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ABSTRACT
As online information grows dramatically, search engines such as Google are playing a more and
more important role in our lives. Critical to all search engines is the problem of designing an effective
retrieval model that can rank documents accurately for a given query.This has been a central research
problem in information retrieval for several decades. In the past ten years, a new generation of retrieval
models, often referred to as statistical language models, has been successfully applied to solve many
different information retrieval problems. Compared with the traditional models such as the vector
space model, these new models have a more sound statistical foundation and can leverage statistical
estimation to optimize retrieval parameters. They can also be more easily adapted to model non-
traditional and complex retrieval problems. Empirically, they tend to achieve comparable or better
performance than a traditional model with less effort on parameter tuning.

This book systematically reviews the large body of literature on applying statistical language
models to information retrieval with an emphasis on the underlying principles, empirically effective
language models, and language models developed for non-traditional retrieval tasks. All the relevant
literature has been synthesized to make it easy for a reader to digest the research progress achieved
so far and see the frontier of research in this area. The book also offers practitioners an informative
introduction to a set of practically useful language models that can effectively solve a variety of
retrieval problems. No prior knowledge about information retrieval is required, but some basic
knowledge about probability and statistics would be useful for fully digesting all the details.

KEYWORDS
Information retrieval, search engines, retrieval models, language models, smoothing,
topic models.
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Preface
Recent years have seen an explosive growth of online information. As the most useful tools

for combating information overload, search engines are now becoming increasingly important and
have been successfully deployed in many different application domains. The rapid rise of the search
engine industry has generated much interest in information retrieval (IR) research and education.
This book is designed to help meet the needs of researchers, students, and developers of search
engine applications for learning about the frontier of information retrieval research, particularly
recent progress in developing new information retrieval models.

Critical to all search engines is the problem of designing an effective retrieval model that can
rank documents accurately for a given query.This has been a central research problem in information
retrieval for several decades. In the past ten years, a new generation of retrieval models, often referred
to as statistical language models, has been successfully applied to solve many different information
retrieval problems. Compared with the traditional models such as the vector space model, these
new models have many advantages, such as a sound statistical foundation, possibilities of leveraging
available statistical estimation methods to optimize retrieval parameters, and easiness to adapt to
non-traditional and complex retrieval problems.

The main purpose of this book is to review and synthesize the large body of literature on
statistical language models for information retrieval so that a reader can easily digest the literature
and see the frontier of research in this area. Emphasis has been put on covering the underlying
principles of all the models, empirically effective language models, and language models developed
for non-traditional retrieval tasks. A secondary goal of the book is to introduce to practitioners a
set of practically useful language models that can effectively solve a variety of retrieval application
problems.

The book is based on a series of tutorials on this topic that I have given at various information
retrieval conferences, and is an expansion of a related survey that I wrote for the Foundations and
Trends in Information Retrieval [17]. Compared with the survey, this book is more selfcontained and
covers all the basic models with much more detail.The survey was written mainly for researchers with
some previous knowledge about information retrieval, but the book is intended to be understandable
to readers without prior background on information retrieval. To achieve this goal, the book has
included a concise introduction to the basic concepts in information retrieval and an entire chapter
to provide a general survey of all information retrieval models. It has also much more detailed
explanation of the basic models, which should help readers with no background in information
retrieval to digest the materials. Unfortunately, given the size of the book, it is hard to include all the
necessary background materials. Thus, in cases when some discussions are not easy to follow due to
unfamiliarity with some concepts in information retrieval, the readers should refer to some textbooks
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on information retrieval (e.g., [18], [19], [20], and [21])). Although no prior knowledge about IR
is assumed, most materials presented in the book rely on some basic knowledge of probability and
statistics such as multinomial distribution and maximum likelihood estimation. Readers with no
such knowledge are recommended to first read some textbook on probability and statistics (e.g.,
[22]) before reading this book. However, readers with no knowledge about probability and statistics
should still be able to understand all the major ideas and follow most of the high-level discussions.

The organization of the book is as follows. The first chapter provides some background on
information retrieval and statistical language models for readers with no such background. Chapter 2
contains a broad overview of different retrieval models to give the readers a big picture about the
entire space of retrieval models and where language models fit in. Starting from Chapter 3, we then
systematically introduce various kinds of retrieval models based on language modeling. In Chapter 3,
we introduce the very first generation of language models (called simple query likelihood retrieval
models) which are computationally as efficient as any existing retrieval model. Their good empirical
performance has motivated many follow-up studies and extensions of language models for retrieval.
In Chapter 4, we discuss a large body of work all aiming at extending and improving the basic
language modeling approach. These models (called complex query likelihood retrieval models) may
achieve better performance,but also tend to be computationally much more expensive than the simple
query likelihood retrieval models. Feedback is an important component in an IR system, but it turns
out that there is some difficulty in supporting feedback with the query likelihood retrieval models.
In Chapter 5, we present the Kullback-Leibler divergence retrieval model, which generalizes the
query likelihood retrieval model and also accommodates feedback (particularly pseudo feedback)
through using feedback information to improve the estimate of a query language model. These
feedback models are among the most effective language models for retrieval. In Chapter 6, we
further review a wide range of applications of language models to different special retrieval tasks
where a standard language model is often extended or adapted to better fit a specific application.
In Chapter 7, we introduce a family of language models that can be used to conduct latent topic
analysis and discuss their applications in information retrieval. Finally, we summarize and discuss
future research directions in Chapter 8.

The book can be used as a supplementary textbook for a graduate or undergraduate course
on information retrieval or related topics (e.g., natural language processing, machine learning) to
help students gain in-depth understanding of the basic language models for information retrieval.
For advanced models, however, the book only provides a high level discussion, thus readers will still
need to read the original papers to really understand them in detail. Chapters 2 and 7 are both
relatively selfcontained, so they can be used as standing alone introductions to retrieval models and
probabilistic topic models, respectively.

Many people have directly or indirectly contributed to the completion of this book, and I
would like to thank all of them. First of all, I want to thank Graeme Hirst, editor of the Synthesis
Lectures on Human Language Technologies series of the Synthesis Digital Library, and Michael
Morgan, President of Morgan & Claypool Publishers, for offering me the opportunity to publish
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this book. They have also provided very useful feedback about the content of the book. I am very
grateful to my Ph.D. advisor John Lafferty for his supervision of my dissertation on this topic;
the main conceptual framework and a substantial part of this book are based on my dissertation. I
am also very grateful to Jamie Callan for encouraging me to give a tutorial on this topic at several
conferences. The tutorial has formed the basis of this book. Without John’s technical advice and
Jamie’s encouragement, I would not have been able to write this book.

I gratefully acknowledge the support of my own research on this topic by the Advanced
Research and Development Activity in Information Technology (ARDA) under its Statistical Lan-
guage Modeling for Information Retrieval Research Program, by the National Science Foundation
under a CAREER grant (IIS-0347933), by Google, Microsoft, and IBM through their research
programs, and by the Alfred P. Sloan Foundation through a research fellowship. Any opinions, find-
ings, and conclusions, or recommendations expressed in this book are, of course, those of the author
and do not necessarily reflect the views of the sponsors.

I am greatly indebted to several people who have directly helped improving the quality of
this book. Wessel Kraaij and another anonymous reviewer have carefully reviewed a draft of this
book and offered extremely valuable comments which have helped to improve the quality of the
book significantly. Donald Metzler and two other anonymous reviewers have provided many useful
comments for the survey paper mentioned earlier; those comments have also helped improving the
quality of this book. Naturally, any errors that remain are solely my own responsibility.

I also want to thank many researchers with whom I have had useful discussions on various
topics covered in this book, especially my students and co-authors. Although I cannot list all the
names here, I would like to mention W. Bruce Croft, Stephen Robertson, Victor Lavrenko, Rong
Jin, Tao Tao, David A. Evans, Qiaozhu Mei, and Wessel Kraaij; all of them have influenced my
understanding of some major technical issues discussed in the book.

Special thanks are due to C.L. Tondo and Sara Kreisman for their help with preparing the
final version of the book.

Finally, and above all, I must thank my wife Mei for her love and huge support throughout
the process of writing this book. I dedicate this book to her.

ChengXiang Zhai
Department of Computer Science

Graduate School of Library and Information Science
Department of Statistics
Institute for Genomic Biology
University of Illinois at Urbana-Champaign
January 2009





1

C H A P T E R 1

Introduction
With the explosive growth of online information, such as news articles, email messages, scientific
literature, government documents, and many other kinds of information on the Web, we are over-
whelmed with huge amounts of information and have an urgent need for powerful software tools to
help manage and make use of all the information. Search engines such as Google are by far the most
useful tools to help combat information overload; their effectiveness directly affects our productivity
and quality of life.

Information Retrieval (IR) is, in brief, the underlying science of search engines. As a research
field, it is primarily concerned with developing theories, principles, algorithms, and systems to help
a user find relevant information from a collection of text documents to satisfy some information
need of the user. However, in a broader sense, IR is also concerned with many other tasks relevant to
helping people manage and exploit information in general, such as text categorization, text clustering,
text summarization, question answering, and information filtering. In this book, we primarily focus
on search techniques, which are at the core of IR and are quite important for developing effective
search engines. These techniques can also be very useful for many other tasks.

Research in IR can be dated back to the 1950’s [3]. In early days, the primary applica-
tions were library systems and the users were mostly librarians. However, the recent growth of
online information, especially the development of the Web, has enabled ordinary people to be
the users of various search engines. Over the decades, IR researchers have developed a suite
of search engine technologies, including indexing techniques, retrieval models, feedback tech-
niques, user interfaces, and evaluation methodologies. These technologies have matured over time
to enable many search engine applications, ranging from special-domain search engines such as
PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) through general Web search engines such
as Google, Yahoo, and Live Search. Indeed, commercial IR systems have already been around for
many years, and nowadays many IR toolkits are available for people to rapidly build a search engine
application [4].

On the other hand, however, there are still many challenges to be solved in IR research. One
of the most fundamental and important challenges is to develop a truly optimal retrieval model that
is both effective and efficient and that can learn from feedback information over time.To understand
this challenge, it is necessary to understand how a typical IR system works.

A main goal of any IR system is to rank documents optimally given a query so that highly
relevant documents would be ranked above less relevant ones and nonrelevant ones. In order to
achieve this goal, the system must be able to score documents so that a highly relevant document
would tend to have a higher score than a nonrelevant one. Clearly, the retrieval accuracy of an IR
system is directly determined by the quality of the scoring function adopted. Thus, not surprisingly,

http://www.ncbi.nlm.nih.gov/pubmed/


2 CHAPTER 1. INTRODUCTION

seeking an optimal scoring function (often called a retrieval function) has always been a major
research challenge in information retrieval. A retrieval function is based on a retrieval model, which
formally defines the notion of relevance and enables us to derive a retrieval function that can be
computed to score and rank documents.

The search accuracy of an IR system is primarily determined by the soundness of its un-
derlying retrieval model. Improvement of retrieval models would directly lead to improved utility
of all search engine applications1. It is thus very important to understand which retrieval model
is the best. The main purpose of this book is to introduce and review a family of promising new
information retrieval models, all based on statistical modeling of natural language (i.e., statistical
language models). Compared with traditional retrieval models (e.g., the vector-space model), these
new approaches (often called language modeling approaches) perform equally well but have many
advantages including sound statistical foundation, automatic setting of retrieval model parameter,
and easily accommodating different retrieval tasks. The language modeling approaches have mostly
been developed in the last ten years, yet, within this short period, they have already shown great
promise for multiple retrieval tasks with very good empirical performance. Development of new lan-
guage models is currently an active research area in information retrieval. It can thus be envisioned
that the language modeling approaches will find more and more applications and may eventually
replace the traditional retrieval models.

In the rest of this chapter, we will provide some background on both information retrieval
and statistical language models to help readers who do not previously have such background to
understand the rest of the book. Readers already familiar with information retrieval and language
models can skip the rest of the chapter.

1.1 BASIC CONCEPTS IN INFORMATION RETRIEVAL
A basic information retrieval problem is set up as follows: We assume that there exists a document
collection C = {D1, ..., DN } where Di is a text document. Given a query Q, the task of an information
retrieval system is to return a ranked list of documents so that the documents ranked on the top are
more relevant to the query than those ranked below them. In most studies, a document is assumed to
be either relevant or nonrelevant (i.e.,binary relevance).Although such a binary relevance assumption
does not fully reflect the reality since relevance is a matter of degree, it makes it easier to collect
user relevance judgments for evaluation. Relevant documents are what the user is looking for, and
can be regarded as containing the expected answers to the query. Typically, ranking is done by first
using a retrieval function s to score each document with respect to the query and then ranking all
the documents based on their scores. That is, we have s(Q, Di) ∈ �.

Typically, the query and documents are expressed in the same language, such as English,
and both consist of a sequence of words in the language. Formally, let V = {w1, ..., wM} be the
vocabulary set of our language and wi a word. We may denote a query as Q = q1, ..., qm and a
document as D = d1, ..., dn. In many retrieval models, the order of words in a query or a document
1Naturally, other components such as the user interface are also very important for an IR system.
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is ignored, thus both Q and D would be a bag of words. Despite its simplicity, such a bag-of-words
representation has been shown to perform quite well empirically; as a result, it remains the most
popular representation used in virtually all the search engines.

However, such a representation would not be able to distinguish word sequences “street mar-
ket” and “market street” which have quite different meanings. Thus, intuitively it is possible to
improve retrieval accuracy by capturing the word order; unfortunately, as we will discuss later, it
remains a major challenge to develop a robust retrieval model that can handle such word orders
effectively in a general way. Most of our discussions in this book assume the bag-of-words repre-
sentation.

As a computation problem, the retrieval problem is ill-defined because the quality of search
results can only be judged by users of a retrieval system in a subjective way. Thus, in order to tell
which retrieval method is the best, we must rely on users to make judgments or data sets created
based on user judgments. The search results of a retrieval system are often evaluated in two ways:
(1) conduct a user study where actual users would use the system and assess the quality of the search
process and results; and (2) develop a gold standard test collection in advance and test a system using
the test collection to assess the quality of search results.

The first way allows us to see the actual utility of a system, thus the evaluation results are more
interpretable in terms of the usefulness of the system. However, due to the involvement of different
users or the different status of the same user, it may be difficult to compare two systems reliably
using this strategy. For example, if a user tries the same query on system A before trying it on system
B, then by the time of trying system B, the user would have already become more familiar with the
topic, which may cause bias in comparing the two systems. Another deficiency of the first way is the
unavailability of many users to participate in the experiments.

Due to these reasons, the second way has been so far the most popular way of evaluating search
results (especially in academia research). This evaluation methodology was developed by Cleverdon
and colleagues in the 1960’s [5], and is often called the Cranfield evaluation method. In this method,
we would choose a sample collection of documents and a set of realistic queries (often from real
users), and then have real users (ideally who designed the queries) to judge all the documents for each
query to identify relevant documents. Binary relevance is assumed (i.e., a document is assumed to
be either relevant or nonrelevant). The obtained relevance judgments can then be used to measure the
accuracy of ranking (an ideal ranking would put all the relevant documents above all the nonrelevant
ones).

In the early days of IR research, the document collections were small, and it was feasible to
judge all the documents. As large document collections were used, it was no longer feasible to have
human assessors to judge all the documents.Thus,a new strategy called “pooling” was proposed in [6].
The idea was to pool together all the top-ranked documents from a sufficiently large set of retrieval
systems, and have human assessors to judge only this subset of documents for each query. When
evaluating search results, we would assume all the unjudged documents are nonrelevant. Although
the judgments are incomplete, we can hope that such judgments are sufficient to distinguish a good
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retrieval system from a poor one. This strategy has been adopted in many tasks of TREC, an annual
conference for evaluation of text retrieval techniques (see http://trec.nist.gov/), and so far, it
has been working well in TREC [7].

A standard IR test collection includes three elements: (1) document collection; (2) queries;
and (3) relevance judgments for all the queries. Given such a test collection, a ranked list of search
results for a query is often evaluated using several measures. The two basic measures are precision
and recall. Precision is the percentage of relevant documents in the search results, while recall is the
percentage of retrieved relevant documents in all the relevant documents in the entire collection.

Formally, let X = {D1, ..., Dk} be the set of search results where Di is the i-th ranked docu-
ment, and Y = {Y1, ..., Yk′ } be the set of all relevant documents for the query in the collection. We
have:

precision = |X ∩ Y |
|X| recall = |X ∩ Y |

|Y | .

Both precision and recall are defined with respect to a set of retrieved documents. Thus, given
a ranked list of search results, we will need to choose a cutoff point to compute precision and recall.
For example, precision at top ten documents is a measure frequently used to measure the accuracy
in the top-ranked results, and is quite meaningful to a user because it indicates how many relevant
documents a user can expect to see on the first page of search results (a web search engine usually
shows ten results on each page of results).

However, precision at top k documents is insensitive to the change of the ranks of relevant
documents among the top k documents, thus it is not a good measure for measuring the overall
ranking accuracy. For comparing two ranked lists more accurately, IR researchers proposed another
measure, called average precision, which is sensitive to any small change in the ranking of relevant
documents. It is defined as follows:

avgprec = 1

k′
k′∑

i=1

i/ri ,

where ri is the rank of the i-th relevant document in the search results. ri is assumed to be infinite if
the i-th relevant document is not retrieved. For example, if we have a total of 5 relevant documents,
and the relevance status of the top 6 documents is (+, +, −, −, −, +), where “+” (or “−”) indicates
the document at that rank is relevant (or nonrelevant), the precision would be 3/6=0.5, the recall
would be 3/5=0.6, and the average precision would be

avgprec = (1/1 + 2/2 + 3/6 + 0 + 0)/5 = 0.5 .

When there is only one single relevant document for a query, the average precision would be equal
to the reciprocal of the rank of that relevant document. In suche a case, the measure is often called
reciprocal rank.

http://trec.nist.gov/
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Since we typically experiment with a set of queries, we would take the mean of the average
precision on each query and compute a Mean Average Precision (MAP)2. MAP has so far been the
standard measure for evaluating ranking accuracy of a retrieval model.

Note that although MAP reflects retrieval precision, it favors results with high recall. This
is because we assume the precision corresponding to a missed relevant document to be zero, which
penalizes a low recall system harshly. In general, when we summarize a ranked list of results with
one single precision number, we inevitably would have to make some assumption about the desired
tradeoff between precision and recall because if we draw precision-recall curves over a wide range of
cutoff points in the ranked list, one ranked list may have a higher precision at a low level of recall
while another may have a better precision at a high level of recall.

One deficiency of MAP is that binary relevance is assumed. Intuitively, relevance can be judged
at multiple levels (e.g., highly relevant, relevant, and nonrelevant). To measure the overall ranking
accuracy of a retrieval system in case of multiple relevance levels, another measure called Normalized
Discounted Cumulative Gain (NDCG) is often used [8]. It can be regarded as a generalization of
precision at top k documents to accommodate multiple levels of relevance. It also gives a highly
ranked document more weight, so it is sensitive to the internal ranking of the k documents.

The basic idea of NDCG is as follows. We assume that each document has an associated
“gain” which corresponds to its relevance level; a highly relevant document would have a higher
gain than a marginally relevant one. We then measure the overall ranking accuracy of the top k

documents with the sum of the gains of the k documents (called cumulative gain). The measure
NDCG further improves this basic idea in two ways: (1) It heuristically gives a higher weight to a
highly ranked document to allow it to emphasize the importance of ranking the documents with high
gain values on the very top of the ranked list3. The actual formula would achieve this by discounting
the gain of a lowly ranked document. (2) It normalizes the overall discounted cumulative gain with
its upper bound.The upper bound can be computed by assuming a perfect ranking of documents for
the query. This makes the normalized discounted cumulative gain values more comparable across
different queries; indeed, otherwise, the average value would be dominated by those from an easy
query with many highly relevant documents.

After a system presents some search results to a user, sometimes the user is willing to provide
some feedback on the relevance status of the results, i.e., telling the system which documents are
relevant and which are not. In such a case, the retrieval system can learn from the examples of
relevant and/or nonrelevant documents provided by the user to improve the search results. This is
called relevance feedback, and is an important technique for improving search accuracy.

When the user is not willing to make judgments, which is often the case, the system may
still perform feedback by simply assuming some top-ranked documents to be relevant and most
other documents in the collection to be nonrelevant.This is called pseudo relevance feedback or simply

2The mean can be either an arithmetic mean or geometric mean. The former can be dominated by the performance of an easy
query, while the latter better reflects the overall performance on difficult queries. When geometric mean is used, the measure is
often abbreviated as GMAP.

3Note that MAP also naturally puts more weight on a top-ranked document.
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pseudo feedback, and it also tends to improve retrieval performance on average, especially recall.
But since the relevance information used is unreliable, pseudo feedback may hurt the performance
for some queries, making it a major challenge in IR research to improve the robustness of pseudo
feedback.

A third kind of feedback is to use user interactions (e.g., past queries, clickthroughs) to infer a
user’s interest and improve search results.This is called implicit feedback [9], and is generally effective.
Implicit feedback is particularly powerful when a search system can collect a lot of user information
from a large number of users, as is the case for Web search. Indeed, modern web search engines all
take advantage of the massive amount of implicit feedback information to improve search results.
More discussion about feedback can be found in [10]. In general, we would expect a retrieval model
to be able to support all these different kinds of feedback.

1.2 STATISTICAL LANGUAGE MODELS

A statistical language model (or just language model for short) is a probability distribution over
word sequences. It thus gives any sequence of words a potentially different probability. For example,
a language model may give the following three word sequences different probabilities:

p(“Today is Wednesday”) = 0.001
p(“Today Wednesday is”) = 0.000000001
p(“The equation has a solution”) = 0.000001.

Clearly, a language model can be context dependent. In the language model shown above, the
sequence “The equation has a solution” has a smaller probability than “Today is Wednesday.” This
may be a reasonable language model for describing general conversations, but it may be inaccurate
for describing conversations happening at a mathematics conference, in which the sequence “The
equation has a solution” may occur more frequently than “Today is Wednesday.”

Given a language model, we can sample word sequences according to the distribution to obtain
a text sample. In this sense, we may use such a model to “generate” text. Thus, a language model is
also often called a generative model for text.

Why is a language model useful? A general answer is that it provides a principled way to
quantify the uncertainties associated with the use of natural language. More specifically, it allows
us to answer many interesting questions related to information retrieval. For example, a language
model may help answering the question: how likely would a user use a query containing the word
“baseball” if the user wants to find information about sports?

If we enumerate all the possible sequences of words and give a probability to each sequence,
the model would be too complex to estimate because the number of parameters is potentially infinite
since we have potentially infinite number of word sequences. That is, we would never have enough
data to estimate these parameters.Thus, we always have to make assumptions to simplify the model.
The simplest language model is the unigram language model in which we assume that a word sequence
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is generated by generating each word independently. Thus, the probability of a sequence of words
would be equal to the product of the probability of each word.

Formally, let V be the set of words in the vocabulary, and w1...wn a word sequence, where
wi ∈ V is a word. We have:

p(w1...wn) =
n∏

i=1

p(wi) .

It is easy to see that given a unigram language model θ , we have as many parameters as the
words in the vocabulary, i.e., {p(wi |θ)}|V |

i=1, and they satisfy the constraint
∑|V |

i=1 p(wi |θ) = 1. Such
a model essentially specifies a multinomial distribution over all the words.

Clearly, given a language model θ , in general, the probabilities of generating two different
documents D1 and D2,would be different, i.e.,p(D1|θ) �= p(D2|θ).What kind of documents would
have higher probabilities? Intuitively it would be those documents that contain many occurrences of
the high probability words according to θ . In this sense, the high probability words of θ can indicate
the topic captured by θ .

For example, the two unigram language models illustrated in Figure 1.1 suggest a topic about
“text mining” and a topic about “health”, respectively. Intuitively, if D is a text mining paper, we
would expect p(D|θ1) > p(D|θ2), while if D′ is a blog article discussing diet control, we would
expect p(D′|θ2) > p(D′|θ1). We can also expect p(D|θ1) > p(D′|θ1) and p(D|θ2) < p(D′|θ2).

…
text  0.2
mining 0.1
assocation 0.01
clustering 0.02
…
food 0.00001
…

…
food 0.25
nutrition 0.1
healthy 0.05
diet 0.02
…
text 0.00001
…

)|( 1θwp )|( 2θwp

Figure 1.1: Illustration of two unigram language models capturing the topics “text mining” (θ1) and
“health” (θ2), respectively.

Now suppose we have observed a document D (e.g., a short abstract of a text mining paper)
which is assumed to be generated using a unigram language model θ , and we would like to infer the
θ (i.e., estimate the probability of each word w, p(w|θ)) based on the observed D.This is a standard
problem in statistics (i.e., parameter estimation) and can be solved using many different methods.
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One popular method is the maximum likelihood (ML) estimator, which seeks a model θ̂ that
would give the observed data the highest likelihood (i.e., best explain the data):

θ̂ = arg max
θ

p(D|θ) .

It is easy to show that the ML estimate of a unigram language model gives each word a probability
equal to its relative frequency in D. That is,

p(w|θ̂ ) = c(w, D)

|D| , (1.1)

where c(w, D) is the count of word w in D and |D| is the length of D, or total number of words in
D.

To see why, we can write down the log-likelihood function as follows:

log p(D|θ) =
∑
w∈V

c(w, D) log p(w|θ) .

To compute the ML estimate is to find values of p(w|θ) to maximize this likelihood function subject
to the constraint

∑
w∈V p(w|θ) = 1.

Using the Lagrange Multiplier approach [11], we would introduce a new variable λ (called
Lagrange multiplier) to combine the constraint with the original log-likelihood function so as to
convert the original constrained optimization problem into a new unconstrained optimization problem
in which we want to find an optimal θ and an optimal λ to maximize the following function:

∑
w∈V

c(w, D) log p(w|θ) + λ

(
1 −

∑
w∈V

p(w|θ)

)
.

Taking partial derivatives of this function with respect to p(w|θ) and λ and setting the
derivatives to zero, we can then obtain the solution for θ as shown in Equation 1.1.

Because the ML estimate attempts to fit the data as much as possible, it may “over-fit” the
data if the data is a small sample. Indeed, it would give any word not seen in D a zero probability,
which may not be reasonable especially if D is a small sample. Why do we believe assigning zero
probability to all the unseen words is unreasonable? This has to do with our prior belief of what
a word distribution characterizing the topic of a document should look like; intuitively, had the
author decided to write a longer document D, we would probably have been able to observe some
of those unseen words. The Bayesian estimator would seek a model that can both maximize the data
likelihood and reflect our prior belief about the model.

For example, the Maximum A Posteriori (MAP) estimator would maximize the posterior
probability p(θ |D), i.e.,

θ̂ = arg max
θ

p(θ |D) = arg max
θ

p(D|θ)p(θ) .
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Naturally, we need to define our prior p(θ); with different priors, we generally would obtain different
estimates. If our prior p(θ) strongly prefers a model that does not give zero probability to any word,
the ultimate estimated model θ̂ would “listen” to the prior and not assign zero probability to any
word. Adjusting the ML estimate to avoid zero probability is often called “smoothing.” There are
many different methods for smoothing a unigram language model which we will discuss later in the
book.

Although unigram language models are simple, they clearly make unrealistic assumptions
about word occurrences in text. For example, if an author has started using a word in writing an
article, the author would tend to use the same word again, which means that the probability of
seeing the first occurrence of a word is intuitively different (smaller) than the probability of seeing a
repeated occurrence of the same word. Also, if we have seen the word “software” in a document, the
probability of seeing a related word such as “program” would be much higher than if we have not
seen “software” in the document.

More sophisticated language models have thus been developed to address the limitations of
unigram language models. For example, an n-gram language model would capture some limited
dependency between words and assume the occurrence of a word depends on the proceeding n − 1
words. As a specific example, a bigram language model is defined as follows:

p(w1...wn) = p(w1)

n∏
i=2

p(wi |wi−1) .

Such a bigram language model can capture any potential local dependency between two adjacent
words.

There are also language models capturing remote dependencies through “triggers” [12]. Per-
haps the most sophisticated language model is defined through a probabilistic context-free grammar;
such a language model is explicitly structured based on the grammar of a language [13]. More in-
depth discussion about such language models can be found in [12, 14].

While theoretically speaking, we would like to adopt a sophisticated language model that can
model our language more accurately, in reality, we often have to make a tradeoff. This is because
as the complexity of a language model increases, so does the number of parameters. As a result, we
would need much more data to estimate the parameters. With limited amount of data, our estimate
of parameters would not be accurate. The computational cost of complex language models is also a
concern for all large-scale retrieval applications.

So far, the simplest unigram language model has been shown to be quite effective for in-
formation retrieval, while more sophisticated language models such as bigram language models or
trigram language models tend not to improve much over the unigram language model. One reason
may be because of the problem of data sparseness, which makes the estimated complex language
models inaccurate. From retrieval perspective, the nonpromising performance of complex language
models may also be related to nonoptimal weighting of bigrams and trigrams; indeed, when they are
combined with unigrams, we must avoid over-rewarding matching multiple words in a phrase [15].
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Another reason why unigram language models seem to perform very well is because the
retrieval task is a relatively “easy” task compared with some other language understanding tasks
such as machine translation in the sense that information about word presence or absence and word
frequencies may be sufficient to determine the relevance of a document while the exact word order
may not be so important (as, e.g., in the case of machine translation). For machine translation,
unigram language models are clearly insufficient and more sophisticated language models would be
needed [16]. Also, for speech recognition, modeling word order is obviously very important [14].

How to evaluate a language model depends on the purpose of modeling. In information
retrieval, what we care about is how effective a language model is for retrieval. Thus, we would use
a language model for ranking documents and evaluate the accuracy of ranking. That is, we would
evaluate a language model based on its contribution to retrieval accuracy. This is an indirect way of
evaluating the quality of a language model because we assess a language model together with other
components of a retrieval system, and the retrieval performance we see can be potentially affected
by many other factors, not just the language model.

Since a language model is a probabilistic model of text data, a more direct way of evaluating a
language model would be to assess how well the model fits the data to be modeled (i.e., test data).
For example, we may compute the likelihood of the test data given a model to be evaluated; a higher
likelihood would indicate a better fit, thus a better language model.

Note that the relative performance of two language models may be different when using these
two different evaluation strategies. This is because there may be some “gap” between the task and
the language model; as a result, fitting the data well does not always imply better performance for
the task. A main goal in research on using language models for retrieval is to design appropriate
retrieval models so that an improved language model (improved in terms of direct evaluation) would
also lead to improved performance for the retrieval task. If such correlation exists, we would have
some guidance on how to find a better retrieval model –we may find a better retrieval model through
improving language models and/or estimation of language models. As we will discuss in detail later,
we can indeed improve retrieval accuracy through various ways to improve the estimate of language
models used for ranking documents.
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C H A P T E R 2

Overview of Information
Retrieval Models

Over the decades, many different retrieval models have been proposed, studied, and tested. Their
mathematical basis spans a large spectrum, including algebra, logic, probability, and statistics. In this
chapter, we briefly review all the major retrieval models to give readers a picture about how language
models are connected with other retrieval models.

We will group these models into five categories based on how they define/measure relevance.
In the first category, relevance is assumed to be correlated with the similarity between a query
and a document. In the second category, a binary random variable is used to model relevance and
probabilistic models are used to estimate the value of this relevance variable. In the third category,
relevance is modeled by the uncertainty of inferring queries from documents or vice versa. In the
fourth category, relevance is captured through formally defined constraints on retrieval functions. In
the fifth category, the retrieval problem is formalized generally as a statistical decision problem and
relevance is regarded as part of a loss/utility function that affects retrieval decisions. We now discuss
these categories in detail.

2.1 SIMILARITY-BASED MODELS

In a similarity-based retrieval model, it is assumed that the relevance status of a document with
respect to a query is correlated with the similarity between the query and the document at some
level of representation; the more similar to a query a document is, the more relevant the document
is assumed to be. In practice, we can use any similarity measure that preserves such a correlation to
generate a relevance status value (RSV) for each document and rank documents accordingly.

The vector space model is the most well-known model of this type [23, 24, 25]. In the vector
space model, a document and a query are represented as two term vectors in a high-dimensional
term space. Each term is assigned a weight that reflects its “importance” to the document or the
query. Given a query, the relevance status value of a document is given by the similarity between the
query vector and document vector as measured by some vector similarity measure, such as the dot
product of the two vectors or the cosine of the angle formed by the two vectors.

Formally, a document D may be represented by a document vector �D = (x1, x2, ..., xM),
where M is the total number of terms in our vocabulary, and xi is the weight assigned to word wi .
Similarly, a query Q can be represented by a query vector �Q = (y1, y2, ..., yM).The weight is usually
computed based on the so-called TF-IDF weighting, which is a combination of three factors [26]:
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(1) the local frequency of the term (in a document or query); (2) the global frequency of the term in
the whole collection; and (3) document length.

The vector space model is by far the most popular retrieval model due to its simplicity and
effectiveness. The following is a typical effective weighting formula with pivoted document length
normalization taken from [26]:

∑
t∈Q,D

1 + ln(1 + ln(tf ))

(1 − s) + s dl
avdl

× qtf × ln
N + 1

df

where s is an empirical parameter (usually 0.20), and
tf is the term’s frequency in document
qtf is the term’s frequency in query
N is the total number of documents in the collection
df is the number of documents that contain the term
dl is the document length, and
avdl is the average document length.

In the formula above, the term ln N+1
df

is called the Inverse Document Frequency (IDF), which
penalizes a term that is common in the collection (intuitively, matching a rare term is “worth” more
than matching a common one). IDF, proposed by Sparck Jones [27], is a very important retrieval
heuristic which tends to show up in all effective retrieval functions in one way or another. The term
with tf , document length, and parameter s is a normalized form of Term Frequency (TF) which
rewards matching a term more times in a document. More discussion about retrieval heuristics can
be found in [28].

The vector space model naturally decomposes a retrieval model into three components: (1) a
term vector representation of query; (2) a term vector representation of document; and (3) a similar-
ity/distance measure of the document vector and the query vector. However, the “synchronization”
among the three components is generally unspecified; in particular, the similarity measure does not
dictate the representation of a document or query. Thus, the vector space model is actually a general
retrieval framework, in which the representation of query and documents as well as the similarity
measure can all be arbitrary in principle.

Related to its generality, the vector space model can also be regarded as a procedural model
of retrieval, in which the task of retrieval is naturally divided into two separate stages: indexing and
search. The indexing stage explicitly has to do with representing the document and the query by the
“indexing terms” extracted from the document and the query. The indexing terms are often assigned
different weights to indicate their importance in describing a document or a query. The search stage
has to do with evaluating the relevance value (i.e., the similarity) between a document vector and a
query vector.The flexibility of the vector space model makes it easy to incorporate different indexing
models. For example, the 2-Poisson probabilistic indexing model can be used to select indexing
terms and/or assign term weights [29, 30]. Latent semantic indexing [31] and Probabilistic Latent
Semantic Indexing [32] can be applied to reduce the dimension of the term space and to capture
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the semantic “closeness” among terms, and thus to improve the representation of the documents and
query. A document can also be represented by a multinomial distribution over the terms, as in the
distribution model of indexing proposed in [33], which would later be heavily used in the language
modeling approaches.

In the vector space model, feedback (see Section 1.1) is typically treated as query vector
updating. A well-known approach is the Rocchio method, which simply adds the centroid vector
of the relevant documents to the query vector and subtracts from it the centroid vector of the
nonrelevant documents with appropriate coefficients [34]. Thus, assuming that DR and DN are the
sets of relevant and nonrelevant documents, the updated query vector would be:

�Q′ = α �Q + β
1

|DR|
∑

d∈DR

�d − γ
1

|DN |
∑

d∈DN

�d .

In effect, this leads to an expansion of the original query vector, i.e., additional terms are extracted
from the known relevant (and nonrelevant) documents, and are added to the original query vector
with appropriate weights [35].

The extended Boolean (p-norm) model is a heuristic extension of the traditional Boolean
model to perform document ranking, but it can also be regarded as a special case of the similarity
model [36,37]. In the traditional Boolean retrieval model, a query specifies a Boolean condition that a
relevant document must satisfy (e.g., (HasTerm “computer”) AND (HasTerm “virus”)). Documents
satisfying the query condition would be retrieved as search results. One deficiency of the Boolean
retrieval model is that it does not provide a score for ranking, but ranking may be desirable. For
example, if a query has three conjunctive term constraints, intuitively, a document that satisfies
two of them is better than one that satisfies only one of them. To address this issue, the extended
Boolean model defines a similarity function with a parameter p to control the “strictness” of satisfying
the constraint of a Boolean query. The function behaves in such a way that it would approach a
strict (conjunctive or disjunctive) Boolean model when p approaches infinity, but would soften the
conjunctive or disjunctive constraint and behave more like a regular vector space similarity measure
as p becomes smaller. Thus, the extended Boolean model provides a very interesting, flexible way to
rank documents for a Boolean query. However, the model must rely on some assumptions about the
Boolean structure of a query, which is not always available, and it has some undesirable mathematical
properties (e.g., the score may not change monotonically as p changes) [38]. There has also been
little, if any, large-scale evaluation of the model.

The main criticism for the vector space model is that it provides no guidance for the choice of
representation, making the study of representation inherently separate from the relevance estimation.
The separation of the relevance function from the weighting of terms has the advantage of being flex-
ible, but makes it very difficult to study the interaction of representation and relevance measurement.
The semantics of a similarity/relevance function is highly dependent on the actual representation
(i.e., term weights) of the query and the document. As a result, the study of representation in the
vector space model has been so far largely heuristic.
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The two central problems in document and query representation are the extraction of indexing
terms/units and the weighting of the indexing terms.The choice of different indexing units has been
extensively studied, but for English, early experiments did not show significant improvement over
the simplest word-based indexing [39]. Some more recent evaluation has shown more promising im-
provement on average through using linguistic phrases, but the improvement is inconsistent—some
queries are improved, but others are not [40, 41, 42]. For many non-English languages, morpholog-
ical normalization and phrases have been shown to be clearly beneficial [43, 44].

Many heuristics have been proposed to improve term weighting, but no weighting method
has been found to be significantly better than the heuristic TF-IDF term weighting [45].To address
the variances in the length of documents, an effective weighting formula also needs to incorporate
document length heuristically [46].

Salton et al. introduced the idea of the discrimination value of an indexing term [47]. The
discrimination value of an indexing term is the increase or the decrease in the mean inter-document
distance caused by adding the indexing term to the term space for text representation. They found
that the middle frequency terms have a higher discrimination value. Given a similarity measure, the
discrimination value provides a principled way of selecting terms for indexing. However, there are
still two deficiencies. First, the discrimination value is not modeling relevance, but rather, relies on
a given similarity measure. Second, it is only helpful for selecting indexing terms, but not for the
weighting of terms.

The divergence from randomness model proposed in [48] offers some new insights into
term weighting in the vector space model and provides a probabilistic justification for a number of
weighting methods. Some of them are shown to be very effective in TREC evaluation [48].

The development of language modeling approaches has led to a new family of similarity-based
models in which scoring is based on the Kullback-Leibler (KL) divergence (or equivalently cross
entropy) of a query language model and a document language model [1]. Because the document
and query representations are based on language models, term weighting can be addressed through
statistical estimation. The KL-divergence model thus provides more guidance on how to improve a
retrieval function than the traditional vector-space model.

2.2 PROBABILISTIC RELEVANCE MODELS
In a probabilistic relevance model, we are interested in the question “What is the probability that
this document is relevant to this query?” [49]. Given a query, a document is assumed to be either
relevant or nonrelevant, but a system can never be sure about the true relevance status of a document,
so it has to rely on a probabilistic relevance model to estimate it.

Such a retrieval strategy can be justified by the Probability Ranking Principle (PRP) [50],
which is often taken as the foundation for probabilistic retrieval models. As stated in [50], the
principle is based on the following two assumptions:

“(a) The relevance of a document to a request is independent of the other documents in
the collection;
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(b) The usefulness of a relevant document to a requester may depend on the number of
relevant documents the requester has already seen (the more he has seen, the less useful
a subsequent one may be).”

Under these assumptions, the PRP provides a justification for ranking documents in descend-
ing order of probability of relevance, which can be evaluated separately for each document.

Formally, let random variables D and Q denote a document and query, respectively. Let R

be a binary random variable that indicates whether D is relevant to Q or not. It takes two values
which we denote as r (“relevant”) and r (“not relevant”). The task is to estimate the probability of
relevance, i.e., p(R = r | D, Q). Depending on how this probability is estimated, there are several
special cases of this general probabilistic relevance model.

First, p(R = r | D, Q) can be estimated directly using a discriminative (regression) model.
Essentially, the relevance variable R is assumed to be dependent on “features” that characterize the
matching of D and Q (e.g., the number of matched terms). In general, suppose we have k features,
Fi(Q, D), i = 1, ..., k, defined on the query-document pair (Q, D). We will assume that there exists
a function f with parameters � such that

p(R = r | D, Q) = f (F1(Q, D), ..., Fk(Q, D), �) .

With training examples of the form (Q, D, r) (D is relevant to Q) and (Q, D, r) (D is not relevant
to Q), we can then fit such a function to the training examples to maximize the likelihood of the
training data or minimize the errors on ranking the training examples.

Early work in this direction includes linear regression [36], polynomial regression [51], and
logistic regression [52]. Such regression models provide a principled way of exploring heuristic
features and ideas. One important advantage of regression models is their ability to learn from all
the past relevance judgments including judgments for different queries. However, because regression
models are based on heuristic features in the first place, lots of empirical experimentation would be
needed in order to find a set of good features. In this sense, a regression model provides only limited
guidance for extending a retrieval model.

Before Web search was popular, the retrieval problems studied often involved simple free-
text documents. With TF-IDF weighting being the main basis for designing effective features,
these regression models have not been able to show real advantages over a well-tuned vector space
model. Recently, however, such models have regained much attention due to the need for combining
many different features (e.g., content scores, link-based scores, anchor text scores) for effective Web
search [53]; recent work in this direction has strong machine learning flavor and the models are
often phrased as “learning to rank” in contrast to many other applications of machine learning
where the goal is “learning to classify” (objects). These new models are more successful than the old
regression models explored earlier [36, 51, 52] because they leverage the scores given by other state
of the art retrieval models as features and combine them with additional useful features such as link
information for web pages.
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For example, the Markov Random Field (MRF) model proposed in [54] can easily combine
features corresponding matching documents with queries at different granularities of units, including
both single terms and term-dependency structures (e.g., co-occurring terms within a window of text,
which can capture proximity of terms), and this model has been shown to perform very well [54].
However, a common weakness of all these discriminative models remains the lack of guidance on
designing effective features.

Alternatively, p(R = r | D, Q) can be estimated indirectly using a generative model in the
following way [55]:

p(R = r | D, Q) = p(D, Q | R = r) p(R = r)

p(D, Q)
.

Equivalently, we may use the following log-odds ratio to rank documents:

log
p(r | D, Q)

p(r | D, Q)
= log

p(D, Q | r) p(r)

p(D, Q | r) p(r)
.

There are two different ways to factor the conditional probability p(D, Q | R), corresponding to
“document generation” and “query generation.”

With document generation, p(D, Q | R) = p(D | Q, R)p(Q | R), so we end up with the fol-
lowing ranking formula:

log
p(r | D, Q)

p(r | D, Q)
= log

p(D | Q, r)

p(D | Q, r)
+ log

p(r | Q)

p(r | Q)
.

Essentially, the retrieval problem is formulated as a two-category document classification
problem, although we are only interested in ranking the classification likelihood, rather than actually
assigning class labels. Operationally, two models are estimated for each query, one modeling relevant
documents, the other modeling nonrelevant documents. Documents are then ranked according to
the posterior probability of relevance.

Most classical probabilistic retrieval models [56, 57, 58] are based on document generation.
The Binary Independence Retrieval (BIR) model [56, 58] is perhaps the most well-known classical
probabilistic model. The model assumes that terms are independently distributed in each of the two
relevance models, so it essentially uses the Naïve Bayes classifier for document ranking [59]1. The
BIR retrieval formula is the following [56, 55]:

log
p(r | D, Q)

p(r | D, Q)

rank=
∑

T ∈D∩T ∈Q

log
p(T = 1 | Q, r)(1 − p(T = 1 | Q, r))

(1 − p(T = 1 | Q, r))p(T = 1 | Q, r)
,

where rank= means equivalent in terms of being used for ranking documents, and p(T = 1 | Q, r) and
p(T = 1 | Q, r) are probabilities of seeing term T in a relevant document and nonrelevant document,
1The required underlying independence assumption for the final retrieval formula is actually weaker [60].
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respectively. Note that in this model, we only model presence and absence of words in a relevant or
nonrelevant document and thus ignore the frequency counts of words. In other words, we assume
a multiple Bernoulli event model and observe constraints: p(T = 1 | Q, r) + p(T = 0 | Q, r) = 1
and p(T = 1 | Q, r) + p(T = 0 | Q, r) = 1.

There have been several efforts to improve the binary representation. Van Rijsbergen extended
the binary independence model by capturing some term-dependency as defined by a minimum-
spanning tree weighted by average mutual information [61]. The dependency model achieved sig-
nificant increases in retrieval performance over the independence model. However, the evaluation
was only done on very small collections, and the estimation of many more parameters is a problem
in practice [62]. Croft investigated how the heuristic term significance weight can be incorporated
into probabilistic models in a principled way [63]. Another effort to improve document representa-
tion involves introducing the term frequency directly into the model by using a multiple 2-Poisson
mixture representation of documents [64]. A different way of introducing the term frequency into
the model, not directly proposed but implied by a lot of work in text categorization, is to regard a
document as being generated from a multinomial unigram language model [65, 66].The relationship
between different event models of the document-generation model is discusses in [206].

In general, with examples of relevant and nonrelevant documents, we can easily estimate the
parameters in a document-generation model. Specifically, in the document-generation model, we
need to estimate two component models p(D|Q, r) and p(D|Q, r). The first can be estimated
based on examples of relevant documents, while the second can be estimated based on examples
of nonrelevant documents. Thus, the document-generation model is quite natural for relevance
feedback. However, it was found that for feedback, it may be better to selectively use only some of
the most useful terms instead of using all the terms, and the Offer Weight heuristic measure was
recommended to be used for selecting such terms [67].

Without relevant examples, however, estimation of parameters can be difficult [68, 69]; thus,
heuristics may be needed to make such a model useful for ad hoc retrieval without relevance feedback
information. For example, an approximation of the 2-Poisson mixture model using a simple TF
formula has led to a quite effective retrieval function (i.e., BM25 [70]). This function was first
successfully used in City University’s Okapi system and later recognized as one of the most effective
and robust retrieval functions. The BM25 formula is shown below, following the notations used
in [26]: ∑

t∈Q,D

ln
N − df + 0.5

df + 0.5
× (k1 + 1)tf

k1((1 − b) + b dl
avdl

) + tf
× (k3 + 1)qtf

k3 + qtf

where, k1 ∈ [1.0, 2.0], b (usually 0.75), and k3 ∈ [0, 1000] are parameters, and other variables have
the same meaning as in the vector space retrieval formula described in the previous section2.

To solve the parameter estimation problem in the document-generation model, Lavrenko and
Croft have developed a relevance model which essentially implements the idea of pseudo feedback,

2The original formula presented in [26] has a typo in the denominator of the TF normalization part, which has been corrected
here.
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and it enables model estimation without relevance judgments [71]. This model has been shown to
be quite effective, and will be discussed in detail in Section 5.3.3.

So far, we have considered the case of refining the probabilistic model with document gener-
ation. Let us now consider refining it with query generation: p(D, Q | R) = p(Q | D, R)p(D | R).
In this case, we end up with the following ranking formula:

log
p(r | D, Q)

p(r | D, Q)

rank= log
p(Q | D, r)

p(Q | D, r)
+ log

p(r | D)

p(r | D)
.

Under the assumption that conditioned on the event R = r , the document D is independent
of the query Q, i.e., p(D, Q | R = r) = p(D | R = r) p(Q | R = r), the formula becomes

log
p(r | D, Q)

p(r | D, Q)

rank= log p(Q | D, r) + log
p(r | D)

p(r | D)
.

There are two components in this model.The major component p(Q | D, r) can be interpreted
as a “relevant query model” conditioned on a document. That is, p(Q | D, r) is the probability that a
user, who likes document D, would use Q as a query to retrieve D. The second component p(r | D)

is a prior that can be used to encode any bias on documents.
Models based on query generation have been explored in [72], [58], and [73].The probabilistic

indexing model proposed in [72] is the first probabilistic retrieval model, in which the indexing terms
assigned to a document are weighted by the probability that a user who likes the document would
use the term in the query. That is, the weight of term t for document D is p(t | D, r). However,
the estimation of the model is based on the user’s feedback, not the content of D. The Binary
Independence Indexing (BII) model proposed in [58] is another special case of the query generation
model. It allows the description of a document (with weighted terms) to be estimated based on
arbitrary queries, but the specific parameterization makes it hard to estimate all the parameters in
practice.

The query generation derivation above suggests that we can score documents based on query
likelihood p(Q | D, r) if we use a noninformative (i.e., uniform) prior p(r | D). This is precisely the
so-called language modeling approach to retrieval, which was first introduced in [74] and indepen-
dently explored in some TREC work [75, 76]. This language modeling approach (i.e., the query
likelihood scoring method) has since attracted much attention, and many interesting and effective
variant models have been proposed. Compared with the traditional retrieval models, including both
the vector-space model and the classical probabilistic model, the language modeling approaches put
more emphasis on parameter estimation and thus provide more guidance on term weighting. They
are empirically as effective as any other existing model and can often be easily extended/adapted to
model complex retrieval tasks. The main purpose of this book is to introduce and review this new
generation of probabilistic retrieval models and their extensions.

Instead of imposing a strict document generation or query generation decomposition of
p(D, Q | R), one can also “generate” a document-query pair simultaneously. Mittendorf & Schauble
explored a passage-based generative model using the Hidden Markov Model (HMM), which can
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be regarded as such a case [77]. In this work, a document query pair is represented as a sequence
of symbols, each corresponding to a term in a particular position of the document. All term tokens
are clustered based on the similarity between the token and the query. In this way, a term token in a
particular position of a document can be mapped to a symbol that represents the cluster the token
belongs to. Such symbol sequences are modeled as the output from an HMM with two states, one
corresponding to relevant passage and the other the background noise. The relevance value is then
computed based on the likelihood ratio of the sequence given the passage HMM model and the
background model.

2.3 PROBABILISTIC INFERENCE MODELS

In a probabilistic inference model, the uncertainty whether a document is relevance to a query
is modeled by the uncertainty associated with inferring/proving the query from the document.
Depending on how one defines what it means to “prove a query from a document,” different inference
models are possible.

Van Rijsbergen introduced a logic-based probabilistic inference model for text retrieval [78],
in which, a document is relevant to a query if and only if the query can be proved from the
document. The Boolean retrieval model can be regarded as a simple case of this model. Specifically,
we may regard both a query and a document as consisting of a set of propositions such as
“HasTerm(computer)” and “HasTerm(virus).” Thus, a query “computer virus” can be represented as
the following conjunctive expression:

HasT erm(computer) AND HasT erm(virus).

Similarly, we can represent a document in this way. If we can prove that the query expression
logically follows a document expression, it would mean that the document indeed contains both
query terms, thus it is relevant.

A main limitation of the Boolean retrieval model is that it does not consider uncertainty in
relevance. To cope with the inherent uncertainty in relevance, Van Rijsbergen introduced a logic for
probabilistic inference, in which the probability of a conditional, such as p → q, can be estimated
based on the notion of possible worlds. In [79], Wong and Yao extended the probabilistic inference
model and developed a general probabilistic inference model which subsumes several other retrieval
models such as Boolean, vector space, and the classic probabilistic models. In [80], Fuhr shows that
some particular form of the language modeling approach can also be derived as a special case of the
general probabilistic inference model.

While theoretically interesting, the probabilistic inference models all must rely on further
assumptions about the representation of documents and queries in order to obtain an operational
retrieval formula. The choice of such representations is in a way outside the model, so there is little
guidance on how to choose or how to improve a representation.
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The inference network model is also based on probabilistic inference [81]. It is essentially
a Bayesian belief network that models the dependency between the satisfaction of a query and
the observation of documents. The estimation of relevance is based on the computation of the
conditional probability that the query is satisfied given that the document is observed. Other similar
uses of the Bayesian belief network in retrieval are presented in [82, 83, 84]. The inference network
model is a much more general formalism than most of the models that we have discussed above.
With different ways to realize the probabilistic relationship between the observation of documents
and the satisfaction of the user’s information need, one can obtain many different existing specific
retrieval models, such as Boolean, extended Boolean, vector space, and conventional probabilistic
models. More importantly, the inference network model can potentially go beyond the traditional
notion of topical relevance; indeed, the goal of inference is a very general one, and at its highest level,
the framework is so general that it can accommodate almost any probabilistic model. The generality
makes it possible to combine multiple evidence, including different formulations of the same query.
The query language based directly on the model has been an important and practical contribution
to IR technology.

However, despite its generality, the inference network framework says little about how one
can further decompose the general probabilistic model. As a result, operationally, one usually has to
set probabilities based on heuristics, as was done in the Inquery system [85].

Kwok’s network model may also be considered as performing a probabilistic inference [86],
although it is based on spreading activation.

In general, the probabilistic inference models address the issue of relevance in a very general
way. In some sense, the lack of a commitment to specific assumptions in these general models has
helped to maintain their generality as retrieval models. But this also deprives them of “predictive
power” as a theory. As a result, they generally provide little guidance on how to refine the general
notion of relevance.

2.4 AXIOMATIC RETRIEVAL FRAMEWORK

The three categories of retrieval models discussed above all have some retrieval parameters that
have to be tuned in order to obtain optimal retrieval performance. Although when well tuned, these
models can all be empirically effective, their performance can be poor if the retrieval parameter is not
set optimally. It also seems that virtually all these models eventually lead to some retrieval function
that implementsTF-IDF weighting and document length normalization.Moreover, these weighting
heuristics also must be implemented in some special functional forms in order for a retrieval function
to perform well. These observations suggest that there may be some “essential properties” that an
effective retrieval function must satisfy, and if these properties are satisfied, the exact form of the
retrieval function really does not matter.

In [28], the three major retrieval heuristics (i.e., TF, IDF, and length normalization) are for-
mally characterized with well-defined constraints on retrieval functions. For example, the following
Term Frequency Constraints capture the TF heuristic:
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TFC1: Let q = w be a query with only one term w. Let d1 and d2 be two documents with identical
length, i.e., |d1| = |d2|. If word w occurs more times in d1 than in d2, i.e., c(w, d1) > c(w, d2), then
a retrieval function must give d1 a higher score than d2, i.e., f (d1, q) > f (d2, q) for any retrieval
function f .
TFC2: Let q = w be a query with only one term w. Let d1, d2, and d3 be three documents
with identical length, i.e., |d1| = |d2| = |d3|. Suppose c(w, d1) > 0. If c(w, d2) − c(w, d1) = 1 and
c(w, d3) − c(w, d2) = 1, then f (d2, q) − f (d1, q) > f (d3, q) − f (d2, q) for any retrieval func-
tion f .

Intuitively, the first constraint simply says that a document matching a query term more times
should be scored higher (i.e., the first partial derivative of the retrieval function with respect to the
TF variable should be positive). The second constraint ensures that the increase in score due to an
increase in TF is smaller for larger TFs (i.e., the second partial derivative with respect to the TF
variable should be negative). Here, the intuition is that the change in score caused by increasing TF
from 1 to 2 should be larger than that caused by increasing TF from 100 to 101.

As another example, we can also define the following constraint to regulate the behavior of a
retrieval function with respect to the length of documents.
LNC2: Let q be a query. ∀k > 1, if d1 and d2 are two documents such that |d1| = k · |d2| and for
all terms w, c(w, d1) = k · c(w, d2),then f (d1, q) ≥ f (d2, q) for any retrieval function.

This constraint says that if we concatenate a document with itself k times to form a new
document, then the score of the new document should not be lower than the original document.

In [28], a total of 7 such constraints are defined, and it is shown that the empirical performance
of a retrieval function is indeed correlated with whether it satisfies these constraints. For example,
the pivoted length normalization retrieval function [46, 26] is shown to violate the LNC2 constraint
defined above if the parameter s is too large (s > 0.4), and indeed, its empirical performance would
drop significantly when s > 0.4. Language modeling retrieval functions are also shown to only
conditionally satisfy this constraint when the parameter is in some range.

Since intuitively all reasonable retrieval functions must satisfy such constraints, we may regard
these constraints as axioms for a retrieval function. Indeed, this suggests a general axiomatic frame-
work to study and analyze retrieval functions. Specifically, we can define as many such constraints
as possible and use them to guide us in finding an effective retrieval function. That is, we would
look for a retrieval function that can satisfy all the desirable constraints. For example, we can take
a generate-and-test strategy and systematically test a set of candidate retrieval functions. For each
candidate retrieval function, we would check whether it satisfies the defined constraints; if it does
not satisfy a constraint, we would then try to modify the function to make it satisfy the constraint.
We can repeat this process until we find one that satisfies all the constraints.

In [87] and [88], such an axiomatic retrieval framework has been successfully leveraged to
derive some interesting new retrieval functions that are more robust than existing retrieval functions
as well as some retrieval functions that can incorporate semantic similarities of words to support
semantic matching between queries and documents.
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The axiomatic retrieval framework offers a novel way for exploring and comparing different
retrieval models, but the framework does not provide constructive guidance on what candidate
functions to explore. Thus, currently we still need to rely on existing retrieval models to suggest a
tractable search space [87]. As will be discussed in the next section, language models naturally offer
many alternative ways to model the retrieval problem. Thus, they can potentially supply candidate
functions for axiomatic analysis.

2.5 DECISION-THEORETIC RETRIEVAL FRAMEWORK

All the retrieval models and retrieval functions we have discussed so far formulate the retrieval
problem as to compute a score for one query and one document. Such a formulation is limited
because we would not be able to model the redundancy among search results. A more general way of
framing the retrieval problem is to take it as a decision problem in which a system would respond to
a query by choosing a set of documents from a collection and presenting the documents in a certain
way. Such a decision-theoretic view of retrieval has been formalized with Bayesian decision theory
in [1, 89, 90], resulting in a general risk minimization framework for information retrieval. This
framework also provides a general way to apply language models to information retrieval. Specifically,
language models are naturally introduced to model the observed data, particularly documents and
queries, in a statistical decision framework. We now present this framework in some detail.

To cast the retrieval problem as a decision optimization problem, we first need to model the
observed data, which mainly consist of the documents and queries, but can also potentially include
the user and the source of the documents. We naturally use language models to model documents
and queries.

Formally, let θQ denote the parameters of a query model, and let θD denote the parameters
of a document model. A user U generates a query by first selecting θQ, according to a distribution
p(θQ |U). Using this model, a query Q is then generated with probability p(Q | θQ). Similarly, the
source selects a document model θD according to a distribution p(θD |S), and then uses this model
to generate a document D according to p(D | θD). See Figure 2.1 for an illustration of this generation
process.

U
Model selection

�

p(θQ |U)

θQ

Query generation
�

p(Q | θQ)

Q

S
Model selection

�

p(θD |S)

θD

Document generation
�

p(D | θD)

D

Figure 2.1: Generative model of query Q and document D (from [1]).
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Suppose C = {D1, D2, . . . , DN } is a collection of documents obtained from sources �S =
(S1, ...,SN). The complete set of observed variables would be {U , Q, �S, C}. The main idea of the
risk minimization framework is to regard the retrieval problem as for the system to choose an optimal
retrieval action in response to these observations.

A retrieval action is defined generally as a compound decision involving selecting a subset of
documents D from C and presenting them to the user who has issued query Q according to some
presentation strategy π . We can represent all actions by A = {(Di , πi)}, where Di ⊆ C is a subset
of C (results) and πi is a presentation strategy.

In the general framework of Bayesian decision theory, to each such action ai = (Di , πi) ∈ A
there is associated a loss L(ai, θ, F (U), F ( �S)), which in general depends upon all of the parameters
of our model θ ≡ (θQ, {θi}Ni=1) as well as any relevant user factors F(U) and document source factors
F( �S).

In this framework, the expected risk of action ai is given by

R(Di , πi |U , Q, �S, C) =
∫

	

L(Di , πi, θ, F (U), F ( �S)) p(θ |U , Q, �S, C) dθ ,

where the posterior distribution is given by

p(θ |U , Q, �S, C) ∝ p(θQ | Q,U)

N∏
i=1

p(θi | Di, �S) .

The Bayes decision rule is then to choose the action a∗ with the least expected risk:

a∗ = (D∗, π∗) = arg min
D,π

R(D, π |U , Q, �S, C) .

That is, to select D∗ and present D∗ with strategy π∗.
Conceptually, this is indeed a very general formulation of retrieval as a decision problem,which

involves searching for D∗ and π∗ simultaneously. The presentation strategy can be fairly arbitrary
in principle, e.g., presenting documents in a certain order, presenting a summary of the documents,
or presenting a clustering view of the documents. Documents and queries can also be modeled
generally with statistical language models. Practically, however, in order to obtain an operational
retrieval function that can be computed, we need to quantify the loss associated with a presentation
strategy and precisely define the exact language models for documents and queries.

The use of language models in the risk minimization framework makes the framework quite
different from other general retrieval frameworks such as the inference network; in particular, it makes
the framework more operational. Indeed, an operational document ranking formula can always be
derived by specifying three components: (1) The query model p(Q | θQ) and p(θQ |U); (2) The
document model p(D | θD) and p(θD |S); (3) The loss function. A different specification of these
components leads to a different operational model.
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In [89] and [90], many special cases of loss functions and language models are studied, and
the risk minimization framework is shown to be able to not only cover most existing retrieval
models as special cases, but also conveniently model some novel retrieval problems such as subtopic
retrieval [91], which requires going beyond independent relevance, an assumption made in virtually
all the traditional models.The framework is also shown to serve well as a road map for systematically
exploring the use of language models in information retrieval.

It is worth mentioning that the Generative Relevance Framework proposed by Lavrenko
in [92] can also be regarded as a special case of the risk minimization framework. The generative
relevance framework is based on the following hypothesis.
Generative Relevance Hypothesis: For a given information need, queries expressing that need
and documents relevant to that need can be viewed as independent random samples from the same
underlying generative model.

Lavrenko developed three different retrieval functions under this hypothesis (i.e., query like-
lihood, document likelihood, and KL-divergence) and proposed a general technique called kernel-
based allocation for estimating various kinds of language models [92].

The generative relevance hypothesis has two important implications from the perspective of
deriving retrieval models: (1) It naturally accommodates matching of queries and documents even
if they are in different languages (as in the case of cross-lingual retrieval) or in different media (e.g.,
text queries on images). (2) It makes it possible to estimate and improve a relevant document language
model based on examples of queries and vice versa.

Conceptually, the generative relevance framework can be regarded as a special case of risk
minimization when document models and query models are assumed to be in the same space.
Specifically, let 	′ = {(θQ, θD)} be the set of models in the cross-product space of the “natural”
query model and “natural” document model which we would normally use in the risk minimization
framework. We can define a new query model θ ′

Q and a new document model θ ′
D both as a model

in this new model space 	′. That is, θ ′
Q, θ ′

D ∈ 	′. We can now regard a query Q as a sample of θ ′
Q

in the sense that p(Q|θ ′
Q) = p(Q|(θQ, θD)) = p(Q|θQ). Similarly, we can view a document D as

a sample of θ ′
D and have p(D|θ ′

D) = p(D|(θQ, θD)) = p(D|θD). We thus see that both Q and D

can be regarded as samples from the same generative model (θQ, θD).
Before the risk minimization framework, decision-theoretic analysis was applied to choose

and weight indexing terms [30, 29, 93], and to justify the probability ranking principle [50], but the
action/decision space considered there was limited to a binary decision regarding whether to retrieve
a document or regarding whether to assign an index term to a document. The risk minimization
framework adopts a much more general action space, which, in principle, consists of all the possible
actions that the system can take in response to a query.

The general decision-theoretic view of retrieval adopted in the risk minimization framework
makes it possible to model an interactive retrieval process as a sequential decision process, where the
user variable U changes over time. Indeed, if we allow the system to accept any user response, rather
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than just a text query, as input, then the framework would be able to go beyond search and serve as
a formal framework for a general interactive information access system.

2.6 SUMMARY

There is a large body of literature on the study of information retrieval models. The central research
question is how to rank text documents in response to a text query optimally so that highly relevant
documents would be ranked higher than the less relevant ones.Most work so far is based on the simple
bag-of-words representation of text, though it can also be generalized to handle a representation
based on larger units such as phrases.

Although in many applications there are also other noncontent features (e.g., links on the
Web) that can be exploited to improve ranking accuracy, content-based matching remains the most
important component in any search engine, and its performance can significantly affect the overall
utility of a search engine.

Over the decades, many different retrieval models have been proposed. However, interestingly,
empirically effective models seem to all boil down to some form of implementation of the three major
retrieval heuristics (i.e., TF, IDF, and document length normalization), and when optimized, these
different models tend to all perform similarly well. In other words, the clear difference in how
these models are motivated or derived does not seem to matter that much as the subtle difference
in how exactly they implement these retrieval heuristics. Thus, although much research has been
done in seeking an optimal retrieval model, it is fair to say that it remains a significant challenge
in information retrieval research to develop a model that is both theoretically sound and able to
perform well empirically. We do not yet have a clear single winner among all the models that can
consistently outperform all other models.

Before the language modeling approaches were proposed, the two most effective retrieval
functions were the pivoted length normalization function [46] and the BM25 function [70]; both
functions are based on TF-IDF weighting and document length normalization. The main feedback
methods for these retrieval functions are Rocchio [34] for the vector space model and the Offer
Weight method for term selection in probabilistic models [67]. The development of language mod-
eling approaches has resulted in another effective retrieval function—the query likelihood language
modeling retrieval function (with appropriate smoothing) [74, 94]. The most effective feedback
methods for the language modeling approaches are mostly based on the KL-divergence retrieval
function [1], which can be regarded as a generalization of the query likelihood retrieval function.
In the following chapters of the book, we will systematically introduce these language modeling
approaches to retrieval.

To avoid confusion, it is worth adding a brief discussion about the term “language modeling
approach.” Generally speaking, any retrieval model involving the use of a probabilistic model of text
can be referred to as a language modeling approach. In particular, the classical probabilistic retrieval
models such as the binary independence model can also be regarded as instances of language modeling
approaches with document modeled by a multiple Bernoulli language model. However, for historical
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reasons, the term often only refers to either the use of n-gram language models (e.g., unigram and
bigram language models) or the query likelihood retrieval function and its generalization, the KL-
divergence retrieval model. Recently, the term seems to have been used more and more liberally to
refer to any retrieval model in which a probabilistic model of text is involved, though. In this book, we
will use the term “language modeling approach” mainly in its narrow sense so as to be consistent with
how the term has been used in most of the existing literature. Regardless how we define the term,
our philosophy is to emphasize more on probabilistic models that are either empirically effective or
theoretically important.
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C H A P T E R 3

Simple Query Likelihood
Retrieval Model

The language modeling approach (in its narrow definition) was first introduced by Ponte and Croft
in their SIGIR 98 paper [74]. In this work, they proposed a new way to score a document, later
often called the query likelihood scoring method. Since then, the query likelihood retrieval model
has become the basic language modeling approach. In this chapter, we introduce the simple query
likelihood retrieval model, which represents the very first generation of language models applied to
information retrieval. These models are as effective as the traditional retrieval models and also have
similar computational complexity, making them excellent alternatives to the traditional TF-IDF
weighting retrieval functions. Extensions of the simple query likelihood retrieval models have led
to more effective, but computationally more complex query likelihood retrieval models; they will be
discussed in the next chapter.

3.1 BASIC IDEA
The basic idea of the query likelihood retrieval model is rather simple: We assume that a query is
a sample drawn from a language model. To score a document, we would first estimate a language
model for the document, and then compute the likelihood of the query according to the estimated
language model. We can then rank all the documents based on their query likelihood scores.

Formally, let Q be a query and D a document. Let θD be a language model estimated based on
document D. The score of document D w.r.t. query Q is then defined as the conditional probability
p(Q|θD). That is,

score(D, Q) = p(Q|θD) .

One immediate question is: how should we interpret the document language model θD? What
does it model? The derivation of the query-generation probabilistic models in Chapter 2 shows that
p(Q|θD) should really be interpreted as p(Q|D, R = r), i.e., the probability that a user who likes
document D would use query Q (to retrieve the document). Thus, θD should be interpreted as
modeling the queries that a user would use in order to retrieve document D. That is, although the
θD in the query likelihood scoring formula is often called a document language model, it is really a
model for queries, not documents.

Intuitively, given a query Q, the query likelihood retrieval model would test each document
D to see whether a user would likely use the current query Q to retrieve D if the user likes document
D, and rank the documents based on this query likelihood. In an extreme case, imagine that all users
who like document D would always use query Q to retrieve D, we would have p(Q|θD) = 1. Thus,
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if we see query Q again, we would rank D on the top because it has the highest query likelihood,
which makes sense. On the other hand, if a user who wants to retrieve document D would never
use query Q, we would have p(Q|θD) = 0. Thus, we would rank this document at the bottom for
query Q, which again makes sense.

Clearly, in order to estimate θD , ideally we should use many actual queries used by users who
want to retrieve document D. For example, we may assume that if a user clicks on a web page in
search results, he/she likes the document. Under this assumption, we can use all the queries of the
users who clicked on document D to estimate θD . However, in reality, only very few documents get
clicked on and certainly there are always queries that we would not even have seen. Yet, as a general
retrieval model, the query likelihood retrieval model must have some way to score any document
with respect to any query.The solution to this problem taken by the simple query likelihood retrieval
model is to simply estimate θD based on D, i.e., we would use document D to approximate the
queries that a user would use to retrieve D. It is easy to see that with this approximation, the query
likelihood retrieval model would generally reward a document that matches many query terms many
times because in such a case, the estimated θD would tend to have high probabilities for query terms
(since they occur many times in the document), thus it will give the query a high probability.

Clearly, in order to use such a model to score documents, we must solve two problems:
(1) What probabilistic model should we use to define θD? (2) How can we estimate θD? Thus, with
the query likelihood retrieval model, the retrieval problem essentially boils down to answering these
two questions. In the following section, we will present several specific models of θD and discuss
how to estimate them.

3.2 EVENT MODELS FOR θD

Since θD is to model queries, in general, it can be any language model. However, the choice of
a specific model can affect retrieval performance significantly. The two important factors to be
considered when deciding how to instantiate θD are: (1) Are the assumptions made by the model
reasonable for the retrieval task being considered? (2) Can we estimate the model parameters reliably?

So far, using a unigram multinomial language model for θD has been most popular and most
successful. However, other choices are also possible. For example, multiple Bernoulli was used in
Ponte and Croft’s work [74] when they first introduced the query likelihood retrieval model. Poisson
is another possibility explored recently [95]. We now discuss these choices in more detail.

3.2.1 MULTINOMIAL θD

Assuming a multinomial language model, we would generate a sequence of words by generating each
word independently.Thus, a multinomial model θD would have the same number of parameters (i.e.,
word probabilities) as the number of words in our vocabulary set V , i.e., {p(wi |θD)}|V |

i=1. Clearly, we
have

∑|V |
i=1 p(w|θD) = 1.
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Now suppose Q = q1...qm. The query likelihood would be

p(Q|θD) =
m∏

i=1

p(qi |θD)

=
∏
w∈V

p(w|θD)c(w,Q) ,

where c(w, Q) is the count of word w in query Q.
With such a model, the retrieval problem is reduced to the problem of estimating p(wi |θD).

3.2.2 MULTIPLE BERNOULLI θD

When using a multiple Bernoulli model, we define a binary random variable Xi ∈ {0, 1} for each
word wi to indicate whether word wi is present (Xi = 1) or absent (Xi = 0) in the query. We
assume that the presence or absence of each word is independent of each other. Thus, a multiple
Bernoulli model θD would again have the same number of parameters as the number of words in the
vocabulary, i.e., θD = {p(Xi = 1|θD)}|V |

i=1. Such a model can model presence and absence of words
in the query, and our constraints are p(Xi = 1|θD) + p(Xi = 0|θD) = 1 for i = 1, ..., |V |. Note
the difference between these constraints and those for the multinomial distribution.

According to the multiple Bernoulli model, the query likelihood would be:

p(Q|θD) =
∏

wi∈Q

p(Xi = 1|θD)
∏

wj /∈Q

(1 − p(Xj = 1|θD)) ,

where the first product is for words in the query, and the second for words not occurring in the query.
The retrieval problem has now been reduced to the problem of estimating p(Xi = 1|θD).

3.2.3 MULTIPLE POISSON θD

When using a multiple Poisson model, we define a Poisson random variable Xi ∈ {0} ∪ ℵ for each
word wi to model the frequency of word wi in the query. We model the frequency of each word
independently. As in the case of multinomial and multiple Bernoulli, the multiple Poisson model θD

also has the same number of parameters as the number of words in our vocabulary, i.e., θD = {λi}|V |
i=1,

where λi is the mean rate of a Poisson process corresponding to Xi .
According to the Poisson distribution, the probability of observing x counts of a word during

time period t from a Poisson process with parameter λ is

p(X = x|λ) = e−λt (λt)x

x! .

To model the counts of a word in the query, we take the query length m as the length of the time
period. Thus, the query likelihood is:

p(Q|θD) =
∏

wi∈V

e−λim(λim)c(wi,Q)

c(wi, Q)! .
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The retrieval problem has now been reduced to the problem of estimating λi .

3.2.4 COMPARISON OF THE THREE MODELS
The three models presented above make different assumptions about word occurrences. The multi-
nomial model assumes that every occurrence of a word, including the multiple occurrences of the
same word, is independent. The multiple Bernoulli model assumes that the occurrences of differ-
ent words are independent. Compared with the multinomial model, the multiple Bernoulli model
makes a weaker independence assumption, but this is at the price of not being able to model multiple
occurrences. The multiple Poisson model is similar to multiple Bernoulli in that each word is mod-
eled through an independent model, which naturally offers flexibility in estimating the parameters
for different words in different ways; in this aspect, they are different from multinomial model1.
However, the Poisson model has an advantage over Bernoulli in capturing term frequencies.

Most research so far has focused on the multinomial model, even though multiple Bernoulli
was the model used in the pioneering work by Ponte and Croft [74]. When each word in a document
is regarded as a sample of multiple Bernoulli where only this word has shown up, but all other words
have not, it can be shown that estimation of multiple Bernoulli is related to the estimation of the
multinomial model [96]. Empirically, there has been some evidence that multinomial outperforms
multiple Bernoulli [97], but a more systematic comparison between them is needed in order to draw
definitive conclusions2. Poisson model appears to have some advantages [95], but there has not been
much work on this model yet.

3.3 ESTIMATION OF θD

Since most existing work is on the multinomial model, we will only discuss the estimation of θD for
the multinomial model. Estimation of multiple Bernoulli model and multiple Poisson model can be
found in the related research work [74] and [95].

Recall that θD models what kind of queries would be posed by users who like document D.
Without assuming the availability of any examples of such queries, we use D as an approximation.
That is, we assume that D is a sample of θD . Thus, according to the maximum likelihood (ML)
estimator, we have (see Section 1.2):

pml(w|θD) = c(w, D)∑
w∈V c(w, D)

= c(w, D)

|D| .

One problem with this ML estimator is that an unseen word in document D would get a zero
probability, making all queries containing an unseen word have zero probability for the entire query
p(Q|θD). This is clearly undesirable.

More importantly, since a document is a very small sample for our model, the ML estimate is
generally not accurate, so an important problem we have to solve is to smooth the ML estimator so
1Although one can also potentially introduce this flexibility into a multinomial model through Bayesian estimation and using
word-specific parameters in a prior, it is not as natural as in multiple Poisson or multiple Bernoulli.

2The two event models are also compared in [66] for text categorization.
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that we do not assign zero probability to unseen words and improve the accuracy of the estimated
language model in general. Smoothing has been shown to play a critical role in the query likelihood
retrieval model [98]; it plays a similar role to term weighting in a traditional model.

In order to assign nonzero probabilities to unseen words, we will have to discount the proba-
bilities of the observed words in D so that we will have some extra probability mass for the unseen
words. There are many different ways of smoothing an ML estimator. The simplest way to smooth
the ML estimator pml(w|θD) is to assume that each word, including an unseen word, has got a small
amount of extra count ε, thus an unseen word would have a nonzero count:

pε(w|θ̂D) = c(w, D) + ε

|D| + ε|V |
where ε > 0 is a smoothing parameter.

This method is called additive smoothing [99]; the special case of ε = 1 is called Laplace
smoothing. When ε = 0, we recover the original ML estimate (i.e., no smoothing).

The additive smoothing method gives all the unseen words the same probability (i.e.,ε/(|D| +
ε|V |)). Is this reasonable? Intuitively, a word like “unicorn” should probably have a smaller probability
than “animal” even though none of them occurred in a document.Thus, a more reasonable smoothing
method should give different unseen words potentially different probabilities. However, based on
what should we determine which unseen word has a higher probability? In general, we may assume
that the probability of an unseen word is proportional to the probability of the word given by
a reference language model. For information retrieval, a natural choice of the reference language
model would be the language model estimated based on the entire document collection, called a
collection language model or a background language model, since intuitively it reflects the general word
frequencies in the collection. We now discuss this general smoothing strategy in detail.

3.3.1 A GENERAL SMOOTHING STRATEGY USING COLLECTION
LANGUAGE MODEL

We first discuss how to estimate a collection language model, which is also referred to a background
language model or a reference language model.

Let p(w|C) denote the collection language model. Intuitively, we can estimate it by normal-
izing the counts of words in the entire collection, but there are some variations as to how exactly we
normalize these counts. One popular way is to estimate it as:

p(w|C) =
∑

D∈C c(w, D)∑
D∈C |D| .

Alternatively, we can estimate it as

p(w|C) = 1

|C|
∑
D∈C

c(w, D)

|D| .
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The difference is that in the first equation, we assume that each word contributes equally while in the
second, each document contributes equally. Which method is a better choice would depend on which
of these two assumptions makes more sense. Most research work has assumed the first equation.

Yet another alternative is to ignore the actual frequency of a word in a document and sim-
ply obtain the estimate by counting how many documents contain a word and normalizing the
counts [100]:

p(w|C) =
∑

D∈C δ(w, D)∑
w∈V

∑
D∈C δ(w, D)

where δ(w, D) = 1 if word w occurs in document D, and otherwise δ(w, D) = 0.
Because the collection is usually large, the differences between these alternative strategies

tend to be insignificant. But it is still a very interesting research direction to compare these different
strategies systematically.

Given our definition of the collection language model, we can define a smoothed language
model generally as

p(w | θ̂D) =
{

ps(w | θD) if word w is seen in D

αD p(w | C) otherwise ,
(3.1)

where ps(w | θD) is the smoothed probability of a word seen in document D and αD is a coefficient
controlling the probability mass assigned to unseen words.

In general, αD may depend on D, and if ps(w | θD) is given, we must have

αD = 1 −∑
w∈V :c(w;D)>0 ps(w | θD)

1 −∑
w∈V :c(w;D)>0 p(w | C)

(3.2)

to ensure that all probabilities sum to one. In this sense, individual smoothing methods can be
regarded as essentially differing in their choice of ps(w | θD).

We now discuss several special cases of this general smoothing scheme.

3.3.2 JELINEK-MERCER SMOOTHING (FIXED COEFFICIENT
INTERPOLATION)

In this method, we interpolate the maximum likelihood estimate with the collection language model
with a fixed coefficient λ to control the amount of smoothing:

pλ(w|θ̂D) = (1 − λ)
c(w, D)

|D| + λp(w|C) .

Clearly, when λ = 0, we end up having the original ML estimate, while if λ = 1, all the θD ’s
would become the same as the collection language model p(w|C). In this method, αD = λ; every
document has the same amount of smoothing.
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3.3.3 DIRICHLET PRIOR SMOOTHING
In this smoothing method, we use a Bayesian estimator instead of the ML estimator to estimate θD .
As explained in Section 1.2, an advantage of Bayesian estimation over ML estimation is that we can
impose a prior on the parameter so that the estimated parameter value would not only fit the data
well but also be consistent with our prior.

For estimating θD ,our prior would encode our belief that it should not assign a zero-probability
to many words. In fact, when we use the collection language model for smoothing, we could have
a prior to prefer a θD that is close to the collection language model. As we will see, such a prior
essentially would add extra pseudo counts for all the words; a word with a higher probability according
to the collection language model would have a higher pseudo count. As a result, when we pool these
pseudo counts with the actual counts of words observed in the document, we would effectively
combine our prior with the data to estimate the probability of each word.

Formally, we may use a Dirichlet prior on θD with parameters α = (α1, α2, . . . , α|V |), given
by

Dir (θ | α) = �(
∑|V |

i=1 αi)∏|V |
i=1 �(αi)

|V |∏
i=1

θ
αi−1
i (3.3)

where � is the gamma function (an extension of the factorial function to real and complex numbers).
The parameters αi are chosen to be αi = μ p(wi | C) where μ is a parameter and p(· | C) is the
collection language model.

Dirichlet is a conjugate prior for multinomial, which essentially means that the prior distri-
bution is of a similar functional form to that of the likelihood function, thus allowing us to “convert”
the prior into “pseudo data” to be pooled together with the observed data. Indeed, with the Dirichlet
prior, the posterior distribution of θD is given by

p(θD | D) ∝
∏
w∈V

p(w | θD)c(w,D)+μp(w | C)−1

and so is also Dirichlet, with parameters αi = c(wi, D) + μp(wi | C).
Using the fact that the Dirichlet mean is αj/

∑
k αk , we have that

pμ(w | θ̂D) =
∫

θD

p(w | θD)p(θD | D)dθD

= c(w, D) + μ p(w | C)

|D| + μ
.

It is easy to see that the Dirichlet prior smoothing method also interpolates the ML estimate
with the collection language model, but with a dynamic coefficient that changes according to the
document length:

pμ(w|θ̂D) = |D|
|D| + μ

c(w, D)

|D| + μ

μ + |D|p(w|C) .
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Comparing this with Jelinek-Mercer smoothing, we are essentially setting λ = μ
μ+|D| . For

a fixed μ, this means that a longer document will get less smoothing, which makes sense since a
longer document is a larger sample, thus would need less smoothing. Indeed, as |D| → ∞, there
will be no smoothing and we simply recover the ML estimate. Such a phenomenon of “eventually
data overriding prior” is a general property of a Bayesian estimator.

The Dirichlet prior smoothing method adds a pseudo count μp(w|C) to each word. Thus,
the additive smoothing method can be regarded as a special case of Dirichlet prior smoothing with
a uniform collection language model.

3.3.4 ABSOLUTE DISCOUNTING SMOOTHING
The idea of the absolute discounting method is to lower the probability of seen words by subtracting
a constant from their counts [101]. It is similar to the Jelinek-Mercer method, but differs in that it
discounts the seen word probability by subtracting a constant instead of multiplying it by (1-λ). The
model is given by

pδ(w | θ̂D) = max(c(w, D) − δ, 0)∑
w′∈V c(w′, D)

+ σp(w | C) (3.4)

where δ ∈ [0, 1] is a discount constant and σ = δ |D |u/|D |, so that all probabilities sum to one.
Here, |D |u is the number of unique terms in document D, and |D | is the total count of words in
the document, so that |D | = ∑

w′∈V c(w′, D).

3.3.5 INTERPOLATION VS. BACKOFF
One may note that in the three smoothing methods discussed above, we discount the counts of
the seen words (which is why we can assign nonzero probabilities to unseen words), but the extra
counts are shared by both the seen words and unseen words. Mathematically, it is seen that all these
smoothing formulas involve an interpolation of the collection language model with a variant of the
original ML estimate.

One problem of this approach is that a high count word may actually end up with more than
its actual count in the document, if it is frequent according to the reference (collection) model. This
may not be reasonable because intuitively, if we have already observed many occurrences of a word
in the document, the maximum likelihood estimate for that word is relatively reliable.

An alternative smoothing strategy is “backoff.” Here, the main idea is to trust the maximum
likelihood estimate for high count words, and to discount and redistribute mass only for the less
common terms. As a result, it differs from the interpolation strategy in that the extra counts are
primarily used for unseen words.The Katz smoothing method is a well-known backoff method [102].
The backoff strategy is very popular and useful in speech recognition tasks.

For retrieval, however, such a backoff strategy is ineffective [98] because smoothing also serves
for the purpose of discriminating query words (i.e., achieving an effect of IDF), and interpolation
is needed to achieve this discrimination effect. This second role of smoothing for achieving IDF
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effect will be further discussed in detail in Section 3.4. Although backoff alone is not effective [98],
combining backoff with interpolation may be a reasonable strategy, but this has not yet been studied.

3.3.6 OTHER SMOOTHING METHODS
There are many other smoothing methods that can be potentially used for estimating θD (see, e.g.,
[99]). Here we mention one of them: Good-Turing.

The idea of Good-Turing smoothing [103] is to assume that the total number of unseen events
is equal to the total number of singletons (i.e., words occurring once) and adjust the counts of all
the seen events in this way. We can then use the adjusted count of a word to estimate its probability.

Formally, let ĉ(w, d) be the adjusted count of word w, we have:

p(w|θ̂D) = ĉ(w, D)

|D| .

Let nr denote the number of words occurring precisely r times in D.The adjustment of counts
is performed through the following equation:

ĉ(w, D)nc(w,D) = (c(w, D) + 1)nc(w,D)+1 .

That is, we want the total adjusted counts of all words occurring c(w, D) times (the left side) to be
equal to the total real counts of all words occurring c(w, D) + 1 times (right side). Thus, we have:

0̂ = n1

n0
, 1̂ = 2n2

n1
, ... ,

where n0 is the total number of unseen words.
Intuitively, this can be understood as pretending that none of the singletons had ever been

observed, thus we can use the total number of singleton occurrences (the same as the number of
distinct singletons) to estimate the total occurrences of unseen words. Such a strategy can be justified
based on leave-one-out cross validation [14].

One challenge to be solved with Good-Turing is how to handle the case when nr = 0 for
some r . Techniques such as interpolation have been proposed to address this problem [104]. Note
that in Good-Turing we have not used the reference language model p(w|C), but it is not hard
to add it so that the probability of an unseen word is proportional to p(w|C) as we have seen in
some other smoothing methods. As in the case of backoff, we may also need to further interpolate
Good-Turing with p(w|C) to help discriminating query words.

3.3.7 COMPARISON OF DIFFERENT SMOOTHING METHODS
In the query likelihood retrieval model, the retrieval function mainly varies in how smoothing
is done when we estimate θD . Given that there are many different ways of smoothing, it is not
surprising that retrieval accuracy is quite sensitive to the choice of smoothing method and the
setting of a smoothing parameter. In [98], a systematic study of three different smoothing methods
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( Jelinek-Mercer, Dirichlet prior, and absolute discounting) has been conducted. It was found that:
(1) interpolation-based smoothing strategies work better than backoff strategies; (2) Dirichlet prior
smoothing appears to work the best among all the methods tested. Dirichlet prior smoothing has
now been widely recognized as one of the most effective smoothing methods for retrieval.

The study has also revealed that the sensitivity pattern of performance to smoothing varies
according to query types, which suggests that smoothing is needed for two quite different purposes in
the query likelihood retrieval model: (1) it is needed to compensate for the small sample problem (a
document is a small sample); (2) it is needed to model the noise in the query and help discriminating
query words (in effect achieving IDF term weighting). This is called the dual role of smoothing, an
issue we will further discuss in the next subsection.

3.4 SMOOTHING AND TF-IDF WEIGHTING

There is some interesting connection between the use of a collection language model for smoothing
in the query likelihood retrieval model and the TF-IDF weighting heuristics used in a traditional
retrieval model, which may partly explain why query likelihood is an effective retrieval model. This
connection appears to be first derived in [75, 105] for the fixed interpolation smoothing method.
In [94], a more general connection is derived for a family of smoothing methods. We now explain
this derivation in detail.

Assuming the general smoothing scheme presented in Section 3.3, we can rewrite the query
likelihood retrieval function as follows (we will actually work with log-likelihood which does not
affect ranking of documents):

log p(Q|θD) =
∑
w∈V

c(w, Q) log p(w|θD)

=
∑
w∈D

c(w, Q) log ps(w|θD) +
∑
w/∈D

c(w, Q) log αDp(w|C)

=
∑
w∈D

c(w, Q) log ps(w|θD) +
∑
w∈V

c(w, Q) log αDp(w|C) −
∑
w∈D

c(w, Q) log αDp(w|C) .

Note that we have rewritten the sum over all the missing query words in D as the difference
between a sum over all the query words and a sum over the query words in D.This is a commonly used
technique to convert a sum not easy to compute to sums that are easier to compute in probabilistic
models.

By grouping the first and third terms (both are sums over the words occurring in D), we have:

log p(Q|θD) =
∑
w∈D

c(w, Q) log
ps(w|θD)

αDp(w|C)
+ |Q| log αD +

∑
w∈V

c(w, Q) log p(w|C) .
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We further notice that we can ignore the last term because it does not affect ranking of
documents. Thus, we have the following query likelihood ranking formula:

log p(Q|θD)
rank=
∑
w∈D

c(w, Q) log
ps(w|θD)

αDp(w|C)
+ |Q| log αD . (3.5)

This rewriting reveals interesting general connections between the query likelihood retrieval
functions and traditional retrieval functions such as pivoted length normalization and BM25 [26]
when the document language model is smoothed with the collection language model:

First, the form of the retrieval function is similar; indeed, the query likelihood retrieval func-
tion also involves a sum over all the matched query terms (i.e., terms for which c(w, Q) > 0 and
c(w, D) > 0). Since the second term can be precomputed easily, this means that the query likelihood
retrieval function can be computed as efficiently as any existing retrieval model, and the inverted
index can be leveraged to speed up the computation.

Second, each matched query term contributes a weight reflecting TF-IDF weighting. The
weight of a matched term w can be identified as the logarithm of ps(w | θD)

αD p(w | C)
, which is essentially

similar toTF-IDF weighting. Indeed,ps(w|θD) would be larger for a term occurring more frequently
in document D, so the weight of such a term would be higher (TF heuristic). Also, a frequent term
in the collection would have a high p(w | C), thus a smaller overall weight. This means that popular
terms would get penalized (IDF heuristic). Document length normalization is done through two
terms: (1) the estimate of ps(w|θD) generally involves length normalization, and for the same count
of words, this probability would be smaller for a longer document, thus penalizing long documents.
(2) αD is presumably related to document length because a shorter document is expected to require
more smoothing thus a larger αD . But since the two occurrences of αD in the formula have opposite
effect, it has mixed effect on length normalization.

This analysis reveals another important fact: the IDF weighting in the query likelihood re-
trieval model is achieved indirectly through smoothing with the collection language model p(w|C).
This is indeed a very important point as it suggests that smoothing plays two roles in this retrieval
function: (1) estimation improvement: it helps improve our estimate of θD when D is small; (2) query
term discrimination (IDF): it helps down-weighting common terms in the query through modeling
the noise in a query with the collection language model; a word with a high probability according to
p(w|C) would be penalized. This also means that if we have a good model for what kind of terms in
the query should be penalized, we should smooth the document language models with such a query
noisy model so that we can effectively penalize the noisy terms.

The following example illustrates how smoothing with a background language model can
achieve query term discrimination. Suppose we have a query “algorithms for data mining,” and the
unsmoothed ML estimate of two document language models is shown in Table 3.1. Intuitively, D2

should be ranked higher than D1 because it matches the content query words (i.e., “data”, “mining”,
and “algorithms”) better. However, if we use these unsmoothed language models to compute the
query likelihood, we will see that p(Q|D1) > p(Q|D2) because D1 has a much higher probability
for the common word “for.”
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Now suppose we perform Jelinek-Mercer smoothing with λ = 0.9 and with the collection
language model shown in the same table. We will obtain the smoothed language models shown in
the last two rows in the table. It is easy to see that after smoothing, p(Q|D2) > p(Q|D1) as desired!
What happens is that because the collection language model gives “for” a much higher probability,
after smoothing, each document would have a very high probability for “for,” in effect, this reduces
or eliminates any original difference between the probabilities of “for” given by the ML estimates of
the two documents. On the other hand, the content words all have very small probabilities according
to p(w|C), thus smoothing does not really help on such words, allowing the original differences on
such words to “survive” smoothing and make significant contributions to the overall scores.

Table 3.1: Illustration of smoothing for query term discrimination
Query algorithms for data mining

Unsmoothed pml(w|θD1) 0.001 0.025 0.002 0.003
pml(w|θD2) 0.001 0.01 0.003 0.004

CollectLM p(w|C) 0.00001 0.2 0.00001 0.00001

Smoothed p(w|θD1) 0.000109 0.1825 0.000209 0.000309
p(w|θD2) 0.000109 0.181 0.000309 0.000409

The analysis of the dual role of smoothing also suggests that even if our documents are
extremely long (thus the ML estimate is accurate), we may still need smoothing for the IDF purpose.
It also provides a possible explanation why effective smoothing strategies for speech recognition such
as backoff alone do not perform well for retrieval; they cannot fulfill the second role well.

3.5 TWO-STAGE SMOOTHING

The dual role of smoothing suggests that it may be a good idea to implement the two roles separately
rather than relying on a single smoothing method to achieve both goals. Experiment results in [98]
suggest that Dirichlet prior smoothing works the best for fulfilling the first role while the Jelinek-
Mercer smoothing method is most effective for fulfilling the second role. Intuitively, this also makes
sense because for improving the estimate of θD , it makes sense to use a dynamic coefficient as in
Dirichlet prior smoothing so that a longer document would have less smoothing, whereas for query
term discrimination, we should use a fixed coefficient for interpolation, or otherwise the degree of
query term discrimination would vary from document to document, which is unreasonable.

Thus, we can combine Dirichlet prior with Jelinek-Mercer to obtain a two-stage smoothing
method [109]: given the ML estimate of θD , we would first smooth it with Dirichlet prior (to address
the small sample problem) and then further smooth it by interpolating the language model with
another language model for modeling noise in the query p(w|Noise). Formally, the final smoothed
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language model is given by:

pλ,μ(w|θD) = (1 − λ)
c(w, D) + μp(w|C)

|D| + μ
+ λp(w|Noise) .

Without further knowledge, the noise model p(w|Noise) can be assumed to be p(w|C). As dis-
cussed earlier, the interpolation with p(w|C) would cause popular terms to have lower weights (es-
sentially implementing the IDF heuristic). Thus, when approximating p(w|Noise) with p(w|C),
we essentially add IDF weighting to the retrieval function. This intuitively makes sense because we
have assumed that p(w|C) is our noise model (thus a word with high probability p(w|C) should
indeed be penalized).

From the viewpoint of a generative model (i.e., interpreting θD as p(Q|D, R = r)), we may
roughly regard pλ,μ(w|θD) as modeling the following generation process of a query given a docu-
ment: a user who likes document D would formulate a query Q by sampling words from a mixture
model with two components, one corresponding to the topic of D and the other general background.
With probability λ, the user would generate a background word using p(w|C); with probability
1 − λ, the user would then try to generate a content word. To generate a content word, the user
would primarily pick a word from the document, but may also use a word not in the document.

For the second-stage smoothing, the use of the collection language model p(w|C) is reason-
able (not necessarily ideal) and would help achieving IDF weighting. However, for the first-stage
smoothing, p(w|C) may not be the best. Indeed, ideally we should use additional text closely related
to the content of each document to estimate such a reference language model. Such a smoothing
strategy has been studied in [106, 107, 2, 108] and can indeed improve retrieval accuracy. But the
computation is usually significantly more expensive. We will introduce them in the next chapter.

On the surface, the tuning of two-stage smoothing appears to be harder because it now has
two smoothing parameters (instead of just one) to tune. However, in reality, the two parameters
are now more meaningful than the one parameter in a single-stage smoothing method. Specifically,
μ indicates the amount of smoothing needed to compensate for the small sample problem of a
document, thus it can be estimated solely based on the collection of documents without requiring
knowledge about the query. λ indicates the amount of noise in the query, which must be estimated
after seeing the query. In [109], it was shown that it is possible to use statistical estimation methods
to automatically tune these two parameters to achieve near optimal or better performance than
well-tuned best performance using single-stage smoothing methods. However, the estimation of λ is
computationally expensive, making the approach not so attractive for real-time retrieval applications.

In principle, the two-stage smoothing method is the best simple smoothing method with the
same computational complexity as any traditional model. In practice, however, the performance is
usually not much better than a well-tuned single stage smoothing method such as Dirichlet prior.
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3.6 EXPLOIT DOCUMENT PRIOR
The query likelihood retrieval model can be justified based on the probability ranking principle as
we have shown in Section 2.2. In order to justify p(Q|D, r) as a relevance-based ranking function,
we have to assume that the document prior p(r|D) is uniform. This is reasonable if we do not have
further knowledge about the documents. However, this prior can also be exploited to incorporate
any static ranking preferences of documents (i.e., ranking preferences independent of a query) such
as PageRank scores or other document features.

Most of the work trying to incorporate such a prior has used the following alternative way to
justify the query likelihood retrieval function [76, 110, 75]:

p(D|Q) ∝ p(Q|D)p(D) ,

where p(D) is regarded as a document prior. While the form is different from what we derived in
Section 2.2, the spirit is the same—all attempting to combine some query-independent preferences
on documents with the query likelihood score of a document.

In this line of the work, Kraaij et al. [111] successfully leveraged this prior to implement
an interesting Web search heuristic for named page finding. Their idea is to prefer pages with
shorter URLs since an entry page tends to have a shorter URL. They used some training data to
estimate the prior p(D) based on URL lengths, and showed that this prior can improve search
performance significantly [111]. Li and Croft [112] studied how to leverage the document prior
p(D) to implement time-related preferences in retrieval so that a document with a more recent
time would be preferred. This strategy has been shown to be effective for a particular set of “recency
queries.” In a study by Kurland and Lee [113], a PageRank score computed using induced links
between documents based on document similarity has been used as a prior to improve retrieval
accuracy. In [114] priors to capture document quality are shown to be effective for improving the
accuracy of the top-ranked documents in ad hoc web search.

3.7 SUMMARY
In this chapter, we introduced the simple query likelihood retrieval model, which is roughly char-
acterized by the use of query likelihood for scoring and simple smoothing methods based on a
background collection language model. Such a basic language modeling approach (especially with
Dirichlet prior smoothing) has been shown to be as effective as well-tuned existing retrieval models
such as pivoted length normalization and BM25 [28]. The approach has been quite successfully ap-
plied to many different retrieval tasks including, e.g., passage retrieval [115], Web search [111, 116],
and genomics retrieval [117], among others. Retrieval functions in this basic language modeling
approach can generally be computed as efficiently as any standard TF-IDF retrieval model with the
aid of an inverted index; this was shown in [94] through a general transformation of the retrieval
function into a form very similar to a TF-IDF retrieval function. The transformation also reveals a
general connection between smoothing with a background language model and the IDF heuristic.
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While the simple query likelihood retrieval model is efficient to compute and effective, there
has been a lot of research on further improving the model. We will review this body of work in the
next two chapters.
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C H A P T E R 4

Complex Query Likelihood
Retrieval Model

In Chapter 3, we restricted the discussion to the family of query likelihood retrieval models that
use simple smoothing methods based on a background language model. As a result of using simple
smoothing methods, their efficiency is comparable to any traditional TF-IDF model. In this chapter,
we review some extensions to these simple query likelihood retrieval models.These extensions often
outperform, but also tend to be computationally more expensive than the simple models. All these
improvements remain in the family of query-likelihood scoring, which distinguishes them from the
other models to be reviewed in the next chapter; the latter uses language modeling in a different way
than the query likelihood.

4.1 DOCUMENT-SPECIFIC SMOOTHING OF θD

Smoothing every document with the same collection language model is intuitively not optimal since
we essentially assume that all the unseen words in different documents would have similar probabili-
ties. Ideally, we should use some document-dependent “augmented text data” that can more accurately
reflect the content of the document under consideration. With such reasoning, several researchers
have attempted to exploit the corpus structure to achieve such document-specific smoothing.

The work in this line can be grouped into two categories:
(1) Cluster documents and smooth a document with the cluster containing the document.
(2) For each document, obtain the most similar documents in the collection and then smooth the
document with the obtained “neighbor documents.”

4.1.1 CLUSTER-BASED SMOOTHING
In Liu and Croft [107],documents are clustered using a cosine similarity measure,and each document
is smoothed with the cluster containing the document by interpolating the original maximum likeli-
hood estimate pml(w|θD) with a cluster language model p(w|Cluster), which is further smoothed
by interpolating itself with a collection language model p(w|C). That is:

p(w|θD) = λpml(w|θD) + (1 − λ)p(w|Cluster)

= λpml(w|θD) + (1 − λ)[βpml(w|Cluster) + (1 − β)p(w|C)] ,

where λ ∈ [0, 1] and β ∈ [0, 1] are two parameters to be empirically set.
Intuitively, such a cluster-based smoothing method should be better than smoothing with the

collection language model, which is also confirmed in [107], but the improvement is mostly insignif-
icant. One possible reason may be because the two roles of smoothing have been mixed. Specifically,
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if the parameters are not set appropriately, the smoothing using cluster-based language model may
actually end up penalizing terms common in the cluster due to the IDF effect of smoothing, thus
lowering the scores of documents matching terms in the cluster (see Section 3.4). Indeed, if β is set to
a very high value, pml(w|Cluster) would be playing the role of a background model for smoothing.

A soft clustering strategy has been adopted to smooth document language models through
using the Latent Dirichlet Allocation (LDA) model for clustering [118]. With this model, we
assume that there exist k topics in the collection, each being characterized by a unigram language
model θi . We can then replace p(w|Cluster) with the following mixture of topic models:

pLDA(w|Cluster) =
k∑

i=1

p(w|θi)p(θi |D) .

The probabilities p(w|θi) and p(θi |D) are obtained through fitting the LDA model to the col-
lection [118]. In effect, this allows a document to be in multiple topics with some probabilities.
Thus, smoothing of a document can involve an interpolation of potentially many topic clusters;
this is different from [107] where just one cluster is used for smoothing. Results reported in [118]
are encouraging. The LDA smoothing method outperforms the “hard clustering” method proposed
in [107] consistently, but the experiments are all performed on relatively small collections, presum-
ably due to the complexity of estimating the LDA model. The LDA model will be further discussed
in Section 7.2.

4.1.2 DOCUMENT EXPANSION
A problem with smoothing a document using a cluster is that the cluster is not necessarily a good
representation of similar documents to every document to be smoothed in the cluster. This is clearly
the case when the document is at the boundary of the cluster (e.g., document d shown in Fig-
ure 4.1(a)). In such a case, the documents in the cluster would be a biased sample of the neighbors
of the document to be smoothed as shown in Figure 4.1(a).

To address this problem, several researchers have proposed to construct a document-specific
“neighborhood” in the document space, essentially to form a cluster for every document with the
document at the center of the cluster. Intuitively, such a neighborhood contains the documents that
are most similar to the document, thus serves well for smoothing.This is illustrated in Figure 4.1(b).

In [106], such document-centric clusters are constructed to obtain a representation of the
corpus structure, and those clusters that are close to the query are then used to represent a document
probabilistically in a low-dimension “corpus structure space.” Documents are then scored using their
corpus structure representation to compute the likelihood of the query. In effect, this achieves the
goal of smoothing a document with the word distributions of the clusters covering the document.
However, a major difference between this kind of smoothing based on dimension reduction and the
interpolation-based smoothing we have discussed earlier is that it is difficult to control the amount
of smoothing so that the original words in the document would have higher probabilities than the
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Figure 4.1: Cluster-based smoothing vs. document expansion (picture from [2]).

new words introduced through smoothing. As will be further discussed in Section 4.5, this scoring
method can also be regarded as a case of a translation model.

In [2], such document-centric clusters are directly used for smoothing document language
models. To improve the robustness of this smoothing method, the authors assign weights to the
neighbors based on a cosine similarity measure so that a document farther away would contribute
less to smoothing. They then use the probabilistic neighborhood to smooth the count of a word by
interpolating the original count in the document with a weighted sum of counts of the word in
the neighbor documents to obtain a smoothed count for each word. Such smoothed counts thus
represent an “expanded document,” and are then used as if they were the true counts of the words
in the document for further smoothing with a collection language model. The count of word w in
the new “expanded” document D′ is given by:

c(w, D′) = αc(w, D) + (1 − α)
∑

X∈C−{D}
(

sim(D, X)∑
Y∈C sim(D, Y )

c(w, X)) ,

where sim(D, X) is a similarity function (which is defined as the cosine measure in [2]).
Since the expanded counts are mainly affected by those neighbors with a high similarity to

the current document D, in practice, we can use the closest neighbors for expansion to improve the
efficiency. Note that such expansion can be done independently of any query, thus it can be done in
the indexing stage.

Experiment results in [2] show that such a document expansion method not only outper-
forms the baseline simple smoothing method (i.e., with only a collection language model), but also
outperforms the cluster-based smoothing method proposed in [107]. Moreover, it can be combined
with pseudo feedback to further improve performance [2].

In [108], this neighborhood-based document expansion method is further extended to allow
for smoothing with remotely related documents through probabilistic propagation of term counts.
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This new smoothing method is shown to outperform the simple smoothing methods using a col-
lection language model. It also achieves consistently better precision in the top-ranked documents
than both cluster-based and document expansion smoothing methods. But interestingly, it has a
worse mean average precision than the latter, indicating room for further research to improve this
smoothing method.

The general idea of document expansion appears to be first explored in the vector space
model for spoken document retrieval [119]. In [120], it has also been applied to topic detection and
tracking through a probabilistic expansion based on the relevance model which we will introduce in
Section 5.3.3.

4.2 BEYOND UNIGRAM MODELS
A natural extension of the basic query likelihood method is to go beyond unigram language models
where the occurrence of words is assumed to be completely independent (an assumption obviously
not holding) to capture some dependency between words. In this direction, Song and Croft [97] have
studied using bigram and trigram language models. In a bigram language model, the generation of
a current word would be dependent on the previous word generated, thus it can potentially capture
adjacent words that can form phrases. Specifically, the query likelihood would be

p(Q|θD) = p(q1|θD)

m∏
i=2

p(qi |qi−1, θD)

where p(qi |qi−1, θD) is the conditional probability of generating query term qi after we have just
generated qi−1.

While such n-gram models capture dependency based on word positions, other work has
attempted to capture dependency based on grammar structures [121, 122, 123]. In all these ap-
proaches, the retrieval formula eventually boils down to some combination of scores from matching
units larger than single words (e.g., bigrams, head-modifier pairs, or collocation pairs) with scores
from matching single words.

For example, in [123], the log-likelihood of a query given a document is defined as

log p(Q|θD) = log p(L|D) +
m∑

i=1

log p(qi |D) +
∑

(i,j)∈L

MI (qi, qj |L, D) , (4.1)

where L is a pair-wise term linkage structure of the query Q obtained through parsing, and MI

is the pointwise mutual information function. We can see that if the link structure L is empty, the
last term in the equation would disappear, and we would thus recover the unigram query likelihood
retrieval function. With a nonempty L, the last term captures term dependency.

Although these approaches have mostly shown benefit of capturing dependencies, the im-
provement tends to be insignificant or at least not so significant as some other extensions that can
achieve pseudo feedback effect. (These other extensions will be reviewed in the next chapter.) The
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general observation on these models is consistent with what researchers have observed on applying
natural language processing techniques to improve indexing in traditional retrieval models, notably
phrase-based indexing [39, 124, 40, 42].

One reason for these nonexciting results may be because as we move to more complex models
to capture dependency, our data becomes even more sparse, making it difficult to obtain an accurate
estimate of the model. Another more interesting explanation given in [92] is that the extra benefit of
capturing dependency on top of a representation with independent single terms may not be as large
as it appears to be. Specifically, it is shown in [92] that for ranking documents with a probabilistic
model, a model assuming term independence is actually equivalent to any model assuming first-
order dependency under a very weak assumption (called proportional interdependence). Intuitively, if
a document already matches two words in a phrase, the document would already have a higher score
than matching just one of them. Thus, the extra evidence from matching them as a phrase or in a
particular order may not add that much on top of scoring based on single words.

A more successful retrieval model that can capture limited dependencies is the Markov Ran-
dom Field model proposed in [54]. This model is a general discriminative model where arbitrary
features can be combined in a retrieval function. In most of the applications of such a model, the
features typically correspond to the scores of a document w.r.t. a query using an existing retrieval
function such as the query likelihood, thus the Markov Random Field model essentially serves as a
way to combine multiple scoring strategies, or to score with multiple representations. In particular,
it has been shown that one can combine unigram language modeling scoring with bigram scoring as
well as scoring based on word collocations within a small window of text to achieve better retrieval
accuracy than using only unigram scoring [54].

4.3 PARSIMONIOUS LANGUAGE MODELS

All the methods for estimating document language models discussed so far rely on some kind of
interpolation of word counts from some documents (e.g., the original document, similar documents,
or all the documents in the collection). Thus, we can expect the estimated language model to give
high probabilities to the common words which often do not carry much content. However, when a
user poses a query, the user presumably would more likely use more discriminative, content-carrying
words. Thus, if we are to use the document language model to model the queries (as it should based
on the discussion in Section 3.1), intuitively we would also like the document language model to be
more discriminative and assign high probabilities to content-carrying words rather than common
words in English.

To realize this intuition, it was proposed in [89] that a two-component mixture model (called
“distillation mixture model”) can be used to estimate a more discriminative query model and docu-
ment model.The basic idea is to assume that there exists some “noise” in a query or document which
would be modeled with the collection background language model, and further assume that a query
or a document is generated by sampling words from a mixture of the background model and a topic
model to be estimated. When fitting such a model to a query or a document by forcing the use of the
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background model, the estimated topic model would be more discriminative. It was shown in [89]
that applying such a distillation model to queries can improve performance. A similar model can be
used for pseudo feedback, which will be further discussed in detail in Section 5.3.1.

The distillation idea was further generalized by Hiemstra and co-authors [125] to formu-
late parsimonious language models uniformly for queries, documents, and feedback. However, such
parsimonious models have not shown significant improvement in retrieval accuracy, although they
can be useful for reducing the index size [125]. Given the complicated interactions of smoothing
and TF-IDF weighting, the insignificant improvement of performance may be caused by nonopti-
mal smoothing. Thus, further exploration may be needed to draw definitive conclusions about such
parsimonious models.

4.4 FULL BAYESIAN QUERY LIKELIHOOD
In all the work we have discussed so far, we estimate θD using a point estimator, which means we
take our best guess of what θD is. Intuitively, there are uncertainties associated with our estimate, and
our estimate may not be accurate. A potentially better method is thus to consider this uncertainty
and use the posterior distribution of θD (i.e., p(θD|D)) to compute the query likelihood.

Such a full Bayesian treatment was proposed and studied in Zaragoza et al. [126]. The new
scoring function is:

p(Q|D) =
∫

	D

p(Q|θD)p(θD|D)dθD ,

where 	D is the space of all possible multinomial distributions.
The regular query likelihood scoring formula can be seen as a special case of this more general

query likelihood when we assume that p(θD|D) is entirely concentrated at one single point.
Although the integral looks intimidating, it actually has a closed form solution when we use a

conjugate prior for computing the posterior distribution p(θD|D). The final ranking formula based
on log-likelihood of a query given a document is [126]:

log p(Q|D)
rank=

∑
w∈Q∩D

c(w,Q)∑
i=1

log(1 + c(w, D)

αw + i − 1
) −

|Q|∑
j=1

log(|D| + nα + j − 1) (4.2)

where αw is a hyperparameter which can be set to nαp(w|C), nα will be empirically set, similar
to the smoothing parameter μ in the Dirichlet prior smoothing method (see Section 3.3). Clearly,
nα = ∑

w∈V αw.
This scoring formula is not much more expensive than a scoring formula using simple smooth-

ing, thus this full Bayesian query likelihood retrieval function can be potentially used in a large-scale
retrieval application system. Unfortunately, empirical evaluation shows that this new model, while
theoretically very interesting, does not outperform the simple query likelihood function significantly.
However, when this new model is combined with linear interpolation smoothing, the performance
is better than any other combinations of existing smoothing methods.This may suggest that the new
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model cannot model the query noise very well, thus it can be substantially improved when combined
with the linear interpolation to obtain the extra smoothing needed for modeling query noise. As the
authors pointed out, it would be interesting to further study how to model the query noise using a
full Bayesian model.

4.5 TRANSLATION MODEL
The work mentioned so far is all based on the same query likelihood scoring function which essentially
performs the retrieval task through exact keyword matching in a way similar to a traditional retrieval
model. In order to allow inexact matching of semantically related words and address the issues of
synonym and polysemy, Berger and Lafferty proposed a very important extension to the basic exact
matching query likelihood function by allowing the query likelihood to be computed based on a
translation model of the form p(u|v), which gives the probability that word v can be “semantically
translated” to word u [110].

Formally, in this new model, the query likelihood is computed in the following way for a query
Q = q1...qm:

p(Q|D) =
m∏

i=1

∑
w∈V

p(qi |w)p(w|θD) ,

where p(qi |w) is the probability of “translating” word w into qi . This translation model can be
understood intuitively by imagining a user who likes document D would formulate a query in two
steps. In the first, the user would sample a word using the document model θD ; in the second, the
user would “translate” the word into another possibly different, but semantically related word to use
as a query term.

We may also regard such a translation model as performing “semantic smoothing” in the sense
that the translation model is equivalent to smoothing a document language model in the following
way for the query likelihood retrieval function:

p(w|θD) =
∑
w′∈V

p(w|w′)p(w′|D) .

It is easy to see that if p(qi |w) only allows a word to be translated into itself, we would
recover the simple exact matching query likelihood. In general, of course, p(qi |w) would allow us to
translate w into other semantically related words by giving them a nonzero translation probability.
This enables us to score a document by counting the matches between a query word and a different
but semantically related word in the document. A major challenge here is to estimate the translation
model p(qi |w).

Translation models have originally been proposed for performing statistical machine transla-
tion by IBM researchers [16]. There are many variants of translation models with different levels
of complexity (often called IBM translation models). The translation model p(qi |w) is the most
primitive translation model [110]. In order to estimate this model, we will need some relevant query-
document pairs where we know that the document is relevant to the query (i.e., relevance judgments).
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Unfortunately, we generally do not have such training data available because it is labor-intensive to
obtain many relevance judgments.

As an approximation, Berger and Lafferty used a heuristic method to generate some synthetic
query-document pairs for training the translation model. Using this method, they have shown
that the translation model can improve retrieval performance significantly over the baseline exact
matching query likelihood [110].

An alternative way of estimating the translation model based on document titles was proposed
in [127], which has also been shown to be effective. Furthermore, WordNet and co-occurrences of
words have been exploited to define the translation model p(qi |w) in [128], and improvement of
performance is observed. Clearly, the clickthroughs collected by a Web search engine can also serve
as training data for estimating the translation model.

Another challenge in using such a model in a practical system is how to improve the scoring
efficiency as we now have to consider many other words for possible matching for each query word.
Indeed, evaluation of this method in TREC-8 has revealed that there are significant challenges in
handling the large number of parameters and scoring all the documents efficiently [129]. As a result,
in [129], a working set of documents are first selected using some heuristics such as filtering out any
document that does not match at least one query word, and then each document in the working set
is scored sequentially. However, such a strategy does not fully take advantage of the capacity of the
translation model to potentially retrieve relevant documents that do not match any query word.

Despite these challenges, theoretically, the translation model provides a principled way to
support semantic matching of related words, thus it is an important contribution in extending the
basic query likelihood retrieval model. Such a model has also later been used successfully in applying
language models to cross-lingual information retrieval [130].

The cluster-based query likelihood method proposed in [106] can be regarded as a form of a
translation model where the whole document is “translated” into a query as a single unit through a
set of clusters, giving the following query likelihood formula:

p(Q|D) =
∑

Gi∈G

p(Q|Gi)p(Gi |D) ,

where Gi is a cluster of documents and G is a pre-constructed set of clusters of documents in the
collection. This method has shown some improvement over the simple query likelihood method
when combined with the simple query likelihood method, but does not perform well alone. Since
the translation of a document into a cluster Gi causes loss of information, matching based on the
clusters may not be discriminative enough to distinguish relevant documents from nonrelevant ones
even though it can potentially increase recall due to the allowed inexact matching of terms.This may
explain why the method alone does not perform well,but would perform much better when combined
with a basic model that can supply the needed word-level discrimination. Similar observations have
also been made in [32].
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4.6 SUMMARY
In this chapter, we reviewed a number of models that all attempted to extend the basic query likeli-
hood retrieval method in various ways and that are all substantially more expensive to compute than
the basic model. Many of the extensions have not really led to significant improvement over the basic
model. Given their complexity and the relative insignificant improvement (compared with models to
be reviewed in the next chapter), most of these models have not found widespread applications except
for the translation model which has been applied to cross-lingual IR tasks successfully. However,
document-specific smoothing, especially document expansion, has been shown to improve retrieval
accuracy significantly over those simple smoothing methods. Although they are also computationally
expensive, the computation can be done in advance in the stage of indexing, so using such methods
in a large-scale application system is still feasible.

Parsimonious models and full Bayesian query likelihood are quite interesting from theoretical
perspective, and may have potential for more significant improvement of performance even though
the current studies have only shown insignificant improvement.
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C H A P T E R 5

Probabilistic Distance Retrieval
Model

In the previous two chapters,we have discussed simple and complex query likelihood retrieval models.
All these models are based on the query likelihood scoring strategy, in which documents are ranked
based on the likelihood of a query given a document. A major deficiency of the query likelihood
retrieval models is that it cannot easily incorporate relevance or pseudo-relevance feedback. In this
chapter, we introduce a new family of models called probabilistic distance retrieval models that can
better accommodate feedback.

In these models, we would represent a document with a document language model and
represent a query with a query language model. We then score a document with respect to a query
based on the distance (or equivalently similarity) between the corresponding document language
model and the query language model as measured using some probabilistic distance measure such as
Kullback-Leibler (KL) divergence or cross entropy. Feedback can be naturally cast as to improve the
estimate of the query language model based on the feedback information.These models are essentially
similar to the traditional vector-space model except that text representation is based on probability
distributions rather than heuristically weighted term vectors.This difference gives these probabilistic
distance models an advantage over the vector-space model in optimizing term weighting because
with a probabilistic text representation, we can leverage statistical estimation methods to optimize
text representation. Also, the popular choice of the KL-divergence (and equivalently cross entropy)
measure as the distance function can actually be shown to cover the query likelihood retrieval model
as a special case when the query model is estimated based on only the query. Thus, these models can
also be regarded as a generalization of the query likelihood retrieval model to better accommodate
feedback.

5.1 DIFFICULTY IN SUPPORTING FEEDBACK WITH
QUERY LIKELIHOOD

Feedback is an important technique to improve retrieval accuracy (see Section 1.1). Both relevance
feedback and pseudo feedback have been well supported in traditional models (e.g., Rocchio [34] for
the vector space model and term reweighting for the classical probabilistic model Feedback [56]).
Naturally, in the early days when the query likelihood scoring method was introduced, people also
explored feedback [131, 76, 132].

However, unlike in the traditional models where feedback can be naturally accommodated,
in the query likelihood retrieval method, it is rather awkward to support feedback. The problem is
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caused by the fact that in all the query likelihood retrieval methods, the query is regarded as a sample
of some kind of language model. Thus, it would not make much sense to talk about improving the
query by adding additional terms and/or adjusting weights of those terms as done in the vector space
model [34] because the new query created in this way would conceptually no longer be a sample of
a language model.

It is also difficult to leverage feedback information to improve the estimate of a component
model in the query likelihood retrieval model. Specifically, in the query likelihood retrieval model, we
are most interested in improving our estimate of the document language model θD , but unfortunately
we cannot use a user’s feedback documents to improve our estimate of θD for any unseen document
D. Indeed, θD is meant to be a model for the queries posed by users when they want to retrieve
document D, thus the natural sample for θD would have to be a set of queries from users who
think document D is relevant. This is in contrast with a classical probabilistic model such as the
Binary Independence Retrieval Model [56], where feedback documents can be naturally used to
improve our estimate of a component model (e.g., the relevant document model p(D|Q, R = r)

(see Section 2.2)).
Thus, with the query likelihood retrieval model, we do not have a principled natural way to

improve the retrieval performance for the current query based on the feedback documents collected
for the query.

Due to this difficulty, early work on achieving feedback using the query likelihood scoring
method tends to be quite heuristic, and the techniques used are often not as elegant as the query
likelihood method itself. For example, in [131], terms with high probabilities in the feedback docu-
ments but low probabilities in the collection are selected using a ratio approach as additional query
terms. The method generally performs well, similar to Rocchio [34]. However, this ratio approach
is conceptually restricted to the view of query as a set of terms, so it can not be applied to the
more general case when the query is considered as a sequence of terms in order to incorporate the
frequency information of a query term. Also, the influence of feedback cannot be controlled through
term weighting; a term is either added to the query or not.

Miller and others [76] take feedback essentially as expanding the original query with all terms
in the feedback documents. Terms are pooled into bins by the number of feedback documents in
which they occur, and for each bin, a different transition probability in the HMM is heuristically
estimated1. The performance of such a feedback technique is quite promising and robust. However,
the interpretation of a query both as a text (generated by an HMM) and as a set of terms is concep-
tually inconsistent. It also involves heuristic adjustment of transition probabilities by incorporating
document frequency to “filter” out the high frequency words.

In [132], two interesting ideas about feedback have been explored. First, a feedback criterion
based on the optimization of the scores of feedback documents is developed, which turns out to
be actually very similar to the ratio approach used in [131]. Second, a threshold for the number

1As a result, the smoothing is no longer equivalent to the simple linear interpolation as is in their basic HMM.
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of selected terms is heuristically derived from the score optimization criterion. This approach is
reported to be effective [132], but again it still causes inconsistency in interpreting the query.

Several studies [132, 100, 133, 109] have used feedback documents to optimize the smoothing
parameter or query term reweighting. While these methods do not cause conceptual inconsistency,
they also do not achieve full benefit of feedback due to the limited use of feedback information.

Interestingly, with the query likelihood retrieval model, we can naturally use the judged rel-
evant documents from the current user to improve search accuracy for those future users who may
be interested in retrieving any of these relevant documents. Specifically, a search engine system can
collect all the feedback information (e.g., queries and associated relevant documents) from the users,
group all the queries associated with each (relevant) document D, and use these queries to improve
our estimate of θD , thus helping future users who are interested in retrieving any of these documents.
Actually, even without explicitly judged feedback information, a search engine can still leverage this
strategy to perform massive implicit feedback. For example, a search engine can record the queries
and associated clickthroughs from users; by assuming that a clicked (i.e., viewed) document is rele-
vant, we can group all the queries associated with clicking on document D, and use them to improve
the estimate of θD .

5.2 KULLBACK-LEIBLER DIVERGENCE RETRIEVAL
MODEL

The difficulty in supporting feedback with query likelihood scoring has motivated the development
of a probabilistic distance model called Kullback-Leibler (KL) divergence retrieval model [1, 134].
This KL-divergence retrieval model was first proposed in [1] within the risk minimization retrieval
framework (see Section 2.5), which introduces the concept of query language model (in additional
to the document language model) and models the retrieval problem as a statistical decision prob-
lem [1, 89, 90]. However, KL-divergence had previously been used for distributed information
retrieval [135].

In this KL-divergence model, we define two different language models, one for a query (θQ)
and one for a document (θD). That is, we will assume that the query is a sample observed from
a query language model θQ, while the document a sample from a document language model θD .
Intuitively, the query model θQ captures what the user is interested in, while θD captures the topic
of document D. We can then use the KL-divergence of these two models to measure how close they
are to each other and use their distance (indeed, negative distance) as a score to rank documents.
This way, the closer the document model is to the query model, the higher the document would
be ranked.

Formally, the score of a document D w.r.t. a query Q is given by:

Score(D, Q) = −D(θQ||θD)
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= −
∑
w∈V

p(w|θQ) log
p(w|θQ)

p(w|θD)

=
∑
w∈V

p(w|θQ) log p(w|θD) −
∑
w∈V

p(w|θQ) log p(w|θQ) .

Since the last term is query entropy and does not affect ranking of documents, ranking
based on negative KL-divergence is the same as ranking based on the negative cross entropy,∑

w∈V p(w|θQ) log p(w|θD).
Note that although ranking based on KL-divergence and ranking based on cross entropy

are equivalent in the ad hoc retrieval setting, where we always compare documents for the same
query and can thus ignore any document-independent constant, they would generate quite different
results when we compare scores across different queries as in the case of filtering or topic detection
and tracking [43]. Specifically, one measure may generate scores more comparable across queries than
the other, depending on whether including the query entropy makes sense. For a detailed analysis of
this difference and an attempt to obtain a unified way of normalizing scores for both ad hoc retrieval
and topic tracking, see [43].

With the KL-divergence retrieval model, the retrieval task is reduced to two subtasks, i.e., es-
timating θQ and θD respectively.The estimation of document model θD is similar to that in the query
likelihood retrieval model, but the estimation of query model θQ offers interesting opportunities of
leveraging feedback information to improve retrieval accuracy. Specifically, feedback information can
be exploited to improve our estimate of θQ. Such a feedback method is called model-based feedback
in [134].

On the surface, the KL-divergence model appears to be quite different from the query like-
lihood method. However, it turns out that it is easy to show that the KL-divergence model covers
the query likelihood method as a special case when we use the empirical query word distribution to
estimate θQ, i.e.,

p(w|θQ) = c(w, Q)

|Q| .

Indeed, with such an estimate, we have :

score(D, Q)
rank=

∑
w∈V

p(w|θQ) log p(w|θD)

=
∑
w∈V

c(w, Q)

|Q| log p(w|θD)

rank=
∑
w∈V

c(w, Q) log p(w|θD)

= log p(Q|θD) .

In this sense, the KL-divergence model is a generalization of the query likelihood scoring method
with the additional advantage of supporting feedback more naturally.
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Moreover, if we use the same general smoothing scheme discussed in Section 3.3 (i.e., smooth-
ing a document language model θD with a collection language model), with similar transformations
to those in Section 3.4, we can also show that the KL-divergence retrieval function can be rewritten
as:

score(D, Q)
rank=

∑
w∈D

p(w|θQ) log
ps(w|θD)

αDp(w|C)
+ log αD . (5.1)

When p(w|θQ) is estimated using the empirical word distribution in the query, it would be
zero for all the words except for the query words. This makes it efficient to score documents with
the KL-divergence retrieval function. However, the main motivation for using this model (instead
of the query likelihood retrieval model) is so that we can improve the estimate of θQ based on
additional information such as feedback documents, and an improved estimate of θQ may give
nonzero probabilities to potentially many other nonquery words. This clearly would cause a concern
of scoring efficiency.

A common solution to this problem is that we truncate the query language model θQ so
that we only keep the highest probability words according to p(w|θQ). Specifically, we can set
the probabilities of low-probability words to zero, and possibly renormalize the probabilities of the
remaining words.With a truncated query model, the KL-divergence retrieval model can be computed
very efficiently with the help of an inverted index. Indeed, the sum would be over only those terms
that both occur in document D and have nonzero probabilities according to the truncated query
model θQ.

Thus, the generalization of query likelihood as KL-divergence would not incur much extra
computational overhead; yet, it has the advantage of accommodating feedback through improving the
estimate of the query language model based on feedback documents. The KL-divergence represents
the state of the art of the language modeling approaches to retrieval. The best retrieval performance
is often achieved through using the KL-divergence retrieval model with appropriate methods for
estimating document language model θD (e.g., Dirichlet prior) and estimating query language model
θQ (e.g., the mixture model [134] or relevance model [71]).

It is worth pointing out that although the scoring formula of the KL-divergence retrieval
model can be regarded as a generalization of the formula for the query likelihood retrieval model,
the document language model θD can be interpreted differently in the KL-divergence retrieval model
than in the query likelihood retrieval model. Specifically, we may interpret θD in the KL-divergence
retrieval model in two differently ways: (1) We can interpret θD in the same way as we do for the
θD in the query likelihood retrieval model, i.e., take it as defining a model of the words expected to
be used in a query to retrieve D. With this interpretation, we can interpret the KL-divergence score
as measuring how close this model is to the estimated actual model used to generate the current
query. (2) We can interpret θD as a “real” document model, i.e., the language model used to generate
document D. With this second interpretation, the KL-divergence score would mean the distance
between this document language model, which represents the content of the document, and the
query language model, which represents the user’s information need as described by the query.
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Although the first interpretation is more consistent with the query likelihood retrieval model, it
is the second interpretation that makes the KL-divergence more flexible to incorporate feedback and
document expansion. Indeed, the second interpretation is completely in parallel to the vector-space
model with the main difference being a probabilistic representation of text in the KL-divergence
model vs. a heuristic vector representation of text in the vector-space model (see Section 2.1).
The decoupling of the similarity/distance function from text representation offers the flexibility
to improve the query language model and document language model independently. As a result,
we can easily leverage all kinds of feedback information to improve the query language model,
which intuitively improves our representation of the user’s information need. Similarly, we can
also improve our estimate of the document language model based on related documents or any
additional information about the document (e.g., tags assigned through social tagging or anchor
text in a hypertext collection). However, as in the case of the vector-space model, the decoupling
also has a disadvantage—it makes it harder to interpret the scoring method from the viewpoint of
capturing relevance. For example, there are other divergence-based measures (e.g., Jensen-Shannon
divergence [136]), so one might wonder whether some other probabilistic distance measures might
even perform better than the KL-divergence.

The KL-divergence model itself offers no answer to such a question. Fortunately, the first
interpretation of θD discussed above provides some justification for the use of the KL-divergence
(since the query likelihood retrieval model can be justified based on the probability ranking principle,
see Section 2.2). To address this deficiency, we can use the axiomatic retrieval framework to analyze
different distance functions to see whether they satisfy the constraints that capture effective retrieval
heuristics. For example, in [137], several divergence functions are analyzed and the results show that
the Jensen-Shannon divergence cannot satisfy an important length normalization constraint, and
its empirical results are significantly worse than the KL-divergence.

5.3 ESTIMATION OF QUERY MODELS

With the KL-divergence retrieval model, feedback can be achieved through re-estimating the query
model θQ based on feedback information. Several methods have been proposed to improve the
estimate of the query model in the setting of pseudo feedback, i.e., improving the estimate of θQ by
exploiting the top-ranked documents. Interestingly, the relevance feedback setting appears to have
not attracted much attention, likely because in real applications, it is often unrealistic to obtain many
examples of relevant documents.Technically, we can adapt these pseudo feedback methods to handle
relevance feedback by replacing the top-ranked documents with real examples of relevant documents.
However, as we will further discuss in Section 5.4, feedback based on only negative information (i.e.,
nonrelevant information) remains challenging even with the KL-divergence retrieval model [138].
We now discuss several different methods for estimating a query model based on feedback documents.
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5.3.1 MODEL-BASED FEEDBACK
Zhai and Lafferty [134] proposed two methods for estimating an improved query model θQ using
feedback documents. Both methods follow the basic idea of interpolating an existing query model
(e.g., one estimated based on the empirical query word distribution) with an estimated feedback
topic model.

Specifically, let θQ be the current query model and θF be a feedback topic model estimated
based on (positive) feedback documents F = {D1, ..., D|F |}. The updated new query model θ ′

Q is
given by

p(w|θ ′
Q) = (1 − α)p(w|θQ) + αp(w|θF )

where α ∈ [0, 1] is a parameter to control the amount of feedback. When α = 0, we end up with no
query model updating,while setting α = 1 would essentially ignore the original query and completely
reset the query model to the one estimated based on feedback documents only.

How to set parameter α is a major technical challenge in this approach. Intuitively, for relevance
feedback, α can be set to a relatively high value. However, for pseudo feedback, α should not be set to
a high value as it has the risk of causing query concept drift; because the feedback documents may be
biased,over-trusting θF needs to be prevented by retaining a sufficient amount of probability mass for
the original query model θQ. However, if α is too small, we may not fully take advantage of feedback.
Thus, how to optimize α is a very difficult question especially when no reliable relevance judgments
are available as in the case of pseudo feedback. There has been some follow-up work to address this
problem in pseudo feedback [139], which we will further discuss in Section 5.3.1.3. In practice, this
parameter can always be set empirically using cross-validation (i.e., based on optimization on some
training data).

We now introduce the two methods proposed in [134] for estimating θF with F .

5.3.1.1 Mixture Model Feedback
One approach uses a two-component mixture model to fit the feedback documents where one
component is a fixed background language model p(w|C) estimated using the collection and the
other is an unknown, to-be-discovered topic model p(w|θF ). Essentially, the words in F are assumed
to fall into two kinds: (1) background words (to be explained by p(w|C)) and (2) topical words (to
be explained by p(w|θF )). By fitting such a mixture model to the data, we can “factor out” the
background words and obtain a discriminative topic model which would assign high probabilities
to words that are frequent in the feedback documents but not frequent in the collection (thus not
well explained by p(w|C)).

Specifically, when we generate a word using this mixture model, we would first decide which
model to use and then sample a word using the chosen model. Thus, the probability of generating
a word w is:

p(w) = (1 − λ)p(w|θF ) + λp(w|C)

where λ ∈ [0, 1] is the probability of choosing the background model p(.|C) to generate the word.
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Thus the log-likelihood function for the entire set of feedback documents is:

log p(F |θF ) =
∑
w∈V

c(w, F ) log((1 − λ)p(w|θF ) + λp(w|C))

where c(w, F ) is the count of word w in the set of feedback documents F .
Intuitively, λ indicates how much weight we want to put on the background model, and can

be interpreted as the amount of background words we would like to factor out.
The topic model θF can be obtained by using the ML estimator. That is, we would tune θF

to best fit the feedback documents. Intuitively, θF and the background model p(.|C) would work
together to explain the words in the feedback documents, thus if we want to maximize the likelihood
function, θF should assign high probabilities to those words that have small probabilities according
to p(.|C) and assign small probabilities to those words with high probabilities according to p(.|C)

so that they can work together “efficiently” to maximize the likelihood function.
Note that in attempting to find the optimal θF using the ML estimator, we need to set λ to

a fixed value. The reason is if we allow λ to change freely, the ML estimator would tend to set it
to zero. This is because p(w|C) is set to the collection language model, thus it cannot change, but
p(w|θF ) can freely change. Thus, to maximize the likelihood, it would be intuitively better not to
use p(w|C) unless it can perfectly explain the word frequencies in F (i.e., it is the ML estimate of
a unigram language model for F ), which is unlikely.

How should we set λ? Intuitively, if we set λ to a larger value, we would force the collection
background model p(w|C) to be used more often when generating a word in a feedback document,
which is equivalent to saying that we believe that there is more noise in the feedback documents. In
effect, this would “encourage” the estimated topic model θF to focus more on the words with small
probabilities by p(w|C) than on those with large probabilities. That is, θF would more likely assign
high probabilities to discriminative words.

The ML estimate of θF can be computed using the Expectation-Maximization (EM) al-
gorithm [140]. The EM algorithm is a hill-climbing algorithm. We would start with a random
initialization of θF , and then repeatedly improve θF to increase the likelihood until the algorithm
converges to a local maximum of the likelihood function. Specifically, the EM algorithm would
improve θF by iteratively alternating between an E-step and an M-step.

In the E-step, we would use the following equation to compute the posterior probability of a
word w being generated using θF (or p(.|C)) based on the current estimate of θF :

E-step: p(zw = 1) = (1−λ)p(n)(w | θF )

(1−λ)p(n)(w | θF )+λp(w | C)

where zw ∈ {0, 1} is a hidden variable indicating whether word w is generated using the topic model
θF (zw = 1) or the collection model p(w|C) (zw = 0).

Intuitively, we try to “guess” which model has been used to generate word w. If p(w|θF )

is much larger than p(w|C), then we would guess that w is more likely generated using θF , and
p(zw = 1) would be high. The reason why we want to figure out which model has been used to
generate w is so that we know which words in the feedback documents belong to θF and we would
use them to improve our estimate of θF . Indeed, if we knew which words are generated using θF
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(instead of p(.|C)), estimation of θF would be very easy since all we need to do is to get the count
of every such word (i.e., c(w, F ) for a word known to be generated from θF ) and normalize these
counts to obtain the probability of each word p(w|θF ). However, p(zw = 1) does not tell us for
sure whether word w is generated using θF . Thus, in the M-step of the EM algorithm, we would
use a discounted word count (i.e., c(w, F )p(zw = 1)) for estimating p(w|θF ). A word count is
discounted more if p(zw = 1) is small, which makes sense because a small p(zw = 1) indicates that
word w is unlikely generated using θF , thus word w should not contribute much to our estimate of
θF .

Formally, in the M-step, we use the following equation to update our estimate of θF :
M-step: p(n+1)(w | θF ) = c(w,F )p(zw=1)∑

w′∈V c(w′,F )p(zw′=1)
.

The EM algorithm is guaranteed to converge to a local maximum of the likelihood func-
tion [140]. In our case, given λ, the feedback documents F , and the collection language model
p(w|C), the likelihood function has just one local maximum, so we are guaranteed to find the global
maximum. A detailed derivation of this EM algorithm can be found in [141].

5.3.1.2 Divergence Minimization Feedback
The other approach proposed in [134] uses an idea similar to Rocchio in the vector space model [34]
and assumes that θF is a language model that is very close to the language model of every document
in the feedback document set F , but far away from the collection language model which can be
regarded as an approximation of nonrelevant language model.The distance between language models
is measured using KL-divergence.

Specifically, the problem of computing θF is cast as solving the following optimization prob-
lem:

θ̂F = arg min
θF

⎛
⎝[ 1

|F |
|F |∑
i=1

D(θF ||θi)] − λD(θF ||θC)

⎞
⎠

where θi is a smoothed language model estimated using document Di ∈ F , θC is the background
collection language model p(w|C), and λ ∈ [0, 1) is a parameter to control the distance between the
estimated θF and the background model θC . When λ = 0, we ignore the background model and the
estimated θF would be the average of language models for each document in F . As we increase λ,
we would force θF to be different from the background model, thus it would tend to assign smaller
probabilities to the common words in the collection and the model would be more discriminative.

Observing the constraint
∑

w∈V p(w|θF ) = 1, we can use the Lagrange Multiplier ap-
proach [11] to solve this optimization problem and obtain the following analytical solution:

p(w|θ̂F ) ∝ exp

⎛
⎝ 1

1 − λ

1

|F |
|F |∑
i=1

log p(w|θi) − λ

1 − λ
log p(w|C)

⎞
⎠ .

This solution is intuitively quite reasonable: the estimated feedback topic model θ̂F would assign a
high probability to a word with high average frequency in the feedback documents but low frequency
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in the collection. Note that once again the collection language model θC has helped to achieve an
IDF effect.

Both the mixture model method and the divergence minimization method are shown to be
quite effective for pseudo feedback with performance comparable to or better than Rocchio [134].
However, both methods (especially divergence minimization) are also shown to be sensitive to
parameter settings.

5.3.1.3 Robust Mixture Model
When using the mixture model discussed in Section 5.3.1.1 for pseudo feedback, we have to set
several parameters empirically: (1) the interpolation parameter α; (2) the background model weight
λ; and (3) the number of top-ranked documents to be used for feedback. Although we may set
these parameters empirically (e.g., using cross validation), the optimal values of these parameters
likely depend on the specific query and specific document collection. Thus, it would be desirable to
somehow eliminate these parameters or improve the robustness of such a model to the setting of
these parameters. Some follow-up work has indeed attempted to achieve this goal [142, 139].

In [142], the mixture model was extended to better integrate the original query model with
the feedback documents and to allow each feedback document to potentially contribute differently
to the estimated feedback topic language model. The extended model is shown to be relatively more
robust than the original model, but the model is still quite sensitive to the number of documents
used for pseudo feedback [142]. Moreover, due to the use of several priors, this new model has more
prior parameters that need to be set manually with little guidance.

In Tao and Zhai [139], these prior parameters were eliminated through a regularized EM
algorithm and a more robust pseudo feedback model is established. Indeed, it has been shown that
with no parameter tuning, the model delivers comparable performance to a well-tuned baseline
pseudo feedback model.

The main ideas introduced in this new model and estimation method are the following:
(1) Each feedback document is allowed to have a potentially different amount of noisy words, and
the amount of noise is automatically estimated with no need of manual tuning. This makes it more
robust with respect to the number of documents used for pseudo feedback. (2) The interpolation
of the original query model with the feedback model is implemented by treating the original query
model as a prior in a Bayesian estimation framework.This makes the interpolation more meaningful
and offers the opportunity to dynamically change the interpolation weights during the estimation
process. (3) The parameter estimation process (EM algorithm) is carefully regularized so that we
would start with the original query model and gradually enrich it with additional words picked
up from the feedback documents. Such regularization ensures that the estimated model stays close
to the original query. (4) This gradual enrichment process stops when “sufficient” new words have
been picked up by the EM algorithm, where “sufficient” roughly corresponds to reaching a balance
between the original query model and the new topic model picked up from the feedback documents
(i.e., interpolation with a 0.5 weight).
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Specifically, in this new model, each document D has its own mixing weight λD in the mixture
model. Thus, the log-likelihood function is:

log p(F |θF ) =
∑
D∈F

∑
w∈V

c(w, D) log((1 − λD)p(w|θF ) + λDp(w|C)) .

The query is combined with the feedback model through a conjugate (Dirichlet) prior on θF

defined based on Q:

p(θF ) ∝
∏
w∈V

p(w|θF )μp(w|Q) ,

where μ is a parameter indicating the strength of the prior, and p(w|Q) is the empirical query word
distribution. In effect, such a prior forces the estimated θF to be as close to p(w|Q) as possible; the
larger μ is, the closer θF would be to p(w|Q).

Using the Maximum A Posteriori (MAP) estimator and a noninformative (i.e., uniform) prior
on λD ’s, we have

θ̂F = arg max
θ

p(F |θF )p(θF ) .

The MAP estimate can also be computed using the EM algorithm with a slightly modified M-step
that incorporates the pseudo counts of words from the prior. The EM algorithm would also allow
us to estimate the parameter λD simultaneously. This means that we have an additional equation for
updating our estimate of λD in the M-step.

To solve the problem of setting μ, a regularized EM algorithm is used.The idea is to start with
a very high value for μ and then gradually reduce μ. In effect, this is to make θF essentially the same
as the prior (i.e., p(w|Q)) at the beginning, and then gradually allow it to be updated with topical
word counts from the feedback documents. Since μ is being decreased, the prior pseudo counts
would also be gradually decreased. At the same time, as we improve our estimate of the topic model,
the new counts picked up from the feedback documents would gradually increase. Eventually, the
pseudo counts from the prior and the new counts from the feedback documents would be roughly
the same, at which point, the algorithm would be stopped.

With this robust mixture model and estimation method, we see that there is no parameter to
set except for the number of documents to be used for pseudo feedback. Experiment results show that
the model is more robust w.r.t. the choice of the number of documents for feedback than the original
mixture model and can achieve near optimal performance without much parameter tuning [139].

A different approach to improving robustness of pseudo feedback is presented in Collins-
Thompson and Callan [143], where the idea is to perform sampling over both the feedback docu-
ments and the query to generate alternative sets of feedback documents and alternative query variants.
Feedback models obtained from each alternative set can then be combined to improve the robustness
of the estimated feedback model. Experiments using a variant of the relevance model [71] as the
baseline feedback method show that the proposed sampling method can improve the robustness of
feedback even though not necessarily the retrieval accuracy of feedback.
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5.3.2 MARKOV CHAIN QUERY MODEL ESTIMATION
Another approach to estimating a query model is to iteratively mine the entire corpus by following a
Markov chain formed by documents and terms [1].The basic idea of this approach is to exploit term
co-occurrences to learn a translation model p(u|v) to capture the semantic relations between words.
Specifically, we hope that p(u|v) would give a high probability to word u if it is semantically related
to word v. With this translation model, we can then enrich the original query model estimated solely
based on the query with potentially more related terms with nonzero probabilities.

Specifically, we can imagine a surfer iteratively following a Markov chain of the form w0 →
D0 → w1 → D1... where wi is a word and Di a document, and the transition probability from a
document D to a word w is given by the ML estimate of the document language model p(w|D) =
c(w,D)

|D| , while the transition probability from word w to document D′ is assumed to be the posterior
probability:

p(D′|w) ∝ p(w|D′)p(D′)

where p(D′) is a prior distribution over documents, and can be set based on additional information
about a document such as its PageRank score [144], or simply set to uniform in the case of no
additional information.

When visiting a word, the surfer is further assumed to stop at the word with probability 1 − α

which is a parameter to be empirically set. The translation probability p(u|v) can then be defined
as the probability of stopping at word u if the surfer starts with word v. Clearly, the same Markov
chain can also be exploited to compute other translation probabilities such as p(D′|D) (“translating”
document D into document D′) or p(D|w) (“translating” word w into document D) without much
modification.

Such a translation model intuitively would capture words that directly or indirectly co-occur
with each other. The relative emphasis on direct occurrence vs. indirect co-occurrence is controlled
by the parameter α. A larger α would encourage the surfer to explore more, and thus we would
consider more indirect co-occurrences of words. In the extreme case of setting α = 0, we would
essentially only consider direct co-occurrences when computing the translation model. With the
obtained translation model, we can now see how we can use it to estimate our query language model.

Suppose a user has an information need characterized by a query model θQ. We would assume
that the user has formulated the current query Q = q1...qm through sampling a word from θQ and
then “translating” it to a query word in Q according to the translation model. Given the observed
Q, we can then compute the posterior probability of a word being selected from θQ (to generate any
query word in Q) and use this probability to estimate θQ:

p(w|θQ) ∝
m∑

i=1

p(qi |w)p(w|U)

where p(w|U) is our prior probability of a word w would have been chosen by user U (which can be
set to the collection language model p(w|C) with no additional knowledge). We may also use this
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prior probability to filter out those “stop words” (i.e., noninformative common words in English) by
setting their probabilities to zero.

Intuitively, this model exploits global co-occurrences of words to expand a query and obtain
an enriched query language model. However, while such a global expansion has been shown to be
effective, the expansion is much more effective if the Markov chain is restricted to going through
the top-ranked documents for a query [1]. Thus, the method can also be regarded as a way to
perform pseudo feedback with language models. The observation that local co-occurrence analysis
is more effective than global co-occurrence analysis is also reported in a study of traditional retrieval
model [145]. Intuitively, this is because the local documents (i.e., documents close to the query)
can prevent noisy words being picked due to distracting co-occurrences in nonrelevant documents.
Leveraging the top-ranked documents for co-occurrence analysis and query expansion (i.e., pseudo
feedback) is an important general heuristic in information retrieval that often works well.

In Collins-Thompson and Callan [146], such a Markov chain expansion method has been
extended to include multiple types of term associations, such as co-occurrences in an external corpus,
co-occurrences in top-ranked search results, and term associations obtained from an external resource
(e.g.,WordNet).While the expansion accuracy is not better than a strong baseline expansion method,
such a massive expansion strategy is shown to be more robust.

5.3.3 RELEVANCE MODEL
Yet another way to estimate the query language model is the relevance model developed by Lavrenko
and Croft in [71]. While the motivation for this model comes from the difficulty in estimating
model parameters in the classical probabilistic model when we do not have relevance judgments, the
derived model also takes advantage of the top-ranked documents in the results from an initial round
of retrieval to obtain a word distribution that can characterize the content of a relevant document.
This is similar to a query model that characterizes what a user is interested in finding. And indeed,
such a relevance model can be used as a query language model directly in the KL-divergence retrieval
model.

Since the relevance model is motivated with the classical probabilistic model, we first take
a look at the derivation of this model using the document-generation decomposition of the joint
probability p(Q, D|R) (see Section 2.2):

O(R|Q, D) ∝ p(D|Q, R = r)

p(D|Q, R = r)
.

We see that our main tasks are to estimate two document models, one for relevant documents
(i.e., p(D|Q, R = r)) and one for nonrelevant documents (i.e., p(D|Q, R = r)). If we assume a
multiple Bernoulli model for p(D|Q, R), we will obtain precisely the Binary Independence Model
pioneered by Robertson and Sparck Jones [56] and further studied by others (e.g., [61, 68]). The
model parameters can be estimated by using some examples of relevant and nonrelevant documents,
making this an attractive model for relevance feedback.
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It was not immediately clear, though, how we can estimate the parameters without relevance
judgments. Croft and Harper [68] studied this problem and introduced two approximations: (1) the
nonrelevant document model p(D|Q, R = r) can be estimated by assuming all the documents in
the collection to be nonrelevant. (2) The relevant document model p(D|Q, R = r) is assumed
to give a constant probability to all the query words. Using these assumptions, they showed that
this classical probabilistic model would lead to a scoring formula with IDF weighting for matched
terms. This is indeed a very interesting derivation and provides some probabilistic justification of
IDF. However, while the first assumption is reasonable, the second is clearly an over-simplification.
A more reasonable approximation may be to use some top-ranked documents as an approximation
of relevant documents, i.e., follow the idea of pseudo relevance feedback. This is essentially the idea
behind the relevance model work [71].

In the relevance model, a multinomial model is used to model a document, thus we can capture
the term frequency naturally. (Previously, 2-Poisson mixture models had been proposed as a member
of the classical probabilistic models to model term frequency, and an approximation of that model
has led to the effective BM25 retrieval function [70].) Using multinomial distribution, we have:

O(R|Q, D) ∝
∏n

i=1 p(di |Q, R = r)∏n
i=1 p(di |Q, R = r)

(5.2)

where document D = d1...dn.
Since p(di |Q, R = r) can be reasonably approximated by p(di |C) (i.e., collection language

model), the main challenge is to estimate p(di |Q, R = r), which captures word occurrences in
relevant documents and is called a relevance model. In [71], the authors proposed two methods for
estimating such a relevance model, both based on the idea of using the top-ranked documents
to approximate relevant documents to estimate the relevance model p(w|Q, R = r). Thus, this is
essentially another way to leverage pseudo-relevance feedback, and the estimated relevance model
p(w|Q, R = r) can also be regarded as a query language model in the KL-divergence retrieval
model. Indeed, although p(w|Q, R = r) is meant to be a model for words in relevant documents,
it intuitively represents what a user is interested in, which is precisely what a query language model
attempts to capture. Moreover, in some later studies [92], it was shown that using the relevance model
as a query model to score documents with the KL-divergence function works better than using it
as a component in the classical probabilistic model for retrieval. This is why we have included the
discussion of relevance model as a variant method for estimating query language models.

We now describe the two methods proposed in [71] for estimating the relevance model. In
the first method (i.e., Model 1), the authors essentially use the query likelihood p(Q|D) as a weight
for document D and take an average of the probability of word w given by each document language
model. Clearly, only the top ranked documents matter because other documents would have very
small or zero weight.Formally, let 	 represent the set of smoothed document models in the collection
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and Q = q1...qm be a query. The formula is derived as follows:2

p(w|Q, R = r) =
∑

θD∈	

p(w|θD)p(θD|Q, R = r)

=
∑

θD∈	

p(w|θD)
p(Q|θD, R = r)p(θD|R = r)

p(Q|R = r)

∝
∑

θD∈	

p(w|θD)p(Q|θD, R = r)p(θD|R = r)

=
∑

θD∈	

p(w|θD)p(θD|R = r)

m∏
i=1

p(qi |θD, R = r) .

This estimate can be seen as a weighted average of p(w|θD) over all the documents in the collection.
The weight for document D is p(θD|R = r)

∏m
i=1 p(qi |θD, R = r), in which the second term is

precisely the query likelihood given the document, which tells us how likely the document is relevant
to the query, while the first is a general prior on documents to favor a document that is more likely
relevant to any query. Thus, the count of a word in a highly scored document according to the
query likelihood retrieval model (more likely a relevant document) would be weighted more when
combining the counts, which intuitively makes sense. p(θD|R = r) can be set based on additional
information about a document such as the number of times it has been viewed or its PageRank score.
In [71], it was set to uniform.

In the second method (i.e., Model 2), they compute the association between each word and
the query using documents containing both query terms and the word as “bridges.” The strongly
associated words are then assigned high probabilities in the relevance model. Formally, the derivation
is as follows:

p(w|Q, R = r) = p(Q|w, R = r)p(w|R = r)

p(Q|R = r)
∝ p(Q|w, R = r)p(w|R = r)

= p(w|R = r)

m∏
i=1

p(qi |w, R = r)

= p(w|R = r)

m∏
i=1

∑
θD∈	

p(qi |θD, R = r)p(θD|w, R = r) .

Again, we added the relevance variable R to be consistent with our overall formal framework.
Interestingly, adding this relevance variable also helps clarify the meaning of the term p(w) in the
original derivation in [71], which is now p(w|R = r). Specifically, interpreting p(w) as p(w|R = r)

means that it should favor words that tend to occur in any relevant document to any query. In [71],

2The derivation in the original paper does not contain the relevance variable R. We added it to be consistent with our overall
formal framework for probabilistic retrieval.
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it is estimated as
p(w|R = r) =

∑
θD∈	

p(w|θD)p(θD|R = r)

and p(θD|R = r) is set to uniform.
p(θD|w, R = r) can be computed as:3

p(θD|w, R = r) ∝ p(w|θD)p(θD|R = r)∑
θ ′
D∈	 p(w|θ ′

D)p(θ ′
D|R = r)

.

Again, p(θ ′
D) and p(θD) are set to uniform in [71].

Plugging these refinements into the estimate of the relevance model p(w|Q, R = r) and after
some algebraic transformation, we can obtain:

p(w|Q, R=r) ∝
∑

θD∈	 p(w|θD)p(θD|R=r)∑
θ ′
D∈	 p(w|θ ′

D)p(θ ′
D|R=r)

m∏
i=1

∑
θD∈	

p(qi |θD, R = r)p(w|θD)p(θD|R=r)

=
m∏

i=1

∑
θD∈	

(p(qi |θD, R=r)p(w|θD)p(θD|R=r)) .

Written in this form, the estimate formula is again seen as giving high probabilities to words
occurring frequently in those documents that give our query a high likelihood (thus more likely
relevant documents). Indeed, if we rewrite the estimate of Model 1 in the following form, we see
that the two models mainly differ in how they aggregate the evidence of a word w co-occurring with
query words:

p(w|Q, R = r) ∝
∑

θD∈	

m∏
i=1

(p(qi |θD, R = r)p(w|θD)p(θD|R = r)) .

In both models, the “co-occurrence evidence” of word w with a query word qi is captured by the
same term p(qi |θD, R = r)p(w|θD)p(θD|R = r). However, Model 1 first aggregates the evidence
for all the query words by taking a product, and then further aggregates the evidence by summing
over all the possible document models, while Model 2 does the opposite. In [71], it was reported that
Model 2 performs slightly better than Model 1, and Model 2 significantly outperforms the baseline
simple query likelihood retrieval model. Relevance model has also later been applied to other tasks
such as cross-lingual [147].

Theoretically speaking, the relevance models can be potentially computed over the entire
space of empirical document models. However, in the experiments reported in [71], the authors
restricted the computation to the top 50 documents returned for each query. This not only improves
the efficiency, but also improves the robustness of the estimated model as we are at a lower risk of
3The formula given in [71]: is p(Mi |w) = p(w|Mi)p(w)/p(Mi), which is probably meant to be p(Mi |w) =
p(w|Mi)p(Mi)/p(w); Mi is the same as θD .
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including some distracting document models. Indeed, as shown in [71], including more documents
can be potentially harmful. This is the same observation as in [1], all suggesting that these models
are essentially alternative ways of implementing pseudo feedback with language models.

5.3.4 STRUCTURED QUERY MODELS
Sometimes a query may be characterized with multiple aspects and has some structure. This may
happen in several cases, including multiple representations of queries or queries formulated based
on structured data.

For example,TREC queries are typically described with several fields including a concise title
field, a one-sentence description, and a relatively long narrative. These different fields provide a dif-
ferent representation of the same query. A query may also be represented with different granularities
of lexical units. For example, one representation may be based on unigrams, and another may be
based on word associations extracted from some domain resources [148].

When we formulate a query based on information from multiple fields in a relational database,
we would also naturally have a query with multiple fields. For example, a sample query topic inTREC
2003 Genomics Track [149] has the following two fields:

Field 1 (Gene Name): activating transcription factor 2
Field 2 (Gene Symbols): ATF2, HB16
In all these cases, a query is characterized with multiple aspects, which are usually either

multiple representations or multiple text fields. When we design a retrieval model for handling such
structured queries, presumably we should consider the structure and assign potentially different
weights to these different aspects.

Consider the gene query example above. Since a gene symbol uniquely identifies a gene, but a
word in the name only partially identifies a gene, intuitively matching a term (i.e., a symbol) in the
symbol field is worth more than matching a term in the name field. Indeed, matching a symbol is
about equal to matching the entire name phrase.Thus, if we ignore the structure and simply combine
all the fields together, the retrieval results would be nonoptimal.

This means that using one single “flat” (unstructured) query language model to represent
the query appears to an over-simplification because it does not allow us to flexibly put different
weights on different representations or different fields. A better solution would be to define the
query model as a mixture model, which has indeed been done in [148] for combining multiple
sources of knowledge about query expansion and in [117] for assigning different weights to different
fields of a gene query. We call such mixture query language models structured query models.

Specifically, let Q = {Q1, ..., Qk} be a query with k aspects, where Qi represents a query
aspect. The mixture query model can be defined as:

p(w|θQ) =
k∑

i=1

λip(w|θQi
)
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where p(w|θQi
) is a query model corresponding to aspect Qi , and λi is the corresponding weight.

The challenge here is to optimize the setting of the weight of each aspect λi and estimate each
component aspect query language model θQi

.
In [117], a pseudo feedback algorithm is proposed to expand each p(w|θQi

) and estimate λi

simultaneously. The basic idea is to use each field (Qi) to define a prior on θQi
and fit the mixture

model to a set of feedback documents in the same way as fitting the two-component mixture model
for model-based feedback discussed in Section 5.3.1. Once we can estimate these parameters, we can
combine the component models to compute a structured query language model p(w|θQ) and use it
in the KL-divergence retrieval model for scoring documents. The structured query model estimated
using this pseudo feedback technique is shown to be more effective than simply weighting all the
fields equally [117].

In [150], how to match such a structured query with structured documents is studied. In their
problem setup, a query and a document are assumed to have the same number of fields (a common
scenario in database record retrieval). The proposed scoring function is a weighted combination of
the scores on each field. See Section 6.3 for more discussion about this work and other work on
retrieval of structured documents.

5.4 NEGATIVE RELEVANCE FEEDBACK

Most of the query model estimation methods discussed in this chapter can effectively use information
in the examples of relevant documents or top-ranked documents that have been assumed to be
relevant. We have not discussed how we can learn from examples of nonrelevant documents (i.e.,
negative examples). Indeed, when a query is very difficult for a system, the first page of initial retrieval
results can be all nonrelevant. In such a case, if we want to help the user by improving the ranking
of the results on the next page, we would only have negative feedback examples to learn from.

Unfortunately it is nontrivial to use negative information in the KL-divergence retrieval
model. The difficulty simply comes from the fact that we use a generative query language model
(i.e., θQ) to represent the information need, and the model cannot assign a negative probability to
any term, making it hard to penalize a term. The best we could do is to assign a zero probability to
those distracting terms. But if we truncate a query model to keep only the most significant terms, as
we often have to do for the sake of efficiency, such a strategy for penalization may not be so effective
because many other useful terms also have zero probabilities due to truncation so we cannot really
distinguish truly distracting terms from those terms ignored due to truncation.

To solve this problem, a heuristic modification of the KL-divergence retrieval model is pro-
posed in [138]. The basic idea is to introduce a negative topic language model θN . We could then
use θN to retrieve documents that are potentially distracting and compute a “distraction score” for
each document. The distraction score of a document can then be combined with the original KL-
divergence score of the document in such a way that we would penalize a document that has a high
distraction score.
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The proposed formula for scoring is:

Score(Q, D) = −D(θQ||θD) + βD(θN ||θD) , (5.3)

where β is a parameter that controls the amount of negative feedback. When β = 0, we do not
perform negative feedback, and the ranking would be the same as the original ranking according to
θQ.

This scoring function can be shown to be equivalent to the following for ranking docu-
ments [138]:

Score(Q, D)
rank=

∑
w∈V

[p(w|θQ) − βp(w|θN)] log p(w|θD) .

In this new form of the scoring formula, we see that each term has a weight of [p(w|θQ) −
βp(w|θN)] log p(w|θD), which penalizes a term that has high probability according to the neg-
ative topic model θN . Thus, the negative feedback model is essentially very similar to Rocchio in the
vector space model and can in some sense be regarded as the language modeling version of Rocchio.

The negative query model θN can be estimated based on negative feedback documents in the
same way as a regular positive query model would be estimated based on positive feedback documents
(e.g., using the two-component mixture model discussed in Section 5.3.1). Since a query term tends
to occur frequently in the top-ranked negative documents, it may have a high probability according
to θN , which is not what we want. To solve this problem, in [138], the authors heuristically let θN

assign zero probabilities to all the query terms. Furthermore, since negative documents generally do
not form a coherent cluster, it may be more effective to learn multiple negative models from a set
of negative feedback documents and penalize a document close to any of the negative models. Such
a strategy has been shown to be more effective than using a single negative feedback model [151].
In [151], it is also shown that language models are more effective than the vector-space model for
pure negative feedback with no relevant examples.

Note that negative feedback can be more naturally done in the classical probabilistic model
(e.g., [56]) because they can be used directly to improve the estimate of the nonrelevant document
model p(D|Q, R = r). Thus, if we use multinomial distributions to model documents in a classical
probabilistic retrieval model, we can easily use relevance model to estimate p(D|Q, R = r), and at
the same time use negative feedback documents to improve our estimate of p(D|Q, R = r), which
would otherwise have to be estimated based on the approximation of nonrelevant documents with
the entire collection. However, no experiment results in this direction have been reported yet.

5.5 SUMMARY
In this chapter, we discussed probabilistic distance retrieval models and how feedback (particularly
pseudo feedback) can be performed with language models. As a generalization of query likelihood
scoring, the KL-divergence retrieval model has now been established as the state of the art approach
for using language models to rank documents. It supports all kinds of feedback through estimating
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a query language model based on feedback information. We reviewed several different approaches
to improving the estimation of a query language model by using word co-occurrences in the corpus.
Although some approaches are meant to work on the entire corpus, they tend to work much better
when restricting the estimation to using only the top-ranked documents.Thus, it is fair to say that all
these methods are essentially different ways to implement the traditional pseudo feedback heuristic
with language models. Among all the methods, the two-component mixture model [134, 139] and
the relevance model [71] appear to be most effective and robust and also are computationally feasible.
The success of these feedback methods shows that we can generally improve retrieval performance
by improving the estimate of a language model or improving the design of language models for
retrieval. This is a significant advantage of the language modeling approach over the traditional
vector space model, where we have little guidance on how to improve an existing model.

We have also discussed the difficulty in performing negative feedback with a probabilistic
distance retrieval model and a heuristic extension of the KL-divergence retrieval model so that it
can effectively perform negative feedback in a way similar to how Rocchio handles negative feedback
in the traditional vector-space model.
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C H A P T E R 6

Language Models for Special
Retrieval Tasks

In addition to their applications to the standard monolingual ad hoc search problem, language
models have also been applied to solve many other “nonstandard” retrieval problems, including cross-
lingual retrieval, distributed IR, expert finding, personalized search, modeling redundancy, passage
retrieval, subtopic retrieval, and topic detection and tracking, among others. Most of these additional
applications share the same philosophy as the language models developed for the standard ad hoc
retrieval problem in modeling text generally with probabilistic models and leveraging statistical
estimation methods to tune and optimize weights.

In this chapter, we will review some of the major work in this line with an emphasis on
applications of language models in unsupervised settings (as opposed to settings involving super-
vised learning) and applications where interesting extensions of the standard ad hoc retrieval models
have been made (as opposed to where a standard language model is applied to an application in a
straightforward way). We have intentionally left out work on using language models in supervised
learning settings, where labeled training data is needed, because the latter, which includes many
important tasks such as text categorization [39, 66], information filtering [152], and topic tracking
and detection [153, 120, 154], is better reviewed through comparing the generative language models
with many other competing supervised or semi-supervised learning methods, notably discriminative
approaches such as Support Vector Machines [155].

6.1 CROSS-LINGUAL INFORMATION RETRIEVAL

Cross-lingual information retrieval (CLIR) refers to the task of retrieving documents in one language
(e.g., English) with a query in another language (e.g., Chinese). A major challenge in cross-lingual
IR is to cross the language barrier in some way, typically involving translating either the query or
the document from one language to the other.

The translation model discussed in Section 4.5 can be naturally applied to solve this problem
by defining the translation probability p(u|v) on terms in the two languages involved in the retrieval
task. For example, let v be a word in English and u a word in Chinese. In such a case, p(u|v) would
give us the probability that u is a good translation of English word v in Chinese, thus it captures the
semantic association between words in different languages.

This idea has been applied to CLIR in [156] and [130], but these two studies used the
translation model in a slightly different way. In both studies, the basic retrieval function is the query
likelihood retrieval model. That is, the score of a document D in a target language (e.g., English)
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with respect to a query Q = q1...qm in a source language (e.g., Chinese) is given by:

p(Q|D) =
m∏

i=1

p(qi |θS
D)

where the distribution p(.|θS
D) is a language model in source language estimated based on document

D (note that D is in the target language).
Suppose p(u|v) is a translation model estimated using resources such as parallel corpora or

bilingual dictionaries, where u and v are in our source and target languages, respectively. That is,
p(u|v) encodes our knowledge about how to translate a word in the target language (v) into one
in the source language (u). In both [156] and [130], p(qi |θS

D) is computed using a variant of the
following formula:

p(qi |θS
D) =

∑
w∈VT

p(qi |w)p(w|θT
D)

where VT is the vocabulary set of the target language and the distribution p(.|θT
D) is a target language

model estimated based on D.
As in the case of monolingual query likelihood scoring, we need to smooth the document

language model (either θS
D or θT

D or both), and this is where the two studies differ. In [156], only
θT
D (but not θS

D) is smoothed with the target language document collection CT . That is, the actual
formula for computing p(qi |θS

D) is:

p(qi |θS
D) =

∑
w∈VT

p(qi |w)[(1 − λT )p(w|θT
D) + λT p(w|CT )]

where λT is a smoothing parameter. In [130], the authors did the opposite: they smoothed only θS
D ,

but not θT
D . Their actual formula for computing p(qi |θS

D) is:

p(qi |θS
D) = [(1 − λS)

∑
w∈VT

p(qi |w)p(w|θT
D)] + λSp(w|CS)]

where λS is a smoothing parameter and CS denotes a source text collection to be used as a reference
corpus for smoothing.

As in the translation model for monolingual ad hoc retrieval, a major challenge here is to
estimate the translation probability p(qi |w). In both [156] and [130], the authors experimented
with several options for estimating this translation model, such as using a bilingual word list, parallel
corpora, and a combination of them. In general, the cross-lingual query likelihood retrieval function
has been shown to be effective (e.g., achieving over 85% performance of monolingual retrieval
baseline in [130]). In [156], different disambiguation methods to resolve translation ambiguity are
also studied. Their conclusion is that lexical disambiguation appears to be non essential for cross-
lingual retrieval, and using all the possible translations performs the best.
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In another line of work on applying language models to CLIR, Lavrenko et al. [147] adapted
the relevance model (discussed in detail in Section 5.3.3) in two ways to perform CLIR, both based
on the KL-divergence scoring function instead of the query likelihood retrieval function which is
used in the work discussed above. The document language model θD is estimated in a normal way,
thus it assigns probabilities to words in the target language. Their main idea is to adapt relevance
model so that we can start with a query Q in the source language to estimate a query model θQ

that can assign probabilities to words in the target language. This way, the query model and the
document model would be in the same language (i.e., target language), so they can be compared
using the KL-divergence scoring function to computed a score for retrieval.

Their first method is to leverage a parallel corpus where documents in the source language
are paired with translations of them in the target language. In this case, the document model θD

in their relevance model can be generalized to include two separate models, one for each language.
That is, θD = (θS

D, θT
D) where θS

D is the model for the source document and θT
D the model for

the corresponding target document. With this setup, the relevance model can be generalized in a
straightforward way to give the following probability of word wT in the target language according
to the query model θQ:

p(wT |θQ) ∝
∑

θD∈	

p(θD)p(wT |θT
D)

m∏
i=1

p(qi |θS
D)

where Q = q1...qm is the query.
We see that the estimated target language model for the query p(wT |θQ) would assign a

high probability to a word frequent in a target document whose translation document in the source
language matches our query well (i.e., the likelihood

∏m
i=1 p(qi |θS

D) is high). The pairing of θS
D and

θT
D has enabled the crossing of the language barrier.

Their second method is to leverage a bilingual dictionary to induce a translation model
p(wS |wT ) and use this translation model to convert the document language model p(wT |θD),
which is in the target language, to a document language model for the source language p(wS |θD).
That is:

p(wT |θQ) ∝
∑

θD∈	

p(θD)p(wT |θD)

m∏
i=1

p(qS
i |θD) (6.1)

=
∑

θD∈	

p(θD)p(wT |θD)

m∏
i=1

∑
uT ∈V T

p(qS
i |uT )p(uT |θD) . (6.2)

This time, the translation model p(qS
i |uT ) has enabled the crossing of the language barrier.

These models have been shown to achieve very good retrieval performance (90 95% of a strong
monolingual baseline).
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6.2 DISTRIBUTED INFORMATION RETRIEVAL

Distributed information retrieval is concerned with retrieving information from multiple collections
of documents that may be physically or logically distributed among multiple machines in a network.
The task of distributed IR can often be decomposed into two subtasks: (1) resource selection;
and (2) result fusion. Given a query, the task of resource selection is to select the resources (i.e.,
collections) that most likely contain relevant documents to the query. With resource selection, we
can then execute the query only on these most promising resources to improve efficiency. The task
of result fusion is to combine the search results from multiple sources to generate an integrated set
of results for the query. Language models have been applied to both tasks.

For resource selection, the general idea is to treat each collection as a special “document” and
apply standard language models to rank collections. In an early work by Xu and Croft [135], the
authors cluster the documents to form topical clusters. Each cluster is then treated as one coherent
subcollection, which is then used to estimate a topic language model. The KL-divergence between
the empirical query word distribution and the estimated topic language model is then used to select
the most promising topical collections for further querying. Such a clustering method is shown to
be effective for collection selection [135].

In [157], the authors proposed a language modeling framework for resource selection and result
fusion. In this framework, documents in each collection are scored using regular query likelihood
retrieval function but smoothed with the background language model corresponding to the collection.
As a result, the scores of documents in different collections are strictly speaking not comparable
because of the use of different background language model for smoothing. A major contribution of
the work [157] is to derive an adjustment strategy that can ensure that the scores of all the documents
would be comparable after adjustment.

Specifically, let D be a document in collection Ci . In general, we would score a document
for query Q with query likelihood and rank documents based on p(Q|D, Ci). The likelihood is
conditioned on Ci because of smoothing, thus directly merging results based on their query likelihood
scores p(Q|D, Ci) would be problematic since the scores may not be comparable. Thus, the authors
of [157] use probabilistic rules to derive a normalized form of the likelihood denoted as p(Q|D),
which can then be used as scores of documents for the purpose of result fusion. They show that
ranking based on p(Q|D) is equivalent to ranking based on p(Q|D,Ci)

βp(Ci |Q)+1 , where β is a parameter
to be empirically set. Thus, when we merge the results, we just need to divide the original score
p(Q|D, Ci) by the normalizer βp(Ci |Q) + 1, which can be computed using Bayes rule and the
likelihood of the query given collection Ci (i.e., p(Q|Ci)). Their experiment results show that this
language modeling approach is effective for distributed IR and outperforms a state of the art method
(i.e., CORI [158]) [157].
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6.3 STRUCTURED DOCUMENT RETRIEVAL AND
COMBINING REPRESENTATIONS

Most retrieval models are designed to work on a bag of words representation of a document, thus
they ignore any structure of a document. In reality, there often exist both intra-document structures
(e.g., title vs. body) and inter-document structures (e.g., hyperlinks and topical relations) that can be
potentially leveraged to improve search accuracy. This is especially true in XML retrieval and Web
search. It is also common that one may obtain multiple text representations of the same document,
which should be combined to improve retrieval accuracy. These multiple representations can also be
regarded as multiple “parts” of a document, thus giving an intra-document structure.

In exploiting intra-document structures, we generally assume that a document D has k parts or
k text representations D = {D1, ..., Dk}, and our goal is to rank such documents with consideration
of the known structure of the document. In Ogilvie and Callan [159], the authors have extended the
basic query likelihood to address this problem. Their approach allows different parts of a document
or different representations of a document to be combined with different weights. Specifically, the
“generation” process of a query given a document is assumed to consist of two steps. In the first step,
a part Di is selected from the structured document D according to a selection probability p(Di |D).
In the second, a query is generated using the selected part Di . Thus, the query likelihood is given
by:

p(Q|θD) =
m∏

i=1

p(qi |θD) (6.3)

=
m∏

i=1

k∑
j=1

p(qi |θDj
)p(Dj |D) . (6.4)

In [159], such a two-step generation process was not explicitly given, but their model implies
such a generation process. The “part selection probability” p(Di |D) is denoted by λi in [159]; it can
be interpreted as the weight assigned to Di and can be set based on prior knowledge or estimated
using training data. Experiment results show that this language modeling approach to combining
multiple representations is effective. Language models have also been applied to XML retrieval by
other researchers [160].

An alternative way of modeling structured document retrieval (with structured queries) is
presented in [150], where the authors applied the relevance model to score each field (or representa-
tion) of a document separately and then combine the scores linearly. Specifically, in their setup, the
query is also assumed to contain k fields, corresponding to the k fields in the documents. Thus, we
may denote a query by Q = {Q1, ..., Qk} (see Section 5.3.4 for more discussion about retrieval with
structured queries). Suppose θQi

is an estimated relevance model for the i-th field. The proposed
scoring function is:

Score(Q, D) =
∑
i=k

λi

∑
w∈V

p(w|θQi
) log p(w|θDi

)
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where λi is a weighting parameter for the i-th field. We see that this is basically to first score each
field using cross entropy (equivalently KL-divergence) and then combine these “field scores.” An
interesting question studied in this work is how to infer missing values of some fields in the structured
documents (the documents are database records with text fields in [150]). The idea of their solution
is to infer a missing value in a record based on its context in that record (i.e., other fields with known
values).

Inter-document structures are usually exploited through propagating information through
the structural links among documents. A general probabilistic propagation framework was proposed
in [161] to combine probabilistic content-based retrieval models (including language models) with
link structures (e.g., hyperlinks). The basic idea is to first compute content-based scores for all
the documents in a hypertext collection and then probabilistically propagate these scores through
hyperlinks so that the score of a document would be iteratively adjusted based on the scores of
its neighboring documents. Experiment results show that the propagation framework can improve
ranking accuracy over pure content-based scoring. While this probabilistic propagation framework
is not specific to language models, it was shown in [161] that the performance is much better if
the content-based scores can be interpreted as probabilities of relevance. Another general (non-
probabilistic) propagation framework was proposed in [162] which has been shown to be effective
for improving Web search through both score propagation and term count propagation. How to
integrate such propagation frameworks with language models more tightly remains an interesting
future research question.

6.4 PERSONALIZED AND CONTEXT-SENSITIVE SEARCH

In the “standard” setup of the retrieval task (and most search engine systems), we generally assume
that the query is the only information we have available about a user. Unfortunately a query is often
very short and not very informative. In personalized search, we would like to use more user informa-
tion to better infer a user’s information need. Such information can include, e.g., the entire search
history of a user, which is naturally available to a retrieval system. Users with similar information
needs can also benefit from sharing their search histories to improve search results, though privacy
infringement may be a concern [163].

Since even the same user may use similar queries (e.g., an ambiguous query) to find different
information, it is very important for a retrieval system to adapt in real-time to recognize the current
information need of a user. Thus, the immediate search context in the current search session, such
as which documents in the search results are viewed and which are skipped, is extremely valuable
for inferring a user’s interest.

With language models,we may achieve the goal of personalized and context-sensitive search by
estimating a better query language model with all the available user information and search context.
Normally, we estimate a query model θQ based on the query Q and possibly feedback documents
in the current collection C. In personalized search, we would have additional information from the
user that can be exploited. We use U to denote all the information from the current user, which
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may include, e.g., past queries, viewed documents, and skipped documents in the search history
(particularly the current search session), and other user factors that may affect our inference of the
user’s information need. Formally, we would like to compute:

θ̂Q = arg max
θ

p(θ |Q, C, U) .

Using such a strategy, in [164, 165], the authors proposed several methods for improving
the estimate of a query language model based on implicit feedback information (e.g., the previous
queries and clickthroughs of a user). These methods are shown to be effective for improving search
accuracy for a new related query.

In [164], implicit feedback within a single search session is considered. This is to simulate a
scenario when the initial search results were not satisfactory to the user, so the user would reformulate
the query potentially multiple times. The feedback information available consists of the previous
queries and the snippets of viewed documents (i.e., clickthrough information). Given the user’s
current query, the question is how to use such feedback information to improve the estimate of the
query language model θQ. In [164], four different methods were proposed to solve this problem, all
essentially leading to some interpolation of many unigram language models estimated using different
feedback information, respectively. Different methods mainly differ in the way to assign weights to
different types of information (e.g., queries vs. snippets).

Experiment results show that using the history information, especially the snippets of viewed
documents, can improve search accuracy for the current query. It is also shown to be beneficial to use
a dynamic interpolation coefficient similar to Dirichlet prior smoothing. In particular, the following
simple Dirichlet prior interpolation is shown to work well:

p(wθQ) = c(w, Q) + μp(w|HQ) + νp(w|HC)

|Q| + μ + ν

where HQ and HC are the set of previous queries and the set of the snippets of viewed documents
(called clickthroughs) in the current session, respectively. μ and ν are two parameters to control the
weight assigned to the query history and the clickthrough history, respectively. In the experiments
reported in [164], the optimal values for μ and ν were μ = 0.2 and ν = 5.0, suggesting that the
query history is roughly worth 0.2 “pseudo query word,” while the clickthrough history is worth
much more (roughly 5 query words). Note that with fixed μ and ν, a shorter query would be more
influenced by the history information than a longer query, which is intuitively reasonably as we
would have more confidence on the current query if it is long.

In [165], implicit feedback using the entire (long-term) search history of a user is considered.
Since in this setup, there is potentially noisy information in the search history, it is important to
filter out such noise when estimating the query language model. The idea presented in [165] for
solving this problem is the following: First, each past query is treated as a unit and represented by
the snippets of the top-ranked search results. Second, the search results (snippets) of the current
query is used to assign a weight to each past query based on the similarity between the search results
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of the past query and those of the current one. The weighting helps filter out any noisy information
in the history. Finally, the query language model is estimated as a weighted combination of unigram
language models estimated based on text associated with each past query (e.g., query text, clicked
snippets). The second step above is implemented by using a mixture model with each past query
contributing a component language model to fit the current search results. The EM algorithm is
used to compute the ML estimate so that we can obtain optimal weights for all the past queries.
Intuitively, the weight of each past query indicates how well the search results of that query can
explain the current search results, i.e., similarity between that past query and the current query.
Evaluation shows that such a language modeling approach to query estimation based on search
history can improve performance substantially [165].

The work discussed above all essentially performs implicit feedback, which does not require
any extra effort from the user. If, however, a user is willing to provide some explicit feedback (as,
e.g., in the case of a difficult topic or a high-recall retrieval task), personalization can be more
effectively achieved through explicit relevance feedback, and the techniques discussed in Section 5.3
can be used to improve our estimate of the query language model based on feedback documents.
Unfortunately, relevance feedback would not work if the initial search results are so poor that none of
the top-ranked documents is relevant. In such a case, term-based feedback may be useful. A language
modeling approach to term-based feedback is described in [166], where the feedback terms are not
only directly used in constructing an improved query language model, but also used to infer the
weights of some underlying topic clusters, allowing us to effectively further expand the query model
with additional terms in highly weighted clusters (i.e., combining explicit term feedback with pseudo
feedback). Experiment results show that it is beneficial to combine three kinds of terms: the original
query terms, new feedback terms, and additional terms from the top-ranked documents [166].

6.5 EXPERT FINDING

The task of expert finding as set up in the TREC Enterprise Track is the following: Given a list of
names and emails of candidate experts and text collections where their expertise may be mentioned,
retrieve experts with expertise on a given topic (described by keywords). Language models have been
applied to this task with reasonable success [167, 168].

In [167], a general probabilistic model is presented for solving this problem with an analo-
gous derivation to the one given in [55]. Specifically, three random variables are introduced: (1) T

for topic; (2) C for a candidate expert; (3) R ∈ {0, 1} for relevance. The goal is to rank the can-
didates according to the conditional probability p(R = 1|T , C). Following the derivation in [55],
the authors derived two families of models corresponding to two different ways of factoring the
joint probability p(T , C|R), either as p(T |R, C)p(C|R), which is called topic generation model or
p(C|T , R)p(T |R), which is called candidate generation model.

Specifically, after some similar transformations to those discussed in Section 2.2, the two
families of general expert finding models are:
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Topic generation model:

p(R = 1|T , C)
rank= p(C|R = 1)

p(C|R = 0)
× p(T |C, R = 1)

p(T |C, R = 0)
.

p(C|R = 1) and p(C|R = 0) can be regarded as our prior about whether C is likely an expert on any
topic, while p(T |C, R = 1) and p(T |C, R = 0) can be interpreted as characterizing the expertise
of candidate C, and they can be estimated using documents describing the expertise of candidates
such as technical email messages from/to a candidate.
Candidate generation model:

p(R = 1|T , C)
rank= p(C|T , R = 1)

p(C|T , R = 0)
.

Intuitively, p(C|T , R = 1) is the probability that C is an expert on topic T , while p(C|T , R = 0)

is the probability that C is not an expert on T . However, we do not generally have the data that
would allow us to estimate these models directly (or otherwise, the problem of expert finding would
have been trivial). Thus, again we have to rely on data such as technical email messages from/to a
candidate to infer these models, and there are multiple ways of doing this.

In [167], the authors proposed three techniques to improve the estimation of these models:
(1) a mixture model for modeling the candidate mentions, which can effectively assign different
weights to different representations of an expert; (2) topic expansion to enrich topic representation;
and (3) email-based candidate prior to prefer candidates with many email mentions.These techniques
are shown to be empirically effective.

In [168], the authors proposed two different topic generation models for expert finding. In
both models, we would leverage the co-occurrences of terms referring to a candidate and terms
describing a topic in some text documents to estimate p(T|C,R=1). However, the two models differ
in the way a topic T is “generated” from a candidate C. In Model 1, a topic is generated by generating
each word in the topic independently, thus the generation of two words of the topic can potentially be
going through a different document, and a bridge document only needs to match the candidate and
one topic word well. In Model 2, the whole topic is generated together using the same document as
a bridge, thus requiring the bridge document to match both the candidate and the entire topic well.
Intuitively, Model 2 appears to be more reasonable than Model 1. Indeed, empirical experiments
also show that Model 2 outperforms Model 1 [168]. This is a case where some analysis of the
assumptions made in designing language models can help assess the effectiveness of a model for
retrieval.

6.6 PASSAGE RETRIEVAL
A standard retrieval system returns a whole document as a unit of search results for a query. However,
it often happens that only a part of a document is relevant to a query. In such a case, a user would
need to read the entire document to locate the most relevant passage. Also, in a network retrieval
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system where transfer of information incurs cost, sending an entire document to a user consumes
much more resource than sending just a relevant passage.Thus, it is often desirable to return directly
the relevant passages in response to a query. This is called passage retrieval.

Generally speaking, there are two strategies for passage retrieval: (1) pre-segment documents
into overlapping or nonoverlapping segments and treat each segment as if it were a document;
(2) extract relevant passages dynamically for a given query. The former is more efficient at retrieval
time, but has the disadvantage that the granularity of passages must be fixed in advance. The latter
is precisely the opposite: we can dynamically determine the boundary of a relevant passage based
on the query which is desirable since the lengths of relevant passages may vary dramatically from
queries to queries, but it is computationally more expensive at retrieval time.

Language models have been applied to perform passage retrieval in both ways. In [115], the
standard KL-divergence retrieval model is applied to perform passage retrieval with various strategies
for pre-segmentation of passages. The results show that language models are applicable to passage
retrieval and can achieve better or comparable performance as compared with the baseline method
of using full text. Furthermore, passage retrieval based on language models appears to be beneficial
for applying relevance models to do pseudo feedback, likely because the top-ranked small passages
have less noise than the top-ranked full documents.

In [169], a hidden Markov model (HMM) is applied to dynamically identify the boundaries
of a relevant passage in a long document based on a given query. Hidden Markov Models [170] are
a special kind of language models that can model the underlying latent structures of a sequence of
words.The architecture of the HMM used in [169] is shown in Figure 6.1. It models a text document
with one single relevant passage with five states, including a special state to align with the end of
the document (state E). The other four states are to model background words before the relevant
passage (state B1), query-related words within the relevant passage (state R), background words
within the relevant passage (state B2), and background words after the relevant passage (state B3),
respectively. The output distribution of all the background states is set to the collection language
model. The output distribution of state R can be regarded as a query language model or relevance
model. It can be estimated based on the original query, and improved through using various kinds of
pseudo feedback techniques [169]. Experiment results show that this HMM can accurately identify
relevant passages of variable lengths from long documents.

6.7 SUBTOPIC RETRIEVAL

The subtopic retrieval task represents an interesting retrieval task because it requires modeling the
dependency of relevance of individual documents [91]. Given a topic query, the task of subtopic
retrieval is to retrieve documents that can cover as many subtopics of the topic as possible. For
example, a student doing a literature survey on machine learning may want to find documents that
cover representative approaches to machine learning. Thus, he/she may use a query like “representa-
tive machine learning methods” to attempt to retrieve documents that can cover as many different
machine learning methods as possible. That is, the result set should be as diverse as possible, and a



6.7. SUBTOPIC RETRIEVAL 83

B1 R B3 E

B2

Figure 6.1: An HMM for extracting coherent relevant passages.

document covering multiple machine learning methods should be ranked above those that just cover
one single method.

If we are to solve the problem with a traditional retrieval model, we likely would have a great
deal of redundancy in the top ranked documents. As a result, although most top-ranked documents
may be relevant to the query, they may all cover just one subtopic, thus we do not end up having a
high coverage of subtopics. For example, with a standard search engine, the query above may give
us many documents about a popular learning method such as SVM on the top. This is because the
relevance status of each document is evaluated separately, but for this task, we must consider the
dependency among the results.

Intuitively, we may solve this problem by attempting to remove the redundancy in the search
results, hoping that by avoiding covering already covered subtopics, we will have a higher chance
of covering new subtopics quickly. This is precisely the idea explored in [91] where the authors
used a novelty measure to be discussed in Section 6.8.1 in combination with the query likelihood
relevance scoring to iteratively select the best document that is both relevant and is different from
the already picked documents. Such a greedy ranking strategy is often called maximal marginal
relevance (MMR) ranking, and was first proposed in [171].

The MMR strategy for subtopic retrieval optimizes the coverage of subtopics indirectly through
avoiding repeatedly covering the same subtopics. A more direct way to optimize the coverage of
subtopics is to model the possible subtopics in the documents through topic models such as Prob-
abilistic Latent Semantic Indexing (PLSI) [32] or Latent Dirichlet Allocation (LDA) [172], and
rank documents so as to maximize the coverage of subtopics jointly achieved by all the documents.
(PLSA and LDA will be discussed in more detail in Chapter 7.) A greedy algorithm similar to MMR
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can be used to gradually select documents that can offer complementary coverage of subtopics with
those already selected documents. This strategy has been studied in [89] and later adapted to solve
the review assignment problem in [173]. While intuitively appealing, the preliminary results of this
strategy appear to be not as good as those of the MMR strategy [89]. One possible reason may be
that when a document and a query are matched based on their low-dimensional representation in
the topic space, we lack the needed level of discrimination which we would have when we represent
them in the original term space. Thus, if may be possible to combine such a subtopic representation
with word-level representation to improve the performance (see Section 7.5 for more discussion
about this point). Clearly more work needs to be done to better understand these methods.

The subtopic retrieval problem also poses challenges in evaluation because the traditional
measures such as precision and recall cannot be used directly for evaluating subtopic retrieval results.
In [91], the authors proposed two new measures called subtopic precision and subtopic recall, which
can be regarded as a generalization of the standard precision and recall. Furthermore, to penalize
redundancy among the results, they further generalized subtopic precision to define a weighted
subtopic precision. Both subtopic precision and weighted subtopic precision are normalized with
their best values achieved with an ideal ranking of results to address the variances in the intrinsic
difficulty of different queries. Such a normalization strategy has also been used in defining NDCG
to measure the accuracy of regular retrieval results [8].

6.8 OTHER RETRIEVAL-RELATED TASKS

6.8.1 MODELING REDUNDANCY AND NOVELTY
A basic task in many applications is to measure the redundancy between two documents often for the
purpose of removing or reducing the redundancy in some way. For example, we may want to reduce
redundancy in search results. A somewhat equivalent, but complementary, problem with redundancy
measurement is to measure the novelty of a document in the context of another document or a set of
documents, also with many applications. For example, detecting the first news story about an event
has been a major task in the Topic Detection and Tracking (TDT) initiative [174].

Language models can be used to solve this problem in several ways. One way is to compute the
cross-entropy (or KL-divergence) between two document language models to obtain asymmetric
similarities (see, e.g., [175, 43, 175, 113]). This approach is essentially to take one document as
a “query” and score the other document with respect to this query using a retrieval function. For
example, the following approach is proposed in [113]:

Let θMLE
D1

be the ML estimate of the document language model for D1 and θ
μ
D2

be a smoothed
document language model for D2 with Dirichlet prior smoothing (μ is a smoothing parameter).
Then we can compute the following asymmetric similarity between these two documents based on
the KL-divergence measure:

sim(D1, D2) = exp(−D(θMLE
D1

||θμ
D2

)) .
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This similarity can be interpreted as the redundancy of D1 w.r.t. D2. In [113], this method was used
to construct a directed document similarity graph.

Another way is to use a mixture language model. For example, in [89, 91], a simple two-
component mixture model is used to measure the redundancy (or equivalently novelty) of a document
D1 w.r.t. another document D2.The idea is to assume that the redundancy of D1 w.r.t.D2 corresponds
to how well we can predict the content of D1 using a language model estimated based on D2.
Intuitively, if D1 is very similar to D2, then we should expect the model based on D2 to predict
D1 well (i.e., give high probability to D1), whereas if they are quite different, the model would not
predict D1 well.

Formally, let θD2 be a language model estimated using D2, we define the redundancy of D1

w.r.t. D2 as

λ̂ = arg max
λ

log p(D1|λ, θD2) (6.5)

= arg max
λ

∑
w∈V

c(w, D1) log(λp(w|θD2) + (1 − λ)p(w|C)) , (6.6)

where p(w|C) is a background collection language model.
Essentially, this is to let the background model and θD2 to compete for explaining D1, and

λ̂ ∈ [0, 1] indicates the relative “competitiveness” of θD2 to the background model, thus intuitively
captures the redundancy. λ̂ can be computed using the EM algorithm. The novelty can be defined
as 1 − λ̂.

A similar but slightly more sophisticated three-component mixture model was proposed
in [176] in order to capture novelty in information filtering.

One advantage of this mixture model approach is that the redundancy and novel values are
within the same range [0, 1] across all document pairs. If λ̂ = 0, it would mean θD2 is no better than
p(w|C) at all for modeling D1, thus D1 can be assumed to have a lot of novel information that does
not exist in D2. At the other extreme, if λ̂ = 1, it would mean θD2 can explain D1 very well with no
help from p(w|C), thus D1 does not contain new information that does not exist in D2, i.e., D1 is
redundant with respect to D2.

We see that in both approaches, the redundancy/novelty measure is asymmetric in the sense
that if we switch the roles of D1 and D2, the redundancy value would be different.This is reasonable
as, in general, redundancy is asymmetric. For example, if document D1 is identical to a part of
document D2, D1 would add no additional information on top of D2, thus we can say that D1 is
completely redundant with respect to D2. However, in such a case, it would still be desirable to show
D2 to the user even if the user has already seen D1 because D2 can add new information on top of
D1.

Note that these redundancy/novelty measures can also be generalized to measure the redun-
dancy/novelty on multiple documents through aggregation of pairwise redundancy/novelty mea-
sures [91].
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6.8.2 PREDICTING QUERY DIFFICULTY
Yet another use of language models is to predict query difficulty [177]. The idea is to compare the
query model and the collection language model; a query would be assumed to be difficult if its query
model is close to the collection language model. The assumption made here is that a discriminative
query tends to be easier, and the discriminativeness of a query can be measured by the KL-divergence
of the query model and the collection model.

Specifically, a measure called “query clarity” is defined in [177] as follows:

clarity(Q) =
∑
w∈V

p(w|θQ) log
p(w|θQ)

p(w|C)
,

where θQ is usually an expanded query model using any feedback-based query model estimation
method (e.g., mixture model [134] or relevance model [71]). We see that this is essentially the KL-
divergence of the query model θQ and the collection language model p(w|C). Positive correlation
between the clarity scores and retrieval accuracy has been observed [177].

6.9 SUMMARY
In this chapter, we reviewed some representative work on applying statistical language models to a
variety of special retrieval tasks including cross-language retrieval, distributed information retrieval,
structured document retrieval, personalized and context-sensitive retrieval, expert retrieval, passage
retrieval, and subtopic retrieval. In all these cases, we have seen that language models can be easily
adapted or extended to handle the special needs of an application task. We also discussed the
application of language models for some additional retrieval-related tasks, including redundancy
removal, novelty detection, and query difficulty prediction. These applications further show the
potential of language models for novel applications.
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C H A P T E R 7

Language Models for Latent
Topic Analysis

The language models we have introduced in the previous chapters are mainly designed for the search
task, i.e., to generate a ranked list of documents in response to a query. In this chapter, we introduce a
family of language models that mainly aim at extracting latent topics from text and performing latent
semantic analysis. They are often called probabilistic (statistical) topic models, and can enhance a
retrieval system in many ways: First, they enable a low-dimension semantic representation of text,
which can potentially improve a retrieval model in two ways: (1) it allows different words capturing
the same semantic concept to match each other; and (2) it provides orthogonal and independent
semantic dimensions for representing text. Second, they can be used to summarize search results
through revealing the major topics in the results, and provide an overview of the results.

This line of work started with the Probabilistic Latent Semantic Analysis (PLSA) model
proposed by Hofmann in 1999 [178, 32].The model can be applied to an arbitrary set of documents
to learn a set of latent topic models, each being represented by a word distribution (i.e., unigram
language model). In [32], Hofmann shows that representing documents in this latent semantic space,
where each dimension corresponds to a latent topic model, can supplement the representation of
documents in the original term space to improve retrieval accuracy.

Strictly speaking, however, PLSA is not a generative language model in the sense that it can
not be generalized to “generate” new documents because the topic selection probability distribution
is associated with a particular document, thus it is not generalizable. To turn PLSA into a true
generative model, Blei et al. [172] proposed Latent Dirichlet Allocation (LDA), in which this topic
selection distribution would be drawn from a Dirichlet distribution. With LDA, we can potentially
draw a different multinomial topic selection distribution for each document, thus the model can
easily generate a new document by simply drawing a new topic selection distribution from the
trained Dirichlet distribution. Because of this regularization, LDA also solves another problem of
PLSA—too many parameters to estimate.

There has been much work to further extend PLSA and LDA mainly to introduce various
structures or constraints into the model. We will first introduce the two basic topic models, PLSA
and LDA, and then briefly discuss their extensions.
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7.1 PROBABILISTIC LATENT SEMANTIC
ANALYSIS (PLSA)

The basic idea of PLSA is the following: We assume that there are k latent topics in a set of
documents, and each topic would be represented using a word distribution, or a unigram language
model, θi (i = 1, ..., k). We further assume that the words in a document are generated by sampling
words independently from a mixture of these k topic models. That is, when we generate a word in
document D,we would first choose one of the k topic models according to a topic selection probability
distribution {p(i|D)}ki=1, where p(i|D) is the probability of choosing θi , and then sample a word
according to the chosen word distribution. Thus, the probability of generating word w in document
D would be

pD(w) =
k∑

i=1

p(i|D)p(w|θi)

and the log-likelihood of generating all the words in D would be

log p(D) =
∑
w∈V

c(w, D) log
k∑

i=1

p(i|D)p(w|θi) .

We typically fit such a model to a collection of documents to discover the exact word distri-
butions of the k latent topics. Formally, let C = {D1, ..., D|C|} be a collection of documents. Clearly,
the log-likelihood of the collection is

log p(C|�) =
∑
D∈C

∑
w∈V

c(w, D) log
k∑

i=1

p(i|D)p(w|θi)

where � denotes the set of all parameters, i.e., � = {p(i|D)}i∈[1,k],D∈C ∪ {θi}i∈[1,k].
Note that such a mixture model is quite similar to the two-component mixture model for

feedback which we discussed in Section 5.3.1. There, we have just two components, one is fixed to
model the background words and the other to model the topic captured by the feedback documents.
Indeed, as will be further explained later, the two-component feedback model can be regarded as a
two-component PLSA model with an infinitely strong prior to fix some parameters to constants.

To perform latent semantic analysis with PLSA, we would fit the model to our text data and
estimate the parameters using either the maximum likelihood (ML) estimator or the maximum a
posteriori (MAP) estimator, both can be computed efficiently with the Expectation-Maximization
(EM) algorithm. Specifically, with the ML estimator, we would solve the following optimization
problem:

�∗ = arg max
�

p(C|�) .
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The updating formulas of the EM algorithm are:

p(zD,w = i) = p(n)(i|D)p(n)(w | θi)∑k
i′=1 p(n)(i′|D)p(n)(w | θi′)

(7.1)

p(n+1)(w | θi) =
∑

D∈C c(w, D)p(zD,w = i)∑
w′∈V

∑
D∈C c(w′, D)p(zD,w′ = i)

(7.2)

p(n+1)(i | D) =
∑

w∈V c(w, D)p(zD,w = i)∑k
i′=1

∑
w∈V c(w, D)p(zD,w = i′)

(7.3)

where zD,w ∈ [1, k] is a hidden variable indicating which topic model has been used to generate
word w in document D, and the superscripts n and n + 1 indicate the iterations. (See Section 5.3.1.1
for an intuitive explanation of such an EM algorithm.)

Given the similarity between PLSA and the two component mixture model discussed in
Section 5.3.1, it is not surprising that these EM updating formulas are also very similar to those
in Section 5.3.1. A main difference is that we now have far more parameters to estimate, and this
does raise a concern, i.e., there will be many local maxima for the likelihood function and the EM
algorithm can be easily trapped in a nonoptimal one.This is a general problem with many generative
models when the model is complex but the data is relatively sparse.

The solution to this problem generally falls into the following four strategies: (1) Perform
multiple trials with different starting points and choose the one that gives the highest likelihood.
(2) Modify the algorithm so that it would “explore” the solution space more before committing
to a particular local maximum. (3) Regularize the model with prior or a constraint so that the
model becomes more rigid and the number of local maxima would be reduced. (4) Use some prior
knowledge to determine a good starting point. Strategy (2) is essentially similar to strategy (1) except
that in (2), the exploration of different local maxima is not random, but controlled by an additional
“annealing” parameter introduced into the EM algorithm. By varying this parameter, we can control
the EM algorithm so that it would initially explore more local maxima before it converges to a to
a (relatively good) local maximum. A detailed description of such a strategy for estimating PLSA
(called tempered EM) can be found in [32]. Strategies (3) and (4) are similar in that both rely on
some additional knowledge about the problem to be solved.

Indeed, one advantage of PLSA is that we can naturally incorporate such extra knowledge
through defining priors on parameters and using the MAP estimator. Specifically, we would encode
our preferences with a prior p(�), and solve the following optimization problem:

�∗ = arg max
�

p(C|�)p(�) .

Since � consists of parameter about the topic selection probabilities for each document and
specific word distributions of the topic models, we can use p(�) to specify our preferences on what
kinds of topics we would like to discover and/or add our knowledge about which document covers
which topic(s). For example, if we want to extract topics from reviews of a laptop and are particularly
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interested in aspects such as battery life, screen size, and memory, we may specify a Dirichlet prior
on the topic models to “force” three of the k topic models to assign relatively high probabilities to
words such as “battery life,” “screen size,” and “memory,” respectively. Since Dirichlet distribution
is a conjugate prior for multinomial distributions, we only need to slightly modify the M-step for
re-estimating θi in the EM algorithm to incorporate this prior [179].

In general, we may define the following conjugate prior on θi :

p(θi) ∝
∏
w∈V

p(w|θi)
αw

where αw is a parameter of the Dirichlet distribution, which can be interpreted as the extra pseudo
count of word w to encourage the estimated model θi to assign a higher probability to word w. For
example, we may want to set the α for words “battery” and “life” both to a number such as 5 and
set the α for all other words to zero. This would make θi assign relatively higher probability to these
two words and other co-occurring words with them.

Using the conjugate prior defined above, we may then compute the MAP estimate by modi-
fying the EM algorithm above to use the following modified M-step to re-estimate θi :

p(n+1)(w | θi) =
∑

D∈C c(w, D)p(zD,w = i) + αw∑
w′∈V (

∑
D∈C c(w′, D)p(zD,w′ = i) + αw)

.

Clearly, if we parameterize αw based on a reference distribution p(w|φi) such that αw =
μp(w|φi), we would essentially favor an estimated θi close to φi . Here μ indicates the strength
on the prior and in effect, would balance the pseudo counts from the prior (μp(w|φi)) and the
“collected” counts from the EM algorithm (i.e.,

∑
D∈C c(w, D)p(zD,w = i)). In an extreme case,

we can set μ = ∞, which would cause θi = φi , i.e., we would set θi to a pre-given fixed distribution
φi . Thus, the two-component feedback mixture model discussed in Section 5.3.1 can be regarded
as a two-component PLSA model, in which an infinitely strong prior has been placed on one of the
components to fix it to the background language model.

Intuitively, the learned topic models capture word clusters based on co-occurrences since if θi

assigns a high probability to word u, it would tend to be selected frequently in a document where u

occurs frequently, and thus it would be encouraged to also assign a high probability to other words
in such a document in order to maximize the likelihood. Note that with PLSA, all the words in the
collection are generated using the same k latent topic models, but different documents differ in their
topic selection distributions.

Since the k topic models used to generate each document are the same, they can be regarded
as defining a common k-dimensional semantic space, each dimension being characterized by a word
distribution θi . A document D’s topic selection distribution {p(i|D)}i∈[1,k] can thus be regarded as
a new representation of D in the k-dimensional semantic space. Since k is typically much smaller
than the number of words in the original vocabulary, we are essentially mapping the representa-
tion of a document from its original high-dimensional space (i.e., original term space) into a new
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representation in a low-dimensional latent semantic space. This process is often called dimension
reduction.

Dimension reduction has traditionally been done through an algebraic approach called Latent
Semantic Analysis (LSA) or Latent Semantic Indexing (LSI) [31]. PLSA achieves the same goal
with a pure probabilistic approach, which has several advantages: (1) Each semantic dimension is
represented with a unigram language model, which is more meaningful than the eigenvector used in
LSA to represent a dimension. (2) It is possible to inject domain knowledge into the latent semantic
analysis process in PLSA through imposing priors on the parameters of PLSA, but it is harder
to do that in LSA. (3) It is possible to add additional latent variables to PLSA to generate more
sophisticated latent semantic structures than the flat structure of k latent topics (e.g., a hierarchical
structure of topics). These advantages indeed have motivated some follow-up work on extending
PLSA, such as automatic labeling of a topic model to help interpret it [180], partitioning a text
collection with ad hoc aspects [181], hierarchical PLSA [182], and contextualized PLSA [183].

7.2 LATENT DIRICHLET ALLOCATION (LDA)
Although PLSA has been shown to be effective in many applications, it has two deficiencies: First,
it is not really a generative model because the topic selection probability is defined in a document-
specific way. That is, p(i|D) is defined based on a specific document D. Thus, the learned values of
p(i|D) cannot be used to generate a new document which is different from D. Second, PLSA has
many parameters, making it hard to find a global maximum in parameter estimation as we discussed
earlier.

To address these limitations, Blei et al. [172] proposed Latent Dirichlet Allocation (LDA)
as an extension of PLSA. The main idea is to define p(i|D) in a “generative” way by drawing
the distribution p(i|D) from a Dirichlet distribution when generating a document. Once we draw
p(i|D), we then use this to generate all the words in D.This not only gives us a generative model that
can be used to sample “future documents,” but also reduces the number of parameters significantly.

Formally, the probability of generating a document D of length |D| is now:

p(D|�) =
∫

�

Dir(π |α1, ..., αk)

|D|∏
j=1

(

k∑
i=1

p(wj |θi)p(i|π))dπ

where D = w1...w|D|, and � is the k − 1-dimensional simplex containing all the possible values
for π . � = {α1, ..., αk, θ1, ..., θk} is the set of all parameters; each θi is a multinomial distribu-
tion over words as in the case of PLSA. α1,..., αk are the parameters of the Dirichlet distribution
Dir(π |α1, ..., αk).

We may understand this likelihood function by imagining the following process of generating
a document of length |D|. First, we would choose a topic selection distribution π by sampling from
the Dirichlet distribution Dir(π |α1, ..., αk). The obtained π is a multinomial distribution over all
the k topics, and it essentially determines the topic coverage in the document to be generated in
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the sense that if π gives a topic, say θ1, a very high probability, then θ1 would be used very often
to generate a word in the document. Second, we would generate a word by first sampling a topic
θi using p(i|π) and then sampling a word from p(w|θi). We repeat this second step |D| times to
generate all the words in this document.

Clearly, the second step is essentially the same as in PLSA, but the first step changes the
model in two important ways: (1) p(i|π) is no longer dependent on the specific document to be
generated, making LDA a generative model that can be used to generate a new document. (2) There
is now only one set of k parameters {αi, ..., αk} for all the documents to indirectly control the topic
coverages in all the documents as opposed to k|C| parameters in PLSA to allow each document to
have its own independent topic coverage distribution p(i|D). Having fewer parameters means that
the problem of multiple local maxima is less severe than in PLSA. To further reduce the number of
parameters, we can also let each θi be drawn from another Dirichlet distribution; see [172] for more
discussion about this variation.

As in the case of PLSA, we can also fit LDA to a collection of documents and use the
maximum likelihood estimator to estimate the parameters � (called empirical Bayes [184]):

�∗ = arg max
�

∏
D∈C

p(D|�)

where C is a collection of documents.
However, unlike the ML estimate of PLSA which can be easily computed using the EM

algorithm, the ML estimate of the LDA model is much harder to compute due to the more complex
form of the likelihood function. For the same reason, inferences such as to compute p(π |D, �) are
also hard to compute. Thus, an approximation method is usually used for parameter estimation and
inferences with LDA.

A convexity-based variational approximation of LDA was proposed by Blei and co-authors
when they introduced LDA in [172]. The main idea is to use Jensen’s inequality to define a lower-
bound function for the log-likelihood function. The lower-bound function is parameterized by a
set of variational parameters which can control the tightness of the bound. The overall procedure
for parameter estimation is an iterative algorithm similar to EM, in which we would iteratively
optimize the lower-bound (making it as close to the likelihood function as possible) and then re-
estimate parameters by maximizing the lower-bound of the likelihood function. Such a variational
EM algorithm is essentially the same as the EM algorithm for estimating a PLSA model except that
the E-step is not to compute the expectation of the complete likelihood, but to optimize the lower-
bound through varying the variational parameters. Another difference is that now neither the E-step
nor the M-step can be carried out analytically, so numerical optimization has to be done [172].

Specifically, in the variational E-step, our goal is to compute two sets of variational parameters
for each document D based on the current generation of parameter values obtained in the EM
algorithm: (1) {γD,i}ki=1: Dirichlet parameters for approximating the posterior distribution of π .That
is, we assume that the posterior distribution of π given document D is the Dirichlet distribution
Dir(γD,1, ..., γD,k). (2) {p(zD,w = i)}: Multinomial parameters for approximating the posterior
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distribution of a set of hidden variables {zD,w ∈ [1, k]} that indicate which topic (θi) has been used
to generate word w in document D. These hidden variables are essentially the same as in the PLSA
estimation discussed earlier1, and we also have

∑k
i=1 p(zD,w = i) = 1.

The variational parameters are computed by iteratively updating them with the following
formulas with an initial value such as p(0)(zD,w = i) = 1/k:

p(t+1)(zD,w = i) ∝ p(n)(w|θi)exp

⎛
⎝�(γ

(t)
D,i) − �(

k∑
j=1

γD,j )

⎞
⎠

γ
(t)
D,i = αi +

∑
w∈V

c(w, D)p(t)(zD,w = i)

where � is the first derivative of the log � function which can be computed using Taylor approxi-
mation [172]. The iterative updating is repeated until convergence.

Comparing this variational E-step with the E-step in the EM algorithm for PLSA, we see that
we are computing similar values with the following difference: Unlike p(i|D), which is computed
independently for each document D, γD,i depends on the global parameter values αi . Intuitively,
this is the consequence of imposing of a Dirichlet distribution in LDA to regularize p(i|D). γD,i

customizes γi for document D based on how many words in D are believed to be generated from
topic θi (captured by the second term in the updating formula).

In the M-step, we then use the computed {γD,i, p(zD,w = i)i}ki=1 for each document D to
re-estimate αi and p(w|θi). The updating formula for p(w|θi) can be analytically obtained as:

p(n+1)(w|θi) ∝
∑
D∈C

c(w, D)p(zD,w = i)

which again is the same as in PLSA. However, the re-estimation formula of αi cannot be obtained
analytically because the derivative equation does not have an analytical solution. In [172], a linear
time Newton-Ralphson algorithm is used to iteratively update αi based on {γD,i}D∈C,i∈[1,k] and the
value of αi from the previous iteration.

The inference of parameters like π for a (possibly new) document can be done by doing one
E-step based on known αi and p(w|θi) rather than their tentative values as in the EM algorithm.

Other approximation algorithms, such as expectation propagation [185] and Markov chain
Monte Carlo [186, 187], have also been proposed to solve the problem of estimation and inferences
with LDA.

7.3 EXTENSIONS OF PLSA AND LDA
PLSA and LDA represent two basic formulations of topic language models. Since they were pro-
posed, many extensions of them have been made. In [188], PLSA is combined with a hidden Markov
1In [172], a different notation is used for p(zD,w = i) (i.e., φni ). Here we use p(zD,w = i) to be consistent with the notation we
used for PLSA.
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model (HMM) to obtain an Aspect HMM (AHMM), which can be used to segment text based
on topic transitions. In [182], PLSA is extended to model a topic hierarchy so that topic models
with different granularity levels can be learned from text data in an unsupervised manner. The idea
is to define a topic tree to represent the multiple levels of abstraction of topics so that the leaf topics
would characterize very specialized topics unique to a few documents, while the root topic would
capture the general topic in the entire set of documents. The PLSA model can then be extended to
generate a document in the following way. First, we choose a leaf node from the tree, which would
uniquely determine a path from the root to this leaf node. This choice is made once for a document.
We would then use the standard PLSA to generate all the words in the document by restricting
the choices of topics to the topics corresponding to the nodes in the chosen path. Thus, depending
on the choice of the path (equivalently the leaf node), a potentially different set of topics would be
mixed to generate a different document. The model can be estimated using the EM algorithm in
mostly the same way as in the case of the standard PLSA. This model can also be regarded as an
extension of the distributional clustering model [189, 190], which differs from PLSA in that all the
words in a document are assumed to be generated using the same word distribution, though there
are multiple candidate distributions to be used; in PLSA, different words in the same document can
be generated using potentially a different word distribution.

In [191], a background topic is introduced to PLSA to make the extracted topic models more
focusing on the content words rather than the common words in the collection. In the same work,
PLSA is also extended to model multiple collections of documents with component topic models
tied across collections. Such a cross-collection mixture model can be used to extract common topics
covered in all the collections of documents as well as the corresponding variations of a topic in each
collection. A more general way to incorporate context variables into PLSA is presented in [183],
and a new model called Contextual Probabilistic Latent Semantic Analysis (CPLSA) is proposed.

In CPLSA, a document is assumed to be associated with contexts. A context can be the time,
location, source, or other meta data associated with a document. In general, it defines a partition of a
set of documents. For example, the time context would group documents with the same time stamp
together. Multiple contexts can have overlapping partitions. The main extension of PLSA made in
CPLSA is to introduce: (1) multiple versions of the word distributions for topics (called multiple
views of topics) corresponding to different contexts (e.g., multiple time points); and (2) multiple
versions of the topic coverage distribution for each document again corresponding to different
contexts.Thus, the component models to be actually mixed when generating words in each document
can vary according to the context(s) of the document. As a result, we may discover topic variations
according to context (context-specific views of topics) and reveal potentially different topic coverages
in different contexts. By instantiating the general CPLSA with different contexts, we may obtain
many specific models suitable for a variety of contextual text mining tasks, such as comparative
analysis of documents about similar topics [191], spatiotemporal topic pattern mining [183], author-
topic analysis [192], and event impact analysis [183]. PLSA has also been extended to incorporate
two special word distributions to capture positive and negative sentiment in text [193]. Such a topic
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sentiment mixture model can be regarded as a special case of CPLSA with sentiment corresponding
to “implicit context,” and has been shown to be able to generate interesting tabular opinion summaries
for a set of documents. In [205], PLSA is extended to model coordinated multiple text streams (e.g.,
news articles in multiple languages such as English and Chinese) and discover correlated bursty
topic patterns. This extension can also be regarded as an instantiation of the general CPLSA with
each stream as a different context.

Another recent extension of PLSA is to extend it to analyze a text collection with network
structures [194]. The basic idea is to use the network structure associated with text documents to
impose soft constraints on parameters of a topic model like PLSA. For example, a constraint may
say that the topic coverages of two documents that are connected in the network should be similar.
Conceptually, imposing such constraints is similar to adding a prior on the model parameters, and
this is achieved here by defining penalty terms using a network structure and adding them to the
likelihood function of PLSA (the new model is called NetPLSA). Such a model can combine social
network analysis with topic modeling of text.The added network structure is shown to help improve
topic modeling results [194].

LDA has also been extended in many ways. In [195], LDA is extended to learn a topic
hierarchy, which is similar to the extension of PLSA in [182] to learn a topic hierarchy with the
main difference being that the tree is not fixed in advance; instead, the tree is being generated using
a nested Chinese Restaurant Process (CRP) [195]. The levels of the tree still need to be fixed in
advance, but the number of topics at each level can be potentially infinite.Thus, there are potentially
an infinite number of paths of any given length. The nested CRP essentially defines a distribution
over all these possible paths. When we generate a document, we would first sample a path according
to this distribution. After that, the rest of the generation process is the same as in the standard LDA
but the choices of topics are restricted to those in the path chosen.

In [196], an extension of LDA (called correspondence LDA) is proposed to model annotated
data (e.g., images with captions). The basic idea is to have a generative model for image regions
(Gaussian) and another generative model for the caption text (multinomial). Two corresponding
mixture models can then be defined to model regions and captions with a set of common latent
(semantic) factors; the multinomial distribution of the latent factors is drawn from a Dirichlet
distribution as in the standard LDA. The key idea of the correspondence LDA is to coordinate
the drawing of the latent factor distribution so that an image and its caption would share the same
latent factor distribution. Moreover, after choosing some latent factors to generate all the regions in
an image, only those chosen latent factors would be allowed to be used to generate the words in the
caption. Note that if we remove this constraint, the generation of words and image regions would
not be so much coordinated even though they all would sample latent factors using the same latent
factor distribution. In an extreme case, they may chose two disjoint sets of factors.

The choices of a topic for generating adjacent words in a document are made independently
in the standard LDA. To capture the syntax of text, LDA has been extended in [197] to introduce
dependency between the topics used to generate adjacent words through a hidden Markov model
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(HMM). A state of the HMM indicates a class of topics. A special state is used to denote a mixture
of semantic topics, and when we generate a word from this state, the process would be the same as
the standard LDA (i.e., one topic from a set of semantic topics would be chosen first and then a
word would be drawn according to the word distribution of the chosen topic). All other states are
syntactic states. Each syntactic state has just one word distribution for outputing words, thus when
we generate a word from such a state, we would not need to pick a topic from a set of topics as in
the case of the special semantic state mentioned above. By fitting such a model to text, we can learn
word distributions corresponding to various syntactic classes through the syntactic states of HMM,
while at the same time we also learn various subtopics through the special semantic topic state.

In order to model topic evolution over time, a dynamic topic model is proposed in [198].This
model can be regarded as an adaptation of LDA to model a stream of text documents with time
slices. If we use the standard LDA on such data, we may fit a separate LDA to the documents in each
time slice. But the models estimated in this way would be independent of each other. A key idea of
the dynamic topic model is to model the evolution of parameters of LDA (i.e., Dirichlet parameters
{αi} and multinomial parameters {p(w|θi)}) over time with a state space model that evolves with
Gaussian noise. That is, the parameters at time t + 1 are assumed to follow a Gaussian distribution
with the mean being the corresponding parameters at time t and some constant variances.The model
is shown to work well on a set of 30,000 articles from Science spanning 120 years from 1881 through
2000, revealing interesting evolution patterns of topics [198].

The author-topic model [192, 199] extends LDA by including the authorship information.
The main difference from LDA is as follows. Each author is associated with a distribution over
the topics (i.e., topic coverage) which is drawn from a Dirichlet distribution. When we generate
a word in a document, we would first choose one of the authors of the document, and use the
associated distribution to further choose a topic and generate the word. If each document is written
by precisely one author and no author has written more than one document, then the model recovers
LDA. Several interesting applications of this model are presented in [192].

Another interesting extension of LDA is the correlated topic models presented in [200]. In
the standard LDA, the coverage of topics is determined by a multinomial distribution drawn from
a Dirichlet distribution. Thus, it does not capture the potential dependency between different but
related topics. In the correlated topic model, this limitation is removed by replacing the Dirichlet
distribution with a logistic normal distribution which can potentially capture the dependency among
topics through the covariance matrix.Note that hierarchical topic models also capture the dependency
among topics, but they tend to impose a rigid dependency structure. The correlated topic model is
more flexible and can capture the underlying natural correlations between topics. Another extension
of LDA with a similar motivation is the Pachinko Allocation Machine (PAM) introduced in [201].
While the correlated topic model captures only pair-wise correlations of topics, PAM can potentially
capture arbitrary-arity, nested topic correlations.



7.4. TOPIC MODEL LABELING 97

7.4 TOPIC MODEL LABELING

A fundamental assumption made in all these topic models is that a topic can be represented by a
multinomial distribution. When such models are used for text mining, we would face the question
of how to interpret a multinomial word distribution. Intuitively, the high probability words of a
topic model often suggest some coherent topic, but it would be desirable to label a topic with more
informative phrases. In [180], several probabilistic approaches are proposed to automatically label a
topic model. The general procedure consists of the following steps:

First, a set of candidate phrases are generated either by parsing the text collection or using
statistical measures such as mutual information. Second, these candidate phrases are ranked based on
a probabilistic measure, which indicates how well a phrase can characterize a topic model. Finally,
a few top-ranked phrases would be chosen as labels of a topic model. The selected labels can be
diversified through eliminating redundancy.

In [180], two measures are proposed to rank phrases. In the first, we simply rank a phrase
based on the likelihood of the phrase given the topic model. Intuitively this would give us meaningful
phrases with high probabilities according to the word distribution of the topic model to be labeled.
In the second, we rank a phrase based on the expectation of the mutual information between a
word and the phrase taken under the word distribution of the topic model. This second method is
shown to be better than the first because it would favor a phrase that has an overall similarity to
the high probability words of the topic model. Furthermore, a topic can also be labeled with respect
to an arbitrary reference/context collection to enable an interpretation of the topic in different
contexts [180].

7.5 USING TOPIC MODELS FOR RETRIEVAL

An immediate application of topic models for information retrieval is to represent text in a low-
dimensional semantic space. In traditional retrieval models, a document and a query are generally
represented as a “bag of words,” and matching a query with a document is also performed at the
level of words. This has two potential deficiencies:

First, words as semantic dimensions are not orthogonal. Indeed, in a bag-of-words representa-
tion, redundancy and dependency between words are not captured, thus matching two related words
such as “president” and “government” would be counted as independent evidence toward scoring.
Second, synonyms are not matched with each other; thus only an exact matching of words can
contribute to scoring. For example, “car” in a query would not match with “vehicle” in a document.

A natural solution to overcome these deficiencies is to represent a document at the level of
semantic concepts. A semantic concept can be roughly understood as a cluster of words that are seman-
tically related to each other (e.g.,“car,” “drive,” and “vehicle”).As discussed earlier in Section 7.1, topic
models provide a good way to achieve this goal. Specifically, each topic model (word distribution)
can represent a latent semantic concept, and the topic coverage distribution p(i|D) in PLSA (or π

in LDA) can serve as a new representation of document D in the low-dimensional semantic space.
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We can thus map a query and a document both to this semantic space and match them accordingly.
This idea has been explored in [32] and [106]. Since co-occurring words are now “grouped” into
the same topic model (i.e., they are assigned high probabilities by the same topic model), the latent
semantic dimensions defined in this way are more orthogonal than those based on individual words.
Also, semantically related words can now match each other indirectly through “belonging to” the
same word distribution characterizing a topic. Thus, the two deficiencies mentioned above can both
be addressed.

However, matching documents with queries using solely their representations in such a low-
dimensional space has also its own deficiency: we can no longer easily distinguish the finer granularity
difference in the meanings of those semantically related words, i.e., there is a lack of discrimination.
This is especially true if the number of semantic dimensions is not sufficiently high. Indeed, when
we map a document from the original word-based representation into the semantic topic-based
representation, we have lost information about the original words. For example, while we know
that the document covers a topic aspect corresponding to “government,” we would not know which
aspect(s) of “government” it covers (e.g., “president” vs. “congress”). Because of this reason, matching
solely on latent semantic representation can only be expected to increase recall (i.e., help retrieving
more relevant documents) but likely would hurt the precision in top-ranked documents. Indeed,
in both [32] and [106], it was found to be most effective if we combine such a low-dimensional
semantic representation with the original high-dimensional space representation based on words
(e.g., combining the scores of a document using both representations). Intuitively, such a combination
allows us to both benefit from the latent semantic representation in matching semantically related
words and retain the needed discrimination from the word-level representation.

Another application of topic models for retrieval is for smoothing. Specifically, once we learn
a set of unigram language models characterizing the latent topics, {p(w|θi)}ki=1, we can compute
the following predictive distribution given a document D:

ptopic(w|D) =
k∑

i=1

p(θi |D)p(w|θi)

and then use this distribution as our document language model for retrieval. That is, we may assume
p(w|θD) = ptopic(w|D) and use either the query likelihood retrieval model or the KL-divergence
retrieval model to score documents.

Since p(w|θi) is learned from a collection of documents, it would likely give many words not
occurring in document D a nonzero probability. This is why ptopic(w|D) can achieve the purpose
of smoothing. Indeed, words that are semantically related to (co-occurring with) words in D would
tend to have relatively high probabilities. Intuitively, we may imagine each θi represents a cluster of
documents.Thus, p(θi |D) indicates which cluster more likely contains D, and the equation above is
simply a weighted combination of all the unigram language models corresponding to these clusters.

In [118], retrieval with such a smoothing method using topics learned from an LDA model
is studied. In this work, ptopic(w|D) is further interpolated with the maximum likelihood estimate
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of the document model pml(w|θD) and the collection language model. As discussed above, the
interpolation with the maximum likelihood estimate is desirable; it helps achieve the discrimination
power based on the original word representation. The interpolation with the collection language
model is also essential to achieve an IDF effect (see Section 3.4). The results of LDA model are
shown to be better than the regular cluster-based smoothing methods proposed in [107], but they
are worse than the results of the relevance model, which may indicate that global co-occurrences
in the whole collection are not as useful as local co-occurrences in the top ranked documents.
However, a combination of the LDA model with the relevance model is shown to outperform the
relevance model, suggesting that the LDA model and relevance model capture different kinds of
co-occurrences, and they can be combined to benefit from both kinds of co-occurrences.

Yet another important application of topic models to improve a retrieval system is to use
them to extract topics and summarize/organize search results. Indeed, the basic topic models such
as PLSA and LDA can already be used to organize search results based on topics.

In [181], an extension of the standard PLSA is proposed to allow a user to flexibly specify the
aspects to be used for generating an overview of a set of documents. This method would allow a user
to iteratively refine and organize search results based on meaningful ad hoc aspects described with
keywords.The tabular aspect sentiment summary generated using techniques described in [193] can
be very useful for summarizing opinions in search results.

In general, topic models have been shown to be very useful for mining topics and analyzing
topic patterns in text. They can potentially extend a search engine to go beyond search to generate
knowledge.

7.6 SUMMARY

In this chapter, we reviewed a family of language models that all attempt to model the latent topics
in text. They can all be useful for discovering and analyzing latent topics in text. We have provided
a relatively detailed description of the two basic representative models, i.e., PLSA and LDA, and
summarized a number of extensions made to both of them.

We further discussed how to label a topic model to help interpret a topic model in an applica-
tion context, and presented three uses of topic models for information retrieval: (1) representing text
in low-dimensional semantic space; (2) smoothing document language models; and (3) summarizing
and organizing search results. Promising results have been reported in all these directions.

It is worth pointing out that as two basic topic models, PLSA and LDA have not been sys-
tematically compared for improving a retrieval system. As a generative model, LDA is advantageous
over PLSA, but for the purpose of obtaining a low dimension representation of text and extraction
of topics, it is unclear whether LDA is necessarily better than PLSA especially when we have extra
knowledge that can be leveraged to impose priors on PLSA parameters. Intuitively, regularizing the
topic choices with a parametric Dirichlet distribution may cause the estimated topic coverage distri-
bution in LDA to be less discriminative than the corresponding distribution in PLSA. A systematic
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comparison of PLSA and LDA for information retrieval would be needed in order to understand
the influence of their difference in modeling on the performance of a retrieval task.
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Conclusions
As an essential tool to help people combat information overload, search engines have become more
and more important in our lives. The accuracy of a search engine is mostly determined by its
underlying retrieval model. Thus, seeking an optimal retrieval model has been a long-standing
central problem in information retrieval research. In this book, we have systematically reviewed
a family of new probabilistic information retrieval models based on statistical language modeling
with an emphasis on the underlying principles, empirically effective language models, and language
models developed for nontraditional retrieval tasks. In this last chapter, we highlight some of the
most important points made in the previous chapters, provide a big picture of the work surveyed,
and offer an outlook for the future of this research area.

8.1 LANGUAGE MODELS VS. TRADITIONAL RETRIEVAL
MODELS

It has been a long-standing challenge in IR research to develop robust and effective retrieval models.
As a new generation of probabilistic retrieval models, language modeling approaches have several
advantages over traditional retrieval models, especially the vector-space model:

First, language modeling approaches generally have a good statistical foundation, which offers
two important benefits: (1) It enables us to leverage many established statistical estimation methods
to set parameters in a retrieval function. For example, using a fairly standard Bayesian estimation
method, we could easily derive Dirichlet prior smoothing, which is now one of the most effective
smoothing methods (see Section 3.3.3). Also, the EM algorithm has been quite useful for estimating
models such as the mixture feedback model (see Section 5.3.1). (2) It helps clarify what assumptions
about data modeling are made in a retrieval function, and a good understanding of such assumptions
helps diagnose the weakness and strength of a model and better interpret experiment results. For
example, the two-stage language model has allowed us to better explain why the sensitivity curves
of a smoothing parameter vary according to the queries, and to further improve our estimate of
smoothing parameters (see Section 3.5).

Note that while the vector space model clearly lacks a statistical foundation, it would be unfair
to say that the classical probabilistic retrieval models [56, 57, 58] lack a statistical foundation. Quite
the opposite: they are solid probabilistic models and we might call them language models as well.
Indeed, theoretically speaking, any retrieval model that relies on a probabilistic model of text can
be called a language modeling approach, thus the term “language modeling approach” or “language
model” alone does not really differentiate these new models from a traditional probabilistic model.
The real difference between them seems to lie in how we handle the parameters of a probabilistic
model. In the studies of the traditional probabilistic models, less emphasis has been placed on
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how to improve the estimate of the parameters, which has turned out to be quite important as
shown in virtually all the recent work on using language models for retrieval. As a result, although
those traditional probabilistic models are theoretically sound, they tend to not perform well without
heuristic modifications of the formula. In contrast, in the new language modeling approaches, much
emphasis has been put on applying solid statistical estimation methods (e.g., maximum likelihood
estimator, maximum a posteriori estimator, and EM algorithm). Recent work has also put more
emphasis on using multinomial distributions to model text, which naturally capture term frequencies.
For example, the relevance model (see Section 5.3.3) essentially provides a good way to estimate the
parameters in a traditional document-generation probabilistic model (see Section 2.2) when we do
not have relevance judgments.

Second, language models provide a principled way to address the critical issue of text rep-
resentation and term weighting. The issue of term weighting has long been recognized as critical,
but before language modeling approaches were proposed, this issue had been traditionally addressed
mostly in a heuristic way.Language models,multinomial unigram language models particular, can in-
corporate term frequencies and document length normalization naturally into a probabilistic model.
While such connection has also been made in a classical probabilistic retrieval model (e.g., [56]),
the estimation of parameters was not addressed as seriously as in the language models.

Third, language models can often be more easily adapted to model various kinds of complex
and special retrieval problems than traditional models as we discussed in Chapter 6.This benefit has
largely come from the availability of many well-understood statistical models such as finite mixture
models which can be estimated efficiently using the EM algorithm. Indeed, the benefit goes beyond
search to discovering and analyzing latent topics in text as we discussed in Chapter 7.

However, the language modeling approaches also have some deficiencies as compared with
traditional models:

First, there is a lack of explicit discrimination in most of the language models developed so far.
For example, in the query likelihood retrieval function, the IDF effect is achieved through smoothing
the document language model with a background model. While this can be explained by modeling
the noise in the query, it seems to be a rather unnatural way to penalize matching common words,
at least as compared with the traditional TF-IDF weighting. Such a lack of discrimination is indeed
a general problem with all generative models as they are designed to describe what the data looks
like rather than how the data differs. This weakness indicates that there is still some gap between
the current language models and what we need to accurately model relevance, and there is room for
further improving the current models. Indeed, constraint analysis in [28] has shown that the query
likelihood retrieval function does not satisfy all the desirable constraints unconditionally.

Second, the language models have been found to be less robust than the traditional TF-IDF
model in some cases and can perform poorly or be very sensitive to parameter setting. For example,
the feedback methods proposed in [134] are shown to be sensitive to parameter setting, whereas
a traditional method such as Rocchio appears to be more robust. This may be the reason why
language models have not yet been able to outperform well-tuned, full-fledged traditional methods



8.2. SUMMARY OF RESEARCH PROGRESS 103

consistently and convincingly. In particular, BM25 term weighting coupled with Rocchio feedback
(see Chapter 2) remains a strong baseline which is at least as competitive as any language modeling
approach for many tasks.

Third, some sophisticated language models can be computationally expensive (e.g., the transla-
tion model), which may limit their uses in large-scale retrieval applications. Also, many sophisticated
topic models discussed in Chapter 7 are also very complex to estimate, making it infeasible to run
them on a dynamic result set of documents in online retrieval systems.

Thus, although the language modeling approaches are quite promising and have a great
potential to further develop, whether they will eventually replace the traditional retrieval models
remains an interesting open question.

8.2 SUMMARY OF RESEARCH PROGRESS
Since the pioneering work by Ponte and Croft [74], a lot of progress has been made in studying the
language modeling approaches to IR. Here we attempt to highlight some of the most important
developments:

• Framework and justification for using LMs for IR: the query likelihood retrieval method has
been shown to be a well-justified model according to the probability ranking principle [55].
General frameworks such as the risk minimization framework [1, 89, 90] and the generative
relevance framework [92] offer road maps for systematically applying language models to
retrieval problems.

• Many effective models have been developed and they often work well for multiple tasks:

– The KL-divergence retrieval model [1, 134, 92], which covers query likelihood retrieval
model as a special case, has been found to be a solid and empirically effective retrieval
model. It can flexibly incorporate different estimation methods to improve the estimate
of document language models and query language models.

– Dirichlet prior smoothing has been recognized as an effective smoothing method for re-
trieval [94]. The KL-divergence retrieval model combined with Dirichlet prior smooth-
ing represents the current state of the art baseline method (without pseudo feedback) for
the language modeling approaches to IR.

– The translation model proposed in [110] is an elegant and powerful extension of the
simple query likelihood retrieval model. It enables handling polysemy and synonyms in
a principled way with a great potential for supporting semantic information retrieval.
It naturally supports cross-lingual information retrieval and has been shown to perform
very well.

– Relevance model [71, 92] offers an elegant solution to the estimation problem in the
classical probabilistic retrieval model as well as serves as an effective feedback method
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for the KL-divergence retrieval model. It has been successfully applied to many different
retrieval tasks with good performance.

– Mixture unigram language models have been shown to be very powerful and can be
useful for many purposes such as pseudo feedback [134], improving model discrimina-
tiveness [125], and modeling redundancy [176, 91].

• It has been shown that completely automatic tuning of parameters is possible for both non-
feedback retrieval [109] and pseudo feedback [139].

• LMs can be applied to virtually any retrieval task with great potential for modeling complex
IR problems (as surveyed in Chapter 6).

• Probabilistic topic models are quite powerful for discovering and analyzing topic patterns
in text. The two basic representative models are the probabilistic latent semantic analysis
model (PLSA) [32, 178] and the latent Dirichlet allocation model (LDA) [172]. These topic
models can be applied to improve the utility of a retrieval system through offering a low-
dimensional semantic representation of text, smoothing of language models, and summarizing
search results.

For practitioners who want to apply language models to specific applications, the KL-
divergence retrieval function combined with Dirichlet prior smoothing for estimating document
language models and either relevance model or mixture model for estimating query language models
can be highly recommended. Such a configuration has performed well in many studies and often
outperforms other configurations of models. All the models involved in such a configuration have
been implemented in the Lemur retrieval toolkit available at http://www.lemurproject.org/.
This toolkit is designed to be extensible for adding new retrieval methods, so it is also relatively easy
to adapt or extend the existing models for new tasks. A main deficiency of Lemur is that it currently
cannot handle well a very large data set (e.g., more than 500 GB text). While there are some other
retrieval toolkits available that can handle much larger data sets, none of the others seems to support
language models well. It is thus highly desirable to develop a more scalable retrieval toolkit than
Lemur that can support many language models for information retrieval.

8.3 FUTURE DIRECTIONS
Despite much progress has been made in applying language models to IR, there are still many
challenges to be solved to fully develop the potential of such models. The following is a list of some
interesting opportunities for future research.

Challenge 1: Develop an efficient, robust, and effective language model for ad hoc retrieval that
can (1) optimize retrieval parameters automatically, (2) perform as well as or better than well-tuned
traditional retrieval methods with pseudo feedback (e.g., BM25 with Rocchio), and (3) be computed
as efficiently as traditional retrieval methods. Would some kind of language model eventually replace

http://www.lemurproject.org/
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the currently popular BM25 and Rocchio? How to implement IDF more explicitly in a language
modeling approach may be an important issue to further study; axiomatic analysis may be helpful.
Relaxing the assumption that the same words occur independently in a document (e.g., by using
the Dirichlet Compound Model [202]) may also be necessary to capture TF normalization more
accurately.

Challenge 2: Demonstrate consistent and substantial improvement by going beyond unigram lan-
guage models. While there has been some effort in this direction, the empirical performance im-
provement of the more sophisticated models over the simple models tends to be insignificant. This
is consistent with what has been observed in traditional retrieval models. Would we ever be able
to achieve significant improvement over the unigram language models by using higher-order n-
gram models or capturing limited syntactic/semantic dependencies among words? As we go beyond
unigram language models, reliable estimation of the model becomes more challenging due to the
problem of data sparseness. Thus, developing better estimation techniques (e.g., those that can lead
to optimal weighting of phrases conditioned on weighting of single words) may be critical for making
more progress in this direction.

Challenge 3: Develop language models to support personalized search. Using more user information
and a user’s search context to better infer a user’s information need is essential for optimizing search
accuracy. This is especially important when the search results are not satisfactory and the user would
reformulate the query many times. How can we use language models to accurately represent a
user’s interest and further incorporate such knowledge into a retrieval model? Detailed analysis of
user actions (e.g., skipping some results and viewing others, deleting query terms but adding them
back later, recurring interests vs. ad hoc information needs) may be necessary to obtain an accurate
representation of a user’s information need.

Challenge 4: Develop language models that can support “life-time learning.” One important ad-
vantage of language models is the potential benefit from improved estimation of the models based
on additional training data. As a search engine is being used, we will be able to collect a lot of implicit
feedback information such as clickthroughs. How can we develop language models that can learn
from all such feedback information from all the users to optimize retrieval results for future queries?
From the viewpoint of personalized search, how can we leverage many users of a system to improve
performance for a particular user (i.e., supporting collaborative search)? Translation models appear
to be especially promising in this direction, and they are complementary with the recently devel-
oped discriminative models for learning to rank documents such as RankNet [203] and Ranking
SVM [204]. It should be extremely interesting to study how to combine these two complementary
approaches.

Challenge 5: Develop language models that can model document structures and subtopics. Most
existing work on studying retrieval models, including work on language models,has assumed a simple
bag-of-words representation of text. While such a representation ensures that the model would work
for any text, in a specific application, documents often have certain structures that can be potentially
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exploited to improve search accuracy. For example, often it is some part of a long document that is
relevant. How can we model potentially different subtopics in a single document and match only
the relevant part of a document with a query? Mixture models and hidden Markov models may be
promising in this direction.

Challenge 6: Generalize language models to support ranking of both unstructured and structured
data. Traditionally, structured data and unstructured data (text) have been managed in different
ways with structured data mainly handled through a relational database while unstructured data
through an information retrieval system, leading to two different research communities (i.e., the
database community and the information retrieval community). Recently, however, the boundary
between the two communities seems to become vague. First, as exploratory search on databases
becomes more and more popular on the Web, database researchers are now paying much attention
to the problem of ranking structured data in a database. The information needs to be satisfied are
very similar to those in a retrieval system. Second, some database fields may contain long text (e.g.,
abstracts of research papers), while most text documents also have some structured meta-data (e.g.,
authors, dates). Thus, a very interesting question is whether we can generalize language models to
develop unified probabilistic models for searching/ranking both structured data and unstructured
data. The INEX initiative (http://inex.is.informatik.uni-duisburg.de/) has stimulated
a lot of research in developing XML retrieval models (i.e., semi-structured data retrieval models),
but we are still far from a unified model for unstructured, semi-structured, and structured data.

Challenge 7: Develop language models for hypertext retrieval. As an abstract representation, the
Web can be regarded a hypertext collection. Language models developed so far have not explicitly
incorporated hyperlinks and the associated anchor text into the model. How can we use language
modeling to develop a hypertext retrieval model for Web search? How should we define a generative
model for hypertext?

Challenge 8: Develop/extend language models for retrieval with complex information needs. Lan-
guage models are natural for modeling topical relevance. But in many retrieval applications, a user’s
information need consists of multiple dimensions of preferences with topical relevance being only
one of them. Other factors such as readability, genre, and sentiment may also be important. How can
we use language models to capture such nontopical aspects? How can we develop or extend language
models to optimize ranking of documents based on multiple factors? In this direction, recent work
has shown that the learning-to-rank approaches are quite promising, thus again it would be very
interesting to study how to combine the language modeling approaches (generative approaches) with
the learning-to-rank approaches (discriminative approaches).

Challenge 9: Develop efficient algorithms for computing complex language models such as proba-
bilistic topic models. Topic models such as PLSA and LDA have proven very useful for discovering
and analyzing topics in text. However, the current algorithms for estimating these models and for
making inferences with these models are still time-consuming (especially in the case of LDA), which

http://inex.is.informatik.uni-duisburg.de/
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limits their uses in a real-time online retrieval system. Thus, developing efficient and more scalable
algorithms for these models is a highly important research direction.
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