data replication platform called the Microsoft Sync 
Framework (MSF). This is a software library intended for use by applications running on both mobile 
devices and stationary PCs and servers. This product grew out of an earlier effort that started in 2001 
to develop a fresh storage system for Microsoft Windows called WinFS. WinFS, in turn, borrowed  
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its basic replication design from the Bayou system while accommodating some additional constraints 
and adding some innovations [62]. Although WinFS was removed from the Longhorn release of 
Windows and has no plans to be released as a stand-alone product, its replication protocol lives on 
in a number of Microsoft products and services. MSF represents a packaging of this technology for 
use by third-party applications. It is presented here as an example of a modern replication protocol 
that was designed with mobility in mind.

7.5.2	 Target Applications
MFS was designed to support the replication needs of a wide variety of commercial applications. 
Many of Microsoft’s applications manage personal information, such as e-mail, contacts, task lists, 
calendars, photos, documents, Web favorites, and so on, and most of these run on mobile devices, 
including laptops, PDAs, and smartphones. While WinFS relied on an XML data model, MFS can 
replicate arbitrary data from XML objects to files to relational databases through the use of plug-in 
data providers.

7.5.3	 System Model
The MFS architecture is peer to peer. Full or partial replicas of a data collection can reside on any 
device, and no devices play any special roles. Typically, an application accesses a replica residing on 
the same machine on which the application runs. Read and write operations are performed as part 
of transactions that execute locally. Periodically, devices synchronize data with each other using a 
protocol that resembles the one developed for Bayou. However, rather than maintaining update 
logs, devices exchange items drawn directly from their data stores. MFS supports arbitrary sync 
topologies and schedules, that is, any device can synchronize with any other device at any time.

7.5.4	 Consistency
As in Bayou, the update-anywhere model used in MSF coupled with its peer-to-peer synchroniza-
tion presents applications with weakly consistent data. Eventual consistency is assured as long as the 
graph of device synchronization partnerships is well-connected. No other consistency guarantees 
are provided by the basic framework, although applications are welcome to add their own consis-
tency mechanisms.

7.5.5	 Replication Mechanisms
MSF uses a knowledge-driven protocol (as discussed in Section 4.3.11). Each replica maintains 
a knowledge vector as a shorthand representation for the set of versions known to the replica. To 
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initiate synchronization with another replica, a device sends its knowledge to its sync partner. The 
sync partner returns all items in its data store whose latest version is not included in the requestor’s 
knowledge along with metadata used to detect conflicts. The receiving device can write the com-
plete batch of new items in one transaction or in a sequence of smaller transactions. While adding 
items to its data store, the device atomically updates its knowledge so that those same items will not 
be resent in future synchronization operations.

As mentioned above, the MSF resembles Bayou in its system model and sync protocol, with 
several notable differences. MSF does not use a write log. MSF makes no assumptions about the 
order in which items are sent (or arrive) during synchronization. Thus, any transport mechanism 
can be used, including unreliable wireless networks. Lost or reordered items may cause a replica to 
have “exceptions” in its knowledge but do not cause convergence or performance problems. MSF 
does not require replicas to rollback tentative updates or maintain a global order on updates. In-
stead, each item is treated as an independent entity, and replicas need only agree on the latest version 
of each item. Finally, as explained in the next subsection, MSF includes a new scheme for detecting 
and resolving conflicts.

7.5.6	 Conflict Handling
WinFS showed that the knowledge vectors used during synchronization can also be used to reliably 
detect concurrent, and hence conflicting, updates to each item (see Section 6.2.5) [57]. MSF ad-
opted this same technique for conflict detection. When a conflict is detected at a device, automatic 
conflict resolvers are invoked, if possible, to resolve the conflict by producing a new version. The 
new, resolved version of the item then propagates to other replicas via the normal synchronization 
protocol. If a conflict cannot be resolved locally, then the conflicting versions of an item continue to 
propagate to other replicas, where they may be automatically or manually resolved. This approach 
allows conflict resolvers to be installed at some but not all replicas and ensures convergence even if 
resolvers have nondeterministic executions.

•  •  •  •
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Seamless computing requires that people have ready access to their data at any time from anywhere. 
In theory, this could be achieved by placing all data in a shared repository, such as a network accessible 
file server, and having all applications on all devices access this single, shared database. In practice, 
such a centralized approach to data management is infeasible, except in limited situations, due to 
nonuniform network connectivity and latencies as well as device limitations and regulatory restric-
tions. For example, many handheld devices do not have wireless network capabilities, although this is 
rapidly changing. Even with wireless network adapters, devices may have restricted communication 
in environments such as airplanes and hospitals. Moreover, the high cost of wide-area wireless net-
working renders its use less desirable than local data access. Although all of the technology trends are 
in the right direction, ubiquitous, wide-area, low-cost, high-bandwidth, low-latency network com-
munications are still many years away. Thus, for the foreseeable future, storage systems must provide 
the ability to replicate data close to its point of use, ideally colocated with applications running on a 
PC or mobile device.

The same factors that argue for replicating data onto mobile devices dictate a style of rep-
lication known as “optimistic” or “update-anywhere” replication in which replicas are allowed to 
behave autonomously. Specifically, users and applications can read and write data at a single replica 
without coordinating their activity with other replicas. This provides maximum data availabil-
ity since the inaccessibility of some remote replicate cannot hinder access to one’s locally repli-
cated data. Contrast this to a system in which replicas are kept mutually consistent at all times 
by using distributed transactions with locking and two-phase commit. In such a system, a slow, 
failed, or disconnected device negatively affects the overall system behavior. Although the benefits  
of an update-anywhere replication scheme are evident, the costs and complexities may be subtle. 
Because replicas diverge through concurrent, autonomous activity, applications must be able to tol-
erate weakly consistent data. Additionally, to drive replicas toward eventual convergence, mecha-
nisms are needed for disseminating updates and dealing with the potential conflicts that naturally 
arise in an update-anywhere system.

This lecture presented a variety of replication protocols for propagating updates between 
devices and techniques for detecting and resolving conflicting updates. These range from simple 

chapter        8

Conclusions



82  REplicated data management for mobile computing

protocols that use best-effort multicast to complex knowledge-driven protocols that support peer-
to-peer delivery over arbitrary connections. Different techniques make widely varying assumptions 
both about the devices on which they operate and the network characteristics and connectivity of 
those devices. Replication protocols also differ in the functionality that they provide to mobile ap-
plications, such as consistency and delivery guarantees, features that are often apparent to end users. 
Crafting a mobile application, therefore, requires designers to choose data management technologies 
carefully and evaluate technology tradeoffs to fully meet the needs of the intended user community. 
This lecture should help guide system designers in this important endeavor.

•  •  •  •
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