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ABSTRACT
In this text we present a technical overview of the emerging field of quantum computation along
with new research results by the authors. What distinguishes our presentation from that of others is
our focus on the relationship between quantum computation and computer science. Specifically, our
emphasis is on the computational model of quantum computing rather than on the engineering issues
associated with its physical implementation. We adopt this approach for the same reason that a book
on computer programming doesn’t cover the theory and physical realization of semiconductors.
Another distinguishing feature of this text is our detailed discussion of the circuit complexity of
quantum algorithms.

To the extent possible we have presented the material in a form that is accessible to the
computer scientist, but in many cases we retain the conventional physics notation so that the reader
will also be able to consult the relevant quantum computing literature. Although we expect the reader
to have a solid understanding of linear algebra, we do not assume a background in physics. This text
is based on lectures given as short courses and invited presentations around the world, and it has
been used as the primary text for a graduate course at George Mason University. In all these cases
our challenge has been the same: how to present to a general audience a concise introduction to the
algorithmic structure and applications of quantum computing on an extremely short period of time.
The feedback from these courses and presentations has greatly aided in making our exposition of
challenging concepts more accessible to a general audience.

KEYWORDS
quantum computing, quantum algorithms, quantum information, computer science,
Grover’s algorithm, Shor’s algorithm, Quantum Fourier Transform, circuit complexity,
computational geometry, computer graphics, the hidden sub-group problem, crypto-
analysis
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Preface
In this text we present a technical overview of the emerging field of quantum computation along
with new research results by the authors. This coverage of the field is sufficient to prepare the reader
for more comprehensive physics-based books such as that by Nielsen[37]. What distinguishes our
presentation from that of others is our focus on the relationship between quantum computation and
computer science. Specifically, our emphasis is on the computational model of quantum computing
rather than on the engineering issues associated with its physical implementation. We adopt this
approach for the same reason that a book on computer programming doesn’t cover the theory and
physical realization of semiconductors. Another distinguishing feature of this text is our detailed
discussion of the circuit complexity of quantum algorithms.

To the extent possible we have presented the material in a form that is accessible to the
computer scientist, but in many cases we retain the conventional physics notation so that the reader
will also be able to consult the relevant quantum computing literature. Although we expect the reader
to have a solid understanding of linear algebra, we do not assume a background in physics. This text
is based on lectures given as short courses and invited presentations around the world, and it has
been used as the primary text for a graduate course at George Mason University. In all these cases
our challenge has been the same: how to present to a general audience a concise introduction to the
algorithmic structure and applications of quantum computing on an extremely short period of time.
The feedback from these courses and presentations has greatly aided in making our exposition of
challenging concepts more accessible to a general audience.

The organization of the book is as follows: Chapter 1 introduces the properties of quantum
computing model which appear to offer the potential to perform computations more efficiently
than is possible within the classical Turing model of computation. Chapter 2 discusses the theo-
retical framework of quantum computation in greater detail. In particular, classical and quantum
complexity classes are delineated, and important quantum-algorithmic building blocks are identified
that provide theoretical performance advantages over classical alternatives. Chapter 3 introduces the
fundamental principle of quantum amplitude amplification. This principle permits a brute-force
exhaustive examination of the set of all possible solutions to a given algorithmic problem to be
performed in time that is sublinear in the size of that set. This is clearly not possible for arbitrary
problems within the classical framework. Chapter 4 transitions from the theory of quantum algorith-
mics to the application of that theory to practical computational problems. We specifically examine
several practical applications within the area of computational geometry. In Chapter 5 we move from
practical applications to a detailed analysis of the Quantum Fourier Transform (QFT), which is a
fundamental result that offers a means for defeating the most widely used classical public-key cryp-
tographic scheme. Chapter 6 examines a class of computational problems that seems to be linked in
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a fundamental way to the power of quantum computing. Chapter 7 examines the circuit complexity
of quantum algorithms and considers the specific cases where quantum parallelism actually provides
greater computational power.This analysis questions the traditional criteria to establish when quan-
tum computing actually offers a more powerful computational solution. Conclusions are presented
in Chapter 8.

Marco Lanzagorta and Jeffrey Uhlmann
November 2008
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1

Introduction
An advance in the field of computer science may consist of a new algorithm that is significantly

more efficient than the prior state-of-the-art or it may consist of a theoretical proof that the current
state-of-the-art cannot be significantly improved. The latter case imposes a fundamental constraint
on the size of problems that can be solved in a fixed amount of time on a given computer. The only
way to increase the size of problems that can be solved is to increase the speed of the computer. Since
the 1960s, semiconductor size (and, consequently, processing power) has roughly doubled every two
years according to what is referred to as “Moore’s Law.’’ Despite the fact that this improvement
has been consistent for several decades, it is clear that it cannot continue indefinitely because of
fundamental physical limitations. Specifically, by the year 2020 the circuits will be so small that their
behavior will be dominated by quantum effects, and by 2050, the circuits will reach the minimum
scale at which information can be physically represented.

These observations motivate interest in the implications of quantum theory to the evolution
of computing technology during the next few decades. For example, can circuits be made robust
to the effects of quantum phenomena? Or can quantum phenomena itself be harnessed to perform
computations? The exploitation of quantum phenomena to perform computation is referred to as
quantum computing. However, if a quantum computer simply offers improved performance due to
the increased speed of quantum-scale circuits, then it is of more interest to the computer engineer
than to the computer scientist. After all, increasing the clock speed of a processor does not affect
the computational complexity of algorithms executed on that processor. If the architecture of the
computer is changed to include some numberP of processors,however, then different algorithms may
offer superior complexity in terms of the new variable P . For example, optimal parallel exploitation
of the P processors may improve the best possible complexity for solving a particular problem from
O(N) to O(N/P ). Of course, it is not generally possible to achieve an O(P ) complexity reduction
because not all algorithms can be decomposed into O(P ) independent steps that can be executed
in parallel throughout the running time of the algorithm.

A more fundamental change of architecture might provide the capability to store and manip-
ulate, e.g., using analog circuits, arbitrary real numbers, instead of a discrete set of symbols. Such
an architecture can be shown to offer dramatically greater computational power than the classical
Turing machine. This increased power derives from the fact that large amounts of information can
be packed into the infinite precision of a single real value, which can be manipulated in parallel when
unit-cost operations are applied to that real value. This is of course entirely hypothetical because it
depends on the assumption that infinite precision can be maintained during those operations, and
there is no reason to believe that such an architecture is physically realizable. A quantum computer
similarly exploits the maintenance of real – in fact, complex – values, but its power doesn’t exploit



2 INTRODUCTION

an assumption of infinite precisions. Rather, it exploits a property of quantum mechanics that allows
special statistical relationships among a set of states to be manipulated in parallel.

So-called “quantum parallelism’’ is the key property that permits – at least in theory – a
quantum computer to support algorithmic solutions that are provably more efficient than what is
possible for any classical algorithm. There are no doubts about the correctness of the underlying
theory of quantum mechanics, but there are significant issues relating to the physical realization of
that theory in hardware. As will be discussed, these issues are not purely practical: there are theoretical
subtleties associated with the scaling of quantum resources (in terms of numbers of gates) necessary
to exploit quantum parallelism. More specifically, it is possible that the scaling of the number of
quantum gates necessary to implement certain quantum algorithms exactly balances the apparent
quantum parallelism such that the net result is equivalent to classical parallelism.
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C H A P T E R 1

The Algorithmic Structure of
Quantum Computing

Quantum Computing (QC) has become a very active area of research in recent years.This interest is
motivated by the recognition that certain types of quantum phenomena behave in ways that cannot
be simulated efficiently using ordinary computers [17]. Furthermore, problems whose solutions can
be expressed in terms of one of these phenomena can be solved more efficiently using the quantum
phenomenon itself as a computational tool.

This way of thinking about computation is analogous to many familiar techniques for simulat-
ing natural phenomena, such as, the effects of earthquakes on structures. For example, it is possible
to simulate on a computer the wooden frame of a house, the walls, the ceilings, the roof, etc., and
then compute what would happen if shaken by a magnitude seven earthquake. A challenge arises
from the high-fidelity modeling of all the details of a real house. If every splinter of wood has to
be represented, the amount of computer memory and simulation time will become impractically
large. Therefore, it makes sense to simply build a house on a platform that can be made to shake
appropriately and then observe the effect on the structure. In other words, modeling the physical
situation and letting it evolve naturally provides a direct computational mechanism for answering
the question of how a magnitude seven earthquake will affect the structure.

The analogy of quantum computing with a physical simulation – as opposed to a virtual
simulation on a computer – is not quite exact because in theory all classical physics can be simulated
efficiently using classical computers. This is because all of the variables in a classical system can
be represented with variables in a software simulation. It may be difficult and tedious to create the
high-fidelity software simulation, but it can certainly be done in theory. Quantum systems, however,
evolve in a state space that is exponentially larger than the number of parameters required to define a
particular physical state. Therefore, a simulation of a quantum system on a classical computer would
have to explicitly represent this exponentially larger state space, whereas, the evolution of the system
itself does not.

The recognition that quantum phenomena can be exploited to compute results that cannot
be efficiently computed on a classical computer is exciting because it suggests a more general and
powerful model of computation than exists within the classical framework. The challenge then is to
understand the characteristics of quantum phenomena that provide this computational advantage
and determine how to effectively apply them to solve practical computational problems. Fortunately,
it turns out that a straightforward generalization of the binary logic gates used in classical computers
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is sufficient to capture the full power of quantum computing. In this case, quantum gates operate on
quantum states.This framework for quantum computation is often called the quantum circuit model1.

1.1 UNDERSTANDING QUANTUM ALGORITHMICS
Most introductions to quantum computing are physics-centric in the sense that they focus first on
theoretical quantum physics and how quantum dynamical systems can be used to perform computa-
tions that cannot be performed efficiently on a classical computer [13, 40, 47]. Such a presentation
may mirror the historical way in which quantum computing emerged from the evolving theory of
quantum physics, but it unnecessarily obscures the abstract computational model implied by quan-
tum theory with the details of quantum mechanics as they apply to physical systems. This kind of
approach is analogous to introducing Boolean algebra in terms of transistors or Java programming
in terms of the behavior of electrons in semiconductors.

The objective of this chapter is to introduce quantum computing as an abstract mathematical
framework stripped of any connection to the physical world. The only compromise in this regard is
the use of notation and terminology that is inherited from quantum physics. It would be possible to
replace physics terms, such as, measurement with more conventional computer science terms, such
as, read operation, but to do so would effectively render the bulk of the physics-oriented quantum
computing literature inaccessible.

In what follows we will enumerate and discuss eight properties that describe the quantum
computational model. These properties are not independent of each other, so they do not constitute
an axiomatic set from which the quantum model is formally defined, but they each capture an aspect
of the quantum computing model that stands in stark contrast to the classical computing model.

1.1.1 QUANTUM COMPUTING PROPERTY #1

The first property of the quantum computing model is actually a definition of what is meant by information
in the quantum world. Specifically, the qubit is defined as a generalization of the classical bit as the new
unit of (quantum) information.

A classical bit is a scalar variable which has a single value of either 0 or 1. The bit’s value is
unique, deterministic, and unambiguous. On the other hand, a qubit is more general in the sense
that it represents a state defined by a pair of complex numbers, (a, b), which together express the
probability that a reading of the value of the qubit will give a value of 0 or 1. Thus, a qubit can be in
the state of 0, 1, or some mixture - referred to as a superposition - of the 0 and 1 states. The weights
of 0 and 1 in this superposition are determined by (a, b) in the following way:

qubit � (a, b) � a · 0bit + b · 1bit . (1.1)
1It is important to note that the circuit model of quantum computation is not the only quantum model of computation. To date,
several other models, such as, adiabatic, topological, and one-way quantum computing have been proposed. Some of them have
been shown to be computationally equivalent.That is, they can solve the exact same computational problems. However, a detailed
discussion of these alternate models of computation is beyond the scope of this introduction-level lecture.



1.1. UNDERSTANDING QUANTUM ALGORITHMICS 5

Clearly, in strong contrast to a bit, the state of a qubit can be both 0 and 1 simultaneously.
Stated more generally, the state of a qubit is represented as a linear combination of the 0 state and
the 1 state, where the weights are defined by the values a and b. A bit can, therefore, be thought of as
a special case of a qubit in which there is no superposition. For example, the qubit (1, 0) represents
a bit in the state 0, while the qubit (0, 1) is equivalent to a bit in the state 1.

Bra-ket is a concise notation originally developed by the physicist Paul M. Dirac, and it is
conventionally used to express quantum states [14]. It is a generalization of common vector notation
in which 〈ψ | is a row vector (read as “bra psi”) and |ψ〉 is a complex conjugate column vector (read
as “ket psi”), and the inner product 〈ψ |φ〉 is referred to as a bracket (which is the origin of the root
terms bra and ket). In this notation the state of a single qubit can be written as:

|�〉 = a|0〉 + b|1〉
or

〈�| = a∗〈0| + b∗〈1| .

It should be noted that |0〉 is not a zero vector; rather the zero is just a label for a unit basis vector
which is orthogonal to the other basis vector |1〉. In other words, the state of a qubit spans a complex
two-dimensional space, and the choice of orthogonal basis vectors corresponding to states 0 and 1
is arbitrary. For instance, in the most commonly used representation, called the computational basis,
we have:

〈0| = (1, 0)

〈1| = (0, 1)

and:

|0〉 =
(

1

0

)

|1〉 =
(

0

1

)
.

Because |0〉 and |1〉 are orthogonal unit vectors:

〈0|0〉 = 〈1|1〉 = 1 (1.2)

and
〈0|1〉 = 〈1|0〉 = 0 . (1.3)

Let us remark, once more, that |0〉 and |1〉 represent logical bits of classical information (0 and
1, respectively). Therefore, a qubit can be understood as a complex linear superposition of classical
bits.

Alternatively, a qubit can be understood as a complex vector in an abstract classical bit space.
Indeed, in vector notation the linear combination of states for a single qubit, a|0〉 + b|1〉, would be
expressed as:

�v = a�ı + b �j (1.4)
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with

�ı · �ı = �j · �j = 1 (1.5)
�ı · �j = �j · �ı = 0 . (1.6)

And �ı is a vector parallel to |0〉 and �j is a vector parallel to |1〉. Clearly, both representations are
very similar. However, the advantage of bra-ket notation over conventional vector notation becomes
evident when we generalize to multiple qubits.Whereas a single qubit represents a linear combination
of two states, a superposition of n-qubits represents a linear combination of 2n states. For example,
a 2-qubit state would be a linear combination of four basis states represented by 2 bit digits:

|q(2)〉 = α|00〉 + β|01〉 + γ |10〉 + δ|11〉 (1.7)

which is equivalent to a four-dimensional vector in an abstract space spanned by orthonormal 2-
bit states. As before, the superposition coefficients α, β, γ , and δ are complex numbers.

This expression results from the fact that a 2-qubit state can be constructed from the tensor
product of two 1-qubit states:

|q(2)〉 = (a|0〉 + b|1〉) ⊗ (c|0〉 + d|1〉) (1.8)
= ac|0〉 ⊗ |0〉 + ad|0〉 ⊗ |1〉 + bc|1〉 ⊗ |0〉 + bd|1〉 ⊗ |1〉 (1.9)

and now we can define an extended computational basis to accommodate these 2-qubit states as:

|00〉 = |0〉 ⊗ |0〉 (1.10)
|01〉 = |0〉 ⊗ |1〉 (1.11)
|10〉 = |1〉 ⊗ |0〉 (1.12)
|11〉 = |1〉 ⊗ |1〉 . (1.13)

And then
|q(2)〉 = ac|00〉 + ad|01〉 + bc|10〉 + bd|11〉 (1.14)

It is important to note that, in general, we can have 2-qubit states which cannot be represented as
the tensor product of two qubits. For instance:

|q(2)〉 = 1√
2
(|00〉 + |11〉) �= |q(1)

a 〉 ⊗ |q(1)
b

〉 . (1.15)

These types of quantum superpositions, which cannot be written as the tensor product of more
elementary states, are said to be entangled.

In any event, we can follow this same procedure described above to build the bases for the
qubits of arbitrary size. Most generally, the state � of a quantum register of n-qubits is expressed as:

|�〉 =
2n−1∑
i=0

αi |i〉 (1.16)
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where each i corresponds to a distinct n-bit binary vector in the superposition of 2n states. That
is, |i〉 is an element of the computational basis for n-qubits, and i is a binary enumeration of the
elements of this basis:

|�〉 = α0|00...00〉 + α1|00...01〉 + ... + αN−1|11...11〉 (1.17)

where N = 2n, a convention that we will consistently follow across the entire text.
In the same way as before, we can define the 2n-dimensional orthonormal vector representa-

tions of these n-qubits as:

〈00...0| = (1, 0, 0, ..., 0) (1.18)
〈00...1| = (0, 1, 0, ..., 0) (1.19)

... ... (1.20)
〈11...1| = (0, 0, 0, ..., 1) . (1.21)

Although it has not been mentioned here before, the weights (αi) in the linear combination
are taken to have a Euclidean norm of unity:

〈�|�〉 =
2n−1∑
i=0

αiα
∗
i (1.22)

=
2n−1∑
i=0

|αi |2 (1.23)

= 1 . (1.24)

The reason for such a choice will be clear when we discuss the second property of the quantum
computational model.

Before concluding with the discussion of Property #1, it is important to state that the com-
putational basis is not the only basis to operate quantum states in the quantum computing model.
In the case of 2-qubits, for instance, we could use the alternative basis which results from a rotation
of the computational basis. The elements of this basis are:

|+〉 = |0〉 + |1〉√
2

(1.25)

|−〉 = |0〉 − |1〉√
2

. (1.26)

In general, any other orthonormal basis will be equally viable. The choice of basis is typically made
so as to simplify the structure of the problem at hand.
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1.1.2 QUANTUM COMPUTING PROPERTY #2

Quantum computing is a probabilistic computational model.

When an n-qubit quantum register contains a superposition of 2n states, the application of a
read operation to the register will cause the superposition to “collapse” to a single classical state.That
is, a measurement of a 2-qubit state produces a 2-bit result. The specific state to which it collapses
is probabilistic with statistics determined by the weights in the linear combination. For example, a
read - or measurement - of a 2-qubit register R given by

|R〉 = α|00〉 + β|01〉 + γ |10〉 + δ|11〉 (1.27)

will obtain the classical bit state 00 with probability |α|2, the classical bit state 01 with probability
|β|2, and so on.

In general, measurement of a n-qubit state produces n-bits of classical information, and the
probability to obtain the state i is given by:

Pi = |〈i|R〉|2 (1.28)

where 〈i| is an n-bit binary vector in the computational basis.
To be interpreted as probabilities, the sum over all possible outcomes must equal 1:

Ptotal =
∑

i

Pi = 1 . (1.29)

In the previous example this means that:

|α|2 + |β|2 + |γ |2 + |δ|2 = 1 . (1.30)

where we treat the content of a quantum register as a normalized vector (i.e., magnitude equal to
unity).

It is critical to understand that once a measurement is applied to obtain a state, all subsequent
measurements will obtain that same state. Thus, if the state 10 is read from |R〉, the superposition
given above has collapsed so that γ = 1 and all other weights are zero. At this point R is equivalent
to a classical register containing the state 10:

|R〉 → |10〉 . (1.31)

An operation applied to a classical register changes its content from one bit vector to another
bit vector. In the above example of the quantum register R, after a measurement yields the state 01,
a classical operation which transforms the state to 11 can be interpreted as setting δ = 1 and γ = 0.
Now a measurement of the register obtains the state 11 with probability 1.

In general, any classical operation can be represented as a permutation matrix applied to
the vector of αi weights, or equivalently, as a permutation of the elements of each state vector in
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the superposition. As should be expected, the normalization of the weights is preserved after a
permutation transformation. For example:

α|00〉 + β|01〉 + γ |10〉 + δ|11〉 −→ γ |00〉 + δ|01〉 + α|10〉 + β|11〉 (1.32)

with:
|α|2 + |β|2 + |γ |2 + |δ|2 = |γ |2 + |δ|2 + |α|2 + |β|2 = 1 . (1.33)

The QC framework generalizes the class of possible operations to include any unitary trans-
formation. Let us recall that a unitary transformation U satisfies:

U−1 = U† (1.34)

and therefore:
U†U = I (1.35)

where I is the identity matrix and U† is the complex conjugate transpose matrix of U . So, the
transformation of a vector v as:

v → w = Uv (1.36)

will preserve the magnitude of v because:

|w|2 = w†w = v†U†Uv = v†v = |v|2 . (1.37)

In the quantum context this means that the Euclidean norm of the states/weights is preserved
to be unity under a unitary transformation U . If:

U

⎛
⎜⎜⎝

α

β

γ

δ

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

α′
β ′
δ′
γ ′

⎞
⎟⎟⎠ (1.38)

then U affects the respective probabilities associated with each state as:

α|00〉 + β|01〉 + γ |10〉 + δ|11〉 −→ α′|00〉 + β ′|01〉 + γ ′|10〉 + δ′|11〉 (1.39)

with:
|α|2 + |β|2 + |γ |2 + |δ|2 = |α′|2 + |β ′|2 + |γ ′|2 + |δ′|2 = 1 . (1.40)

This is an expected feature of a well defined probabilistic computing model. Indeed, if the
quantum computational model is a probabilistic computational model, then the probabilities should
always add up to one. And this has to be true even after performing transformations to the states.
As a consequence, except for measurements, unitary operations are the only type of transformations
allowed in QC.
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Of course, neither classical nor quantum operations would ever be explicitly implemented
using a 2n × 2n matrix because this would lead to quantum circuits of exponential size and/or expo-
nentially large computational times.Thus, effective quantum algorithms should have computational
operations that correspond to highly-structured unitary matrices which can be represented implicitly
with low complexity, e.g., using O(n) logic gates2. The reason for abstracting computation to linear
algebra in a 2n-dimensional space is that it permits the computational power of QC over CC to be
examined in its complete generality rather than in terms of particular operations.

Later chapters will discuss particular transformations that will form the building blocks for new
quantum algorithms which have better complexity than the best classical alternative.A distinguishing
feature of these quantum algorithms is that each will have a fixed probability of producing a correct
result. Therefore, a constant number of iterations of the algorithm is sufficient to ensure that a
solution is found with probability arbitrarily close to unity.

1.1.3 QUANTUM COMPUTING PROPERTY #3

Measurements (read operations) in the quantum computational model are destructive.

As has been discussed, reading the content of a quantum register yields a classical state. That
means that any other states that were in a superposition with the measured state are lost.Furthermore,
there is no way to recover these lost states after a superposition is collapsed due to a measurement.
That is, measurements are destructive and there is no operation to reverse their effect.

The importance of Property #3 cannot be overstated because it implies that although an
n-qubit quantum register can contain a superposition of states of size 2n (the number of states
that can be represented with n-bits), the end result can be only one measured state with n-bits of
logical information.

If we have a multi-qubit register, it is possible to only measure the state of specific qubits.
However, the state of the register after measurement will depend on its entanglement. For instance,
suppose we have two qubits a and b in a non-entangled state:

|qab〉 = (α|0a〉 + β|1a〉) ⊗ (γ |0b〉 + δ|1b〉) (1.41)

If we only measure the state of qubit a, we will find it in the state 0 with probability |α|2 and the
register will collapse to:

|qab〉 = |0a〉 ⊗ (γ |0b〉 + δ|1b〉) (1.42)

and similarly if we find a in the state 1 with probability |β|2. In both cases, the measurement of qubit
a does not disturb the state of qubit b. As such, a subsequent measurement of qubit b is completely
independent of the measurement of qubit a.

2The circuit complexity of quantum algorithms is further discussed in chapter 7.
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On the other hand, let us suppose that we have a two qubit quantum register in an entangled
state given by:

|Q〉ab = 1√
2

(|0a0b〉 + |1a1b〉) (1.43)

If we measure a, we will find it in the state 0 with probability 1/2 and the register will collapse to:

|Q〉ab = |0a0b〉 (1.44)

and then any subsequent measurement of b will find it to be in 0 with total certainty. Similarly,
if we had measured a in the state 1, then a subsequent measurement of b will find it in 1 with
total certainty. Therefore, the measured state of b depends on the previous measurement of a. As a
consequence, when dealing with entangled states, the measurements of a qubit will affect the state
of other qubits.

Furthermore, Property #3 eliminates the ability to check the value of the quantum register
during the execution of a quantum algorithm. That means that there is no way to obtain and use
intermediate results or perform other types of operations that are common for classical algorithms.
For instance, there is no way to incorporate print statements within a quantum algorithm to help
with debugging.

This irreversible loss of information is one of the challenges for effective design of quan-
tum algorithms. However, it is important to note that the power of quantum computing derives
from its ability to manipulate the superposition to increase the probability of measuring a desired
solution state. Therefore, reading the content of the quantum register must be the last step of the
quantum algorithm.

1.1.4 QUANTUM COMPUTING PROPERTY #4

Quantum computing operates in a computational space that is exponentially larger than what is possible
with classical registers.

Let us remember that a single bit can only store a single memory address, either 0 or 1. On the
other hand, a single qubit can simultaneously store a mixture of the two states, i.e., a measurement
of the qubit will obtain 0 with probability p and will obtain 1 with probability 1 − p.

In general, a classical n-bit register can index N = 2n states, but the index of only one state
can be stored and transformed in the register. A quantum register, on the other hand, can store a
superposition of indices to all N states, and the weights on all N states can be transformed in parallel.

In particular, the classical storage of indices to N unique states requires N log(N) bits. For
example, 24 bits can be used to store 8 unique 3-bit addresses. On the other hand, quantum storage
of N indices requires log(N) qubits. That is, a 24-qubit quantum register can store a superposition
of more than 224 ≈ 16 million distinct addresses. Or alternatively, 3 qubits are enough to store 8
unique 3-bit addresses.
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As will be shown in a subsequent chapter, this can allow an array of size N to be searched
using quantum parallelism to obtain the index of any desired element after fewer than N sequential
steps. In other words, a quantum algorithm can truly examine N elements of an array in parallel
through a superposition of indices.

Property #4 encompasses one of the most important advantages of the quantum model. How-
ever, as we already mentioned, upon measurement of a n-qubit register containing a superposition
of 2n distinct addresses, we can only extract the address expressed by a string of n-bits. That is, the
quantum model has an exponentially large computational space, but most of this space is inaccessi-
ble to us once we perform a measurement. The challenge for developing a quantum algorithm is to
exploit the huge computational space before a measurement is performed.

1.1.5 QUANTUM COMPUTING PROPERTY #5

Except for measurements, all operations on qubits must be reversible.

Only reversible operations can be applied to a quantum register without causing the superpo-
sition to collapse. This is a consequence of the more general condition that a quantum superposition
can only be preserved under unitary transformations. Because a unitary matrix U satisfies U−1 = U†,
it can be reversed to retrieve the original state of the system. That is, there is an inverse operation:

|�〉 → U |�〉 = |� ′〉 (1.45)
|� ′〉 → U−1|� ′〉 = |�〉 . (1.46)

Actually, reversibility can be thought of as the reason why only unitary operators preserve
the superposition: any irreversible operation results in a loss of information, and is essentially a
measurement and thus causes a collapse of the superposition. In a sense, Property #5 is a consequence
of Property #2, which states that the quantum computational model is probabilistic. As discussed
before, conservation of the total probability can only be achieved with unitary operations.

Let us consider one of the simplest quantum operators, the Control-Not operation (CNOT).
The CNOT operator involves a control bit and a target bit. If the control bit is 0, then the operator
does nothing to the target bit. But if the control bit is 1, then it negates the state of the target bit.
The truth table of the CNOT operation then looks like:

a b a’ b’
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

where a is the control bit, and b the target bit. This operation is clearly reversible; as for each output
pair (a′, b′), we can determine without ambiguity the input pair (a, b). This is true in general, that
is, 1 to 1 bijective binary functions always represent reversible operations.
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We can easily generalize the CNOT for the quantum domain. To this end we can use the
computational basis of 2-qubit states to build a quantum operator that implements the CNOT truth
table. Thus, the effect of a CNOT on a general 2-qubit quantum register looks like:

|R〉 = α|00〉 + β|01〉 + γ |10〉 + δ|11〉 (1.47)
CNOT |R〉 = α|00〉 + β|01〉 + γ |11〉 + δ|10〉 . (1.48)

Observe how the effect of the CNOT gate is implemented on each and every single state of
the superposition matching the values found in the truth table. We can also write CNOT in matrix
form as follows:

CNOT =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ . (1.49)

And therefore:

CNOT |R〉 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

α

β

γ

δ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

α

β

δ

γ

⎞
⎟⎟⎠ (1.50)

which are clearly equivalent.
The diagramatic representation of the CNOT gate is shown if Figure 1.1. Here the two input

states are:

|�a〉 = α|0〉 + β|1〉 (1.51)
|�b〉 = γ |0〉 + δ|1〉 (1.52)

(1.53)

which through the tensor product form the input state:

|�i〉 = |�a〉 ⊗ |�b〉 (1.54)
= (α|0〉 + β|1〉) ⊗ (γ |0〉 + δ|1〉) (1.55)
= αγ |00〉 + αδ|01〉 + βγ |10〉 + βδ|11〉 (1.56)

and the final state is given by:

|�f 〉 = αγ |00〉 + αδ|01〉 + βγ |11〉 + βδ|10〉 . (1.57)

An equivalent statement of Property #5 is that any loss of information resulting from a trans-
formation of a quantum superposition constitutes a measurement. Fortunately, any non-reversible
classical logic gate/circuit can be simulated using reversible gates. For example, consider binary
addition (also known as exclusive-or), which has the following truth table:
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a b a + b
0 0 0
0 1 1
1 0 1
1 1 0

We can easily observe that binary addition is non-reversible because the values of a and b

cannot be uniquely determined from the result a + b. However, the operation can be made reversible
by augmenting it with an extra variable c:

a b c a b a + b + c

0 0 0 0 0 0
1 0 0 1 0 1
0 1 0 0 1 1
1 1 0 1 1 0

0 0 1 0 0 1
1 0 1 1 0 0
0 1 1 0 1 0
1 1 1 1 1 1

a

b

f

Figure 1.1: Diagramatic representation of the CNOT gate. The solid dot represents the connection to
a control bit. The cross represents the effect of a NOT operation on a target bit only when the control
bit allows it.

Clearly, this is a reversible operation because given a set of output numbers (a, b, a + b + c), we
can always determine the value of the input (a, b, c). Furthermore, by choosing c = 0 we get the
same functionality as the binary addition of a and b 3.

3It is important to note that this modification to the original operation is not unique.
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We can use the above table to build a quantum unitary operator, U(+), which can be used
in place of binary addition because the value in the variable c permits the values of a and b to be
recovered.

U(+)
101 ba

102

03

f

Figure 1.2: Reversible implementation of the binary addition on quantum states.

A reversible quantum gate can now be constructed that implements binary addition on two
qubits. The diagramatic representation of the quantum circuit that implements this gate is shown
in Figure 1.2.

The computational analysis of quantum circuits such as this can be done as follows. Before
each operation we trace a vertical line. And for each of these vertical lines we write the state of
the system.

In the binary addition example we have only one operator in the quantum circuit. This means
that the circuit analysis only involves two vertical lines, one before and one after the operator,
corresponding to the initial and final states of the system.

For the initial state we have the tensor product of the 3 input states:

|ψi〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉
= (a|0〉 + b|1〉) ⊗ (α|0〉 + β|1〉) ⊗ |0〉
= aα|000〉 + aβ|010〉 + bα|100〉 + bβ|110〉 .

Now, the effect of the operator is determined by its logical table, which acts on each element of
the superposition:

|a, b, c〉 → U(+)|a, b, c〉 = |a, b, a + b + c〉 . (1.58)

So, for instance,
|010〉 → U(+)|010〉 = |011〉 . (1.59)

Therefore, the final state is given by:

|ψf 〉 = U(+)|ψi〉
= aα|000〉 + aβ|011〉 + bα|101〉 + bβ|110〉 .

Let us note that even though U(+) is a quantum operator that implements binary addition,
the additions are performed with the bits representing each state of the superposition. That is, the
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final result is different from:
|ψf 〉 �= |ψ1〉 + |ψ2〉 + |ψ3〉 . (1.60)

As indeed, such an operation would violate unitarity.
Furthermore, observe that the 4 possible values of the binary addition of two 1-bit elements

have been computed in a single computational step. This important feature of quantum computing
will be discussed as Property #6 of the quantum computing model.

In general, all classical logic circuits can be augmented in a similar fashion to obtain reversible
substitutes at a cost of some extra gates. Furthermore, it can be shown that the change from an
irreversible to a reversible circuit can be efficiently accomplished with only a constant overhead.

The algorithmic relevance of Property #5 is clear: except for measurements, all the operations
required by the algorithm have to be reversible, represented by unitary operators.

1.1.6 QUANTUM COMPUTING PROPERTY #6

The Quantum Computing model offers intrinsic parallelism.

The fact that a unitary transformation U can be applied to simultaneously transform all states
in a superposition has already been discussed. For example, a given U can be applied to |R〉,

|R〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉 (1.61)

as:
U |R〉 = aU |00〉 + bU |01〉 + cU |10〉 + dU |11〉 (1.62)

and all four state transformations are performed in a single computational step.
Clearly, Property #6 represents one of the great advantages of the quantum computational

model. For instance, we can compute the value of a binary function for all N possible values of its
input variable in a single computational step. Indeed, suppose that f is a binary function:

f : {0, 1}n → {0, 1} (1.63)

and also suppose that U is a reversible quantum operator that performs the following operation:

U |x〉|0〉 = |x〉|f (x)〉 (1.64)

where x is a binary number which enumerates the elements of the n-qubit computational basis.
Then, if we start from a uniform quantum superposition to which we apply the operator U :

1√
N

N−1∑
x=0

|x〉|0〉 U−→ 1√
N

N−1∑
x=0

|x〉|f (x)〉 (1.65)

we have computed all the values of f in a single computational step. The classical complexity to
perform the N evaluations of f is clearly 	(N). This example clearly demonstrates the power of
QC over CC in this instance.
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However, let us recall that if we try to read the register after the evaluation of f has been
completed, we will get obtain something like:

|xi〉|f (xi)〉 (1.66)

with probability 1/N , and the superposition with all the function values is destroyed.
Of course, one could try to apply this process in a sequence of evaluations and measurements.

However, to extract all N values would require O(N log(N)) repetitions. Clearly, this method is
suboptimal because it can be performed classically in only 	(N) time. Thus, while this is an illus-
trative example, it is not a practical one. In subsequent chapters we will discuss in detail practical
applications of this property.

In a sense, a quantum computer could be regarded as being a special kind of Multiple In-
struction, Multiple Data (MIMD) parallel architecture. Indeed, the qubit can be represented as a
vector of bits (multiple data) to which we can apply in parallel several unitary operators (multiple
instructions).

In terms of quantum algorithm design, the key challenge is to exploit the intrinsic parallelism
offered by a superposition of states.

1.1.7 QUANTUM COMPUTING PROPERTY #7

Quantum information cannot be copied. In other words, it is impossible to “copy” the superposition in one
quantum register into another quantum register.

If we have a 2-qubit quantum register in an arbitrary superposition:

|R〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉 (1.67)

and Q is a 2-qubit quantum register in a hypothetical Xerox machine, then there is no Xerox machine
transformation U such that:

|R〉|Q〉 → U |R〉|Q〉 = |R〉|R〉 (1.68)

for all possible quantum states |R〉.This can be shown immediately by considering two arbitrary, nor-
malized quantum states and assuming a unitary transformation that perfectly copies quantum states:

|�〉 ⊗ |s〉 U−→ U (|�〉 ⊗ |s〉) = |�〉|�〉 (1.69)

|�〉 ⊗ |s〉 U−→ U (|�〉 ⊗ |s〉) = |�〉|�〉 . (1.70)

Taking the inner products of the left-hand side terms of the two equations and the right-hand side
terms of the two equations gives:

〈
||�〉 = 〈
||�〉2 (1.71)

which implies either
|�〉 = |�〉 or |�〉⊥|�〉 . (1.72)
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The above can only be guaranteed for states that are equal (inner product is unity) or are orthogonal
(inner product is zero). The fact that it does not hold in general contradicts our assumption of a
copy transformation U . This result is referred to as the quantum no-cloning theorem.

It is important to note that the no-cloning theorem forbids the production of exact copies of
quantum states. Therefore, it is reasonable to suggest that a possible way around this limitation is
to relax the requirement of perfect clones, and request instead approximate copies. Previous research
has shown that it is possible to build an input-independent transformation, known as the Universal
Quantum Copying Machine (UQCM), which is able to make approximate copies of arbitrary
quantum states [60, 63]. It is possible to show that the following transformation is the most optimal
UQCM for cloning a single qubit a into qubit b:

|0〉a|0〉b|Q〉x →
√

2

3
|00〉|↑〉 +

√
1

3
|+〉|↓〉 (1.73)

|1〉a|0〉b|Q〉x →
√

2

3
|11〉|↓〉 +

√
1

3
|+〉|↑〉 (1.74)

where:
|+〉 = 1√

2
(|10〉 + |01〉) (1.75)

and |Q〉x is the quantum state of the copying-machine before the copying, while | ↑〉 and | ↓〉 are the
states of the copying machine after the copying. Clearly, this transformation is only an approximate
cloning device because the output also involves |+〉 states which were not present in the original
input.Furthermore, the fidelity of the UQCM transformation can be characterized to be 2/3. Indeed,
if we perform a measurement to the output, we have a probability of 2/3 to measure a and b in the
same state.

Similarly, if the target qubit is in the general superposition given by:

|�〉 = α|0〉 + β|1〉 (1.76)

then the use of a UQCM leads to:

|�〉a|0〉b|Q〉x → α

(√
2

3
|00〉|↑〉 +

√
1

3
|+〉|↓〉

)
+ β

(√
2

3
|11〉|↓〉 +

√
1

3
|+〉|↑〉

)
(1.77)

This equation reveals that the approximate copies at the output are entangled among themselves
and with the state of the copying machine. This is an unfortunate situation, as we cannot separate
this state into the tensor product of three quantum states.

This approximate copying transformation can be generalized for the case of having K orig-
inals and M resulting clones for N-dimensional states [61, 62]. The fidelity of the output can be
characterized through the following η parameter:

η = K

M

M + N

K + N
(1.78)
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Clearly, for a fixed K , as M and N grow large, the fidelity of the cloning machine rapidly decreases.
Unfortunately, for most practical applications,we have a single original (K = 1), a substantial number
of qubits n (N = 2n), and we require several copies. Therefore, the use of UQCM often leads to low
fidelity copies. Because of its several shortcomings, the applications of UQCM are very limited.

The inability to copy arbitrary quantum states is clearly limiting in terms of algorithmic
flexibility. In particular,most nontrivial classical algorithms employ the use of copying into temporary
variables to hold intermediate results.

However, the ability to copy classical states is permitted under the above analysis because
the basis states are orthonormal. Indeed, remember that classical information is recovered when we
use single state superpositions in the computational basis. These states are orthogonal and we can
produce any number of exact copies out of it.

Another important consequence of Property #7 is that, if we have a quantum register in an
unknown state, then we have no way to determine its value. Indeed, if we have:

|R〉 = α|00〉 + β|01〉 + γ |10〉 + δ|11〉 (1.79)

and α, β, γ , and δ are unknown parameters, then upon measurement of the register we will obtain
00 with probability |α|2, and so on. If we did not have the no-cloning restriction, a trivial approach
to determine these parameters would be to make several copies and measure all of them. Then,
after applying some statistical methods we could estimate with an arbitrary degree of certainty the
magnitude of these quantities. However, this is not possible in the quantum realm.

Because a quantum algorithm cannot copy quantum states, such operations must be avoided.
An alternative to cloning is to initialize multiple quantum registers in the same state and applying
the same operations to them until the point at which different operations need to be applied to
different copies of the same state. However, this may be an inefficient, impractical, and expensive
solution for most problems of interest.

1.1.8 QUANTUM COMPUTING PROPERTY #8

Quantum algorithms will always have to be initialized to the "0" position.

Any type of quantum algorithm will always start with a register initialized in the “0" position.
The reason for this restriction is related to the side effect described before about how one cannot
determine the state of a register if this is in an unknown state.

When the quantum computer is first booted, the quantum register may take an arbitrary
quantum state which is impossible to determine.Thus, it is desired that, upon booting, the quantum
register has to be placed on a known, pre-determined state. That is, the architecture of a quantum
computer must be such that it guarantees that the initial state will always be the same.

This state is usually taken as the ground state of the underlying quantum system used to
implement the quantum computer, and it is often used to represent “0". Therefore, in practice, the
“0" state is achieved by allowing the quantum system that realizes the register to relax to its ground
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state. Of course, from a theoretical perspective the definition of “0" and “1" are completely arbitrary.
However, because of engineering limitations, the ground state of the quantum register is defined to
be “0", and it is required to be the only valid initial state of the computer.

This means that all quantum algorithms have to presume that “0" is the original state of the
quantum register. However, by applying unitary transformations we can always obtain an arbitrary
initial state. For example, if we require a uniform superposition of both values of a 1-qubit register,
we apply a Hadamard transformation. The Hadamard gate is defined, in matrix form, as:

H = 1√
2

(
1 1
1 −1

)
(1.80)

which has the following effect on the 1-qubit |0〉 state:

H |0〉 = 1√
2

(
1 1
1 −1

) (
1
0

)
(1.81)

= 1√
2

(
1
1

)
(1.82)

= 1√
2
(|0〉 + |1〉) (1.83)

which is the desired uniform superposition of 1-qubit states.
For registers with more than 1-qubits we can apply one Hadamard gate for each qubit in the

register in a tensor product form. For example, in the case of a 2-qubit register we have:

H⊗2|00〉 = H(1) ⊗ H(2)|00〉 (1.84)
= H(1)|0〉 ⊗ H(2)|0〉 (1.85)

= 1√
2
(|0〉 + |1〉) ⊗ 1√

2
(|0〉 + |1〉) (1.86)

= 1

2
(|00〉 + |01〉 + |10〉 + |11〉) (1.87)

which is a uniform superposition of all 4 states of the 2-qubit register.4 In general, the matrix form for
the Hadamard gate for n-qubit registers can be constructed using the convenient recursive formula:

H⊗n =
(

H⊗n−1 H⊗n−1

H⊗n−1 −H⊗n−1

)
. (1.88)

If instead of uniform superpositions we require more sophisticated initial states, we can still
create them, but the initialization process may require a severe computational overhead. For instance,
let us suppose that we have a n-qubit register that we want to initialize with a state |φinit 〉, which

4In some situations it is customary to use the symbol |0〉 to represent the 0 state of a multi-qubit register.That is, instead of writing
|00...0〉 we just denote this ground state as |0〉.
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is represented with 2n complex parameters. Thus, we need to find a 2n × 2n unitary matrix U that
transforms the 0 state into the desired initial state. That is:

|φinit 〉 = U |0〉 . (1.89)

To determine all the elements of the transformation matrix U , we basically need to solve a system
of 2n equations with 2n variables. And to solve such a system of equations may require up to O(2n)

computational steps.
Thus, even though it is theoretically possible to initialize a quantum register to an arbitrary

state, this process may require an exorbitant amount of time.The initialization of a quantum register
is, thus, a very important process that has to be accounted for when studying the computational
complexity of quantum algorithms, and should never be ignored. Of course, if a problem requires
the exact same initial state multiple times, the transformation matrix could be stored and be reused
multiple times.

1.2 SUMMARY
We can summarize the properties of the quantum computational model as follows:

1. The qubit is the new unit of information - the classical bit is a special case.

2. Quantum computation is probabilistic - there is an intrinsic element of randomness involved
when a measurement is made of a superposition of states unless the weight on one of the states
is unity (i.e., all other weights are zero).

3. Measurement (read operations) are destructive. Even if a quantum superposition can index
2n states, after measurement we only retrieve n-bits of logical classical information, and we
cannot recuperate the original state.

4. The QC computational space is exponentially larger than the CC space for a fixed-size register
- an n-qubit quantum register can simultaneously index 2n n-bit states while its classical
counterpart can only store the index of one n-bit state.

5. Transformations of quantum states must be reversible - an irreversible operation will cause the
collapse of a superposition. Virtually, all classical logic gates can be efficiently replaced with
functionally equivalent reversible gates.

6. QC offers intrinsic parallelism - the ability to simultaneously transform all states in a super-
position permits some QC operations to be performed more efficiently than is possible for the
best possible classical alternative.

7. Quantum information cannot be copied - the no-cloning theorem fundamentally constrains
the class of algorithms that can effectively exploit quantum parallelism.

8. Quantum registers are always initialized to the 0 state.
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C H A P T E R 2

Advantages and Limitations of
Quantum Computing

In the previous chapter we claimed that the classical computing (CC) framework is subsumed by
the Quantum Computing (QC) model. This relationship can be made more explicit by recognizing
that CC algorithms can be executed on a quantum computer as special cases in which all quantum
registers store superpositions consisting of a single element, e.g.,

|R〉 = |00〉 . (2.1)

In other words, if superpositions are never used, the quantum hardware simply implements a classical
computer. Independently of whether quantum parallelism finds general use or is primarily applied
to specialized problems, quantum computing hardware will eventually run all classical algorithms.
This is because the effects of quantum phenomena increase as the size of logic gates decrease.

In this chapter we will discuss the specific advantages and disadvantages of the quantum
computing model. We will also analyze a variety of algorithmic considerations when implementing
a quantum algorithm on a simple quantum architecture.

2.1 QUANTUM COMPUTABILITY
In terms of algorithmic features, classical computing is subsumed by the quantum computing frame-
work:

CC ⊆ QC . (2.2)

That is, a quantum computer can do the same things classical computers can do, and perhaps much
more. In other words, a quantum computer is at least as powerful as a classical computer.

On the other hand, it can be shown that a classical computer can (inefficiently) simulate a
quantum computer. That is, if CC is augmented with a true random number generator, it is possible
for any quantum algorithm to be simulated by a classical algorithm; however, the classical algorithm
may require exponentially more computational resources.Thus, in terms of computability, whether a
computational problem can be solved or not, classical and quantum computing are equivalent [49]:

• A function that can be computed using a classical computer can also be computed using a
quantum computer.

• A function that cannot be computed using a classical computer cannot be computed with a
quantum computer.
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For example, it has been shown that the halting problem is not computable by a classical computer1;
therefore, it is also incomputable using a quantum computer.

For the computer scientist, the principal distinction between QC and CC is that QC is more
efficient than CC for specific classes of problems. Thus, the Church-Turing thesis remains valid:

Every function which would naturally be regarded as computable can be computed by a Turing
Machine.

However, the strong version of the thesis is contradicted by QC:

Every function which would naturally be regarded as computable can be computed efficiently
by a Turing Machine.

Specifically, there are problems that a Turing Machine cannot compute in time that is within a
polynomial factor of what can be achieved using a quantum computer.

The violation of the strong Church-Turing Thesis means that new, meaningful, complexity
classes can be defined for the quantum computing model.

2.2 CLASSICAL AND QUANTUM COMPLEXITY CLASSES
Let us recall that complexity classes are introduced in computer science to categorize how easy or
how difficult is the solution of a problem. In particular, time and space complexity classes are defined
independently of the underlying hardware used to solve the specific problem. As such, complexity
classes are used to understand the difficulty of a set of problems, rather than benchmarking the
performance of a hardware platform.

The most important classical and quantum computational classes are the following2:

• P = Class of problems that can be solved in polynomial time using a classical computer.

• NP = Class of problems whose solution can be verified by a classical computer in polynomial
time.

• BPP = Class of problems that can be solved by a probabilistic algorithm on a classical computer
in polynomial time with success probability of at least 1/3.

• EQP = Class of problems that can be solved by a quantum computer in polynomial time with
probability equal to 1.

• BQP = Class of problems that can be solved by a quantum computer in polynomial time with
success probability of at least 1/3.

1The halting problem can be stated as follows. Given a program that runs with a specific finite input, the problem is to determine
if the program finishes the computation or runs forever.

2A more detailed description and analysis of classical complexity classes can be found in [16], while quantum complexity classes
are discussed in [5].
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It is important to note that the 1/3 factor in these definitions is rather arbitrary. That is, we
could have defined the class using any other number greater than 0 but smaller than 1. The reason
is that the algorithm can be run a constant number of times to increase the probability of success.
Then, the probability of error can be reduced to an arbitrarily small number.

As an example, the problem of computing the addition or any other arithmetic operation
between two n-bit numbers is a problem that can be solved in O(n) computational steps, and,
therefore, it belongs to the complexity class P. On the other hand, factorization of a n-bit integer is a
problem in NP; i.e., the most efficient known classical algorithm takes exponential time to compute
a solution, but the solution can be verified in polynomial time. Within the realm of quantum
computation, however, factorization can be computed in polynomial time (as we will further discuss
in Chapters 5 and 6). Thus, factorization is a problem in both NP and BQP.

Although there are problems in both NP and BQP, there is no evidence that all problems in
NP are in BQP. Interestingly, during the early days of quantum computing, it was hoped that NP
was contained in BQP. However, the problems in NP ∩ BQP appear to have a special structure, so a
sampled problem from NP is unlikely to be in BQP. At present the following hierarchies are known:

P ⊆ BPP ⊆ BQP (2.3)
P ⊆ EQP ⊆ BQP . (2.4)

Probably the two most important questions in complexity theory are:

NP ⊆ P ? (2.5)
NP ⊆ BQP ? (2.6)

In other words: Can all NP problems be solved efficiently by a classical computer? Can all NP
problems be solved by a quantum computer? The consensus of researchers in complexity theory is
that the answer is “no” to both questions.

At present what is known is that some problems can be solved more efficiently in QC than
in CC, so the task of the computer scientist is to map out the classes of problems for which this
is true. Clearly, the only way to achieve complexity reduction in QC is to exploit quantum paral-
lelism, i.e., maintain and manipulate an exponentially large set of states in a quantum superposition
(Properties # 4 and # 6).

2.3 ADVANTAGES AND DISADVANTAGES OF THE
QUANTUM COMPUTATIONAL MODEL

To better understand the potential and limitations of quantum computing, consider the use of a
quantum register to store a toy model of the entire universe. If the entire known universe, from the
time of the Big Bang to date, is subdivided into a grid of Planck-scale size ( 1.6 × 10−35m) cells,
each of which represents 1 bit of information, there would be a total of about 2800 bits of information.
That amount information, therefore, could be stored in only 800 qubits!
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Furthermore, an 800-qubit quantum register cannot only hold a discretized representation of
the entire universe, it can be transformed in O(1) time. In other words, a transformation U can be
applied to all 2800 grid cells simultaneously.

Does this mean that a quantum computer can actually simulate the universe? The answer is
no, and the reasons illustrate the limitations of the QC framework:

1. Initialization - Our toy model represents the universe as a grid in which the cell-size is at
the Planck limit of information. To define the state requires an assignment of 0 or 1 values
to each of the 2800 cells. This can be done by performing 2800 explicit assignment operations
to the quantum register, but doing so would take trillions and trillions... and trillions of years.
Alternatively, a function f (x) can be applied to simultaneously assigned values to all cells
indexed by the parameter x in O(1) time (assuming that the evaluation of f (x) takes only
O(1) time per cell).

2. Transformation - In the same way that an arbitrary function f (x) can be applied to initialize
all the cells in parallel, a function can also be applied to transform all the cells in parallel. It
would seem, then, that some kind of Markov model could be applied to simulate the evolution
of the state of the universe. Unfortunately, within QC it is impossible to apply a function to a
particular state which depends on other states in a superposition. For example, a function of the
type f (x, y), where x and y are two different computational cells. In other words, each state
must be either transformed independently or other states must be stored for access outside of
the superposition. In the former case we are limited to rather uninteresting models, and in the
latter case we must store O(2800) classical bits of information, which is clearly impractical.

3. Output - Even if we can provide useful functions to initialize and evolve our model of the
universe, we cannot extract any information from the simulation until we read the state of the
quantum register. At that point the superposition collapses and the register stores the state of
one of the 2800 cells. In other words, we may simulate the evolution of 2800 states but can only
access one of them. That is, we can only output 800 bits of logical information. It is possible
to re-run the simulation multiple times to sample more states, but there is no way to avoid
the fact that meaningful statistics will require 2800/O(1) computations. As will be described
in a subsequent chapter, optimal QC computation of the mean of N states in a superposition
requires 	(N1/2) time, which translates to a prohibitive number of computations proportional
to 2400 for our toy model of the universe.

This simple, and perhaps unrealistic, example illustrates how the main advantage of the quan-
tum computational model is the intrinsic computational parallelism over an exponentially large com-
putational space (Properties # 4 and # 6). And the principal disadvantages of the quantum model
are the inability to make copies and the destructive nature of quantum measurement (Properties # 3
and # 7).
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To further appreciate the constraints imposed by the model, let us consider the pseudocode
for the following algorithm:

1 : print a;
2 : c = b;
3 : f (a);
4 : f (b);
5 : f (c);

This algorithm cannot be translated into a quantum version if a, b, and c are quantum variables
intended to store arbitrary superpositions of states. In particular, the print statement can be inter-
preted as a read or measurement operation which collapses the quantum superposition in a, and
thus f (a) becomes meaningless. Also, we cannot copy the value of the quantum superposition b

onto c in such a way that both f (b) and f (c) make sense. Of course, depending on the underlying
quantum architecture and the semantics and syntax of the quantum language, one could interpret
line 2 of the pseudo-code as a reassignment of addresses rather than an actual copy. But even so,
lines 4 and 5 imply different computational paths for b and c. In any event, this pseudo-code makes
evident the algorithmic restrictions of the quantum model.

These limitations severely restrict the class of algorithms for which quantum computing can
provide better algorithmic performance than the classical model. Thus, on the one hand it appears
that quantum computing is so powerful that a single quantum computer can represent the state
of the entire universe. On the other hand, it appears that nothing useful can be done with that
representation.

Of course, we could propose a trivial way to avoid these issues. By simply avoiding the use
of quantum superpositions of more than one state we could overcome the no-cloning restriction, as
well as, the destructive nature of quantum measurements. But in this case, we would be working with
the classical model of computation. That is, we would be running classical algorithms on quantum
hardware. If our quantum computer supports the use of large quantum superpositions, then we
would be wasting computational resources.

Therefore, the big question is: what differences between a quantum computer and a classical
computer can be verified? Secondly, how can these differences be exploited to produce more efficient
solutions to particular problems?

Superficially, it seems that the rules of quantum computing, e.g., destructive measurements
and no-cloning, conspire to make it impossible to prove whether or not a superposition provides any
computational advantage. If this were truly the case, quantum parallelism would have no practical
value. As will be shown, however, the quantum model offers optimal solutions for certain classes
of problems.

Finally, it is important to observe that these algorithmic disadvantages of the quantum model
are actually seen as huge advantages in the context of cryptography and secure communications.
Indeed, the no-cloning theorem means that information cannot be forged, and the destructive
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nature of quantum measurement implies that it is very easy to determine if an eavesdropper is trying
to intercept a secure communication [7, 13, 40].

2.4 HYBRID COMPUTING
As has been discussed, in the long term quantum circuits will comprise all computing hardware.
The more significant question is whether quantum parallelism will play a major or minor role in
algorithm design. It is possible that quantum parallelism provides complexity advantages only for a
narrow range of practical problems. On the other hand, it may provide speedups for a much wider
range of algorithms when used as an auxiliary tool – much like vector processors are with some
classical computers.

We use the term “hybrid computing” to refer to the process of developing algorithms by
treating a quantum register as a special-purpose resource which permits certain operations to be
performed efficiently [32]. This approach is somewhat less general than opening up the entirety of
quantum logic to the design of new algorithms. On the other hand, it also dramatically reduces the
difficulty of deriving new algorithms by focusing on the exploitation of known efficient solutions for
generic classes of problems. This is what is done in classical algorithm design when, for example, a
solution to a problem is tailored so that binary search can be applied.

The motivation for establishing the hybrid computing model is that it minimizes the intrusion
of the details of quantum phenomena into the algorithm design process. This allows the computer
scientist to exploit the power of quantum computing in the same way that modules in a classical soft-
ware library are used. The distinction between hybrid algorithm design and full quantum algorithm
design can be summarized as follows:

Hybrid algorithm design consists of identifying the best possible algorithmic solution
built from a set of given classical and quantum building blocks. Full quantum algorithm
design, by contrast, also permits the development of new building blocks that cannot be
defined in terms of other building blocks/primitives.

In addition to simplifying the process of algorithm design, the hybrid computing model also suggests
a simplified notional computer architecture.

2.5 THE QRAM ARCHITECTURE
The Quantum Random Access Machine (QRAM) hybrid architecture conveys the fact that the
quantum processor is used only to speed up certain subroutines, functions, or computational ker-
nels [55]. In the QRAM architecture, shown in Figure 2.1, the classical and quantum processors
work in a master/slave fashion. Here, classical code makes calls to an external device, the quan-
tum processor. In addition, quantum code written in some adequate quantum language provides
the instructions to be carried out by the quantum processor. Thus, the classical computer loads the
quantum code, and sends a stream of instructions and data to the quantum processors.



2.5. THE QRAM ARCHITECTURE 29

Classical
Computer

Quantum
Resources

Quantum
Instructions

Results of 
Measurements

Source Code 
Class + Quant

Compiler

Master

Slave

Disk

Figure 2.1: The QRAM Architecture.

Once these instructions sent by the classical computer have been carried out in the quantum
processor, a measurement is performed and the result is sent back to the classical processor. And this
process may be repeated as a pipelined cycle multiple times.

Clearly, in this architecture the quantum processor incurs the same limitations as more familiar
augmentations, such as, vector and graphics processors, e.g., data transfer overhead. In addition to
these limitations, the quantum processor potentially introduces others. Depending on how the
quantum register is implemented, there may be a limit on the amount of time that a quantum
superposition can be maintained. This decoherence time represents a constraint which has no parallel
in classical algorithm design3.

2.5.1 ALGORITHMIC CONSIDERATIONS
As we have discussed before, a quantum algorithm that exclusively uses nontrivial quantum su-
perpositions has many potential problems because of the no-cloning and destructive measurement
restrictions. And on the other hand, a quantum algorithm that only uses trivial superpositions does
not take advantage of the algorithmic structure of quantum computing. Clearly, there is an issue of
algorithmic balance, and the quantum software engineer will have to determine which portions of
his code are good candidates for quantum acceleration.

3However, there is a parallel to the constraints imposed by signal propagation delays when implementing classical computing hard-
ware.
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The design of effective quantum algorithms will not be easy,as there are several algorithmic and
architectural considerations that need to be taken into consideration.For instance, it still remains to be
determined the expected theoretical speed of the first generations of quantum processors. However,
it is very likely that these quantum processors will be much slower than their classical counterparts.
A good estimate is that quantum processor speeds will be in the order of MegaHertz, compared to
a predicted speed on the order of hundreds of GigaHertz expected on classical computers by the
year 2025.Therefore, the quantum software engineer has to be sure that the slow quantum hardware
does not override the algorithmic improvements of the quantum model.

Also, as already discussed, the quantum processor may be subject to short decoherence times.
From an algorithmic point of view this means that the software engineer will have to estimate the
running time of the program and be sure it will be shorter than the typical decoherence time of
the quantum processor he is working with. This may mean that for some long computations, the
problem may have to be broken in several parts to guarantee that decoherence will not interrupt
the computation.

Also, the QRAM architecture described above implies the transference of data and instructions
from the classical processor to the quantum block and the transmission of raw data obtained from
quantum measurements on the reverse route. This processes will clearly involve some data transfer
overheads. Thus, if the datasets are large, this data transfer step may take a long time, and the
advantage of quantum acceleration could completely disappear.

The Input/Output (I/O) characteristics of the quantum computational model also bring
algorithmic considerations that need to be accounted for. From Property #8, a quantum computer
can only be initialized in the 0 state. Of course, we can always use gates to transform the 0 state into
any initial state desired by the software designer. However, if this initial state is arbitrary, there may
be need to perform O(poly(2n)) computational steps to find the reversible unitary gate that makes
the desired transformation. Once more, the computational advantage of the quantum model may be
overridden by this factor.

For most quantum algorithms, the initial state is required to be an uniform superposition. As
we discussed on the previous chapter, this can be accomplished by applying n Hadamard gates.Thus,
these algorithms carry an overhead of O(n) for the initialization process. However, this overhead
is likely to depend on the hardware architecture of the quantum computer, as one could easily
imagine the implementation of multi-dimensional Hadamard gates. For such an architecture, the
initialization overhead would effectively be reduced to O(1).

Regarding output, let us recall that because of the destructive nature of quantum measurement,
we cannot output the entire superposition. As the reader will remember, we can get a specific
state with some probability. Thus, a n-qubit register that holds 2n states can only output n-bits of
logical information. Depending on the algorithm, some information may get lost in the process.
If there is a need to extract more than n-bits of classical information, the user could perform the
exact same algorithm repeated times. However, once more, this process could easily overwhelm the
computational advantage granted by quantum acceleration.



2.5. THE QRAM ARCHITECTURE 31

Memory addressing schemes may also turn to be problematic. Let us consider a n-qubit quan-
tum register.The most trivial memory-addressing scheme that comes to mind, in the form of a binary
tree traversing the states of the quantum register, requires O(n) computational steps to dereference
an address and uses O(2n) switching gates [40]. Unfortunately, this model is highly inefficient and
consumes a large number of computational resources. However, faster implementations have been
proposed [50].

At the same time, it is unrealistic to expect that quantum computing will work efficiently
with existing, pre-computed data. Indeed, if we have a n-qubit register that points at 2n states and
we need to populate it with some data that is stored in disk space somewhere else, then we require
O(2n) operations to move the data from disk to memory. For a large system, of say, 800 qubits, such
an operation becomes completely unfeasible.

Therefore, in general it appears that quantum computing is better suited to work with dy-
namically generated data sets. In this case, there is no need to move precomputed data from two
locations within the computer. However, the problem, in this case, goes back to the impossibility to
export the entire data set.

Therefore, it will be a truly challenging task for quantum software engineers to determine
which portions of a classical program are good candidates for quantum acceleration. Most probably,
they will have to rewrite the entire code from scratch. As such, the optimization of hybrid programs
is a big challenge that should be addressed before the deployment of quantum computers. It is inter-
esting to note, however, that a strikingly similar problem is found in reconfigurable supercomputing
using FPGAs4.

2.5.2 QUANTUM ALGORITHM DESIGN
At this point we can enumerate the most basic issues that need to be considered when designing
quantum algorithms:

1. To design a quantum algorithm we need to take advantage of the parallelism and exponentially
large computational space of QC.

2. We also need to avoid instances where we need to copy or read data out of the register.

3. We need to be very careful about probabilistic and reversibility issues.

4. We have to keep in mind the algorithmic considerations that may arise from a specific QC
hardware architecture, such as, the QRAM model.

5. Finally, we need to provide optimality results that prove a better quantum performance than
with the best known classical method.

4A Field Programmable Gate Array (FPGAs) is a digital integrated circuit that can be configured and programmed by the user to
perform a variety of computational tasks. The hardware configuration of this circuit takes place after the manufacturing process,
which means that the user is no longer limited to a fixed, unchangeable, and predetermined set of hardware functions. In principle,
any Boolean function can be mapped into an FPGA, which offers the possibility of increasing the computational performance of
a code by means of pipelining, parallelism, and concurrency [56].
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By any means, the design of effective quantum algorithms is not an easy task. Because of such
intricacies, perhaps it should not be a surprise that there are only a handful of efficient quantum
algorithms reported in the open literature.

2.6 QUANTUM BUILDING BLOCKS
At present there are six general algorithmic areas for which the quantum model appears to offer
substantial benefits when compared to the best known classical alternatives:

1. Amplitude Amplification - This procedure permits the weight associated with a desired state
within a quantum superposition to be increased (amplified) so that it is more likely to be
measured. Amplitude amplification can be used as a generic tool for efficiently finding a
solution state for a wide variety of search and optimization problems.

2. Quantum Fourier Transform (QFT) - The QFT permits certain restricted types of Fourier
transformation information to be computed in time sublinear with the size of the dataset. The
best classical algorithm require superlinear time.

3. Quantum Random Walks - QRW can be applied to efficiently solve a wide variety of statistical
estimate problems which cannot be efficiently simulated with a classical algorithm. A very
detailed introduction to use of quantum random walks in computer science can be found
in [52].

4. Quantum Error Correction - QEC is analogous to classical error correcting techniques except
that it can recognize and correct qubit errors, as opposed to classical bit flips [40]. Its applica-
tions are in the implementation of the QRAM architecture rather than in the hybrid algorithm
design process.

5. Quantum Cryptography - Quantum cryptography is a major area of research, but it finds few
if any applications within the QRAM computing architecture [7, 40].

6. Simulation of Physical Systems - It should not be surprising that quantum phenomena can be
simulated more efficiently on quantum hardware than is possible classically. In fact, this appli-
cation was what first motivated the study of “quantum computing” by Richard Feynman [17].
In recent years, there has been a surge of adiabatic quantum algorithms to solve challenging
problems in bioinformatics, such as, protein docking and protein folding [4, 25]. While this
application of quantum computers promises revolutionary advances in a variety of scientific
and engineering areas, it is not very interesting from a formal perspective. Indeed, mapping
the evolution of a physical system to the evolution of the quantum computer is somewhat
equivalent to using a water tank to simulate ocean dynamics.

For the computer scientist, the first three of the above are the most relevant for algorithm design.
Amplitude Amplification and QFT will be described in more detail in the following chapters, while
QRW are well described in another volume of the series [52].
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2.7 SUMMARY
By far, the greatest advantage of the quantum computational model is the ability of performing
operations in parallel to an exponentially large superposition. Unfortunately, the model is restricted
by the destructive nature of measurement operations and by the impossibility of making exact
copies of quantum information. Interestingly, while these last two features are detrimental to the
algorithmic capabilities of quantum computing, these are powerful advantages for the application
of quantum information to secure communications. Indeed, the no-cloning theorem implies that
quantum information cannot be forged, while the destructive nature of measurements implies that
we can easily detect eavesdroppers.

Furthermore, the performance of a quantum algorithm will also be limited by a number of
factors related to the specific architecture used to implement the quantum computer. In this regard,
quantum algorithm development should consider the overheads involved in I/O operations, memory
retrieval, and initialization.

To date, the most important building blocks to develop quantum algorithms are amplitude
amplification techniques, the Quantum Fourier Transform, and quantum random walks.
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Amplitude Amplification
In the previous chapter we discussed the way in which quantum physics seemingly conspires against
any attempt to exploit the supposed storage of an exponentially large number of states in a quan-
tum superposition. Specifically, any extraction of information from a quantum register causes the
superposition to collapse to a single state, at which point it is equivalent to a classical state in a
classical register.

In this chapter we will demonstrate that the notion of a superposition of states can be exploited
to obtain solutions to many classes of search and optimization problems more efficiently than is
possible with the best available classical alternatives. This is achieved using a technique referred to
as amplitude amplification, and it basically consists of transforming a superposition so that desired
states are more likely to be measured than are other states [10].

Without loss of generality, we will assume that we have a Boolean function, which takes a bit
vector as an input and then outputs a 0 or a 1 depending on whether the input vector represents a
solution. More technically, we will be considering the case of a given Boolean indicator function:

χ : {0, 1}n → {0, 1} (3.1)

which partitions the set
X ≡ {0, 1}n (3.2)

into the set of solutions and the set of nonsolutions where

χ(x) =
{

0 x-is-not-a-solution
1 x-is-a-solution .

(3.3)

This function is referred to as an oracle, i.e., a black box that can tell if x is a solution or not in
constant time O(1). Let us consider now a quantum algorithm A 1:

A|0〉 =
2n−1∑
i=0

αi |i〉 . (3.4)

Now, the application of the oracle χ to this state will basically assign to each |i〉 a value 0 or 1
(depending on whether or not it is a solution) and this state will have probability α2

i of being
measured. Therefore, if the sum of the probabilities associated with solution states is a:

a =
2n−1∑
i=0

|αi |2χ(i) (3.5)

1Here, we presume that A is the concatenation of all possible unitary operations involved in the algorithm.
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then a measurement applied to the superposition will give a solution with probability a, which means
the expected time to find a solution is O(1/a). Indeed, if the probability of measuring a solution is
1/3, then we expect to perform the same procedure about 3 times to extract a solution.

Measuring the above superposition of states is essentially a random search algorithm, which
will require expected O(1/a) repetitions of the procedure. Let us consider the case where A generates
a uniform superposition. Then, there are N states in a uniform superposition of n-qubits. If there
is only one solution state, then the probability of measuring it is 1/N , and the expected complexity
is, therefore, O(N). This complexity is no better than a classical exhaustive examination of all the
states. The purpose of amplitude amplification is to transform the superposition of states so that
a ≈ 1, i.e., the probability of measuring the solution state is much higher than 1/N .

3.1 QUANTUM SEARCH
General and provably optimal algorithms exist for performing amplitude amplification to identify a
desired solution from a superposition of states. Specifically, it applies O

(
N1/2

)
transformations to

the superposition of states in a quantum register so that a subsequent measurement will obtain the
desired solution state with high probability. In other words, quantum search provides a quadratic
speedup over classical exhaustive search.

3.1.1 QUANTUM ORACLES
A quantum oracle is a quantum implementation of the oracle described on the previous section.
Clearly, any classical functional criteria can be described by means of a classical oracle. And any clas-
sical oracle can be implemented in the quantum domain by simply adding extra qubits to guarantee
the reversibility of the operation.

In such a case, the effect of a quantum oracle O for a solution f (x) = 1 for an indicator
Boolean function f is:

|x〉|q〉 O→ |x〉|q ⊕ f (x)〉 (3.6)

where ⊕ indicates module 2 addition. By choosing the right input state, we can conveniently rewrite
this expression as:

|x〉
( |0〉 − |1〉√

2

)
O→ (−1)f (x)|x〉

( |0〉 − |1〉√
2

)
. (3.7)

Clearly, the effect of the oracle is to change the phase of the solution, while leaving unchanged
the rest of the elements of the superposition.

In the above formula we have added an extra qubit to the register in the form of |q〉. This has
actually helped in moving the information of the quantum oracle into a phase change. However, as
the state of the extra qubits remain unchanged after the application of the oracle, these can be safely
ignored. Then, the effect of the oracle is often written as:

|x〉 O→ (−1)f (x)|x〉 . (3.8)
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Therefore, the matrix representation of the oracle operator O has −1 in the diagonal term for
the solution, 1 for the other diagonals, and zeros in the off-diagonals. For two qubits (N = 4), the
matrix for the oracle where 00 is the solution to the search problem is:

O00 =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (3.9)

It is important to remark that we can write this matrix because for simulation purposes we
have assumed that the solution is 00. However, in a real case scenario the solution to the search
problem is obviously an unknown quantity. Thus, this type of matrix representation for the oracle
is only useful when we try to simulate or represent the effects of the oracle. When a real quantum
computer implements an oracle, only the oracle knows the exact form of this matrix, and we do not
have direct access to it. In other words, the determination of the matrix representation of the oracle
is equivalent to solving the search problem.

It is also important to remark that, in spite of its mystical name that invokes scenes of magical
creatures from the ancient Greek lore, there is nothing supernatural or mysterious about the concept
of an oracle. Clearly, an oracle can always be used in classical computing to solve a search problem,
and the application of an oracle is ultimately equivalent to the computation of the function f for a
given value of the input.

The same idea remains valid in the quantum domain. The difference is, of course, that a
quantum oracle can be applied in parallel to all the possible values of the input described by the
quantum register. That is, if we have an arbitrary superposition:

|�〉 =
2n−1∑
i=0

αi |i〉 (3.10)

then the application of an oracle O results in:

O|�〉 =
2n−1∑
i=0

(−1)f (i)αi |i〉 (3.11)

in a single computational step. In other words, in the quantum computing model we can perform
2n simultaneous checks to a n-bit oracle.

In addition, the requirement that the oracle is a black box function does not mean that the
implementation is difficult or unknown. It only means that we can assume that the computational
complexity of computing f for some input value x is taken to be O(1). This way, whatever possible
computational complexity involved with the computation of f is isolated from the computational
complexity of the search algorithm itself. In this case, the overall computational complexity of the
algorithm, reveals the complexity of the general search problem, independently of the sophistication
of the particular search criteria.
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3.1.2 SEARCHING DATA IN A QUANTUM REGISTER
An n-qubit quantum register can hold a quantum superposition of N = 2n states. The states are
just the set of possible n-bit binary vectors, so we can interpret them as the integers from 0 to
N − 1. Now suppose that we are interested in knowing whether any of these numbers has some
special property assessed by our oracle, i.e., f (x) = 1 says that x has the property. Clearly, a classical
computer requires O(N) computational checks to find this element. More specifically, a classical
computer requires to use the oracle O(N) times.

In generally, a quantum oracle can be applied to an array of N data items, and the n-bit binary
vectors in the superposition can be interpreted as indices into the array. For example, the zero-vector
state would refer to the first element of the array. With this we can now perform a quantum search
for an element of the array that has a desired property. In other words, we can perform a general
quantum search of any kind of dataset.

Before we present the mechanics of quantum searching, it is useful to consider what a quantum
search is expected to do. We are hoping to exploit quantum parallelism, which means that we want
to simultaneously examine all of the states in our superposition to find what we are looking for.

However, it seems that our dataset array represents a bottleneck because our oracle can only
access one element at time. Indeed, at first sight it appears that we would need N copies of the oracle
and array to permit it to be applied simultaneously to each of the N states. Amazingly, the intrinsic
parallelism of the quantum computing model enables a superposition of the oracle for every possible
state of the register. In other words, N indented executions of the oracle for each of the N states in
the quantum register will occur simultaneously.

Quantum parallelism in this case appears to do the impossible. The application of the oracle
to the quantum register appears to be just one operation, so where and when do all N = 2n oracle
executions take place? The answer is that they all happen when the oracle is applied to the quantum
register.There is little else that can be said. It is this kind of strong deviation from ordinary experience
that makes the prospects for quantum computing so interesting.

Before concluding that quantum physics offers power comparable to magic, it is important to
keep in mind that we cannot obtain any information from the processing of a quantum register until
we make a measurement, and at that instant the superposition collapses. We can apply our oracle to
test all N data items simultaneously. As we just saw, the oracle will shift the phase of the solution
leaving unchanged the rest of the elements.

For example, if we have an uniform superposition of all N = 2n elements of a n-bit quan-
tum register:

|�〉 = 1√
N

N−1∑
i=0

|i〉 (3.12)

and we apply the oracle to get:

O|�〉 = 1√
N

N−1∑
i=0

(−1)f (i)|i〉 . (3.13)
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At this point the solution is marked by having a phase shift; however, all elements are equally likely
to be read. Thus, the question is, how do we determine which data item represents a solution?

To be able to identify solution states, we could augment our quantum register with an extra
qubit which will mark a state as 1 or 0, depending on whether the oracle identifies it as a solution
or not. Thus, if we apply the oracle to the superposition of states and then take a measurement, we
will know whether or not the measured state is a solution. Unfortunately, this does not allow us to
find the solution any more efficiently, because all we can do is repeat the whole process until we
measure a state that is marked as being a solution. Doing this takes O(N) iterations, which is no
more efficient than classical search.

At this point it appears that quantum computing offers an algorithm that is no better than
a classical algorithm, which repeatedly chooses a random element of the array and tests it with the
oracle. In other words, it appears that the potential power of quantum parallelism evaporates under
closer examination. This is not the case, however, because a more sophisticated algorithm can be
applied to manipulate the superposition so that a solution state is the most likely to be measured.
This algorithm is referred to as Grover’s algorithm [23, 24].

3.1.3 GROVER’S ALGORITHM
To illustrate Grover’s algorithm, we will consider the case of searching for the index of a desired
data item y from a dataset of size N = 2n data items. We presume that the dataset is completely
unordered and unstructured.

The first step is to create a uniform superposition of the N indices in the quantum register,
where uniform simply means that the weights associated with the states are equal (and, of course,
sum to unity). As discussed on a previous chapter, this can be done using Hadamard gates. Thus, we
initialize the n-qubit register to the uniform superposition as:

|�〉 = H⊗n|0〉 = 1√
N

N−1∑
i=0

|i〉 (3.14)

where each state in the superposition is an index into the array of data items to be searched.
As before, we can observe that at this point the solution is already in the quantum register,

but direct measurement will lead to the solution with a very small probability of success. Indeed, if
we measure the quantum state |�〉, the probability that the result will be the unique solution is 1/N .
This can be seen from the following:

ξ = 〈y|�〉 = 1√
N

N−1∑
i=0

〈y|i〉 = 1√
N

(3.15)

where the probability of success is ξ2 = 1/N . The goal is to modify |�〉 to amplify the amplitude
ξ , and the probability of success ξ2, for the state i = y.
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The necessary modification of the quantum state involves the use of the oracle O and another
quantum operator D that inverts states through the mean.The diagonal elements of D are −1 + 2/N ,
and the off-diagonals are 2/N . The Grover iteration operator is therefore defined as:

G = D × O . (3.16)

For example, in the case of two qubits (N = 4), D is:

D = −
(

1

2

) ⎛
⎜⎜⎝

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

⎞
⎟⎟⎠ (3.17)

and if the solution state in this example is 00, then the oracle looks like:

O00 =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (3.18)

In this case, the Grover operator G results:

G = D × O00 = −
(

1

2

) ⎛
⎜⎜⎝

1 1 1 1
−1 −1 1 1
−1 1 −1 1
−1 1 1 −1

⎞
⎟⎟⎠ . (3.19)

The initial uniform superposition for this simple example can be written as:

|�〉 = 1

2
(|00〉 + |01〉 + |10〉 + |11〉) = 1

2

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠ . (3.20)

The amplitude and probability for each element in the superposition can be visualized in
Figure 3.1. As made evident by this graphical representation, all amplitudes are the same, and as a
consequence, all the probabilities are equal.

After the application of the oracle operator to the uniform superposition, the state of the
quantum register looks like:

O00|�〉 =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠ 1

2
= 1

2

⎛
⎜⎜⎝

−1
1
1
1

⎞
⎟⎟⎠ . (3.21)
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Figure 3.1: Visualization of the initial state in Grover’s Algorithm for 2 qubits, and “00" as the solution
to the search problem. At this stage, all the elements of the superposition have the same amplitude
and probability.

As expected, only the phase of the solution state has been changed by the application of the
oracle. Therefore, the phase of the solution is inverted, but the probabilities remain the same. This
is visualized in Figure 3.2

The next step is to apply the inversion around the mean operator D. First let us notice from
Figure 3.2 that the mean of the four amplitudes is:

mean = − 1
2 + 1

2 + 1
2 + 1

2

4
= 1

4
. (3.22)

Thus, for “00" we have an amplitude of −0.5, and its “distance" from the mean is 0.75. Then, an
inversion around the mean implies to invert −0.5 around 0.25, which leads to 0.25 + 0.75 = 1.0.
On the other hand, for the states “01", “10", and “11", they all have an amplitude of 0.5, and their
distance from the mean is 0.25. Then, the inversion around the mean for these states implies to
invert 0.5 around 0.25, which leads to 0.25 − 0.25 = 0.0 for all of them. The effect of the inversion
around the mean is depicted in Figure 3.3.
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Figure 3.2: Visualization of the application of the oracle in Grover’s Algorithm for 2 qubits, and “00"
as the solution to the search problem. At this point, the amplitude for the state ‘00" has shifted its phase
and acquired a minus sign. The probabilities remain the same for all the states.

Equivalently, we could have used the operator D:

G|�〉 = DO00|�〉 (3.23)

= −
(

1

4

) ⎛
⎜⎜⎝

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

−1
1
1
1

⎞
⎟⎟⎠ (3.24)

=

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ . (3.25)

Therefore, the application of the Grover iteration leads to an state in which the amplitude
of the solution state has been amplified from 1/2 to 1, which lead to a probability amplification
from 1/4 to 1. Measurement at this stage will result in the solution with probability 1. This step in
Grover’s algorithm is visualized in Figure 3.4.
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Figure 3.3: The inversion around the mean of the quantum amplitudes.
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Figure 3.4: Visualization of the application of the inverse around the mean operator in Grover’s Algo-
rithm for 2 qubits, and “00" as the solution to the search problem. At this stage the solution has amplitude
and probability equal to 1.

Therefore, in this simple example the correct solution is obtained with probability 1 after a
single Grover iteration. What is important to note is that the solution was found using only one
oracle computational step. In contrast, the classical solution would require up to four applications
of the oracle to find the solution. For the case of n > 2 qubits, Grover’s algorithm will require
multiple iterations, but the number will be sublinear with N and is, thus, superior to the best
possible classical alternative.
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Let us estimate now how many Grover iterations need to be performed. To this end, we can
rewrite the uniform superposition as the sum of the nonsolutions and the solution:

|�(0)〉 = α(0)
∑
x �=y

|x〉 + β(0)|y〉 (3.26)

where y is the solution to the search problem.
Iteratively applying the Grover operator r times to the n-qubit uniform superposition state

|�〉 gives the following. For the first iteration we have:

|�(1)〉 = G|�(0)〉 (3.27)

= G

(
1√
N

N−1∑
i=0

|i〉
)

(3.28)

= α(1)
∑
x �=y

|x〉 + β(1)|y〉 . (3.29)

And for the rth iteration:

|�(r)〉 = Gr |�(0)〉 (3.30)
= Gr−1|�(1)〉 (3.31)
= ... (3.32)
= G|�(r − 1)〉 (3.33)
= α(r)

∑
x �=y

|x〉 + β(r)|y〉 . (3.34)

Then, after r Grover iterations we obtain:

|�(r)〉 = α(r)
∑
x �=y

|x〉 + β(r)|y〉 (3.35)

with the normalization condition:

|α(r)|2(N − 1) + |β(r)|2 = 1 . (3.36)

This result suggests the following convenient way to parametrize α(r) and β(r):

α(r) = cos((2r + 1)θ)√
N − 1

(3.37)

β(r) = sin((2r + 1)θ) (3.38)

with

sin θ = 1√
N

(3.39)
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which clearly satisfies the initial condition:

β(0) = sin(θ) = 1√
N

. (3.40)

Clearly, |β(r)|2 is the probability of finding the solution to the search problem after r iterations.
Therefore, to find the solution to the search problem with high probability we require:

β(r) ≈ 1 (3.41)
α(r) ≈ 0 . (3.42)

Then:
β(r) = sin ((2r + 1)θ) ≈ 1 ⇒ (2r + 1)θ ≈ π

2
. (3.43)

And for large N :

sin θ = 1√
N

� 1 ⇒ sin θ ≈ θ ⇒ θ ≈ 1√
N

. (3.44)

Therefore:
(2r + 1)θ ≈ π

2
⇒ r ≈ π

4

√
N − 1

2
. (3.45)

As a consequence, for large N , the probability is maximized with r ≈ (π/4)
√

N iterations, which
implies that expected O

(
N1/2

)
Grover iterations are required.2 This sublinear O

(
N1/2

)
complexity

provides a substantial improvement over the O(N) complexity for a classical search.
Basically, Grover’s algorithm performs inversions around the mean in such a way that the

amplitudes of solution states increase while those of nonsolutions decrease. However, because all
the operations involved in the algorithm are unitary, then a Grover iteration can be understood as a
rotation in the space of quantum states.

The way in which the amplitudes change can be visualized geometrically is the following.
Suppose we have the state:

|�(r)〉 = α(r)
∑
x �=y

|x〉 + β(r)|y〉 . (3.46)

Then, after we apply a Grover iteration we get:

|�(r + 1)〉 = G|�(r)〉 = α(r + 1)
∑
x �=y

|x〉 + β(r + 1)|y〉 . (3.47)

As shown in Figure 3.5 the net effect of a Grover iteration is the rotation of the original state in
such a way that its projection to the axis of the solutions is increased.
2Big-Oh notation refers to worst-case complexity unless modified by an adjective such as “expected” (or followed by words such as
“with high probability”) when the bound is probabilistic in nature. In the quantum computing literature, however, it is common
for the probabilistic qualifiers to be assumed implicitly. This is not necessarily a serious abuse of notation because the probability
can be made arbitrarily high. For this reason, and for notational simplicity, we adopt the same convention.
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Figure 3.5: Visualization of the effect of a Grover iteration.

A common misunderstanding of Grover’s algorithm is to expect that if we apply more iterations
to the state, then we will obtain higher probability of success upon measurement. However, this is not
the case: Grover’s algorithm is not an iterative process that asymptotically approaches the solution.

This algorithmic property is due to the periodicity of the trigonometric functions in the
parametrization of the state after a Grover iteration. Indeed, as the sine function increases its value,
the probability of success increases. As we start with a small value for the argument, and as the
argument increases, the value of the function increases.But at some point, an increase in the argument
of the sine function will actually decrease its value. That is, more iterations than necessary will take
the state farther away from the solution. This effect is illustrated Figure 3.6. Therefore, it is very
important to apply a number of iterations that correspond to the ones specified by the algorithm.

As an example, let us consider the case of the search problem with a single solution using 3
qubits. Here, the search space has 23 = 8 elements and we expect the highest probability after about
2 iterations. On an uniform superposition, before applying the algorithm, the probability of success
is of about 0.125. Then, after a single Grover iteration the probability of success is augmented to
0.78. And after two iterations it becomes 0.95. However, after applying the Grover iteration a third
time, the probability of success is reduced to 0.33.

In the above examples we have considered a search for a specified element, but Grover’s
algorithm can be applied to find the solution for any arbitrary oracle. This is important because
many classes of queries can be satisfied in sublinear time using classical data structures. For general
queries, however, a classical algorithm can do no better than an O(N) sequential search of the dataset.

It can be shown that, under the conditions of an unstructured and unsorted database, Grover’s
algorithm is optimal [57]. That is, no other quantum or classical algorithm can do better than
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Figure 3.6: The effect of performing more iterations than those specified by Grover’s algorithm.

O(N1/2) under the assumptions of the problem (unstructured and unsorted dataset). However,
although the O

(
N1/2

)
complexity of Grover’s algorithm is quadratically more efficient than the

best possible classical algorithm for general search problems, it is natural to wonder whether it can
be made even more efficient. It turns out that it is provably optimal given the basic tenets of quantum
physics.

It is important to remark again that the quantum complexity of O
(
N1/2

)
and the classical

complexity of O(N) for the problem of searching an unordered and unstructured database relate to
the number of times we are required to use an oracle. That is, a classical algorithm requires O(N)
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checks to the oracle, while Grover’s algorithm requires O
(
N1/2

)
uses of the oracle. Clearly, Grover’s

algorithm is taking advantage of the intrinsic parallelism of the quantum computing model. The
bottom line is that the optimality of Grover’s algorithm refers to the number of times it requires to
consult the oracle to produce a solution to the search problem, and nothing else.

As is the case with classical computing, however, the complexity of quantum search can be
reduced substantially for particular classes of queries. This is particularly true for the case where
the database is somewhat ordered or structured. This must be the case because classical computing
is subsumed within the quantum model, and classical algorithm can satisfy a variety of queries in
O(log(N)) time using binary search, and it can satisfy exact-match queries in O(1) expected time
using hash tables.

3.1.4 GENERALIZED QUANTUM SEARCH
Amplitude amplification can be applied to more general classes of search problems in which a
multiplicity of solutions may exist. In the case of k solutions, Grover’s algorithm can find one
solution in O

(
(N/k)1/2

)
time – but only if the value of k is known. The need for the value of k can

be seen from the formula for determining the number of iterations.
Indeed, after r iterations of the Grover operator the superposition with k solutions will look

like:
|�(r)〉 = α(r)

∑
non-solutions

|x〉 + β(r)
∑

solutions
|y〉 (3.48)

which normalization looks like:

|α(r)|2(N − k) + |β(r)|2k = 1 (3.49)

This suggests the parametrization given by:

|α(r)|2(N − k) = cos2(2r + 1)θ (3.50)
|β(r)|2k = sin2(2r + 1)θ (3.51)

and therefore:

β(r) = 1√
k

sin(2r + 1)θ (3.52)

α(r) = 1√
N − k

cos(2r + 1)θ (3.53)

with:

sin θ =
√

k

N
(3.54)

As before, high probability of measuring a solution implies:

β(r) ≈ 1/
√

k (3.55)
α(r) ≈ 0 (3.56)
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And for large N � k:

sin θ =
√

k

N
� 1 ⇒ sin θ ≈ θ ⇒ θ ≈

√
k

N
(3.57)

Therefore:

(2r + 1)θ ≈ π

2
⇒ r ≈ π

4

√
N

k
− 1

2
(3.58)

As a consequence, for large N , the probability is maximized with r ≈ (π/4)
√

N/k iterations, which
implies that O

(
(N/k)1/2

)
Grover iterations are required.

In most practical applications k is unknown, which means that Grover’s algorithm cannot be
applied. It is possible to apply a quantum counting algorithm to determine the number of solutions.
An optimal quantum counting algorithm has complexity O

(
(kN)1/2

)
, which would dominate the

search complexity [10]. Fortunately, a different formulation of the amplitude amplification procedure
can be applied to find a solution in O

(
(N/k)1/2

)
time, even if k is unknown [9].

The fact that a solution can be found more efficiently, as k gets large, should be no surprise: as
the number of solutions increases, the probability of sampling one of them increases. For example, if
k = O(N) we can find a solution in O(1) time, just from random sampling.O

(
(N/k)1/2

)
is provably

optimal for this type of search problem; however, most practical applications require retrieval of all
k solutions, not one of them chosen at random.

However, we cannot output the entire solution dataset using a single application of Grover’s
algorithm. Indeed, the superposition of states for the last iteration of Grover’s algorithm, with known
k, looks like:

|QA〉 = Gr |�(0)〉 ≈ sin ((2r + 1)θ)
1√
k

∑
solutions

|y〉 (3.59)

where the probability of finding a nonsolution is presumed to be small and has been neglected in
the equation. Thus, |QA〉 is very close to be a superposition of solution states.

Unfortunately, a measurement to retrieve a solution causes the superposition to collapse, thus,
losing all information relating to other possible solution states.

We could apply Grover’s algorithm multiple times to retrieve the entire dataset of solutions.
But to do so, we require about O(k log(k)) applications of Grover’s algorithm, and the overall
complexity of the solution is O(

√
kN log(k)). For a dense dataset, where k is comparable to N , the

complexity is reduced to O(N log(N)). This is a suboptimal solution, as the brute force classical
search leads to an improved complexity of O(N).

3.2 GROVER’S ALGORITHM WITH MULTIPLE SOLUTIONS
If it is known that there are exactly k solutions, the complexity of Grover’s algorithm is O

(
(N/k)1/2

)
.

In other words, if there are many solutions, Grover’s algorithm can more efficiently find one of them.
Grover’s algorithm requires the value of k, and that value is rarely known a priori in practical situations,
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so it must be computed using a quantum counting algorithm. Unfortunately, the best possible
(provably optimal) quantum counting algorithm has complexity O

([(k + 1)(N − k + 1)]1/2
) =

O
(
(kN)1/2

)
[10].

As already mentioned, there is an alternative to Grover’s algorithm that can search efficiently
for a single solution without knowledge of k. Unfortunately, most practical applications require the
retrieval of all the solutions, not just one of them. As will be discussed in this section, the lower
bound for retrieving the k solutions is determined by the lower bound on counting them. Counting
therefore can be done as a first step in the retrieval algorithm without undermining the overall
complexity. Grover’s algorithm can then be applied with known k to essentially sample one of the
solutions at random. This can be repeated O(k log(k)) times to ensure with high probability that all
k solutions are sampled. This algorithm can be summarized as follows:

Suboptimal Quantum Multi-Object Search Algorithm

1. Perform a quantum counting operation using the oracle function f to determine the number
k of solutions in dataset S of size N . Complexity: O

(
(kN)1/2

)
2. While counter < k do: (expected number of iterations: O(k log(k)))

(a) Initialize quantum register r to a uniform superposition of N indices corresponding to
elements in S. Complexity: O(1)

(b) Apply Grover’s algorithm to sample one of the k solutions according to f in O
(
(N/k)1/2

)
time.

(c) Insert the sampled solution into a solution set (no duplicates) implemented with a hash
table and increment counter. Complexity: O(1)

3. End Repeat. Complexity of loop: O
(
(kN)1/2 log(k)

)
The overall complexity is dominated by the O(k log(k)) applications of Grover’s algorithm,

each of which has O
(
(N/k)1/2

)
complexity.

The complexity to retrieve all the solutions is clearly �(N) when k = N . Classical exhaustive
search therefore has optimal worst-case complexity. However, the above quantum algorithm has
complexity O(N log(N)) in the worst case and is therefore suboptimal.The problematic logarithmic
factor results from the repeated sampling of already-known solutions. This can be avoided if a
different oracle is applied for each iteration so that previously-identified solutions are not resampled
during subsequent iterations [35]. This can be accomplished by augmenting the elements of the
indexed set S with a bit vector which is used to mark solutions as they are sampled. Thus, the
augmented oracle only regards an index as a solution if its corresponding element in S is unmarked
and is a solution to the original oracle. The new algorithm can be summarized as follows:
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Optimal Quantum Multi-Object Search (QMOS) Algorithm

1. Perform a quantum counting operation using the oracle function f to determine the number
k of solutions in dataset S of size N . Complexity: O

(
(kN)1/2

)
2. While k > 0:

(a) Initialize quantum register r to a uniform superposition of N indices corresponding to
elements in S. Complexity: O(1)

(b) Apply Grover’s algorithm to sample one of the k solutions according to f in O
(
(N/k)1/2

)
time and add it to the output dataset in O(1) time.

(c) Augment the oracle function f so that the sampled solution is marked as a nonsolution.
Complexity: O(1)

(d) k ←− k − 1

3. End While. Complexity of loop: O
(
(kN)1/2

)
4. Use the solution set to unmark all the elements of S in the oracle so that the complexity of

future queries is not compromised by an O(N) initialization step. Complexity: O(k)

The overall complexity is determined by the claimed complexity of O
(
(kN)1/2

)
for the loop

in step 2b. This iteration can be expressed as the sum

k∑
i=1

(N/i)1/2 = N1/2
k∑

i=1

i−1/2 . (3.60)

Using the well-known result

n∑
i=1

ic ∈ O
(
nc+1

)
for real c greater than −1 , (3.61)

we obtain the complexity N1/2O(k1/2) = O
(
(kN)1/2

)
as claimed. Furthermore, this overall com-

plexity is optimal by virtue of the optimality of the same complexity for quantum counting. In other
words, retrieving the k solutions yields the value of k and therefore cannot be accomplished with
complexity better than that of the optimal counting algorithm.

The general quantum search algorithm, QMOS, is directly applicable to the general-purpose
database problem in which it is desirable to support arbitrary queries with sublinear complexity.
Traditional databases can only provide sublinear complexity for predefined classes of queries and so
cannot efficiently support many types of data mining and analysis applications. In this case, quantum
searching provides a complexity improvement over classical search only by virtue of its generality.
There are also important special classes of queries, such as, multi-dimensional range searching, for
which quantum search is more efficient than the best possible classical search algorithm. These and
other applications will be discussed in the following chapter.
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3.3 FURTHER APPLICATIONS OF AMPLITUDE
AMPLIFICATION

Quantum amplitude amplification algorithms are not restricted to the problem of searching solutions
from an unsorted and unstructured database. To name just a couple, these methods can also be used
to perform a count on the number of solutions, and to find the minimum, maximum and mean of a
dataset [15].

From its original inception, Grover’s algorithm was advertised as a tool to perform efficient
searches of items inside a large database. As we discussed, Grover’s algorithm can be proved to be
optimal if the database is unsorted and unordered. That is, if no structure is imposed or created on
its elements, then brute force is the only viable alternative in the classical domain. In this case, the
quantum solution performs quadratically better than the classical solution. However, if you think
about it, most databases of scientific, industrial, or financial interest are made of alphanumerical
strings which can be sorted and structured to conduct fast exact match searches. Even abstract
concepts, such as, colors or geometric figures can be structured one way or another (using RGB
values to represent color and a mesh of polygons to represent figures).

Thus, for most practical applications a clever software developer will organize the database
before conducting a series of searches. By using data structures, such as, binary trees or Hash tables,
the developer may write a program that retrieves arbitrary elements from the database in constant or
logarithmic time. Under this circumstances, classical methods will outperform Grover’s algorithm.
However, as we will see in the next chapter, there is a wide class of computational problems that can
benefit from Amplitude Amplification algorithms.

3.4 SUMMARY
Amplitude Amplification is a powerful technique for the development of quantum algorithms. For
the specific case of Grover’s algorithm, searching for an item in an unordered and unsorted database
can be performed quadratically faster than in classical computing. Similarly, the QMOS algorithm
uses amplitude amplification to extract the entire solution set from an unordered and unsorted
database. At this point it is important to remark that Grover’s algorithm has been proved to be
optimal within the assumptions of an unsorted and unstructured database. Indeed, if the elements
of the dataset can be ordered using a data structure, then a classical computer could perform the
search exponentially faster than Grover’s algorithm.
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C H A P T E R 4

Case Study: Computational
Geometry

Computational geometry [38, 41] is concerned with the computational complexity of geometric
problems that arise in a variety of disciplines such as:

• Computer Graphics

• Computer Vision

• Virtual Reality

• Augmented Reality

• Multi-Object Simulation and Visualization

• Multiple-Target Tracking

Many of the most fundamental problems in computational geometry involve multi-
dimensional searching, i.e., searching for objects in space that satisfy certain query criteria [38, 41].
Efficiently supporting such queries typically involves the use of data structures for accessing specified
objects and, also, for representing those objects. For example, the spatial extent of an object may be
represented in the form of a convex hull1.

Virtually, all of the computational bottlenecks in computer graphics for video games or visual
effects involve some variant of spatial search [18, 19]:

1. Collision detection involves the identification of intersections among spatial objects.

2. Ray tracing involves the identification of the spatial object that is intersected first along a given
line-of-sight.

In the most general case, the spatial objects in computational geometry problems have an
arbitrary shape and size. As such, these problems may be very difficult to solve with an algorithm
that performs substantially better than exhaustive search.For instance, in Figure 4.1 we can appreciate
how difficult it is to establish which objects intersect other objects if all of them have arbitrary shape
and size. In this case, we practically have to determine if any point in object i intersects any point in
object j .
1Let us recall that the convex hull of a set of points X is the smallest convex envelope containing all elements of X.
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Figure 4.1: For objects of arbitrary shape and size, it is very difficult to determine which objects intersect
other objects. Most algorithms will not perform much better than exhaustive search.
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On the other hand, the problem is greatly simplified if the objects are simple coordinate-
aligned boxes. (See Figure 4.2.) Indeed, in this case it is enough to check if the projection of any of
the edges of box 1 does not overlap the respective edge projection of box 2, in which case the objects
do not intersect.Therefore, a common technique to find intersections between spatial objects usually
involves as a first step to wrap each object in a tight, coordinate-aligned bounding box. And then,
the full intersection computation is performed only if the bounding boxes intersect each other.

Therefore, the most efficient known algorithms for computational geometry problems are
applicable to only very special cases, e.g., involving coordinate-aligned boxes.Theoretical bounds for
any classical algorithm to address more general cases are very pessimistic with regard to prospects
for large-scale, real-time applications. Of course, there is no classical alternative to performing an
exhaustive search when the types of queries are not known a priori.

The advantage of quantum computing, as discussed in the previous chapter, is that it offers
rootic complexity for all types of queries. In this chapter we will discuss more specific classes of
search problems relevant to computer graphics, simulation, and visualization [31, 32, 33, 36]. In
particular, we will describe how to implement quantum algorithms to efficiently solve a variety of
computational geometry problems that appear in:

• General Spatial Search Problems

– Multi-dimensional Search and Intersection Queries

– Convex Hull Determination

– Object-Object Intersection Identification

– All-Pairs Intersection Identification

• Computer Graphics

– Z-Buffering

– Ray Tracing

– Radiosity

– Management of Level of Detail

4.1 GENERAL SPATIAL SEARCH PROBLEMS
CC algorithms for satisfying range queries, interval intersection queries, and many other types of
one-dimensional retrieval operations achieve O(log(N)) complexity by using some variant of bi-
nary search. Unfortunately, multi-dimensional generalizations that are constrained to using minimal
O(N) space, such as, the multi-dimensional binary search tree (also known as the k-d tree), provide
only rootic query time that depends on the number of dimensions [41]. Specifically, orthogonal
range queries in d dimensions require O(N1−1/d) time (O(N2/3) in three dimensions) in the worst
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Figure 4.2: Finding which objects intersect each other is greatly simplified if the objects in the database
are coordinate-aligned boxes.
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case using a multi-dimensional Binary Search Tree (BST). Obviously, this represents a lower bound
for more general types of queries involving non-orthogonal objects.

In most practical applications involving the retrieval of geometrically proximate objects (some-
times referred to as “near neighbors”), the value of k is O(1) (where k is the number of solutions to the
search problem). In such cases, the complexity of QMOS is superior to that of a multi-dimensional
BST for orthogonal range queries in all dimensions greater than two. The advantage of the QMOS
algorithm in 4D simulations, in which time represents an additional dimension, is even more sub-
stantial as the CC complexity for general point location has a lower bound of �(N3/4), and no CC
algorithm has been found that achieves this lower bound. In fact, it may be the case that O(N1−1/d)

cannot be achieved in minimal O(N) space except in the special case of orthogonal query objects.
Recent analysis [6] suggests that the best CC spatial query algorithms in 2D can only achieve

polylogarithmic query time, i.e., O(logc(N)) for some constant c > 1, at the expense of �(N log N)

space. It is likely that CC data structures for most types of spatial queries will have much higher
space complexities (with logarithmic factors that are exponential in d), but even this lower bound
complexity suggests that space will become an obstacle for large values of N . Indeed, for a typical
scenario in computer graphics, if the space complexity is O(N logd N) and N = 107, then the space
overhead in three spatial dimensions (d = 3) is a multiplicative factor close to 13000.

Because the CC algorithms that achieve query-time complexity superior to that of QMOS do
so at the expense of nonlinear space, the O

(
(kN)1/2

)
query complexity and O(N) space complexity

of QMOS are very attractive. In addition, the QMOS solution is valid for general objects, and it is
not restricted to coordinate-aligned boxes.

Table 4.1 summarizes these results and offers a comparison of the resulting complexities when
using different multi-dimensional spatial search methods. In this table, the pre-processing time refers
to the number of operations necessary to move the dataset from disk to memory and to build the
data structure.

It is also important to note that the QMOS has space complexity of O(N), even though we
argued that the quantum computing model has an exponentially large computational space. The
reason is that the dataset has to reside on a classical memory, so it can be removed and queried
multiple times (recall that a query to a quantum memory would collapse the quantum state of
the device).

This complexity analysis for QMOS holds both for point retrieval or for finding all objects
which intersect a given query object as long as identifying whether two objects intersect can be done
in O(1) time. If not, the complexity to find the k intersections must be multiplied by the complexity
to determine whether a given pair of objects intersect. Both aspects of the problem are considered
in the following two subsections.

These results can be better appreciated by plotting the behavior of the query time and space
resources for large values of N . For the sake of illustration, let us consider the simple case where
we have a single solution, k = 1, in four dimensions, d = 4. Furthermore, let us suppose that the
proportionality constant of the complexities is just a factor of 1. With these assumptions, Figure 4.3
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Table 4.1: Complexity comparison of classical [41] and quantum algorithms for satisfying
multi-dimensional spatial search and intersection queries with solution size k in d dimensions.
(Box queries refer to the identification of points or orthogonal boxes that are in or intersect a
given orthogonal box.General queries refer to objects other than boxes for which the intersection
between a pair of objects can be identified in O(1) time.)

Search Type Preprocessing Time Query Time Space Resources

Classical for general queries O(N) O(N) O(N)

Classical for box queries O(N log N) O(N1−1/d + k) O(N)

Classical for box queries O(N logd−1 N) O(logd(N) + k) O(N logd−1 N)

QMOS for general queries O(N) O
(
(kN)1/2

)
O(N)

shows the behavior of the query time. As can be observed, for N = 1020, the quantum solution
(QC = 1010) is significantly faster than the classical for general objects (CC = 1020) and the classical
for box queries using linear space (LS = 1015).

Figure 4.3: Query time for several multi-dimensional search algorithms: linear space classical for general
queries (CC), linear space classical for box queries (LS), non-linear space classical for box queries (NLS),
and quantum for general queries (QC). In this example we have assumed a single solution, k = 1, four
dimensions, d = 4, and a proportionality factor for the complexities equal to one.

On the other hand, for N = 1020 the quantum solution is slower than the classical solution
for box queries using non-linear space (NLS = 107). However, if we look at the amount of space
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required, shown in Figure 4.4, we observe that for N = 1020 the classical solution for box queries
using non-linear space requires about 100, 000 times more memory space than the other three cases
that use linear space. Clearly, the large memory requirement for non-linear space classical solutions
is a serious limitation to the practical implementation of these methods.

Figure 4.4: Space requirements for linear and non-linear space multi-dimensional search algorithms. In
this example we have assumed a single solution, k = 1, four dimensions, d = 4, and a proportionality
factor for the complexities equal to one.

Furthermore, the advantage in query time provided by the non-linear solution happens for a
relatively large value of N . As seen in Figure 4.3, the transition occurs at around N = 1013. That is,
non-linear space algorithms for a particular application require N to be big enough for the better
query time complexity to become evident. But in this case, the algorithm also requires a very large
amount of storage, a situation that may render it unfeasible.

As a consequence, most practical applications of multi-dimensional searches involve imple-
mentations that require linear space storage. In any event, the advantages of a possible tradeoff
between query time and space will depend on the particulars of the problem at hand and the amount
of computational resources available to the user.Therefore, the quantum solution becomes an attrac-
tive alternative because of its efficient query time combined with simple linear space requirements.

4.1.1 QMOS FOR OBJECT-OBJECT INTERSECTION IDENTIFICATION
When simulating the motion of objects in a multi-object simulation or Virtual Reality (VR) system,
it is necessary to identify the interaction of any pair of objects so that their respective states can
be updated, e.g., to reflect the kinematic changes resulting from a collision. Collision detection
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introduces two computational challenges.The first involves the determination of whether two given
objects are interacting as indicated by an intersection of their surfaces. This can be computationally
expensive for objects whose surfaces are non-convex.The second challenge is to identify which pairs
have interacted out of a set of N moving objects. This is often the most computationally expensive
part of a simulation or VR system because O(N2) time is required to check every pair, and the most
commonly used algorithms for reducing this complexity tend to be data-dependent with scaling
between O(N log(N)) and O(N2). Grid-based algorithms (possibly using hash indexing) can make
time/space tradeoffs in which storage is proportional the volume of the search space or the query
time is proportional to the volume of the objects. However, none of these approaches appear to be
practical for very large problems.

The most basic capability necessary for collision detection is to determine whether two given
objects intersect, e.g., after their states have been motion-updated during a timestep. If the objects
are convex, then intersections can be performed very efficiently. However, if they are very com-
plex dynamic objects, e.g., streamers blowing in the wind, then determining intersection can be
computationally expensive.

A standard mechanism for reducing the computational overhead of intersection detection
is to apply coarse gating criteria that can efficiently identify pairs that do not intersect. One such
mechanism is the use of bounding volumes, such as, spheres, coordinate-aligned boxes, and convex
hulls. If the bounding volumes for two given objects do not intersect, then the objects cannot
possibly intersect, so there is no need to perform more complex calculations involving the actual
objects themselves.

One approach for gating is to compute the 2D convex hulls of each 3D object obtained by
projecting (implicitly) its surface points onto each coordinate plane. With these hulls it is possible
to determine that two given objects do not intersect simply by showing that their 2D convex hulls
do not intersect in one of the coordinate planes. No projection operation needs to be explicitly
performed because the projection of a point onto one of a coordinate plane is found directly from
two of the point’s three coordinates, so the computation of the convex hulls represent the main
computational expense.

There are many efficient classical algorithms for computing 2D convex hulls, but the most
efficient of these algorithms requires �(N log(h)) time for N objects with h points forming the
convex hull [41]. The relevant question is whether a better QC algorithm exists. One approach for
finding such an algorithm is to examine each of the known CC algorithms to determine whether
Amplitude Amplification Algorithms can be productively applied. It turns out that one classical
algorithm, the Jarvis March [41], can exploit a quantum solution.

The Jarvis March begins by identifying one point on the convex hull. This can be achieved by
finding the point with the minimum x-coordinate value. The next point, in clockwise order, on the
convex hull can be found by computing the angles between the line y = 0 through the first point
and the lines determined by the first point and every other point in the dataset. The line having
the smallest angle (measured clockwise) goes through the next point on the convex hull. The same
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procedure is repeated using the line through the second point. Thus, each point on the hull is found
successively in O(N) time for an overall complexity of O(Nh).

The attractive feature of the Jarvis March algorithm, from a QC perspective, is that each
successive point can be determined after the application of a simple calculation for each of the
points in the dataset. Specifically, the angles for the points in each step can be computed, and the
minimum point retrieved, in O

(
N1/2

)
time using Grover’s Algorithm. This reduces the complexity

of the overall convex hull determination to O(N1/2h), i.e., sublinear time, if h is a constant, which
is often the case in practice.

The above complexity can be further improved through the application of Akl-Toussaint
heuristics with QMOS2. Specifically, a set of O(1) extreme points (e.g., ones with minimum or
maximum x and/or y coordinates) can be found using Grover’s algorithm in O

(
N1/2

)
time. Under

assumptions which hold in a variety of practical contexts, the number of points from the dataset,
which do not fall within the convex hull of the extreme points, is expected to be O(h). QMOS can
be used to find this O(h) superset of points (followed by an O(h log(h)) step to extract the actual
hull) in O

(
(hN)1/2

)
time, which is better than the above Jarvis-based algorithm by a factor of h1/2.

Table 4.2: Complexity comparison of the best classical 2D convex hull algorithm
with that of two quantum alternatives. (N is the total number of points, and h is the
number of points comprising the hull.)

Method Computation Time Space Resources

Classical (optimal) O(N log(h)) O(N)

Quantum ( Jarvis w/ Grover) O(N1/2h) O(N)

Quantum (Akl-Toussaint w/ QMOS) O((Nh)1/2) O(N)

Table 4.2 shows that the quantum 2D convex hull algorithm is considerably more efficient
than the best classical algorithm as long as h is not large compared to N .

4.1.2 QMOS FOR BATCH INTERSECTION IDENTIFICATION
In the previous section we were concerned with the efficient determination of whether two objects,
comprised of O(N) surface points, intersect. In this section we are concerned with the identification
of all pairs of intersecting objects in a dataset of N objects. This type of operation is necessary to
identify all interactions or collisions in multi-object simulations.

The identification of all intersections can be accomplished in an online setting by applying
the QMOS algorithm sequentially for each of the N objects with an oracle that identifies all objects
which intersect the object. The resulting complexity is:

N ∗ O
(
(kavgN)1/2

)
= O

(
N1.5k1/2

avg

)
(4.1)

2The Akl-Toussaint heuristics are methods used to accelerate the performance of convex hull algorithms. The basic idea is to try
to get rid of those points that will not contribute to the convex hull as early as possible in the computation process.
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where kavg is the average number of intersections per object.
A more direct batch algorithm for finding the m total intersections from a set of N objects

is possible by further exploiting the power of QC by doubling the size of the quantum register and
constructing the Cartesian product of the N objects. In QC, this can be done in O(1) time. QMOS
can then be applied to the N2 pairs to extract the m intersecting pairs in O

(
(N2m)1/2

) = O(Nm1/2)

time. For m = N ∗ kavg, this complexity is the same as the earlier result obtained by performing N

sequential intersection queries; however, the overhead of iteration in the latter approach is completely
avoided, i.e., it may be speculated that the batch identification of m intersections should prove to be
significantly faster in practice.

To conclude, we have derived a general quantum algorithm for identifying all of the m inter-
secting pairs of objects in a dataset of size N . This algorithm has complexity O(N ∗ √

m), which
matches the classical worst-case optimal algorithm when m is O(N2) and improves over the best
possible classical algorithm in all other cases. In particular, when m is O(N), which is the case in
many practical applications in which each object intersects only a constant number of other objects,
the complexity of the new quantum search algorithm is O(N1.5). Although classical algorithms
can achieve subquadratic complexity for special classes of objects, e.g., orthogonal boxes or convex
polyhedra, our quantum algorithm achieves its complexity for any class of objects.

4.2 QUANTUM RENDERING
In computer graphics, each object that needs to be rendered is typically decomposed into several
hundreds or thousands of smaller polygons or other surfaces [18]. These polygons (or surfaces) are
stored in a database that is often very large in practical applications, e.g., at least a few million
elements depending on the complexity of the scene. In this context, a scene is simply a collection of
many objects. To render a scene, the visualization system applies a variety of rendering algorithms
on each individual element of the database. These rendering algorithms have the common feature
of performing several searches over the entire database of objects in a scene. Considering the large
number of elements in the database, the search process tends to be the most significant bottleneck
in the rendering pipeline. Therefore, these search operations are prime candidates to be modified
and optimized using quantum amplification algorithms.

The question of whether quantum rendering algorithms can be defined at all was first consid-
ered by Andrew Glassner [20, 21, 22]. In the following subsections we provide QC algorithms for
several important rendering and scene management applications [33, 36].The results of our analysis
include QC algorithms with superior worst-case complexity compared to their CC counterparts3.

4.2.1 Z-BUFFERING
One of the simplest methods used to determine what polygons are visible in a scene that needs to be
rendered is the Z-Buffering algorithm [18]. This is a very simple, but effective, algorithm. The first
3These quantum algorithms are modified, corrected, and improved versions of those presented by the authors at the Siggraph 2005
conference [33].
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step is to scan-convert each polygon in the scene. This means that for each polygon, we calculate its
projection onto the screen and determine what pixels in the screen need to be shaded according to
the color of the polygon. Then, for each shaded pixel, we record the distance to the polygon. The
algorithm iterates over each polygon in the database, and if for a given pixel there is a new polygon
that is closer, we update the color of the pixel to represent the new polygon. In other words, for each
polygon we draw its image on the screen and keep a buffer of values that represent its distance to
the screen. If the polygon is the closest to the screen, then the respective pixels are shaded with the
color of such a polygon (Figure 4.5). Therefore, the entire operation requires O(pN) time, where p

is average number of pixels in the projection area per scan-converted polygon. In other words, the
problem is solved in O(p) time per polygon.

This is not a search problem per se, but it can be modified in such a way that we can solve
it using a variant of Grover’s algorithm. This variant is a Grover’s based algorithm used to find the
element with the minimum value in a dataset [15]. In a sense, this problem is rather similar to some
graph problems that have been studied within the context of quantum computing [40].

Let us suppose that for each pixel we create a quantum superposition of states, where each
element of the superposition points at each of the N polygons in the database.

|ψ〉 = 1√
N

(|P1〉 + |P2〉 + ... + |PN 〉) . (4.2)

Now, for all the polygons Pi in the scene, we can calculate the values Zi , the scan converted
distance between the pixel ψ and polygon i. This step is performed in O(1) steps, exploiting the
natural parallelism of quantum computing.Then, for this pixel,we just need to determine the polygon
with the smallest distance.

From here it is straightforward to apply the variant of Grover’s algorithm to find the polygon
with the minimum distance to the screen, which gives the polygon that needs to be used to shade
the pixel. This process has to be repeated once for each pixel. Therefore, the complexity of the
quantum Z-Buffering algorithm is O

(
N1/2

)
per pixel for an overall complexity of O(PN1/2) ,

where P is the total number of pixels. Although the factor of P is very large in the QC complexity,
the QC algorithm scales much better with the number of polygons N than does the corresponding
CC algorithm. Thus, as N grows into the billions, the QC algorithm achieves better query time
complexity than the brute force CC algorithm. This is the scale of problem that is relevant to many
virtual reality applications of interest, e.g., involving a complete virtual representation of an urban
environment. Finally, one could argue that the use of a classical data structure could be used to speed
up the classical algorithm. However, as we saw before, the best CC solutions are possible only at
the expense of larger space complexity. Equally important, the quantum solution is for objects of
arbitrary shape, and it is not restricted to simple polygons.

4.2.2 RAY TRACING
Ray tracing is one of the most commonly used rendering techniques [18, 19]. A ray tracer determines
the visibility of surfaces by tracing imaginary rays from the viewer’s eye to the objects in the scene.
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Z

X

Screen

Z1   Z2

Figure 4.5: The Z-Buffering algorithm renders the object closer to the screen.
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The intersection between a ray and an object determines the shade of the pixel, as seen in Figure 4.6.
This process has to be performed for each pixel on the screen.Therefore, for each pixel on the screen,
the ray tracer determines if there is an intersection between the ray and any object in the scene. If
the ray intersects many objects, only the one closest to the screen is rendered. Thus, the ray tracer
requires O(N) operations per ray, as the intersections need to be determined for each of the N

objects in the scene.

SceneScreen

Eye

Figure 4.6: The ray-tracing algorithm calculates the intersection between imaginary rays emitted by the
eye and the objects in the scene.

Although a variety of CC data structures exhibit much better performance than what the
worst-case complexity might indicate, most of the data structures have been primarily analyzed
empirically on special types of datasets of spatially proximate objects with small level-of-detail
variance, e.g., objects in a single room. There is reason to believe that their performance for scenes
involving views of large areas, e.g., through the trees and foliage of a virtual forest, will be substantially
worse.

A ray tracer can be implemented in such a way that the objects in the scene reflect the original
ray several times (Figure 4.7). This method allows the ray tracer to realistically model reflected and
refracted light. However, each new ray in the iteration requires O(N) further steps. So, if we consider
a ray tracer with two secondary rays, as the one shown in Figure 4.7, the rendering time triples.

Because of the ray-tracing algorithm’s intrinsic searching nature, which requires a search
for intersections between a ray and a collection of N objects, ray tracing is a prime candidate to
be optimized by means of quantum amplification algorithms. Therefore, the quantum ray tracer
can be simply implemented to calculate the intersection between rays and polygons. And once we
determine the polygon being intersected, we can perform further refinements to properly shade the
corresponding pixel. The intersection between a ray and a polygon is a very simple procedure, and
it involves basic analytical geometry to calculate the intersection.
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SceneScreen

Eye

Figure 4.7: Ray tracing with multiple reflections.

To implement a quantum ray tracer, we create a state |� > that encodes all the polygons in
the scene:

|� > = 1√
N

(|00...00〉 + |00...01〉 + |00...10〉 + ...) (4.3)

where each element in the superposition “marks” or “points at” one of the different polygons in the
scene. This superposition of states is used for each ray in the ray tracing process. We also need to
define an oracle function f that will act on each state of the superposition and it is such that:

f (x) = 1 if x intersects the ray (4.4)
f (x) = 0 any other case . (4.5)

After adding some ancillary qubits, we can use quantum parallelism to evaluate f (x) for each
element of the superposition (each object in the scene) in a single step. From here it is straightforward
to use QMOS to determine all the k polygons that intersect a ray in O((Nk)1/2). Then, we can use
the variant of Grover’s algorithm to find the minimum in O(k1/2) time. The overall complexity for
the quantum ray tracing algorithm becomes O((Nk)1/2 + k1/2) per traced ray. Note that for most
practical applications, k ≈ O(1) and k � N .

One of the advantages of the quantum solution is the fact that we do not require to use
polygons. In classical rendering, polygons are used because it is easier to calculate intersections with
them than with general objects. In the quantum solution, as long as we can establish that a certain
object and a ray intersect in O(1) time, we can use any type of objects.The quantum solution is then,
much more robust for objects of completely arbitrary geometry. As in the case for Z-Buffering, one
could argue that the use of a classical data structure can be used to speed up the classical algorithm.
Table 4.3 shows a comparison between ray tracing algorithms, where Nr is the total number of rays
that needs to be traced. Once more, the greatest advantage of the quantum solution resides on its
optimal query time complexity for general objects with linear space complexity.
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4.2.3 RADIOSITY
As we mentioned before, ray tracing is an excellent method to simulate reflected and refracted light.
However, a ray tracer can only approximate in a very crude and expensive way diffuse light (the
light scattered by opaque materials). Radiosity is a method that models extremely well diffuse light
but offers a poor representation of reflected light [12]. In other words, ray tracing is a good method
to render images of shiny and semi- transparent materials, while radiosity is optimal to render
opaque surfaces.

The radiosity method is based on the principle of energy conservation [12, 18]. In few words,
radiosity is defined as the energy leaving each element in the scene. Radiosity embodies the idea
that the total energy radiated by an opaque material is equal to the energy naturally emitted by the
material plus the reflected energy:

Radiosity = emitted energy + reflected energy.

where:

Reflected energy = reflection coefficient * total energy incident on the object from all other objects
in the scene.

This can be written in the form of the so-called radiosity equation, given by:

BidAi = EidAi + ζi

∫
Bj FjidAj . (4.6)

If we consider the scene to comprise a discrete number of individual objects (as we have already
stated), the radiosity equation takes the form:

BiAi = EiAi + ζi�j Bj FjiAj . (4.7)

In these equations Bi is the radiosity of each element, Ai is the area of the element, Ei is the
emitted energy and Fij is the form factors matrix that determines the incident energy which was
emitted by the other elements in the scene. The indices i and j are over all the elements that make
the scene. The radiosity equation can also be rewritten in matrix form as:

M · B = E (4.8)

where M is a form factors matrix. If we know E and M, we can use the Gauss method to solve
the system for the radiosity vector B in O(N) steps. E is an intrinsic property of the material
and, therefore, it is a known quantity. The form factors M are unknown but can be calculated by
performing ray tracing between all the elements in the scene, which requires O(N2) steps in the
classical case.

Now, once we know B, we still need to calculate the shading of each pixel on the screen, which
is accomplished by performing a technique very similar to ray tracing. So, the radiosity of a pixel P

(which can be translated into a shading value) on the screen is given by:

Shading(P ) = B · N(P, xp) (4.9)
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where N(P, xp) is a vector that depends on the pixel P and the point of the scene that it intersects xp

(Figure 4.8). Each element of N(xp) determines how much the radiosity of the element i contributes
to the shading of the pixel P . So, for example, if an object is not visible from P , the value of N for
that element is zero (it does not contribute to the shading of the pixel). To calculate the values of
N(xp) we need to apply a ray tracer that determines the visibility of each object in the scene from
pixel P , so it takes O(N) operations to complete.

Scene

Screen

Eye P

XP

Figure 4.8: The shading of pixel P depends on the radiosities at xp.

Therefore, the shading of each pixel involves the following three operations:

1. An O(N2) operation to calculate the form factor matrix.

2. An O(N) operation to determine N.

3. An O(N) operation to solve the radiosity matrix equation for B.

As already discussed, (1) and (2) are operations similar to ray tracing, which we already know how
to implement on a quantum computer. So, using a quantum ray tracer we can perform task (1) in
O(N3/2) steps and task (2) in O

(
N1/2

)
steps. However, we cannot use QC to further optimize

task (3). Consequently, quantum radiosity can be performed in O(N3/2) steps, in contrast to the
O(N2) time required in the classical case. Even if the radiosity method is performed using multi-
dimensional data structures, we can perform a similar analysis as the one done for ray tracing to
determine the advantages of a quantum implementation.

The speed up achieved by using a quantum radiosity algorithm can be used to increase the
realism of the rendered images. As discussed before, radiosity does not model accurately reflected
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lights. However, there is an extension to the radiosity method, known as ray-traced radiosity that
correctly simulates reflections and refractions.As the name indicates, ray-traced radiosity implements
both techniques into a single, more complex method. Ray traced radiosity is a two pass method. On
the first pass we perform radiosity as usual, and on the second pass we take reflections into account.
On the second pass, for each pixel, we shoot several rays and obtain the radiosity of the reflected
rays (Figure 4.9). If we use M rays per pixel, the second pass requires O(M ∗ N ∗ S) operations if
we consider S − 1 reflections. Evidently, this is an extremely time consuming algorithm. However,
a quantum ray traced radiosity algorithm is straightforward to implement, and we could obtain up
to a square root speed up. The second pass is then performed using O(M ∗ S ∗ N1/2) steps.

Eye

1 Pixel
Figure 4.9: Ray traced radiosity for one pixel.

4.2.4 LEVEL OF DETAIL
Level of Detail (LOD) is not a rendering algorithm, but a scene management method [37]. LOD
is based on the idea that, in many applications, we can trade fidelity for speed. For example, some
details of an object may not be visible from the viewer’s point of view, or these details may be so small
that are imperceptible. At other times, we may purposely need a low-resolution image of the object
to perform a quick visual exploration. In these cases, we can use a LOD algorithm that determines
when and for how much we can simplify a given model in the scene.

If a polygonal mesh is used to describe the models, the LOD method determines what
vertices in the mesh are necessary to represent the model according to the given circumstances. If
some vertices are not required, the LOD eliminates them from the mesh. To determine if a vertex
is necessary or not, the LOD function evaluates an error function ε(ν) for each vertex ν. If the error
associated with a vertex is less than a certain threshold δ < ε, then the vertex can be removed. This
procedure has to be repeated for all the vertices in the mesh, for each frame being rendered. For
increased performance, all the polygons are encoded in a hierarchical tree structure that determines
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which vertices are active at a given time. In this case, if the error is smaller than the threshold, the
vertex may be expanded to include lower portions of the hierarchical tree. Nevertheless, the process
has to be performed over the entire set of active vertices and requires O(N) steps, where N is the
number of active vertices.

At this point we can envision the quantum version of a LOD method. For each frame, we
prepare a state |� > that encodes the entire mesh made of N vertices. We can use Hadamard gates
to obtain a uniform superposition of the state. Each element of the superposition represents a vertex
in the mesh. Now, we define a function f such that:

f (ν) = 1 if ε(ν) < δ (4.10)
f (ν) = 0 any other case . (4.11)

We add some ancillary qubits and use quantum parallelism to evaluate f (ν) for each element of
the superposition in a single step. Then, it becomes straightforward to apply quantum amplitude
amplification algorithms to search for an unknown number of vertices with an error small enough
that makes them removable. This operation can be performed with O

(
N1/2

)
steps, in contrast to

the O(N) steps required in the classical case. Of course, this procedure is used for each frame being
rendered and N is the number of active vertices in the hierarchical tree structure.

4.3 SUMMARY
The QMOS algorithm provides the foundation for a general database system capable of satisfying
any query with solution size k in O((kN)1/2) time. As is well known, classical databases can only
provide sublinear query complexity for predetermined classes of queries.

In particular, we discussed the applications of QMOS to computer graphics and presented
a few quantum rendering algorithms. However, the applications of QMOS are varied and not
limited to graphics. For instance, we have also developed quantum algorithms for target tracking in
sonar applications, where it is not possible to structure the data in the form of coordinate-aligned
boxes [58]. In this case, the best known classical method is not much better than exhaustive search,
and a quantum solution offers a quadratic speed-up.
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C H A P T E R 5

The Quantum Fourier
Transform

The Fourier Transform (FT) is regarded as among the most important tools for mathematicians,
physicists and engineers. Indeed, this mathematical tool is widely used in virtually every single area of
physics and engineering, including optics, high energy physics, acoustics, signal analysis, and image
processing. Arguably, the ability to efficiently perform Fourier Transforms could radically change
the amount of computational resources needed to solve a variety of problems.

Interestingly, the quantum computational model offers the possibility to perform Fourier
Transforms exponentially faster than the best known classical method known today. However, it
is important to note that this type of exponential speedup, so far appears to be practical only to
algorithms that solve the Hidden Subgroup Problem (HSP). Therefore, it is quite unfortunate that
the Quantum Fourier Transform cannot be directly applied in the areas mentioned above.

As we will see in the next chapter, we can use the quantum version of the Fourier Transform to
efficiently solve the Hidden Subgroup Problem, which has important applications in cryptoanalysis.
Indeed, by solving the Hidden Subgroup Problem exponentially faster than with the best known
classical methods, the quantum computating model is able to compromise the most widely used
asymmetric cryptosystems. This is, by far, the most important feature of the quantum computa-
tional model.

5.1 THE CLASSICAL FOURIER TRANSFORM
Before tackling the issue of Quantum Fourier Transforms, let us briefly recall the classical version
of this important mathematical tool. To this end, suppose we have a set of N data points:

(x0, x1, ..., xN−1) . (5.1)

Then, the discrete Fourier Transform of the set of points is defined as:

(x0, x1, ..., xN−1) → (y0, y1, ..., yN−1) (5.2)

where the transformed points are described by:

yk = 1√
N

N−1∑
j=0

ei2πjk/Nxj . (5.3)
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We can easily extend this concept to the realm of continue functions. That is, if instead of a
set of discrete points we have a function f (x), we can discretize it over N values as:

f (x) → (f (0), f (1), ..., f (N − 1)) ≡ fN . (5.4)

In this way, the Fourier Transform of f (x) is defined by:

fN →
(
f̂ (0), f̂ (1), ..., f̂ (N − 1)

)
≡ f̂N (5.5)

f̂ (y) = 1√
N

N−1∑
x=0

ei2πxy/Nf (x) . (5.6)

Therefore, the discrete Fourier Transform can be used to approximate the continuous Fourier Trans-
form based on the N regular samples.

Clearly, the explicit calculation of f̂N requires N operations for each of the N sample points.
This implies that the overall complexity for the determination of the classical Fourier Transform
is FT (fN) = O(N2).

This quadratic complexity is prohibitive for large values of N . If we use O(n) = O(Log(N))

bits to represent the values of N , then the computational complexity to compute the Fourier Trans-
form in function of n is O(2poly(n)).That is, the number of computational steps grows exponentially
with the number of bits necessary to represent the values of N .

However, this result can be improved using the Fast Fourier Transform (FFT), which is of-
ten considered as the most important algorithmic development of the 20th century [11]. The FFT
achieves better performance: FFT (fN) = O(N log(N)). However, when we consider the complex-
ity of the computation in terms of the number of bits necessary to express the value of the N points,
the complexity remains exponential.

However, as we will see with some detail in this chapter, it turns out that a quantum analog
to the Fourier Transform can achieve even better complexity in certain special applications.

5.2 THE QUANTUM FOURIER TRANSFORM
The quantum version of the discrete Fourier Transform is constructed following the same rational as
before [5, 40]. The first step is to find the Fourier Transform of the computational basis that spans a
quantum superposition. Thus, let us suppose that we are using n-qubits representing N = 2n states,
and we take the computational basis conveniently labeled as:

|0〉, |1〉, ..., |N − 1〉 . (5.7)

Now, we define the Quantum Fourier Transform (QFT) of the elements of the computational basis
in a similar way to the discrete Fourier Transform:

QFT |k〉 = 1√
N

N−1∑
j=0

ei2πjk/N |j〉 . (5.8)
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Then, for a general quantum superposition the QFT looks like:

N−1∑
k=0

xk|k〉 →
N−1∑
j=0

yj |j〉 (5.9)

where:

yj = 1√
N

N−1∑
r=0

ei2πrj/Nxr . (5.10)

Indeed:

QFT

(
N−1∑
r=0

xr |r〉
)

=
N−1∑
r=0

xrQFT (|r〉) (5.11)

=
N−1∑
r=0

xr

(
1√
N

N−1∑
k=0

ei2πkr/N |k〉
)

(5.12)

=
N−1∑
k=0

(
1√
N

N−1∑
r=0

ei2πrk/Nxr

)
|k〉 (5.13)

=
N−1∑
k=0

yk|k〉 . (5.14)

That is, the QFT of an arbitrary quantum state is defined as the superposition of the Fourier
Transform of the individual amplitudes of the original state.

5.3 MATRIX REPRESENTATION
As we mentioned before, the matrix representation of quantum operators is very useful to compute
their effect on arbitrary quantum states. In this section, we will obtain a matrix representation for
the Quantum Fourier Transform and we will argument its unitarity.

To this end we can start with the previous definition of the Quantum Fourier Transform, and
we expand the terms in the summation. It is clear that:

yk = 1√
N

(
ei2πk0/Nx0 + ei2πk1/Nx1 + ... + ei2πk(N−1)/NxN−1

)
. (5.15)

From this equation is easy to obtain the matrix elements of the Quantum Fourier Transform, which
are described by:⎛

⎜⎜⎝
y0

y1

...

yN−1

⎞
⎟⎟⎠= 1√

N

⎛
⎜⎜⎝

ei2π00/N ei2π01/N ... ei2π0(N−1)/N

ei2π10/N ei2π11/N ... ei2π1(N−1)/N

... ... ... ...

ei2π(N−1)0/N ei2π(N−1)1/N ... ei2π(N−1)(N−1)/N

⎞
⎟⎟⎠
⎛
⎜⎜⎝

x0

x1

...

xN−1

⎞
⎟⎟⎠ . (5.16)
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To obtain a more compact definition, it is useful to define:

ω = ei2π/N (5.17)

because in this case we have that:⎛
⎜⎜⎝

y0

y1

...

yN−1

⎞
⎟⎟⎠ = 1√

N

⎛
⎜⎜⎝

ω00 ω01 ... ω0(N−1)

ω10 ω11 ... ω0(N−1)

... ... ... ...

ω(N−1)0 ω(N−1)1 ... ω(N−1)(N−1)

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x0

x1

...

xN−1

⎞
⎟⎟⎠ (5.18)

and, therefore, the operator that describes the Quantum Fourier Transform can be simply written
as:

QFTpq = 1√
N

[
ωpq

]
. (5.19)

Using Plancherel’s theorem it can be shown that the QFT is unitary as required1.

5.4 CIRCUIT REPRESENTATION
In order to compute the computational complexity of the Quantum Fourier Transform, it is useful to
rewrite the operator in terms of basic computing gates. To this end, we use the binary representation
of an integer j :

j ≡ j1j2...jn ≡ j12n−1 + j22n−2 + ... + jn20 . (5.20)

That is,

j1j2...jn =
n−1∑
r=0

2rjn−r . (5.21)

Similarly, the binary fraction is given by:

0.jljl+1...jm ≡ jl

2
+ jl+1

22
+ ... + jm

2m−l+1
(5.22)

which clearly satisfies:

0.j1j2...jn = j1

2
+ j2

22
+ ... + jn

2n
(5.23)

=
n∑

r=1

jr

2r
(5.24)

1 In classical Fourier analysis, Plancherel’s theorem states that, if a function f is in both L1(R) and L2(R), then its Fourier
Transform is in L2(R), and the Fourier Transform mapping is isometric (preserves distances) and can be shown to be unitary.
Here, Lp(R) is the space of p-power integrable functions. However, the full proof that the classical Fourier Transform is an unitary
transformation is usually known as Parseval’s Theorem.
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and therefore:

j1j2...jn = 2n 0.j1j2...jn . (5.25)

We can write any arbitrary state of the quantum basis using the binary representation:

|r〉 = |r1r2...rn〉 = |r12n−1 + r22n−2 + ... + rn20〉 . (5.26)

Now, let us apply a Quantum Fourier Transform to an arbitrary state |j〉 written in the binary rep-
resentation:

QFT |j〉 = QFT |j1j2...jn〉 (5.27)

= 1√
N

N−1∑
k=0

ei2πkj/N |k〉 (5.28)

= 1

2n/2

2n−1∑
k=0

ei2πkj/2n |k〉 (5.29)

= 1

2n/2

2n−1∑
k=0

ei2πj
∑n−1

r=0 kr/2r |k〉 (5.30)

= 1

2n/2

2n−1∑
k=0

n∏
r=1

ei2πjkr/2r |k〉 (5.31)

= 1

2n/2

1∑
k1=0

...

1∑
kn=0

n∏
r=1

ei2πjkr/2r |k1...kn〉 (5.32)

= 1

2n/2

1∑
k1=0

...

1∑
kn=0

n∏
r=1

ei2πjkr/2r |kr〉 (5.33)

= 1

2n/2

n∏
r=1

1∑
kr=0

ei2πjkr/2r |kr〉 (5.34)

= 1

2n/2

n∏
r=1

(
|0〉 + ei2πj/2r |1〉

)
(5.35)

= 1

2n/2

(
|0〉 + ei2πj/2|1〉

)
...

(
|0〉 + ei2πj/2n |1〉

)
(5.36)

= 1

2n/2

(
|0〉 + ei2π0.jn |1〉

)
...

(
|0〉 + ei2π0.j1...jn |1〉

)
(5.37)

where the last equation is true because, for the last term:

j

2n
= j1...jn

2n
= 0.j1...jn . (5.38)
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And for the previous term:

j

2n−1
= 2

j1...jn

2n
(5.39)

= 2

(
j1

2
+ j2

22
+ ... + jn

2n

)
(5.40)

= j1 + j2

2
+ ... + jn

2n−1
(5.41)

= j1 + 0.j2...jn . (5.42)

And therefore:

ei2πj/2n−1 = ei2π(j1+0.j2...jn) (5.43)
= ei2πj1ei2π0.j2...jn (5.44)
= ei2π0.j2...jn . (5.45)

And similarly for all the other terms. Therefore, we can write the Quantum Fourier Transform of
the basis state in the Product Representation as:

|j1j2...jn〉 QFT−→
(|0〉 + 2i2π0.jn |1〉) (|0〉 + 2i2π0.jn−1jn |1〉) ...

(|0〉 + 2i2π0.j1j2...jn |1〉)
2n/2

. (5.46)

This representation is often considered a definition of the QFT. The product representation
is useful because it can be used to define an efficient quantum circuit to compute QFTs. The most
important unit of this circuit is the Rk gate:

Rk ≡
(

1 0
0 ei2π/2k

)
. (5.47)

The quantum circuit that represents the QFT is depicted in Figure 5.1, and it involves Hadamard
and Rk gates.This circuit needs as an input the state |j1...jn〉. By using the quantum circuit analysis
technique we described on a previous chapter, it can be determined that the output state is:(|0〉 + 2i2π0.j1j2...jn |1〉) ...

(|0〉 + 2i2π0.jn−1jn |1〉) (|0〉 + 2i2π0.jn |1〉)
2n/2

. (5.48)

Clearly, this is the QFT of |j1...jn〉, but the order of the qubits has been swaped. Therefore, to
obtain the QFT we only require to perform a swaping on all the qubits. The circuit that swaps two
qubits is made of three concatenated CNOT as depicted in Figure 5.2.

Indeed, if the initial state is:

|�0〉 = |�a〉 ⊗ |�b〉 (5.49)
= (α|0〉 + β|1〉) ⊗ (γ |0〉 + δ|1〉)) (5.50)
= (αγ |00〉 + αδ|01〉 + βγ |10〉 + βδ|11〉) . (5.51)
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2j

H R2 Rn

H Rn-1

H R2

H

1j

1jn

jn

120 .02 nji

120 1.02 nn jji

120 ....02 21 njjji

120 ....02 32 njjji

Figure 5.1: Diagram of the quantum circuit that implements a Quantum Fourier Transform on the
state |j1...jn〉.

a

b

3

Figure 5.2: Circuit that swaps the order of two qubits.

After the first CNOT gate:

|�1〉 = (αγ |00〉 + αδ|01〉 + βγ |11〉 + βδ|10〉) (5.52)

and after the second CNOT gate:

|�2〉 = (αγ |00〉 + αδ|11〉 + βγ |01〉 + βδ|10〉) (5.53)
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and after the third and final CNOT gate:

|�3〉 = (αγ |00〉 + αδ|10〉 + βγ |01〉 + βδ|11〉) (5.54)
= (γ |0〉 + δ|1〉)) ⊗ (α|0〉 + β|1〉) (5.55)
= |�b〉 ⊗ |�a〉 (5.56)

and as intended, the qubits have been swaped.

5.5 COMPUTATIONAL COMPLEXITY
In order to have an objective comparison of the algorithmic advantages of the Quantum Fourier
Transform over its classical counterpart, we need to determine its circuit and algorithmic complexity.

To determine the circuit complexity, we need to consider the circuit that represents the Quan-
tum Fourier Transform discussed on the previous section. We can do a counting of the number of
gates that are necessary to implement this circuit:

• For the 1st qubit we need 1 Hadammard gate and (n − 1) Rk gates.

• For the 2nd qubit we need 1 Hadammard gate and (n − 2) Rk gates.

• ...

• For the nth qubit we need 1 Hadammard gate and 0 Rk gates.

Thus, we need n Hadamard gates and:

(n − 1) + (n − 2) + ... + 1 = n(n + 1)

2
(5.57)

Rk gates. In addition, we require to swap the qubits, as the transformation is in inverse order (from
the lowest qubit to the higher qubit). It can easily be shown that we require about 3n/2 swap gates to
accomplish this. Therefore, the total number of gates necessary to represent a circuit that performs
a Quantum Fourier Transform is:

3n

2
+ n(n + 1)

2
≈ O(n2) . (5.58)

Therefore, this circuit has a gate complexity of O(n2) = O(log2(N)). If each gate takes a
single computational step, then the quantum algorithm that performs the QFT requires O(log2(N))

computational steps. Obviously, this O(log2(N)) complexity represents an exponential speedup over
the O(N log(N)) complexity of the classical FFT algorithm.

5.6 ALGORITHMIC RESTRICTIONS
On the previous section we showed that the Quantum Fourier Transform can be computed expo-
nentially faster than its classical counterpart. Unfortunately, the QFT suffers a variety of constraints
which severely limit its practical utility.
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5.6.1 NORMALIZATION
The first constraint is that the Quantum Fourier Transform of the set of points:

(x0, x1, ..., xN−1) → (y0, y1, ..., yN−1) (5.59)

requires the numbers to have amplitudes normalized to unity:

x2
0 + x2

1 + ... + x2
N−1 = 1 (5.60)

y2
0 + y2

1 + ... + y2
N−1 = 1 . (5.61)

If you think about it, this is a rather severe restriction. Clearly, for most practical applications, the
data will not be normalized to the unity.

However, it is important to note that one could easily renormalize the input data to make
it unitary:

(x0, x1, ..., xN−1) → (x
(n)
0 , x

(n)
1 , ..., x

(n)
N−1) (5.62)

= (x0, x1, ..., xN−1)

norm(X)
(5.63)

= (x0, x1, ..., xN−1)√
x2

0 + x2
1 + ... + x2

N−1

. (5.64)

Then, by Parseval Theorem, we know that the Fourier Transform will also be unitary:

y2
0 + y2

1 + ... + y2
N−1 = 1 . (5.65)

However, the normalization step, which involves the explicit calculation and addition of the magni-
tudes of each of the N elements, is a process that has to be computed with 	(N) computational steps.
Thus, the normalization of the data overrides the benefit of using a Quantum Fourier Transform.

5.6.2 INITIALIZATION
The second constraint is that, because of Property # 8, a quantum register can only be initialized to
“0". Thus, we need to transform the “0" state into the desired initial state. To do this we require to
determine the elements of a N × N unitary transformation by solving a linear system of N equations
and N variables. This process has O(N2) complexity, which once more, completely negates the
computational advantages of the QFT. Of course, depending on the application, one could pre-
compute the initialization matrix once, and then use this representation on subsequent applications
of the QFT in O(1) time.

5.6.3 OUTPUT
The third constraint is that the QFT encodes the Fourier transformation in the amplitudes:

(x0, x1, ..., xN−1) → (y0, y1, ..., yN−1) (5.66)
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N−1∑
j=0

xj |j〉 →
N−1∑
k=0

yk|k〉 . (5.67)

And there is no efficient way to extract the information out of the amplitudes. Indeed, the value
of the amplitude is merely related to the probability of observing that state upon measurement of
the quantum register. Because a measurement results in the collapse of the superposition and we
cannot make copies of the register, there is no efficient way to extract all the information from the
quantum register.

Of course, one could try other ways to extract this information. For instance, we could try
to repeat the application of the Quantum Fourier Transform several times, and after performing
measurements, we could calculate the probabilities. However, to do this we would have to re-
peat the O(Log2(N)) QFT process for at least O(NLog(N)) times, for an overall complexity of
O(NLog3(N)), which is suboptimal to the use of a classical FFT.

5.7 SUMMARY
In summary, the QFT offers an exponential speedup over the classical FFT. Unfortunately, the QFT
cannot be used to replace the FFT in general applications in the areas of optics, acoustics, and signal
analysis. Indeed, the QFTs are useful only when the problem at hand does not require the list of
all the elements of the Fourier transform. That is, it is very subtle how QFTs provide algorithmic
advantages over standard classical methods.

Fortunately, despite these constraints, there are a few practical applications of the QFT, which
are potentially very important. Specifically, the QFT can be used to find the period of a function,
which in turn can be used to find the prime factorization of a large integer. Therefore, as we will see
in the next chapter, QFTs can be used to break the most commonly used crytographic ciphers.
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C H A P T E R 6

Case Study: The Hidden
Subgroup

As we discussed on the previous chapter, it is not feasible to apply Quantum Fourier Transforms to
solve problems in optics, signal analysis, or electrodynamics. Indeed, the Quantum FourierTransform
suffers from unsurmountable deficiencies that prevent it from being used to accelerate classical
applications in a trivial manner.

If you think about, the Quantum Fourier Transform is pretty much restricted to the types of
problems that do not involve a pre-selected initial set of data, and which do not require as an output
the actual values of the transformation. Even though these are limiting factors, there is an important
application of this quantum computational technique.

Indeed, the Quantum Fourier Transform (QFT) can solve the Hidden Subgroup Problem
(HSP) exponentially faster than is possible with the best available classical algorithm. While the
Hidden Subgroup Problem does not appear too frequently in scientific or engineering problems, it
is the backbone of the most widely used cryptosystems. That is, the Quantum Fourier Transform
can be used to efficiently break our current standards of secure communications.

Before stating the formal expression of the Hidden Subgroup Problem, we will examine two
illustrative problems: phase estimation and period finding.

6.1 PHASE ESTIMATION

Suppose we have an unitary operator U and a quantum state |u〉 such that:

U |u〉 = ei2πφ|u〉 (6.1)

and the goal is to estimate the value of the phase φ, where 0 ≤ φ ≤ 1. Clearly, this problem is
somewhat similar to finding the eigenvalues of U , but in this case the eigenvalues are complex
numbers restricted to have the form λ = ei2πφ .

To construct an efficient quantum algorithm that solves this problem we will require, as part
of the input, a black box function and some ancillary qubits.

Let us assume that the black-box function performs a controlled Uj operation. That is, the
operator U to the j th power. Thus:

|j〉|u〉 → |j〉Uj |u〉 . (6.2)
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Let us also suppose that we have a 2n-dimensional eigenstate u such that:

U |u〉 = ei2πφ|u〉 . (6.3)

Now, we also assume that we have access to t extra qubits. Where the value of t is determined by
the following relation:

t ≈ n + log

(
2 + 1

2ε

)
. (6.4)

The meaning of the value of ε will be evident later.
For the quantum algorithm to solve the phase estimation problem, we begin with an initial

state which is made of the tensor product between the t ancillary qubits in the “0" state and the
n-qubit target state |u〉:

|�1〉 = |0〉|u〉 (6.5)

and then we create a uniform superposition over the t extra qubits using t Hadamard gates:

|�1〉 → |�2〉 = H⊗t |�1〉 (6.6)
= (

H⊗t |0〉) |u〉 (6.7)

= 1√
2t

2t−1∑
j=0

|j〉|u〉 . (6.8)

We then apply the black box function with the controlled Uj operator to obtain:

|�2〉 → |�3〉 = 1√
2t

2t−1∑
j=0

|j〉Uj |u〉 (6.9)

= 1√
2t

2t−1∑
j=0

(
ei2πφ

)j |j〉|u〉 (6.10)

= 1√
2t

2t−1∑
j=0

ei2π(jφ)|j〉|u〉 . (6.11)

Now, let us suppose for a moment that the phase φ is a number that can be represented exactly
with t bits on a binary fraction representation such as:

φ = 0.φ1φ2...φt . (6.12)

In this case, it is easy to check that we can change to the standard binary representation by using a
multiplicative factor 2t :

0.φ1φ2...φt = 1

2t
φ1φ2...φt . (6.13)
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Thus, we can define the shifted phase φc as:

φc ≡ φ1φ2...φt = 2t × 0.φ1φ2...φt . (6.14)

Then, using the standard definition of the Quantum Fourier Transform for φc we obtain:

|φc〉 = |φ1φ2...φt 〉 QFT−→ 1√
2t

2t−1∑
j=0

ei2π(jφc)/2t |j〉 . (6.15)

Therefore, using this result we can see that the state |�3〉 of our quantum algorithm takes a very
convenient form:

|�3〉 = QFT (|φ1φ2...φt 〉) ⊗ |u〉 . (6.16)

If we now apply the inverse Quantum Fourier Transform we get:

|�4〉 = QFT −1|�3〉 = |φc〉|u〉 . (6.17)

Thus, the final step is to perform a measurement. However, notice how the state is no longer on a
superposition, so the result of the measurement will be:

|φc〉|u〉 (6.18)

with probability equal to 1. By measuring these states, we can obviously determine the value of φc,
and the phase of the problem is determined by a simple arithmetic operation:

φ = φc

2t
. (6.19)

Therefore, if the phase φ can be expressed exactly with t qubits, this quantum algorithm outputs the
exact value of φ with probability one.

Clearly, the overall complexity of this quantum algorithm is dominated by the application of
the inverse QFT, which has O(t2) = O(n2) complexity. On the other hand, a classical algorithm
to solve this same problem would have required O(2poly(n)) time complexity. Thus, the quantum
solution is exponentially faster.

Now, if the phase cannot be expressed exactly with t qubits, then it can be shown that the
output after O(t2) computational steps is just an n-bit approximation to the value of φ

φOUT ≈ φ (6.20)

and the output is correct with probability

P = 1 − ε . (6.21)

The definition of t in function of n and ε should be clear now.That is, the higher the precision
we require for the output of the quantum algorithm, the more ancillary qubits we are required to have.
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6.2 PERIOD FINDING
Suppose a binary function f is periodic over a finite domain:

f : {0, 1}n → {0, 1} (6.22)

f (x) = f (x + r) (6.23)

0 < r < 2n . (6.24)

As its name suggests, the period finding problem requires the determination of the value of the
period r .

The quantum algorithm that we will use to solve the period finding problem is actually
strikingly similar to the one used to solve the phase estimation problem.

As part of our input we will request t extra qubits, where t is given by:

t = O(n + log(1/ε)) . (6.25)

Just as before, the value of ε will be related to the precision of the algorithm. We also request a
black-box function implemented on an unitary operator U that computes the value of f in the
following fashion:

U |x〉|y〉 = |x〉|y ⊕ f (x)〉 (6.26)

where |x〉 is a quantum register of size t , and |y〉 is a 1-qubit register that holds the output of the
single-bit value of f .

As usual, the quantum algorithm begins with an initial state in the “0" position:

|�〉 = |0〉t-qubits|0〉1-qubit . (6.27)

For clarity, the subindex indicates the number of qubits in the specified register. Then, we create a
uniform superposition on the t-register using t Hadamard gates:

|�2〉 = H⊗t |0〉t |0〉1 = 1√
2t

2t−1∑
x=0

|x〉t |0〉1 . (6.28)

And we, then, apply the U operator:

|�3〉 = U |�2〉 = 1√
2t

2t−1∑
x=0

U |x〉t |0〉1 (6.29)

= 1√
2t

2t−1∑
x=0

|x〉t |f (x)〉1 . (6.30)
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We can approximate the value of f (x) using its Fourier representation:

|f (x)〉1 ≈ 1√
r

r−1∑
l=0

ei2π(lx/r)|f̂ (l)〉1 (6.31)

and, therefore, the state that describes the quantum algorithm is given by:

|�3〉 ≈ 1√
r2t

r−1∑
l=0

2t−1∑
x=0

ei2π(l/r)x |x〉l|f̂ (l)〉1 . (6.32)

Similarly, as before, if we can write the exact value of l/r using t bits, then we can conveniently
define a shifted value of this ratio:(

l

r

)
= 0.

(
l

r

)
1

(
l

r

)
2
...

(
l

r

)
t

= 1

2t

(
l

r

)
c

. (6.33)

And again, we observe that in this case, the Quantum Fourier Transform of the shifted ratio is given
by:

QFT | (l/r)c〉 = 1√
2t

2t−1∑
x=0

ei2π(l/r)cx/2t |x〉t (6.34)

which means that the quantum state that represents the state of the algorithm is given by:

|�3〉 ≈ 1√
r

r−1∑
l=0

QFT |
(

l
r

)
c
〉|f̂ (l)〉 . (6.35)

Thus, applying the inverse Quantum Fourier Transform gives:

|�4〉 = QFT −1|�3〉 ≈ 1√
r

r−1∑
l=0

|
(

l
r

)
c
〉t |f̂ (l)〉1 . (6.36)

Therefore, a measurement of this state will give the value of the ratio:(
l

r

)
c

(6.37)

for some value of l.
At this point, we know an estimate to the value of l/r to a precision of t bits. However, we can

also argue that l/r is a rational number. Indeed, l is the index that enumerates the Fourier expansion
of f , and r is the period of f in the range 0 < r < 2n.

Then, to obtain the value of the period r , we need to apply the continued fractions algorithm,
which outputs the nearest rational fraction to l/r 1. This algorithm takes O(t3) computational
1A detailed explanation of this algorithm can be found in [40].
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steps to complete. So, in this case, the complexity of the quantum algorithm is dominated by the
classical part, which at O(t3), it overrides the complexity of applying the inverse Quantum Fourier
Transform.

It is important to note that there is a fixed, small probability that the continued fractions
step may fail, which will require us to repeat the entire algorithm. However, the expected number
of iterations is O(1) and so does not affect the overall complexity, which is dominated by the
O(t3) = O(n3) complexity of the continued fractions step. On the other hand, the best known
classical algorithm that finds the period of a function takes O(2poly(n)) time.

6.3 THE HIDDEN SUBGROUP PROBLEM
As we have just seen, the quantum algorithms that solve the phase estimation and period finding
problems are very similar.This is because both problems are specific instances of a more general type
of problem, often known as the Hidden Subgroup Problem.

The Hidden Subgroup Problem can be formally stated in the following way [1]. Suppose G

is a group, K is a subgroup of G, and X is a finite set of elements, and f is a function such that:

f : G → X (6.38)
f (x) = f (y) ⇔ xK = yK (6.39)

xK ≡ {xk|k ∈ K} yK ≡ {yk|k ∈ K} . (6.40)

The solution to the Hidden Subgroup Problem means to find the generators for the group K .
Even though it is a very formal definition, it is easy to see how the problem of finding the period

of a function f is a specific instance of the Hidden Subgroup Problem. Specifically, let us take the
group G as the set of the positive natural integers with the standard addition as the group operation.

G = ZN . (6.41)

Now, let us consider K as a subgroup of G, such that the elements of K are the values of the period
of a periodic function f . Such a periodicity has to be valid for all the domain values of f in G.
That is:

K = {k ∈ G|f (k + g) = f (g), ∀g ∈ G} . (6.42)

Therefore, finding the generators of K is equivalent to finding the period of the function f .
By choosing an specific group G and a subgroup K , and asking on each case to determine

the generators of K , we can generate different problems [40]. Each of these problems is, therefore,
an instance of the Hidden Subgroup Problem. Some other instances of the Hidden Subgroup
Problem include:

• Phase Estimation Problem

• Period Finding Problem
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• Order Finding Problem

• Discrete Logarithm Problem

• Order of a Permutation Problem

• Hidden Linear Function Problem

• Deutsch Problem

• Simon Problem

The quantum solution to any of these instances of the Hidden Subgroup Problem follows
the same steps as we presented for the period finding and phase estimation problems [59]. That
is, (1) we add extra qubits to the register, (2) establish the functionality of a black box function
that represents the specific problem, (3) manipulate the state to find an expression that resembles
a Quantum Fourier Transform, (4) apply the inverse Quantum Fourier Transform, (5) measure the
register, and (6) perform any arithmetic operations necessary to obtain a meaningful result.

It can be formally shown that for the case when G is a finite Abelian group, a quantum
computer can solve the Hidden Subgroup Problem in O(log |G|) time [1]. As it happens, this is
exponentially faster than is possible for any known classical method.

It is important to note, however, that a few types of non-Abelian groups (e.g., the symmetric
and dihedral groups) have been successfully solved with subexponential complexity, but it is not
known whether the QFT can provide similar efficiency for other non-Abelian groups [39].

One could be easily misled to believe that the instances of the Hidden Subgroup Problem
listed above are only of theoretical interest to the computer scientist, with little practical application.
However, as we will see next, there is an important class of practical problems that involve instances
of the Hidden Subgroup Problem. And as a matter of fact, this application of quantum algorithmics
may well be the most critical result in the area of quantum computing.

6.4 QUANTUM CRYPTOANALYSIS
Because the Hidden Subgroup Problem is difficult to solve in the classical realm, several of its in-
stances have been used in the past for cryptographical applications.Therefore, it is very important the
result that a quantum computer can potentially solve the Hidden Subgroup Problem exponentially
faster. In other words, the most critical practical application of quantum Hidden Subgroup Problem
solvers is to break crypto systems that rely on the assumption that finding the solution to the Hidden
Subgroup Problem requires exponential time.

However, it is important to note that although the quantum algorithms for the solution of
the Hidden Subgroup Problem are more efficient than any known classical approaches, there is at
present time no theoretical lower bound that prevents the derivation of a classical alternative with
the same computational efficiency. That is, in the future someone could come up with a classical
algorithm to solve the Hidden Subgroup Problem in logarithmic time.
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In this section we will briefly discuss how the Hidden Subgroup Problem relates to cryptoanal-
ysis. We recall that there are two major types of ciphers to encrypt secret information: symmetric and
asymmetric. The symmetric ciphers have a single key, which is kept secret, and can be used for both,
encrypting and decrypting secret messages. Some of these ciphers can be proved to be perfectly secure.
That is, they are secure regardless of the computational power available to the adversaries. However,
the problem with symmetric ciphers is the distribution of the secret key among the legit users. In
most cases, a trusted courier has to deliver the secret keys, which according to the circumstances, it
may be difficult, expensive, or unfeasible to accomplish.

On the other hand, asymmetric ciphers have two keys, a public key for encryption and a secret
key for decryption. The encryption key is made public, so anybody can encrypt a secret message.
An encrypted message is sent to the legal receiver, who uses his secret key to decrypt the message.
Because the encryption key is public, its distribution is easy to accomplish. However, it is impossible
to prove these asymmetric ciphers to be perfectly secure, because their security will always depend on
assumptions regarding the amount of computational resources available to the adversary.

These asymmetric ciphers very often are designed in such a way that breaking them to obtain
the secret key implies solving a hard mathematical problem. Let us consider, for example, the case of
RSA, which probably is the most important and widely used cryptosystem. RSA and its variants form
the current standards for public key distribution ciphers. Without going into details, the security of
RSA is based on the computationally difficult problem of finding the prime factorization of a large
coprime integer (an integer that results from the product of two prime numbers). The factorization
problem is believed to be very difficult to solve using classical resources, and therefore, the security
of RSA is based on an unproved mathematical assumption.

Indeed, if we use brute force to find the two prime factors, p and q, of a large coprime integer
r represented with n-bits, we will require about O(

√
2n) = O(2n/2) computational steps (basically

we need to try, one by one, all the integers from 1 to
√

r). Being exponential in the size of the
integer n, the amount of computational resources necessary to break the cipher grows very rapidly.
For instance, if the size of the key is 4 bits, then we require about

√
16 = 4 computational steps.

And if we double the size of the key to 8 bits, then we will require
√

256 = 16 computational steps.
Even if we use the best known classical algorithm to find the prime factors, the general number

field sieve, it still takes an exponentially large number of computational steps:

O(e(64/9)1/3 Log1/3(r) (LogLog(r))2/3
) . (6.43)

Therefore, by increasing the size of the secret key, we can easily obtain a key which will require
an unfeasible amount of computational resources. This means that RSA is reasonably secure. For
example, in RSA129 the problem involves the factorization of an integer with 129 digits and was
the industry standard in the early 1990s. If we have a machine that runs at 1 million instructions
per second, it would take about 5, 000 years to break RSA129. If we have one of the latest Intel
processors, then we could find the prime factors in 5 years.Therefore, a large parallel computer could
break it in a matter of minutes. However, if we increase the size of the key to 200, then we would
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require over 2.9 billion years to find the prime factors.Therefore, we could safely presume that today
nobody could have enough computational resources to break RSA200.

This way, we can make an asymmetric cipher reasonably secure. Although in this case, it is
not perfectly secure, but only computationally secure (it makes assumptions about the computational
resources available to the adversary). However, once again we have to make clear that, to date, there
is no theoretical lower bound for the factorization problem.That is, at anytime in the future someone
could come up with an efficient classical algorithm that factorizes large integers in polynomial time.

At the same time, within the context of the factorization problem, if we are provided with both
prime factors, then to computer their product is rather trivial. Thus, this type of problem, encoded
as a mathematical function, is said to be a one-way function. That is, it is easy to compute it one way
(given both factors we can easily compute the product), but not the other (given the product it is
difficult to calculate the prime factorization).

The factorization problem is also said to have a trap door. This means that even though the
calculation of both prime factors is difficult, if somehow we are given one of them, then the problem
is trivial. Indeed, if we have r , and also p, then it is very easy to compute q. In this case, knowledge
of one of the factors is the trap door. This is important because the trap door is only known to the
receiver of the secret message, and he uses it to decrypt his message in a short period of time. Of
course, in real life applications the trap door is much more sophisticated than this, involving modular
arithmetic of p and q 2.

Because the Hidden Subgroup Problem is very difficult to solve with classical resources, its
instances are often used as one-way functions with trap doors for cryptographic applications. For
example, RSA is a cipher that uses the periodicity instance, which is related to the factorization
problem, to encode secret information. Other widely used ciphers include the El-Gamal and Diffie
Hellman, which are encryption protocols based on the discrete logarithm instance of the Hidden
Subgroup Problem [46]. As there is no proof that there is no classical algorithm able to solve the
Hidden Subgroup Problem in polynomial time, the security of these ciphers is based on an unproved
mathematical assumption. Therefore, the security of these asymmetric cryptosystems is classified as
computationally secure.

However, as we discussed on the previous section, any instance of the Hidden Subgroup
Problem can be solved using Quantum Fourier Transforms on a quantum computer. Furthermore,
the quantum solution is exponentially faster than the best known classical method. This means that
in the presence of quantum computers, all the ciphers based on instances of the Hidden Subgroup
Problem will be liable to be broken in a short amount of time by someone conducting a sophisticated
quantum attack.That is,all of our current standards of security are threatened by quantum technology.

The case of RSA, for example, can be broken using the famous Shor’s algorithm [44, 45].
Perhaps the most important result so far in the area of quantum computing,Shor’s algorithm provides
a method to break RSA exponentially faster than with the best known classical method. Here, the
problem of prime factorization, which is the backbone of RSA, is reduced to a periodicity problem

2A good description of the RSA cipher can be found in [46].
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using some basic results from number theory (Euclid’s Theorem, Euler’s Theorem, and Euclid’s
Algorithm). For a large coprime integer N , this process takes O(Log(N)) computational steps.
Then, the algorithm uses a Quantum Fourier Transform in O(Log3(N)) steps to find the period
of the function, as described on a previous section. Therefore, the overall complexity of Shor’s
algorithm is O(Log3(N)), which is exponentially faster than the general number field sieve running
with complexity O(poly(N)).

At this point is very natural to try to ask how much time will take to break RSA using a
quantum computer. Unfortunately, we cannot answer this question because we do not know the
running time coefficients that will characterize the first generations of quantum hardware. That is,
we know that quantum computing offers a superior algorithmic complexity than classical computing,
but we cannot predict at this time the running times. We can estimate, however, that if the running
time coefficients of quantum hardware are of at least some MHz, then, instead of taking billions of
years to break RSA200, this could be accomplished in a matter of days or weeks.

Nevertheless, we can work out a basic estimate of the scale of times involved [2]. Let us
suppose we have access to a theoretical 1 Peta-Hertz classical processor. If we presume that computer
technology will continue to evolve following Moore’s Law, we can expect this processor sometime
after the year 2044. This futuristic processor still would requires over 300 million years to break an
RSA key made of 2048 bits. On the other hand, let us suppose we have access to a comparatively slow
100 MHz quantum computer with ≈ 10, 000 qubits and 2 × 1011 quantum gates. If we run Shor’s
algorithm using this theoretical quantum computer, we could break this cipher in less than an hour
(of course, it is still difficult to predict when quantum technology will enable this size of hardware).

Before concluding this chapter, it is worth considering that, even though quantum comput-
ers can potentially break RSA, Diffie-Hellman, and El-Gamal ciphers, there may be the case of
asymmetric ciphers resilient to a quantum attack. Indeed, to date, we only know how a quantum
computer can be used to break those asymmetric ciphers that are based on some instance of the Hid-
den Subgroup Problem. In addition, there is no information, whatsoever, as to how to use a quantum
computer to break a cipher that uses other types of one-way functions. So, in principle someone
could develop secure, robust, and efficient asymmetric ciphers, which can withstand a sophisticated
quantum attack.

Such a possibility has been explored in RSA labs [48]. Most recently RSA has proposed a
rather sophisticated cryptosystem based on the Lamport digital signature using Merkle trees, which
does not involve an instance of the Hidden Subgroup Problem, and, therefore, appears to be immune
to a quantum attack. Unfortunately, the actual implementation of this cipher is very complex and
inefficient, which makes it unfeasible. But then again, in the future such quantum-resistant ciphers
could be designed to be efficient and easy to implement on existing classical hardware.

6.5 SUMMARY

Even though the Quantum Fourier Transform offers an exponential speedup over the Fast Fourier
Transform, there are many limitations that impede their use for the quantum acceleration of problems
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in areas such as optics, acoustics, and signal analysis. Therefore, we need to look for applications
where there is no need to export the entire Fourier transformation of a set of points. Such is the case
of the problems that involve instances of the Hidden Subgroup Problem.

A very subtle application of Quantum Fourier Transforms, the general technique discussed in
this chapter can be used to solve the periodicity, phase estimation, and discrete logarithm problems
exponentially faster than with the best known classical methods. The relevance of this result is that
most cryptosystems currently used today rely on some instance of the Hidden Subgroup Problem to
guarantee their computational security.Therefore, the existence of quantum hardware could severely
compromise the secret communications that are used day to day in the military,financial, and personal
spheres. By large, this is the most important application of the quantum computing model.

Furthermore, as we will see in the next chapter, the hardware implementation of a Quantum
Fourier Transform requires a small circuit. That is, it is feasible to have a quantum circuit that
performs Shor’s algorithm.
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C H A P T E R 7

Computational Complexity and
Quantum Computing

In previous chapters we have described how the theory of quantum mechanics can be used to
develop computational algorithms which are very different from those developed for classical com-
puters. There can be little doubt about the theoretical correctness of the algorithms, but there are
many assumptions underlying their claimed computational complexities which may not hold. Stated
more explicitly, the correctness of quantum theory does not necessarily imply a real computational
framework that is more powerful than classical computing – it only allows for the possibility that
such a framework exists.

To appreciate the situation, consider an ambitious computer science student who endeavors to
develop a polynomial-time algorithm for a problem that is believed to be inherently difficult to solve,
i.e., requires exponential time for any known classical algorithm. After many hours of effort, the
student seemingly achieves success: a polynomial-time algorithm which uses only standard unit-cost
arithmetic operations.

The student’s professor looks at the algorithm and quickly finds the flaw. The student has
implicitly assumed that floating-point variables can actually store arbitrary real numbers, i.e., that
they have infinite precision. Under this assumption such variables can store arbitrary amounts of
information, all of which can be manipulated in O(1) time by any arithmetic operation.The problem
is that ordinary arithmetic defines a computational framework that is far more powerful than the
classical computing framework, but it is not real because it cannot be physically realized.

Despite this fact, the student attempts to salvage the algorithm by analyzing the errors incurred
by the use of finite-precision variables on a real computer.Based on this analysis the student concludes
that the errors only slightly reduce the probability or accuracy of the algorithm’s result. Unfortunately,
the professor shows that the student’s analysis relies on statistical assumptions which do not hold for
arbitrary finite-precision errors. Eventually the student realizes that the tantalizing computational
power of real arithmetic cannot be exploited by any real computational framework.

A more complete analysis of the quantum algorithms described in previous chapters may
similarly reveal assumptions which cannot be satisfied by any real quantum computer. This does
not mean that the quantum algorithms cannot actually be implemented on real quantum computers
but rather that errors or other effects of flawed assumptions will limit their ability to scale. Thus, it
may turn out that a full analysis of quantum computing will reveal that it is not more powerful than
classical computing.
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If the power of quantum computing is at present purely speculative, it is reasonable to con-
sider the likelihood that it is more powerful than classical. Unfortunately there’s no way to assess
this likelihood. The situation is analogous to the status of time travel in relativity theory: present
understanding of relativity does not disallow the possibility of time travel, but this fact is rarely taken
as sufficient cause to try to develop a time machine.

Although it is not presently possible to definitively answer any questions about the power of
quantum computing, it is possible to identify and examine potential limiting factors:

1. Reversibility - Quantum operator circuits must be reversible, and in cases in which this implies
a larger number of gates than the corresponding classical implementation of the same function,
the overall complexity of the quantum algorithm must account for the increased parallelism
offered by the extra gates. In other words, one must determine whether a classical algorithm
could exploit the same level of gate parallelism to achieve comparable complexity bounds.
Ignoring such extra gate parallelism may produce seemingly better complexity results for
quantum algorithms than what actually exist.

2. Gate noise - Idealized quantum gates operate on continuous complex variables to produce
outputs that are accurate to infinite precision. In some cases a quantum algorithm may appear
to have a spuriously low complexity because it is actually exploiting the power of perfect analog
computation rather than the power of quantum mechanics [cite ref to power of analog]. In
other words, the ability of the circuit to perform useful computations may disappear if any finite
but arbitrarily small amount of noise enters the system. Quantum error correction can preserve
computational power in certain circumstances, but the resources consumed by error correction
must be accounted for in the complexity analysis. For example, when the resources consumed
by the quantum error correction scale proportionally with noise then no net complexity benefit
is achieved.

3. Decoherence - If the time interval within which a quantum computation can be performed
diminishes exponentially with the size (i.e., number of qubits) of the quantum register then
the scaling of the algorithm must account for this effect. In other words, the decoherence rate
as a function of number of qubits must be included in the denominator of any complexity
result for a quantum algorithm.

In this chapter we examine the complexity of quantum algorithms in greater depth.

7.1 QUANTUM PARALLELISM
As was discuss in Chapter 2, the power of the quantum computing model derives from a presump-
tion that it is possible to store and simultaneously manipulate an exponentially-large amount of
information in a quantum register (i.e., the amount of information is exponential in the size of the
register) to perform useful computations. This would be achieved using a register of n qubits in
which information is stored in the form of a quantum superposition of N = 2n states.
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On a quantum computer a single unitary operation can be used to transform an entire su-
perposition of states in one logical step, which seems to imply that O(2n) state transformations
occur in parallel. However, the computational use of this exponentially large level of parallelism is
obstructed by the constraints of quantum theory, e.g., the collapse of the superposition induced by a
measurement and the No-Cloning Theorem. Even with these constraints, as we have seen, certain
quantum algorithms relying on amplitude amplification or quantum Fourier transform techniques
have been proved in theory to exploit quantum parallelism to achieve run-time complexities superior
to those of any known classical alternative.

An issue that has not been discussed in detail in previous chapters is the circuit complexity
associated with various quantum algorithms. This is an important consideration because if the
speedup achieved by a quantum algorithm is due entirely to its use of a larger circuit (i.e., more
logic gates) then one could argue that the competing classical algorithm should be analyzed with
the availability of the same computational resources. The relative resource requirements of quantum
and classical algorithms is examined in depth in the following sections.

7.2 CIRCUIT COMPLEXITY ANALYSIS

Within the context of classical computing, it is well known that the three binary operations AND,
OR, and NOT, form a universal set of computational gates. That is, any Boolean function can be
computed with a circuit exclusively made of these gates. Furthermore, Claude Shannon revealed in
his celebrated 1949 paper that the computation of arbitrary Boolean functions on n bits requires
circuits of exponential size[43]. More specifically, Shannon showed that the computer simulation
of such an arbitrary Boolean function using a universal set of gates requires a classical circuit of size
O(2n/n) = O(N/ log N).

However, it is important to note that most Boolean functions found in practice, like those
used for arithmetic operations, require only linear-size circuits, O(n) = O(log N). As a matter of
fact, it appears that explicit examples of classical Boolean functions requiring superlinear circuits are
difficult to construct, and in fact no explicit example has been found [27, 28, 29]. Furthermore, it is
observed (and conjectured as a general result) that all problems that can be decided in O(2n) time
may be decided by a family of linear-size classical circuits[27].

The quantum model assumes that operations can be applied in parallel to all N = 2n states
in a quantum superposition to solve a given algorithmic problem more efficiently than is possible
using classical hardware. However, quantum mechanics imposes a significant restriction: the trans-
formations applied to the quantum register must be unitary. This is necessary because a non-unitary
operator is equivalent to performing a measurement and thus will cause a collapse of the superposi-
tion. Fortunately, this fact does not limit the generality of quantum computation because in theory
an arbitrary Boolean function can be implemented using unitary operators.

The first challenge to establishing a circuit description for the quantum computational model
is the determination of a universal set of gates. In the classical model any reversible operation on n

bits can be expressed as a permutation of the 2n possible bit strings, which is a finite number. That
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is, the number of reversible classical operations on n bit strings is a finite number. On the other
hand, for the quantum model, there are uncountably many unitary operations. Therefore, in strong
contrast to the classical case, a universal basis for quantum circuits implementing arbitrary unitary
transformations has uncountably many gates.

To establish a universal set of gates for the circuit model of quantum computing we are forced
to choose between two options:

1. We may use a base with an infinite, uncountably-many number of gates. Of course, while such
bases are interesting from a theoretical perspective, they are infeasible from an engineering
point of view.

2. We may weaken the condition of exact realization of unitary operations. That is, the elements
of the universal set of gates will only be able to provide an approximation to the intended
unitary operator.

With regard to the first option, it has been established that the set of all quantum gates
operating on 2 bits forms a universal set of gates[53], and the size of this gate set is believed to be
	(4n).

This exponentially large circuit complexity, as well as the infinitely large universal set of
quantum gates that are needed for the exact representation of an arbitrary unitary operator, has
motivated the consideration of approximate decompositions of arbitrary unitary operators using a
finite set of elementary gates. In the case of the second option, and invoking the Solovay-Kitaev
Theorem, it can be shown that an m-gate quantum circuit made of CNOT gates and arbitrary
1-qubit gates can be realized with a circuit of size O(m logc(m/δ)) with precision δ exclusively
using only Hadamard, phase, CNOT, and π/8 gates1[40]. Also, using a similar finite set of quantum
gates, an arbitrary unitary operation in n-qubits can be accomplished with �(2n log(1/δ)/ log(n))

elementary gates[40].
In this regard, a unitary operator Ut is defined that approximates a unitary operator U with

precision δ if the following inequality is satisfied:

||Ut − U || ≤ δ (7.1)

where the operator norm is defined as:

||X|| = sup
||X|ψ〉||
|||ψ〉|| (7.2)

and:
|||ψ〉|| = √〈ψ |ψ〉 (7.3)

is the usual norm of a quantum state.

1The π/8 gate is a single qubit gate with 1 and exp(iπ/8) in the diagonal, and 0’s elsewhere.
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While these approaches are successful in the reduction of the number of gates in the universal
set, which is extremely important for the physical realization of quantum computers and archi-
tectures, they still imply exponentially large circuits and exponentially large pre-processing times.
Furthermore, the error in the approximation of unitary gates accumulates linearly. This means that
errors will dominate the result of a quantum computation that runs for �(2n) iterations. In addition,
because the approximation error impacts the design of the target unitary operator that needs to be
implemented in hardware, these errors are not correctable by any type of quantum error correction
protocol. While this difficulty does not apply to all quantum algorithms (e.g., Grover’s or Shor’s), it
certainly precludes quantum solutions or quantum implementations for any hard classical problems.

7.3 ALGORITHMIC EQUITY ASSUMPTIONS

Many of algorithmic analyses in the literature rely on multiple simplifying assumptions which are
not explicitly stated. In most cases such assumptions are inconsequential because a more rigorous and
complete analysis will yield essentially the same result. However, it is well known that it is possible
to exploit common assumptions to achieve spurious complexity results that are not consistent with
those of a more complete analysis.

For example, Shamir showed that an assumption that arithmetic operations on integers have
O(1) complexity can be exploited to seemingly offer an O(log N) algorithm for integer factorization
- which of course would be more efficient even than Shor’s quantum algorithm[42]. Shamir achieves
this result by essentially packing a superlinear (in N ) number of bits of information into a single
integer while treating operations on that huge integer as still having O(1) complexity (similar to
the student example presented at the beginning of this chapter). Clearly, the true complexity must
take into account the scaling of the number of logic gates required to support unit-cost operations
for the size integers necessary to perform the computations. If the number of gates grows with N

(i.e., the number to be factored) then it becomes clear that the algorithm is benefiting from a degree
of gate-level parallelism that is not actually available on a conventional computer. Alternatively, if
it is explicitly assumed that the required gate-level parallelism actually is available, then competing
algorithms may be able to exploit the same assumption to achieve comparable complexity reductions.
In other words, equity of assumptions is necessary when comparing the computational complexities
of different algorithms.

7.4 COMPARING CLASSICAL AND QUANTUM
ALGORITHMS

As has been discussed, the implementation of an arbitrary unitary operator requires O(4n) = O(N2)

2-qubit elementary quantum gates, and the implementation of an arbitrary Boolean function requires
O(2n/n) classical gates. As a consequence, if we compare the complexities for the worst case sce-
narios, we observe that the classical circuit requires a factor of O(n2n) fewer gates than the quantum
circuit. This extra factor of O(n2n) gates required for the unitary form changes the relative resource
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allocation, so an alternative classical algorithm should assume the availability of the same number
of logic gates. However, this is precisely what is needed to achieve the same level of parallelism as
is potentially available from 2n states in a superposition. That is, if we envision a classical parallel
computer made of 2n nodes, then we require O(2n × 2n/n) = O(4n/n) classical elementary gates.

It must be emphasized, however, that establishing that quantum computing requires O(4n)

gates in the worst case does not resolve the question of whether or not quantum computation offers
new computational power. It could be the case that a particular quantum algorithm is able to exploit
the special structure of its associated unitary operator so that the implementation of the operator
requires only a small number of gates. Shor’s quantum factorization algorithm is an example in
which the unitary operator can be implemented efficiently and leads to an overall complexity which
exceeds that of the best openly-published classical alternative[8].

Indeed, in order to compute the prime factorization of a large integer,Shor’s algorithm requires
of an inverse quantum Fourier transform to perform period finding. As was discussed in Chapter 5,
the circuit that performs a quantum Fourier transform requires O(n2) gates. Furthermore, careful
analysis of Figure 5.1 reveals that this circuit has O(n2) depth (the minimum number of steps
necessary to complete the circuit, allowing gate parallelism). Therefore, the quantum factorization
of a n-bit integer requires a polynomial sized-circuit to solve the problem in polynomial time and
space.

Let us now analyze another typical problem: exact match query search using Grover’s algo-
rithm and classical brute force. In this case, smaller quantum circuit complexities have been found
for the implementation of the oracle in Grover’ algorithm. For example, it is easy to show that the
reversible circuit implementation of an n-qubit quantum oracle comparing a key of length n requires
a circuit of �(n) quantum gates and constant depth2. This circuit would find the match to the key
in O(2n/2) time.

However, the real question here is what type of problems can be solved more efficiently using
Grover’s algorithm over standard classical techniques. Indeed, the problem of exact match retrieval
can be solved in time O(n) time (or better) using a variety of well known data structures.The bound
for noisy quantum computation indicates that problems solved with a quantum computer with a
polynomial size circuit will require O(log(poly(n))) depth and �(log(poly(n))) time. Therefore,
the depth of the oracle in Grover’s algorithm is bounded to be O(log(poly(n))).

7.5 CIRCUIT COMPLEXITY WITH NOISY GATES

It is important to consider the complexity analysis of circuits comprised of noisy gates. Indeed, any
realistic physical device that implements a logical gate is likely to suffer a fault with certain probability.
To guarantee that the computations will be performed accurately, one needs to implement these
computations in a fault tolerant manner.

2This complexity corrects the 	(2n) circuit complexity of an oracle in Grover’s algorithm previously reported in the literature[51]
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7.5.1 FAULT TOLERANT CLASSICAL COMPUTING
In classical computers, fault tolerance is achieved through redundancy. For example, instead of using
a single bit to represent the 0L and 1L (zero logical and one logical states), we use the triplets 000
and 111. Then, if there is an bit flip error in the second of the bits, the logic state is switched to 010.
If we are confident that only one bit flip error has occur, then we have the redundancy to conclude
that the second bit has been flipped. Once identified, this error can easily be corrected.

On the other hand, if more than one bit flip error occur, then we do not have a way to properly
determine if 010 is a 0L with an error in its second bit or a 1L with errors on its first and third bits.
In this case, the error correction encoding has to use more than 2 extra bits. Indeed, it is easy to
check that we can determined unambiguously the presence of 2 bit errors if we had the following
encoding: 0L = 00000 and 1L = 11111. Then, by adding extra redundancy we can protect against
an arbitrary number of bit flip errors.

Furthermore, if the probability of error on a single bit is ε, then a single layer of error correction
as described above can reduce it to ε2. If we use the exact same technique to encode the 3-bit encoding,
then we could further reduce the error to ε4. Therefore, by concatenating several times these error
correction encodings, in principle one can reduce the error probability to an arbitrarily small value.

In the context of classical computing,we know that this fault tolerance process is quite efficient.
Indeed, it has been shown that if a function f is computed by a circuit made of s noiseless gates, then
it can be computed by a circuit with O(s log s) noisy gates[64, 65, 66]. In particular, for example, a
circuit of noisy gates that computes the sum of n variables must have �(n log n) gates[67].

A question that remains is whether any quantum algorithm can achieve a complexity advantage
from a time/space complexity tradeoff. More specifically, changing the available number of gates
affects the time complexity for both the quantum and classical algorithms, so it may be possible that
there is a number of gates for which the complexity of the quantum algorithm is superior, or inferior,
to that of the classical algorithm.

7.5.2 QUANTUM ERROR CORRECTION
In the quantum case, error correction is more complicated. In the classical model we were able to
add redundancy by copying bits into larger strings to represent the logical 0 and 1. However, the no-
cloning theorem forbids us from making copying of quantum states. Fortunately, clever techniques
have been developed to overcome this limitation. For example, instead of making copies, quantum
error correction protocols perform rotations.

Indeed, let’s suppose we have the quantum states representing logic 0 and 1:

0L = |0〉 (7.4)
1L = |1〉 (7.5)

to add redundancy we can add extra qubits in the |0〉 state to this representation:

0L = |0〉 × |0〉 × |0〉 = |000〉 (7.6)
1L = |1〉 × |0〉 × |0〉 = |100〉 (7.7)
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and now we rotate the |100〉 state to the |111〉 state, to finally obtain:

0L = |000〉 (7.8)
1L = |111〉 (7.9)

Then, the quantum state:
|�〉 = α|0〉 + β|1〉 (7.10)

gets encoded into:
|�〉e = α|000〉 + β|111〉 (7.11)

As a consequence, we have added redundancy, without the need of copying quantum states. Indeed,
if we had been able to copy the state for redundancy we would have led to a state of the form: Then,
the quantum state:

|�〉c = (α|0〉 + β|1〉) × (α|0〉 + β|1〉) × (α|0〉 + β|1〉) (7.12)
= α3|000〉 + α2β|001〉 + α2β|010〉 + ... + β3|111〉 (7.13)

which is clearly different from |�〉e.
A bit-flip quantum error correction protocol based on this simple encoding is able to restore

the original quantum state as long as a single error has taken place. Now suppose a simple binary
symmetric error model where the probability of a 0 flipping into a 1, and vice versa, is given by ε.
Then, the probability that no error occurs is given by:

P(0 errors) = (1 − ε)3 (7.14)

and the probability that a single error happens anywhere on the 3 qubit encoding state is given by:

P(1 errors) = 3ε(1 − ε)2 (7.15)

Then, the probability of having a correctable state is given by:

Pc = (1 − ε)3 + 3ε(1 − ε)2 (7.16)
= 1 − 3ε2 + 2ε3 (7.17)

In other words, the error correction protocol effectively reduces the probability of error from ε (for
the uncorrected state) down to 3ε2 − 2ε3 = O(ε2) (for the 3 qubit encoded state).

While this 3-qubit encoding can be proved to be able to protect against arbitrary bit flip errors,
quantum noise has more sophisticated operators. Indeed, the noise can make the qubit to flip its
phase:

|�〉 → α|0〉 − β|1〉 (7.18)

or any arbitrary combination of bit and phase flips:

|�〉 → α′|0〉 + β ′|1〉 (7.19)

Fortunately, it has been shown that a properly constructed 5-qubit encoding is enough to protect
the original state against arbitrary errors represented by unitary operators[40].
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7.5.3 FAULT TOLERANT QUANTUM COMPUTING
The ability to conduct error correction of single qubit states against arbitrary unitary errors is not
sufficient to guarantee that quantum circuits will operate in a fault tolerant manner. Indeed, fault
tolerance must account for the fact that any error correction protocol will itself be implemented
using noisy gates.

Fault tolerant quantum computing is based on the concatenation of quantum error correction
codes. And then, quantum gates are applied to encoded states.The end result of this process is a fault
tolerant quantum gate. It can be proved that after h concatenations of quantum error correction, the
failure probability for a procedure at the highest level εg is given by:

εg = (cε)2h

c
(7.20)

where ε is the error probability of each individual component, and c is a constant that reflects the
total number where an error can occur.

One of the major triumphs in the area of quantum computing is the threshold theorem[30, 68].
This theorem basically indicates that as long as the probability of error on each component of the
circuit is smaller than a threshold value ε < εth ≡ c, then fault tolerant quantum computations are
possible. Indeed, if this inequality holds true, then the value of εg decreases as we increase the number
of error correction layers.

Furthermore, it can be shown that the amount of noisy gates necessary to conduct fault tolerant
quantum computing is given by:

O
(
s × logr (s/δ)

)
(7.21)

where s is the original size of the circuit, r is a variable that depends on the number of points in a
block of gates where an error can occur, and δ is final accuracy of the algorithm.

7.6 CIRCUIT COMPLEXITY ANALYSIS OF QUANTUM
ALGORITHMS IN NOISY ENVIRONMENTS

The Quantum Threshold Theorem and Kitaev’s theorem for gate decomposition are two of the
most important results in quantum computing because they address key obstacles to the practical
implementation of quantum algorithms. However, it is important to understand the limitations of
these theorems.

7.6.1 PROBABILITY AMPLIFICATION
In what follows we are only allowed to repeatedly apply the algorithm or kernels, but we cannot
access the internal circuitry or dynamics of the program. That is, if we run the algorithm and fails,
then we just run it again several times to reduce the probability of error. For example, let us consider
the case of a binary system such that ↑ is the desired outcome and ↓ is the undesired outcome. For
equal probability, after one experiment, we have probability of 1/2 of success. But if we run it twice,
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then we have 3 out of 4 possible outcomes will have the ↑ state. If we run it three times, then we
have 7 out of 8 possible outcomes that will have the desired ↑ state. In general, if the probability of
error is ε, then after k experiments we have a probability of error εk and a probability of success of
1 − εk . As ε < 1 this process effectively reduces the probability of error.

7.6.2 ERROR PROBABILITY ANALYSIS
Suppose we have Grover’s algorithm, or for that matter, any other amplitude amplification algorithm.
Then, each iteration of the algorithm can be represented with the U operator. If the initial state is
|�i〉, then, after m iterations we get:

|�f 〉 = U(m) × U(m−1) × ... × U(1) × |�i〉 (7.22)

=
m∏

i=1

U(i)|�i〉 (7.23)

Suppose there is an error in the U ’s that may happen with probability ε. This error may be due
to (1) a faulty compiled design that performs the wrong operation, (2) the higher order errors left
after error correction, or (3) due to the approximate implementation of the gate using a finite set of
elementary gates.

Then, P(j), the probability that after m iterations the algorithm is completed with j errors
is:

P(0) = (1 − ε)m (7.24)

P(1) = (1 − ε)m

1 − ε
ε m (7.25)

... ... (7.26)

P(j) = (1 − ε)m

(1 − ε)j
εj

(
m

j

)
(7.27)

... ... (7.28)
P(m) = εm (7.29)

Then, the probability that we will get at least one error is given by:

Perr = 1 − (1 − ε)m (7.30)

Clearly, the probability of error depends on m, which in turns depends on the total number of states
in amplitude amplification algorithms.

Now suppose that we have to run the amplitude amplification algorithm k times. Then, the
probability that after this process we will obtain an error is:

(Perr )
k = (

1 − (1 − ε)m
)k (7.31)

Then, how many times do we have to perform this process to obtain a constant error comparable to
the error-free version of the algorithm? That is, we require:

(Perr )
k = δ (7.32)
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Now we can obtain the value k from the previous equation, and we get:

k = log δ

log
(
1 − (1 − ε)m

) (7.33)

For Amplitude Amplification algorithms, we know that m ∝ √
N . And for large N we know that:

(1 − ε)
√

N � 1 (7.34)

And also, using a series expansion we have:

log (1 − x) ≈ −x (7.35)

if x � 1. Then, for large N we have:

k = log δ

log
(

1 − (1 − ε)
√

N
) (7.36)

≈ log δ

− (1 − ε)
√

N
(7.37)

≈ − log δ ×
(

1

1 − ε

)√
N

(7.38)

That is:
k ≈ O

(
a

√
N

)
(7.39)

where a > 1. Notice also that this result is valid regardless of the value of ε, as we have only presumed
large N .

As a consequence, the overall complexity of Grover’s algorithm is:

Grover ≈ O
(√

N × a
√

N
)

(7.40)

To gain further insight, we can plot k and
√

N for large values of N . Taking ε = 0.0001, Figure 1
shows that for N < 107 the rootic complexity dominates the behaviour of the algorithm. However,
for larger values of N , the exponential part becomes relevant.

Also, the intersection point between both curves establishes the maximum value of N for which
we could get any quantum acceleration. Indeed, at that point k ≈ √

N , and the overall complexity
becomes O(N). After this point, the classical solution becomes more efficient.

Now, let us suppose that the probability of error per gate ε is very small. In this case, we have:

k ≈
(

1

1 − ε

)m

(7.41)

≈ (1 + ε)m (7.42)

≈
m∑

r=0

(
m

r

)
εr (7.43)

≈ 1 + mε + ... (7.44)
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Figure 7.1: Plots of
√

N and a
√

N log N for N ≈ 107 and ε = 0.0001. In this scenario, Grover’s algo-
rithm provides an algorithmic advantage up to about N ≈ 107. For larger values of N the complexity
of the algorithm becomes exponential, and therefore the residual constant error (ε = 1 − 1/a) has to be
mitigated by adding further layers of the quantum error correction protocol.

And therefore, as m ∝ √
N :

k ≈ O
(√

N
)

(7.45)

And the overall complexity of Grover’s algorithm becomes:

Grover ≈ O
(√

N × √
N

)
≈ O (N) (7.46)

which is the same complexity as classical brute force search.

7.6.3 THE CLASSICAL CASE
It is important now to estimate the performance of classical brute force search in the case where the
classical oracle produces errors with probability ε. Clearly, most of the analysis remains the same.
The difference is that, in this case, k ≈ O (N), and the overall complexity becomes:

Classical Brute Force ≈ O (N × N) ≈ O
(
N2

)
(7.47)

Interestingly enough, under the exact same assumptions of uncorrectable faulty gates with a small
error probability, Grover provides a quadratic improvement over the classical brute force search.

However, the classical model allows us to do very resilient computations under the freedoms
allowed in this model.That is, we are allowed to run the entire code, or portions of the code, as many
times as we want.
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Consider the case of a smarter classical brute-force (CBF) search of a dataset S of size N

using an oracle O(), where each application has a probability ε of producing an errored result, i.e.,
returning a ‘0’ for the correct solution or a ‘1’ for an incorrect solution.

Our algorithm is as follows: for each element Si of our dataset we evaluate O(Si). If Si is
assessed to be a solution then we re-evaluate O(Si) m times to ensure that it is in fact a solution.
The probability that a spurious solution passes all m tests is εm, so the probability that Si is a true
solution is approximately3 1 − εm.

The expected number of spurious solutions that will be initially assessed as actual solutions is
ε ∗ N , so O(m ∗ ε ∗ N) re-evaluations will be performed, and the complexity of a single execution
of the algorithm becomes:

O((1 + m ∗ ε) ∗ N). (7.48)

If no solution is found then the entire iteration will have to be re-executed. This will occur with
probability ε – the case in which an error occurs when the oracle is applied to the true solution. The
probability that the entire iteration is executed k times is εk . Including this multiplicative factor into
the complexity of Eqn.(1) gives an overall complexity of:

O((1 + m ∗ ε)k ∗ N). (7.49)

If we want to fix the probability p of finding the correct solution for any value of N , we need to
ensure that the probability of returning a spurious solution (εm) and the probability of failing to
recognized the correct solution (εk) are both less than 1 − p. This means that k and m must be less
than α = log(1 − p)/ log(ε), which is a constant for fixed p and ε.

Substituting α for m and k into the overall complexity given in the previous equation shows
that classical brute force has O(N) complexity in the presence of errors.

This optimal complexity may be related to the fact that in CC, most classical circuits require
only a constant overhead to make them fault tolerant. On the other hand, in QC it appears that the
poly-logarithmic penalty in unavoidable in most cases. As shown in the search problem, the time
penalty is also a constant.

7.6.4 SCALING OF THE PROBABILITY OF UNCORRECTED ERRORS
So far we consider the case where the error per gate ε is a constant. Now we can consider the case
where ε is a function that depends on N . Let us recall that ε is not the error probability that arises
from some noise model, but the total amount of uncorrected error after we have applied several
layers of quantum error correction protocols to guarantee the computations are fault tolerant. That
is, ε does not have any physical meaning, but it is a mathematical quantity. As such, we can think of
ε as an arbitrary function.

3Errors may occur during the m iterations, but their contribution to the overall analysis is negligible.
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In particular, we want to consider the case where ε(N) depends on N in such a way that the
overhead in iterations is a constant. That is:

k ≈ − log δ ×
(

1

1 − ε

)m

= O(1) (7.50)

Letting ε = ε(N) (because m(N) replaces m) gives:

ε(N) = 1 − (− log δ)1/m(N) (7.51)

with m(N) expressed as:
m(N) =

∑
m̃i(N)s̃i(N) (7.52)

where s̃i (N) is the number of gates of type i that appear in the quantum circuit and m̃i(N) is the
number of times that these gates are iterated during the quantum algorithm.

For example, in the case of Grover’s algorithm these definitions lead to:

ε(N) ≈ 1 − (− log δ)1/O(
√

N) (7.53)

The expression for ε(N) describes the way the error after the fault tolerance procedure has
to scale with N in order to avoid an overhead in the number of iterations. In other words, if we
demand that the algorithmic complexity remains the same even in the presence of errors and noisy
gates, then we need to include a functional dependency between the uncorrected error probability
and the number of gates and iterations.

7.7 REVISITING THE THRESHOLD THEOREM
Suppose we wish to achieve a final accuracy of ε in our simulation of a quantum algorithm that
requires s noiseless gates. Most commonly this requirement is translated into the requirement that
the simulation of each gate must be accurate to ε/s, so we must concatenate h layers of error correction
to obtain:

(cp)2h

c
≤ ε

s
(7.54)

where s is the number of gates in the circuit. From this equation one can conclude that the amount
of gates necessary to achieve this error level is:

O
(
s × logr (s/ε)

)
(7.55)

which forms the basis of the threshold theorem.
However, the error model of taking the average of the total error of the algorithm and divided

by the number of gates is not accurate. Clearly, there is no clear meaning as to what this error is. Our
error model, however, provides a good interpretation of the error based on the number of iterations
necessary to complete the algorithm with success.
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In light of this analysis we can generalize the threshold theorem. Specifically, we require that:

(cp)2h

c
≤ ε(N) (7.56)

where ε(N) now takes the form:

ε(N) = 1 − (− log δ)1/m(N) (7.57)

which leads to:
(cp)2h

c
+ (− log δ)1/m(N) ≤ 1 (7.58)

This expression can be used to determine the optimal number of iterations of quantum error
correction layers that are required to avoid a penalty on the algorithmic complexity. That is, we
require that:

(cp)2h̃(N)

c
≈ ε(N)

�⇒ h̃(N) ≈ log

(
log(1/cε(N))

log(1/cp)

)
(7.59)

As a consequence, h̃(N) scales as:
log (log(1/ε(N))) (7.60)

in contrast to h̃o(N) = log(log(s(N))) derived earlier. The difference in the number of iterations
is not a simple multiplicative constant, as h̃(N) and h̃o(N) have completely different functional
dependencies. In particular:

h̃(N)

h̃o(N)
−→ ∞ as N −→ ∞ (7.61)

We can determine the number of gates required to satisfy the fault tolerance inequality:

O
(
s × logr (1/ε(N))

)
(7.62)

We are interested in the overhead factor on the number of gates:

log

⎛
⎜⎝ 1

1 −
(− log δ

ξ

)1/m(N)

⎞
⎟⎠ (7.63)

and how it compares to the original case:

log (s(N)) (7.64)
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Our complexity is poly-logarithmic rather than strictly logarithmic, but this overhead is unavoidable
because:

log
(

1
ε(N)

)
log (s(N))

−→ ∞ as N −→ ∞ (7.65)

similar to the scaling of the number of layers of the error correction encoding h̃(N) and h̃o(N).
As an example, we can consider the case where k ≈ 10 and ε ≈ 0.1. The results are plot

and shown in Figure 2. Clearly, both circuit overhead complexities have a very similar qualitative
behavior. That is, both of them have a logarithmic complexity. Our model appears to be more strict,
in the sense that imposes a larger number of gates than those required by the traditional formulation
of the threshold theorem. In the range of values shown in the plot, our model requires a factor of 3
more gates. However, it is important to note that there is also a functional difference. Indeed, our
model appears to ramp up slightly faster than the pure logarithmic complexity of the traditional
threshold theorem. As a consequence, this factor of 3 will become a larger number as N grows.

Figure 7.2: Comparison of the circuit size overhead scale factor: traditional (below) vs. new model (top).

7.7.1 SPACE COMPLEXITY OVERHEAD
It is common in the QC literature to ignore loglog and small polylog factors on the time and space
complexity, e.g., resulting from layers of error correction. It is important, however, that classical
algorithms be afforded comparable resources when complexity comparisons are made. For example,
the availability of O(N log log N) memory can significantly improve the complexity of the best
classical algorithm compared to one that is constrained to O(N) memory4.

As we have seen, a classical circuit of S classical gates translates to a quantum circuit of
O(S log S) quantum gates due to the layers of necessary error correction. The question then is
4This is most marked in the case of Willard’s sheared retrieval algorithms for range searching[69] where even constant factors on
linear memory significantly reduce the exponent of the rootic query complexity.
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whether a classical circuit of size O(S log S) can yield a significant complexity improvement over
one of size S, i.e., more than simply shaving a trivial O(log S) factor from the overall computation
time. At present there are no examples in which this has been shown to be the case.

7.8 ERROR MODELS
It is important to remark that the threshold theorem carries a series of assumptions which may
have serious implications for the design and development of quantum computational devices. Even
though through the years several versions of the threshold theorem have appeared in the literature,
some of the common assumptions considered include[30]:

• Random errors: All the errors are presumed completely random and no systematic errors
occur. In the case of systematic errors, it has been argued that the threshold error value εth in
the threshold theorem has to be replaced by its square value ε2

th.

• Uncorrelated errors: As a consequence, if the probability of error for a single qubit is ε, then
the probability of error for two qubits is ε2. This basically means that the sources of errors in
the qubits of a quantum computer are isolated from each other.

• Perfect parallelism: In order to conduct error detection and correction, it is necessary to
perform a series of classical and quantum operations in a very short period of time. Therefore,
it is assumed that we can perform all these operations very efficiently and in parallel.

• Error rate independent on the number of qubits: Perhaps one of the most problematic
aspects of the threshold theorem, this assumption presumes that the individual gates of a
quantum computer will fail independently of the number of qubits beings processed.

• Gate Non-Locality: It is assumed that quantum gates can be applied to arbitrary pairs of
qubits regardless of their proximity. In practice, such a network topology may be impossible
to achieve for a large number of qubits. In such a case qubits will need to be moved across
the architecture so they can be operated by the quantum gate. It has been shown that if we
can rely on SWAP (gates that move qubits across a line) and RESTART (gates that remove
entropy out of the system by discarding qubits and replacing them with fresh qubits) gates,
then the threshold theorem remains valid[68].

• Large supply of ancilla qubits: It is assumed that the quantum architecture has a large number
of ancilla qubits necessary to perform a variety of quantum gates. It is also assumed that these
qubits are reusable, which means the ability of erasing them. As a consequence, this process
will generate heat and will require a cooling system.

• No leakage errors: Finally, the threshold theorem ignores the possibility of qubits lost due to
leakage. For example, most quantum systems that we could use to implement a qubit will not
be binary. That is, besides the |0〉 and |1〉 states, the system can also be on an infinitely large
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number of states |2〉, |3〉, ... , and so on. A good quantum hardware design goal is to make the
transition probability between the computational basis and other states to be extremely small.
In the case where the qubit goes from |0〉 or |1〉 to |n〉 (n > 1) is called a leakage error.

Finally, it is important to mention that the threshold theorem has been formulated for a variety
of error models, including local stochastic noise[70, 71], local non-Markovian error[72], and most
recently, Gaussian errors[73].

7.9 SUMMARY
The analysis presented in this chapter does not challenge the theoretical demonstrations of the
correctness of quantum algorithms, but questions have been raised about the confidence with which
one can claim that quantum computing is asymptotically more powerful than classical. At present
the algorithms of Shor and Grover are suggestive, and their potential to revolutionize the field of
computer science more than justifies continuing investigation and analysis.
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Conclusions
In this manuscript we have described the features of quantum theory that potentially support a
more powerful model of computation than that of the classical Turing model. Specifically, we have
described how a unitary operator can be applied to quantum superposition of states to transform
the entire set of states in parallel. This so-called quantum parallelism is what potentially permits
quantum algorithms to achieve computational complexities superior than those of any classical
alternatives. Grover’s quantum search algorithm is an example of a fundamental quantum technique
that has applications in a wide range of compute-intensive applications ranging from databases to
computational geometry to virtual reality. Shor’s quantum factoring algorithm is much more limited
in its range of applications but no less important in its theoretical and practical significance.

Although quantum theory seems to unambiguously imply the reality of quantum parallelism,
there remains a question of whether quantum parallelism implies computational parallelism distinct
from classical parallelism. Specifically, when an operator is applied to a superposition of states, the
effect is equivalent to the application of the operator to each of the states in parallel, and this is all
that is necessary to establish the correctness of quantum algorithms, such as, Grover’s. As discussed
in Chapter 7, however, the requirement that the operator be unitary has implications that cannot
be ignored. In particular, it is entirely possible that, for certain quantum algorithms, the apparent
computational savings obtained from the application of the operator to states in a superposition
are always precisely balanced by the increased number of reversible gates required to implement
the operator. In conclusion, although there may be some unresolved issues regarding quantum
parallelism, there is no question that the future of quantum computing is the future of computing
itself.
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