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México

SYNTHESIS LECTURES ON QUANTUM COMPUTING: #1

M&C M o r g a n & C l a y p o o l P u b l i s h e r s

v



MOCL009-FM MOCL009-FM.cls September 13, 2008 12:8

vi

ABSTRACT
Quantum computation, one of the latest joint ventures between physics and the theory of
computation, is a scientific field whose main goals include the development of hardware and
algorithms based on the quantum mechanical properties of those physical systems used to
implement such algorithms.

Solving difficult tasks (for example, the Satisfiability Problem and other NP-complete
problems) requires the development of sophisticated algorithms, many of which employ stochas-
tic processes as their mathematical basis.

Discrete random walks are a popular choice among those stochastic processes.
Inspired on the success of discrete random walks in algorithm development, quantum

walks, an emerging field of quantum computation, is a generalization of random walks into the
quantum mechanical world.

The purpose of this lecture is to provide a concise yet comprehensive introduction to
quantum walks.

KEYWORDS
Quantum walks, quantum algorithms, quantum information science, quantum computation,
unconventional models of computation.
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Preface
Quantum computation, one of the latest joint ventures between physics and the theory of
computation, is a scientific field whose main goals include the development of hardware and
algorithms based on the quantum mechanical properties of those physical systems used to
implement such algorithms.

Solving difficult tasks (for example, the Satisfiability Problem and other NP-complete
problems) requires the development of sophisticated algorithms, many of which employ stochas-
tic processes as their mathematical basis.

Discrete random walks are a popular choice among those stochastic processes.
Inspired on the success of discrete random walks in algorithm development, quantum

walks, an emerging field of quantum computation, is a generalization of random walks into the
quantum mechanical world.

The purpose of this lecture is to provide a concise yet comprehensive introduction to
quantum walks.

In addition to the Introduction chapter itself, our book starts with the three following
chapters:

Chapter two introduces the postulates of quantum mechanics in a form suitable to
be employed by computer scientists. By means of the state space postulate we present to
the reader the quantum counterpart of the bit, the qubit. Moreover, the evolution postulate
provides the mathematical structure that allows us to describe the behavior of a qubit as
time passes by, while the measurement postulate presents the mathematical procedure to be
employed in order to compute the probability distributions inherent to any computation based
on quantum mechanics. We then introduce the most surprising (for a computer scientist) no-
cloning theorem, which states that it is impossible to make perfect copies of arbitrary quantum
states, and finish this chapter by delivering the rules for working with two and more qubits,
and by introducing the concept of quantum entanglement as a computational resource.

Chapter three provides some essential elements of the theory of computation necessary to
show and quantify the role of discrete random walks in computer science. We particularly focus
on classical and quantum versions of Turing machines as well as on the definitions and theorems
of the theory of complexity that will allow us to quantify the amount of resources required to
execute an algorithm. We then use those quantification methods to introduce the P and NP



MOCL009-FM MOCL009-FM.cls September 13, 2008 12:8

PREFACE xi

algorithm classes, and finish this chapter by presenting the concept of NP-completeness as well
as some fundamental links between physics and the theory of computation.

Chapter four starts with a succinct introduction to the definitions and main results in the
field of discrete classical random walks, followed by concrete examples on the use of classical
random walks in algorithm development for solving two versions of the Satisfiability

Problem: 2SAT and 3SAT. This chapter finishes with a concise presentation of continu-
ous random walks, a branch of stochastic processes seldom used in computer science but indeed
relevant for our further discussion on successful quantum algorithms based on continuous
quantum walks.

The second and last part of this lecture, composed of three chapters, provides a solid
introduction to the physical, mathematical and computational properties of quantum walks.

Chapter five starts with a comprehensive analysis of a discrete quantum walk on an infinite
line, in which we provide relevant definitions plus a study of the mathematical structure that
defines the initial conditions, evolution and measurement of a quantum walker whose behavior
in space-time is given by a quantum coin and corresponding operators. We then elaborate on
the properties and probability distributions of discrete quantum walks on a line with one and
two boundaries. This first part of chapter five finishes with the notion of a discrete quantum
walk on a graph.

The second part of chapter five starts with an analysis of what is truly quantum about
a quantum walk, in which we study some experiments that have shown that some properties
of quantum walks are also reproducible by classical systems, and finish this analysis by listing
some quantum mechanical properties of quantum walks.

We then proceed to define a continuous quantum walk, followed by a study about the
role randomness plays in both continuous and discrete quantum walks. We finish this chapter
with a study of a recent, long awaited and very important result: a mathematical connection
between discrete and continuous quantum walks.

Chapter six is devoted to the use of both discrete and continuous quantum walks in
algorithm development. We start by reviewing some early results on an algorithm based on a
discrete quantum walk to find elements in an unordered set; this algorithm employs a hypercube
as the geometrical structure on which the quantum walk is performed and uses two definitions
of hitting time (i.e. the average time it takes to go from an arbitrary node i to an arbitrary
node j) to show that, in both cases, hitting time is of polynomial order.

Chapter six continues with an analysis on a more recent algorithm which shows how to
employ a discrete quantum walk to determine whether all elements in a set are distinct or not.
We then review a new and refreshing definition of a discrete quantum walk, which consists of
a derivation of an evolution operator from a classical stochastic matrix, and finish with a list
of relevant papers on more algorithmic applications of quantum walks as well as some results



MOCL009-FM MOCL009-FM.cls September 13, 2008 12:8

xii PREFACE

about the impact of decoherence (in this context, decoherence can be understood as performing
measurements on the elements of the quantum walk) in the algorithmic performance of a
discrete quantum walk.

The second part of chapter six reviews a most celebrated result on quantum
Computation: an algorithm that employs a continuous quantum walk that traverses a

family of graphs in polynomial time. This study is followed by a succinct review of an application
of a generalized continuous quantum walk for quantum simulation. We finish chapter six by
mentioning a very recent and most important result: the computational universality of quantum
walks.

Finally, chapter seven provides a summary of our book and proposes some future research
directions which, in the opinion of the author, will become increasingly important for both
the field of quantum walks and the employment of quantum algorithms in several branches of
science.



MOCL009-FM MOCL009-FM.cls September 13, 2008 12:8

xiii

Acknowledgements
Writing a book is an honor as it allows authors to talk to readers, to share passions and to
propose new ideas, regardless of time differences or physical distance. Indeed, it is a matter
of justice to acknowledge those who share with a writer the tremendous effort of writing and
publishing a book.

I would like to start by acknowledging the loving support of my family for those endless
hours that I did not share with them, even during very important festivities like Christmas
and New Year’s eve. My passion for science has always been supported by the tender patience
and encouragement of my mother Amparo, my step-father Bernardo, my sister Samy, and my
deceased grandmother Margarita. I warmly thank you all.

I would also like to thank my former DPhil supervisors Professor Keith Burnett and
Professor Sougato Bose, who gave me the opportunity to do doctoral research on quantum
walks at the University of Oxford. Among those great minds I was privileged to meet during
my time in Oxford and who directly contributed to my understanding of quantum walks, I
would like to mention Dr Jonathan Ball (who is also the artist who designed the Bloch sphere
image used in our chapter on quantum mechanics) and Dr Nikola Paunković.
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Tecnológico de Monterrey Campus Estado de México, as their support has been crucial since
my first day in campus. Among my colleagues in the departments of computer science and



MOCL009-FM MOCL009-FM.cls September 13, 2008 12:8

xiv ACKNOWLEDGEMENTS

mathematics, and the Quantum Information Processing Group at Tecnológico de Monterrey
Campus Estado de México, I thank Professor Edgar Vallejo Clemente, Professor Francisco
Delgado Cepeda, Professor Sergio Martı́nez Casas, Professor José Luis Gómez Muñoz, and
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1

C H A P T E R 1

Introduction

Quantum Mechanics and the Theory of Computation are two of the most important intellectual
achievements of the 20th century. These two branches of science have not only inspired several
generations of scientists and thinkers, they have also had a significant impact on the daily life
of mankind, from war to literature (two recent examples of works in the literature inspired by
the ideas and history of quantum mechanics are [1, 2]). As a matter of fact, cross-fertilization
between physics and computation has been abundant due to the fact that many ideas, concepts,
and technological developments from both fields have been used to advance knowledge in each
discipline.

One of the most recent joint ventures between physics and the theory of computation
is Quantum Computation. Quantum computation can be defined as the scientific field whose
purpose is to solve problems with finite time procedures, i.e. algorithms, which exploit the
quantum-mechanical properties of those physical systems that are used to implement such
algorithms.

Among the theoretical discoveries and promising conjectures that have positioned quan-
tum computation as a key element in modern science, we find (1) the development of novel and
powerful methods of computation that may allow us to significantly increase our processing
power for solving certain problems [3, 4] and (2) the simulation of complex physical systems
that no classical computer would be able, even in principle, to efficiently simulate [5–7]. A
detailed summary of scientific and technological applications of quantum computers can be
found in [8, 9].

As for the physical realization of quantum computers, several experimental platforms
have been developed or customized over the last two decades. Indeed, although it is too early to
predict the winning technologies for the implementation of quantum computers, encouraging
advances have been made over the last few years in fields such as quantum optics [10–13] and
ion traps [14, 15]. Moreover, according to the quantum computation roadmaps produced in
the United States of America in 2004 [8] and the European Union in 2007 [9], it is reasonable
to expect quantum hardware with enough number of qubits and fault tolerant error correction
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ready to run quantum simulation and some quantum algorithms by 2012–2017. The reader
will find comprehensive lists of physical platforms for quantum computation in [8, 9].

Building good quantum algorithms is a difficult task. First, quantum mechanics is a
counterintuitive theory and intuition plays a major role in algorithm design. Second, for a
quantum algorithm to be good it is not enough to perform the task it is intended to, but also to
do better (i.e. to be more efficient) than any classical algorithm (at least better than those classical
algorithms known at the time of developing corresponding quantum algorithm). Examples of
successful results in quantum computation can be found in [16–21]. Good introductions to the
first quantum algorithms can be found in [22, Ch. 4] and [3, Chs. 4, 5 and 6].

Among those techniques available for the development of quantum algorithms one finds
Quantum Walks, which is also the main topic of this lecture.

In order to provide a definition of the field of quantum walks, we first introduce the
concept of a stochastic algorithm. In the following paragraphs we shall assume that, in principle,
the problems we intend to solve by using an algorithmic approach are indeed solvable by such
a method.

There are several ways to design solutions (i.e. to develop algorithms) in computer science.
For example, a powerful method consists of defining a set of rules such that for a given step i
in algorithm A, we can always fully determine step i + 1, i.e. at any point of the execution of
algorithm A we can be fully certain about the next step to be performed, as long as we know
the rules of logic used to develop A. Algorithms developed under this methodology are known
as deterministic algorithms because it is always possible to determine the exact behavior of
those algorithms, just by knowing the starting conditions and the set of rules used for algorithm
development.

Another method used in algorithm design makes use of chance. In this approach, for a
given step s i of algorithm A, step s i+1 cannot be fully determined as there are several possible
next steps. The actual step i + 1 that will be carried out is chosen from the set S of possible
next steps with the help of a probability distribution. This family of algorithms is known as
stochastic algorithms and plays the most important role in computer science due to the fact
that, in some cases, the most efficient (or least inefficient, depending on the point of view)
algorithms known so far for solving certain kinds of problems, are stochastic [23, 24].

A subtle but very important property of stochastic algorithms is the following: assume
step s i of algorithm A is being executed and that there are several possible next steps s i+1 ∈ S.
Then, all elements of S must have the same probability of being chosen, unless there is a
very good reason for giving preference to some computational steps over others (for example,
knowledge about the physical properties of a system to be simulated by the stochastic algorithm).
The rationale here is that we want chance, i.e. randomness, to determine the evolution of our
algorithm. However, if we introduce preferences for some computational steps over others, we
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are preventing randomness from taking over. Consequently, the generation of random numbers
is a fundamental requirement for the execution of stochastic algorithms.

Unfortunately, classical computers are unable to generate truly random numbers [25].
To palliate this disadvantage, computer scientists have developed sophisticated programs for
pseudo-random number generation [25] which are good enough for many practical applications
of computer science into many branches of science and engineering. However, as true random
numbers are still needed, sources of randomness have been produced by using the quantum-
mechanical measurement postulate that we will explore in Chapter 2.

Classical random walks, a subset of stochastic processes (that is, processes whose evolution
involves chance), have proved to be a very powerful tool for the development of stochastic
algorithms [23]. The main idea behind the mechanics of classical random walks is the following:
assume we have a particle (walker) that is allowed to move on a lattice. The actual movements
of the particle on the lattice, i.e. the evolution of the system, are performed according to a
probability distribution. A simple example is the following: suppose that we have a particle on
a line, and that the motion of that particle on a line (i.e. moving to the left or to the right) is
performed according to the outcomes of tossing a coin (for example, heads → right and tails
→ left). This process is clearly stochastic and is known as a classical discrete random walk
on a line.

Given the importance of classical random walks in algorithm development, there has
been an increasing interest in studying quantum counterparts of classical random walks, known
as quantum walks, in order to develop new quantum algorithms. As we shall see in corre-
sponding chapters, there is already a series of quantum algorithms based on quantum walks
that outperform their classical counterparts. Nonetheless, the field of quantum walks is very
young and more research is needed to understand how to make full use of this discipline in
quantum computation.

There are two main sets of quantum walks: discrete and continuous quantum walks. The
main difference between these two sets is the timing used to apply corresponding evolution
operators. In the case of discrete quantum walks, the corresponding evolution operator of the
system is applied only in discrete time steps, while in the continuous quantum walk case, the
evolution operator can be applied at any time.

Our approach in the development of this work has been to study those concepts of quan-
tum mechanics and quantum computation relevant to the computational aspects of quantum
walks. Thus, in the history of cross-fertilization between physics and computation, this lecture
is meant to be situated as a novel contribution within the field of quantum computation from
the perspective of a computer scientist. It has been the intention of this author to write a lecture
from which computer scientists with no background in physics may obtain a succinct guide
to the concepts of quantum mechanics needed to be initiated in the field of quantum walks.
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Although we have assumed that the reader holds a good level of mathematical maturity, par-
ticularly in the field of linear algebra, in order to follow certain parts of Chapter 2, we provide
a concise list of good introductory texts on that subject in the beginning of Chapter 2.

To the best of author’s knowledge, this manuscript is the first book ever published on
the topic of quantum walks, and its original approach may allow not only theoretical computer
scientists, but also applied computer scientists and engineers to learn the foundations and
algorithmic applications of quantum walks.

The following lines provide a summary of the main ideas and contributions of this
lecture.

Chapter 2. Quantum Mechanics. This chapter is a concise introduction to the postulates
of quantum mechanics (and the mathematical tools required to formulate those postulates)
needed to understand the main concepts and techniques of quantum walks, as well as some of
the foundational elements of quantum computation. We also provide a brief introduction to
entanglement and Bell inequalities.

This chapter has been written with two purposes in mind: (1) to provide the necessary
background for our work on quantum walks and (2) to serve as a concise guide for computer
scientists who need to grasp those elements of quantum mechanics required to be initiated in
the fields of quantum walks and, more generally, quantum computation.

Chapter 3. Theory of Computation. We begin by briefly revisiting the historical roots of the
mathematical development of Turing machines, followed by the enunciation of the Church–
Turing thesis and the definition of decision problems in the context of computer science. We
then proceed to formally define deterministic and nondeterministic models of computation.

We also introduce some formal elements of algorithmic complexity (mainly, measures
used to quantify the performance of an arbitrary algorithm), followed by the topic of
NP-completeness, one of the central themes in Complexity Theory, together with an example
of NP-completeness: the satisfiability (SAT) problem. Finally, we provide a brief review on the
links between physics and the theory of computation and give the definitions of Probabilistic
and Quantum Turing machines.

Chapter 4. Classical Discrete Random Walks. The goal of this chapter is to provide a short
but rigorous introduction to those properties of classical discrete random walks on undirected
graphs relevant to algorithm development. We start by offering some basic elements of proba-
bility theory (several probability distributions, Markov’s inequality and moments of probability
distributions), followed by definitions and theorems of Markov chains and stationary probability
distributions.
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We introduce the definition and main results of classical random walks on a line with
three variants: no barriers, one absorbing barrier, and two absorbing barriers. In order to get
more general results, we introduce classical random walks on (Cayley) graphs and present two
measures used to quantify the performance of classical random walks in algorithm development:
hitting time and mixing time.

The last part of this chapter begins with an analysis on the hitting and mixing times of
a classical random walk on an unrestricted line. This analysis is, to the best of this author’s
knowledge, an original contribution to the field of classical random walks, at least in the form
that information is presented and the explicit method used to quantify the hitting time of a
classical random walk on an unrestricted line.

Basically, we show that the hitting time of a classical discrete random walk on an
unrestricted line depends on the region we locate the walker in (we divide the line into two
regions: the first one is the area within a distance roughly equal (up to a constant factor) to
the standard deviation of the binomial distribution from the starting point of the walk, and the
second is the rest of the line). Thus, if we use the hitting time of this random walk to quantify
its corresponding mixing time (this is a usual practice in classical random walks), we find that
the calculation of the mixing time of a classical random walk on an unrestricted line is not
straightforward. This becomes an obstacle for comparing the performance of an unrestricted
classical random walk on a line with its quantum counterpart. We will come back to this
comparison shortly.

After studying the unrestricted classical random walk on a line, we quantify the hitting
and mixing times of classical random walks on a line with two reflecting barriers, and on a
circle. We finish this chapter by providing a detailed analysis of the randomized algorithms
used to solve two versions of the SAT problem: 2-SAT and 3-SAT, as well as a concise
introduction to classical continuous random walks.

Chapter 5. Quantum Walks. In this chapter we offer a comprehensive yet concise introduction
to the main concepts, results, and algorithmic applications of discrete quantum walks on a line
and on a graph. We first outline the main motivations for doing research in this field, followed
by the mathematical description of the components of a quantum walk on a line.

We continue with a detailed analysis of the Hadamard quantum walk on an infinite line,
using a method based on the Discrete Time Fourier Transform known as the Schrödinger
approach. This analysis includes the enunciation of relevant theorems, as well as the advan-
tages of the Hadamard quantum walk on an infinite line with respect to its closest classical
counterpart. In particular, we explore the context in which the properties of the Hadamard
quantum walk on an infinite line are compared with classical random walks on an infinite
line and with two reflecting barriers. Also, we briefly review another method for studying
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the Hadamard walk on an infinite line: path counting approach. We then proceed to study
a quantum walk on an infinite line with an arbitrary coin operator. In particular, we explain
what is meant by stating that the study of the Hadamard quantum walk on an infinite line is
enough as for the analysis of arbitrary quantum walks on an infinite line. To finish with our
review on quantum walks on a line, we present the main results of quantum walks on a line
with one and two absorbing barriers.

We then focus on the properties of quantum walks on graphs. We study quantum walks
on a circle, on the hypercube, and some general properties of quantum walks on Cayley graphs.
We continue this chapter with an analysis of the connections between classical and quantum
walks, followed by a study of subtle but important aspects about the quantumness of quantum
walks.

We then proceed to formally define a continuous quantum walk, and focus on issues
about the randomness of quantum walks. Finally, we introduce a long-awaited result with
respect to connecting the mathematical formalisms of discrete and continuous quantum
walks, together with an analysis about whether coins are truly necessary in discrete quantum
walks.

Chapter 6. Computer Science and Quantum Walks. We review several links between com-
puter science and quantum walks. We start by introducing how discrete quantum walks can be
used to develop quantum algorithms for solving several variants of the search problem, namely
the search of M (marked) elements in discrete (and possibly huge) datasets. We then proceed to
introduce a novel algorithm based on a mixture of discrete quantum walks and quantum phase
estimation for solving combinatorial optimization problems. The second part of this chapter
is devoted to analyzing continuous quantum walks. We start by reviewing the most successful
quantum algorithm based on a continuous quantum walk known so far, which consists of
traversing, in polynomial time, a family of graphs of trees with an exponential number of
vertices (the same family of graphs would be traversed only in exponential time by any classical
algorithm). We then proceed to briefly review a generalization of a continuous quantum
walk, now allowed to perform non-unitary evolution, in order to simulate photosynthetic
processes, and we finish by reviewing very recent results about the computational universality of
quantum walks.

We finish this introduction with a critical list of articles and books that would provide
the reader with further information about the fields we have discussed in this lecture.

Introduction to quantum mechanics and quantum computation: [3, 4, 22, 26–33].
Theory of computation and complexity theory: [34–37].
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Classical discrete random walks. Basic concepts of classical random walks can be found in
[38–40]. For concepts of classical random walks relevant to algorithm development, the
reader may find the following sources useful: [23, 41–43].

Quantum walks. [44] is a good introductory article. For further analysis, we would refer the
reader to the research articles and PhD theses cited in Chapters 5 and 6.
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C H A P T E R 2

Quantum Mechanics

Quantum mechanics is a description of the behavior of matter and light at an atomic scale [27].
Indeed, quantum mechanics plays a fundamental role in the description and understanding of
natural phenomena [45].

The history (1900 to circa 1930) behind the early experimental and conceptual de-
velopment of quantum mechanics is a fascinating recollection of scientific experiments and
interpretation of experimental results, along with a constant challenge of ideas and assumptions
held about Nature for long time [46–48]. Thanks to the works begun by Heisenberg and
Schrödinger, and followed by many other physicists like Feynman and Born, quantum me-
chanics has now a well-developed mathematical structure that provides scientists with a precise
theoretical framework with which they can predict the behavior of physical systems. Although
there is still debate and controversy about several elements and interpretations of quantum
mechanics, using this theory to analyze and predict the behavior of physical systems has proven
very fruitful. The birth of Quantum Computation and Quantum Information is a consequence
of combining ideas from Quantum Mechanics, Computer Science, and Information Theory.

In this chapter, we introduce those concepts of quantum mechanics needed to understand
the main ideas contained in the field of Quantum Walks. In this lecture we have explicitly
avoided the topic of interpretations of quantum mechanics, as our interests are focused on
the use of quantum mechanics in quantum walks, with the purpose of developing quantum
algorithms. Readers interested in interpretative results may be referred to [49, 50] and references
mentioned therein.

This chapter begins with some mathematical preliminaries followed by a computer
science-oriented presentation of the postulates of quantum mechanics. We then present quan-
tum entanglement and introduce its use as a computational resource, and finish this chapter
with a discussion on Bell inequalities.

By definition, learning quantum mechanics in order to develop algorithms is a trans-
disciplinary task and, consequently, it is a very good idea to learn from different authors and
perspectives. Therefore, this chapter is based on [3, 22, 27, 28, 45, 51, 52]. For further learning,
we would refer the reader to [53] for a solid yet concise introduction to linear algebra [32, 33]
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as they are introductions to quantum mechanics and quantum computation for non-physicists
[29, 30] for their concise presentations of the postulates of quantum mechanics, and, finally,
[54] as it is a useful review of entanglement quantification.

2.1 MATHEMATICAL PRELIMINARIES
In this section we review several concepts of linear algebra required to build the postulates of
quantum mechanics. In addition to the references provided at the beginning of this chapter, we
would recommend [53] as an excellent introduction to linear algebra. In particular, the reader
will find the proofs of all theorems mentioned in this section in [3, 53].

We begin by defining Hilbert spaces, the spaces where mathematical descriptions of
quantum physical systems live.

Definition 2.1.1. Inner-product vector space. An inner-product vector space V is a complex
vector space, equipped with an inner-product 〈·|·〉 : V × V → C, satisfying the following axioms:
∀ a, b, c, d ∈ V, α, β ∈ C

(1) 〈a|b〉 = 〈b|a〉∗,
(2) 〈a|a〉 ≥ 0 and 〈a|a〉 = 0 ⇔ a = 0,
(3) 〈a|αb + βc〉 = α〈a|b〉 + β〈a|c〉.1
The inner product introduces the norm on V: ||a|| = √〈a|a〉 .

Definition 2.1.2. Complete inner-product vector space. An inner-product vector space V is
called complete if for any sequence {ai}∞i=1, ai ∈ V with the property limi, j→∞ ||ai − a j || = 0, there
is a unique element b ∈ V such that lim j→∞ ||b − a j || = 0.

Definition 2.1.3. Hilbert space. A Hilbert space H is a complete inner-product vector space2.
However, for the purposes of this lecture as well as for understanding the basics of quantum computation,
it suffices to define a Hilbert space as an inner-product complex vector space.

Definition 2.1.4. Isomorphism among Hilbert spaces. Two Hilbert spaces H1 and H2 are said
to be isomorphic if the underlying vector spaces are isomorphic and their isomorphism preserves the
inner product3.

1Rule (3) may also be formulated as (|u〉, α|v〉 + β|w〉) = α∗(|u〉, |v〉) + β∗(|u〉, |w〉), where α∗ and β∗ are the
conjugates of α and β, respectively. Nonetheless, it is customary to use Def. 2.1.1 in physics and, particularly,
quantum computation.

2Complete inner-product spaces were baptized as Hilbert spaces by von Neumann, due to the studies made by
Hilbert on linear integral systems. In the following chapter we shall see that Hilbert also played an important role
in the birth and development of the Theory of Computation.

3In linear algebra, an isomorphism can also be defined as a linear map between two vector spaces that is one-to-one
and onto.
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Definition 2.1.5. Functional. Let V be a vector space over a field F. A linear functional is a
linear function f : V → F.

Lemma 1. [28] Inner-product as linear mapping. Let H be a Hilbert space. Then, for each
a ∈ H the function fa : H → C defined by fa(b) = 〈a|b〉 is a linear mapping. Therefore, function
fa is a functional.

Theorem 1. [28]. To each continuous linear mapping f : H → C there exists a unique φ f ∈ H
such that f (ψ) = 〈φ f |ψ〉 for any ψ ∈ H.

It is possible to prove that the space of all linear functionals of a Hilbert space H forms
again a Hilbert space, the so-called dual Hilbert space H∗ over C. Furthermore, Theorem 1
proves that there is a bijection between H and H∗, therefore H is isomorphic to H∗. This
isomorphism is the basis for the creation of the famous “bra-ket” Dirac notation [52].

Definition 2.1.6. Dirac notation. Let H be a Hilbert space. A vector ψ ∈ H is denoted |ψ〉 and
is referred as a ket. The corresponding linear functional is denoted 〈ψ | and is referred to as bra. Thus,
〈·| can be seen as an operator that maps each state φ into a functional 〈φ| such that 〈φ|(|ψ〉) = 〈φ|ψ〉.
We define |ψ〉† ≡ 〈ψ |.

Column and row representation of kets and bras. Let H be an n-dimensional Hilbert
space. Then, |ψ〉 ∈ H can be represented as an n-dimensional column vector, and its corre-
sponding functional 〈ψ | ∈ H∗ can be seen as an n-dimensional row vector. Therefore, 〈φ|ψ〉 is
the usual row–column matrix operator that computes the inner product in finite-dimensional
vector spaces; |ψ〉 ↔ 〈ψ | corresponds to transposition and conjunction.

For example, let H2 be a two-dimensional Hilbert space, B1 = {|p〉, |q 〉} be a basis of
H2 and |ψ〉 ∈ H2. If α, β are the coefficients of |ψ〉 with respect to B1, we can then write

|ψ〉 =
(

α

β

)
and 〈ψ | = (α∗, β∗).

We now discuss linear operators in Hilbert spaces and their outer product representation.

Definition 2.1.7. Linear operator. Let H1 and H2 be Hilbert spaces. Then, a linear operator Â
is a linear function between H1 and H2, i.e. Â : H1 → H2 such that ∀ |ψ〉i ∈ H1, α j ∈ C ⇒

Â

(∑
m

αm|ψ〉m

)
=

∑
m

αm Â(|ψ〉m) =
∑

m

αm|φ〉m, with |φ〉m ∈ H2.

Definition 2.1.8. Outer product representation. Let |ψ〉, |a〉 ∈ H1 and |φ〉 ∈ H2. Then the
outer product |φ〉〈ψ | is the linear operator from H1 to H2 defined by

(|φ〉〈ψ |)(|a〉) ≡ |φ〉〈ψ |a〉 ≡ 〈ψ |a〉|φ〉.
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Matrix representation of a linear operator. The action of a linear operator Â is inde-
pendent of any basis or coordinate system. However, if we choose bases {|e 〉i} and {| f 〉i} for
H1 and H2, respectively, it is possible to give Â a matrix representation. For example, let us
define the Pauli operators using the matrix representation

σx =
(

0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
. (2.1)

Alternatively, we can use the outer product representation

σ̂x = |0〉〈1| + |1〉〈0|; σ̂y = i|0〉〈1| − i|1〉〈0|; σ̂z = |0〉〈0| − |1〉〈1|, (2.2)

where |0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
, 〈0| = (1, 0), and 〈1| = (0, 1).

The Hadamard operator is another linear operator widely used in quantum walks, its
matrix and outer product representations are given by Eqs. (2.3) and (2.4), respectively:

H = 1√
2

(
1 1
1 −1

)
, (2.3)

Ĥ = 1√
2

(|0〉〈0| + |0〉〈1| + |1〉〈0| − |1〉〈1|). (2.4)

For example, let us show (in full detail) how the σ̂x operator interacts with an element
|ψ〉 ∈ H2, where {|0〉, |1〉} is an orthonormal basis of H2 and |ψ〉 = a |0〉 + b|1〉 :

σ̂x |ψ〉 = (|0〉〈1| + |1〉〈0|)(a |0〉 + b|1〉)
= a |0〉(〈1|0〉) + a |1〉(〈0|0〉) + b|0〉(〈1|1〉) + b|1〉(〈0|1〉)
= a(〈1|0〉)|0〉 + a(〈0|0〉)|1〉 + b(〈1|1〉)|0〉 + b(〈0|1〉)|1〉
= (a × 0)|0〉 + (a × 1)|1〉 + (b × 1)|0〉 + (b × 0)|1〉
= 0|0〉 + a |1〉 + b|0〉 + 0|1〉
= 0 + a |1〉 + b|0〉 + 0
= a |1〉 + b|0〉.

The matrix representation of σ̂x and |ψ〉 can be easily inferred:

σx |ψ〉 =
(

0 1
1 0

)(
a
b

)
=

(
b
a

)
.
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Linear operators given by Eqs. (2.2) and (2.4) are examples of a set of operators widely
used in quantum mechanics: Hermitian and unitary operators.

Lemma 2. Let H be a Hilbert space and Â : H → H a linear operator ⇒ ∃! operator Â†, the
adjoint of Â, such that ∀ |a〉, |b〉 ∈ H ⇒ 〈a |A|b〉 = 〈a |A†|b〉. The matrix representation of Â† is
given by A† = (A∗)T, i.e. the conjugate-transpose matrix of A.

Definition 2.1.9. Hermitian operator. LetH be a finite-dimensional Hilbert space and Â : H →
H a linear operator. If Â = Â† then Â is a Hermitian operator.

Definition 2.1.10. Positive operator. LetH be a Hilbert space and Â : H → H a linear operator.
Â is a positive operator if and only if ∀ |ψ〉 ∈ H ⇒ 〈ψ | Â|ψ〉 ≥ 0.

Definition 2.1.11. Unitary operator. Let H be a Hilbert space and Û : H → H a linear op-
erator. Û is a unitary operator if ÛÛ † = Î , where Î is the identity operator. Unitary oper-
ators are key elements in the formulation of quantum mechanics because they preserve the inner
product between vectors: let |α〉 = Û |a〉 and |β〉 = Û |b〉 ⇒ 〈α|β〉 = 〈a |Û †|Û |b〉 = 〈a | Î |b〉 =
〈a |b〉.

Unitary and Hermitian operators are examples of normal operators. The mathematical
properties of normal operators, particularly the fact that they are diagonalizable, are extremely
useful.

Definition 2.1.12. Normal operator. LetH be a Hilbert space and Â : H → H a linear operator.
Â is normal if Â Â† = Â† Â.

Theorem 2. Spectral decomposition. Any normal operator Â on a vector space V is diagonal
with respect to some orthonormal basis for V.

So, a diagonal representation for an operator Â on a vector space V is a representation
Â = ∑

i λi |i〉〈i |, where {|i〉} is an orthonormal set of eigenvectors for Â with corresponding
eigenvalues λi . We use this fact to compute operator functions.

Definition 2.1.13. Operator functions. Let f : C → C be a function and Â = ∑
i λi |i〉〈i |

be a spectral decomposition for a normal operator Â. Then, the operator function f ( Â) is defined
by

f ( Â) ≡
∑

i

f (λi )|i〉〈i |.

Before we address the topic of creating vector spaces from other vector spaces, we
introduce the notions of trace for matrices and linear operators.
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Definition 2.1.14. Trace. Let A ∈ Mn(F) be a matrix of order n with entries (ai j ) from field F.
The trace of A is defined as

tr(A) =
∑

i

aii

The trace of a linear operator Â is defined as the trace of any of its matrix representations [3].

Now we focus on the tensor product—a method to build vector spaces from other vector
spaces. The tensor product is crucial in representing multiparticle quantum systems.

Definition 2.1.15. Tensor product. Let V and W be vector spaces (over a field F) of dimension
m and n, respectively. Let X be the tensor product of V and W, i.e. X = V ⊗ W. The elements of
X are linear combinations of vectors |a〉 ⊗ |b〉, where |a〉 ∈ V and |b〉 ∈ W. In particular, if {|i〉}
and {| j〉} are orthonormal bases for V and W then {|i〉 ⊗ | j〉} is a basis4 for X. Let Â, B̂ be linear
operators on V and W, respectively. Then ∀ |a〉1, |a〉2 ∈ V, |b〉1, |b〉2 ∈ W, and α ∈ F ⇒
(1) α(|a〉1 ⊗ |b〉1) = (α|a〉1) ⊗ |b〉1 = |a〉1 ⊗ (α|b〉1),
(2) (|a〉1 + |a〉2) ⊗ |b〉1) = |a〉1 ⊗ |b〉1 + |a〉2 ⊗ |b〉1,
(3) |a〉1 ⊗ (|b〉1 + |b〉2) = |a〉1 ⊗ |b〉1 + |a〉1 ⊗ |b〉2,
(4) Â ⊗ B̂(|a〉1 ⊗ |b〉1) = Â|a〉1 ⊗ B̂|b〉1.
(5) a generalization of the previous step is straightforward. Let |a〉i ∈ V, |b〉i ∈ W, and αi ∈ F ⇒
Â ⊗ B̂(

∑
i αi |a〉i ⊗ |b〉i ) =

∑
i αi Â|a〉i ⊗ B̂|b〉i .

A short-hand notation for |a〉 ⊗ |b〉 is simply |ab〉 or |a, b〉. Also, the tensor product of
|a〉 with itself n times |a〉 ⊗ |a〉 ⊗ · · · ⊗ |a〉 can also be conveniently written as |a〉⊗n.

The Kronecker product is a convenient and simple matrix representation of the tensor
product. Let A = (ai j ), B = (bi j ) be two matrices of orders m × n and p × q , respectively.
Then A ⊗ B is given by

A ⊗ B =




A11 B A12 B . . . A1n B
A21 B A22 B . . . A2n B

...
...

...
...

Am1 B Am2 B . . . Amn B


 .

A ⊗ B is of order mp × nq .
Finally, we describe a theorem that will be used in the following section for entanglement

quantification. Since we shall use the concept of “pure states” in the following theorem, we ask

4A concrete example: let {|0〉, |1〉} be an orthonormal basis for a two-dimensional Hilbert space H2. Then a basis
for H2 ⊗H2 is given by {|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉}.
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the reader to go to Postulate 1 of the following section in order to review the corresponding
definition.

Theorem 3. Schmidt decomposition. Suppose |ψ〉 is a pure state of a composite system AB ⇒∃
orthonormal bases {|iA〉} for A and {|iB〉} for B such that

|ψ〉 =
∑

i

λi |iA〉|iB〉,

where λi ∈ R
+ ∪ {0} satisfying

∑
i λ2

i = 1. Numbers λi are known as Schmidt coefficients.

2.2 POSTULATES OF QUANTUM MECHANICS
We now provide the postulates of quantum mechanics upon which we build up our work on
quantum walks. In quantum mechanics there are two mathematical formalisms to describe
a physical quantum system: state vectors and density operators. Both approaches are mathe-
matically equivalent and, consequently, choosing one or the other is a matter of convenient
description of the properties of the system to be studied. We formulate Postulates 1–4 in the
parlance of state vectors following [3], and additionally define density operators in the context
of Postulate 1. Alternative formulations of all postulates in the terminology of density operators
can be found in [3, 30, 45].

2.2.1 State Space
The first postulate provides the mathematical framework with which we describe closed (that
is, isolated) physical systems.

Postulate 1. To each isolated physical system we associate a Hilbert space H, the state space
of the system. The physical system is completely described by its state vector, which is a
unit vector |ψ〉 ∈ H. The dimension of H depends on the specific degrees of freedom of
the physical property under consideration. Postulate 1 implies that a linear combination of
state vectors is a state vector [45]. This is known as the superposition principle and is a
quantum-mechanical description of physical systems [45, 52]. In particular, any vector state
|ψ〉 may be described as a superposition of basis states {|e i〉} in H, i.e. |ψ〉 = ∑

i c i |e i〉,
c i ∈ C.

An alternative description of quantum states is given by the density operator (also called
density matrix). The density operator is positive Hermitian and has trace equal to 1. A quantum
system whose state |ψ〉 is exactly known is said to be in a pure state. The density operator of
a pure state is given by ρ̂ = |ψ〉〈ψ |. A density operator also describes mixed quantum states.
A mixed state may be obtained from a source randomly producing pure states. For example,
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suppose that a quantum system has a quantum state picked up from a set of possible quantum
states {|ψ〉i} according to a probability distribution {pi}. Then its density operator is given by

ρ̂ =
∑

i

pi |ψ〉i〈ψ |. (2.5)

Density operators do not uniquely represent a probability distribution over pure states,
as it is possible to have two different quantum state ensembles giving rise to the same density
operator.

The Qubit
In classical computation, information is stored and manipulated in the form of bits. The
mathematical structure of a classical bit is rather simple. It suffices to define two “logical”
values, traditionally labeled as {0, 1}, and to relate these values to two different outcomes of
a classical measurement (for example, in TTL transistor technology, “0” is a label given to
a voltage measurement between 0 V and 0.5 V, while “1” is the label attached to a voltage
measurement between 4.5 V and 5 V). So, a classical bit “lives” in a scalar space.

In quantum computation, information is stored, manipulated, and measured in the form
of qubits. A qubit is a physical entity described by the laws of quantum mechanics. Simple
examples of qubits include two orthogonal polarizations of a photon (e.g. horizontal and
vertical), the alignment of a (spin-1/2) nuclear spin in a magnetic field or two states of an
electron orbiting an atom. A qubit may be mathematically represented as a unit vector in a
two-dimensional Hilbert |ψ〉 ∈ H2. A qubit |ψ〉 may be written in general form as

|ψ〉 = α|p〉 + β|q 〉, (2.6)

where α, β ∈ C, |α|2 + |β|2 = 1, and {|p〉, |q 〉} is an arbitrary basis spanning H2. The choice of
{|p〉, |q 〉} is often {|0〉, |1〉}, the so-called computational basis states which form an orthonormal
basis for H2. In general, |ψ〉 is a coherent superposition of the basis states |p〉 and |q 〉 and
can be prepared in an infinite number of ways simply by varying the values of the complex
coefficients α and β subject to the normalization constraint.

We can rewrite Eq. (2.6) as

|ψ〉 = eiγ
(

cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉

)
, (2.7)

where γ, θ, and ϕ ∈ R. Since eiγ has no observable effects [3] (i.e. measurement outcomes are
invariant to any value of γ ) we can ignore it. Thus

|ψ〉 = cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉. (2.8)
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|0〉

|Ψ〉

|1〉

FIGURE 2.1: Bloch sphere representation of a qubit |ψ〉 = cos θ
2 |0〉 + eiφ sin θ

2 |1〉.

The numbers θ and ϕ define a point on the unit three-dimensional sphere known as
Bloch sphere (Fig. 2.1).

It is a good idea to use a vector representation in problems where we know with
certainty the initial state of the qubit. An example of this statement is to prepare a qubit
in the state |�〉 = |0〉+|1〉√

2
, that is, an equally weighted superposition of the canonical basis

{|0〉, |1〉}.
However, let us consider a different scenario in which a qubit |�〉 is initially prepared

in one of the following quantum states: {|ψ〉1, |ψ〉2, |ψ〉3, . . . , |ψ〉n} where each of the states
is selected with probability 1

n . We do not know what state was chosen to prepare |�〉, but we
do know that only preparations |ψ〉i , i ∈ {1, 2, . . . , n}, are allowed. In this case, a convenient
representation for |�〉 is the associated density operator ρ̂� = 1

n

∑n
k=1 |ψ〉k〈ψ |.

2.2.2 Evolution of a Closed Quantum System
Postulate 2 (Unitary operator version). The evolution of a closed quantum system with state
vector |�〉 is described by a unitary transformation Û (Def. 2.1.11). The state of a system at
time t2 according to its state at time t1 is given by

|�(t2)〉 = Û |�(t1)〉. (2.9)

Postulate 2 only describes the mathematical properties that an evolution operator must
have. The specific evolution operator required to describe the behavior of a particular quantum
system depends on the system itself. In the case of single qubits, any unitary operator can be
realized in physical systems [3]. Postulate 2 can also be stated with the famous Schrödinger
equation.
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Postulate 2 (Hermitian operator version). The evolution of a closed quantum system
is described by the Schrödinger equation

i�
d|ψ〉

dt
= Ĥ|ψ〉, (2.10)

where � is Planck’s constant and Ĥ is a fixed Hermitian operator (Eq. (2.1.9)) known as the
Hamiltonian of the closed system (note that in spite of similar notation, Ĥ and Ĥ represent two
different things, being the former the Hamiltonian of Postulate 2 and the latter the Hadamard
operator). The Hamiltonian of particular physical systems must be determined and calculated
for each case. In general, figuring out the Hamiltonian of a particular physical system is a
difficult task.

In this lecture we make extensive use of the Hadamard operator (Eq. (2.4)) as evolu-
tion operator, among others. The effect of the Hadamard operator as evolution operator is
exemplified in the following two equations:

Ĥ|0〉 = 1√
2

[|0〉〈0| + |0〉〈1| + |1〉〈0| − |1〉〈1|]|0〉 = 1√
2

(|0〉 + |1〉),

Ĥ|1〉 = 1√
2

[|0〉〈0| + |0〉〈1| + |1〉〈0| − |1〉〈1|]|1〉 = 1√
2

(|0〉 − |1〉).

2.2.3 Quantum Measurements
In quantum mechanics, measurement is a non-trivial and highly counter-intuitive process for
several reasons: first, because measurement outcomes are inherently probabilistic, i.e. regardless
of the carefulness in the preparation of a measurement procedure, the possible outcomes of
such measurement will be distributed according to a certain probability distribution. Second,
once a measurement has been performed, a quantum system in unavoidably altered due to the
interaction with the measurement apparatus. Consequently, for an arbitrary quantum system,
pre-measurement and post-measurement quantum states are different in general. Third, in
order to perform a measurement it is needed to define a set of measurement operators. This
set of operators must fulfil a number of rules that allows one to compute the actual probability
distribution as well as post-measurement quantum states.

Postulate 3. Quantum measurements are described by a set of measurement operators {Ôn},
index n labels the different measurement outcomes, which act on the state space of the system
being measured. Measurement outcomes correspond to the values of observables, such as po-
sition, energy, and momentum, which are Hermitian operators (Def. 2.1.9) corresponding to
physically measurable quantities.

A projective measurement is described by an observable M̂, a Hermitian operator (Def.
2.1.9) defined in the state space of the quantum system. By using the spectral decomposition
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Theorem 2, it is possible to write M̂ as follows:

M̂ =
∑

i

ri P̂ri , (2.11)

where P̂ri is the projector operator for the eigenspace E(ri ) defined by the eigenvalue ri .
Measurement outcomes correspond to the eigenvalues ri of observable M̂.

Let |ψ〉 be the state of the quantum system immediately before the measurement. Then,
the probability that result ri occurs is given by

p(ri ) = 〈ψ |P̂ri |ψ〉, (2.12)

and the post-measurement quantum state |ψ〉pm associated with outcome ri is given by

|ψ〉pm = P̂ri |ψ〉√
p(ri )

. (2.13)

Let us work out a simple example. Assume we have a photon with associated polarization
orientations “horizontal” and “vertical.” The horizontal polarization direction is denoted by |0〉
and the vertical polarization direction is denoted by |1〉. By Postulate 1 (Eq. (2.6)), an arbitrary
initial state for our photon can be described by the quantum state

|ψ〉 = α|0〉 + β|1〉, (2.14)

where α and β are complex numbers constrained by the normalization condition |α|2 + |β|2 =
1, and {|0〉, |1〉} is the computational basis spanning H2.

In other words, the polarization of an arbitrary photon is neither only vertical or only
horizontal, but a linear combination of both polarizations. One way to look at Eq. (2.14) is to
think of the corresponding photon as having both vertical and horizontal polarization simulta-
neously. If we think of photon polarization as a degree of freedom for storing information, we
may think of such a photon as a qubit with both “0” and “1” values simultaneously stored in its
polarization.

Now we construct two measurement operators P̂a0 = |0〉〈0| and P̂a1 = |1〉〈1| with corre-
sponding measurement outcomes r0, r1. Then, the full observable used for measurement in this
experiment is M̂ = r0|0〉〈0| + r1|1〉〈1|. According to Postulate 3, we can say the following:

(1) There are only two possible measurement outcomes for observable M̂: r0 and r1.
(2) According to Eq. (2.12), the probability of obtaining the measurement outcome r0 is

p(r0) = 〈ψ |P̂r0 |ψ〉 = (〈1|β∗ + 〈0|α∗)P̂r0 (α|0〉 + β|1〉) = |α|2.

(3) If, after measuring the polarization degree of freedom of our photon we find that
measurement outcome is indeed r0 then its corresponding post-measurement quantum state
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|ψ〉r0
pm is given by Eq. (2.13), namely,

P̂a0 |ψ〉√
p(a0)

= |0〉〈0|(α|0〉 + β|1〉)√|α|2 = |0〉.

(4) In the same vein and according to Eq. (2.12), the probability of obtaining measurement
outcome r1 is

p(a1) = 〈ψ |P̂r1 |ψ〉 = (〈1|β∗ + 〈0|α∗)P̂r1 (α|0〉 + β|1〉) = |β|2.

(5) If measurement outcome is indeed r1 then its corresponding post-measurement
quantum state |ψ〉r1

pm is given by Eq. (2.13), that is

P̂r1 |ψ〉√
p(r1)

= |1〉〈1|(α|0〉 + β|1〉)√|β|2 = |1〉.

Before introducing the last postulate of quantum mechanics, which states how multipar-
tite quantum systems must be mathematically represented, let us present a highly non-trivial
consequence of Postulates 1 and 2: the no-cloning theorem.

The No-cloning Theorem
A trivial assumption in algorithm development within the field of classical computer science is
the fact that we can copy as many bits as required. This assumption, based on the properties
of classical physical systems, is so deeply rooted in us that the technical procedures used to
copy electrical signals in (say) computer memories are usually not studied in computer science
textbooks but in electrical and electronics engineering textbooks only.

However, this capacity of making exact copies of arbitrary information contained in
physical systems is not present in the domain of quantum computation. In other words, in
general it is impossible to make exact copies of the value contained in one arbitrary qubit into
another qubit. This counter-intuitive (and somewhat discouraging, at least apparently) result
was proved in [55, 56]. Now let us go through the details of this proof (reductio ad absurdum).

Let A, B be quantum physical systems described by qubits |ψ〉A and |φ〉B , respectively.
The qubit |ψ〉A, a pure but unknown quantum state, contains the (arbitrary) information we
want to copy, while |φ〉B is the qubit in which we would like to copy the information contained
in |ψ〉A.

The capacity of copying the information contained in |ψ〉 into |φ〉 by quantum evolution
can be written as

Û (|ψ〉A|φ〉B) = |ψ〉A|ψ〉B . (2.15)
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The purpose of a hypothetical copying quantum circuit is to allow us to copy arbitrary
information. Thus the circuit should work for two different and unknown descriptions of
physical system A, denoted by |ψ〉A and |ω〉A:

Û (|ψ〉A|φ〉B) = |ψ〉A|ψ〉B (2.16)

and

Û (|ω〉A|φ〉B) = |ω〉A|ω〉B . (2.17)

However, if we compute the inner product of Eqs. (2.16) and (2.17), we find that

A〈φ|B〈ψ |Û †|Û |ω〉|A|φ〉B = 〈ψ |ω〉 = (〈ψ |ω〉)2. (2.18)

Note that 〈ψ |ω〉 = (〈ψ |ω〉)2 implies either 〈ψ |ω〉 = 1 (i.e. |ψ〉 = |ω〉) or 〈ψ |ω〉 = 0
(i.e. |ψ〉 ⊥ |ω〉). Therefore, qubit cloning works only when the two states are either identical
(which contradicts our hypothesis) or orthogonal [31]. Orthogonal qubits produce deterministic
measurement outcomes for a given set of measurement projector operators {P̂i}; in other words,
orthogonal qubits contain information that behaves exactly the same way as classical bits, since
labels “0” and “1” represent mutually exclusive measurement outcomes of a classical physical
system (for example, voltage values in a transistor).

Before finishing this subsection, we would like to underline that the impossibility of pure
quantum state cloning does not mean that imperfect copying is not possible. Indeed, imperfect
pure and mixed quantum state cloning is an active area of research (see [57] for a review).

2.2.4 Composite Quantum Systems
We now focus on the mathematical description of a composite quantum system, i.e. a system
made up of several different physical systems.

Postulate 4. The state space of a composite quantum system is the tensor product of the
component system state spaces.
- If we have n quantum systems expressed as state vectors, labeled |ψ〉1, |ψ〉2, . . . , |ψ〉n, then
the joint state of the total system is given by |ψ〉T = |ψ〉1 ⊗ |ψ〉2 ⊗ · · · ⊗ |ψ〉n.
- Similarly, if we have n quantum systems expressed as density operators ρ1, ρ2, . . . , ρn then
the joint state of the total system is given by ρT = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn (in the absence of any
knowledge of correlations).

As an advance of the operations we shall perform on the following chapters, let us show
the details of applying an evolution operator to a composite quantum system. Let Ĥ⊗2 be the
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tensor product of the Hadamard operator (Eq. (2.4)) with itself and let |ψ〉 = |00〉. Then

Ĥ⊗2 |ψ〉 = 1
2

(|00〉〈00| + |01〉〈00| + |10〉〈00| + |11〉〈00| + |00〉〈01| − |01〉〈01|
+ |10〉〈01| − |11〉〈01| + |00〉〈10| + |01〉〈10| − |10〉〈10| − |11〉〈10| + |00〉〈11|
− |01〉〈11| − |10〉〈11| + |11〉〈11|)|00〉 = 1

2
(|00〉 + |01〉 + |10〉 + |11〉).

(2.19)

2.3 ENTANGLEMENT
Entanglement is a unique type of correlation shared between components of a quantum system.
Entangled quantum systems are sometimes best used collectively, that is, sometimes an optimal
use of entangled quantum systems for information storage and retrieval includes manipulating
and measuring those systems as a whole, rather than on an individual basis. Quantum entan-
glement and the principle of superposition are two of the main concepts behind the power of
quantum computation and quantum information theory.

The concept of correlation is deeply rooted in every branch of science. A typical and
simple example is the following experiment: let us suppose we have two balls, one white and
one black, as well as two boxes. If we randomly put a ball in each box and then close both boxes,
we need to perform only one experiment, that is, to open one box, in order to know which of the
balls is in each box. In other words, by means of one measurement, namely opening one box and
seeing which ball was stored in it, we obtain two pieces of information, namely the color of the
ball stored in each box.

The former experiment is an example of classical correlation. Quantum entanglement
is also a kind of correlation, but one that is detected only in quantum phenomena. A good
example of the difference between classical and quantum correlations would be correlations in
canonically conjugate observables, such as position and momentum.

Consider the following 2-particle state:

|�−〉 = |01〉 − |10〉√
2

. (2.20)

Clearly, |�−〉 lives in a four-dimensional Hilbert space. It can be seen, after some
calculations, that it is impossible to find quantum states |a〉, |b〉 ∈ H2 such that |a〉 ⊗ |b〉 =
|�−〉, that is, |�−〉 is not a product state of |a〉 and |b〉. This is indeed a criterion to determine
whether a quantum state is entangled or not, whether it is possible to express such a composite
quantum state as a simple tensor product of quantum subsystems. Another example is the
tripartite entangled GHZ state

|GHZ〉 = |000〉 + |111〉√
2

. (2.21)
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Again, it is not possible to find three quantum states |a〉, |b〉, |c 〉 ∈ H2 such that
|a〉 ⊗ |b〉 ⊗ |c 〉 = |GHZ〉. Entanglement definition and quantification is an open research
area. Currently it is known how to identify and quantify entanglement for two particles, but
for three or more particles the situation is far less straightforward and remains an active area of
research.

2.3.1 Measure of Entanglement
The von Neumann entropy of the reduced density operator is a mathematical tool used to
quantify the degree of entanglement of the quantum systems. With the purpose of formally
introducing this measure, let us first present the concept of reduced density operator.

Reduced Density Operator
Let us suppose we have a density operator describing a composite quantum system C and we
are interested in studying the properties of one subsystem of C (such a situation would happen,
for example, if after creating a bipartite quantum system we had access to only one particle).
The description of such a subsystem is provided by the reduced density operator, defined as
follows.

Definition 2.3.1. Let A, B be two physical systems whose state is described by a density operator
ρ AB. The reduced density operator for system A is defined as

ρ A ≡ trB(ρ AB),

where trB is the partial trace over system B. The partial trace is given by

trB(|α1〉〈α2| ⊗ |β1〉〈β2|) ≡ |α1〉〈α2|tr(|β1〉〈β2|) ≡ |α1〉〈α2|〈β2|β1〉.
von Neumann Entropy of the Reduced Density Operator
For a pure quantum state |ψ〉 of a composite system AB with dim(A) = d A and dim(B) = dB ,
let |ψ〉 = ∑d

i=1 αi |iA〉|iB〉 (d = min(d A,dB), αi ≥ 0, and
∑d

i=1 α2
i = 1) be its Schmidt decom-

position. Also, let ρA = trB(|ψ〉〈ψ |) and ρB = trA(|ψ〉〈ψ |) be the reduced density operators of
systems A and B, respectively. The entropy of entanglement E(|ψ〉) is the von Neumann entropy
of the reduced density operator [3, 54, 58]:

E(|ψ〉) = S(ρA) = S(ρB) = −
d∑

i=1

α2
i log2(α2

i ). (2.22)

E is a monotonically increasing function of the entanglement present in the system AB. A
non-entangled state has E = 0. States |ψ〉 ∈ Hd for which E(ψ) = log2 d are called maxi-
mally entangled states in d dimensions. In particular, note that for the quantum states (known
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as Bell states) |
+〉 = 1√
2
(|00〉 + |11〉), |
−〉 = 1√

2
(|00〉 − |11〉), |�+〉 = 1√

2
(|01〉 + |10〉), and

|�−〉 = 1√
2
(|01〉 − |10〉), E(|
+〉) = E(|
−〉) = E(|�+〉) = E(|�−〉) = 1, i.e. these states are

maximally entangled.

2.3.2 Bell Inequalities
Bell inequalities are a powerful tool for entanglement detection. Thus, for the sake of providing
a brief introduction to Bell inequalities for computer scientists as well as for the potential use
of these ideas in physical realizations of quantum computers, we discuss some of the main
concepts behind Bell inequalities.

The counter-intuitive properties of quantum mechanics have always been a source of
controversy. In their seminal paper [59], Einstein, Podolsky, and Rosen (EPR) proposed a
thought experiment with which they tried to show that quantum mechanics was an incomplete
theory of Nature. The thought experiment proposed in [59] was developed under the following
lines of thought.

1. Assumption of Realism. Physical properties have definite values which exist indepen-
dent of observation.

2. Assumption of Locality. The description of a system’s state depends only in itself and
its immediate surroundings. Therefore, for sufficiently separated physical systems, measure-
ments performed on one of them cannot have any influence on the others.

These two assumptions together are known as local realism. According to [59], quantum
mechanics was an incomplete theory under a local realistic description of Nature.

The discussion about the controversial properties of quantum mechanics shown in [59]
was considered to be just philosophical for long time. However, in 1964, Bell published [51],
in which he derived an inequality (involving correlated measurement results) that would have
to be obeyed by any system behaving under the rules of local realism. Furthermore, it was also
shown that for some entangled systems the inequality would be violated. Naturally, testing
whether Nature was in fact local-realistic became an appealing idea.

A number of experiments [22, p. 12] have shown strong evidence that the inequality
proposed in [51] is not obeyed by Nature5. Furthermore, the quantum-mechanical prediction
was confirmed. The violation of Bell inequalities implies that at least one of the assumptions of

5It must be noted that there is still controversy on the invalidity of local realism, at least in written evidence. For
example, it was written on an essay by Bouwmeester and Zeilinger [22, p. 12] that “Even though a number of
experiments have now confirmed the quantum predictions, from a strictly point of view the problem is not closed
yet as some loopholes in the existing experiments still make it logically possible, at least in principle, to uphold a
local realist world view.”
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local realism is in conflict with quantum mechanics. Although this is usually viewed as evidence
for non-locality, there are some other possible explanations [22, 50].

In addition to its relevance to the foundations of physics and as stated in the beginning of
this section, Bell inequalities can be used as a resource to detect entanglement in certain cases
(for example, see [60, 61]).
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C H A P T E R 3

Theory of Computation

The purpose of this chapter is to concisely introduce the Theory of Computation, in order to
provide the necessary background and to motivate our further discussion on the importance of
classical random walks and quantum walks in computer science.

We begin by providing an overview of the theory of computation and deliver a succinct
historical background of those ideas that led to its creation and development. We then introduce
a formal definition of a model of computation that has played the most important role in the
development of Computer Science: Turing Machines. The previous concepts are followed by
key definitions and theorems from Complexity Theory and the definitions of P, NP, and NP-
complete problem categories. In the last section of this chapter in which we discuss some of the
liasons between physics and computation, we also introduce another model of computation:
Quantum Turing Machines. This chapter is based on [34, 35, 37, 62, 63].

3.1 WHAT IS THE THEORY OF COMPUTATION?
The Theory of Computation is a scientific field devoted to understanding the fundamental
capabilities and limitations of computers, and is divided into three areas: (1) Automata Theory,
or the study of different models of computation, (2) Computability Theory, which focuses on
determining which problems can be solved by computers and which cannot, and (3) Complexity
Theory, devoted to studying what makes some problems computationally hard and other easy.

The development of the theory of computation was driven in great part by several
challenges posed by D. Hilbert and other mathematicians on the foundations of mathematics
at the beginning of the 20th century [64]. Turing and other scientists, while working on the
ideas required to formalize the idea of computation, answered some of the questions posed by
Hilbert et al.

3.2 THE BIRTH OF THE THEORY OF COMPUTATION: ALAN
TURING AND HIS MACHINES

In 1936, Alan Turing published the most influential paper [65] in which he pioneered the
theory of computation, introducing the famous abstract computing machines now known as
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Turing Machines. In [65], Turing explained the fundamental principle of the modern computer,
the idea of controlling the machine’s operation by means of a program of coded instructions
stored in the computer’s memory, i.e. Turing showed that it was possible to build a Universal
Turing Machine, that is, a Turing machine capable of simulating any other Turing machine
(in nowadays jargon, the Universal Turing Machine would be the actual digital computer and
the simulated Turing machine the program that has been encoded in the digital computer’s
memory).

Among Turing’s key contributions from [65], we find: (1) a definition of procedure,
which evolved into the modern definition of algorithm, (2) the Church–Turing thesis: every
function that would be naturally regarded as computable can be computed by the Universal
Turing Machine, and (3) the definition of a Turing machine.

Now we shall briefly review the definitions of deterministic and nondeterministic com-
putation, together with the definitions of deterministic and nondeterministic Turing machines.

3.3 DETERMINISTIC AND NONDETERMINISTIC
COMPUTATION

When every step of a computation follows in a unique way from the preceding step, we are
doing deterministic computation. In the nondeterministic computation, several choices may
exist for the next state at any point.

How does a nondeterministic machine (NDM) compute? Suppose that we are running
an NDM on an input string and reach a state with multiple states to proceed. At this point,
the machine splits into multiple copies of itself and follows all the possibilities in parallel. Each copy
of the machine takes one of the possible ways to proceed and continues as before. In the case
of subsequent choices, the machine splits again. If the next input symbol does not appear on
any of the arrows exiting the state occupied by a copy of the machine, that copy of the machine
dies. Finally, if any one of these copies of the machine is in an accept state at the end of the
input, the NDM accepts the input string.

Another way to think of a nondeterministic computation is as a tree of possibilities. The
root of the tree corresponds to the start of the computation. Every branching point in the tree
corresponds to a point in the computation at which the machine has multiple choices. The
machine accepts if at least one of the computation branches ends in an accept state. A graphical
illustration of a nondeterministic computation is given in Fig. 3.1. Note that nondeterminism
is a generalization of determinism.

Under the laws of classical physics, nondeterminism is not a fully realistic model of
computation as it assumes the capability of producing several instances of a machine to run
in parallel: it would be like suddenly producing as many computers as instances for each
computation step. The importance of nondeterministic computation is based on having a
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FIGURE 3.1: In a deterministic computation, every single step is fully determined by the previous step.
In contrast, in nondeterministic computation, a step may be followed by m new steps or, equivalently,
the NDM makes m copies of itself, one for each possibility.

powerful computational model in which we can find out whether a problem can be solved in
principle, regardless of the amount of resources employed for that task.

However, there has been significant efforts toward finding physical methods for imple-
menting nondeterministic computation. For example, nondeterminism may be viewed as a
kind of pseudo-parallel computation wherein multiple independent processes can be running
concurrently (an NDM splitting to follow several choices may be thought of as a process forking
into several children, each proceeding separately).

Another method is to randomly choose a branch from a nondeterministic computation
tree. Although this stochastic approach is not entirely equivalent to following all possible
branches of the same tree, this method has proven very fruitful to attack several key problems
in computer science, known as NP-complete problems. We shall briefly review the ideas
behind NP-completeness in the following section.

A third approach toward implementing nondeterministic computation is to incorporate
quantum mechanics in algorithm development, for the following reasons: (1) quantum super-
position can be used to compute several instances of the same problem (for example, computing
the values of a function for many elements in its domain). This is known as quantum paral-
lelism [66]. (2) Furthermore, the probabilistic nature of quantum measurement may be used to
randomly choose branches from a nondeterministic computation tree.

Now let us briefly remind the reader of the definitions of the deterministic and nondeter-
ministic Turing machines. These definitions will be very useful for providing a mathematical
description of a quantum Turing machine.
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FIGURE 3.2: The “hardware” elements of a Deterministic Turing Machine (DTM) are a limitless
memory-type (the tape is divided into squares or cells), and a scanner which consists of read–write head
plus a finite state control system. The scanner has two purposes: to read and write information on the
cells of the tape as well as to control the state of the DTM.

A Deterministic Turing Machine (DTM), pictured schematically in Fig. 3.2, is an
accurate model of a real general purpose computer. A mathematical definition of a DTM
follows:

Definition 3.3.1. Deterministic Turing Machine. A Deterministic Turing Machine (DTM)
is a 7-tuple M = (Q, �, �, δ, q0, qaccept, qreject), where Q, �, � are all finite sets, an alphabet is by
definition a finite set, and
1. Q is the set of states,
2. � is the input alphabet not containing the blank symbol �,
3. � is the tape alphabet, where � ∈ � and � ⊂ �,
4. δ : Q × � → Q × � × {L, R} is the transition function,
5. q0 ∈ Q is the start state,
6. qaccept ∈ Q is the accept state, and
7. qreject ∈ Q is the reject state, where qaccept �= qreject.

A problem is decidable by a DTM if there is an algorithm that halts on all inputs after
a finite number of steps. A language is decidable if it is associated with a decidable problem.
A counterexample of a decidable problem, i.e. a problem for which no Turing machine can be
built in order to solve it, is the Halting problem [65].

A DTM is a computational model in which we can implement any deterministic
algorithm designed up to date. We now expand the definition of a Turing machine in order to
use it for nondeterministic computation.
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Definition 3.3.2. Nondeterministic Turing Machine. A Nondeterministic Turing Machine
is a 7-tuple MN = (Q, �, �, �, q0, qaccept, qreject), where Q, �, � are all finite sets, P(Q × � ×
{L, R}) is the power set of Q × � × {L, R}, and
1. Q is the set of states,
2. � is the input alphabet not containing the blank symbol �,
3. � is the tape alphabet, where � ∈ � and � ⊂ �,
4. � : Q × � → P(Q × � × {L, R}) is the transition relation,
5. q0 ∈ Q is the start state,
6. qaccept ∈ Q is the accept state, and
7. qreject ∈ Q is the reject state, where qaccept �= qreject.

Note that � is not a function anymore but a relation, reflecting the fact that an NTM
does not have a single, uniquely defined next action but a choice between several next actions.
In other words, for each state and symbol combination, there may be more than one appropriate
next step, or none at all.

NTMs are powerful because of the asymmetrical input–output relation found in the way
these machines compute. In order to have an NTM, MN accepts one string w and it is enough
to find just one branch b in the computation tree that accepts w.

It can be shown that an NTM can be simulated by a DTM, i.e. every NTM has an
equivalent DTM [37]. However, simulating an NTM by a DTM may be at the cost of an
exponential loss of efficiency [35]. Whether this loss is inherent to this “translation” between
models or is just a consequence of our limited understanding of nondeterminism is the famous

P ?= NP problem [35].
Let us now formalize the idea of exponential loss of efficiency. To do so, we shall briefly

review the main concepts behind complexity theory and NP-complete problems. These results
will be used to show the importance of classical random walks in computer science as well as to
provide the grounds for justifying the development of quantum walks and their use in algorithm
development.

3.4 A QUICK TOUR ON ALGORITHMIC COMPLEXITY
AND NP-COMPLETENESS

The performance of models of computation in the execution of an algorithm is a fundamental
topic in the theory of computation. Since the quantification of resources (in our case, we focus
on time) needed to find a solution to a problem is usually a complex process, we just estimate it.
To do so, we use a form of estimation called Asymptotic Analysis in which we are interested
in the maximum number of steps Sm that an algorithm must be run on large inputs. We do so
by considering only the highest order term of the expression that quantifies Sm . For example,
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the function F(n) = 18n6 + 8n5 − 3n4 + 4n2 − π has five terms, and the highest order term
is 18n6. Since we disregard constant factors, we then say that f is asymptotically at most n6.
The following definition formalizes this idea.

Definition 3.4.1. Big O Notation. Let f, g : N → R
+. We say that f (n) = O(g (n)) if ∃

α, no ∈ N such that ∀ n ≥ no

f (n) ≤ αg (n).

So, g (n) is an asymptotic upper bound for f (n) ( f is of the order of g ). Bounds of the
form nβ , β > 0 are called polynomial bounds, and bounds of the form 2nγ

, γ ∈ R
+ are called

exponential bounds. f (n) = O(g (n)) means informally that f grows as g or slower.
Big O notation says that one function is asymptotically no more than another. To state

that one function is asymptotically no less than another we use the � notation.

Definition 3.4.2. � Notation. Let f, g : N → R
+. We say that f (n) = �(g (n)) if ∃ α, no ∈ N

such that ∀ n ≥ no

g (n) ≤ α f (n).

Finally, to say that two functions grow at the same rate we use the � notation.

Definition 3.4.3. � Notation. Let f, g : N → R
+. We say that f (n) = �(g (n)) if f (n) =

O(g (n)) and f (n) = �(g (n)). Thus, f (n) = �(g (n)) means that f and g have the same rate of
growth.

3.4.1 Algorithmic Complexity for DTMs
A DTM can be used to find a solution to a problem, so how efficiently can such a solution be
found? As stated previously, we shall be interested in finding the fastest algorithms. Let us now
introduce a few concepts needed to quantify the efficiency of an algorithm.

The time complexity of an algorithm A expresses its time requirements by giving, for
each input length, the largest amount of time needed by A to solve a problem instance of that
size.

Definition 3.4.4. Time Complexity Function for a DTM. Let M be a DTM. We define
f : N → N as the time complexity function of M, where f (n) is the maximum number of steps that
M uses on any input of length n.

Definition 3.4.5. Time Complexity Class for DTMs. Let t : N → R
+ be a function. We define

the time complexity class TIME(t(n)) as the collection of all languages that are decidable by an O(t(n))
time DTM.
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Definition 3.4.6. Class P. The class of languages that are decidable in polynomial time on a
deterministic single-tape Turing machine is denoted by P and is defined as

P =
⋃

k

TIME(nk).

A polynomial time or tractable algorithm is an algorithm whose time complexity function
is O(p(n)) for some polynomial function p, where n is used to denote the input length.
Any algorithm whose time complexity function cannot be so bounded is called an exponential
time or intractable algorithm. Tractable algorithms are considered as acceptable, in the sense
that a satisfactory solution for a problem has been found. In contrast, intractable algorithms
are usually solutions obtained by exhaustion, the so called brute-force method, and are not
considered satisfactory solutions. As an example of a problem with no tractable algorithm
associated up to date, we now define the satisfiability (SAT) problem.

Definition 3.4.7. The Satisfiability (SAT) Problem
Let S = {x1, x2, . . . , xn} be a set of Boolean variables. A truth assignment for S is a function
t : S → {T, F}, for which if t(xi ) = T we say that xi is TRUE under t, and FALSE if t(xi ) = F.
If xi is a variable under S then xi and x̄i are literals over S. A clause over S is the disjunction of a
set of literals over S (such as x1 ∨ x2 ∨ x̄4) and is satisfied by a truth assignment iff at least one of its
members xi is true under that assignment.

A collection C of clauses over S is satisfiable iff there exists some truth assignment for S that
simultaneously satisfies all the clauses in C, i.e. C is a conjunction of disjunctions C = ∧

i [(
∨

j x j )].
Such a truth assignment is called a satisfying truth assignment for C.
INSTANCE: A set S of variables and a collection C of clauses over S.
QUESTION: Is there a satisfying truth assignment for C?

An example of the SAT problem follows. Suppose the existence of six variables
{x1, x2, x3, x4, x5, x6}, their negations {x̄1, x̄2, x̄3, x̄4, x̄5, x̄6}, and the logical proposition

P = (x̄1 ∨ x̄4 ∨ x̄5) ∧ (x̄2 ∨ x̄3 ∨ x̄4) ∧ (x1 ∨ x2 ∨ x̄5) ∧ (x3 ∨ x4 ∨ x5)∧
(x4 ∨ x5 ∨ x̄6) ∧ (x̄1 ∨ x̄3 ∨ x̄5) ∧ (x1 ∨ x̄2 ∨ x̄5) ∧ (x2 ∨ x̄3 ∨ x̄6)∧
(x̄1 ∨ x̄2 ∨ x̄6) ∧ (x3 ∨ x̄5 ∨ x̄6) ∧ (x̄1 ∨ x̄2 ∨ x̄4) ∧ (x2 ∨ x3 ∨ x̄4)∧
(x2 ∨ x5 ∨ x̄6) ∧ (x2 ∨ x̄3 ∨ x̄5) ∧ (x̄2 ∨ x̄3 ∨ x̄4) ∧ (x2 ∨ x3 ∨ x6)∧
(x̄1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x̄4 ∨ x̄5) ∧ (x̄3 ∨ x̄4 ∨ x̄6) ∧ (x̄4 ∨ x̄5 ∨ x6)∧
(x̄2 ∨ x3 ∨ x̄6) ∧ (x2 ∨ x5 ∨ x6) ∧ (x3 ∨ x5 ∨ x̄6) ∧ (x̄1 ∨ x3 ∨ x̄6)∧
(x3 ∨ x̄5 ∨ x6) ∧ (x4 ∨ x5 ∨ x6) ∧ (x1 ∨ x2 ∨ x̄3).
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As can be seen, finding the solutions (if any) of even a modest SAT instance can become
difficult quite easily. In fact, instance P has only one solution: x1 = 1, x2 = 1, x3 = 0, x4 =
1, x5 = 0, x6 = 0.

3.4.2 Algorithmic Complexity for NTMs
We start by offering the definitions of time complexity function and time complexity class for
NTMs.

Definition 3.4.8. Time Complexity Function for an NTM. Let MN be an NTM. We define
g : N → N as the time complexity function of MN, where g (n) is the maximum number of steps that
MN uses on any branch of its computation on any input length n.

Definition 3.4.9. Time Complexity Class for NTMs. Let t : N → R
+ be a function. We define

the time complexity class NTIME(t(n)), as the collection of all languages that are decidable by an
O(t(n)) time nondeterministic Turing machine.

For an NTM to accept string w it is enough to find just one branch b in its computation
tree that accepts w. However, a practical problem with this definition is to find b as an NTM
can have an infinite (or exponentially big) number of different branches. Therefore, a more
operational method for doing nondeterministic computation is needed. An important discovery
in the theory of computation is the fact that the complexities of many problems are linked by
means of a concept called verifiability.

Definition 3.4.10. Verifier. A verifier for a language A is an algorithm V , where

A = {w|V accepts (w, c ) for some string c }.

We measure the time of a verifier only in terms of the length of w, so a polynomial-time verifier
runs in polynomial time in the length of w. A language A is polynomially verifiable if it has a
polynomial-time verifier. The string c , a certificate, is additional information needed by the verifier.
For example, in the case of the SAT problem 3.4.7, c is the actual clause collection to be tested.

Note that a fundamental difference between an NTM (Def. 3.3.2) and a verifier is that
an NTM finds solutions, while a verifier only checks whether a proposal is a solution or not.

We now proceed to define the most important class of languages in Computer Science.

Definition 3.4.11. Class NP. The class of languages that have polynomial-time verifiers is known
as NP.

What is the relation between the abstract model of an NTM and the concepts of verifiers
and NP languages class? The answer is given in Theorem 1 and its proof can be found in [37].
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Theorem 1. A language is in NP if and only if it is decided by a nondeterministic polynomial-time
Turing machine.

3.4.3 P ?= NP and NP-complete Problems
The problem P ?= NP is a fundamental topic in the theory of computation. It is known that
P ⊂ NP as any polynomial language can be checked with a polynomial verifier. Also, it can be
proved [62] that

Theorem 2. If a problem ζ ∈ NP then ∃ a polynomial p such that ζ can be solved by a deterministic
algorithm having time complexity O(2p(n)).

Due to Theorem 2 there is a widespread belief that P �= NP although no proof has been

delivered and therefore P ?= NP remains an open problem. A positive or negative but definite

answer to P ?= NP would provide computer scientists (and, in fact, all computer users) with
an avalanche of answers with respect to the plausibility of finding exact solutions to problems

that have been thought of as intractable for many years. The question P ?= NP is so relevant in
modern science that the Clay Research Institute, in remembrance of the famous 23 problem
list delivered by Hilbert at the International Congress of Mathematicians at Paris in 1900, has
included it in its Millennium Problems list1.

There is a particular set of problems in NP that plays a key role in the theory of
computation: NP-complete problems. In order to characterize this important set of problems
we shall introduce the notion of polynomial transformations.

Definition 3.4.12. Polynomial Transformation. A polynomial transformation from a language
L1 ⊂ �∗

1 to a language L2 ⊂ �∗
2 , denoted by L1 ∝ L2, is a function f such that

(1) there is a polynomial-time DTM that computes f and
(2) ∀ x ∈ �∗

1 , x ∈ Li ⇔ f (x) ∈ L2.

Definition 3.4.13. NP-Complete Languages and Problems. A language L is NP-complete
if L ∈ NP and, for all other languages Li ∈ NP we find that Li ∝ L.
Due to our capacity to go from problem instances to languages by means of encoding schemes, we can
also say that a decision problem ζ is NP-complete if ζ ∈ NP and, for all other decision problems
ζi ∈ NP we find that ζi ∝ ζ .

There is a plethora of NP-complete problems. The first NP-complete problem (chrono-
logically speaking) was found by Stephen Cook ([67], see also [62]), the SAT problem (Def.
3.4.7).

1http://www.claymath.org/millennium/.
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Theorem 3. NP-Completeness of SAT problem. SAT problem is NP-complete.

Therefore, studying the properties of SAT is an important and active area of research,
not only because a polynomial-time solution to SAT would imply P = NP, but also because
SAT is used to model problems and procedures in several areas of applied computer science
and engineering like Artificial Intelligence (e.g. [68]) and hardware verification (e.g. [69, 70]),
using the following approach [43]:

1. Represent the problem in propositional logic.
2. Identify the proposition to be decided by satisfiability.
3. Solve the SAT problem.
4. Interpret the result in the original domain.

Surveys of algorithms for solving several variations and instances of SAT can be found
in [43, 68, 71]. Also, good introductions to the vast field of computational complexity can be
found in [37, 72–75].

3.5 PHYSICS AND THE THEORY OF COMPUTATION
Considerations about the physical properties of systems used to do computation and/or
transmission of information have been studied for several decades. Consequently, physics and
computer science have cross-fertilized each other for long time. As early as in the 1940s,
in the beginning of the digital computer era, scientists wondered about the existence and
quantification of the minimum amount of energy required to perform a computation. von
Neumann, in a set of lectures delivered in 1949 [76], showed that “a minimum amount
of energy required per elementary decision of a two-way alternative and the elementary
transmittal of one unit of information” was close to kT, where k is Boltzmann’s constant
and T is the temperature of the system. Later on, Landauer studied the relationship between
energy consumption and reversible computation (a computational step is reversible iff given
the output of that step, its input is uniquely determined2). Among those results published by
Landauer in [77], we have the following principle.

Landauer’s principle. Suppose a computer erases a single bit of information. The
amount of energy dissipated into the environment is at least kT ln 2, where k is Boltzmann’s
constant and T is the temperature of the environment of the computer.

2For example, the logical operation OR is not reversible, while the operation NOT is indeed reversible.
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Landauer’s principle became a big motivation to do research in reversible computation.
Among those works about reversible models of computation, we find [78–80].

Since evolution in quantum mechanics is reversible due to the use of unitary operators, the
next step in the cross-fertilization between computer science and physics was to link quantum
mechanics and computer science. Benioff introduced the notion of Quantum Turing Machines
and proposed a quantum-mechanical model for the simulation of a classical computer ([26,
Ch. 6] and [81–84]). Additionally, Feynman, in his traditional and celebrated style, lectured at
MIT [5] about the fundamental capabilities and limitations of classical computers to simulate
quantum systems. A gentle and concise introduction to this blend of physics, computer science
and information theory, as well as Feynman’s main ideas behind physics and computation can
be found in [26].

In 1985, Deutsch made two key contributions in [66]: a design of a Universal Quantum
Turing Machine, and a physics-oriented version of the Church–Turing thesis which he called
“Church–Turing principle”:

The Church–Turing principle [66]. Every finitely realizable physical system can be
perfectly simulated by a universal model computing machine operating by finite means.

In Deutsch’s words, the rationale behind the Church–Turing principle was “to reinter-
pret Turing’s ‘functions which would be naturally regarded as computable’ as the functions
which may, in principle, be computed by a real physical system. For it would surely be hard
to regard a function ‘naturally’ as computable if it could not be computed in Nature, and
conversely.” The Universal Quantum Turing machine proposed in [66] was further developed
and improved by Yao [85] and Bernstein and Vazirani [86].

We now define a Probabilistic Turing Machine and a Quantum Turing Machine.

Definition 3.5.1. [28] Probabilistic Turing Machine. A Probabilistic Turing Machine
(PTM) is a Nondeterministic Turing Machine which randomly chooses between the avail-
able transitions at each point according to a probability distribution. Thus, a PTM MN =
(Q, �, �, �, q0, qaccept, qreject) is a 7-tuple where Q, �, � are all finite sets, P(Q × � × {L, R}) is
the power set of Q × � × {L, R}, and
1. Q is the set of states,
2. � is the input alphabet not containing the blank symbol �,
3. � is the tape alphabet, where � ∈ � and � ⊂ �,
4. q0 ∈ Q is the start state,
5. qaccept ∈ Q is the accept state, and
6. qreject ∈ Q is the reject state, where qaccept �= qreject,
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7. The transition relation is given by � : Q × � → P(Q × � × {L, R} × [0, 1]), so that for a
given configuration C0, each of its successor configurations C1, C2, . . . , Cn is assigned a probability
p1, p2, . . . , pn, where n is the cardinality of P(Q × � × {L, R} × [0, 1]) and

∑n
i=1 pi = 1.

Definition 3.5.2. [28] Quantum Turing Machine. A Quantum Turing Machine is defined
analogously to a PTM but with a different transition relation. The transition relation includes
the use of complex numbers which are the corresponding amplitudes of quantum states used for
computation. A QTM is a 7-tuple MN = (Q, �, �, �, q0, qaccept, qreject), where Q, �, � are all
finite sets, P(Q × � × {L, R}) is the power set of Q × � × {L, R}, and
1. Q is the set of states,
2. � is the input alphabet not containing the blank symbol �,
3. � is the tape alphabet, where � ∈ � and � ⊂ �,
4. q0 ∈ Q is the start state,
5. qaccept ∈ Q is the accept state, and
6. qreject ∈ Q is the reject state, where qaccept �= qreject,
7. The transition relation is given by � : Q × � → P(Q × � × {L, R} × C[0,1]), where C[0,1] =
{z ∈ C| |z|2 ≤ 1}. So, for a given configuration C0, each of its successor configurations C1, C2, . . . , Cn

is assigned an amplitude z1, z2, . . . , zn, where n is the cardinality of P(Q × � × {L, R} × C[0,1])
and

∑n
i=1 |zi |2 = 1.

Quantum computation can be regarded as the study and development of methods that, by
using quantum-mechanical properties, solve problems in finite time (from a different computa-
tional point of view, quantum computation is a sub-field of unconventional models of computation
[87]). Quantum information can be defined as the field devoted to understanding how infor-
mation is represented and communicated using quantum states. Due to the advances made over
the last few years, both disciplines are now huge areas of research where diverse interests of
several scientific communities can be found. Quantum walks is one of those interests, mainly
contained in the sub-field of quantum algorithms.
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Classical Random Walks

A stochastic process is a system which evolves in time while undergoing chance fluctuations.
We can describe such a system with a family of random variables {Xt} where Xt measures, at
time t, the property of the system which is of interest. If t ∈ N (t ∈ R

+ ∪ {0}) then {Xt} is a
discrete (continuous) stochastic process.

Among those stochastic processes relevant not only to mathematics itself but also to
physics and computer science we find Discrete Random Walks (i.e. random walks on discrete
spaces performed on discrete time steps) and Continuous Random Walks (i.e. random walks
on discrete or continuous spaces performed on continuous time).

In this chapter we survey the statistical properties and computational applications of
discrete random walks, followed by a summary of the basics of continuous random walks. Our
focus is primarily on discrete random walks due to the extended use of this kind of stochastic
processes in stochastic algorithms (also known as randomized algorithms), a branch of theoretical
and applied computer science. Nonetheless, a discussion on continuous random walks is also
necessary because the most impressive computational advantage of quantum walks published
to date is an algorithm based on a continuous quantum walk [19]. To differentiate between
random walks and their quantum counterparts, we shall refer to the former as (discrete or
continuous) classical random walks and to the latter as (discrete or continuous) quantum walks.

4.1 PROBABILITY THEORY AND STOCHASTIC PROCESSES
In this section, based on [38, 39, 88–91], we provide some background results from probability
theory and stochastic processes.

4.1.1 Discrete Random Variables and Distributions
Definition 4.1.1. Discrete Random Variable. An experiment is a situation with a set of possible
outcomes. Let us suppose we have an experiment with outcome space E . A random variable (rv) is a
real mapping X : E → R that is defined for all possible outcomes in S. A discrete random variable
(drv) takes only a finite or countable infinite number of distinct values, i.e. X : E → A ⊂ R is a drv
iff #(A) ≤ ℵ0. The expression X = xi is shorthand for X(e i ) = xi , ∀ e i ∈ E, xi ∈ A.
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Definition 4.1.2. Probability distribution for a drv. Let X : E → A be a drv. Since the outcomes
of an experiment are uncertain in general, we associate with each outcome xi ∈ A a probability p(xi ),
where p(xi ) = Pr(X = xi ). The numbers p(xi ) are called a probability distribution of X iff (i)
p(xi ) ≥ 0 and (ii)

∑
xi∈A p(xi ) = 1.

Definition 4.1.3. Expectation value and variance. The expectation value µ of a drv X, also
known as mean, is defined as E[X] = ∑

i xi p(xi ). More generally, the expectation value of any
function g (X) of X is given by E[ f (X)] = ∑

i f (xi )p(xi ). The variance V [X] of a distribution,
also written as σ 2, is given by V [X] = E[(X − µ)2] = ∑

i (xi − µ)2 p(xi ). The square root of the
variance is known as the standard deviation and is denoted by σ .

If X, Y are two drv and a, b ∈ R, the following propositions can be proved [38]:

E[a X + bY ] = a E[X] + b E[Y ], (4.1)
V [X] = E[X2] − (E[X])2. (4.2)

If X, Y are independent drvs, then

V [a X + bY ] = a2V [X] + b2V [Y ]. (4.3)

Definition 4.1.4. Bernoulli distribution. The Bernoulli distribution, denoted B(θ ), is used as
a model for experiments which have only two outcomes: success with probability θ , and failure with
probability 1 − θ . If X is B(θ ) then X = 1 if success and X = 0 if failure. It is a well-known fact
that if X is B(θ ) then µX = θ and σ 2 = θ (1 − θ ).

Definition 4.1.5. Binomial distribution. The binomial distribution, denoted Bin(n, p), describes
experiments that consist of a number of independent identical trials with two possible outcomes: success
with probability p and failure with probability q = 1 − p. So, the random variable X = “number
of successes” can take any value from {1, 2, . . . , n} and its distribution is described by the binomial
distribution. If X is Bin(n, p) then the probability p(r ) of obtaining r successes from n trials is given
by p(r ) = (n

r

)
pr q n−r .

Definition 4.1.6. Geometric distribution. The geometric distribution describes experiments that
consist of a number of independent trials, each having a probability p, which are performed until a
success occurs. If we let X be the number of trials required then the probability of getting a successful
result after n trials is given by P (X = n) = (1 − p)n−1 p. If X is geometrically distributed then
E[X] = 1

p .
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Theorem 1. Markov’s inequality. Let X be a drv that takes only non-negative values, then

P (X ≥ a) ≤ E[X]
a

.

The mean and the variance of a drv X, although important quantities, do not contain all
the information about the distribution of that variable1. One way to completely characterize
the probability distribution of a drv X is to use the moments of X.

4.1.2 Moments and Generating Functions
Definition 4.1.7. Moments of a drv. We define the kth moment of a drv X : E → A as µk =
E(Xk) = ∑∞

j=1(x j )k p(x j ) where xi ∈ A, and under the assumption that the sum converges. It can
be proved [39] that, in terms of its moments, the mean and the variance of a drv X are given by

µ = µ1 (4.4)
σ 2 = µ2 − µ2

1. (4.5)

Generating functions are a powerful and compact mathematical concept (power series)
to encode information about sequences. In order to produce a moment generating function for a
drv X, let us define the function

et X =
∞∑

k=0

tk

k!
Xk . (4.6)

By Def. 4.1.3, we have

E(et X) =
∞∑

j=0

etx j p(x j ). (4.7)

Thus

E(et X) = E

( ∞∑
k=0

tk

k!
Xk

)
=

∞∑
k=0

tk

k!
E(Xk) =

∞∑
k=0

tk

k!
µk .

Combining Eqs. (4.6) and (4.7), we obtain

g (t) = E(et X) =
∞∑

j=0

etx j p(x j ) =
∞∑

k=0

tk

k!
µk . (4.8)

1It is possible to find two different probability distributions p1 and p2 corresponding to two different drvs X1 and
X2 with the same mean and variance, i.e. µX1 = µX2 and σ 2

X1
= σ 2

X2
.
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Definition 4.1.8. Moment generating function. The function

g (t) = E(et X) =
∞∑

j=0

etx j p(x j ) =
∞∑

k=0

tk

k!
µk

is known as the moment generating function for X.

Theorem 2. Let g (t) be a moment generating function for drv X ⇒ dn

dtn g (t)

∣∣∣∣∣
t=0

= µn.

Proof. By induction we find that dn

dtn g (t) = ∑∞
k=n

k(k−1)(k−2)···(k−(n+1))
k! µk tk−n.

Since k(k − 1)(k − 2) · · · (k − (n + 1)) = k!
(k−n)! ⇒ dn

dtn g (t) = ∑∞
k=n

k!
(k−n)!k!µk tk−n.

We define αi = (n+i)!
i !(n+i)! ⇒ dn

dtn g (t)

∣∣∣∣∣
t=0

=
[
µn +∑∞

i=n+1 αiµi ti

]
t=0

= µn. �

The binomial distribution is widely used in the study of classical random walks. In the
following theorem, we compute the moment generating function of a drv X Bin(n, p).

Theorem 3. Let X be Bin(n,p) ⇒ g X(t) = (et p + q )n, with q = 1 − p.

Proof. By definition g (t) = ∑∞
j=0 etx j p(x j ) ⇒ g X(t) = ∑n

j=0

(n
j

)
et j p j q n− j .

By the binomial theorem
∑n

j=0

(n
j

)
et j p j q n− j = (et p + q )n. �

Note that, if X is Bin(n, p) then

µ1 = d
dt

g (t)

∣∣∣∣∣
t=0

= net p(et p + q )n−1

∣∣∣∣∣
t=0

= np and µ2 = d2

dt2
g (t)

∣∣∣∣∣
t=0

= n(n − 1)p2 + np.

Therefore, if a drv X is Bin(n, p) then its mean and variance are given by

µ = µ1 = np, (4.9a)

and

σ 2 = µ2 − µ2
1 = np(1 − p). (4.9b)

The following theorem establishes the convergence and uniqueness properties of moment
generating functions, and its proof can be found in [39].
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Theorem 4. Let X be a drv with finite range {x1, x2, . . . xn}, distribution function p and moments
µk ⇒
(i) The moment series g (t) = ∑∞

k=0
µk tk

k! converges for all t to an infinitely differentiable function
g (t).
(ii) The moment series g (t) = ∑∞

k=0
µk tk

k! is uniquely determined by p and conversely.

Finally, with respect to generating functions, let us focus on the particular but important
case in which a drv X takes values x j ∈ N ∪ {0}. In this case, it is useful to have an alternative
definition of a moment generating function.

Definition 4.1.9. Ordinary generating functions. Let X : E → N ∪ {0} be a drv and g (t)
be its moment generation function. Since g (t) = ∑∞

j=0 etx j p(x j ) =
∑∞

j=0 et j p( j ) then g (t) is a
polynomial in et . Let us perform the variable change z = et and define the function h as

h(z) =
∞∑

j=0

p( j )zj .

The function h(z) is called the ordinary generating function for X. Note that h(1) = g (0) = 1,
h ′(1) = g ′(0) = µ1, and h ′′(1) = g ′′(0) − g ′(0) = µ2 − µ1. An ordinary generating function is
also simply called a probability generating function (pgf).

We use Def. 4.1.9 in the following result on Bernoulli distributions.

Theorem 5. Let X be Bernoulli distributed with parameter θ ⇒ h X(z) = 1 − θ + θz.

Proof. p(X = 0) = 1 − θ and p(X = 1) = θ ⇒ h(z) = ∑∞
j=0 zj p( j ) = (1 − θ )z0 + θz1 =

1 − θ + θz. �

Now we introduce another powerful mathematical tool to study classical random walks
in both lines and graphs: Markov chains.

4.1.3 Markov Chains
Definition 4.1.10. Markov chain. Let {Xα|α ∈ N ∪ {0}} be a set of discrete random variables
and S be a system defined by the state space {sβ |β ∈ N ∪ {0}}. Xn is defined as the state of a system S
at time n, so we say that S is in state s i at time n iff Xn = s i .

The sequence {Xα} is said to form a Markov chain with initial distribution λ and transition
matrix P if each time S is in state s i there is some fixed probability pi j that it will be in state s j , and
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pi j does not depend upon which states the chain was in before the current state. In other words,

P (Xn+1 = s j |Xn = s j−1)
= P (Xn+1 = s j |Xn = s j−1 ∧ Xn−1 = s j−2 ∧ . . . X1 = s1 ∧ X0 = s0) = pi j

where the initial state s0 is drawn from the initial distribution λ. The values pi j are called the
transition probabilities of the Markov chain and they satisfy pi j ≥ 0 and

∑
i pi j = 1, as transition

probabilities must conform a probability distribution. Transition matrices are also called right stochastic
matrices, i.e. matrices for which the sum of the elements of each row is equal to 1.

The following lemma and theorem (corresponding proofs can be found in [39]) show
the relationship between the time evolution of a Markov chain and its transition matrix P.

Lemma 1. Let P be the transition matrix of a Markov chain. The i j-th entry pn
ij of the matrix Pn

gives the probability that the Markov chain, starting in state s i , will be in state s j after n steps.

Theorem 6. Let P be the transition matrix of a Markov chain, and let
−→
λ be the probability row

vector which represents the initial distribution λ ⇒ the probability that the chain is in state s i after n
steps is the i-th entry of the row vector

−→
λ (n), given by

−→
λ (n) = −→

λ Pn.

We now present an example of a stochastic system and its transition matrix.

Example 4.1.1. Drunkard’s walk. A man is frequent visitor of a pub which is located five
blocks from his home. If he is in any corner between home and the pub he walks to the left
or to the right (i.e. toward home or the pub) with equal probability. Also, if he reaches either
home or the pub he stays there.

The behavior of this man can be modeled by a Markov chain with state space S =
{1, 2, 3, 4, 5, 6} being state s1 = 1 home and state s6 = 6 the pub, i.e. s0 and s5 are the
absorbing states of this walk. The transition matrix is then

P =




1 0 0 0 0 0
1/2 0 1/2 0 0 0
0 1/2 0 1/2 0 0
0 0 1/2 0 1/2 0
0 0 0 1/2 0 1/2
0 0 0 0 0 1




.
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We are interested in studying several cases of Markov chains. The most important case is
that in which it is possible to visit every state of the system S with no other constraint apart from
the probabilities defined by the powers of the transition matrix P. The following definitions
and theorems provide the grounds to characterize such Markov chains.

Definition 4.1.11. Stationary probability distribution. Let P be a transition matrix. A station-
ary probability distribution is a row vector −→π that satisfies limn→∞

−→
λ0 Pn = −→π .

Theorem 7. Let P be a transition matrix and π a stationary probability distribution⇒−→π = −→π P.

Definition 4.1.12. Irreducibility of a Markov chain. Let {Xα} be a Markov chain with state
space S = {sβ} and transition matrix P. {Xα} is irreducible if ∀ s i , s j ∈ S ∃ t ∈ N such that
pt

ij > 0.

So, a Markov chain is irreducible if it is possible to visit any state. In order to avoid any
“visiting pattern,” we shall impose another condition on Markov chains, that of aperiodicity.

Definition 4.1.13. Aperiodicity of a Markov Chain. Let {Xα} be a Markov chain with state
space S = {sβ} and transition matrix P. {Xα} is aperiodic if ∀s i , s j ∈ S ⇒ gdc{t ∈ N|pt

ij > 0} = 1.

Definition 4.1.14. Ergodic Markov chains. A Markov chain is ergodic if it is irreducible and
aperiodic.

We are now ready to mention the most important theorem of Markov chains.

Theorem 8. Fundamental theorem of Markov chains [39]. An ergodic Markov chain has a
unique stationary distribution −→π . For any initial probability distribution

−→
λ we have

−→
λ Pt →

−→π as t → ∞.

So, if we let an ergodic Markov chain run for long enough, it will eventually lose all
memory of where it started and will reach some fixed distribution −→π over its state space
S = {sβ}. Therefore, the unique stationary distribution −→π of an ergodic Markov chain is
independent of the initial probability distribution

−→
λ . This fact will be an important factor to

differentiate between classical random walks and quantum walks.

4.2 CLASSICAL DISCRETE RANDOM WALKS: RESULTS
AND APPLICATIONS

The previous section will now be used to develop some important results of classical discrete
random walks on a line, on a circle, and on a graph. Those results will be employed in this
lecture to present some applications of classical random walks in computer science, as well as
to show the differences between this kind of stochastic processes and discrete quantum walks.



book_index MOCL009.cls September 13, 2008 12:6

46 QUANTUM WALKS FOR COMPUTER SCIENTISTS

Classical discrete random walks were first thought as stochastic processes with no relation
to algorithm development, thus besides to classical references on random walks like [92–94],
it is necessary to scan articles and a few books in order to find relevant material. Therefore, in
addition to the references mentioned at the beginning of this chapter, we have used [40–42]
for this section.

4.2.1 Classical Discrete Random Walks on a Line
A classical discrete random walk on a line is a particular kind of stochastic process. The simplest
classical random walk on a line consists of a particle (the walker) jumping to either left or right
depending on the outcomes of a probability system (the coin) with (at least) two mutually
exclusive results, i.e. the particle moves according to a probability distribution.

The generalization to discrete random walks on spaces of higher dimensions (graphs)
is straightforward. An example of a discrete random walk on a graph is a particle moving on
a lattice where each node has six vertices, and the particle moves according to the outcomes
produced by tossing a dice. In fact, a classical random walk on a line is also a random walk on
a graph G = (V, E) with |V | = 2. Classical random walks on graphs can be seen as Markov
chains [23, 89]. Furthermore, if the random walk is aperiodic and irreducible then it has a
stationary distribution (Theorem 8).

Unrestricted Classical Discrete Random Walk on a Line
Let {Zn} be a stochastic process which consists of the path of a particle which moves along
an axis with steps of one unit at time intervals also of one unit (Fig. 4.1). At any step, the
particle has a probability p of going to the right and q = 1 − p of going to the left. Compute
the probability of finding the particle in position k after n steps. {Zn} has time parameter
space N, discrete state space Z, and the starting point is Z0 = 0. Each step is an independent
drv X with distribution pr(X = 1) = p and pr(X = −1) = q . After n steps we can see that
Zn = ∑n

i=1 Xi .
We are interested in finding the value P n

k = pr(Zn = k|Z0 = 0), so we define a new
drv Yi

10 2 3 −1 −2 −3

.  .  .

.  .  ..  .  .

.  .  .

FIGURE 4.1: An unrestricted classical discrete random walk on a line. The probability of going to the
right is p and the probability of going to the left is q = 1 − p.
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Yi =
{

1 if xi = 1
0 if xi = −1.

Each drv Yi = 1
2 (Xi + 1) is an independent Bernoulli trial (Def. 4.1.4) with a probability

of success p. We use {Yi} to define a drv Tn that represents the “number of successes”

Tn =
n∑

k=1

Yi = 1
2

(Zn + n).

Tn is Bin(n, p) (Def. 4.1.5) ⇒ pr(Zn = k|Z0 = 0) = pr(Tn = 1
2 (Zn + n) = 1

2 (k + n)) ⇒

pr(Zn = k|Z0 = 0) =


( n

1
2 (k+n)

)
p

1
2 (k+n)q

1
2 (n−k), 1

2 (k + n) ∈ N ∪ {0}
0, otherwise.

(4.10)

Since Tn is Bin(n, p) then E[Tn] = np and V [Tn] = npq . So, using Eq. (4.1) we find

E[Zn] = E[2Tn − n] = n(p − q ). (4.11)

Similarly, using Eq. (4.3)

V [Zn] = V [2Tn − n] = 4npq . In other words, V [Zn] = O(n). (4.12)

Classical Discrete Random Walk on a Line With Two Absorbing Barriers
We analyze the case of the path of a particle which moves along a finite axis with steps of
one unit at time intervals of one unit. The axis has absorbing boundaries −a and b, i.e. if
the particle reaches either −a or b it remains there. As in the previous case, the particle has
a probability p of going to the right and q = 1 − p of going to the left, and each step is
independent of every other step.

Let {Zn} be the stochastic process that models the path of this particle, with time param-
eter space N and state space {−a,−a + 1, . . . ,−1, 0, 1, 2, . . . , b − 1, b}. We are interested in
computing the probability of Zn = −a before Zn = b (see Fig. 4.2).

bb−1b−2−1

.  .  .

0 1−a −a+1 −a+2 .  .  .   .    .  .

.  .  .

FIGURE 4.2: Classical discrete random walk on a line with two absorbing barriers. The probability of
going to the right is p and the probability of going to the left is q = 1 − p, except for the extreme sites
in which the walker is absorbed with probability 1.



book_index MOCL009.cls September 13, 2008 12:6

48 QUANTUM WALKS FOR COMPUTER SCIENTISTS

This problem is known as the Gambler’s ruin problem because one can think of it as two
gamblers A and B with corresponding capitals of $a and $b. A and B play a game in which
each play results in A winning $1.00 from B with probability p or B winning $1.00 from A
with probability q . We want to know the probability that gambler A is in ruin.

Let us define the drv

Yi =
{

1 if A is eventually ruined, i.e. Zn = −a before Zn = b
0 otherwise.

Y is B(θ ) (Def. 4.1.4), so the pgf of Y given that the walk starts in state i (Theorem 5) is
given by h(z)Y(i) = 1 − (1 − z)θi and we want to find θ0, i.e. we want pr(Y = 1|Z0 = 0). Using
techniques for solving difference equations, we find that

θ0 =
{

b
a+b λ = p

q = 1
λb−1

λb−λ−a λ = p
q �= 1.

(4.13)

Similarly, the probability that A is triumphant is given by

φ0 =
{

a
a+b λ = p

q = 1
1−λa

1−λa+b λ = p
q �= 1.

(4.14)

We prove that the game will eventually end simply by showing that A will either lose or
win with probability 1: θ0 + φ0 = 1.

Classical Discrete Random Walk on a Line With One Absorbing Barrier
This problem can be thought as a variation of the Gambler’s ruin problem, with gambler B
having unlimited capital (B could be, for example, a casino). Therefore, we define a stochastic
process {Zn} that models the path of a particle moving along an axis. Zn has time parameter
space N and state space {−a,−a + 1, . . . ,−1, 0}⋃N. As before, the particle has a probability
p of going to the right and q = 1 − p of going to the left, and each step is independent of every
other step (see Fig. 4.3). We are interested in computing the probability pr(Zn = −a |Z0 = 0).
This probability can be found by computing the limit

pr(Zn = −a |Z0 = 0) = lim
b→∞

θ0 =
{

1 if p ≤ q

( q
p )a if p > q .

(4.15)

So, if B has unlimited capital and unless A has a success probability higher than that of
his/her opponent, it is certain that A will be eventually ruined.
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b+1b0

.  .  .

1 2a a−1 a−2 .  .  . .   .  .

.  .  . .  .  .

.  .  .

FIGURE 4.3: Classical discrete random walk on a line with one absorbing barrier. The walker can be
absorbed in node a. The probability of going to the right is p and the probability of going to the left is
q = 1 − p. In node a, the probability of being absorbed is equal to 1.

4.2.2 Classical Discrete Random Walks on a Graph
A graph is a symbolic representation of a network and of its connectivity. Of particular im-
portance in computer science is the relationship between graphs, Markov chains, and classical
discrete random walks.

Definition 4.2.1. Graph. A graph G = (V, E) is a set V of vertices vi connected by edges
(vk, vl ) ∈ E. We define |V | as the total number of vertices and |E| as the total number of edges of G.
The degree of a vertex is the number of edges of that vertex.

A graph is connected if there is a path connecting every pair of vertices. A graph is bipartite
if its set of vertices can be divided into two disjoint sets with two vertices of the same set never sharing
an edge, and non-bipartite otherwise. If ∀ (u, v) ∈ E ∃ (v, u) ∈ E ⇒ G is undirected.

A graph can be represented by its adjacency matrix A = (ai j ), which is a matrix with rows
and columns labeled by graph vertices, with entries ai j = 1 or 0 according to whether vertices i and j
are linked by an edge or not.

Graphs that encode the structure of a group are called Cayley graphs. Group theory is a
branch of mathematics widely used in several fields of science and engineering (quantum physics
and control theory, for example). Thus, Cayley graphs are a vehicle for translating mathematical
structures of scientific and engineering problems into forms amenable to algorithm development
for scientific computing.

Definition 4.2.2. Cayley graph. Let G be a finite group, and let S = {s1, s2, . . . , s k} be a
generating set for G. The Cayley graph of G with respect to S has a vertex for every element of G,
with an edge from g to gs ∀ g ∈ G and s ∈ S.

Cayley graphs are k-regular, that is, each vertex has degree k. Cayley graphs have more
structure than arbitrary Markov graphs and their properties are often used in algorithm devel-
opment [95].

Graphs and Markov chains can be put in an elegant framework which turns out to be
very useful for the development of algorithmic applications.
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Let G = (V, E) be a connected, undirected graph with |V | = n and |E| = m. G induces
a Markov chain MG if the states of MG are the vertices of G , and ∀ u, v ∈ V

puv =
{

1
d (u) if (u, v) ∈ E
0 otherwise,

where d (u) is the degree of vertex u. Since G is connected, then MG is irreducible and aperiodic
[23], therefore MG has a unique stationary distribution (Theorem 8).

Theorem 9. Let G be a connected, undirected graph with n nodes and m edges, and let MG be its
corresponding Markov chain. Then, MG has a unique distribution

−→π = (d (vi )/2m)

for all components vi of −→π .

Note that Theorem 9 holds even when the distribution {d (vi )} is not uniform. In partic-
ular, the stationary distribution of an undirected and connected graph with n nodes, m edges,
and constant degree d (vi ) = r ∀ vi ∈ G , i.e. a Cayley graph, is −→π = (r/2m), the uniform
distribution.

We have established the relationship between Markov chains and graphs. We now
proceed to define the concepts that make discrete random walks on graphs useful in computer
science. We shall begin by formally describing a random walk on a graph: let G be a graph. A
random walk, starting from a vertex u ∈ V is the random process defined by
s = u
repeat

choose a neighbor v of u according to a certain probability distribution P
u = v

until (stop condition)
So, we start at a node v0 and, if at t-th step we are at a node vt , we move to a neighbor of vt

with probability given by probability distribution P . It is common practice to make Puv = 1
d (vt )

,
where d (vt) is the degree of vertex vt . Examples of discrete random walks on graphs are a
classical random walk on a circle or on a three-dimensional mesh.

We now introduce several measures to quantify the performance of discrete random walks
on graphs. These measures play an important role in the quantitative theory of random walks,
as well as in the application of this kind of Markov chains in computer science.

Definition 4.2.3. Hitting time. The hitting time Hi j is the expected number of steps before node
j is visited, starting from node i.
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Definition 4.2.4. Mixing rate. The mixing rate is a measure of how fast the discrete random walk
converges to its limiting distribution. The mixing rate can be defined in many ways, depending on the
type of graph we want to work with. We use the definition given in [41].

If the graph is non-bipartite then pt
i j → d j/2m as t → ∞, and the mixing rate is given by

µ = lim
t→∞ sup max

∣∣∣∣p (t)
i j − d j

2m

∣∣∣∣
1/t

.

As it is the case with the mixing rate, the mixing time can be defined in several ways.
Basically, the notion of mixing time comprises the number of steps one must perform a classical
discrete random walk before its distribution is close to its limiting distribution.

Definition 4.2.5. Mixing time [96]. Let MG be an ergodic Markov chain which induces a
probability distribution Pu(t) on the states at time t. Also, let −→π denote the limiting distribution of
MG . The mixing time τε is then defined as

τε = max
u

min
t

{t|t ≥ T ⇒ ||Pu(t) −−→π || < ε}

where ||Pu(t) −−→π || is a standard distance measure. For example, we could use the total variation
distance, defined as ||Pu(t) −−→π || = 1

2

∑
i |Pui (t) − πi |. Thus, the mixing time is defined as the first

time t such that Pu(t) is within distance ε of −→π at all subsequent time steps t ≥ T, irrespective of the
initial state.

Calculating mixing times is a difficult task. Consequently, there are several strategies to
compute mixing times. Among them we find the coupling time strategy, which consists of
considering two discrete random walks on a Markov chain. By starting one of the random
walks from the stationary distribution and bounding the time for the two chains to collide, we
can compute bounds on the mixing time of the random walk. What does it mean to make two
chains collide? That means that both chains will end up hitting the same nodes with the same
probability. To formalize this concept, let us present the following theorem.

Theorem 10. Let P and Q be two probability distributions with P (t)
x and Q(t)

x the probabilities of
hitting node x at time t ⇒ |P − Q| ≤ 2pr (P (t)

x �= Q(t)
x ).

So, the computation of the mixing time of a Markov chain by means of the coupling
strategy consists of the following steps: 1. Compute the limiting distribution of the Markov
chain. 2. Compute the time it takes to obtain the following equality: P (t)

x = πx , where πx is the
probability of hitting node x according to the Markov chain’s limiting distribution −→π . This
step is usually equivalent to computing the hitting time of the Markov chain for a certain node.
The key question is: how many steps n does it take to hit node k?
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We now present the mixing times of several classical discrete random walks.

Mixing Time of an Unrestricted Classical Discrete Random Walk on a Line
It has been shown in Eq. (4.10) that, for an unrestricted classical discrete random walk on a
line with p = q = 1

2 , the probability of finding the walker in position k after n steps is given
by

pr(Zn = k|Z0 = 0) =


( n

1
2 (k+n)

) 1
2n ,

1
2 (k + n) ∈ N ∪ {0}

0, otherwise.

Using Stirling’s approximation n! ≈ √
2πn

( n
e

)n and after some algebra, we find

pr(Zn = k|Z0 = 0) = 1
2n

(
n

1
2 (k + n)

)
≈

√
2n

π2(n2 − k2)
nn

(n + k)
n+k

2 (n − k)
n−k

2

. (4.16)

We know that Eq. (4.10) is a binomial distribution, thus it makes sense to study the
mixing time in two different vertex populations: k � n and k ≈ n (the first population is mainly
contained under the bell-shape part of the distribution, while the second can be found along the
tails of the distribution). In both cases, we shall find the expected hitting time by calculating the
inverse of Eq. (4.16) (this is the expected time of the geometric distribution given in Def. 4.1.6).

Case k � n. Since√
2n

π2(n2 − k2)
nn

(n + k)
n+k

2 (n − k)
n−k

2

≈
√

2n
π2n2

nn

nn/2nn/2
= c√

n
⇒

Hitting time H0,k = O(
√

n). (4.17)

Case k ≈ n. Let n − k = C1 and n2 − k2 = C2, where C1 and C2 are small integer
numbers. Since√

2n
π2(n2 − k2)

nn

(n + k)
n+k

2 (n − k)
n−k

2

≈
√

2n
πC2

nn

2nnnCC1/2
1

= 1
2n

√
2n

πCC1
1 C2

⇒

Hitting time H0,k = O(2n). (4.18)

Thus, the hitting time for a given vertex k of an n-step unrestricted classical discrete
random walk on a line depends on which region vertex k is located in. If k � n then it will take
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n steps to reach k, on average. However, if k ≈ n then it will take an exponential number of
steps to reach k, as one would expect from the properties of the binomial distribution. So, if we
use these hitting times to get a qualitative picture of the corresponding mixing time, i.e. the time
it takes to a binomial distribution of n steps to “look like” (that is, to be ε-close to) a binomial
distribution computed after an infinite (or, being rigorous, a very large) number of steps, we find
that the computation of such mixing time is not straightforward. It seems that more analysis
and new methods for computing mixing times are needed in order to study unrestricted classical
random walks, particularly within the framework of algorithm development (in fact, to the best
of our knowledge, there is only a very limited number of publications, among them [40], that
work on the properties of classical random walks on infinite graphs).

Mixing Time of a Classical Discrete Random Walk on a Line With Two
Reflecting Barriers
Let {Zn} be a stochastic process which consists of the path of a particle which moves along
a finite axis with steps of one unit at time intervals also of one unit. The axis has n different
position sites. At any step, the particle has a probability p of going to the right and q = 1 − p
of going to the left, except for the case in which the particle is sitting on an extreme point
Zt = 0 or Zt = n − 1. If the particle is on Zt = 0 (Zt = n − 1) at time t then the particle will
move to Zt+1 = 1 (Zt+1 = n − 2) at time t + 1 with probability 1 (see Fig. 4.4). According to
Theorem 9, {Zn} has a stationary distribution given by

−→π = 1
n + 1

, (4.19)

and a hitting time H0,n given by [41]

H0,n = O(n2). (4.20)

0 1 .  .  .2 n−1

.  .  .

n−2 n

FIGURE 4.4: Classical discrete random walk on a line with two reflecting barriers. The probability
of going to the right is p and the probability of going to the left is q = 1 − p. In the extremes, the
probability of “bouncing” is equal to 1.
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FIGURE 4.5: Classical discrete random walk on a ten-nodes circle.

The stationary distribution from Eq. (4.19) is independent of p and q because this result
is a particular case of Theorem 9, which in turn is independent of specific values of p and q .

Mixing Time of a Classical Discrete Random Walk on a Circle
The definitions of discrete random walks on a circle and on a line with two reflecting barriers
are very similar. In fact, the only difference is the behavior of the extreme nodes.

Let {Zn} be a stochastic process which consists of the path of a particle which moves along
a circle with steps of one unit at time intervals also of one unit. The circle has n different position
sites (for an example with ten nodes, see Fig. 4.5). At any step, the particle has a probability p of
going to the right and q = 1 − p of going to the left. If the particle is on Zt = 0 at time t then
the particle will move to Zt+1 = 1 with probability p and to Zt+1 = n − 1 with probability q .
Similarly, if the particle is on Zt = n − 1 at time t then at time t + 1 the particle will go to
Zt+1 = 0 with probability p and to Zt+1 = n − 2 with probability q .

According to Theorem 9, the Markov chain defined by {Zn} has a stationary distribution
given by

−→π = 1
n
, (4.21)

and a hitting time H0,n given by [41]

H0,n = O(n2). (4.22)
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4.3 STOCHASTIC ALGORITHMS BASED ON CLASSICAL
DISCRETE RANDOM WALKS

Our motivation for studying random walks is to understand how such stochastic processes can
be used to build algorithms. In this section we show how discrete random walks are used to
solve two different instances of the SAT problem (Def. 3.4.7).

Algorithms that use stochastic processes to find a solution, i.e. procedures that make
random choices during execution, are known as randomized algorithms. In our chapter on the
theory of computation, we defined a Probabilistic Turing Machine (Def. 3.5.1) as an NTM
which randomly chooses between the available transitions at each point according to a given
probability distribution. Thus, a randomized algorithm is a PTM.

In this section we present two randomized algorithms based on classical discrete random
walks: the first one solves 2-SAT in polynomial time, and the second is the most efficient
algorithm (though still exponential) known for solving 3-SAT. Some more uses of hitting
times for developing on-line algorithms can be found in [97].

The SAT problem is a key element in the theory of computation (Theorem 3). Let us
remark that in the definition of SAT problem (Def. 3.4.7) there is no constraint neither in
the number of clauses nor in the number of literals per clause. Thus, in order to make SAT
amenable to algorithmic analysis we define a variation with a limited number of literals per
clause:

Definition 4.3.1. The k-SAT Problem. Let S = {x1, x2, . . . , xn} be a set of Boolean variables
and C be a collection of clauses over S where each clause has k literals, i.e. C is a conjunction of
disjunctions C = ∧

i [(
∨k

j=1 x j )].
INSTANCE: A set S of variables and a collection of clauses over S.
QUESTION: Is there a satisfying truth assignment for C?

4.3.1 2-SAT
In 2-SAT we have a proposition of the form C = ∧

i [(
∨2

j=1 x j )] and we are interested in
finding a set of values for the variables x1, x2, . . . , xn such that C = T RU E. In [35, 75],
Papadimitriou proposed the following randomized algorithm for the solution of 2-SAT.

Algorithm 1. Randomized algorithm for 2-SAT.
Input: a proposition C = ∧

i [(
∨2

j=1 x j )] with a total number of n variables x1, x2, . . . , xn.
Objective: To determine whether C is satisfiable or not.

Steps of the algorithm
1. Start with any truth assignment T
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2. repeat r times
3. if there is no unsatisfied clause then
4. Reply “formula is satisfiable”
5. Halt
6. else
7. Take any unsatisfied clause
8. Pick any of these two literals and flip it, updating T
9. After r repetitions reply “Formula is probably unsatisfiable”

Algorithm 1 is randomized because in step 8 we make a random choice of the literal
whose value will be changed. We obtain additional randomness by randomly selecting an initial
truth assignment T (step 1) and an unsatisfied clause (step 7). We focus on step 8.

In order to analyze algorithm 1, let clause C be satisfiable by truth assignment Ts . We
define Ei as the expected number of repetitions of step 8 until a satisfying truth assignment is
found, under the assumption that our starting truth assignment T differs from Ts in exactly i values,
i.e. d (T, Ts ) = i . Iterating on step 8 can be seen as a classical discrete random walk on a line in
which positions on the line correspond to the actual distance between T and Ts , and the walker
moves to the left or right with probabilities α and β, respectively (if variables are picked up
uniformly at random then α = β = 1

2 ). The following theorem states the performance of this
randomized algorithm for 2-SAT.

Theorem 11. Papadimitrious’s solution to 2-SAT. Suppose that a discrete random walk algo-
rithm (algorithm 1) with r = 2n2 is applied to any satisfiable instance of 2-SAT with n variables.
Then the probability that a satisfying truth assignment will be discovered is at least 1

2 .

Proof. We begin executing algorithm 1 with an initial truth assignment T and distance
d (T, Ts ) = i . In terms of the discrete random walk picture, we begin our walk on position
i and we want to compute Ei .

If the walker moves to the left (i.e. we get closer to truth assignment Ts by flipping the right
variable) then this new scenario can be described as a discrete random walk starting at position
i − 1 and having expected number of steps Ei−1 = Ei − 1 or, equivalently, Ei = Ei−1 + 1.
If α is the probability of going to the left and β to the right, we then obtain the following
expression:

Ei = 1 + αEi−1 + βEi+1. (4.23)

Eq. (4.23) is a difference equation constrained by the following conditions:
1. E0 = 0. The number of expected steps when we have a satisfying assignment is zero.
2. En = En−1 + 1. If we arrive at position n we must make one step to the left (i.e. we have
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reached a limit and therefore we must return) and that scenario is equivalent to starting a
discrete random walk in position n − 1 with expected number of steps En−1 = En − 1.

A random walk constrained by the previous conditions is known as a discrete random
walk with one absorbing barrier (E0 = 0) and one reflecting barrier (En = En−1 + 1). Strictly
speaking, Eq. (4.23) should be the inequality Ei ≤ 1 + αEi−1 + βEi+1, the reason being that
C could have more than one satisfying truth assignment that could also be found during the
computation of algorithm 1. So, Eq. (4.23) represents the worst case as is standard practice
in algorithm performance analysis. Using standard methods for difference equations [43] with
α = β = 1

2 , we find that Eq. (4.23) has solution Ei = 2in − i2, therefore

En = n2.

Thus, our expected number of steps is n2 regardless our starting point. Finally, using Markov’s
inequality (Theorem 1) we find that

P (X ≥ 2n2) ≤ n2

2n2
= 1

2
.

�

A detailed analysis of Theorem 11 is given in [43], along with a proof that algorithm 1
together with the techniques used in Theorem 11 are feasible for 2-SAT only, as solutions for
3-SAT and beyond are exponentially complex.

4.3.2 3-SAT
Despite its polynomial time performance, the discrete random walk solution from the previous
subsection is not the most efficient method known (a linear time solution was proposed in [98]).
However, the scenario changes when dealing with more complicated problems like 3-SAT, in
which case the algorithm proposed by Schöning in [24] provides the technique used to achieve
the best performance up to date for solving k-SAT (the best-known upper bound for 3-SAT
is given in [99] and is an improved version of Schöning’s proposal).

The algorithm proposed in [24] is given in the following lines:

Algorithm 2. Randomized algorithm for k-SAT.
Input: a proposition C = ∧

i [(
∨k

j=1 x j )] with a total number of n variables x1, x2, . . . , xn.
Objective: To determine whether C is satisfiable or not.
1. Start with any truth assignment T
2. repeat 3n times
3. if there is no unsatisfied clause then
4. Reply “formula is satisfiable”
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5. Halt
6. else
7. Take any unsatisfied clause
8. Pick one of the k literals in the clause and flip it, updating T

Let us suppose that C is satisfiable by Ts . The purpose of [24] is to estimate the prob-
ability p of reaching Ts with initial truth assignment T, by executing algorithm 2 under the
constraints that will be explained in the following lines. Once probability p is known it is
also possible to estimate the expected number of times Et = 1

p that algorithm 2 should be
executed in order to reach Ts (a sequence of independent repetitions of algorithm 2 with
“success probability” p can be described by a geometrically distributed drv X (Def. 4.1.6)) if
Et = 1

p then the complexity of the algorithm is within a polynomial factor of 1
p .

In contrast to Papadimitriou’s solution [75], in this case the discrete random walk is
performed only a limited number of times (3n) and algorithm 2 is repeated approximately Et

times (this is called the “restart effect,” which has a positive impact in the performance of
algorithm 2 [43]). Additionally and under the assumption that our starting truth assignment T
differs from Ts in exactly j values, i.e. d (T, Ts ) = j , the random walk in algorithm 2 is allowed
to make only i ≤ j “wrong” steps, i.e. steps of the form d (T, Ts ) = k → d (T, Ts ) = k + 1.
So, the random walk is expected to take j + 2i steps in order to reach state 0. Note that
j + 2i ≤ n + 2n = 3n is a necessary condition (otherwise algorithm 2 would never reach
state 0).

By calculating the number of paths which take the walker from j to 0 with i steps in
the “wrong” direction and following the mathematical details provided in [24], it is possible
to conclude that the probability p is given by p ≥ ( 1

2 (1 + 1
k−1 ))n. Therefore, the complexity of

algorithm 2 is within a polynomial factor of (2(1 − 1
k ))n.

4.4 CLASSICAL CONTINUOUS RANDOM WALKS
So far in this chapter we have focused on studying several properties of random walks on
discrete spaces and discrete time steps. We now extend our study to random walks defined in
continuous spaces.

Continuous random walks are a subfield of Markov processes, a branch of mathematics
extensively used in many fields of physics and engineering. Furthermore, the concepts of con-
tinuous Markov processes have been extended into theoretical and applied computer science
like Machine Learning (for example [100]) and some links between continuous Markov pro-
cesses, quantum mechanics and computer science have been developed over the last few years
(for example [19, 20]).
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In this section we shall briefly study the definitions of two different kinds of continuous
random walks: those that are performed on continuous graphs and continuous time, and those
defined on discrete graphs and continuous time.

Let G = (V, E) be a regular isotropic graph, i.e. a graph with constant vertex degree and
with equal transition probability between neighboring sites. Now, suppose that the distance
di j between nodes of the graph decreases, i.e. di j → 0. Also, suppose that the transition time
between nodes is now a real non-negative value rather than a discrete variable, i.e. t ∈ R

+ ∪ {0}
instead of t ∈ N ∪ {0}. Finally, let us assume that the transition probability is equal for any pair
of nodes, i.e. the process is isotropic.

Let us focus on the computation of transition probability density P , that is, the probability
that the walker goes to node x assuming that the walker was located at x0 = 0 at time t = 0. It
can be proved that P obeys the diffusion equation

∂ P
∂t

= D∇2 P, (4.24)

where ∇ is the Laplacian operator and D is the diffusion coefficient.
Now let us suppose that t ∈ R

+ ∪ {0} but the nodes of the graph are discrete. In this case
∇2 is replaced by the Laplacian of the graph

Li j =




di , i = j

−1, (i, j ) ∈ G

0, otherwise.

(4.25)

As we shall see in Chapter 6, Eqs. (4.24) and (4.25) are closely related to the mathematical
formulation of continuous quantum walks.
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C H A P T E R 5

Quantum Walks

Quantum walks are quantum counterparts of classical random walks. As shown in our previous
chapter, classical random walks have been successfully adopted to develop classical algorithms.
Since one of the main topics in quantum computation is the creation of quantum algorithms
which are faster than their classical counterparts, there has been a huge interest in understanding
the properties of quantum walks over the last few years. In addition to their usage in computer
science, the study of quantum walks is relevant to building methods in order to test the
“quantumness” of emerging technologies for the creation of quantum computers.

Quantum walks is a new research topic. Although some authors have selected the name
“quantum random walk” to refer to quantum phenomena [101–103] and, in fact, in the seminal
work by Feynman’s about quantum-mechanical computers [104] we find a proposal that could
be interpreted as a (continuous) quantum walk [105], it is generally accepted that the first paper
with quantum walks as its main topic was published in 1993 by Aharonov et al. [106]. Thus,
the links between classical random walks and quantum walks, as well as the utility of quantum
walks in computer science, are two fresh and open areas of research. As we have seen in the
previous chapter, there is a theory of classical random walks on finite graphs that, although still
far from complete, it has been fruitful in algorithm development. In order to fully capitalize
quantum walks in computer science, we still need to do more work on performance measures to
compare quantum and classical performance, as well as to produce new ideas on how to benefit
from applying quantum walks in algorithm design (as we shall see in the following chapter,
some algorithms based on quantum walks have already been proposed, but only one algorithm
based on a continuous quantum walk has rendered an exponential speedup with respect to its
classical counterparts).

Two models of quantum walks have been suggested:
- The first model, called discrete quantum walks, consists of two quantum-mechanical systems
(a walker and a coin) as well as an evolution operator which is applied to both systems only in
discrete time steps although, as we shall see in the following lines, there are some proposals
about avoiding the use of coins [107, 108] in discrete quantum walks. Discrete quantum walks
with coins are also called coined discrete quantum walks.
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- In the second model, named continuous quantum walks, the evolution operator of the
system can be applied at any time.

In both cases, the quantum walk is performed on discrete graphs (a summary of the
basics of both kinds of quantum walks can be found in [44]).

The original idea behind the construction of quantum algorithms was to start by initial-
izing a set of qubits and then to apply (one of more) evolution operators several times without
performing intermediate measurements, as measurements were meant to be performed only at the
end of the computational process. By doing so, quantum interference would cause a behavior
radically different from that of a classical algorithm.

Not surprisingly, quantum algorithms based on quantum walks have been designed using
the same strategy: initialize qubits, apply evolution operators and measure only to calculate the
final outcome of the algorithm. Indeed, this method has proved itself very useful for building
several remarkable algorithms [44, 109]. However, it has recently been reported that performing
(partial) measurements on a quantum walk may lead to interesting mathematical properties for
algorithm development, like the “top hat” probability distribution [110, 111].

Quantum walks is a new tool expected to play a major role in the field of quantum
algorithms, and a number of benefits of employing such walks in algorithm development are
already known, as we shall see in the following chapter.

The rest of this chapter is organized as follows. We begin by delivering a detailed analysis
of the unrestricted discrete quantum walk on a line with a Hadamard coin operator, followed
by an examination of a discrete quantum walk on a line with a general coin, and the effect
of using several kinds of coins in quantum walks. We then proceed to review some results on
quantum walks on a line with boundaries, followed by a summary of properties and main results
on quantum walks on graphs. We then briefly review some studies that focus on the transition
between classical to quantum walks and vice versa, as well as on the “quantumness” of quantum
walks and the role of entanglement in discrete quantum walks.

The second and last parts of this chapter provide a succinct introduction to continuous
quantum walks, move ahead with an analysis of the randomness of a quantum walk and then
focus on how continuous and discrete quantum walks are connected.

5.1 QUANTUM WALK ON A LINE
Discrete quantum walks on a line (DQWL) is the most studied model of discrete quantum
walks. As its name suggests, this kind of quantum walks are performed on graphs G = (V, E)
of degree |V | = 2 (Def. 4.2.1). Studying DQWL is important in quantum computation for
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several reasons, including:
1. DQWL can be used to build quantum walks on more sophisticated structures like circles or
general graphs.
2. DQWL is a simple model that can be exploited to explore, find and understand relevant
properties of quantum walks for the development of quantum algorithms.
3. DQWL can be employed to test the quantumness of experimental realizations of quantum
computers.

In [112], Meyer made two contributions to the study of DQWL while studying the
models of Quantum Cellular Automata (QCA) and Quantum Lattice Gases:
1. He proposed a model of quantum dynamics that would be used later on to analytically
characterize DQWL.
2. He showed that a quantum process in which, at each time step, a quantum par-
ticle (the walker) moves in superposition both to left and right with equal amplitudes, is
physically impossible in general, the only exception being the trivial motion in a single direction.

In order to perform a discrete DQWL with non-trivial evolution, it was proposed in
[96, 113] to use an additional quantum system: a coin. Thus, a DQWL comprises two
quantum systems, coin and walker, along with a coin unitary operator (to toss a coin) and a
conditional shift operator (to displace the walker either to the left or right depending on the
accompanying coin state component).

In a different perspective, Patel et al. proposed in [107] to eliminate the use of coins by
rearranging the Hamiltonian operator associated with the evolution operator of the quantum
walk (however, there is a price to be paid on the translation invariance of the quantum walk).
Moreover, Hines and Stamp have proposed the development of quantum walk Hamiltonians
[114] in order to reflect the properties of potential experimental realizations of quantum walks
in their mathematical structure.

Motivated by [107], Hamada et al. [115] wrote a general setting for QCA, developed
a correspondence between DQWL and QCA, and applied this connection to show that the
quantum walk proposed in [107] could be modeled as a QCA. The relationship between QCA
and quantum walks has been indirectly explored by Meyer [112]. Additionally, Konno et al.
[116] have studied the relationship between quantum walks and cellular automata, and it has
been shown by van Dam [117] that it is possible to build a quantum cellular automaton capable
of universal computation. Studying the relationship between QCA and quantum walks may
lead to interesting computability properties of quantum walks.

The rest of this section is organized as follows. First, we review the mathematical structure
of a coined DQWL. We then proceed to study in detail the properties of a discrete quantum
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walk on an infinite line, followed by the cases of one and two absorbing boundaries. We finish
with a study on the impact of using multiple coins on quantum walks on a line.

5.1.1 Structure of a Coined DQWL
The main components of a coined DQWL are a walker, a coin, evolution operators for both
walker and coin, and a set of observables:
Walker and Coin: The walker is a quantum system living in a Hilbert space of infinite but
countable dimension Hp . It is customary to use vectors from the canonical (computational)
basis of Hp as “position sites” for the walker. So, we denote the walker as |position〉 ∈ Hp and
affirm that the canonical basis states |i〉p that span Hp , as well as any superposition of the
form

∑
i αi |i〉p subject to

∑
i |αi |2 = 1, are valid states for |position〉. The walker is usually

initialized at the “origin,” i.e. |position〉initial = |0〉p .
The coin is a quantum system living in a two-dimensional Hilbert space Hc . The coin

may take the canonical basis states |0〉 and |1〉 as well as any superposition of these basis states.
Therefore, |coin〉 ∈ Hc and a general normalized state of the coin may be written as |coin〉
= a |0〉c + b|1〉c , where |a |2 + |b|2 = 1.

The total state of the quantum walk resides in Ht = Hp ⊗Hc . So far, only product states
of Ht have been used as initial states, that is, |ψ〉initial = |position〉initial ⊗ |coin〉initial.
Evolution Operators: The evolution of a quantum walk is divided into two parts that closely
resemble the behavior of a classical random walk. In the classical case, chance plays a key role
in the evolution of the system. This is evident in the following example: we first toss a coin
(either biased or unbiased) and then, depending on the coin outcome, the walker moves one
step either to the right or to the left.

In the quantum case, the equivalent of the previous process is to apply an evolution
operator to the coin state followed by a conditional shift operator to the total quantum system.
The purpose of the coin operator is to render the coin state in a superposition, and the
randomness is introduced by performing a measurement on the system after both evolution
operators have been applied to the total quantum system several times.

Among coin operators, customarily denoted by Ĉ , the Hadamard operator (Eq. (2.4))
has been extensively employed. For convenience we show it again in the following equation:

Ĥ = 1√
2

(|0〉c 〈0| + |0〉c 〈1| + |1〉c 〈0| − |1〉c 〈1|). (5.1)

For the conditional shift operator use is made of a unitary operator that allows the walker
to go one step forward if the accompanying coin state is one of the two basis states (e.g. |0〉),
or one step backwards if the accompanying coin state is the other basis state (|1〉). A suitable



book_index MOCL009.cls September 13, 2008 12:6

QUANTUM WALKS 65

conditional shift operator has the form

Ŝ = |0〉c 〈0| ⊗
∑

i

|i + 1〉p〈i | + |1〉c 〈1| ⊗
∑

i

|i − 1〉p〈i |. (5.2)

Consequently, the operator on the total Hilbert space is Û = Ŝ · (Ĉ ⊗ Îp) and a succinct
mathematical representation of a quantum walk after t steps is

|ψ〉t = (Û )t|ψ〉initial, (5.3)

where |ψ〉initial = |position〉initial ⊗ |coin〉initial.

Observables: Several advantages of quantum walks over classical random walks are a
consequence of interference effects between coin and walker after several applications of Û
(other advantages come from quantum entanglement between walker(s) and coin(s) as well as
partial measurement and/or interaction of coins and walkers with the environment). However,
we must perform a measurement at some point in order to know the outcome of our walk. To
do so, we define a set of observables according to the basis states that have been used to define
coin and walker.

There are several ways to extract information from the composite quantum system. For
example, we may first perform a measurement on the coin using the observable

M̂c = α0|0〉c 〈0| + α1|1〉c 〈1|. (5.4)

A measurement must then be performed on the position states of the walker by using the
operator

M̂p =
∑

i

ai |i〉p〈i |. (5.5)

We show in Fig. 5.1 the probability distributions of two 100-steps DQWL. Coin and shift
operators for both quantum walks are given by Eqs. (5.1) and (5.2), respectively. The DQWLs
from plots (a) and (b) have corresponding initial quantum states |0〉c ⊗ |0〉p and |1〉c ⊗ |0〉p . The
first evident property of these quantum walks is the skewness of their probability distributions,
as well as the dependence of the symmetry of such a skewness from the coin initial quantum state
(|0〉 for plot (a) and |1〉 for plot (b)). This skewness comes from constructive and destructive
interference due to the minus sign included in Eq. (5.1). Also, we note a quasi-uniform behavior
in the central area of both probability distributions, approximately in the interval [−70, 70].
Finally, we note that regardless their skewness, both probability distributions cover the same
number of positions (in this case, even positions from −100 to 100. If the quantum walk had
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FIGURE 5.1: Probability distributions of 100 steps DQWLs using coin and shift operators given by
Eqs. (5.1) and (5.2), respectively. Plot (a) corresponds to a DQWL with total initial quantum state
|0〉c ⊗ |0〉p , while plot (b) had total initial quantum state |1〉c ⊗ |0〉p . Two interesting properties of these
quantum walks is the skewness of corresponding probability distributions, along with the dependence of
the symmetry of such skewness from the coin initial state.

been performed an odd number of times, then only odd position sites could have non-zero
probability). A few steps of a DQWL are presented immediately after Eq. (5.7).

5.1.2 Analysis of Quantum Walks on an Infinite Line
Two approaches have been extensively used to study DQWL:
1. Schrödinger approach. In this case, we take an arbitrary component |ψ〉n = (α|1〉c +
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β|0〉c ) ⊗ |n〉p of the quantum walk, the tensor product of coin and position components
for a certain walker position. |ψ〉n is then Fourier-transformed in order to get a closed form
of the coin amplitudes. Then, standard tools of complex analysis are managed to calculate the
statistical properties of the probability distribution computed from corresponding coin ampli-
tudes.
2. Combinatorial approach. In this method we compute the amplitude for a particular position
component |n〉p by summing up the amplitudes of all the paths which begin in the given initial
condition and end up in |n〉p . This approach can be seen as using a discrete version of path
integrals.

More recently, Fuss et al. have proposed an analytic description of probability densities
and moments for the one-dimensional quantum walk on a line [118]. Moreover, Feldman and
Hillery [119] have proposed an alternative formulation of discrete quantum walks based on
scattering theory.

In the following lines we review both Schrödinger and combinatorial approaches to
analyze the Hadamard walk, a specific but very powerful DQWL with coin and shift operators
given by Eqs. (5.1) and (5.2), respectively. Later on we show how the Hadamard walk is related
to the more general case of a DQWL with arbitrary coin operator.

Schrödinger Approach for the Hadamard Walk
The analysis of DQWL properties using the Discrete Time Fourier Transform (DTFT) and
methods from complex analysis was first made by Nayak and Vishwanath [113], followed
by Ambainis et al. [96], Košı́k [120], and Carteret et al. [121, 122]. Following [96, 113], a
quantum walk on an infinite line after t steps can be written as |ψ〉 = (Û )t|ψ〉initial (Eq. (5.3))
or, alternatively, as

∑
k

[ak |0〉c + bk |1〉c ]|k〉p (5.6)

where |0〉c , |1〉c are the coin state components and |k〉p are the walker state components. For
example, let us suppose we have

|ψ〉0 = |0〉c ⊗ |0〉p (5.7)

as the quantum walk initial state, with Eqs. (5.1) and (5.2) as coin and shift operators, respec-
tively. Then, the first three steps of this quantum walk can be written as

|ψ〉1 = 1√
2
|0〉c |1〉p + 1√

2
|1〉c | − 1〉p ,
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|ψ〉2 =
(

1
2
|0〉c + 0|1〉c

)
|2〉p +

(
1
2
|0〉c + 1

2
|1〉c

)
|0〉p +

(
0|0〉c − 1

2
|1〉c

)
| − 2〉p ,

and

|ψ〉3 =
(

1

2
√

2
|0〉c + 0|1〉c

)
|3〉p +

(
1√
2
|0〉c + 1

2
√

2
|1〉c

)
|1〉p +( −1

2
√

2
|0〉c + 0|1〉c

)
| − 1〉p +

(
0|0〉c + 1

2
√

2
|1〉c

)
| − 3〉p .

We now define

�(n, t) =
(

�R(n, t)
�L(n, t)

)
(5.8)

as the two component vector of amplitudes of the particle being at point n and time t or, in
operator notation

|�(n, t)〉 = �L(n, t)|1〉 + �R(n, t)|0〉. (5.9)

We shall now analyze the behavior of a Hadamard walk at point n after t + 1 steps. We
begin by applying the Hadamard operator given by Eq. (5.1) to those coin state components
in positions n − 1, n, and n + 1:

Ĥ(|�(n − 1, t)〉 + |�(n, t)〉 + |�(n + 1, t)〉)
= 1√

2
(|�L(n − 1, t)〉|0〉 + |�R(n − 1, t)〉|0〉 − |�L(n + 1, t)〉|1〉 + |�R(n + 1, t)〉|1〉

−|�L(n − 1, t)〉|1〉 + |�R(n − 1, t)〉|1〉 + |�L(n + 1, t)〉|0〉 + |�R(n + 1, t)〉|0〉
+|�L(n, t)〉|0〉 + |�R(n, t)〉|0〉 − |�L(n, t)〉|1〉 + |�R(n, t)〉|1〉). (5.10)

Now, we apply the shift operator given by Eq. (5.2) to Eq. (5.10):

Û (Ĥ(|�(n − 1, t)〉 + |�(n, t)〉 + |�(n + 1, t)〉))
= 1√

2
(|�L(n, t)〉|0〉 + |�R(n, t)〉|0〉−|�L(n, t)〉|1〉 + |�R(n, t)〉|1〉

−|�L(n − 2, t)〉|1〉 + |�R(n − 2, t)〉|1〉 + |�L(n + 2, t)〉|0〉 + |�R(n + 2, t)〉|0〉
−|�L(n − 1, t)〉|1〉 + |�R(n − 1, t)〉|1〉 + |�L(n + 1, t)〉|0〉 + |�R(n + 1, t)〉|0〉).

(5.11)

The bold font amplitude components of Eq. (5.11) are the amplitude components of
|�(n, t + 1)〉, which can be written in matrix notation as

�(n, t + 1) =
(−1√

2
1√
2

0 0

)
�(n + 1, t) +

(
0 0
1√
2

1√
2

)
�(n − 1, t). (5.12)
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Let us label

M =
(−1√

2
1√
2

0 0

)
and M+ =

(
0 0
1√
2

1√
2

)
.

Thus

�(n, t + 1) = M �(n + 1, t) + M+�(n − 1, t). (5.13)

Equation (5.13) is a difference equation with �(0, 0) =
(

1
0

)
and �(n, 0) =

(
0
0

)
, ∀ n �=

0 as initial conditions (Eq. (5.7)).
The purpose of this analysis is to find analytical expressions for �L(n, t) and �R(n, t).

To do so, we compute the Discrete Time Fourier Transform of Eq. (5.13). The Discrete Time
Fourier Transform is given as follows.

Definition 5.1.1. Discrete Time Fourier Transform. The Discrete Time Fourier Transform is
part of the family of Fourier transforms. It transforms a function f (n) of a discrete “time” variable
n ∈ Z into a continuous, periodic spectrum F(eiω). Let f : Z → C be a complex function over the
integers ⇒ its Discrete Time Fourier Transform (DTFT) f̃ : [−π, π] → C is given by

F(eiω) =
∞∑

n=−∞
f (n)e−inω ,

and its inverse is given by

f (n) = 1
2π

∫ π

−π

F(eiω)einωdω.

Ambainis et al. [96] employ the following slight variant of the DTFT:

f̃ (k) =
∑

n

f (n)eik , (5.14)

where f : Z → C and f̃ : [−π, π] → C. Corresponding inverse DTFT is given by

f (n) = 1
2π

∫ π

−π

f̃ (k)e−ikdk. (5.15)

So, using Eq. (5.14) we have

�̃(k, t) =
∑

n

�(n, t)eikn. (5.16)
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Using Eq. (5.13) we obtain

�̃(k, t + 1) =
∑

n

(M �(n + 1, t) + M+�(n − 1, t))eikn. (5.17)

After some algebra we get

�̃(k, t + 1) = Mk�̃(k, t), where Mk = e−ik M + eik M+ = 1√
2

(
−e−ik e−ik

eik eik

)
. (5.18)

Thus

�̃(k, t) =
(

�̃L(k, t)
�̃R(k, t)

)
= Mt

k�̃(k, 0), where �̃(k, 0) =
(

1
0

)
. (5.19)

Our problem now consists on diagonalizing the (unitary) matrix Mk in order to calculate
Mt

k (Theorem 2). If Mk has eigenvalues {λ1
k, λ

2
k} and eigenvectors |
1

k〉, |
2
k〉 then

Mk = λ1
k |
1

k〉〈|
1
k | + λ2

k |
2
k〉〈
2

k |. (5.20)

Using Def. 2.1.13 we find

Mt
k = (λ1

k)t|
1
k〉〈
1

k | + (λ2
k)t|
2

k〉〈
2
k |. (5.21)

It is shown in [96, 113] that

λ1
k = eiωk , λ2

k = ei(π−ωk ), where ωk ∈
[
−π

2
,
π

2

]
and sin(ωk) = sin k√

2
(5.22)

and


1
k = 1√

2[(1 + cos2(k)) + cos(k)
√

1 + cos2 k]

(
e−ik

√
2eiωk + e−ik

)
, (5.23a)


2
k = 1√

2[(1 + cos2(π − k)) + cos(π − k)
√

1 + cos2(π − k)]

(
e−ik

−√
2e−iωk + e−ik

)
. (5.23b)

From Eqs. (5.22), (5.23a), and (5.23b) we compute the Fourier-transformed amplitudes
�̃L(n, t) and �̃R(n, t):

�̃L(n, t) = e−ik

2
√

1 + cos2 k
(eiωk t − (−1)te−iωk t), (5.24a)
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�̃R(n, t) = 1
2

(
1 + cos k√

1 + cos2 k

)
eiωk t + (−1)t

2

(
1 − cos k√

1 + cos2 k

)
e−iωk t . (5.24b)

Using Eq. (5.1.1) on Eqs. (5.24a) and (5.24b), we prove the following theorem:

Theorem 1. Let |�〉0 = |0〉p ⊗ |0〉c be the initial state of a discrete quantum walk on an infinite
line with coin and shift operators given by Eqs. (5.1) and (5.2), respectively ⇒

�L(n, t) = 1
2π

∫ π

−π

−ieik

2
√

1 + cos2 k
(e−i(ωk t−kn))dk,

�R(n, t) = 1
2π

∫ π

−π

(
1 + cos k√

1 + cos2 k

)
(e−i(ωk t−kn))dk,

where ωk = sin−1
(

sin k√
2

)
and ωk ∈ [−π

2 , π
2

]
.

The amplitudes for even n (odd n) at odd t (even t) are zero, as can be inferred from
the definition of the quantum walk. Now we have an analytical expression for �L(n, t) and
�R(n, t), and taking into account that P (n, t) = |�L(n, t)|2 + |�R(n, t)|2, we are interested in
studying the asymptotical behavior of �(n, t) and P (n, t). Integrals in Theorem 1 are of the
form

I (α, t) = 1
2π

∫ π

−π

g (k)eiφ(k,α)tdk, where α = n/t( = position/number of steps).

The asymptotical properties of this kind of integral can be studied using the method of
stationary phase [123, 124], a standard method in complex analysis. Using such a method, the
authors of [96, 113] reported the following theorems and conclusions:

Theorem 2. Let ε > 0 be any constant, and α be in the interval (−1√
2
+ ε, 1√

2
− ε). Then, as

t → ∞, we have (uniformly in n)

pL(n, t) � 2

π
√

1 − 2α2t
cos2

(
−ωt + π

4
− ρ

)
,

pR(n, t) � 2(1 + α)

π (1 − α)
√

1 − 2α2t
cos2

(
−ωt + π

4

)
,

where ω = αρ + θ , ρ = arg(−B +√
�), θ = arg(B + 2 +√

�), B = 2α
1−α

, and � = B2 −
4(B + 1).
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Theorem 3. Let n = αt → ∞ with α fixed. In case α ∈ (−1,−1/
√

2) ∪ (1/
√

2, 1) ⇒∃ c > 1
for which pL(n, t) = O(c −n) and pR(n, t) = O(c −n).

Conclusions
1. Quasi-uniform behavior. The wavefunction �L(n, t) and �R(n, t) (Theorem 1) is almost
uniformly spread over the region for which α is in the interval [−1/

√
2, 1/

√
2] (Theorem 2),

and shrinks quickly outside this region (Theorem 3). Furthermore, by integrating the prob-
ability functions from Theorem 2, it is possible to see that almost all of the probability is
concentrated in the interval [(−1/

√
2 + ε)t, (1/

√
2 − ε)t]. In fact, the exact probability value

in that interval is P = 1 − 2ε
π

− O(1)
t .

2. Standard deviation. According to [96, 113], the zeroth and second moments of the proba-
bility distribution from Theorem 2 are µ1 = 1−√

2√
2

and µ2 =
√

2−1√
2

, respectively. Being rigorous,
and taking into account that both moments were computed using normalized (over the total
number of steps t) probability distributions, then the variance of the Hadamard walk is given
by Eq. (4.5):

σ 2
Ĥ

= µ2 − µ2
1 =

[√
2 − 1√

2

]
t −

([
1 −√

2√
2

]
t

)2

. (5.25)

That is, σ 2
Ĥ

= O(t2) and, consequently,

σĤ = O(t). (5.26)

However, the second moment has also been interpreted [125, 126] as the actual variance
of the probability distribution given in Theorem 2. Furthermore, by introducing a novel method
to compute the probability distribution X of the unrestricted DQWL, it was shown in [126] that
σ (X)

t →
√√

2−1
2 as t → ∞. In any case, the standard deviation of the unrestricted Hadamard

DQWL is O(t) and that result is in contrast with the standard deviation of an unrestricted
classical random walk on a line, which is O(

√
t) (Eq. (4.12)).

3. Mixing time. It was shown in [96, 113] that an unrestricted Hadamard DQWL has a linear
mixing time τ

(q )
ε = O(t), where t is the number of steps. Furthermore, τ

(q )
ε was compared with

the corresponding mixing time of a classical random walk on a line, which is quadratic, i.e.
τ (c )
ε = O(t2).

In order to properly bound and evaluate the impact of this result in the fields of quantum
walks and quantum computation, a few clarifications are needed.

(a) The mixing time measure used in this case is not the same as Eq. (4.2.5), the reason being
that unitary Markov chains in finite state space (such as finite graph analogues of quantum
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walks) have no stationary distribution [96, Sec. 2]. Instead, the mixing time measure proposed
is given by

Definition 5.1.2. Instantaneous Mixing Time. τε = maxu mint{t| ||Pu(t) − π || ≤ ε}
which is a more relaxed definition in the sense that it measures the first time that the current
probability distribution Pu(t) is ε-close to the stationary distribution, without the requirement
of continuing being ε-close for all future steps.

(b) The stationary distribution of an unrestricted classical random walk on a line is the binomial
distribution, spread all over Z. The only difference between Pt , the probability distribution
of an unrestricted classical random walk on a line at step t, and its limiting distribution P is
the numerical value of the probability assigned to each node, as the shape of the distribution
is the same. Although the binomial distribution can be roughly approximated by a uniform
distribution for large values of t, depending on the precision we need for a certain task, that
comparison is not precise.

We can adopt the hitting time of an unrestricted classical random walk on a line together
with Theorem 10 to figure out its corresponding mixing time. As shown in our chapter on
classical random walks, the hitting time of an unrestricted classical random walk on a line
depends on the region we are looking into. Specifically, the hitting time is O(

√
t) for k � t and

O(2t) for k ≈ t (Eqs. (4.17) and (4.18)). Thus, to hit node k with equal probabilities Ptk = Pk

may depend on the region where k is located. For example, it may take O(
√

t) if k � t and
O(2t) if k ≈ t. As previously expressed, it seems that more analysis and new methods for
studying mixing times on unrestricted classical random walks are required, particularly within
the framework of algorithm development.

So, comparing mixing times for quantum and classical unrestricted walks on a line is
not necessarily clear and straightforward. Furthermore, and in order to reduce complexity in
the analysis of algorithms, the infiniteness property of unrestricted classical random walks can
sometimes be relaxed and properties of classical random walks on finite lines are used instead
[43].

This is indeed the case in the comparison of mixing times for classical and quantum walks
on a line. As shown in Eq. (4.20), the hitting time (and therefore its mixing time) of a classical
random walk on a line with reflecting barriers is O(t2), where t is the number of steps.

Discrete Path Integral Analysis of the Hadamard Walk
A different proposal to study the properties of quantum walks, based on combinatorics and the
method given in [112] to quantify quantum state amplitudes, has been delivered in [96, 121,
122]. The main idea behind this approach is to count the number of paths that take a quantum
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walker from point a to point b. Thus, this approach can also be seen as a discrete path-integral
method. Let us begin by stating the following lemma:

Lemma 1. [96, 112]. Let t ∈ [−n, n) ∩ Z and l = t−n
2 . The amplitudes of position n after t steps

of the Hadamard walk are

ψL(n, t) = 1√
2t

∑
k

(
l − 1

k

)(
t − l

k

)
(−1)l−k−1, (5.27a)

ψR(n, t) = 1√
2t

∑
k

(
l − 1
k − 1

)(
t − l

k

)
(−1)l−k . (5.27b)

It was shown in [96] that the probabilities computed from those amplitudes of Lemma 1
can be expressed using Jacobi polynomials. Furthermore, it was shown in [122] that both
Schrödinger and combinatorial approaches are equivalent.

Theorem 4. Let n ∈ N ∪ {0} and J (a,b)
ν (z) be the normalized degree ν Jacobi polynomial with

J (a,b)
ν as its constant term. Let us also define ν = (t−n)

2 − 1. Then

Pl (n, t) = 2−n−2(J (0,n+1)
ν )2, (5.28a)

PR(n, t) =
(

t + n
t − n

)2

2−n−2(J (1,n)
ν )2, (5.28b)

with pL(−n, t) = pL(n − 2, t) and pR(−n, t) =
(

t − n
t + n

)2

pR(n, t).

A slight variation of this approach is given in [127]. An alternative method based on
combinatorics and decompositions of unitary matrices has been proposed in [126, 128–130].
Also, Katori et al. [131] apply group theory to analyze symmetry properties of quantum walks
on a line and, along the same line of thought, Chandrashekar et al. [132] have proposed a
generalized version of the discrete quantum walk with coins living in SU(2).

Unrestricted DQWL With a General Coin and With Several Coins
The study of the Hadamard walk is relevant to the field of quantum walks not only as an
example but also because of the fact that some important properties shown by the Hadamard
walk (for example, its standard deviation and mixing time) are shared by any quantum walk on
the line.
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In [133] it was shown that for a general unbiased initial coin state

|ψ(x, 0)〉 = √
η(|0〉c + eiα

√
1 − η|1〉c ) ⊗ |0〉p (5.29)

and a single step (in Fourier space) of the quantum walk

|ψ̃(k, t + 1)〉 = C̃k |ψ̃(k, t)〉,
where

C̃k =
( √

ρeik √
1 − ρei(θ+k)

√
1 − ρei(−k+φ) −√

ρei(−k+θ+φ)

)
(5.30)

is the Fourier-transformed version of the most general two-dimensional coin operator

C2 =
( √

ρ
√

1 − ρeiθ
√

1 − ρeiφ −√
ρei(θ+φ)

)

with θ, φ ∈ [0, π] and ρ ∈ [0, 1], we can express a t-step quantum walk on a line as

|ψ̃(k, t + 1)〉 = C̃ t
k |ψ̃(k, 0)〉, where |ψ̃(k, 0)〉 =

( √
η

eiα√1 − η

)
⊗ |k〉. (5.31)

If C̃k is expressed in terms of its eigenvalues λ±
k and eigenvectors |λ±

k 〉 then C̃ t
k =

(λ+
k )t|λ+

k 〉〈λ+
k | + (λ−

k )t|λ−
k 〉〈λ−

k |, and Eq. (5.31) can be written as

|ψ̃(k, t + 1)〉 = (λ+
k )t|λ+

k 〉〈λ+
k |ψ̃(k, 0)〉 + (λ−

k )t|λ−
k 〉〈λ−

k |ψ̃(k, 0)〉 (5.32)

with

(λ±
k )t〈λ±

k |ψ̃(k, 0)〉 = (λ±
k )t

n±
k

e−ik

[
√

η −
√

1 − η

1 − ρ
ei(θ+α)(

√
ρ ∓ ei(k−δ)e∓iωk )

]
, (5.33)

where δ = (θ + φ)/2, sin(ωk) = √
ρ sin(k − δ), λ±

k = ±eiδe±iωk , nk =
√

2[1∓√
ρ cos(k−δ∓ωk )]

1−ρ
,

λ± = ±eiδe±iωk , and

|λ±〉 = 1
n±

k

(
eik

eiθ (λ± −√
ρeik)/

√
1 − ρ

)
.

As in the Hadamard walk case, the properties of the quantum walk defined by Eqs. (5.33)
and (5.31) may be studied by inverting the Fourier transform and using methods of complex
analysis. Let us concentrate on the phase factors α ∈ R of the coin initial state (Eq. (5.29)) and
θ ∈ R of the coin operator (Eq. (5.30)). Note that we can choose many pairs of values (α, θ )
for any phase factor r = α + θ . So, if we fix a value for θ (i.e. if we use only one coin operator)
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FIGURE 5.2: Graph (a) was computed using coin initial state |ψ〉0 = |0〉c ⊗ |0〉p . Graphs (b) and
(c) had |ψ〉 = 1√

2
(|0〉c + i |1〉c ) ⊗ |0〉p and |ψ〉 = √

0.85|0〉c −
√

0.15|1〉c ) ⊗ |0〉p as coin initial states,
respectively. Note that symmetry in the probability distribution can be achieved by using coin initial
states with either complex or real relative phase factors [133]. All graphs were computed from 100-step
Hadamard quantum walks on a line with Eq. (5.2) as shift operator.

we can always vary the initial coin state |ψ(x, 0)〉 (Eq. (5.29)) to get a value for α so that we
can compute a quantum walk with a certain phase factor value r . It is in this sense we say that
the study of a Hadamard walk suffices to analyze the properties of all unrestricted quantum
walks on a line. In Fig. 5.2 we show the probability distributions of three Hadamard walks with
different initial coin states.

The effect of different and multiple coins has been studied by several authors. In [134,
135], Konno and Inui have examined probability distributions computed with quantum walks
on a line using three- and four-dimensional coins, respectively. The results shown in [134] have
some similarities with the quantum walks with maximally entangled coins reported in [136] in
the sense that both quantum walks tend to concentrate most of their probability distributions
about the origin of the walk. Additionally, Ribeiro et al. [137] have considered quantum walks
with several biased coins applied aperiodically, D’Alessandro et al. [138] have studied non-
stationary quantum walks on a cycle using different coin operators at each computational step,
and Feinsilver and Kocik [139] have proposed the use of Krawtchouk matrices (via tensor
powers of the Hadamard matrix) for calculating quantum amplitudes. In [127], Brun et al.
analyzed the behavior of a quantum walk on the line using both M two-dimensional coins and
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single coins of 2M dimension, and Bañulus et al. [140] have studied the behavior of quantum
walks with a time-dependent coin.

Ermann et al. [141] have inspected the decoherence of quantum walks with a complex
coin, where the coin is part of a larger quantum system and Chandrashekar et al. [142] have
studied symmetries and noise effects on coined discrete quantum walks. Finally, Kendon et al.
[125, 143, 144] have extensively studied the computational consequences of coin decoherence
(i.e. interaction with the environment) in quantum walks.

5.1.3 Discrete Quantum Walk With Boundaries
The properties of discrete quantum walks on a line with one and two absorbing barriers were
first studied in [96]. For the semi-infinite discrete quantum walk on a line, Theorem 5 was
reported.

Theorem 5. Let us denote by p∞ the probability that the measurement of whether the particle is at
the location of the absorbing boundary (location 0 in [96]) ⇒ p∞ = 2

π
.

Theorem 5 is in stark contrast with its classical counterpart (Eq. (4.15)), as the probability
of eventually being absorbed is equal to unity.

The case of a quantum walk on a line with two absorbing boundaries was also studied in
[96], and their main result is given in Theorem 6.

Theorem 6. For each n > 1, let pn be the probability that the process eventually exits to the left.
Also define qn to be the probability that the process exits to the right. Then

(i) ∀ n > 1 ⇒ pn + qn = 1,

(ii) lim
n→∞ pn = 1√

2
.

Theorems 5 and 6 are revisited in [145] with detailed corresponding proofs using both
Fourier transform and path counting approaches. Also, [145] proves some conjectures given
in [146]. Finally, Konno studied the properties of quantum walks with boundaries using a
set of matrices derived from a general unitary matrix together with a path counting method
[103, 147].

5.2 QUANTUM WALKS ON GRAPHS
Classical random walks on graphs have been crucial to the development of stochastic algorithms
[23]. In consequence, quantum walks on graphs has become an active area of research in
quantum computation. A gentle introduction to the main ideas about discrete and continuous
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quantum walks on graphs, as well as to the quantification of resources required for their
implementation, is given in [148]. Also, [149] presents numerical simulations of quantum
walks in higher dimensions using separable and non-separable coin operators.

In [150], Aharonov et al. studied several properties of quantum walks on undirected
graphs. Motivated by the importance of stationary distributions of Markov Chains (Theorem
8), the quantum counterpart of a stationary distribution is studied in [150]. Their first finding
consisted in proving that, if we adopt the classical definition of stationary distribution (Def.
4.1.11), then quantum walks do not converge to any stationary state nor to any stationary
distribution.

In order to review the contributions of [150] and other authors, let us begin by formally
introducing the following elements. Let G = (V, E) be a d-regular graph (Def. 4.2.1) with
|V | = n. Note that graphs studied in this section are finite, as opposed to the unrestricted line we
used in the beginning of this chapter. Let Hv be the Hilbert space spanned by states |v〉 where
v ∈ V . Also, we define HA, the coin space, as an auxiliary Hilbert space of dimension d spanned
by the basis states {|i〉|i ∈ {1, . . . , d}}, and Ĉ , the coin operator, as a unitary transformation
in HA. Finally, label each directed edge with a number between 1 and d so that the directed
edges form a permutation (for Cayley graphs the labeling of a directed edge is simply the
generator associated with the edge). Now we define a shift operator Ŝ on Hv ⊗HA such that
Ŝ|a, v〉 = |a, u〉, where u is the ath neighbor of v (since edge labeling is a permutation then Ŝ
is unitary). Finally, we define one step of the quantum walk on G as Û = Ŝ(Ĉ ⊗ Î ).

As in the study of quantum walks on a line, if |ψ〉0 is the quantum walk initial state then
a quantum walk on a graph G can be defined as

|ψ〉t = Û t|ψ〉0. (5.34)

Before introducing the concept of quantum limiting distribution, we provide an example of a
quantum walk on a graph: a discrete quantum walk on a cycle.

Example. Discrete quantum walk on a cycle. Let Gcyc be a cycle with n nodes (see
Fig. 5.3). A quantum walk on Gc acts on a total Hilbert space H2 ⊗Hn. For the sake of this
example, we employ the Hadamard coin operator given by Eq. (2.4) and the shift operator
defined by Ŝ|0, j〉 = |0, j + 1 mod n〉 and Ŝ|1, j〉 = |0, j − 1 mod n〉.

Now we discuss the definition and properties of limiting distributions for quantum walks
on graphs. Suppose we begin a quantum walk with initial state |ψ〉0. Then, after t steps, the
probability distribution of the graph nodes induced by Eq. (5.34) is given by
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FIGURE 5.3: Quantum walk on a cycle. A cycle is a 2-regular graph which can be viewed as a Cayley
graph of the group Z with generators 1,−1. The cycle shown in this figure has ten vertices.

Definition 5.2.1. Probability distribution on the nodes of G. Let v be a node of G and Hd be
the coin Hilbert space. Then

Pt(v|ψ0) =
∑

i∈{1,...,d}
|〈i, v|ψ〉t|2.

If probability distributions P0, P1 at time 0 and 1 are different, it can be proved [150]
that Pt does not converge. However, if we compute the average of distributions over time

Definition 5.2.2. Averaged probability distribution.

P̄t(v|ψ0) = 1
T

T−1∑
t=0

Pt(v|ψ0),

we can obtain the following result.

Theorem 7. [150]. Let |k〉, λk denote the eigenvectors and corresponding eigenvalues of Û . Then,
for an initial state |ψ〉0 = ∑

k ak |k〉
lim

t→∞ P̄t(v|ψ0) =
∑
i, j,a

ai a∗
j 〈a, v|i〉〈 j |a, v〉,

where the sum is only on pairs i, j such that λi = λ j .
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If all the eigenvalues of Û are distinct, the limiting distribution takes a simple form. Let
pi (v) = ∑

i∈{1,...,d} |〈i, v|k〉|2, i.e. pi (v) is the probability to measure node v in the eigenstate
|k〉. Then it is possible to prove that for an initial state |ψ〉0 = ∑

k ak |k〉⇒ limT→∞ P̄t(v|ψ0) =∑
i |ai |2 pi (v) [150]. Using this fact it is possible to prove the following theorem.

Theorem 8. [150] Let Û be a coined quantum walk on the Cayley graph of an Abelian group, such
that all eigenvalues of Û are distinct. Then the limiting distribution π (Def. 5.2.2) is uniform over
the nodes of the graph, independent of the initial state |ψ〉0.

Using Theorem 8 we compute the limiting distribution of a quantum walk on a cycle.

Theorem 9. The limiting distribution π for the coined quantum walk on the n-cycle, with n odd,
and with the Hadamard operator as coin, is uniform on the nodes, independent of the initial state
|ψ〉0.

Several other important results for quantum walks on a graph are delivered in [150].
Among them, we mention some results on mixing times.

Definition 5.2.3. Average Mixing time. The mixing time Mε of a quantum Markov chain with
initial state |k, v〉 is given by

Mε = min{T|∀t ≥ T ⇒ ||P̄t(k, v) − π (k, v)|| ≤ ε}.

Theorem 10. For the quantum walk on the n-cycle, with n odd, and the Hadamard operator as
coin, we have

Mε ≤ O
(

n log n
ε3

)
.

So, the mixing time of a quantum walk on a cycle is O(n log n). The mixing time of
corresponding classical random walk on a circle is O(n2) (Eq. (4.22)). Now we focus on a
general property of mixing times.

Theorem 11. For a general quantum walk on a bounded degree graph, the mixing time is at most
quadratically faster than the mixing time of the simple classical random walk on that graph.

The properties of the wavefunction of a quantum particle randomly walking on a circle
have been studied in [151], and some details of limiting distributions of quantum walks on
cycles are shown in [152] as well as in [153]. Also, the effect of using different coins on the
behavior of quantum walks on an n-cycle as well as in graphs of higher degree has been studied
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in [133]. Finally, a standard deviation measure for quantum walks on circles is introduced in
[154].

Another graph studied in quantum walks is the hypercube, defined by the following.

Definition 5.2.4. The hypercube. The hypercube is an undirected graph with 2n nodes, each of
which is labeled by a binary string of n bits. Two nodes  x,  y in the hypercube are connected by an
edge if  x,  y differ only by a single bit flip, i.e. if | x −  y | = 1, where | x −  y | is the Hamming distance
between  x and  y. As an example, the three-dimensional hypercube is shown in Fig. 6.1.

In [155], Moore and Russell derived values for the two notions of mixing times we have
studied (Defs. 5.1.2 and 5.2.3) for continuous and discrete quantum walks on the hypercube.
As for the discrete quantum walk, [155] begins by defining Grover’s operator as coin operator.

Definition 5.2.5. Grover’s operator. Let H be an n-dimensional Hilbert space and |i〉 be the
canonical basis forH and |ψ〉 = 1√

n

∑n−1
i=0 |i〉. Then we define Grover’s operator as Ĝ = |ψ〉〈ψ | − Î .

Additionally, their shift operator is given by

Ŝ =
n−1∑
d=0

∑
 x

|d ,  x ⊕  ed 〉〈d ,  x| (5.35)

where  ed is the ith basis vector of the n-dimensional hypercube. So, the quantum walk on the
hypercube proposed in [155] can be written as

|ψ〉t = Û t|ψ〉0 = [Ŝ(Ĝ ⊗ În)]t|ψ〉0 (5.36)

for a given initial state |ψ〉0. Using a Fourier transform approach as in [113], it was proved in
[155] that

Theorem 12. For the discrete quantum walk defined in Eq. (5.36), its instantaneous mixing time
(Def. 5.1.2) is given by t = kπ

4 n, i.e. t = O(n), with ε = O(n−7/6) for all odd k.

Reference [155] has several other contributions, and among those we would like to briefly
mention that its authors elaborate on the fact that the relationship between different definitions
of mixing times (i.e. instantaneous and average mixing times) for continuous and discrete
quantum walks is not clear. Additionally, [155] provides analytical expressions for eigenvalues
and corresponding eigenvectors of the evolution operator defined in Eq. (5.36) which were later
used in [156] for the design of a search algorithm based on a discrete quantum walk (more on
this in the following section).
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According to Theorem 11, the speedup that can be provided by a quantum walk on
a graph is not enough to exponentially outperform classical walks. So, other parameters of
quantum walks have been investigated, among them their hitting time. In [157], Kempe offers
an analysis of hitting time of discrete quantum walks on the hypercube. Due to the potential
service of hitting times in the construction of quantum algorithms, we shall analyze [157] in
detail in Chapter 6 (algorithms based on quantum walks).

The sub-field of quantum walks on graphs is wide and rich. As a result, there are
several interesting works which we have not covered in detail in this lecture due to space
restrictions. However, we would like to point out relevant works to the interested reader. We
start by mentioning the numerical simulations of quantum walks on graphs shown in [133],
particularly the “localization” phenomenon due to the use of Grover’s operator (Eq. (5.2.5)) in
a two-dimensional quantum walk. Inspired by this phenomenon, Innui et al. proved in [158]
that the key factor behind this localization phenomenon is the degeneration of the eigenvectors
of corresponding evolution operator. In [159], Gottlieb et al. studied the convergence of
coined quantum walks in R

d . In [160], Feldman and Hillery have studied the relationship
between quantum walks on graphs and scattering theory. Also, López-Acevedo and Gobron
[161] delivered an algebraic oriented analysis of quantum walks on Cayley graphs, Montanaro
presented in [162] a study on quantum walks on directed graphs, Krovi and Brun [163] have
studied quantum walks (and their hitting times) on quotient graphs as well as links between
those quantum walks and the group theory properties of Cayley graphs (for an extended work
on this last topic, see [164]).

5.3 MORE CONSIDERATIONS ON CLASSICAL AND
QUANTUM WALKS

The links between classical and quantum versions of random walks have been studied by several
authors under different perspectives:
(1) Some authors, among them Watrous [165], have been interested in simulating classical
random walks using quantum walks. Studies on this area would provide us not only with
interesting computational properties of both types of walks, but also with a deeper insight of
the correspondences between the laws that govern computational processes in classical and
quantum physical systems.
(2) Some other authors have studied the properties and conditions of transitions from quantum
walks into classical random walks. This area of research is interesting not only for exploring
computational properties of both kinds of walks, but also because we would provide quantum
computer builders (i.e. experimental physicists and engineers) with some criteria and thresholds
for testing the quantumness of a quantum computer. Moreover, these studies have allowed the
scientific community to reflect on the quantum nature of quantum walks and some of their
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implications in algorithm development (in fact, we shall discuss the quantum nature of quantum
walks in subsection 5.3.1).

For example, it was shown in [166] that the quantum–classical walk transition could
be achieved via two possible methods, in addition to the obvious procedure of performing
measurements: decoherence in the quantum coin and the use of higher dimensional coins.
Moreover, by using a discrete path approach, it was shown in [130] that introducing a random
selection of coins (that is, amplitude components for coin operators are chosen randomly,
being under the unitarity constraint) makes quantum walks behave classically. In [167], the
authors make use of a family of graphs (e.g. Fig. 6.2(a)) to exemplify the different behavior of
(continuous) quantum walks and classical random walks. Then, several authors have addressed
the physical and computational properties of decoherence (i.e. interaction with the environment)
in quantum walks: Ermann et al. [141] have inspected the decoherence of quantum walks
with a complex coin, where the coin is part of a larger quantum system, and Chandrashekar
et al. [142] have studied symmetries and noise effects on coined discrete quantum walks. Then,
Kendon et al. [125, 143, 144] have extensively studied the computational consequences of coin
decoherence in quantum walks. Finally, Alagic and Russell [168] have studied the effects of
independent measurements on a quantum walker traveling along the hypercube, and Košı́k et
al. [169] have studied the quantum to classical transition of a quantum walk by introducing
random phase shifts in the coin particle.

5.3.1 Are Quantum Walks Really Quantum?
The results presented in this chapter show that superposition and, consequently, interference
play an important role in the structure and properties of discrete quantum walks. However,
interference is also a characteristic of classical physical systems, like electromagnetic waves.
Thus, it makes sense to scrutinize whether the statistical and computational properties of
quantum walks are really due to their quantum nature or not.

Arguments in favor of the plausibility of using classical physics for building experiments,
which replicate some interference and statistical properties of quantum walks, are given in
[170–173], where it was shown that it is possible to develop implementations of a quantum
walk on a line purely described by classical physics (wave interference of electromagnetic fields)
and still be able to reproduce the variance enhancement that characterizes a discrete quantum
walk. For example, the implementation proposed in [172] utilizes the frequency of a light field
as walker and the spatial path or the polarization state of the same light field as the coin.

Arguments in favor of the quantum-mechanical nature of quantum walks have been
provided by, among others, Kendon and Sanders [174] who showed it would still be necessary
to have a quantum-mechanical description of such an implementation in order to account
for two properties of a quantum walk: (i) the indivisibility of the quantum walker and (ii)
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complementarity, which in quantum computation jargon may be stated as follows: the trade-off
between interference and information about the path followed by the walker (knowing the path followed
by a quantum particle decreases the sharpness of the interference pattern [111, 175]). Furthermore,
Romanelli et al. [176] showed that the evolution equation of a quantum walk on a line can be
separated into two parts: Markovian and interference terms, and that the quadratic increase in
the variance of the quantum walker is a consequence of quantum evolution.

Thus it seems that if we are only interested in some statistical properties of quantum
walks, like its variance enhancement with respect to classical random walks, we could do with
either classical or quantum experimental setups. However, the quantum-mechanical nature of
walkers and/or coins is essential in the following cases:

1. From a purely physical point of view, if one is interested in using quantum walks for
testing the quantumness of a quantum computer realization, complementarity would be a very
helpful resource as it is a property of quantum-mechanical systems that cannot be reproduced in
a classical experiment. A similar argument would be applied in the case of using complementary
as a computational resource.

2. Quantum entanglement has been incorporated into quantum walks research either as
a result of performing a quantum walk ([110, 177–179], and [180, Ch. 7]) or as a resource to
build new kinds of quantum walks ([136, 181], and [180, Chs. 6 and 7]). Since entanglement
is a key component in quantum computation, it is worth keeping in mind that quantum walks
can be used either as entanglement generators or as computational processes taking advantage
of this quantum-mechanical property. Quantum entanglement is produced in quantum walks
due to the use of non-local operators operating on two or more qubits. Examples of non-local
operators employed in quantum walks can be found in [180, Chs. 6 and 7].

5.4 CONTINUOUS QUANTUM WALKS
In this section we shall define a continuous quantum walk so that we can use it in Section
5.6, where we present recent advances about the mathematical bonds between discrete and
continuous quantum walks. We shall revisit continuous quantum walks in Chapter 6, where
we explore how this kind of quantum process is utilized in algorithm development.

In [167], Childs et al. present the following formulation of a continuous classical random
walk:
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Definition 5.4.1. Let G = (V, E) be a graph with |V | = n then a continuous time random walk
on G can be described by the order n infinitesimal generator matrix M given by

Mab =



−γ, a �= b, (a, b) ∈ G

0, a �= b, (a, b) /∈ G

kγ, a = b and k is the valence of vertex a.

(5.37)

Following [167, 182], the probability of being at vertex a at time t is given by

dpa (t)
dt

= −
∑

b

Mab pb(t). (5.38)

Now, let us define a Hamiltonian [167, 182] that closely follows Eq. (5.37).

Definition 5.4.2. Let Ĥ be a Hamiltonian with matrix elements given by

〈a |H|b〉 =



−γ, a �= b, (a, b) ∈ G

kγ, a = b where the valence of a is k

0, otherwise.

(5.39)

We can then employ Hamiltonian Ĥ as given in Eq. (5.39), defined in a Hilbert space
H with basis {|1〉, |2〉, . . . , |n〉}, for constructing the Schrödinger equation of a quantum state
|ψ〉 ∈ H

i
d〈a |ψ(t)〉

dt
= −

∑
b

〈a |H|b〉〈b|ψ(t)〉. (5.40)

Finally, taking Eqs. (5.39) and (5.40) the unitary operator Û ,

Û = exp(−iĤt), (5.41)

defines a continuous quantum walk on graph G . Note that the continuous quantum walk
given by Eq. (5.41) defines a process on continuous time and discrete space.

There is an increasing number of publications on continuous time quantum walks. We
would refer the interested reader to the works of Konno on continuous time quantum walks on
ultrametric spaces [183] and continuous quantum walks on trees in quantum probability theory
[184], de Falco et al. on speed and entropy of continuous quantum walks [185], Mülken et al.
on quantum transport on small-world networks [186], and an investigation on continuous time
quantum walks by using the Krylov subspace-Lanczos algorithm [187].
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5.5 WHETHER DISCRETE OR CONTINUOUS: IS IT QUANTUM
RANDOM WALKS OR JUST QUANTUM WALKS?

Chance is an inherent component of every single step of a classical random walk. In other words,
there is no way to predict step s i of a classical random walk, no matter how much information
we have about previous steps s i−1, s i−2, . . . , s1, s0. We can only tell the probability associated
with each possible step s j

i+1.
On the other hand, if we carefully analyze Eqs. (2.9) and (2.10) as well as all the

evolution equations presented in this chapter, we shall convince ourselves of the fact that
quantum evolution is deterministic, i.e. for each computational step denoted by |ψ〉i we can
always tell the exact description of step |ψ〉i+1, as |ψ〉i+1 = Û |ψ〉i .

So, what is random about a quantum walk? Why are quantum walks candidates for
developing quantum counterparts of stochastic algorithms? The answer is: randomness comes
from the measurement processes that have to be performed on either the quantum walker(s)
or the quantum coin(s). So, the probabilistic nature of quantum measurement allows us to in-
troduce randomness into a quantum-walk-based algorithm. Moreover, we are not restricted to
introducing chance only at the end of the quantum algorithm execution but we can also exploit
several measurement strategies in order to manipulate quantum systems and produce proba-
bility distributions suitable for their use in advantageous algorithms; for example, see the “top
hat” probability distribution [111], a quasi-uniform distribution created by running a discrete
quantum walk and performing measurements on its constituent elements (or, alternatively,
allowing such constituent particles to have some interaction with the environment).

5.6 HOW ARE CONTINUOUS AND DISCRETE QUANTUM
WALKS CONNECTED?

The mathematical models of discrete and continuous quantum walks studied in the previous
sections present a serious problem: it is not clear at all how to transform discrete quantum walks
into continuous quantum walks and vice versa. This is an important issue for two reasons: (1)
in the classical case, discrete and continuous random walks are connected via a limit process
and (2) it is not natural to have two different kinds of quantum diffusion, one of them with an
extra particle (the quantum coin).

In [108], Strauch presents a connection between discrete and continuous quantum walks.
He starts by using a simplification [167] of the continuous quantum walk defined by Eq. (5.40),
namely,

Ĥ| j〉 = −γ (| j − 1〉 − 2| j〉 + | j + 1〉) (5.42)
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which in [108] is rewritten as

i∂tψ(n, t) = −γ (ψ(n + 1, t) − 2ψ(n, t) + ψ(n − 1, t)) (5.43)

where ψ(n, t) is a complex amplitude at the continuous time t and the discrete lattice position
n. Then, [108] uses results from [106, 112] to build a discrete quantum walk represented by
the following unitary mapping:

ψR(n, τ + 1) = cos θψR(n − 1, τ ) − i sin θψL(n − 1, τ ), (5.44a)

ψL(n, τ + 1) = cos θψL(n + 1, τ ) − i sin θψL(n + 1, τ ), (5.44b)

where ψR(n, τ ) and ψL(n, τ ) are complex amplitudes at the discrete time τ and discrete lattice
position n.

Strauch’s result focuses on building a unitary transformation Û = exp(−iĤt) that allows
us to transform Eqs. (5.44a) and (5.44b) into Eq. (5.42). There are several important conclusions
from the developments shown in [108]:
1. It is indeed possible to transform a discrete quantum walk into a continuous one by means
of a limit process (although this is not a straightforward derivation).
2. Strauch’s derivation does not use any coin degree. Thus [108] agrees, from a new perspective,
with Patel et al. [107] with respect to the irrelevance of the coin degree of freedom in order to
obtain the statistical enhancements (σ 2 = O(n)) that discrete quantum walks show.
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C H A P T E R 6

Computer Science and
Quantum Walks

A key activity in quantum computation is the development of quantum algorithms for solving
both classical and quantum problems (this includes simulation of quantum systems). Since
classical random walks have been used to develop successful stochastic algorithms, there has
been a huge interest in understanding the computational properties of quantum walks over the
last few years.

A general strategy for building an algorithm based on quantum walks includes choosing
(1) the unitary operators (Eq. (2.9)), for discrete quantum walks, or the Hamiltonians (Eq.
(2.10)), for continuous quantum walks, that will be employed to determine the time evolution
of the quantum hardware and (2) the measurement operators that will be employed to find out
the position of the walker (Eq. (2.11)).

The quantum programmer must bear in mind that the choice of evolution and measure-
ment operators, as well as initial quantum states, will determine the shape and other properties
of the resulting probability distribution for the quantum walker. Moreover, a computer scientist
interested in algorithms based on quantum walks must keep in mind that making copies of
arbitrary quantum states is not possible in general due to the no-cloning theorem (subsection
2.2.3) thus copying variable content is not allowed in principle. Indeed, it is possible to use
cloning machines for imperfect quantum state copying, but it would frequently translate into
computational and estimation errors. Since any non-reversible gate can be converted into a
reversible gate [3, 78, 188], errors due to imperfect quantum state cloning are unnecessary
and consequently must be avoided. Employing classical computer simulators of quantum walks
[189, 190] can be a fruitful exercise in order to figure out the operators and initial states required
for algorithmic applications of quantum walks.

Quantum algorithms based on either discrete or continuous quantum walks are built
upon detailed and complex mathematical structures and it is not possible to cover all details in a
single chapter. Therefore, we shall devote this chapter to review the fundamental links between
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quantum walks and computer science (mainly algorithms) and we strongly recommend the
reader to go to the corresponding references for more details.

This chapter begins with the definition of an oracle, a key element in both classical
and quantum algorithms. We then proceed to examine several algorithms based on discrete
quantum walks, including an application for simulated annealing. We then provide a summary
of algorithmic results based on continuous quantum walks, which include a novel application of
continuous quantum walks in quantum chemistry, and finish this chapter by reviewing recent
results about the computational universality of quantum walks.

6.1 ALGORITHMIC APPLICATIONS OF QUANTUM WALKS
Definition 6.1.1. Oracle. An oracle is an abstract machine used to study decision problems. It can
be thought of as a black box which is able to decide certain decision problems in a single step, i.e. an
oracle has the ability to recognize solutions to certain problems.

Oracles are widely used in classical algorithm design. In the context of quantum com-
putation, we also use oracles to recognize solutions for the search problem. Additionally, we
assume that if an oracle recognizes a solution |φ〉 then that oracle is also capable of computing
a function with |φ〉 as argument.

We are interested in searching for M elements in a space of N elements. To do so, we use
an index x ∈ S, where S = {0, 1, . . . , N − 1}, to enumerate those elements. We also suppose
we have a function f : S → {0, 1} such that f (x) = 1 if and only if x is one of the elements we
are looking for. Otherwise, f (x) = 0. An oracle can be written as a unitary operator Ô defined
by

Ô(|x〉|q 〉) = |x〉|q ⊕ f (x)〉, (6.1)

where |x〉 is the index register, ⊕ is addition modulo 2 (the XOR operation in computer
science parlance), and the oracle qubit |q 〉 is a single qubit which is flipped if f (x) = 1 and is
left unchanged otherwise. As shown in [3], we can check whether x is a solution to our search
problem by preparing |x〉, applying the oracle, and checking whether the oracle qubit has been
flipped to |1〉. Grover’s algorithm [18], as well as several algorithms we shall review in this
chapter, make use of an oracle. A comparison of quantum oracles can be found in [191].

We now proceed to review quantum algorithms based on discrete quantum walks.

6.1.1 Algorithms Based on Discrete Quantum Walks
Let us start by introducing the following problem:

Definition 6.1.2. Searching in an unordered list. Suppose we have an unordered list of N items
labeled x1, x2, . . . , xN. We want to find one of those elements, say xi .
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Any classical algorithm would take O(N) steps at least to solve the problem given in Def.
6.1.2. However, one of the jewels of quantum computation, Grover’s search algorithm [18],
would do much better. By using an oracle and a technique called Amplitude Amplification, the
search algorithm proposed in [18] would only take O(

√
N) time steps to solve the same search

problem. In addition to its intrinsic value for outperforming classical algorithms, Grover’s
algorithm has relevant applications in computer science, including solutions to the 3-SAT
problem (Def. 3.4.7) [109].

In [156], Shenvi et al. proposed an algorithm based on a discrete quantum walk to solve
the search problem given in Def. 6.1.2. For the sake of completeness and in order to present
the results contained in [156], let us remember the definition of a hypercube.

Definition 6.1.3. The hypercube. The hypercube is an undirected graph with 2n nodes, each of
which is labeled by a binary string of n bits. Two nodes  x,  y in the hypercube are connected by an
edge if  x,  y differ only by a single bit flip, i.e. if | x −  y | = 1, where | x −  y | is the Hamming distance
between  x and  y. As an example, the three-dimensional hypercube is shown in Fig. 6.1.

An example of a three-dimensional hypercube can be seen in Fig. 6.1. Since each node of
the hypercube has degree n and there are 2n distinct nodes then the Hilbert space upon which
the discrete quantum walk is defined is H = Hn ⊗H2n

, and each state |ψ〉 ∈ H is described
by a bit string  x and a direction d . We now define the following coin and shift operators

Ĉ = Ĉ0 ⊗ Î = (−Î + 2|s c 〉〈s c |) ⊗ Î, (6.2)

where |s c 〉 is the equal superposition over all n directions, i.e. |s c 〉 = 1√
n

∑n
d=1 |d〉, and

Ŝ =
n−1∑
d=0

∑
 x

|d ,  x ⊗  ed 〉〈d ,  x|, (6.3)

where | ed 〉 is the d th basis vector of the hypercube. Using the eigenvalues and eigenvectors
of the evolution operator Û = ŜĈ of the quantum walk on the hypercube [155] in order to
build a slightly modified coin operator C ′ (which works within the algorithm structure as an
oracle, Def. 6.1.1) and an evolution operator Û ′, and by collapsing the hypercube into a line, the
quantum walk designed by evolution operator Û ′ is used to search for element xtarget ∈ {0, 1}n.

It is claimed in [156] that, after applying Û ′ a number of t f = π
2

√
2n = O(

√
N) times,

the outcome of their algorithm is xtarget with probability 1
2 − O( 1

n ). A summary of similarities
and differences between this quantum walk algorithm and Grover’s algorithm can be found
in the last few pages of [156]. Also, Gábris et al. [192] studied the impact of noise on the
algorithmic performance given in [156], using a scattering quantum walk [193].
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Now, let us think of the following problem: we have a hypercube as defined in Def.
6.1.3 and we are interested in measuring the time (or, equivalently, the number of steps) an
algorithm would take to go from node i to node j , i.e. its hitting time (Def. 4.2.3). Since defining
the notion of hitting time for a quantum walk is not straightforward, [157] has proposed the
following definitions.

Definition 6.1.4. One-shot hitting time. A quantum walk U has a (T, p) one-shot (|φ0〉, |x〉)
hitting time if the probability to measure state |x〉 at time T starting in |φ〉0 is larger than p, i.e.
||〈x|U T|φ0〉||2 ≥ p.

Definition 6.1.5. |x〉-stopped walk. A |x〉-stopped walk from U starting in state |φ0〉 is the
process defined as the iteration of a measurement with the two projectors �̂0 = �̂x = |x〉〈x| and
�̂1 = Î − �̂0. If �̂1 is measured, an application of U follows. If �̂0 is measured the process is
stopped.

Definition 6.1.6. Concurrent hitting time. A quantum walk U has a (T, p) concurrent
(|φ0〉, |x〉) hitting time if the |x〉-stopped walk from U and initial state |φ0〉 has a probability
≥ p of stopping at a time t ≤ T.

In both cases (Defs. 6.1.4 and 6.1.6), it was shown in [157] that the hitting time from
one corner to its opposite is polynomial. However, although it was thought that this polynomial
hitting time would imply an exponential speedup over corresponding classical algorithms, that
is not the case as it is possible to build a polynomial-time classical algorithm to traverse the
hypercube from one corner to its opposite [19]. Further studies on hitting times of quantum
walks on graphs can be found in [194–196].

000

001

010

100

111

110

011

101

FIGURE 6.1: A three-dimensional hypercube. Nodes are labeled following the formula d ⊕ ed where
d ∈ {000, 001, 010, 011, 100, 101, 110, 111} and ed ∈ {001, 010, 100}.
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A natural step further along employing discrete quantum walks for solving search prob-
lems is to use quantum computation techniques to find items stored in spaces of two or more
dimensions. In [197], Benioff proposed the use of Grover’s algorithm for searching items in
a grid of

√
N ×√

N elements, and showed that a direct application of such algorithm would
take O(N) time steps to find one item, i.e. there would be no more quantum speedup. Later
on, in [198], Aaronson and Ambainis used Grover’s algorithm and multilevel recursion to
build algorithms capable of searching in a two-dimensional grid in O(

√
N log2 N) steps and a

three-dimensional grid in O(
√

N) steps. Moreover, Childs and Goldstone [199] developed a
continuous quantum walk algorithm to solve the search problem in a grid and discovered algo-
rithms that would have an optimal performance of O(

√
N) in grids of five or more dimensions.

Ambainis et al. [200] proposed algorithms based on discrete quantum walks (evolution
operators used in [200] are those “perturbed” operators defined in [156]) that would take
O(

√
N log N) steps to search in a two-dimensional grid and would reach an optimal perfor-

mance of O(
√

N) for three- and higher dimensional grids. An important contribution of [200]
was to show that the performance of search algorithms based on quantum walks is sensitive to
the selection of coin operators, i.e. the performance of a search algorithm may be optimal or
not depending on the coin operator choice. Finally, Aaronson and Ambainis have shown in
[201] how to build algorithms based on discrete quantum walks to search on a two-dimensional
grid using a total number of O(

√
N log5/2 N) steps, and a three-dimensional grid with O(

√
N)

number of steps.
A variant of Def. 6.1.2, the element distinctness problem, was analyzed in [202].

Definition 6.1.7. Element distinctness problem [37]. Given a list of strings over {0, 1} separated
by #, determine if all the strings are different.

A quantum algorithm for solving the element distinctness problem is given in [202]. This
algorithm combines the quantum search of spatial regions proposed in [201] with a quantum
walk.

The first part of [202] transforms the string list from Def. 6.1.7 into a graph G with
marked and non-marked vertices; in this process, [202] uses an oracle (Def. 6.1.1). The second
part of the algorithm employs a discrete quantum walk to search graph G . As a result, the
algorithm solves the distinctness problem in a total number of O(N2/3) steps and O(N

k
k+1 )

steps for k identical strings, among N items. Upon the work presented in [202], Magniez
et al. proposed in [203] a new quantum algorithm for solving the triangle problem, which can
be stated as follows.

Definition 6.1.8. Let G be a graph. Any complete subgraph of G on three vertices is called a triangle.
The triangle problem (in oracle version) can be posed as follows:
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Oracle input: the adjacency matrix f of a graph G on n nodes.
Oracle output: a triangle if there is any, otherwise reject.

Additionally, another quantum algorithm, based on Grover’s search quantum algorithm
[18], is presented in [203] for solving the same triangle problem.

One more application of [202] has been proposed by Childs and Eisenberg in [204],
where it has been proposed to employ the quantum algorithm developed for the distinctness
problem (Def. 6.1.7) to solve the L-subset finding (oracle) problem, which can be stated as
follows.

Definition 6.1.9. The triangle problem (oracle version).
Oracle input: (1) A black box function f : D → R, where D, R are finite sets and |D| = n is the
problem size. (2) Property P ⊂ (D × R)L.
Oracle output: Some subset L = {x1, . . . , xL} ⊂ D such that ((x1, f (x1), . . . , (xL, f (xL)) ∈ P, or
reject if none exists.

An alternative and refreshing approach to discrete quantum walks is presented by Szegedy
[205], where a new definition of a discrete quantum walk in presented via the quantization of a
stochastic matrix, as well as an alternative definition of hitting time for discrete quantum walks.
Reference [205] begins by defining the search problem as follows.

Definition 6.1.10. Search problem via stochastic processes. Given a Markov chain with
transition probability matrix P = (px,y ) on a discrete state space X, with |X| = n, u a given
probability distribution on X, and a subset of marked elements M ⊆ X, compute an estimate for the
number t of iterations required to find an element of M, assuming that the Markov chain is started
from a u-distributed element of X.

Reference [205] continues by defining the following concepts.

Definition 6.1.11. PM is the matrix obtained from P by deleting its rows and columns indexed
from M.

Since there is no “natural” (i.e. straightforward) method for quantizing a discrete Markov
chain, [205] proposes a quantization method of P which uses bipartite random walks.

Definition 6.1.12. Let X and Y be two finite sets and P = (px,y ) and Q = (qy,x) be matrices
describing probabilistic maps X → Y and Y → X, respectively. If we have a single probabilistic
function P from X to X, i.e. a Markov chain, in order to create a bipartite walk we can set
qy,x = px,y for every x, y ∈ X (that is, we set Q = P).
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The quantization method for (P, Q) proposed by Szegedy is as follows. We start by
creating two operators on the Hilbert space with basis states |x〉, |y〉, where x ∈ X and y ∈ Y .
Let us define the states

φx =
∑
y∈Y

√
px,y |x〉|y〉, (6.4a)

ψy =
∑
x∈X

√
qy,x |x〉|y〉 (6.4b)

for every x ∈ X, y ∈ Y . Finally, let us define A = (φx) as the matrix composed of column
vectors φx (x ∈ X), and B = (ψy ) as the matrix composed of column vectors ψy (y ∈ Y ).
Then, [205] defines the unitary operator W , the quantization of the bipartite walk (P, Q), as

Definition 6.1.13. W = (2AA∗ − I )(2B B∗ − I ).

Szegedy [205] proceeds to build definitions and theorems for new quantum hitting time
and upper bounds for finding a marked element as in Def. 6.1.10. A remarkable feature of [205]
is a proposal for a new link between classical and quantum walks, namely the development of a
quantum walk evolution operator W via a classical stochastic matrix P .

Finally, upon the quantum walk definition given in [205], Magniez et al. [206] proposed
a quantum-walk-based algorithm for solving the following problem.

Theorem 1. [206] Let δ > 0 be the eigenvalue gap of a reversible, ergodic Markov chain P, and
let ε > 0 be a lower bound on the probability that an element chosen from the stationary distribution
of P is marked whenever M is non-empty. Then, there is a quantum algorithm that high probability
determines if M is empty or finds an element of M, with cost of order S + 1√

ε
( 1√

δ
U + C), where S is

the computational cost of constructing superposition states, and U, C are costs of constructing unitary
transformations as defined in [206, p. 2].

A summary of quantum search algorithms can be found in [109], and a review of
algorithmic applications of quantum walks can be found in [207]. Also, Kendon [111] surveys
the algorithmic properties of quantum walks and analyzes several relevant properties of quantum
walks like their quantumness and the impact of decoherence in algorithm performance.

Finally, a novel application of discrete quantum walks is shown in [208], where a quan-
tum algorithm for combinatorial optimization problems is proposed. This quantum algorithm
combines techniques from discrete quantum walks, quantum phase estimation, and quantum
Zeno effect, and can be seen as a quantum counterpart of classical simulated annealing based
on Markov chains.
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6.1.2 Algorithms Based on Continuous Quantum Walks
The operation and mathematical formulation of discrete quantum walks fit very well into
the mindset of a computer scientist, as time evolves in discrete steps (as a typical classical
algorithm would) and the model employs walkers and coins, usual elements of stochastic
processes when employed in algorithm development. However, the most successful applications
of quantum walks are found within the realm of continuous quantum walks, as we shall
see in this section. Given the seminal result derived by Strauch [108] about the connection
between discrete and continuous quantum walks, we now know that results from continuous
quantum walks should be translatable, at least in principle, to discrete quantum walks and
vice versa.

Nonetheless, the mathematical structure of continuous quantum walks and the physical
meaning of corresponding equations provide an accurate picture of several physical systems
upon which we may implement quantum walks and quantum computers. Although most of
the physical implementations in this field have been based on the discrete quantum walk
model [172, 209–213], the additional stimulus provided by [108] as well as the compu-
tational universality of quantum walks [214] and recent connections found between quan-
tum walks and adiabatic quantum computation [105], another model of continuous quantum
computation, it is reasonable to expect new implementations based on continuous quantum
walks.

Consequently, and taking into account that one of the aims of quantum computing is to
harness the physical properties of Nature to compute, it is the opinion of this author that com-
puter scientists and students of computer science should become increasingly knowledgeable
about the mathematics of continuous systems and their physical interpretation. Introductory
references on this matter can be found in [27, 45] and, for a more advanced treatment of
time-dependent quantum mechanics, we refer the reader to [215].

Exponential Algorithmic Speedup by a Quantum Walk
Farhi and Gutmann [182] introduced an algorithm based on a continuous quantum walk, i.e.
a quantum walk whose evolution in time is not given in discrete steps, but it rather evolves
continuously in time according to the Schrödinger equation (Eq. (2.10)).

The proposed algorithm solves the following problem: given a graph Gs consisting of
two balanced binary trees of height n with 2n leaves of the left tree identified with the 2n

leaves of the right tree according to the way shown in Fig. 6.2(a), and with two marked nodes
ENTRANCE and EXIT, find an algorithm to go from ENTRANCE to EXIT.

It was shown in [182] that it is possible to build a quantum walk that traverses graph
Gs from ENTRANCE to EXIT which is exponentially faster than its corresponding classical
random walk [167]. In other words, the hitting time of the continuous quantum walk proposed
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(a)

Entrance Exit

(b)

Entrance Exit

FIGURE 6.2: Balanced and unbalanced trees.

in [182] is of polynomial order, while the hitting time of the corresponding classical random
walk is of exponential order. However, this advantage does not lead to an exponential speedup
due to the fact that it is possible to build a deterministic algorithm that traverses the same graph
in polynomial time [19].

Ideas from [182] were taken one step further by Childs et al. [19], where the authors
introduced a more general type of graphs Gr to be crossed, proved that those graphs could not
be passed across efficiently with any classical algorithm, and delivered an algorithm based on a
continuous quantum walk that traverses the graph in polynomial time.

Graphs Gr are built as follows. Begin by constructing two balanced binary trees of height
n (i.e. with 2n leaves), but instead of identifying the leaves, they are connected by a random
cycle that alternates between the leaves of the two trees, that is, we choose a leaf on the left at
random and connect it to a leaf on the right chosen at random too. Then, we connect the latter
to a leaf on the left chosen randomly among the remaining ones. The process is continued,
always alternating sides, until every leaf on the left is connected to two leaves on the right, and
vice versa. See Fig. 6.2(b) for an example of graphs Gr .

In order to build the quantum walk that will be used to traverse a graph Gr , the authors
of [19] defined a Hamiltonian Ĥ based on the graph adjacency matrix A (Def. 4.2.1). Ĥ has
matrix elements given by

〈a |Ĥ|a〉 =
{

γ, a �= a ′, aa ′ ∈ Gr

0, otherwise.
(6.5)

In the continuous quantum walk algorithm proposed in [19], the authors used an oracle
to learn about the structure of the graph Gr , i.e. information about the Hamiltonian given by
Eq. (6.5) is extracted using an oracle. By doing so, it is proved in [19] that it is possible to
construct a continuous quantum walk that would traverse any graph Gr in polynomial time. An
improved lower bound for any classical algorithm traversing Gr has been proposed in [216],
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but the performance difference between quantum and classical algorithms in [19] remains
exponential.

Let us present a final reflexion with respect to algorithms purely based on quantum walks,
before proceeding to talk about other applications of continuous quantum walks. As rightly
argued by Ritcher [217], the quantum algorithms reviewed in this chapter are instances of an
abstract search problem: given a state space which can be translated into a graph structure,
find a marked state (or set of states) by performing a quantum walk on the graph. With this
abstraction in mind as well as with the purpose of combining the power of quantum walks
with classical sampling algorithms, Ritcher [217] has proposed a method for almost-uniform
sampling based on repeated measurements of a continuous quantum walk.

Simulation of Quantum Systems
One of the main goals of quantum computation is the simulation of quantum systems, i.e. the
realization of programmable quantum systems whose physical properties allow us to model the
behavior of other quantum systems [6, 9, 21].

A novel use of continuous quantum walks for simulation of quantum processes has
been presented by Mohseni et al. [218]. In this contribution, the authors have developed a
theoretical framework for studying quantum interference effects in energy transfer phenomena,
with the purpose of modeling photosynthetic processes. The main contribution of [218] is to
analyze the action of the environment in the coherent dynamics of quantum systems related to
photosynthesis. The framework developed in [218] includes a generalization of a non-unitary
continuous quantum walk in a directed graph (as opposed to a previous definition of a unitary
continuous quantum walk on undirected graphs [19]).

6.2 UNIVERSALITY OF QUANTUM WALKS
Universality is a desirable property of a model of computation because it shows that such a model
is capable of simulating any other model of computation. Basically, models of computation that
are labeled as universal are capable of solving the same problems (although it could happen in
different time regimes).

The history of quantum computing includes the recollection of significant efforts to
prove the universality of several models of quantum computers, i.e. that any algorithm that can
be computed by a general-purpose quantum computer [66] can also be executed by quantum
gates [3, 4], as well as computers based on the quantum adiabatic theorem [219–221], for
example.

It has recently been proposed that quantum walks are universal models of quantum
computation [105, 214]. This result, together with the computational equivalence proofs of
several other models of quantum computations, provide a rich “toolbox” for computer scientists
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interested in quantum computation, for they will be free to choose from several models of
quantum computation those that particularly suit their academic background and interests.
However, this freedom must be balanced with a profound knowledge about discrete and
continuous models of quantum computation, due to the viability of experimental realizations
of quantum computers.
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C H A P T E R 7

Conclusions

In this lecture we have focused on an emerging field of quantum computation: quantum walks.
In order to provide a solid background and to situate this field in an appropriate context, we
have produced several introductory chapters covering introductions to the fields of quantum
mechanics, the theory of computation, and classical discrete random walks.

In our chapter on quantum mechanics we have discussed the postulates of quantum
mechanics used to study quantum walks and, more generally, the basic concepts of quantum
computation. This chapter is meant to be used by computer scientists and other practitioners
from scientific and engineering areas interested in a concise presentation of those concepts of
quantum mechanics needed to understand our fields.

As for the theory of computation, we have reviewed the roots of two of the main
contributions of Alan Turing to the science of computation: the Church–Turing thesis and
Turing machines, together with those elements of the theory of complexity needed to measure
the performance of algorithms. These measures are used to quantify the performance of both
classical and quantum algorithms. We have also studied the deterministic and nondeterministic
models of computation. Finally, we have given a short introduction to the ideas that have
enriched the dialogue between physics and computation and provided a formal definition
of a Quantum Turing Machine. We have worked on this chapter having in mind not only
computer scientists interested in reviewing fundamental elements of computer science, but also
physicists looking for a succinct source of information about those basic concepts of the theory
of computation needed to start their journey in the study of quantum walks and quantum
computation.

In our chapter on classical random walks we have reviewed the main concepts and
theorems used in the application of classical random walks in algorithm development. We have
pointed out the fact that if we are to compare the properties of classical and quantum walks on
infinite and countable spaces, we need to propose new methods for quantifying performance
measures of classical random walks, such as mixing time. Again, we have written this chapter
having in mind practitioners of several fields, interested in having a concise source on classical
random walks relevant to the study of quantum walks and their algorithmic applications. This is
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particularly useful because most books on Markov chains are not focused on those elements used
in algorithmic development. Finally, we provide a concise introduction to classical continuous
random walks.

In our chapter on quantum walks we present a comprehensive review of the state of the
art in discrete and continuous quantum walks. In addition to a careful analysis of quantum
walks on a line with Hadamard and arbitrary coin operators, we provide a detailed study of the
advantages of the Hadamard quantum walk on the line over its classical counterparts.

We then proceed to review several concepts and theorems on discrete quantum walks on
Cayley graphs. We have shown in this chapter that there are several measures (not necessarily
equivalent to each other) used to quantify the performance of quantum walks on graphs. This
suggests that there is a clear need to produce better performance definitions in order to gain a
deeper understanding of the nature of quantum walks on graphs (not only on Cayley graphs
but also any other kind of graph that may be useful in algorithm development).

The second part of our chapter on quantum walk starts by addressing connections between
classical and quantum walks. We then provide a concise presentation of continuous quantum
walks, and present some questions about the quantumness of quantum walks. We finish this
chapter by focusing on the randomness of quantum walks, the mathematical transformations
that connect discrete and continuous quantum walks, and the relevance (or essential need) of
using coins in discrete quantum walks.

The penultimate chapter of this lecture focuses on algorithmic applications of discrete
and continuous quantum walk. We present several algorithms based on discrete and continuous
quantum walks which have significant advantages over their classical counterparts. In particular,
we review an algorithm based on a continuous quantum walk that provides an exponential
speedup with respect to its classical counterparts. Then, we present a proposal for the simulation
of photosynthetic processes using a generalization of a continuous quantum walk, and finish
this chapter with a brief review of the computational universality of quantum walks.

It is common wisdom among historians that the division of history into periods of time is
quite an arbitrary procedure [222, 223]. Thus, I would like to state that the division I propose
in the following lines is based on my perception of the increasing impact of quantum walks in
the scientific community at large.

The first part of the history of quantum walks is composed of all the seminal works devel-
oped by a small core of physicists, mathematicians, and computer scientists, who devoted them-
selves to provide the foundations of our discipline, namely to depict the quantum-mechanical
systems whose behavior could be modeled as a walk in a lattice. This era includes the early
works of Feynman [104], Aharonov [106], Meyer [112], Nayak and Vishwanath [113], as well
as the generalizations of quantum walks on graphs and the very first quantum algorithms based
on quantum walks presented in Chapters 5 and 6, respectively.
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In the second and current part of the history of quantum walks, research workers filled the
gaps and answered some of the fundamental questions produced during the early years of our
discipline. I would say that this second era starts with the very encouraging algorithmic results
published in [19], followed by the connection between discrete and quantum walks delivered
in [108], the proposals about computational universality of quantum walks [105, 214], and,
finally, the employment of quantum walks in the simulation of quantum phenomena [218].

A brief study of the past is a good vehicle for designing our future. In my opinion, the
future of quantum walks and quantum computing as a whole is very much linked to finding
problems of both scientific merit and practical relevance for which quantum algorithms provide
better solutions than their classical counterparts, as well as to the successful employment of
quantum walks in the simulation of complex physical systems. The mathematical, physical, and
computational properties of quantum walks make this field an appealing subject for research
workers in order to employ it as a computational tool and/or a physical testbed for scientific
discovery. I particularly think of using quantum walks in problems coming from molecular
biology and medicine, due to the scientific challenges and the enormous social interest found
in those fields.

However, a disadvantage of quantum walks is the somewhat long time that must be
invested in the corresponding learning curve. In order to use quantum walks for both algo-
rithm development and quantum simulation, computer scientists must include an additional
“toolbox” in their curricula, namely the fundamental properties of reversible gates, the basic
mathematical and physical ideas behind quantum mechanics, and the limitations imposed by
physical implementations. However, it is indeed the opinion of this author that the educational
investment required to learn the field of quantum walks will prove to be fruitful, as the computer
science community will enable itself to harness several properties of Nature for computational
purposes.
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